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Abstract

In the absence of data from a randomized trial, researchers may aim to use observa-
tional data to draw causal inference about the e↵ect of a treatment on a time-to-event
outcome. In this context, interest often focuses on the treatment-specific survival
curves, that is, the survival curves were the population under study to be assigned to
receive the treatment or not. Under certain conditions, including that all confounders
of the treatment-outcome relationship are observed, the treatment-specific survival
curve can be identified with a covariate-adjusted survival curve. In this article, we
propose a novel cross-fitted doubly-robust estimator that incorporates data-adaptive
(e.g. machine learning) estimators of the conditional survival functions. We establish
conditions on the nuisance estimators under which our estimator is consistent and
asymptotically linear, both pointwise and uniformly in time. We also propose a novel
ensemble learner for combining multiple candidate estimators of the conditional sur-
vival estimators. Notably, our methods and results accommodate events occurring in
discrete or continuous time, or an arbitrary mix of the two. We investigate the practical
performance of our methods using numerical studies and an application to the e↵ect
of a surgical treatment to prevent metastases of parotid carcinoma on mortality.
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1 Introduction

The gold standard for assessing the causal e↵ect of a binary treatment on a time-to-event

outcome is a randomized controlled trial in which participants are randomly assigned to

treatment or control and followed over time. The e↵ect of treatment may then be assessed

by comparing the fraction of participants who experience the event by the end of the study in

the treatment and control arms. However, some participants’ outcomes may be unknown for

various reasons, such as dropping out of the study or moving away from the study site, which

is known as right-censoring of the event time. If the time of right-censoring is independent of

the event time conditional on treatment arm, then contrasts of the stratified Kaplan-Meier

estimators can be used to assess the treatment e↵ect (Kaplan and Meier, 1958).

Randomizing treatment status is often infeasible or unethical, or preliminary evidence

may be needed to justify the cost of conducting a randomized trial. In such cases, researchers

may turn to observational data — obtained, for example, from cohort studies, registries, or

electronic medical records. In such contexts, the treatment or exposure is not randomized,

but instead assigned or selected according to an unknown mechanism. Assessing the causal

e↵ect of a treatment on a time-to-event outcome with observational data is challenging due to

confounding of the treatment-outcome relationship. When there are confounding variables

that a↵ect the treatment selection or assignment process and also impact the outcome,

simple approaches such as contrasts of stratified Kaplan-Meier estimators typically cannot

be interpreted causally. Any observed di↵erences (or lack thereof) in the outcome between

those who received treatment and those who did not may be due to the confounding variables

rather than the treatment. Even if the treatment is randomized, dependence of the event

and censoring times can also render the Kaplan-Meier estimator inconsistent and resulting

inference invalid.

If the recorded covariates are rich enough to de-confound the treatment-outcome, treatment-

censoring, and outcome-censoring relationships, then a causal e↵ect may still be recovered,

and there are a variety of existing methods for doing so. The most common approach consists
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of fitting a time-to-event regression model, such as a Cox proportional hazards model (Cox,

1972). If the Cox model holds, then the exponentiated regression coe�cient corresponding

to treatment can be interpreted as a conditional hazard ratio comparing treated and control

patients. However, if the model does not hold, this interpretation fails. Even if the pro-

portional hazards assumption holds for the treatment, but fails for the other covariates, the

estimator of the hazard ratio of treatment based on Cox regression can be severely biased

(Strandberg et al., 2014). Furthermore, the causal interpretation of the Cox model is compli-

cated (Hernán, 2010; Martinussen, 2022), which has motivated various modifications of the

model. Vansteelandt et al. (2022) considered an estimand that reduces to the hazard ratio

under the Cox model, but also has a useful interpretation when the Cox model does not hold.

Dukes et al. (2019) and Seaman et al. (2021) considered a class of semiparametric additive

hazards models in which the causal survival ratio is a simple transformation of the Euclidean

target parameter. Hou et al. (2023) considered doubly-robust estimation of the hazard ratio

under an additive hazards model. Other authors have considered the mean residual life as

causal parameter of interest (Mansourvar et al., 2016; Mansourvar and Martinussen, 2017).

Alternatively, any time-to-event regression model can be marginalized using the G-

formula to obtain estimated treatment-specific survival curves corresponding to the hypo-

thetical scenarios in which all patients are assigned to treatment or control (Makuch, 1982).

However, if the model is misspecified, the resulting marginalized survival curves will typically

be inconsistent. As an alternative to outcome regression models, inverse probability weight-

ing may be used (Cole and Hernán, 2004). However, their consistency hinges on consistent

estimation of both the treatment assignment mechanism and the censoring distribution. Fi-

nally, if the event time of interest is known to take values on a finite grid of time-points,

then methods for longitudinal data can be used — see, e.g., Rotnitzky et al. (2012) and ref-

erences therein. However, using a discrete-time approximation for an event truly occurring

in continuous time generally yields inconsistent estimators (Ferreira Guerra et al., 2020).

Doubly-robust estimators combine regression and weighting estimators in such a way
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that the bias of the resulting estimator is a product of the biases of the outcome regression

and weighting function estimators. As a result, doubly-robust estimators are consistent if

either the outcome regression or weighting function estimators are consistent. Furthermore,

doubly-robust estimators can converge in distribution to a normal limit at the parametric

rate even when flexible (e.g., machine learning) procedures are used to construct the outcome

regression and weighting function estimators.

Several doubly-robust estimators of treatment-specific survival curves in continuous time

have been proposed. Zeng (2004) proposed an estimator that is consistent as long as either

the conditional time-to-event or censoring distributions follows a Cox model. Zhang and

Schaubel (2012) proposed an estimator that is consistent as long as either the conditional

time-to-event distribution follows a Cox model or the treatment assignment mechanism fol-

lows a logistic regression model. Finally, Hubbard et al. (2000) and Bai et al. (2013) proposed

doubly-robust estimators based on semiparametric e�ciency theory. However, comprehen-

sive theoretical results regarding these estimators have not been developed, and both articles

suggested using common semiparametric regression models to estimate the conditional time-

to-event and censoring distributions. To the best of our knowledge, the use of machine

learning techniques for doubly-robust estimation of treatment-specific survival curves (and

contrasts thereof) permitting events occurring in continuous time has not yet been studied.

In this article, we fill this gap in the literature. Specifically, we make the following con-

tributions: (1) we propose a novel cross-fitted one-step estimator of the treatment-specific

survival curve (Section 3); (2) we provide detailed conditions, which permit the use of ma-

chine learning for nuisance function estimation, under which our estimator is (uniformly)

consistent and (uniformly) asymptotically linear (Section 4); (3) we propose methods for

pointwise and uniform inference (Section 5); (4) we propose a novel ensemble learner for

combining multiple candidate estimators of the conditional survival functions (Section 6).

In addition, we conduct a numerical study and apply our results to assess the e↵ect of elec-

tive neck dissection on all-cause mortality using an observational cohort of patients with
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parotid carcinomas (Sections 7 and 8). Importantly, the methods we propose and conditions

we derive all permit the event and censoring times to be discrete, continuous, or an arbitrary

mixture of the two. Furthermore, the nature of the time scale does not need to be known or

specified. This is important in many applications. For instance, censoring often involves a

mix of loss to follow-up occurring in continuous time and administrative censoring occurring

in discrete time. Similarly, composite event times defined as the earlier of two or more event

times may have both discrete and continuous components.

We have made the estimator and associated inferential procedures proposed here available

through the R package CFsurvival (https://github.com/tedwestling/CFsurvival), and we

have implemented the method proposed in Section 6 for estimating conditional survival func-

tions in the package survSuperLearner (https://github.com/tedwestling/survSuperLearner).

2 Statistical setting and parameters of interest

2.1 Ideal and observed data structures

We now define the ideal data structure we consider in temporal order. As we discuss below,

we only observe a coarsening of this ideal data structure. First, we record a vector W of

baseline covariates taking values in W ✓ Rd. Throughout, the dimension d of the covariates

is fixed. After recording W , but prior to time t = 0, we observe a binary exposure A 2 {0, 1}.

Adopting the Neyman-Rubin potential outcomes framework (Neyman, 1923; Rubin, 1974),

we let T (a) be the event time of interest under assignment to exposure A = a. We assume

that for a 2 {0, 1}, T (a) takes values in (0,1]. Since we assume that T (a) > 0, all patients

start the study without having experienced the event of interest, and since we allow T (a) =

1, some patients may never experience the event. We then let C(a) be a right-censoring

time under assignment to exposure A = a, and we assume that C(a) 2 [0,1]. Since we allow

C(a) = 0, patients may be censored immediately if, for instance, a patient is lost to follow-up

just after the exposure A is recorded. We define OF := (W,A, T (0), T (1), C(0), C(1)) to be
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the ideal data unit, and denote by P0,F the distribution of OF . We assume that each patient’s

potential event and censoring times are independent of all other patients’ exposures.

We now describe the coarsened version of OF actually observed. We denote by T := T (A)

and C := C(A) the event and censoring times corresponding to the exposure received. We

assume that the right-censored time Y := min{T,C} and the event indicator � := I(T  C)

are observed for each patient. Thus, the available data consist of n independent and iden-

tically distributed observations O1, O2, . . . , On of the observed data unit O := (W,A, Y,�).

We denote by P0 the distribution of the observed data unit, as induced by the distribution

P0,F of the ideal data unit.

We denote summaries of P0 with the subscript 0, e.g., E0[f(O)] := EP0 [f(O)], and sum-

maries of P0,F with subscript 0, F . In cases where f is a random function, the expectation

E0[f(O)] should be understood as being taken with respect to the distribution of the random

unit O, but not the function f . In addition, we let a^ b denote min{a, b}, Pn be the empiri-

cal distribution corresponding to O1, O2, . . . , On, and Pf :=
R
f(o) dP (o) for any probability

measure P and P -measurable function f . For a function f : R ! R that is left-continuous

at x 2 R, we let f(x�) := limu"x f(u). Finally, we use the convention 0/0 := 1.

2.2 Causal parameter of interest and identification

In this article, we are interested in the causal survival curves t 7! ✓0,F (t, a) := P0,F (T (a) > t)

for a 2 {0, 1} and t 2 [0, ⌧ ] for some positive ⌧ < 1. Thus defined, ✓0,F (t, 0) represents

the population probability that a patient would experience the event later than time t if,

possibly contrary to fact, the patient received the control exposure (A = 0), and ✓0,F (t, 1)

represents the same if the patient received the treatment under study (A = 1). In addition

to the exposure-specific survival curves t 7! ✓0,F (t, 0) and t 7! ✓0,F (t, 1), we are interested in

survival contrasts including the survival di↵erence t 7! ✓0,F (t, 1) � ✓0,F (t, 0), survival ratio

t 7! ✓0,F (t, 1)/✓0,F (t, 0), and risk ratio t 7! [1 � ✓0,F (t, 1)]/[1 � ✓0,F (t, 0)] functions. Under

certain conditions, we can identify the causal parameter ✓0,F (t, a) in terms of the distribution
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P0 of the observed data unit. These causal identifications have been established before, so

we only briefly review them. A full set of identification conditions and additional discussion

may be found in Supplementary Material.

We define S0(t | a, w) := P(0,t] {1� ⇤0(du | a, w)}, where P denotes the Riemann-Stieltjes

product integral (Gill and Johansen, 1990) and ⇤0(t | a, w) :=
R t

0
F0,1(du | a,w)
R0(u | a,w) for F0,�(t | a, w) :=

P0(Y  t,� = � |A = a,W = w) and R0(t | a, w) := P0(Y � t |A = a,W = w). If the co-

variates W contain all common causes of the exposure-outcome, exposure-censoring, and

outcome-censoring relationships, and certain positivity assumptions hold, then

✓0,F (t, a) = ✓0(t, a) := E0[S0(t | a,W )] (1)

for every t 2 [0, ⌧ ] and a 2 {0, 1}. This result is a combination of the G-formula (also known

as the backdoor or the regression standardization formula) from causal inference (Robins,

1986; Gill and Robins, 2001) and the identification of a survival function in the context

of dependent censoring (Beran, 1981; Dabrowska, 1989). The product integral reduces to a

product in the case of events occurring in discrete time, and to exp{�⇤0(t | a, w)} in the case

of events occurring in continuous time. We use the product integral in order to permit either

of these cases or a mix of the two. We note that this identification does not permit time-

varying common causes of the event and censoring times because time-varying covariates

would occur post-exposure, and hence possibly be on the causal pathway between A and

T or A and C. To permit time-varying common causes of the event and censoring times,

an alternative approach is to use an iterated G-formula based on sequential exchangeability

as in longitudinal studies (Rotnitzky et al., 2012). If the event and censoring times do

not naturally occur on a discrete grid, this approach would typically require choosing a

discretization of time.

The parameter ✓0(t, a) is referred to as the G-computed probability that the event T

occurs after time t given that exposure A is set to a. This parameter measures the survival
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probability under exposure A = a while adjusting for potential confounding between the

exposure and the event of interest and for dependence between the event and censoring

times. The curves {✓0(t, 0) : t 2 [0, ⌧ ]} and {✓0(t, 1) : t 2 [0, ⌧ ]}, and contrasts thereof, are

the observed-data statistical parameters we focus on.

3 Estimation

3.1 E�ciency calculations

In this section, we describe the proposed methodology for nonparametric e�cient estimation

of the treatment-specific G-computed survival function {✓0(t, a) : t 2 [0, ⌧ ]}. The definition

of our estimator involves three steps. First, we characterize the behavior of nonparametric

e�cient estimators of the estimand of interest; this is done by deriving the nonparametric

e�cient influence function (EIF) of ✓0(t, a) for each t and a. Second, we use the EIF to

construct an e�cient estimator of ✓0(t, a) for each t and a. Finally, we describe a simple

procedure to ensure that the resulting survival curves are monotone.

We define ⇡0(a |w) := P0(A = a |W = w). Below, we make use of the fact that, for

any (a, w) such that S0(⌧ � | a, w) > 0, P0,F (C � t |A = a,W = w) can be identified

under the causal identifiability conditions as P0,F (C � t |A = a,W = w) = G0(t | a, w) :=

R[0,t)
{1�H0(du | a, w)} for any t 2 [0, ⌧ ], whereH0(u | a, w) :=

R
[0,u]

n
S0(s – | a,w)
S0(s | a,w)

o
F0,0(ds | a,w)
R0(s | a,w) .

We emphasize that G0 is defined as the left-continuous conditional survival function of C,

whereas S0 is defined as the right-continuous conditional survival function of T . Even when

t = ⌧ , it is su�cient that S0(t� | a, w) > 0 in the above identification because the product

integral is taken up to, but not including, t.

In Theorem 1, we present the nonparametric e�cient influence function of ✓0(t, a0), where

we use a0 rather than a to denote the exposure value of interest in order not to confuse values

of the random variable A with the specific a0 at which we want to evaluate ✓0.
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Theorem 1. If there exists ⌘ > 0 such that min{⇡0(a0 |w), G0(t | a0, w)} � ⌘ for P0-almost

every w such that S0(t | a0, w) > 0, then ✓0(t, a0) is a pathwise di↵erentiable parameter in

a nonparametric model with e�cient influence function �⇤
0,t,a0 := �0,t,a0 � ✓0(t, a0), where

�0,t,a0(y, �, a, w) equals

S0(t | a0, w)

1� I(a = a0)

⇡0(a |w)

⇢
I(y  t, � = 1)

S0(y | a, w)G0(y | a, w)
�
Z t^y

0

⇤0(du | a, w)
S0(u | a, w)G0(u | a, w)

��
.

Hubbard et al. (2000) and Bai et al. (2013) also derived the e�cient influence function

of ✓0(t, a0) in a nonparametric model. Their influence functions have a di↵erent form than

ours; in particular, their influence functions involve a conditional martingale residual process.

However, since there is only one influence function in a nonparametric model, the influence

function provided in Theorem 1 is algebraically equivalent to those of Hubbard et al. (2000)

and Bai et al. (2013).

3.2 Cross-fitted one-step estimator

The e�cient influence function �⇤
0,t,a0 involves three variation-independent nuisance func-

tions: S0, G0 and ⇡0. We discuss estimation of these functions in Section 6. We note that

⇤0 and S0 are in one-to-one correspondence with one another, so estimating S0 gives an

estimator of ⇤0 and vice-versa. Given estimators Sn, Gn and ⇡n of S0, G0 and ⇡0, respec-

tively, there are multiple possible asymptotically linear and e�cient estimators of ✓0(t, a).

Denoting by �n,t,a the function �0,t,a with S0, ⇤0, G0 and ⇡0 replaced by their respective

estimators, the standard one-step estimator would be Pn�n,t,a, which is also an estimating

equations-based estimator in this case because the influence function is linear in ✓0(t, a).

This was the approach taken by Hubbard et al. (2000) and Bai et al. (2013).

Asymptotic linearity of estimators of this type depend on nuisance estimators in two im-

portant ways. First, negligibility of a so-called second-order remainder term requires that the

nuisance parameters converge at fast enough rates to their true counterparts. Second, negli-
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gibility of an empirical process remainder term can be guaranteed if the nuisance estimators

fall in su�ciently small function classes with probability tending to one. In observational

studies, researchers can rarely specify correct parametric models for nuisance parameters a

priori, which motivates the use of data-adaptive estimators. However, data-adaptive estima-

tors typically fail to fall in small function classes. This poses a challenge in simultaneously

achieving negligibility of these two remainder terms. Cross-fitting has been found to resolve

this challenge by removing this constraint on the complexity of nuisance estimators (see, e.g.

Bickel, 1982; Robins et al., 2008; Zheng and van der Laan, 2011; Dı́az, 2019a). Therefore, we

will use a cross-fitted version of the one-step estimator stated above, which we now define.

For a deterministic integer K 2 {2, 3, . . . , bn/2c}, we randomly partition the indices

{1, 2, . . . , n} into K disjoint sets Vn,1,Vn,2, . . . ,Vn,K with cardinalities n1, n2, . . . , nK . We

require that these sets be of as close to equal sizes as possible, so that |nk � n/K|  1 for

each k, and that the number of folds K be bounded as n grows. For each k 2 {1, 2, . . . , K},

we define Tn,k := {Oi : i /2 Vn,k} as the training set for fold k. We then define Sn,k, Gn,k, ⇡n,k

and ⇤n,k as nuisance estimators estimated using only the observations from the training set

Tn,k, and �n,k,t,a as the function �0,t,a in which these nuisance estimators have substituted

their true counterparts. We then define the cross-fitted one-step estimator ✓n pointwise as

✓n(t, a) :=
1

n

KX

k=1

X

i2Vn,k

�n,k,t,a(Oi) . (2)

Once the nuisance functions are estimated, ✓n(t, a) can be e�ciently computed for many

time-points t because the same nuisance function estimators can be re-used for each t.

How the integral in �n,k,t,a is computed depends on the form of Sn,k. If Sn,k is defined

as a step function, then the integral reduces to a sum. Otherwise, the integral can be

approximated as a sum. As illustrated in numerical studies in Supplementary Material, a

very fine grid can be used for this purpose with little impact on computational cost.
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3.3 Enforcing monotonicity of the proposed estimator

The function t 7! ✓0(t, a) is necessarily monotone non-increasing for each a 2 {0, 1} and takes

values in [0, 1]. However, the proposed estimator ✓n(t, a) is generally neither guaranteed to

lie in [0, 1] nor to be monotone in t in any given sample.

We ensure that our final estimator satisfies the above parameter constraints as follows.

First, we construct ✓n(t, a) as defined above for each t 2 Tn, where Tn is the set of unique

values of Y1, Y2, . . . , Yn. Second, for each t 2 Tn and a 2 {0, 1}, we define ✓+n (t, a) = ✓n(t, a)

if ✓n(t, a) 2 [0, 1], ✓+n (t, a) = 1 if ✓n(t, a) > 1, and ✓+n (t, a) = 0 if ✓n(t, a) < 0. Next, for each

a 2 {0, 1}, we define {✓�n(t, a) : t 2 Tn} as the projection of {✓+n (t, a) : t 2 Tn} onto the space

of non-increasing functions using isotonic regression. For any t 2 (0, ⌧ ], we then define ✓�n(t, a)

as the evaluation of the right-continuous stepwise interpolation of {✓�n(t, a) : t 2 Tn}. The

projected estimator ✓�n is guaranteed to be no farther from ✓0 than ✓n in every finite sample,

and if the true function is strictly decreasing, then the initial and projected estimators are

asymptotically equivalent (Westling et al., 2020). Therefore, in what follows, we focus on

providing large-sample results for ✓n, since results for the isotonized estimator ✓�n are identical

in view of the general results of Westling et al. (2020).

4 Large-sample properties

4.1 Consistency

In this section, we study the large-sample properties of our estimator. First, we provide

conditions under which ✓n(t, a) is consistent for ✓0(t, a) for fixed t and uniformly over t.

(B1) There exist ⇡1, G1 and S1 such that:

(a) maxk E0

h
1

⇡n,k(a |W ) �
1

⇡1(a |W )

i2 P�! 0;

(b) maxk E0

h
supu2[0,t]

��� 1
Gn,k(u | a,W ) �

1
G1(u | a,W )

���
i2 P�! 0;
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(c) maxk E0

h
supu2[0,t]

��� Sn,k(t | a,W )
Sn,k(u | a,W ) �

S1(t | a,W )
S1(u | a,W )

���
i2 P�! 0.

(B2) There exists ⌘ > 0 such that, with probability tending to one, for P0-almost all w,

⇡n,k(a |w) � 1/⌘, ⇡1(a |w) � 1/⌘, Gn,k(t | a, w) � 1/⌘, and G1(t | a, w) � 1/⌘.

(B3) For P0-almost all w, there exist measurable sets Sw,Gw ✓ [0, t] such that Sw[Gw =

[0, t] and ⇤0(u | a, w) = ⇤1(u | a, w) for all u 2 Sw and G0(u | a, w) = G1(u | a, w)

for all u 2 Gw. In addition, if Sw is a strict subset of [0, t], then ⇡0(a |w) =

⇡1(a |w) as well.

(B4) It holds that maxk E0

h
supu2[0,t] supv2[0,u]

���Sn,k(u | a,W )
Sn,k(v | a,W ) �

S1(u | a,W )
S1(v | a,W )

���
i2 P�! 0.

Theorem 2 (Consistency). If conditions (B1)–(B3) hold, then ✓n(t, a)
P�! ✓0(t, a). If con-

dition (B4) also holds, then supu2[0,t] |✓n(u, a)� ✓0(u, a)|
P�! 0.

Condition (B1) require that the estimated functions converge in an appropriate sense to

fixed limit functions, which is used to control certain empirical process terms. Condition (B4)

requires a slightly stronger condition on the convergence of Sn,k to its limit S1 for uniform

consistency. Condition (B1)(c) depends on t through the numerators Sn,k(t | a,W ) and

S1(t | a,W ). For uniform convergence, this term needs to be controlled uniformly over t,

so the extra supremum is needed in condition (B4). We note again that the expectations in

conditions (B1) and (B4) are with respect to W , and not with respect to the randomness of

the nuisance estimators. Condition (B2) ensures that the estimated propensity and censoring

functions are bounded uniformly away from zero in all subpopulation of patients defined

by W . In practice, this can be guaranteed by truncating the estimated propensities and

censoring probabilities. We note that there is no restriction on complexity of these nuisance

function estimators; the lack of such a condition is due to the use of cross-fitting.

Condition (B3) requires that, for almost all (t, w), either S1(t | a, w) = S0(t | a, w) or both

G1(t | a, w) = G0(t | a, w) and ⇡1(a |w) = ⇡0(a |w). In combination with condition (B1),

this implies that for almost all (t, w), either Sn(t | a, w) or both Gn(t | a, w) and ⇡n(a |w)
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are consistent. This is a form of double-robustness of the estimator ✓n to estimation of the

nuisances S0 and (G0, ⇡0), because, in particular, ✓n is consistent when either Sn is consistent

everywhere or both Gn and ⇡n are consistent everywhere. However, condition (B3) is a

relaxed form of doubly-robustness since none of the limit functions need to be identically

equal to their true counterparts. Instead, consistency of Sn or (Gn, ⇡n) may vary with t

and w. This is akin to sequential doubly-robustness or 2K-robustness in longitudinal studies,

where there are 2K possible ways to achieve consistency for a G-computation parameter

in a longitudinal study with K time-points (Tchetgen Tchetgen, 2009; Molina et al., 2017;

Luedtke et al., 2018; Rotnitzky et al., 2017; Dı́az, 2019b). In our setting, there are infinitely

many ways to achieve consistency due to the use of continuous time. In longitudinal studies

with a time-varying treatment, specialized methods are needed to achieve 2K-robustness. In

contrast, here, we achieve our version of 2K-robustness with a standard one-step estimator

due to our consideration of a baseline, rather than time-varying, treatment. With a baseline

treatment, the counterfactual mean is identified with a single G-computation rather than K

iterated G-computations as in the case of a time-varying treatment over K time points. Our

simpler observed-data parameter yields a simpler e�cient influence function that permits

2K-robustness without specialized methodology.

4.2 Asymptotic linearity

We now present additional conditions under which ✓n(t, a) is asymptotically linear for fixed

t and uniformly over t. We define

rn,t,a,1 := max
k

E0 |{⇡n,k(a |W )� ⇡0(a |W )}{Sn,k(t | a,W )� S0(t | a,W )}| ;

rn,t,a,2 := max
k

E0

����Sn,k(t | a,W )

Z t

0

⇢
G0(u | a,W )

Gn,k(u | a,W )
� 1

�✓
S0

Sn,k
� 1

◆
(du | a,W )

���� .

Based on these quantities, we introduce additional conditions for asymptotic linearity:

(B5) It holds that rn,t,a,1 = oP (n�1/2) and rn,t,a,2 = oP (n�1/2).
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(B6) It holds that supu2[0,t] rn,u,a,1 = oP (n�1/2) and supu2[0,t] rn,u,a,2 = oP (n�1/2).

We have the following result concerning the asymptotic linearity of ✓n(t, a).

Theorem 3 (Asymptotic linearity). If conditions (B1)–(B2) hold with S1 = S0, G1 = G0

and ⇡1 = ⇡0 and condition (B5) also holds, then ✓n(t, a) = ✓0(t, a)+Pn�⇤
0,t,a+oP (n�1/2). In

particular, n1/2[✓n(t, a)�✓0(t, a)] then converges in distribution to a normal random variable

with mean zero and variance �2
0(t, a) := P0�⇤2

0,t,a. If in addition conditions (B4) and (B6)

also hold, then

sup
u2[0,t]

��✓n(u, a)� ✓0(u, a)� Pn�
⇤
0,u,a

�� = oP (n
�1/2) .

In particular,
�
n1/2[✓n(u, a)� ✓0(u, a)] : u 2 [0, t]

 
then converges weakly as a process in the

space `1([0, t]) of uniformly bounded functions on [0, t] to a tight mean zero Gaussian process

with covariance function (u, v) 7! P0(�⇤
0,u,a�

⇤
0,v,a).

Condition (B5) requires roughly that the rates of convergence of (Sn � S0)(⇡n � ⇡0) and

(Sn�S0)(Gn�G0) to zero be faster than n�1/2. One approach to satisfying this condition is

to assume that these nuisance functions fall in known parametric or semiparametric families

such that existing estimators achieve the stipulated rates. For instance, if S0 and G0 follow

the Cox proportional hazard model (Cox, 1972) and ⇡0 the logistic regression model, and

model-based maximum likelihood estimators are used to obtain Sn, Gn and ⇡n, the required

rates will be achieved for W of any fixed dimension. In some cases, scientific knowledge of

the problem at hand can be used to guide selection of nuisance estimators guaranteed to

achieve given rates of convergence. For example, in the context of a randomized experiment,

the true propensity score ⇡0 is known, so it can be used directly. Alternatively, in some

settings, information about the censoring mechanism may be available, such as knowledge

that patients are only censored for administrative reasons. In such cases, it may be possible

to design a parametric or semiparametric model guaranteed to contain the censoring distri-

bution. If the propensity and censoring estimators both achieve n�1/2 rates of convergence,

then Sn only needs to be consistent for the conditions of Theorem 3 to hold.
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In many cases, it is not possible to construct parametric or semiparametric models that

are known to be correctly specified. Importantly, condition (B5) can be satisfied when using

data-adaptive estimators since (Sn � S0)(⇡n � ⇡0) and (Sn � S0)(Gn � G0) can converge

faster than n�1/2 even if Sn, ⇡n, and/or Gn converge slower than n�1/2. This is a primary

benefit of constructing an estimator based on the nonparametric e�cient influence function.

However, achieving these rates of convergence is not guaranteed when using data-adaptive

estimators. Whether the rate is achieved depends on the dimension of the covariates, struc-

ture such as smoothness, additivity, or sparsity of S0, G0, and ⇡0, and the extent to which

the nuisance estimators adapt to this structure. Since the true structure of these functions

is often unknown, we recommend combining multiple candidate parametric, semiparametric,

and nonparametric estimators using cross-validation, which has the potential to achieve the

same rate as the best candidate estimator. We discuss this more in Section 6.

5 Pointwise and uniform inference

5.1 Pointwise inference

Theorem 3 can be used to conduct asymptotically valid pointwise and uniform inference for

✓0(t, 0), ✓0(t, 1) and contrasts thereof. Specifically, ✓�n(t, a) ± z1�↵/2n�1/2�n(t, a) is a Wald-

type asymptotic (1�↵)-level confidence interval for ✓0(t, a), where zp denotes the p-quantile

of the standard normal distribution and �2
n(t, a) :=

1
n

PK
k=1

P
i2Vn,k

[�n,k,t,a(Oi)�✓�n(t, a)]
2 is a

cross-fitted influence function-based estimator of the asymptotic variance �2
0(t, a). However,

since constructing Wald-type intervals on the logistic probability scale has been found to

improve finite-sample coverage in classical settings (Anderson et al., 1982), we suggest this

approach as well. Defining expit(x) := exp(x)/{1 + exp(x)} for any x 2 R and logit(u) :=

log(u)� log(1�u) for any u 2 (0, 1), and defining �̃n(t, a) := �n(t, a)/{✓�n(t, a)[1� ✓�n(t, a)]},

we propose the transformed Wald-type interval [`n(t, a), un(t, a)] := expit{logit[✓�n(t, a)] ±

z1�↵/2n�1/2�̃n(t, a)} for any (t, a) for which ✓�n(t, a) 2 (0, 1). If ✓�n(t, a) = 0, we set `n(t, a) := 0
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and un(t, a) := mins{un(s, a) : un(s, a) > 0}, whereas if ✓�n(t, a) = 1, we set `n(t, a) :=

maxs{`n(s, a) : `n(s, a) < 1} and un(t, a) := 1. The endpoints of this interval will be strictly

contained between 0 and 1 for any (t, a) such that ✓�n(t, a) 2 (0, 1).

5.2 Uniform inference

If the uniform statement of Theorem 3 holds with t = ⌧ , then it can be used to con-

struct asymptotically valid uniform confidence bands for t 7! ✓0(t, a) over t 2 [0, ⌧ ], that

is, to construct functions t 7! `n(t, a) and t 7! un(t, a) such that P0{`n(t, a)  ✓0(t, a) 

un(t, a) for all t 2 [0, ⌧ ]} converges to 1 � ↵. The simplest such band is a fixed-width

band with endpoints ✓�n(t, a) ± n�1/2cn,a,↵. Here, cn,a,↵ is any consistent estimator of the

(1 � ↵)-quantile c0,a,↵ of the supremum of the absolute value of the Gaussian process to

which {n1/2[✓n(t, a) � ✓0(t, a)] : t 2 [0, ⌧ ]} converges weakly, that is, a mean zero Gaussian

process with covariance function (u, v) 7! ⌃0(u, v, a) := P0(�⇤
0,u,a�

⇤
0,v,a). To obtain cn,a,↵,

we simulate sample paths of a Gaussian process on [0, ⌧ ] with covariance function given by

the cross-fitted covariance estimator (u, v) 7! ⌃n(u, v, a) := 1
n

PK
k=1

P
i2Vn,k

[�n,k,u,a(Oi) �

✓�n(u, a)][�n,k,v,a(Oi)� ✓�n(v, a)]. We then set cn,a,↵ as the sample (1� ↵)-quantile of the uni-

form norm over [0, ⌧ ] of these sample paths. Finally, we ensure monotonicity of these bands

using isotonic regression, which can only increase their coverage, as established in Westling

et al. (2020). While this fixed-width band is appealing in its simplicity, it does not reflect

the variability in the uncertainty around ✓�n(t, a) for di↵erent t. For instance, there is typ-

ically less uncertainty near t = 0, when few patients have been censored and the survival

probability remains close to one, than elsewhere. An equal-width band will not reflect this.

An alternative confidence band that adapts to the variability in uncertainty over [0, ⌧ ]

and is guaranteed to lie strictly within (0, 1) can be formed by use of standard error

scaling. The proposed variable-width confidence band is given by expit{logit[✓�n(t, a)] ±

c̃n,↵n�1/2�̃n(t, a)}. Here, c̃n,↵ is the (1�↵)-quantile of the uniform norm over [0, ⌧ ] of the sam-

ple paths of a mean zero Gaussian process with covariance function (u, v) 7! ⌃̃n(u, v, a) :=
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⌃n(u, v, a)/{�̃n(u, a)�̃n(v, a)}. However, since limt!0 �n(t, a) = limt!t+ �n(t, a) = 0 for

t+ = inf{t : ✓n(t, a) = 0}, these sample paths are unbounded near t = 0 and t = t+.

Therefore, this method of constructing confidence bands can only produce asymptotically

valid bands on intervals of the form [t0, t1] for t0 > 0 and t1 < t+. Given [t0, t1], we then

proceed in constructing the band using the approximate critical value c̃n,↵ obtained as the

sample (1 � ↵)-quantile of the uniform norms over [t0, t1] of the above sample paths. As

before, we ensure monotonicity of these bands using isotonic regression. In practice, we

suggest choosing t0 and t1 based on the quantiles of the observed event times.

5.3 Inference on causal e↵ects

If the pointwise statement of Theorem 3 holds for both a = 0 and a = 1, then n1/2[✓n(t, 0)�

✓0(t, 0)] and n1/2[✓n(t, 1) � ✓0(t, 1)] converge jointly to a mean zero bivariate normal distri-

bution. This fact can be used in conjunction with the delta method to perform inference

on causal e↵ects of the form h(✓0(t, 0), ✓0(t, 1)) for any di↵erentiable h. Similarly, if the

uniform statement of Theorem 3 holds for both a = 0 and a = 1, then the processes

{n1/2[✓n(t, 0) � ✓0(t, 0)] : t 2 [0, ⌧ ]} and {n1/2[✓n(t, 1) � ✓0(t, 1)] : t 2 [0, ⌧ ]} converge jointly

as processes to correlated Gaussian process limits, so that uniform confidence bands can be

constructed for causal e↵ects in much the same way as described above. For risk and sur-

vival ratios, these confidence bands are only valid on intervals over which the denominator

is bounded away from zero.

To test the null hypothesis H0 : ✓0(t, 0) = ✓0(t, 1) for all t 2 [0, ⌧ ] against the complemen-

tary alternative, we propose using a test statistic of the form n1/2
R ⌧

0 |✓�n(t, 1)� ✓�n(t, 0)|⌦n(dt),

where ⌦n is a user-specified, possibly data-dependent weight function. Under the null hy-

pothesis, this test statistic converges in distribution to
R ⌧

0 |G0(t)|⌦0(dt) by the continuous

mapping theorem for G0 denoting the limiting Gaussian process of {n1/2[{✓n(t, 1)�✓0(t, 1)}�

{✓n(t, 0) � ✓0(t, 0)}] : t 2 [0, ⌧ ]} and ⌦0 the deterministic in-probability limit of ⌦n. This

limit distribution can be estimated by simulating Gaussian processes using the estimated
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covariance matrices in a similar manner as discussed above, which can then be used to find

a p-value for the test using the observed test statistic. The user-specified weight function ⌦n

can be chosen to improve power against particular alternatives that may be expected based

on the scientific context, such as early or late di↵erences in survival, as has been done in

the context of log-rank tests for uninformative censoring (see, e.g. Harrington and Fleming,

1982; Wu and Gilbert, 2002).

Our results can also be used to make inference on functionals of the treatment-specific

survival functions. For example, a natural estimator of the treatment-specific restricted mean

survival time r0,a :=
R ⌧

0 ✓0(t, a) dt is given by rn,a :=
R ⌧

0 ✓�n(t, a) dt. Uniform consistency

of ✓�n(·, a) on [0, ⌧ ], as implied by Theorem 2, implies consistency of rn,a. In view of an

application of the functional delta method, the weak convergence of {n1/2[✓�n(t, a)�✓0(t, a)] :

t 2 [0, ⌧ ]}, as implied by Theorem 3, implies that n1/2(rn,a�r0,a) is asymptotically linear with

influence function o 7!
R ⌧

0 �⇤
0,t,a(o) dt. Inference for contrasts of treatment-specific restricted

mean survival times can be obtained analogously.

6 Data-adaptive estimation of nuisance functions

As discussed above, our proposed estimator requires estimation of three nuisance parameters:

the conditional survival functions S0 and G0 of the event time and censoring distributions, re-

spectively, given exposure and covariates, and the propensity ⇡0 of exposure given covariates.

We note that ⇡0 can be estimated using any regression estimator for a binary outcome. We

recommend leveraging multiple parametric, semiparametric and nonparametric regression

strategies using the SuperLearner algorithm (Breiman, 1996; van der Laan et al., 2007).

There are several existing strategies for estimating S0 and G0. The most widely-used

regression model for survival outcomes is the Cox proportional hazard model (Cox, 1972),

which can be used in conjunction with the Breslow estimator (Breslow, 1972) or parametric

estimators of the baseline cumulative hazard function to obtain estimates of S0 and G0. The
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accelerated failure time model can also be used as a semiparametric estimator of S0 and

G0 (Wei, 1992). Alternatively, various other semiparametric and nonparametric regression

techniques for survival data have been proposed, including, to name a few, additive Cox

models (Hastie and Tibshirani, 1990), piecewise constant hazard models (Friedman, 1982),

survival random forests (Ishwaran et al., 2008), gradient boosting (Hothorn et al., 2005), and

deep neural networks (Rava and Bradic, 2020). In practice, it may not be a priori clear to

the researcher which of these or other algorithms are most appropriate in a given setting. An

ensemble algorithm would allow the researcher to select from or combine multiple candidate

estimators in a data-adaptive manner. However, ensemble algorithms for regression do not

immediately extend to our setting due to the right-censored data structure.

Here, we propose an iterative SuperLearner ensemble algorithm for combining multiple

candidate nuisance estimators of S0 and G0. We are aware of several existing approaches to

ensemble learning with right-censored data. van der Laan and Dudoit (2003), Keles et al.

(2004), and Polley and van der Laan (2011) proposed ensemble learners for a conditional

survival function at a fixed point t, for regression and conditional quantile functions, and

for conditional density and hazard functions, assuming they exist. While it builds on these

previous works, our procedure accomplishes several goals that, to the best of our knowledge,

these previous works did not. First, we target the entire survival function on an interval

rather than a summary such as the survival at a single point t, the mean, or a quantile.

Second, unlike methods that target the conditional density or hazard functions, we do not

require that the event occurs on either a fully discrete or fully continuous scale, but rather

allow both of these possibilities as well as mixed distributions. Third, we target both S0 and

G0 together rather than one or the other by iterating between optimization of S⇤
n and G⇤

n,

which has the potential to improve estimation of both.

We recall that if identification conditions presented in Supplementary Material hold

for some a 2 {0, 1} and ⌧ 2 (0,1), then S0(t | a, w) = P0,F (T (a) > t |W = w) and

G0(t | a, w) = P0,F (C(a) � t |W = w) for any t 2 [0, ⌧ ]. Central to our ensemble method
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are representations of S0 and G0 as minimizers of oracle risk functions, as stated in the next

result. For this result, we define C⌧ as the set of functions from [0, ⌧ ]⇥ {0, 1}⇥W to [0, 1].

Theorem 4. Let S⇤ be a minimizer of S 7! P0LS,G0 over S 2 C⌧ and G⇤ be a minimizer of

G 7! P0MG,S0 over G 2 C⌧ , where we define the loss functions

LS,G : (w, a, y, �) 7!
Z ⌧

0

S(t | a, w)

S(t | a, w)� 2

⇢
1� �I(y  t)

G(y | a, w)

��
dt ;

MG,S : (w, a, y, �) 7!
Z ⌧

0

G(t | a, w)

G(t | a, w)� 2

⇢
1� (1� �)I(y < t)

S(y | a, w)

��
dt .

If conditions (A1)–(A5) in Supplementary Material hold for each a 2 {0, 1}, then S⇤(t | a, w) =

S0(t | a, w) for P0-almost every (a, w) and all t  ⌧ , and G⇤(t | a, w) = G0(t | a, w) for P0-

almost every (a, w) and all t  ⌧ such that S0(t– | a, w) > 0.

We now provide some intuition for the loss function MG,S; analogous intuition ap-

plies to LS,G. Up to a constant not depending on G, the loss function MG,S is equal to
R ⌧

0 [G(t | a, w)� fS(t, o)]
2 dt, where fS(t, o) := 1 � (1 � �)I(y < t)/S(y | a, w). The term

involving f 2
S is constant with respect to G and is therefore omitted from MS,G because fS

is only square-integrable under slightly stronger conditions. Under the conditions of Theo-

rem 4, E0[fS0(t, O) | A = a,W = w] = G0(t | a, w), so that for each fixed (t, a, w), ignoring

integrability issues, G0(t | a, w) minimizes � 7! E0 [{� � fS0(t, O)}2 | A = a,W = w]. The

result essentially follows by taking the expectation over A and W and integrating over t.

Were G0 known, an optimal weighted combination of p candidate estimators S(1)
n , S(2)

n ,

. . . , S(p)
n of S0 could be found by minimizing the cross-validated empirical risk PnLS,G0 over

S in the set ⇧S of convex combinations
Pp

j=1 ↵jS
(j)
n for ↵ in the p-dimensional simplex.

Here, by cross-validated we mean that the sample is split into K folds, candidate estimators

are each trained holding out each fold, evaluated on the held-out fold, and these held-out

evaluations are used to compute the empirical mean PnLS,G (see, e.g., van der Laan et al.,

2007 or van der Laan and Rose, 2011 for additional details). Were S0 known, an analogous

procedure could be used to find an optimal weighted combination of q candidate estimators
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G(1)
n , G(2)

n , . . . , G(q)
n of G0 in the set ⇧G of convex combinations

Pq
j=1 ↵jG

(j)
n for ↵ in the

q-dimensional simplex. Since S0 and G0 are not known in practice, we propose the following

iterative strategy:

Step 0: Obtain an initial estimator G⇤
n,0 of G0 using a nonparametric procedure.

Step k: Compute S⇤
n,k := argminS2⇧S

PnLS,G⇤
n,k�1

and G⇤
n,k := argminG2⇧G

PnMG,S⇤
n,k
.

The procedure can be terminated, for example, when kS⇤
n,k�S⇤

n,k�1k1 and kG⇤
n,k�G⇤

n,k�1k1

both fall below some pre-specified threshold. In practice, we can evaluate the integrals in

LS,G and MG,S using a Riemann sum over a fine grid.

Obtaining the cross-validated estimates S(1)
n , S(2)

n , . . . , S(p)
n and G(1)

n , G(2)
n , . . . , G(q)

n , a

requirement for any ensemble learner, is the most computationally expensive step of the

above procedure. In our proposed procedure, these estimates only need to be obtained once.

The only computational burden of the algorithm beyond that of an ordinary SuperLearner

is the possibly multiple optimization steps to find the optimal convex combinations of the

candidate learners, which is typically much less computationally expensive than obtaining

the cross-validated estimates of the candidate learners. Therefore, the algorithm outlined

above is not substantially more computationally expensive than an ordinary SuperLearner.

7 Numerical studies

We conducted a numerical study to evaluate the finite-sample performance of our methods.

For brevity, we summarize the design of this study; full details can be found in Supplementary

Material. We simulated a vector W := (W1,W1,W3) of three continuous covariates. We

then set logitP0(A = 1 |W = w) = �1 + log
�
1 + exp(�20 + w1

10 ) + exp(�3 + w3
2 )
 
. We

considered two processes for generating the event and censoring times. First, we simulated

both T and C from proportional hazards models with main terms as well as interactions

between A each component of W and between W1 and W3. Second, we simulated T and
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C from non-proportional hazards models. For both simulation settings, we truncated C at

⌧ = 24, and parameters were chosen to yield an average censoring rate of E0[P0(C  12 |A =

0,W )] = 0.2, an average observed event rate of E0[P0(T  C |A = 0,W )] = 0.15, and a

counterfactual risk ratio of 0.7 at t = 12.

We simulated 1000 datasets using the above processes for n = 250, 500, . . . , 1500. For

each dataset, we estimated the propensity score using SuperLearner with a library detailed

in Supplementary Material. We estimated the conditional survival curves in four ways: a

correctly-specified Cox proportional hazards, an incorrectly-specified proportional hazards

model with main terms only, survival random forest (Ishwaran et al., 2008), and the iterative

SuperLearner described in Section 6. For the iterative SuperLearner, we used a combination

of parametric survival models, semiparametric proportional hazard models, generalized addi-

tive Cox models, and survival random forest. In addition, we used five-fold cross-validation,

survival random forest as the initial estimator, and limited the recursive procedure to fifteen

iterations. For each candidate estimator Sn of S0, we computed the t-specific average root

mean squared error (RMSE) of the estimator as { 1
n

Pn
i=1[Sn(t | Ai,Wi)�S0(t | Ai,Wi)]2}1/2

for each t 2 {0.5, 1, . . . , 12}. We did the same for estimators of G0. We estimated the

counterfactual survival curves by (1) G-computation of each candidate estimator of the con-

ditional survival function of the event using the empirical distribution of the covariates, and

(2) using our cross-fitted one-step estimator with various combinations of the conditional

survival estimators. For each method, we recorded the estimated control and treatment

survival probabilities and the risk ratio at time t = 12. For our method, we also computed

pointwise confidence intervals at t = 12 and uniform confidence bands over t 2 [0, 12].

In the first simulation setting, correctly-specified proportional hazards models yield con-

ditional survival estimators converging at the parametric rate n�1/2, so condition (B5) is

satisfied in this case. The library of our proposed SuperLearner includes a correctly-specified

proportional hazards estimator, so if our method is able to correctly select this estimator

from the candidate library, it should also achieve the necessary rate of convergence. In the
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Figure 1: Average root mean squared error (RMSE), as defined in the text, of the four
conditional survival estimators as a function of sample size n. The four panels correspond
to the two simulation settings and to which conditional survival is being considered. In the
legend, “PH” refers to Cox proportional hazards model, “int.” refers to interactions, “RF”
refers to survival random forest, and “SL” refers to our iterative SuperLearner.

second setting, the proportional hazards estimators are both inconsistent. The censoring

time is generated from a generalized additive proportional hazards model, and the library of

our proposed SuperLearner includes a generalized additive model estimator, so if our estima-

tor is able to adapt, then it should obtain the necessary rate of convergence. However, the

event time is generated from a complicated non-proportional hazards mechanism that is not

included in common semiparametric survival models. Hence, we did not include a correctly-

specified semiparametric estimator in our SuperLearner library, so it is unclear what rate

of convergence our estimator will attain. While Cui et al. (2022) recently developed rates

of convergence of survival random forest, it appears that these results do not apply directly

to our setting because they concern a bias-corrected estimator rather than that of Ishwaran

et al. (2008). Hence, it is unclear what rate of convergence survival random forest will attain.

We now turn to the results of the numerical study. Figure 1 displays the average RMSE

over the 1000 simulations and over t 2 {0.5, 1, . . . , 12} for the four estimators of the condi-

tional survival of event and censoring and for the two simulation settings. A figure comparing

the estimators for each t is provided in Supplementary Material, and does not change the
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following observations. For the proportional hazards setting (left two panels), the correctly-

specified Cox proportional hazards estimator with interactions had the best RMSE of the

four estimators. The SuperLearner proposed here had slightly higher RMSE for the event

survival and very similar RMSE for the censoring survival, indicating that it did a good

job selecting the correctly-specified estimator from the candidate library. The RMSE of the

incorrectly-specified Cox estimator and the survival random forest (RF) were larger, but

that of RF decreased with n. For the non-proportional hazards setting (right two panels),

the RMSE of our SuperLearner estimator was the best of the four estimators for both the

event and censoring survivals. The RMSE of both Cox model estimators did not decrease

substantially with n because neither estimator was correctly specified. The RMSE of RF

was slightly higher than that of the SuperLearner for the survival of the event, but was

much worse for the censoring survival. We conclude that our iterative SuperLearner was

able to adapt to proportional hazards in the setting where that was the correct model, and

was also able to leverage other candidate estimators to outperform the proportional hazards

estimators in the setting where the data were not generated from a proportional hazards

model.

Figure 2 displays the properties of the estimators and confidence intervals for the control

survival curve. Analogous plots for the treatment survival curve and risk ratio are presented

in Supplementary Material. For ease of viewing, only a subset of the estimators considered

are included in Figure 2; the remaining estimators are also shown in Supplementary Material.

We first discuss the results for the case where the data were generated from a proportional

hazards model with interactions (left column). The biases of the proposed method (first row)

using the Cox model with interactions and the G-computed Cox estimator with interactions

were within Monte Carlo error of zero for all sample sizes. The bias of the proposed method

using the iterative SuperLearner for nuisance estimators was less than 0.5% for all sample

sizes. The biases of the G-computed Cox estimator without interactions and the G-computed

survival random forest were over 1%, and the former relatively constant as a function of n,

24



Figure 2: Properties of five of the estimators of the counterfactual control survival as a
function of sample size. Columns correspond to the two simulation settings. From top
to bottom, the rows contain: percent bias, standard deviation, pointwise coverage, and
uniform coverage. The first three rows correspond to inference at time t = 12. “CFsurvival”
is the method developed here, and “G-comp” is G-computation. Parathenticals indicate
the estimator used for the conditional survival(s), with shorthand defined in the Figure 1
caption. Vertical bars represent 95% confidence intervals taking into account uncertainty
due to conducting a finite number of simulations.
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suggesting that the method is inconsistent. This was expected because the true conditional

survival curves include interactions that the estimator omitted. Estimators based on the one-

step method had larger standard deviation (second row) than those based on G-computation.

As a result, G-computation of a correctly specified Cox model estimator yielded the smallest

mean squared error. However, this relies heavily on correct specification of the Cox model.

The pointwise coverage (third row) of confidence intervals constructed using our method

was within Monte Carlo error of the nominal 95% for all sample sizes 500 and larger. The

uniform coverage of our method (bottom row) was between 90 and 93%, indicating slight

undercoverage even at large sample sizes. We believe this is due to poor coverage of small

values of t, and reflects the challenge of constructing equi-precision confidence bands when

the standard deviation is small at the boundary. The uniform coverage is at or slightly above

the nominal level for the risk ratio, as shown in Supplementary Material.

We now discuss the results for the case where the data were generated from a non-

proportional hazards model (right column of Figure 2). In this case, the bias (first row) of

the proposed method using the iterative SuperLearner for nuisance estimators was within

Monte Carlo error of zero for all sample sizes. This is somewhat surprising because the

SuperLearner library does not contain an estimator of the conditional survival of the event

that is correctly specified. The G-computed Cox estimators and the proposed method us-

ing the Cox estimator with interactions for nuisance estimators were biased because these

nuisances were inconsistent in this setting (see Figure 1). The G-computed random forest

had the largest bias, though it did decrease with sample size. The G-computed random

forest had the smallest standard deviation of the estimators considered (second row), which

resulted in comparable mean squared errors of the estimators. The pointwise coverage of our

estimator (third row) was very good for all sample sizes considered. It is surprising that our

estimator had good coverage when using the Cox estimator for conditional survivals, since

these estimators were inconsistent, and we do not generally expect the coverage to be good

when the nuisances are inconsistent. We expect the coverage would worsen at larger sample
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sizes. The uniform coverage of our estimator (bottom row) was slightly below nominal for

small sample sizes, but increased to the nominal level as the sample size increased.

The Supplementary Material contains additional results from the simulation study, in-

cluding an analogue of Figure 2 for the treatment survival curve and risk ratio, a figure

illustrating the double-robust properties of our estimator, and a figure illustrating the e↵ect

of cross-fitting. Cross-fitting reduces bias and improves coverage of confidence intervals. The

Supplementary Material also contains a second simulation study comparing the e↵ect of grid

choice in the computation of the integral in our estimator and in a method designed for

discrete-time survival data. This study demonstrates that while both methods su↵er from

bias when the grid is too coarse, increasing the size of the grid has little impact on the

run time of our methods, but it has an enormous impact on the run time of methods for

discrete-time data.

8 E↵ect of elective neck dissection on mortality

In this section, we use the methods developed in this article to assess the e↵ect of elective

neck dissection (END) on survival among patients with clinically node-negative, high-grade

parotid carcinoma. END consists of surgical removal of lymph nodes to prevent metastatic

spread via the lymphatic system, and has been the subject of controversy among surgeons and

oncologists. On one hand, lymph node metastases are common among patients with high-

grade oral carcinomas, and END is an e↵ective treatment for preventing these metastases.

On the other hand, END is more invasive and leads to higher morbidity than radiation

therapy, which can also be used to treat and prevent metastases. We refer the reader to

Jalisi (2005) and Kowalski and Sanabria (2007) for a more detailed discussion of END.

We analyzed a retrospective cohort consisting of n = 1547 patients in the National Can-

cer Database who were diagnosed with clinically node-negative, high-grade parotid cancer

between January 1, 2004 and December 31, 2013, and followed until the latter date. The
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exposure level A = 1 here corresponded to receipt of END at diagnosis, and the outcome

of interest was all-cause mortality up to five years post-diagnosis. Mortality was subject to

right-censoring because patients could be lost to follow-up or still alive on December 31, 2013.

The baseline covariate vector W consisted of patient age, sex, race, tumor stage, histology,

comorbidity, and payor, as well as the average income, education, county of residence, and

treatment facility type. Additional details of the cohort construction and demographics may

be found in Harbison et al. (2020).

An unadjusted analysis yielded stratified Kaplan-Meier survival estimates of 56.4% (95%

CI: 52.8–60.3) for patients receiving END and 48.6% (43.4–54.5) for those not receiving end

at t = 5 years post-diagnosis. The survival curves were deemed to be significantly di↵erent

using a log-rank test (p < 0.0001). These results suggest that END has a significant positive

association with survival. However, since the data are observational, these results cannot

be interpreted causally. By using the methods proposed here, we can adjust for baseline

confounding flexibly while still reporting survival curves and contrasts thereof, which provide

a simple interpretation that is familiar for many clinicians and scientists.

We used the methods presented here to estimate the treatment-specific G-computed sur-

vival functions ✓0(t, 0) and ✓0(t, 1). If the untestable causal conditions (A1)–(A5) presented

in Supplementary Material hold, then these curves correspond to the counterfactual survival

functions under assignment of all patients in the target population to no END and END,

respectively. In particular, (A1)–(A5) require that the covariate vector W be su�cient to

control for confounding between receipt of END and mortality, and that A andW together be

su�cient to control for the dependence between mortality and censoring. We also estimated

the survival di↵erence, survival ratio, and risk ratio functions.

We estimated the treatment propensity using SuperLearner (van der Laan et al., 2007)

with a library consisting of generalized linear models, generalized additive models, mul-

tivariate adaptive regression splines, random forests, and extreme gradient boosting. We

estimated the conditional survival and censoring functions using the novel SuperLearner de-
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fined in Section 6 with a library consisting of the treatment group-specific Kaplan-Meier

estimators, parametric survival models, Cox proportional hazard models, generalized addi-

tive models, and piecewise constant hazard models. Additional details on the libraries used

for nuisance estimation and the estimated SuperLearner coe�cients may be found in the

Supplementary Material.

Figure 3: Results of the analysis of the e↵ect of elective neck dissection (END) on all-cause
mortality. The top row shows the estimated treatment-specific survival curves were all (right
panel) and no (left panel) patients to receive END. The bottom row shows the estimated
survival di↵erence (left panel) and risk ratio (right panel) functions. In all figures, pointwise
95% confidence intervals are shown as dashed lines, and uniform 95% confidence bands are
shown as dotted lines.

The same scientific question addressed here was studied in Harbison et al. (2020) using

a preliminary version of the methods developed here. However, the estimator used for the
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analysis presented in Harbison et al. (2020) did not use cross-fitting, and only used random

forests to estimate the conditional survival and censoring functions. In addition, in Harbison

et al. (2020), uniform confidence bands or contrasts of the survival functions, which are both

important for comparing the survival functions uniformly in time, were not provided.

Figure 3 displays the results of the analysis. The top row displays the estimated counter-

factual survival functions corresponding to receiving END (left) versus not receiving END

(right) along with pointwise and uniform confidence regions. We estimate that 53.9% (95%

CI: 50.1–57.5) of patients would be alive five years post-diagnosis if undergoing END, while

54.5% (48.3–60.6) would be alive if not undergoing END. The bottom row displays the es-

timated survival di↵erence and risk ratio functions. The estimated survival di↵erence was

positive, and the estimated risk ratio was less than 1 between 0 and 4 years post-diagnosis,

suggesting that END possibly improves short-term survival. However, both confidence bands

included the null e↵ect throughout this time period, and the p-value of the test of the null

hypothesis that ✓0(t, 0) = ✓0(t, 1) for all t 2 [0, 5] is 0.12. Thus, we cannot reject the null

hypothesis that END does not impact overall survival through five years. The estimated

survival ratio function was very similar in form to the estimated survival di↵erence function.

We estimate the restricted mean survival time through five years to be 3.62 years (95% CI:

3.42–3.81) under no END and 3.76 years (95% CI: 3.65–3.87) under END, with an esti-

mated di↵erence of 0.14 years (95%CI: -0.07–0.36). Therefore, after adjusting for baseline

confounding, the data no longer provide evidence of an e↵ect of END on survival.

9 Concluding remarks

In this article, we proposed a doubly-robust estimator of the treatment-specific survival curve

in the presence of baseline confounders that permits the use of data-adaptive estimators of

nuisance functions. In addition, we proposed an ensemble learner for combining multiple

candidate estimators of the conditional event and censoring survival functions. We provided
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general su�cient conditions for consistency and asymptotic linearity, both pointwise and

uniformly, of the proposed estimator, and used these results to construct confidence intervals,

confidence bands and tests. The proposed methods permit event and censoring distributions

that may be continuous, discrete, or mixed continuous-discrete. This is important because

in many applications the event and censoring distributions may have either a continuous

or mixed continuous-discrete support, whereas most existing methods for counterfactual

survival estimation are tailored either to the fully continuous or fully discrete setting.

The methods discussed here can also be used for analyzing data from randomized trials

with time-to-event outcomes. In such settings, in view of randomization, the treatment-

outcome and treatment-censoring relationships are unconfounded, but the outcome-censoring

relationship may still be confounded. Adjusting for baseline covariates can reduce bias due

to such dependent censoring, and our methods provide a way to do so without assuming any

particular form for the conditional survival and censoring functions.

When the exposure varies over time rather than being fixed, it is typically necessary to

adjust for time-varying confounders in order to recover causal parameters, since the change

in exposure status may be related to changes in patient characteristics that are also related

to the outcome. Even when the exposure does not vary over time, there may be time-

varying common causes of the event and censoring times. We are unaware of an extension

of the identification result we used to the setting with time-varying confounders. In the

context of discrete-time longitudinal data, the nested G-formula provides an identification

of the counterfactual survival probabilities (Robins, 1986). It is unclear how or whether the

methods proposed here would extend to estimation of treatment-specific survival curves in

continuous time with time-varying confounders. This is a topic of ongoing research.

The iterative SuperLearner proposed in Section 6 performed well in numerical studies, but

its utility could be improved with future research. First, demonstrating convergence of the

iterative algorithm would provide an important computational guarantee for the procedure.

Second, proving an oracle inequality for the estimator using, e.g., the results of Dudoit and
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van der Laan (2005) would provide an important theoretical guarantee for the estimator.

These are important areas of future research.
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