2210.06448v3 [stat. ME] 15 Dec 2023

arxiv

Debiased inference for a covariate-adjusted regression function

Kenta Takatsu! and Ted Westling?

Department of Statistics and Data Science, Carnegie Mellon University
2Department of Mathematics and Statistics, University of Massachusetts Amherst

Abstract

In this article, we study nonparametric inference for a covariate-adjusted regression function.
This parameter captures the average association between a continuous exposure and an outcome
after adjusting for other covariates. Under certain causal conditions, it also corresponds to
the average outcome had all units been assigned to a specific exposure level, known as the
causal dose-response curve. We propose a debiased local linear estimator of the covariate-
adjusted regression function and demonstrate that our estimator converges pointwise to a mean-
zero normal limit distribution. We use this result to construct asymptotically valid confidence
intervals for function values and differences thereof. In addition, we use approximation results
for the distribution of the supremum of an empirical process to construct asymptotically valid
uniform confidence bands. Our methods do not require undersmoothing, permit the use of
data-adaptive estimators of nuisance functions, and our estimator attains the optimal rate of
convergence for a twice differentiable regression function. We illustrate the practical performance
of our estimator using numerical studies and an analysis of the effect of air pollution exposure
on cardiovascular mortality.
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1 Introduction

1.1 Motivation and literature review

In this article, we study nonparametric inference for a covariate-adjusted regression function, which
is also known as a G-computed regression function. This statistical problem arises in the context
of observational studies where interest focuses on the causal effect of a continuous exposure, such
as the dose of a drug, the amount of air pollution exposure, or the amount of a biochemical in
the bloodstream. However, a covariate-adjusted regression function may also be of interest outside
of causal contexts as a one-dimensional marginal summary of a multivariate regression function.
Despite the simple formulation and many applications of this parameter, a method achieving valid
nonparametric inference without undersmoothing is not yet available. In this paper, we close this
gap by introducing a novel nonparametric, doubly-robust estimator, pointwise confidence intervals,
and uniform confidence bands for the covariate-adjusted regression function that do not require
undersmoothing.

One setting where a covariate-adjusted regression function arises is causal inference with a
continuous exposure. The gold standard for assessing the causal effect of a treatment or exposure
on an outcome is a randomized experiment, where units in the population are assigned values of the
exposure by a random process known to the researchers. Frequently, however, such an experiment
is infeasible, unethical, or cost-prohibitive. For example, it is unethical to purposefully expose
people to a chemical or pollutant known to have negative health effects. In such cases, researchers
may instead wish to assess the causal effect of the exposure using observational data in which the
exposure varies according to an unknown mechanism. Recovering a causal effect with observational
data is more challenging due to potential common causes of the exposure and outcome. However, if
all common causes are recorded in the data, then causal effects can be recovered by appropriately
adjusting for them. Specifically, the average outcome had all units been assigned a specific exposure
value, which is known as the causal dose-response curve or average dose-response function, coincides
with the covariate-adjusted regression function, which is known as the G-formula or G-computation
in causal inference (Robins, 1986; Gill and Robins, 2001). Adjusting for covariates can also improve
estimator efficiency in the context of randomized experiments (Imbens and Rubin, 2015).

The covariate-adjusted regression function is also of interest outside of causal contexts. The



regression (i.e., the conditional expectation) of an outcome on a vector of covariates can be difficult
to visualize and summarize when there are more than two regressors and when nonparametric
methods are used. The covariate-adjusted regression function summarizes the adjusted association
between a single continuous covariate and the outcome by averaging the regression function over
all other covariates for each value of the covariate of interest. This is related to the use of marginal
effects to summarize the results of nonlinear regression models (Mize et al., 2019). Furthermore,
since the covariate-adjusted regression is a univariate function, it can serve as a useful visualization
tool (Friedman, 2001; Apley and Zhu, 2020; Cattaneo et al., 2019).

The covariate-adjusted regression function has been used in several recent observational studies
to describe the association between a continuous exposure and an outcome after adjusting for po-
tential confounders. Josey et al. (2023) and Schwartz et al. (2023) assessed the association between
air pollution exposure and health outcomes after adjusting for socioeconomic and demographic fac-
tors. Knaus (2021) assessed the association between time spent playing a musical instrument and
cognitive improvement in youth after adjusting for socioeconomic factors. Oulhote et al. (2019)
assessed the association between exposure to chemicals and pollutants and neurodevelopment in
children after adjusting for sociodemographic and lifestyle factors and medical history. Colangelo
and Lee (2020) assessed the association between hours of job training and subsequent employment
after adjusting for socioeconomic and health factors. Shroff and Vamvourellis (2022) assessed the
association between the timing of arraignments and judicial decisions after adjusting for defendant,
charge, and courtroom characteristics. Weng et al. (2022) estimated the association between av-
erage nurse staffing on hospital readmission rates after adjusting for hospital characteristics. As
these examples illustrate, the analysis of continuous exposures is of significant statistical interest
across a wide range of disciplines.

Several nonparametric methods exist for estimation and inference for the covariate-adjusted
regression function. Kennedy et al. (2016a) proposed an estimator based on local linear smoothing.
Theirs was the first doubly robust estimator for this parameter, meaning that their estimator is
consistent if either of two nuisance estimators is consistent. van der Laan et al. (2018) and Colangelo
and Lee (2020) also proposed doubly-robust estimators based on smoothing, and used cross-fitting
to remove empirical process conditions for nuisance estimators. Semenova and Chernozhukov (2021)

proposed an estimator based on a series expansion. Finally, Westling and Carone (2020) and



Westling et al. (2020) explored inference under a monotonicity assumption. Additional literature
related to the covariated-adjusted regression function includes Robins (1986, 2000) and Zhang
et al. (2016), who proposed plug-in estimators based on a parametric outcome regression model;
Hirano and Imbens (2004) and Imai and Van Dyk (2004), who proposed estimators based on a
parametric propensity model; Neugebauer and van der Laan (2007), who studied inference for the
best projection onto a working parametric model; Rubin and van der Laan (2006) and Diaz and
van der Laan (2013), who proposed data-adaptive methods; Bonvini and Kennedy (2022), who
proposed a higher-order estimator; and Westling (2022) and Weng et al. (2022), who proposed
tests of the null hypothesis that the function is flat.

As is the case for an ordinary regression function, nonparametric inference for the covariate-
adjusted regression function is a challenging task. The bias of smoothing-based methods is not
asymptotically negligible when the bandwidth is chosen to optimize the rate of convergence of the
estimator. This bias complicates the task of obtaining valid inference. Some authors have argued
for interpreting confidence sets constructed based on the resulting limit theorems as valid for a
smoothed parameter (Wasserman, 2006; Kennedy et al., 2016a). An alternative approach is to
choose the bandwidth to go to zero faster than the optimal rate to guarantee that the bias goes to
zero faster than the standard deviation, which is called undersmoothing (van der Laan et al., 2018;
Colangelo and Lee, 2020; Semenova and Chernozhukov, 2021). While this approach theoretically
allows valid inference, it yields a suboptimal rate of convergence for the estimator. Furthermore,
there is little guidance about how to select a bandwidth for undersmoothing in practice beyond
ad-hoc methods. For instance, a common approach to undersmoothing is to divide the bandwidth
selected by cross-validation or another method by a sequence going to infinity slowly with n, such as
n'/10 log(n), or log(log(n)). However, the specific choice of this sequence impacts the finite-sample
performance of the estimator and confidence intervals, and there is no consensus on which sequence
to use in any given situation. It is therefore both theoretically and practically valuable to develop
asymptotically valid inference procedures that do not require undersmoothing.

Recently, Calonico et al. (2018) proposed a method of bias correction for density and regression
functions estimated using kernel smoothing. Bias correction in the context of kernel smoothing
is challenging because the bias depends on the second or higher derivative of the true function,

which is more difficult to estimate than the function itself (Wasserman, 2006; Hall, 1992). However,



Calonico et al. (2018) demonstrated that, via a careful choice of the bandwidth parameter of the bias
estimator, it is possible to effectively debias kernel smoothing-based estimators. These estimators
permit asymptotically valid inference without undersmoothing, and unlike undersmoothing, retain

the optimal rate of convergence relative to the assumed smoothness of the true function.

1.2 Contribution and organization of the article

In this article, we contribute to the existing literature in the following ways: (1) we propose a
novel debiased estimator of the covariate-adjusted regression function motivated by the approach
proposed by Calonico et al. (2018); (2) we propose methods of pointwise and uniform inference
and provide conditions under which our methods are asymptotically valid; and (3) we illustrate
the practical performance of our proposed methods using numerical studies and an analysis of the
effect of air quality on health. To the best of our knowledge, ours are the first asymptotically valid
methods of pointwise and uniform inference for the covariate-adjusted regression function without
undersmoothing. We note that our problem is substantively different from that of Calonico et al.
(2018) due to the presence of nuisance parameters, which introduces remainder terms and technical
considerations not present when estimating density and regression functions. We elucidate these
differences more below. Finally, we have implemented all methods proposed in this article in an R
package available at https://github.com/Kenta426 /DebiasedDoseResponse.

The remainder of this article is organized as follows. In Section 2, we define our statistical setting
and proposed estimator. In Section 3, we present our approach to inference and our theoretical
results. In Section 4, we demonstrate the empirical performance of our proposed methods using
numerical studies, and in Section 5, we use our methods to assess the effect of air pollution on
cardiovascular mortality. Section 6 presents brief concluding remarks. Proofs of all theorems are

provided in Supplementary Material.

2 Proposed estimator

2.1 Notation and statistical setting

We now define the statistical setting we will work in and notation we will use. We consider a

univariate outcome Y € Y C R, a univariate exposure A € A C R, and a vector of covariates



W € W C R? We assume that the distribution of A possesses a Lebesgue density. We define
the observed data unit O = (Y, A, W), which takes values in O := ) x A x W. We then observe
n independent and identically distributed observations Oy, ..., O, from an unknown probability
distribution Fy. We denote by P, the empirical distribution function of the observed data. We
index objects by P when they depend on a generic distribution P over the observed data unit O,
and we use subscript 0 as short-hand for the true distribution FPy. For instance, we denote the
expectation under Py by Ey. For a distribution P on O, we denote by Fp the marginal distribution
and fp the Lebesgue density of A under P. We denote by Qp the marginal distribution of W
under P. We denote by F, and @, the empirical distributions of Ai,..., A, and Wy,...,W,,
respectively. We let up(a,w) = Ep(Y | A = a, W = w) denote the outcome regression function
and gp(a,w) = [B%P(A <a|W =w)|/fp(a) denote the standardized propensity function. For
a probability measure P and P-integrable function h, we define Ph := [hdP. For ¢ > 1, we
denote by ||h||pg = (P|Rh|?)"/? the L,(P) norm of h. For a real-valued function h defined on X, its

supremum norm is denoted by ||h||s = sup,ex |h(x)|. We also define e; := (1,0) and e3 := (0,0, 1).

2.2 Parameter of interest and its interpretation

Our parameter of interest is the covariate-adjusted regression function a — 6y(a) defined as

Oo(a) == Eo{Eo(Y | A=a, W)} = Eo{po(a, W)} = /Mo(%w) dQo(w).

Under certain conditions, 6y has a causal interpretation. For each a € A, we define Y(a) as
the potential outcome under an intervention that sets the exposure A to a. If (1) the potential
outcomes of each unit are unaffected by the exposures of all other units, (2) the observed outcome
Y equals Y (A), i.e., the potential outcome under assignment to the observed exposure A, (3) Y (a)
and A are conditionally independent given W, and (4) go(a, W) is almost surely positive, then
0o(a) = Ep[Y (a)]. Hence, under causal conditions (1)—(4), 6p(a) can be interpreted as the average
potential outcome under the assignment of the entire population to exposure value a. The function
a — Ep[Y (a)] is called the causal dose-response curve or the average dose-response function. This
causal identification result has been employed in prior work on causal inference with continuous

exposures (e.g., Robins, 1986; Gill and Robins, 2001; Kennedy et al., 2016a; Westling et al., 2020;



Westling, 2022). These assumptions cannot be verified or tested using the observed data, so their
plausibility depends on the particular scientific application.

As mentioned in the introduction, 6y is also of interest outside of causal settings. The outcome
regression function pug is the expected outcome given exposure and covariates. Hence, for fixed a,
to(a, W) is a random variable representing the expected outcome value given A = a across the
distribution of the covariates W in the population, and y(a) is the mean of this variable. The
curve a — 0p(a) depicts how this average conditional mean changes with a. Hence, 6 is a marginal
summary of the multivariate regression function pg. Therefore, obtaining nonparametric inference
for 6y is a relevant statistical problem even when the causal conditions listed above are implausible

or a causal interpretation is not of interest.

2.3 Debiased local linear estimator

We now define our estimator of the covariate-adjusted regression function. We begin with a review
of the local linear method proposed by Kennedy et al. (2016a) and its key properties. For an
outcome regression function p, a standardized propensity g, and a covariate distribution @), we

define the pseudo-outcome mapping

Guna: (o) = PO a ) Q). (1)

Theorem 1 of Kennedy et al. (2016a) showed that this mapping possesses a double-robust property:
it holds that Ey[{,.4,0,(Y,A, W) | A = ag] = Oo(ag) if either pu = pg or g = go. Kennedy et al.
(2016a) thus proposed first constructing estimators g, and g, of po and go, respectively, using the
empirical distribution @,, of the observed covariates to estimate ()¢, then regressing the estimated
pseudo-outcomes &, (Y1, A1, W1), ..., & (Y, An, W,) on the observed exposures Aj,..., A, using
local linear regression, where &, = &, 4..0,. Specifically, let K be a kernel function (i.e., a
symmetric density on R), h > 0 be a bandwidth, and K}, ,(a) := K([a —ag]/h)/h. The local linear
estimator at a point ag is then defined as the evaluation at ag of the weighted ordinary least squares

regression of the estimated pseudo-outcomes on intercept and the observed exposures with weights



Khao(A1), ..., Kh ey (Ap). Mathematically, the local linear estimator can be written as

GﬁL(ao) = e{D;z’aman (wh,ao,lKh,aogn) ’ (2)

where wp, q0.j(a) = (1, [a—aol/h,...,la— ao]j/hj)T and Dy, p, g0, = Pn(whyawwi%’th’aO) for
any integer 7 > 1. Other authors have used a similar approach as Kennedy et al. (2016a), but
replaced the local linear regression step with an alternative nonparametric regression estimator
(Westling et al., 2020; Semenova and Chernozhukov, 2021; Bonvini and Kennedy, 2022).

As discussed in the introduction, standard approaches to nonparametric regression, including
local linear regression, do not yield valid inference when the bandwidth is chosen to minimize
mean squared error because the bias of the resulting estimator is of the same order as its standard
deviation. Specifically, in their Theorem 3, Kennedy et al. (2016a) showed that under suitable
conditions, including that ag is in the interior of the support of A, (nh)Y2[0LL(ag) — 6p(ag) —
h%c26((ap)/2] converges to a mean-zero normal distribution, where ¢ == [u?K (u)du and 6] is
the second derivative of fy. To minimize mean squared error, the bandwidth h should be chosen
to balance bias squared and variance, which means choosing h such that (nh)/2h2 = (nh5)!/2
converges to a positive, finite constant, or equivalently h proportional to n~/%. Hence, if () (ap) # 0,
then (nh)/? (655 (ag) — Bo(ag)] converges to a normal distribution with non-zero mean, implying
that confidence intervals centered around 65 (ag) will be asymptotically anti-conservative.

We propose debiasing the local linear estimator by subtracting an estimator of the bias in
the spirit of Calonico et al. (2018). We define the debiased estimator as 025 (ag) := 65" (ag) —
%hQCn,aO,QHZ(ao), where ¢y, 4,2 1= eTD;}L,aOJPﬂ(wh,ao,lKh,ao) for W, a0.1(a) == W aq.1(a)[(a—ao)/h)?,
and 0!/ (ap) is a second derivative estimator based on a local quadratic regression with bandwidth
b > 0. We use ¢, 44,2 rather than cy for proper debiasing on and near the boundary of the sup-
port of A, since the limiting constant ¢, is different on the boundary than the interior. The local
quadratic estimator 0! (ag) is the second derivative at ag of the weighted linear least squares regres-
sion of &,(Y1, A1, W1),..., & (Ya, Any Wy) on intercept, Ay,..., A,, and A2,..., A2 with weights
Kpyao(A1), ..., Kpao(Ay). Mathematically, 0/ (ag) := 2b 2l D_;

n,b,ao,2

P (wp,a0,2Kp.a06n). We can



write 028 (ag) = Py (T a0&n), Where

Lra(a) = €7Dy o0 190h,a0,1(0) Ko (@) = €5 nag 2(A/0)" Dy o 9Wha0.2(a) Kiag (a)- (3)

To summarize, for given bandwidths h and b and kernel K, our proposed estimator is constructed
in two steps: (1) construct estimators p, and g, of o and gy respectively, and (2) compute the
plug-in estimates of pseudo-outcomes &,(Y;, Ai;, Wi) = &4, 90,00 (Yi, Ai, W3) for @ = 1,...,n, and
regress them on the observed exposures using the bias-corrected local linear estimator 027 (aq) =
P, (T &) for each ag. In Section 3, we provide conditions on the true data-generating mechanism
and on h, b, K, u,, and g,, as well as practical guidance for selecting or estimating these quantities.

It may seem that effective debiasing using an estimator of the second derivative would require
additional smoothness of 8y, hence violating our stated goal of obtaining the optimal rate of conver-
gence relative to the assumed smoothness of 6. This is not the case. As an intuitive explanation,

we decompose (nh)/2[0P8 (ag) — 0y (ao)] as
(nh)72 [05(a0) = Oo(a0) = 5h%Cna0,205(a0)] + §Cna0,2(nh°) " [0 (a0) — 0 (ao)] -

Under regularity conditions, the first term converges in distribution to a mean-zero limit. Thus,
if nh® = O(1) and 6/ (ao) i>6?6’(ao), then (nh)Y2[0PB (ag) — 6y(ag)] converges to this same limit.
However, perhaps surprisingly, 6. (ag) need not be consistent for 6{(ag) to achieve good inference
using 0,,(ag). We show that the variance of 6/ (ag) is proportional to (nb%)~!. Hence, if h/b —
7 > 0, then the variance of h20/(ag) is of the same order as that of %% (ag), so the bias correction
will not be asymptotically negligible; it will contribute to the asymptotic variance of the estimator
as in Calonico et al. (2018). If in addition h oc n~'/%, then the variance of 8 (ag) does not go to
zero, so it is not consistent. However, even in these cases, we show that (nh)2[025 (ag) — 6p(ag)]
converges to a mean-zero limit distribution.

Even if the bias correction is asymptotically negligible, and especially if it is not, accounting for
its finite-sample variability is important for achieving good finite-sample inference. As discussed
more below, our variance estimator will account for the variability of 6/ (ag), and in particular, we

can still achieve valid inference when the variance of 6/ (ag) is not going to zero. We will show that

10



07 (ap) — 0 (ap) converges to a mean-zero limit if b — 0 and (] is continuous at ag (and additional

technical conditions unrelated to smoothness of 6y hold).

2.4 Local parameter and its efficient influence function

We now provide an alternative motivation for our proposed estimator, which also motivates our
approach to inference. We show that 025 (ag) can be considered as a one-step estimator of a
debiased smoothed parameter. We recall that an object indexed by the subscript P indicates the
evaluation under a generic probability distribution P in the model, and the subscript 0 indicates
the true value of the object, i.e., evaluated at the true data-generating distribution F,. Hence,
Oo(ap) is the evaluation of Op(ag) at P = Py.

The parameter mapping P +— 6p(ag) is not pathwise differentiable relative to a nonparametric
model, meaning that it is not smooth enough as a function of the distribution P to permit n~1/2-
rate estimation (Bickel, 1982; Pfanzagl and Wefelmeyer, 1985; Bickel and Klaassen, 1993). One way
to develop inference methods for such a parameter is to consider a sequence of smoothed parameters
approaching the parameter of interest, each of which is pathwise differentiable (van der Laan et al.,
2018). Our debiased local linear estimator can be viewed through this lens. For any distribution

P and an integer j > 1, we define Dpj, 4 ; := P(wh,ao,ngao th,ao)- We then define the debiased

smoothed parameter mapping as P +— 088 (ag) = P(T'pa,0p) = [T pay(a)0p(a) dFp(a), where
FP,zzO ((I) = G{D1371}L7a071wh,a0,1(a)Kh,ao (a) - e?;CP,h,ao,Z(h/b)QDI;}LaO’wa,ao,?(a)Kb,ao ((I), (4)

for cpp.a9,2 = elD;}hm71P(u~1h,a0,1Kh7a0). We refer to QIQB (ap) as smoothed because it is a weighted
average of fp(a) for a a neighborhood of ag, with (possibly negative) weights I'p 4, (a) fp(a). We refer
to GIQB (ap) as debiased because, as we show in Supplementary Material, if fp is twice continuously
differentiable in a neighborhood of ag, h/b — 7 € [0,00), and additional mild conditions hold,
then the smoothing bias satisfies 085 (ag) — 0p(ag) = o(h?) as h — 0. The asymptotic properties

of 0PP(ag) can now be understood through the following decomposition:

(nh)Y2 [0 (ag) — Oo(ao)] = (nh)*/? [055 (ag) — 05" (ao)] + (nh)*/? [60§" (ag) — 0o (ao)] -

11



Hence, if nh® = O(1), then 0P8 (ap) — 0o(ap) = o({nh}~/?), and so the first-order asymptotic
properties of (nh)/? (625 (ag) — 6(ao)] are determined by (nh)'/? (625 (ag) — 08P (ap)]. This ex-
pression can be studied using semiparametric efficiency theory. The first step in doing so is to
derive the efficient influence function of the functional P +— 685 (ag). This is the subject of the

following lemma.

Lemma 1 (Efficient influence function). For each h and b > 0 and ag € A, P +— 08P (ag) is
a pathwise differentiable parameter with respect to the model M consisting of P such that (1)
Ep[Y?] < oo and (2) there exists k > 0 such that gp(a,w) > K for Fp-a.e. all a such that
la —ag| < max{h,b} and Qp-a.e. w, and the efficient influence function of 055 (ag) relative to this

model s

¢*P,a0 - (b*P,h,b,ao : (y7 a, w) = FP,GO (a)‘gﬂPngvQP (yv a, w) — VPao (a)

+ /I‘p,ao(&) {pp(a,w) —0p(a)} dFp(a), where (5)

VYPao(a) = 61TD];,1h,a0,1wh,ao,1 (@) Kh,a0 (a)w}:zp,ao,l (a)DJ;}hﬂmlP (Wh,ao,1Kh,a00P)
- eg:cP,h,ao,Q(h/b)QDI_D}J,aOwa,GO,?(Q)Kb,ao (a)wg?ag,Q(a)Dj_D};,amQP (wb,aoﬂth% op)
— (BT D ) [0 () = W1 (@00 0y (@D}, P (1 )| K (a)

T—1
x e3Dpy o0 0P (Wh,a0,2K0,a00P).

The proof of Lemma 1 and all other results are provided in Supplementary Material. Lemma 1
establishes that the smoothed and debiased parameter mapping P > QIQB (ag) is pathwise differ-
entiable relative to a nonparametric model. We will use this result below to derive the asymptotic
properties of 825 (ag) and to construct a variance estimator for 25 (ag).

We note that there may be other smoothed parameters with the same properties as 01[3)3 (ag)
that yield an asymptotically mean-zero distribution without undersmoothing—mnamely, that the
parameter mapping is pathwise differentiable for a fixed bandwidth, and that the approximation
bias as the bandwidth tends to zero is negligible. Furthermore, other smoothed parameters may
result in different asymptotic variances of the resulting estimator of fy(ag). In particular, Theorem 1
below demonstrates that the asymptotic variance of our estimator depends on the kernel function K

and the ratio h/b. Hence, the selection of the precise smoothed parameter impacts the asymptotic

12



variance of the estimator. To the best of our knowledge, there is no precise characterization of the
optimality of such approximations. This is an important area of future research.

A simple and popular method of estimating a pathwise differentiable parameter is the so-called
one-step construction (Bickel, 1982; Pfanzagl, 1982). For clarity of exposition, we now briefly
describe the one-step construction in a general setting. Suppose ¥ : M — R is a real-valued
functional on a model M that is pathwise differentiable relative to M at the true data-generating
distribution P, and it has efficient influence function ng. Suppose Oy, ..., O, are drawn IID from
Py, P, is an estimator of Py based on Oy, ...,Op, np is the efficient influence function evaluated
at P,, and that P, is the empirical distribution of O, ..., O,. The one-step estimator of vy is then
defined as 1, := ¥(P,) + Pn¢}p , which can be viewed as the plug-in estimator ¢(P,) plus a term
that corrects some of the bias of ¢)(P, ). The one-step estimator can be shown to be asymptotically
linear with influence function n; under conditions on P, and the true distribution Fp.

We now demonstrate that the debiased local linear estimator 627 (ag) defined above can be

o

n.ao s the estimated efficient influence
7

viewed as a one-step estimator of 6P (ag). We define ¢
function obtained by replacing up and gp from Lemma 1 with estimators u, and g,, @p and Fp
with the empirical distributions @), and F,, and Dpj, oo ; With Dy, 4 4o.;. Due to the cancellation

of terms, it holds that

605 (ag) = / / Lo (@) (0, ) @ () AF (@) + P, o (6)

This representation is proved in Lemma 3 in Supplementary Material. Since the first term is the

plug-in estimator of 9(? B(ag) and ¢ is the plug-in estimator of the efficient influence function of

n,ao
08P (ap) established in Lemma 1, (6) represents 625 (ag) as a one-step estimator.

The representation of our debiased estimator as a one-step estimator of a smoothed parameter
plays an important role in motivating our approach to inference and our asymptotic results. We
would typically expect that one-step estimators of pathwise differentiable parameters are asymptot-
ically linear under appropriate conditions. Similarly, in Theorem 1, we will see that a finite-sample
version of asymptotic linearity holds for our estimator: 857 (ag) —6o(ao) = Pk a4, +0p( {nh}=1/2),

where @7, ,, is the limiting efficient influence function defined precisely below. As with asymptotic

linearity, this representation is useful because it reduces the derivation of further asymptotic prop-

13



erties to the study of the linear term Pp¢%, , . Furthermore, it suggests that the variance of
(nh)Y2[0PB (ag) — By(ag)] can be estimated by o2 (ag) := hP,(¢% , )%, where ¢% , is an estimator

n,ao n,ao

of %, 4, also defined below. Importantly, this variance estimator accounts for the contribution of

the bias estimator, and in particular it is a consistent estimator of the asymptotic variance even

when the bias estimator contributes to the asymptotic variance.

2.5 Bandwidth selection

As with the debiased density and regression estimators proposed by Calonico et al. (2018), our
estimator requires the choice of two bandwidths. Many bandwidth selection methods for local
polynomial regression can be adapted to our setting. Here, we briefly discuss several strategies
for data-driven bandwidth selection. In Section 4, we compare the empirical behavior of the three
methods outlined here.

First, we can choose the bandwidths to minimize a cross-validated estimator of the integrated
mean squared error (IMSE) of P8, as Kennedy et al. (2016a) did for the local linear estimator.
Specifically, since 825 (ag) can be written as a linear smoother of &,, a computationally efficient
oDB

leave-one-out cross-validated estimator of the IMSE of is given by

. {&(%Ai,wi)—eﬁB(Ai)}Q

1
IMSEcy(h, b) := ; 1—Tpa,(A)/n

(7)

We refer the reader to Chapter 5.3, and specifically Theorem 5.34, of Wasserman (2006) for ad-
ditional discussion of this formula. We then define (hey,bey) := arg miny, , IMSEcy (h, b). Alterna-
tively, we can fix b as a function of h via h/b = 7 € (0, 00). For example, we can fix b = h so that 7 =
1. We can then optimize the estimated IMSE over h alone, i.e. hey , := arg min, IMSEcy (b, h/T).
Fixing 7 removes the need to select b, which reduces the search to a one-dimensional space, and
guarantees that h/b = O(1), which is required by our conditions below. Furthermore, in the setting
of regression estimation, Calonico et al. (2018) found that fixing 7 > 0 to a positive constant yields
improved coverage accuracy. However, the choice of 7 is somewhat arbitrary, and as we will see in
Theorem 1, 7 > 0 also yields an estimator with larger asymptotic variance than that of Kennedy
et al. (2016a).

As a second bandwidth selection procedure, we will consider an adaptation of the plug-in method

14



proposed by Calonico et al. (2018) for their debiased local linear estimator of a regression function.

The method works by minimizing an estimator of the IMSE of the local linear estimator 6% over

h. We approximate the large-sample IMSE of #2F with respect to a probability measure w as

IMSE 1ug.in(h) := h* [ BYE(a)%dw(a) + ~1 [VEL(a) dw(a), where

A —ap\®
BY(a0) == eI DL}, thl,ao, Do (A0307, (a0) (H ) and

VLL(‘LO) = 61 nh1,ao, { thham Khhao(A )202(A )whhao, (Al)} D;}n,ao,l €1

Here, hy is a pilot bandwidth, égl is an estimator of 6, and 52(a) is a nearest-neighbors estimator
of the conditional variance of &, given A = a. Since by design neither BLL nor VEL depends on h,

the bandwidth hplygin minimizing IMSEjug.in is given explicitly by

. 1/5
hplug-in := n~1/° (f ‘{LL du ) .

4 [[BML)2dw

Finally, the bandwidth bplug-in of the bias correction is defined as bplyg-in = Pplug-in/7, Where 7
is user-specified. A benefit of this method is that it does not require numerical optimization. A
second benefit is that the measure w can be chosen based on the range over which it is of interest

to estimate 6.

3 Asymptotic properties of the proposed methods

3.1 Pointwise convergence in distribution

In this section, we study the asymptotic properties of our proposed estimator, and use these proper-
ties to derive approaches to pointwise and uniform inference. We first show that (nh)"/2[025 (ag) —
6o(ap)] converges in distribution to a normal limit for fixed ag. We will use this result to show that
pointwise (1 — «)-level Wald-style confidence intervals are asymptotically valid.

We begin by introducing technical conditions we will rely upon. We discuss these conditions
following the statement of Theorem 1. Our first two conditions concern the kernel function and

bandwidths, which will be required in all of our results.
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(A1) The kernel K is a mean-zero, symmetric, nonnegative, and Lipschitz continuous density
function with support contained in [—1,1]. Additionally, K belongs to the linear span
of the functions whose subgraph can be represented as a finite number of Boolean
operations among sets of the form {(s,u) € R x R : p(s,u) < ¢(u)} where p is a

polynomial and ¢ is an arbitrary real function.

(A2) Asn — oo, the bandwidths h = h,, and b = b, satisfy h,, — 0, nh,, — o0, b, — 0,

and 7, := hy /b, — T € [0, 00).

For some results, we will impose additional restrictions on the rate that h approaches zero.

The next condition restricts the uniform entropy of the class of functions in which the nuisance
estimators are assumed to reside. We briefly define uniform entropy; we refer the reader to van der
Vaart and Wellner (1996) for additional details. For a class of functions F, a probability measure
Q@ and any £ > 0, the & covering number N (g, F, L2(Q)) of F relative to the Ly(Q) metric is defined
as the minimal number of Ly(Q) balls of radius less than or equal to € needed to cover F. The
uniform e-entropy of F is defined as supg log N (g, F, L2(Q)), where the supremum is taken over

all probability measures. We now state the following conditions.

(A3) There exist classes of functions F,, and F, such that almost surely for all n large
enough, (1o, tn € Fpu, 90, 9n € Fg, and for some constants C; € (0,00), V}, € (0,1), and

Vy € (0,2):
(a) [[pt]loe < Cy for all p € Fy, and [|1/g|loc < C2 and ||g||oc < C3 for all g € Fy; and

(b) supglog N (e, Fpu, L2(Q)) < Cue~ "V and supg log N (e, Fy, L2(Q)) < Cse Vs for all
e>0.
Next, we control the behavior of limiting functions to which nuisance estimators converge. We

define the following pseudo-distance for any Py-square integrable functions 1,72 : A X W — R,

AgC A, and SCT A x W:

(1,723 Ao, §) = sup {Eplls(a, W){mi (e W) = 12(e. W)y

We also define B:(ap) as the closed ball of radius € centered at ag. We then state the final two

conditions concerning the rate of convergence of the nuisance estimators and properties of the
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true distribution Py. These conditions are specific to a value ag because they will be used in the

pointwise result.

(A4) There exist pioe € Fp, and goo € Fy, 61 > 0, and subsets S1, Sy and Sz of Bs, (ag) x W
such that S§; U Sy US3 = By, (ag) x W and:

(a) poo(a,w) = po(a,w) for all (a,w) € & U Ss and goo(a,w) = go(a,w) for all
(a,w) € So U Ss;
(b) d('unnuoo; B51 (ao),Sl) =0p ({nh}_1/2)7 and d(gnagoo; B(Sl (ao),Sl) = Op(l);

(¢) d(gn, goo; Blao; 61),S2)} = Op ({nh}_1/2)7 and d(fin, froo; Blag; 61),S2) = Op(l);

and
(d) d(pn, tioo; Bs, (a0), S3)d(gn, goo; Bs, (a0), Ss) = op ({nh}~1/2).

(A5) It holds that:

(a) B9 is twice continuously differentiable on By, (ao);
(b) fo is positive and Lipschitz continuous on Bs, (ag);

(c) there exist 6o > 0 and Cg < oo such that Eo[|[V[**%2 | A = a, W = w] < C for all

a € Bs, (ap) and Py-almost every w and Ep|[|Y|*] < oo; and

(d) a— o3(a) == Ey [{&c(Y, A, W) — 60(A)}? | A = a] is bounded and continuous on

Bs, (ap), where {oo = &, g...Q, 18 the limiting pseudo-outcome.

Finally, we define the limiting influence function

d)too,ao : (y7 a, w) = F(),ao (a)goo(y, a, w) — 7Y0,a0 ((Z)

+ [ Touf@ {pta. ) = [ (e 0) a0 ) ari(@
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*

for I'py a9 = Lo,a and Ypy,aq0 = Y0,a0- We also define our estimator gZ):‘L’aO of (j)oo’ao as

Prag * (U @ w) = Tnag (a)én(y, a, w) — Yna0(a)
+/Fn,a0(a) {,un(a, w) — /un(a,w) dQn(w)} dF,(a), where

Ty—1 T -1
Tn,a0 (a) =€ Dn,h,amlwh,aml (a)Kh,ao (a)wh,ao,l (a)Dn,h,aOJPn (wh,aoJKh,aofn)
- eg{cn,h,aoﬂ(h/b)QD;};,aogwb,ao,Q(a)Kb,ao(a)wlz:aoz(a)D;,i,ao,an (Wh,a0,2Kb,a0&n)
el (/0D a1 [Bhian1 (@) = Whan,1 (W] 50 1 (@D, 1y 1P (0.1 Kiag)| Ko (@)

Tyr—1
x e3 D,y o oPn(Wh,a0,2Kba0n)

Our variance estimator is then given by o2 (ag) := hPn(¢} ,,)?. We note ¢ . differs from the
plug-in estimator ¢y, ., in that v, q, uses &, rather than u,. We use ¢y, ,, rather than ¢; , for the
variance estimator because it is a better estimator when g, is inconsistent, so that peo # o, due
to the appearance of Y q, in @5 4 -

Under the five conditions defined above, we have the following result concerning the pointwise

asymptotics of our estimator.

Theorem 1. If (A1)-(A5) hold, then 055 (ag) — 6o(ag) = Pndke 4 + 0p ({nh}=Y2 + h?), and
(nh)1/2Pn¢* Y ((), VKJfo(ao)*lag(ao)), where

00,a0

C4 — Gy
2 % * 2
0B 27T 2% 5 2 €y — 20265 + 6365
=y — 2T ¢y 5 + 77 ( )2
Cq4 — Gy Cq — C2

for ¢j = [WK(u)du, ¢} = [ K*(u)du and ¢t = [WK(u)K(tu)du. Hence, if nh® =
O(1), then (nh)Y2 [05B (ag) — bo(ao)] converges in distribution to this same limit. Furthermore,

02 (a0) == Vic.r fo(ao) " od(ag), so (nh)/2[0P5 (ag) — Bo(ao)] /on(a0) — N(0,1).

The two most crucial features of Theorem 1 are that the estimator is centered around 6y(ap),
and that the conditions permit the bandwidth to be selected at the optimal rate for estimation.

In particular, the final statement of Theorem 1 implies that the pointwise (1 — a)-level confidence
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interval given by

[£n(ao), un(ao)] == [95 B(ag) — (nh) ™21 0 20u(a0), 6,7 (ao) + (nh) ™' ?q1 o j90u(a0)|  (8)

has asymptotic coverage level 1 —a for 6y(ap) without undersmoothing, where g, is the pth quantile
of a standard normal distribution. That is, Py(0o(ao) € [¢n(ao),un(ap)]) — 1 — a. The first

statement of Theorem 1 resembles asymptotic linearity but differs in that the influence function

*

co,a0 = (b’;o’ hbao Changes with n through h and b. Nevertheless, the result is useful for suggesting

a natural variance estimator and in revealing the process driving the first-order behavior of the
estimator.

The limiting variance of our estimator is the same as that of the local linear estimator proposed
by Kennedy et al. (2016a) up to the constant Vi . When 7 = 0, so that h/b — 0, Vo =
[ K? = ¢, which is the same as the constant in Kennedy et al. (2016a). Hence, in this case, the
bias correction has no impact on the asymptotic variance of the estimator. However, we note that
identifying the optimal rate of convergence of h/b to 0 requires assuming additional smoothness of
fg. When 7 > 0, the asymptotic variance of our estimator is a constant factor larger than that of

the local linear estimator. When 7 = 1, the constant simplifies to

’ (s — c3)?

Therefore, if 7 > 0, our debiased estimator asymptotically reduces bias at the expense of variance.
For the Epanechnikov kernel, Vi ;1 = 1.25, while Vo = 0.6. Hence, debiasing approximately
doubles the asymptotic variance in this case. However, our variance estimator is consistent even
when the bias estimator contributes to the asymptotic variance. We also note that our variance
estimator is not a plug-in estimator of the asymptotic variance established in Theorem 1, but is
instead based on the estimated influence function of the smoothed and debiased parameter. This
is analogous to the fixed-n variance calculations of Calonico et al. (2018). As in Calonico et al.
(2018), we expect this to improve the finite-sample coverage of our confidence intervals. This is

explored more in numerical studies in Section 4.
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We note that we can decompose the linear term as

Pngb?;o,ao =P, {FO,ao (goo - 00)} + P, {FO,a090 - ’YO,aO} + P, {/ I‘O,ao (Noo - /Hoo dQO) dFO} .

In the proof of Theorem 1, we show that the second and third terms in the above decomposition are
op({n/h}~1/?) and O,(n=1/2), respectively. Both of these are 0,({nh}~'/2), so under the conditions
of Theorem 1, the simpler representation 627 (ag) — 0p(ao) = Pp {T0.4y(€co — 00)} + 0p({nh}~1/2)

holds, and therefore only the first component of ¢ contributes to the limit distribution of

50,0
the estimator. This suggests hlP, {Fmao (&, — 0P8 )}2 as an alternative variance estimator. While
this variance estimator would still yield asymptotically valid confidence intervals, including the
additional asymptotically negligible terms in the variance estimator better captures the finite-
sample behavior of the estimator.

We now discuss the conditions used in Theorem 1. Condition (A1) is a standard condition for
kernel smoothing and is satisfied for many common kernel functions. The bounded support condi-

tion is technically convenient but may be avoidable. The subgraph requirement of the condition is

only used for uniform inference but is relatively mild. We impose this condition so that the class

of functions {a — K (25%) : ag € R} is of VC-type (Giné and Guillou, 2002). The condition is
satisfied in particular if K is of the form ¢ o p, where p is a polynomial and ¢ is a bounded real
function of bounded variation, which is the case for many standard kernels including the triangular,
Epanechnikov, and truncated Gaussian kernels.

The requirements on h in condition (A2) are standard in kernel smoothing. They require that
the bandwidth goes to zero, so that the estimator properly localizes around ag, but that it goes

1

to zero slower than n~" so that the estimator does not localize too much. In order to ensure

that o(h?) = o({nh}~1/?), the convergence in distribution part of the result also requires that

/5 This permits but does not

nh® = O(1), which means that h goes to zero at least as fast as n~
require undersmoothing. The second part of condition (A2) requires that the bandwidth b used
for estimating the second derivative in the bias correction goes to zero, but that it does not go to
zero faster than h.

Condition (A3) requires that the nuisance estimators be contained in uniformly bounded func-

tion classes, and in the case of g,, that the function class be uniformly bounded away from zero
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as well. Furthermore, (A3)(b) restricts the uniform entropy of these function classes. The uni-
form entropy condition for Fy is standard in empirical process theory since it guarantees that the
uniform entropy integral is finite. The uniform entropy condition for F,, is slightly stronger in
order to control empirical U-processes associated with the integrated term [ pp(a,w)dQy,(w) in
the estimated pseudo-outcomes.

Cross-fitting could be used to avoid the entropy condition (A3)(b) (van der Laan et al., 2018;
Westling et al., 2020; Semenova and Chernozhukov, 2021; Colangelo and Lee, 2020). Estimators
based on cross-fitting have the same asymptotic distribution as those based on the full data, though
their finite-sample variance is often larger because the nuisance estimators are based on a smaller
training sample. However, cross-fitting carries a higher computational cost if the nuisance estima-
tors are estimated for each training set, and the nuisance estimators use a smaller training set.
Hence, it is of interest to determine whether the results can be obtained under entropy conditions.
Furthermore, the conditions for both classes notably do not restrict the nuisance estimator to VC
classes; hence, our conditions permit large function classes typically associated with data-adaptive
estimators.

Condition (A4) is a doubly-robust condition similar to, but slightly more flexible than, that
required by Kennedy et al. (2016a). It requires that at least one of u, and g, be consistent for
1o Or go, respectively, in a neighborhood of ag and for almost all covariate values. It also requires
that the product of the rates of convergence of i, — pio and g, — go be faster than (nh)~'/2 in
order to ensure negligibility of a second-order remainder term. For points at which only one of the
nuisance estimators is consistent, that estimator must achieve this rate alone. Importantly, this
assumption does not require u, or g, to be estimated using parametric models; the required rate
of convergence can be attained when u,, and g, are data-adaptive estimators. If the covariates are
low-dimensional, these rates can be guaranteed by many nonparametric estimators. For moder-
ate or high-dimensional covariates, the nuisance estimators need to take advantage of additional
smoothness or structure of the true nuisance parameters to ensure these rates of convergence are
attainable (Bonvini and Kennedy, 2022). In practice, we recommend leveraging multiple candidate
estimators in an ensemble estimator such as SuperLearner (van der Laan et al., 2007).

Finally, condition (A5) imposes smoothness conditions on features of the true distribution.

Most importantly, (A5)(a) requires that 6y be twice continuously differentiable in a neighborhood
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of ap. Hence, as in Calonico et al. (2018), our estimator does not require additional smoothness to
yield asymptotically valid inference. Intuition for how this is possible, despite using a third-order
local polynomial estimator for the second derivative estimator, was provided in Section 2. The
bandwidth conditions permit the estimator to obtain the optimal rate of convergence relative to
its assumed smoothness. Conditions (A5)(c) and (A5)(d) require that Y possesses four bounded
moments, and that the conditional distribution of Y given A and W possesses a uniformly bounded
kth moment for some k > 2. They do not require that Y be uniformly bounded.

We note that conditions (A4) and (A5) assume that ag is in the interior of the support of Fy. If
ag is on the boundary of the support, but fo(ag) > 0 and (A4) and (A5) hold in a neighborhood of
ag intersected with the support of Fy, then Theorem 1 continues to hold, except that the constant
Vi - is different. However, since our variance estimator is based on the influence function, and the
influence function is valid for boundary points, our variance estimator is also consistent and the
resulting confidence intervals have valid asymptotic coverage for boundary points. This is analogous
to the validity of local linear estimators at the boundary (see, e.g., Section 3.2.5 of Fan and Gijbels,

1996 and Calonico et al., 2018).

3.2 Inference on causal effects

The pointwise results of Theorem 1 allow us to construct asymptotically valid confidence intervals
for 6y(ap) for any ag for which the conditions hold. However, in many cases, it is also of interest to
draw simultaneous inference on a finite collection of values {6y(a1),...,00(am)}. This can be used,
for instance, to construct confidence intervals for causal effects of the form 6y(a) — 6p(ay). For
this, joint convergence of the estimator at several points is necessary. The next result demonstrates

joint convergence in distribution of our estimator at a finite collection of points.

Theorem 2. If (A1)-(A5) hold for each agy in the finite and fized collection {ai,...,am} and
nh® = O(1), then
07" (a1) — Oo(ar)
(nh)V/?2

GT?B(am) — bo(am)

converges in distribution to a mean-zero multivariate normal distribution with diagonal covariance
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matriz and variances as defined in Theorem 1.

Theorem 2 demonstrates that the estimator is asymptotically independent at any two dis-
tinct points. This is because the covariance of the influence functions provided in Lemma 1, i.e.,
hPy(9%,q, Pa0.a5) CONVerges to zero as h — 0 for any a; # a. Intuitively, this is due to the fact
that the estimator localizes around each point as the sample size increases. Although this justifies
estimating the covariance matrix using a diagonal matrix with variance estimators o2(a;) on the
diagonal, we recommend instead estimating the (j, k) element of the covariance matrix using the
estimator th(CZfL,aj ®7,.q,)- This is reminiscent of the influence-function based estimator of the co-
variance between two or more asymptotically linear estimators. Though the true covariance is going
to zero, it is not necessarily zero in finite samples, and we expect this estimator to better capture
the finite-sample covariance. In numerical studies, we demonstrate that this estimator can yield
substantial finite-sample improvements over an estimator that utilizes asymptotic independence.
To obtain inference on v(6y(ay),...,0p(ay)) for a differentiable function v : R™ — R, we can com-
bine this covariance estimator with the delta method. Hence, Theorem 2 enables us to perform
asymptotically valid inference on effects of the form 6y(a;) — 0yg(az) without undersmoothing.

As with Theorem 1, the conditions of Theorem 2 assume that {a1, ..., a;} are in the interior of
support of A, but the result still holds on the boundary, though with different asymptotic variances.
Furthermore, our variance estimator is consistent and the resulting confidence intervals have valid

asymptotic coverage for causal effects involving boundary points.

3.3 Uniform inference

We now turn to the uniform behavior of the estimator over a compact set Ag. Our goal is to
construct an asymptotically valid uniform confidence band for 6y over Ay, by which we mean
random functions £5, ug : Ag — R such that Py(6y(ag) € [€5 (ap), us (ag)] for all ag € Ag) — 1 —a.
A standard approach to this problem would be to demonstrate that {(nh)"2[0P5 (ag) — 6o(ao)] :
ap € Ap} converges weakly as a process to a tight limit in the space £*°(A4g) of uniformly bounded
functions on Ay equipped with the supremum norm. However, by the asymptotic independence
of (nh)Y2[0PB (a1) — Oy(ay)] and (nh)/2[0PB (ay) — 6y(az)] demonstrated in Theorem 2, the only

possible limit is a white noise process, which is not tight in £°°(.Ap). Stupfler et al. (2016) explored
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this phenomenon in more depth for kernel density estimators. Instead, we will use the finite-sample
approximation theory developed in Chernozhukov et al. (2014). Using this theory and the first-
order representation 055 (ag) — o(ag) = Ppepl, o + op({nh}~1/?), we approximate the distribution
of sup 4, (nh)Y/210PB — 69| /oy, with that of maxa, |Z, pp|, where A, is a finite subset of Ay and
conditional on the data, Z, jp is a multivariate Gaussian random vector on .4,, with covariance
given by

Cov (Znnp(a1), Znnp(a2)) = WP (S, 4y Drray) / [om(a1)on(az)] .

Defining t;_,, as the 1 — « quantile of the conditional distribution of max 4, [Zy, 5| given the
data, the lower and upper limits of our asymptotic (1 — «)-level confidence band for 6y over
ap € A are then given by £2(ag) := 025 (ag) — (nh) = /2t1_anon(ag) and us(ag) := 025 (ag) +
(nh)_l/ 2t1_a7nan(a0). Notably, the limits of this confidence band are proportional to the limits of
the pointwise confidence interval defined in (8).

We now introduce additional conditions we will use. For 6 > 0, we define A5 as the ¢-

enlargement of Ay, that is, the set of a € R such that there exists ag € Ay with |a — ag| < 6.

(A6) The constant V := max{V,,, V,}, for V, and V; defined in (A3) and the bandwidth A

satisfy n[h/(log n)]% — 00 and nh3 — oo.

(A7) There exist poo € Fu, goo € Fy, 03 > 0 and subsets Sj, S5, and S of A, x W such that
ST US,US, = As, x W and:

(a) pioo(a,w) = po(a,w) for all (a,w) € 8§ U S and goo(a,w) = go(a,w) for all
(a,w) € 8, USE;

(b) dpin, proo; As» S1) = 0p ({nhlogn}~1/2);

(©) d(gn goo; Asy» S5)} = 0p ({nhlogn}~1/2);

(d) d(pns tioo; Asy> S5)d(gns goos Asy S3) = 0p ({nhlogn}~1/2); and

(€) d(pin, proo; Ay, AXW) and d(gn, goo; Ass, Ax W) are both o), (hﬁ{log n}_ﬁ>

(A8) It holds that:

(a) 6 is twice continuously differentiable with Holder-continuous second derivative on

Asy;
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(b) fo is Lipschitz continuous and bounded away from 0 and oo on As,;
(c¢) |Y|is Py-almost surely bounded; and

(d) a— Ey [{&o(Y, A, W) — 60(A)}? | A = a] is continuous on As,.

We now present a result demonstrating the asymptotic validity of our proposed uniform confidence

band. We define O,, := (O1,...,0,) and wy, := sup, e 4, Minge 4, |@ — ao| as the mesh of A, in Ay.

Theorem 3. If (A1)-(A3) and (A6)-(A8) hold, and nh® = O(1), then

sup 927 (ao) — fo(a)| = O, ({nh/logn}~/?)

ap€Ap

and Sup,, ,e 4, |th(¢;’u¢Z’v) — hPy( ’go7u¢;o,v)| = 0p(1), and if wy, = o(hP) for some p > 1 and

mn? = O(1) for some d € (0,00) as well, then

02" (ag) — 0o (ao)
Un(ao)

sup
teR

Py ( sup {nh}!/?
ap€Ao

<t) = 1 (g Zunslao) < ¢10,)| = o)
0 n

Theorem 3 implies that our proposed uniform confidence band has asymptotically valid coverage.
This is because by definition, Py (maxa,eA, |Znnp(a0)| < ti—an | On) =1 —«, and combined with

Theorem 3 this implies that

Py (Bo(ag) € [, (ap),u; (ap)] for all ag € Ap)

0.5 (ag) — 0o (ao)
O'n(a())

=P ( sup {nh}'/?
ap€Ao

< tl—a,n) — 1 —q.

To prove Theorem 3, we first use the results of Chernozhukov et al. (2014) to demonstrate that
the distribution of sup, ¢ 4, |Gnh1/2¢>* /aoo(ao)‘ can be approximated by that of sup 4, |Zoo,n,b/s

00,a0

where Z 5, is a mean-zero Gaussian process on Ay with covariance

Cov(Zoo,np(@1); Zoonp(a2)) = hPo(9%, a1 Py )/ [Toc(@1) 000 (a2)],

where 03 (ao) := hPy(¢k, 4,)* and G, := n'/2(P, — Py). Notably, the results of Chernozhukov
et al. (2014) cover situations where the empirical process is not converging weakly to a tight

limit, which is the case for our process. Since we also establish that sup,, ¢ 4, |05 (ao) — 6o(ao) —
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Pr¢foan| = 0p ({nhlog n}_l/Q), this means that the distribution of (nh)/? sup 4, 058 — 6y| can
also be approximated by that of sup 4, [Zoo,np|. Finally, we use the results of Chernozhukov et al.
(2015) to demonstrate that the distribution of sup 4, [Zonp| can be approximated by that of
maxa, | Zn npl-

In order to show that sup,, e, 057 (a0) — o(a0) — Prole a0l = 0p ({nhlog n}_l/z), we need
faster rates of convergence for the remainder terms in the first-order expansion of our estimator.
For some remainder terms, this is straightforward. However, for the empirical process remainder

term (P, — Po) (¢},

o — Poo.ag)s it 18 a challenging task because the usual method of demonstrating

negligibility of this remainder, namely uniform asymptotic equicontinuity, only yields that it is
Op ({nh}_l/Q). In order to achieve the extra {logn} /2 term in the rate, we use the local maximal
inequalities of van der Vaart and Wellner (2011). By assuming rates of convergence for pi,, — fioo and

* * )2,

gn — goo in condition (AT)(e), we are able to establish a rate of convergence for Py(é;, 5, — ¢34,

which then permits the use of the results of van der Vaart and Wellner (2011).

We now discuss the additional conditions used in Theorem 3 beyond those used in Theorem 1.
Condition (A6)(a) further restricts the exponent of the uniform entropy of the nuisance classes,
and is used to control the empirical process remainder using local maximal inequalities as discussed
above. If h is chosen at the optimal rate n~'/°, then the condition is satisfied if V},, V, € (0,4/3).
If undersmoothing is employed, then the requirement is stricter. The requirement that nh® — oo
can be relaxed somewhat, especially if V}, is much less than 1, but not beyond nh? — oo. Hence,
severe undersmoothing in addition to debiasing is possible without sample-splitting if the nuisance
estimators fall in smaller classes, though we expect this is of less interest because a main point of
debiasing is to avoid undersmoothing.

Condition (A7) is a uniform version of the doubly-robust condition (A4). The rates of conver-
gence of the nuisance estimators on the sets on which they are consistent in parts (b), (c), and (d)
are slightly faster in order to establish the needed rate of convergence of the second-order remainder
term. Part (e) also requires a rate of convergence of the nuisance estimators towards their limiting
objects. As discussed above, this is also to enable the use of local maximal inequalities. If A is
chosen at the optimal rate n='/> and V, < 4/3 as required by (A6)(a), then part (e) is satisfied if
d(pin, too; Asg, A X W) and d(gn, goo; Asg, A X W) are each op(n*1/5).

Condition (A8) places conditions on the true distribution that are stronger than those required
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in condition (A5) for pointwise convergence. The assumed smoothness of 6y and fy is standard in
the literature (see, e.g., Assumption 3 in Calonico et al., 2018 and R1 in Cheng and Chen, 2019),
and we notably still do not require more than two derivatives for §y. Part (c) requires Y to be
uniformly bounded, which is again used to apply the local maximal inequality. However, this could
be relaxed to |Y| having an almost surely finite conditional gth moment for ¢ > 4 at the expense
of stronger and more complicated restrictions on the complexity and rate of convergence of the
nuisance estimators.

Theorem 3 also requires that the mesh w, of A, decrease faster than h? for some p > 1 but
that the number of points m in A, increase at most at a polynomial rate. The former is to ensure

that the distribution of sup 4 |Zecnp

is a good enough approximation to that of sup 4, |Zoo |,
while the latter is to ensure that the distribution of max 4, |Z, | is a good enough approximation
of max 4, |Zso |- These conditions can be simultaneously achieved, for instance, with a uniform
grid of n points on Aj.

Conditions (A6) and (A8) imply that Ay does not contain boundary points of .A. However, as
with Theorems 1 and 2, Theorem 3 continues to hold when Aj includes boundary points as long
as (A6) and (A8) hold on A;, intersected with the support of Fy. Hence, if the support of A is
compact and the marginal density of A is bounded away from zero on its support, we may be able

to construct asymptotically valid uniform confidence bands over the entire support of A.

4 Numerical studies

4.1 Study design

In this section, we conduct numerical studies to investigate the finite-sample behavior of the pro-
posed methods. We begin by describing our data-generating process. First, we generate covariates
W € R* from a standard multivariate normal distribution. Given W, we then generate A from the
distribution whose conditional density function is given by po(a | w) := Ij 1j(a)[Mw)+2a{1—-\(w)}]
for A(w) := 0.1 + 1.8 expit(B37w), where expit(z) := 1/(1+e~%). This construction guarantees that
0.1 < poa | w) < 1.9 for all @ € [0,1] and w € R?* and that A is marginally Uniform(0, 1).
Finally, we generate Y given A = a and W = w as a Bernoulli random variable with mean

po(a, w) = expit (v{ @ + 74 wa + v3a? + 74T (a)) , where T(a) := sin(37{2a — 1}/2)/(a® + 1) and
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w = (1,w). Weset B =(-1,-1,1,1)T, 3y = (-1,-1,-1,1, )T, 79 = (3, -1, 1,1, )7, n3 = 1
and v4 = 1. Figure 17 in Supplementary Material displays 6y and its second derivative 0(()2) implied
by these settings. The resulting curve is non-monotonic and has large second derivatives for some
regions of [0, 1].

We simulated 1000 datasets using the above process for each n € {500, 1000, 2500}. To illustrate
the performance of the proposed procedures when data-adaptive estimators are used for the nuisance
functions, we used SuperLearner (van der Laan et al., 2007). To estimate g, we used SuperLearner
with a library consisting of generalized linear models, multivariate adaptive regression splines, and
generalized additive models. To estimate gg, we used the SuperLearner procedure proposed by
Diaz Munoz and van der Laan (2011) with the same library. To investigate double-robustness, we
considered using these estimators but omitting W; and Wy from the estimation procedure. We
then considered three settings: (1) both p, and g, use all covariates, (2) u, uses all covariates,
while g, only uses W3 and Wy, and (3) g, uses all covariates, while p,, only uses W3 and Wjy.

We estimated 0y using both the local linear estimator of Kennedy et al. (2016a) and our debiased
estimator. For the local linear estimator, we considered three bandwidth selection mechanisms.
First, we used the leave-one-out cross-validation bandwidth selection proposed in Section 3.5 of
Kennedy et al. (2016a), which we refer to as “Local linear (CV)”. Second, we used the plug-
in methodology described in Section 2.5, which we refer to as “Local linear (PI)”. Lastly, we
undersmoothed the bandwidth obtained by LOOCYV by dividing it by log;y(n), which we refer to
as “Local linear (US)”. For the debiased estimator, we used all three selection procedures described
in Section 2.5. We refer to the estimator with LOOCV bandwidths (hcy, bev) as “Debiased (CV)”,
the estimator with LOOCV bandwidths (hey,1, hev,1) selected by minimizing IMSE,, over h alone
with b = h as “Debiased (CV, h=b)”, and the estimator with bandwidths (Apug—in, plug—in) based
on the plug-in methodology as “Debiased (PI)”.

We constructed 95% confidence intervals for each ag € {0.0,0.05,0.1,...,0.95,1.0}. For the
local linear estimator, we constructed confidence intervals based on the influence function proposed
by Kennedy et al. (2016b), For the debiased estimator, we used equation (8). We also considered
using a plug-in estimator of the asymptotic variance Vi ; fo(ao) ~t03(ag) established in Theorem 1.
We estimated the marginal density fo(ao) using a kernel density estimator and estimated o3 (ag) by

regressing {[£,(Y;, As, Wi) — 05E(A;))%4 = 1,...,n} on Ay,..., A, using a local linear estimator.

28



Both nuisances correct Correct outcome regression Correct conditional density

— -

0.4 ]
0.3
== S — . =
< 0.2 ° I__:__ . L__l___l
1 —— !
1 1
1 1

0.1

0.0

EJ Local linear (US) %! Debiased (CV, h=b) r.5 Debiased (CV) .5 Local linear (CV) EJ Debiased (PI)

Figure 1: Box plots of the bandwidth h selected by the different procedures.

We refer to the corresponding confidence intervals as “Debiased (PI+AV)”. We constructed 95%
confidence intervals for 6y(ag) —00(0.5) for ag € {0.525,0.55,...,1.0} using our estimator and both
variance estimators described Section 3.2. Finally, we constructed a 95% confidence band over
Ap = [0, 1] using the method described in Section 3.3. Notably, we considered the properties of
the estimator and confidence intervals both at interior and boundary points, and we considered

confidence bands that include the boundary points.

4.2 Results of numerical studies

For ease of viewing, we focus here on the results for n = 1000. Results for n = 500 and n = 2500 are
provided in Supplementary Material. Figure 1 displays box plots of the bandwidths h selected by
the different procedures. Undersmoothing tends to select the smallest bandwidth, followed by the
LOOCYV methods, and the plug-in method tends to select the largest bandwidth. Figure 2 displays
the pointwise empirical bias and variance of the two methods. As expected, the magnitude of the
bias of both local linear estimators is generally larger than that of all three debiased estimators
unless undersmoothing is employed. In particular, the local linear estimator has large bias where
the second derivative of 6 is large. The bias of the debiased estimators and that of the local linear
estimator with undersmoothing are generally comparable.

The variance of the local linear estimator is smaller than that of the debiased estimator when
using the same bandwidth selection procedure. At interior points, the variance of the local linear
estimator is about one-half that of the debiased estimator with the cross-validated bandwidth, which

agrees with the constants computed after Theorem 1. The variance of the debiased estimator with
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Figure 2: Top: squared empirical bias of the estimators on the log scale. The local linear estimator
(shown in red) has large bias at points where the magnitude of the second derivative is large.
Bottom: empirical variance of the estimators on the log scale.

the two LOOCYV bandwidth selection procedures is comparable. The variance of both estimators
using plug-in bandwidth selection is smaller than when using LOOCYV bandwidth selection, which
is due to the plug-in bandwidths being larger on average. The variance of the debiased estimator
using the plug-in method has comparable variance with the local linear using LOOCV bandwidth
selection, and is much smaller than that of the local linear estimator using undersmoothing. The
variance of all estimators is larger at the boundaries and when the outcome regression model is
misspecified.

Figure 3 displays the empirical coverage of pointwise 95% confidence intervals for 6y(ap). The
asymptotic bias of the local linear estimator results in poor coverage at points where the sec-
ond derivative is large in magnitude unless undersmoothing is employed. The debiased estimator
has generally good coverage for all bandwidth selection procedures considered when the influence
function-based variance estimator is used. The debiased estimators with LOOCV bandwidth se-
lection have good coverage despite having larger variance because the influence function-based
variance estimator accounts for the bandwidth. The debiased methods have good coverage at the
boundaries, but slightly lower coverage near the boundaries. This issue is not present when using

parametric nuisance estimators (shown in the Supplementary Material), so it could be due to the
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Figure 3: Empirical coverage of 95% pointwise confidence intervals based on the debiased local
linear estimator and the local linear estimator. PI, CV, and US correspond to plug-in, cross-
validation, and undersmoothing respectively, and PI + AV corresponds to the plug-in bandwidth
with the direct plug-in estimator of the asymptotic variance.

finite-sample performance of data-adaptive nuisance estimators over the corresponding region. The
debiased estimator with confidence intervals based on the plug-in estimator of the asymptotic vari-
ance has worse coverage, especially near the boundary, which further illustrates the value of using
the influence function-based variance estimator.

Figure 4 displays the empirical coverage of confidence intervals for the causal effect 6y(a)—600(0.5)
based on the debiased estimator and the two variance estimators described following Theorem 2.
The confidence intervals based on the variance estimator using asymptotic independence (top row)
are conservative when a is close to 0.5 because the finite-sample covariance between the estimators
is positive when the distance between the evaluation points is small. When a is further from 0.5,
the confidence intervals have better coverage. The confidence intervals using the influence function-
based variance estimator (second row) have much better coverage for all values of a, especially at
large sample sizes, because the variance estimator captures some of the finite-sample covariance
between the estimators. For both approaches, the plug-in method is conservative when the outcome
regression is misspecified.

Finally, Figure 5 displays the empirical coverage of the uniform confidence bands. For this
simulation, we considered the augmented set of sample sizes n € {500, 750, 1000, 1250, 1500, 2000}.
The plug-in bandwidth selection method exhibits slight undercoverage for sample sizes less than
1000, but generally performs well. However, both bandwidth selection methods based on cross-

validation have serious undercoverage at sample sizes less than 1500. We conjecture that this
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Figure 4: Empirical coverage of 95% pointwise confidence intervals for 6(a) — 6p(0.5) based on the
debiased estimator. The intervals in the top row use the sum of two variance estimators; those in
the bottom row use the influence function-based variance estimator.

undercoverage is a result of the bandwidth selected using LOOCV being smaller on average than
that selected by the plug-in methodology. Smaller bandwidths result in a process with smaller
correlation between points and whose supremum is stochastically larger. This results in a slower
rate of convergence for the approximation in Theorem 3. This further illustrates the benefit of

permitting bandwidths to be selected at the optimal rate.
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Figure 5: Empirical coverage of 95% uniform confidence bands based on the debiased estimator.

An important conclusion of the numerical studies is that the plug-in bandwidth selection method

with h = b consistently demonstrates good coverage for all inferential tasks we examined. Addi-
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tionally, the plug-in method yields smaller variance and narrower confidence intervals than the
other debiased methods and the undersmoothed local linear estimator. Based on these findings, we
recommend using the plug-in method with A = b for bandwidth selection.

The Supplementary Material contains additional results from the numerical study, including
the results presented here for more sample sizes, median width of confidence intervals, and results

when the nuisance estimators are based on parametric models.

5 Effect of fine particulate matter on cardiovascular mortality

Fine particulate matter is a common air pollutant, and its concentration in the United States is
regulated by the Environmental Protection Agency under the Clean Air Act. Numerous scientific
studies have reported an association between exposure to air pollution and adverse health outcomes.
The reduction in the concentration of particulate matter in the atmosphere over the past several
decades is considered one of the contributors to the declining cardiovascular mortality rate (Pope
et al., 2002, 2009; Correia et al., 2013; Roth et al., 2017; Corrigan et al., 2018).

Wyatt et al. (2020a) recently conducted an observational study to investigate the association
between particulate matter less than 2.5 microns in diameter (PMs5) and cardiovascular mortality
rate. Socioeconomic factors are a potential confounding of this relationship because they impact
both exposure to PMs 5 and cardiovascular mortality. Using data recorded at the county level in
the United States between 1990 and 2010, the authors found a positive association between PMs 5
and cardiovascular mortality rate after adjusting for socioeconomic characteristics using regression
models.

We used the publicly available data compiled by Wyatt et al. (2020b) to estimate the covariate-
adjusted relationship between PMs 5 and cardiovascular mortality rate using the methods pre-
sented here. The data contains information about n = 2132 counties. Our exposure A was the
county-level annual PMy 5 (in pg/m®) averaged over twenty observations from 1990 to 2010, as
measured by US Environmental Protection Agency’s Community Multi-scale Air Quality modeling
system (Gan et al., 2015). Our outcome Y was county-level cardiovascular mortality rate (CMR,
deaths/100,000 people) in 2010, as measured by the National Center for Health Statistics. Our

covariates W consisted of county-level socioeconomic factors based on 1990 and 2000 census data:
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population, households below the poverty level, proportion of female-headed households with de-
pendent children, vacant housing units, owner-occupied housing units, median household income,
high education rate, unemployment rate, and density of medical facilities. We note that there are
very likely to be violations of the stable unit treatment value assumption in this data since air
pollution in one county could impact the health of residents in neighboring counties. In addition,
the data are unlikely to be independent. It would be of interest in future research to extend the
methods presented here to deal with treatment spillover and dependent data.

We estimated the outcome regression using SuperLearner (van der Laan et al., 2007) with a
library consisting of generalized linear models, multivariate adaptive regression splines, generalized
additive models, and regression trees. We estimated the conditional density using the version
of SuperLearner developed by Diaz Munoz and van der Laan (2011) with the same library. We
used the Epanechnikov kernel and selected the bandwidth h using the plug-in method discussed in
Section 2.5 and set b = h. We focus on values of PMs 5 between 2.5ug/m? and 11.5ug/m3, which
approximately corresponds to the 0.01 and 0.99 quantiles of the marginal empirical distribution of

PMs 5, respectively.
Debiased Local Linear Local Linear

260
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230

Cardiovascular Mortality Rate (per 100K)

25 5.0 75 10.0 25 5.0 75 10.0
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= = 95% Uniform band + 95% Pointwise Cls
Figure 6: Estimated covariate-adjusted relationship between the concentration of fine particulate
matter (PMsg5) in the atmosphere and cardiovascular mortality rate at the county level. The
regression function is adjusted for socioeconomic factors. The figure shows 95% pointwise confidence

intervals as vertical lines and a 95% uniform confidence band as dashed lines. The right panel
displays the estimated regression function based on the local linear estimator.

Figure 6 displays the estimated covariate-adjusted regression function using our debiased method.

The result based on the local linear estimator with the plug-in bandwidth selection is also provided
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for comparison purposes. Pointwise 95% confidence intervals are displayed using vertical lines, and
a 95% uniform confidence band is displayed using dashed lines. The adjusted expected CMR ap-
pears to be monotone increasing as a function of PMs 5, and its rate of increase is fastest for PMs 5
values between roughly 6 and 8 ug/m3. Our method shows larger uncertainty for PMs 5 levels
below 4 pg/m? and above 9 pug/m? due to the low density of PMas. It is unclear if average CMR
increases or plateaus over these regions. We estimate that increasing PMa 5 from 6 to 8 ug/m?
corresponds to an increase of 10.3 in expected CMR after adjusting for socioeconomic factors (95%
CI: 7.6-12.9), and increasing PMa 5 from 5 to 9 pg/m3 corresponds to an increase of 17.5 in ex-
pected CMR (95% CI: 14.8-20.2). Our conclusions generally agree with those reported in Wyatt
et al. (2020a), but our flexible approach to estimation and principled approach to inference ensure
that the conclusions are not the result of statistical bias. We also note that in this application, it
may be sensible to assume the dose-response function is monotone increasing, so the methods of

Westling et al. (2020) could be used instead.

6 Concluding remarks

In this article, we studied nonparametric inference for a covariate-adjusted regression function. This
problem has wide applications in observational studies when the exposure of interest is continuous.
In particular, under appropriate causal assumptions, the covariate-adjusted regression function
corresponds to the average counterfactual outcome had all units been assigned to the same fixed
exposure level. We presented conditions under which our proposed procedures yield valid pointwise
and uniform inference. Our conditions do not require undersmoothing and permit the use of
data-adaptive estimators for nuisance functions, and our results do not require more smoothness
conditions than the original local linear estimator.

Our method requires the choice of two tuning parameters: the bandwidth A of the original
local linear estimator and the bandwidth b of the bias correction. We considered several methods
of selecting these tuning parameter and compared them in numerical studies. In practice, we
suggest choosing h using the plug-in method and setting b = h because this method had the best
overall confidence interval and band coverage rates while also maintaining the lowest variance and

narrowest median confidence interval length among the debiased methods.
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There are several natural extensions to our work. Cross-fitting the nuisance estimators would
remove the empirical process conditions. Debiasing higher-order local polynomial estimators would
yield faster rates of convergence under stronger smoothness assumptions. Debiased estimators of
derivatives of the parameter could be obtained using similar methodology. Debiasing a higher-order
corrected estimator would yield weaker assumptions for the rates of convergence of the nuisance
estimators (Bonvini and Kennedy, 2022). Alternative procedures for targeting the smoothed pa-
rameter, such as targeted minimum loss-based estimation (van der Laan and Rose, 2011) could yield
improved finite-sample or asymptotic properties of the methods. Finally, twicing kernels (Newey

et al., 2004; Zhang and Xia, 2012) may be an alternative approach to bias correction.
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Supplementary Material

Supplement A Guide to notation

We recall the data unit is O := (Y, A, W), and takes value in the sample space Y x A x W, where Y C R, A C R,
and W C R%. We observe n IID replicates of this data unit, which we call Oy, ..., O, and we define the unknown
distribution of O; as Py. We index objects and functions by P when they depend on a distribution P generating
O. We index by 0 when P = Fy. We index by n when the object is random depending on the sample O4,...,0O,.
Finally, we index by oo when the object is a limit of an object indexed by n that may or may not be equal to its
true counterpart depending on F.

Fp(a) .= P(A <a) and fp(a) := %Fp(a) is the marginal CDF and PDF of A under P

Qp(X):= P(W € X) is the marginal distribution of W under P

up(a,w):= Ep(Y | A=a,W = w) as the outcome regression function under P

0p(a) = Ep[up(a,W)] = [ up(a,w)dQp(w) is the G-computed regression function

gp(a,w) = [ZP(A<a|W =w)]/fp(a) is the standardized conditional density of A given W = w
Pf:= [ f(0)dP(o)

1Bl .q = (P|B]7)"/4

18]l z := sup.ez |6()]

P,, is the empirical probability measure corresponding to Oq,...,0O,
G, :=n'?(P, — Py)

Q,, is the marginal empirical distribution of W1,..., W,

F,, is the marginal empirical distribution of Ay,..., A4,

In is an estimator of pg with limit pe

gn is an estimator of gg with limit g,

Yp(y,a,w) == {y — pp(a,w)}/gp(a, w)

Un(y, a,w) :={y — pnla,w)}/gn(a, w)

Voo (y, a,w) :=A{y — poc(a,w)}/gos (a, w)

€p(y,a,w) = vp(y,a,w) + [ pp(a, ) dQp(w)

Enly, a,w) = Pn(y, a,w) + [ pin(a, ) dQy(w)

€oo (Y a,w) 1= Yoo (y, @, W) + [ h1oo (@, W) dQo(w)

K q0(a) == K((a —ag)/h)/h for K the kernel function

cj = [WK(u)du

¢ = [WK?(u)du

&= [ K (u)K(Tu) du

Sk := (Citj—2)1<i,j<k; i-e. the k x k matrix with (¢, 7) element ¢;y;_o
St = [(L,u)"(1,7u, [ru]?, [ru]®) K (u) K (Tu) du

e1 = (1,0)T, e3 := (0,0,1);

Whao,5(a) == (1,[a — agl/h, ..., [a— ao]j/hj)T for an integer j > 1
Dphao,j =P (wh,aOJKh,llowg,ao,j) for an integer j > 1

. T . .
Dynao,j i=Pn (wh,ao,th,aowh,aO,j) for an integer j > 1

CPhap2 = €1Dp} oo 1 P(Wh.ay 1 Kh.ay) fOr Wh,ag1(a) := wh.ag1(a)[(a — ag)/h]?
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Cn,h,a0,2 *= 61Dn h,ao, 1 Pr(Wh,a0,1 K a0)
Lppbao(a) == ej DPh a0,1wh,au,1(a)Kh,ao (a) — esTCP,h,ao, (h/b)? D}_?lb ,a0,2W Wh,a4,2(@) K0, (@)
Tobao(a) == €T Dy o0 1 Whiag1(0) Knag (@) = €3 Cnnag 2(h/5)?D 0 5Wag2(a) Kb,ay (@)
0pnb(a0) := 057 (a0) = P(Tpppa.0p)
On.np(a0) = 0PP (ag) = Pp(Topbaon)
YP,hbrao (@) = e?D;’,lh,ao,lwhvaoy (a)Kp, ao(a)wg,ao, (a )DJ_Dh a0t (Wh,ao,1Kh,a00pP)
— €3 cPhap2(/D)*DE} o 5Whiae.2(a) Kb ag (a)w] 40 2 (@)D 5}, o0 o P (Whag 2Kb,a00p)
+ 1 (h/b)*Dp), 0o [u?h,aoyl(a) — Whao,1 (@)W 40 1(a)Dp, o1 P (th,aOJKh,ag)} Kha0 (@)
X €3 D5y a2 P(Whao 2Kba,0p)
Yn,hobrao (@) = €] Dnlh Ja0, 1Wh,ao,1(@) Kna (a)w}aao’ (a )Dnlh Jag1Pn (Wh,a0,1Kn,a0n)
- €§Cn,h ao, Q(h/b)2Dn%)ao 2Wh,a0,2(@) Kb a0 (@ )wZ:aO 2(a )Dn%) Jap,2n (Wb,a0,28,a0&n)
+ el (00D, ot [Fhi00,1(2) = W1 (@)0F 0 1 (@D oo 1P (@1 Kag)| Koo ()
X e3 Dn}) ag.2Pn (Wh,a0,2Kb,a08n)

Bonvias (0 0) = T g (DEp (8, 8,10) = VP a0 (0)

+/rph7b,ao( ){MP a,w) /up (@, @) de(w)} dFp(a)
Do hibao (Us @ W) = Lo nbag (@)oo (Y @, W) —Y0,h,b,00 (@)

+ [ Tonan(@ {umi@w) - [ (e 0)aQuo)} arifa)

B hbrao (U @ W0) 2= T pbag ()60 (Y5 @, W) = Vi hoboao (@)

# [ Tonsan@ {im(aw) - [ (@0 a0, @)} i@
Tn =l /by,
oh(a) i= Eo [{€x(Y, A, W) = o(A)}* | A =]
72 10(00) == WPy (6% 110, )

oy nplao) = hP, <¢nhbao)2.

Wy 1= SUP,, e 4, INfaca, [a0 — an.

Throughout, we use < to mean “less than up to a constant not depending on n, h, or b.
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Supplement B Conditions

Here, we re-state the conditions we use in our asymptotic results for convenience. These are the same conditions as
stated in the main text.

(A1) The kernel K is a mean-zero, symmetric, nonnegative, and Lipschitz continuous density function with
support contained in [—1, 1]. Additionally, K belongs to the linear span of the functions whose subgraph
can be represented as a finite number of Boolean operations among sets of the form {(s,u) € R x R :
p(s,u) < ¢(u)} where p is a polynomial and ¢ is an arbitrary real function.

(A2) As n — oo, the bandwidths h = h,, and b = b, satisfy h, — 0, nh, — oo, b, — 0, and
Tn = hyp /by — 7 € [0,00).

We define the following pseudo-distance for any Py-square integrable functions 1,72 : A X W — R, Ay C A,
and S C A x W:

(11,72 A0, ) = sup {EolLs(a, W) i (o, ) - o (a, W)}

We also define B:(ag) as the closed ball of radius € centered at ag.

(A3) There exist classes of functions F,, and F, such that almost surely for all n large enough, o, ptr, € F,
90, gn € Fg4, and for some constants C; € (0,00), V,, € (0,1), and V, € (0,2):
(a) |ptlloo < Cq for all p e F,, and [|1/g]loc < C2 and ||g]|ec < Cs for all g € Fy;
(b) supg log N (e, Fu, L2(Q)) < Cae™V* and supg log N (e, Fy, Ly(Q)) < Cse~ "¢ for all € > 0.
(A4) There exist poo € F, and goo € Fy, 61 > 0, and subsets S1, Sz and S of By, (ap) X W such that
S1USUS; = Bgl (ao) x W and:
(a) fioo(a,w) = po(a,w) for all (a,w) € §; US; and goo(a, w) = go(a,w) for all (a,w) € S U Ss;
(b) d(pn; proo; Bs, (a0)781) = 0p ({nh}_l/2)a and d(gn, goo; Bs, (a0),S1) = Op(1)§
(C) d(gmgoo; Bs, (ao)a 82)} =0p ({nh}_1/2)7 and d(um Moo Bs, (a0)7 S2> = 0,’0(1);
(d) d(pin, oo Bs, (a0), S3)d(gn, 9oo; Bs, (a0), S3) = Op ({nh}_1/2)'
(A5) It holds that:
(a) Op is twice continuously differentiable on Bs, (ap);
(b) fo is positive and Lipschitz continuous on Bs, (ag);
(c) there exist 52 > 0 and Cg < oo such that Ey[|Y[?*%2 | A =a, W = w] < C; for all a € B, (ag) and
Po-almost every w and FEy[|Y]*] < oo; and
(d) a > od(a) == Eo [{€ac(Y, A, W) — 09(A)}? | A= a] is bounded and continuous on Bj, (ag), where
Eoo = &ue 9o, Qo 18 the limiting pseudo-outcome.

Let Ap be a compact subset of A over which we wish to perform uniform inference. For § > 0 define A; as the
d-enlargement of Ap; that is, the set of a € R such that there exists ag € Ay with |a — ag| < §. We then assume
there exists d3 > 0 such that the following hold.

2+

(A6) The constant V' := max{V,,, V,}, for V, and V; defined in (A3) and the bandwidth h satisfies n [h/(log n)]% —
oo and nh3 — oo.

(A7) There exist tioo € Fpuy goo € Fy, 03 > 0 and subsets S7, S5, and Sz of As, x W such that S US; US; =
./453 X W and:

(a) poo(a, w) = po(a,w) for all (a,w) € S U S, and goo(a, w) = go(a, w) for all (a,w) € S5 U Ss;
(b) d(lunv,uoo; -/453,8{) =0p ({Tbh logn}*l/Q)’

(C) d(gnmgoc,-Aéd,Sé)} =0p ({nhlog n}fl/Z);

(d) d(/’an Hoos A§37Sé)d(gn, o A53,S§) =0, ({nh log n}fl/Z).

(€) d(pn, s Asy, A x W) and d(g, goo; Asy, A x W) are both o, (hﬁ{log n}*ﬁ)
(A8) It holds that:
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(a) 6y is twice continuously differentiable with Hélder-continuous second derivative on As,;
(b) fo is Lipschitz continuous and bounded away from 0 and oo on As,;
(¢) |Y|is Py-almost surely bounded; and

)

(d) a Ey [{€c(Y, A, W) = 6(A)}? | A= a] is continuous on Ay, .
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Supplement C Efficient influence function of the local parameter

Proof of Lemma 1. We let {P: : |¢| < 0} be a one-dimensional quadratic mean differentiable path contained in
the model M such that P—g = Fy. We let (y,a,w) = éo(y,a,w) be the score function of the path at ¢ = 0,
which necessarily satisfies Poly = 0 and Po/§ < oo. We define the marginal score functions fo(a,w) = Eo[lo |
A=a,W =w], y(a) := Eglly | A = a], and £y(w) := E[ly | W = w]|, which all have mean zero under Py by the
tower property. We also define the conditional score function éo(y | a,w) := éo(y,a,w) — é(a,w), which satisfies
Eollo(Y | A, W) | A=a,W = w] = 0 for Py-almost every (a,w). For convenience, we denote objects depending on
P. with a subscript €.

To demonstrate that ¢, , ,, is the nonparametric efficient influence function of fo,n(a0) = 05" (ao), we show
that

0 . :
gee,h,b(ao) » = Po(00.1.6.a0%0)

for each fixed h,b > 0 and ag € A. We define

Opn(ag) == €1TD;>71h,a0’1PO (Wh,a9,1 K n,a,0p) and

0pp(a0) == 2625 Dy o o P (Wha0,2Kp,000p) ,
so that 0p, s(ag) can be expressed as
0p.np(a0) = 0pn(a0) — 5P h.ag2h*0p 4 (a0).

Therefore,

0

1
2 5_-Ceh,a0,2
Oe

e=0

0
h29;§7b(a0) — Lep g 2h? &9!@(%)

0
= *es,h(GO)

—0 np(ao) %

Oe =0

e=0 e=0

We now provide the derivation of %Qs’h(aoﬂ o- We first have by the product rule that

e=

0 0
TH-—1
5967h(a0) = 8761 De,h,a0,1P€ (wh,aleh,ao@e)
19 e=0 3 e=0
_ 9 rp- Py ( Khaoto) + el Dy} QP( Kh.ay00)
= 3561 e,h,a0,1 0 \Wh,a0,143h,a0Y0 €10, n,a0,1 e ¢ Wh,a0,14% h,aoY0
e=0 e=0

?PO (wh,ag,lKh,aoee)

e=0

For the first term, by the definition of Dp, o, as the mean of a fixed and uniformly bounded function and the chain
rule, we have

Try—1 9

=€ D(),h,ao,l &Da,h,ao,l

-1
D(],h,ag,l
e=0

_ Ty -1 T ; -1
=9 Do,h,a0,1P0 (whaGOalKh,aowh,ao,lgo) DO,h,ao,l'

Similarly, for the second term, we have

0
7P€ (wh,ag,lKh,aUGO)

Oe =P (wh,ao,lKh,aoeoéo) .

e=0
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For the third term, we have by definition of 6p

0
7P0 (wh,ao,lKh,aoee)

Oe %/ Whiao 1 () Khao (@) / / ydP.(y | a,w) dQ:(w) dFy(a)

e=0 e=0

— [ s @Ko (@) [ [ wioty | a,0)dPoly | a,0) dQo(w) dFio)
+ / W 00.1() Koo (@) / / ydPo(y | a, w)io(w) dQo(w) dFo(a).

By properties of score functions and since gg(a,w) > 0 for Fy-a.e. a such that |a — ag| < h and Qg-a.e. w, the first
term equals

/// Wh,ag,1(a)Kh,aq (a)%éo(y | a,w) dPy(y, a, w)
///wh 10.1() Ky (0) L L0022 tio(a. )Eo(y,a w) dPy(y, a, w).

go(a,w)

The second term equals

J[ a0 @y (@) dFuf@)int) dQo(w) = [ m(w)ia(w) d@ow)

= /// no(w)lo(y, a,w) dPy(y, a,w),

where no(w) 1= [wWh a9,1(a)Kp a0 (@) po(a, w) dFy(a). Putting it together, we have that 95 h(a0)| equals

1 T p 1
1D ag 1 P (wh7a071Kh,aowh,ao,l€0> Do 0,170 (Whiao,1K,a000)

+e1 Dy oa Po (wh,ao,lKh,ao@oéo>

eI [ { [onmna(@ K@ { P I )] oy 0 a0
D). Whap,1 (@) K ag (@) § L0 4 05(a) — o g (@) ¢+ 10 (w)| Loy, a,w) b dPo(y, a,w)
I o o] ot

g(](aa w)

where Yo.p,q,(a) 1= wh a0l 1(a )D0 b, 1Po (Wh,a0,1Kn,a000). Therefore, the uncentered influence function of 6p(ao)
at P=PF, is

_ — pola,w
G0,h,a0 (Y5 @, w) == €] Dy}, ao.1 |:wh¢ao,1Kh,a0 {y to(a, w) +00(a) — Y0.h.a0 (a)} + no(w)}
haao, g0(a,w)

Noting that
Py (Wh,a0,1 K h,a070,h,a0) = Pono = Po (Wh,ag,1Kn,a000) ,

the mean of ¢ j,q, is

1
PO¢O,h,a0 DQ h,ao 1P (wh,ao,lKh,aoe()) .
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Thus, the centered influence function of 0p, at P is
B0 hao (Ys @ W) = G0.hao (Ys @, w) — Podo.h,aq

_ Yy —
= G{Do,i,ag,lwh»aoyl(a)Kh,ao (a) {MO) + 90((1) — 70,h,a0 (a)}

D] 1 [ 00t @Ky (@) ofa,0) — 60(@)} dFo(a)

By a similar argument, the influence function of 6% ,(ao) at Fy is
. _ _ y — ko(a, w)
¢0,b,a0 (y,a,w) =2b 2€3TD0,11>,a0,2wb,a0,2(a)Kb,ao (a) {M + 0o(a) = 70,b,a0 (G)}
+ 272Dy [ 0, 2(0) Kivay (@){o(a,0) — 60(@)} dFo0)

where 70,4, (@) := wiao’Q(a)Da’i,ao,QPo (Wh,a0,2Kb,a000). We next have

0 0

_ T—1 ~
%C&h»ao,? = %61 De,h,ao,lpe (Wh,a0,15Kn,a0)
e=0 e=0
0 0
_ Tr—1 ~ T—1 ~
= 5261 Dcnaoa|  Po(@hao1Bnas) + €1 Dohag1 52 Fe (Whiao 1 Kniao)
e=0 e=0

_ _ . Tp-1 T —1 ~ Try-1 - j
=—e1Dg 00150 (wh7a0>1Kh,aowh,ao,1€0) Dy h.ap1 o (Wn,a,1Kn,a0) + €1 Do p, 00 150 (wh,ao,lKh,aO%) :
Hence, the uncentered influence function of cpp q,,2 is
c _ _ Tp-1 T —1 - THy-1 -
Y0,h,a0 (a) = —e; Do,h,ao,lwh,ao,l(a)Kh,ao (a)wh,ao}l(a)Do,h,aOJPO (@h,a0,1Kn,a0) + €1 Do,h,ao,lwh,ao,l(a)Kh,ao (a)
T

= e DG} [ﬁ’h,ao,l(a) — Whae,1 ()W}, 40 1()Dg 4 a0 1 Po (@Whag 1 Knao) | Ko (@).

This function has mean zero, so it is the nonparametric efficient influence function of cpj, 402 at P = F.
Putting the three pieces together, we have

¢3,h,b,a0 (y,a,w) = d’ah,ao (y, a,w) — %Co,h,ao,2h2¢s,b,ao(yvaﬂw) - %’Y(C),h,ao (a)h2 (l)l,b(GO)

= Conpan (@) { 20D 1 60(0) b= G0 @)+ [ Tosan (@) (p0fa,0) = b0(a)} dFofa).
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Supplement D Decomposition of the estimator

In this section, we present a decomposition of the estimator into six remainder terms. Before we present the decom-
position, we provide a supporting Lemma showing that the pseudo-outcome function possesses a double robustness
property under (A4)(a).

Lemma 2. If (A4)(a) holds, then

fo(a) = Eo {’m + [ (A ) dQut) [ 4 = }

for Fy-almost every a € By, (ao).

Proof of Lemma 2. By the tower property and since dPy(w | A = a) = go(a, w) dQo(w), we have for any a in the
support of A that

Eo{goomA,WnA:a}:Eo{W+/uoo<A w) dQo(w) |4 = }
- / uo(cugu:(;of‘;o)(a’ 2) go(a, w) dQo(w) + / oo (@, w) dQo (w)
~ [twntaw) = oot { 28— 1d o) + [ ot w) du(w)
— [ata) ~ st} { 28220 1 ¥ do(w) + ).

Hence,

/ B A W) | 4= ) = o] )
:/Bal(ao)

< //le(ao - ‘{/io a,w) — poo(a; w)}{m - 1}‘ d(Fo x Qo)(a,w)

ol { S a7 Qo))

Joo (@, w)

[ tiataw) - ot { 29201} o) arita)

Joo(a, w)

By (A4)(a), at least one of the two terms inside the integral is zero for each of the three integrals over S, Sa, and
Ss3. Hence, the above expression is zero, and the claim follows. O

We now provide the decomposition of the estimator that we will use throughout our results. The decomposition
involves a leading empirical mean, P, ¢7_ , ;, .., which drives the first-order asymptotic behavior of the estimator, and
six remainder terms. We separate the remainder into six terms because the methods of controlling these remainders

are conceptually distinct, as we will see in the ensuing results.
Lemma 3. If (A1) and (A4)(a) hold, then the following expansion of the estimator holds for all h € (0,81):

6

On,nb(a0) — bo(ao) = Pndi ppao + Z R h.b.ao.55
j=1
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where
Ry hb,a0,1 = 00,n,6(a0) — Oo(ao),

Ryhpao2 = (Pn— Fo) HFo,h,b,ao <1/Jn + /,un on) + /Fo,h,b,aolin dFo}

- {Fo,h,b,ao <1/Joo + /Moo on) + /Fo,h,b,aouoo dFoH ,

Ry hbao3 = (Pn — Po) {(Fn,h,b,ao —T0,h,b,a0) <¢n + /Mn on) + / (Tohbiao — Loshubao) tin dFo} ,
90
Ry hbaga = // Fn,h,b,ao{ﬂn - MO} {1 - g} dFy dQo,

n
Roiaos = [ [ Db (@n(a,0) d(Qu — Qu)w) d(Fy ~ F)a), and
Tr—1 —1 —1
Ry nbiao6 = €1 D p 401 (Dohao,t = Dihiao,1) (Dn,h,aml - Do,h,ao,l) Po (wh,a0,1K1,a,00)
—1 —1 —1
— C0h,a0, 2713 Dy b 002 D0b.ao.2 — Dboag.2) (Dn,b,ao,z - Do,b,ao,g) Py (Wh,a4,2K,a060)
2. T —1 —1 ~ Try—1
—Thel (Dn,h,aﬂ,l - Do,h,ao,l) Py — Po)(Wn,a9,1Kn,a0)€3 D g 40 250 (W,a0,2K5,0,00)
T -1 —1 —1 ~ TH—1
- 7'561 (Dn,h7a0,1 - DO,h7a071> Do,h,ao,l (Do,h,a0,1 = Dinhag,1) Po(Wh,ao,1Kn,a0)e3 DO,b7a0,2P0 (Wb,a0,2K5b,a00)
2 T —1 —1
— 75 (Cn,hya0,2 = €0,h,a0,2)€3 (Dn,b,ao,z - DO,b,ao,Q) Py (Wp,a0,2K,000)

Proof of Lemma 3. It is straightforward to see that Poyonpa, = Po (Lohpaobo). Since (A4)(a) holds by as-
sumption, Lemma 2 implies that Ey {{c(Y, A, W) | A = a} = 0y(a) for Fy-almost every a € Bs, (ag), and since (A1)
holds, for all h < 61, I'g p b4, (a¢) = 0 for a such that |a — ag| > d1. Thus,

Py (To,hp,a0800) = Lo [Lo,nb,a0 (A) Eo {6 (Y, A, W) | A} = Eo [To,h,b,a0 (A)00(A)] = Po (To,h,b,a000) -

Therefore,

Podie hb.ag = Po (To,np,a0600) — PoYo,n.b,a0 + // L0,h.b,a0 oo AFp dQo — // L0.h,b,a0 oo AFp dQo
= Py (To,nb,a000) — Po (Lo,np,a0b0) = 0.
We now define

—1 —1
’Y’;)L,h,b,a() ((1) = 6{ n’h7a071wh,ag,1(a)Kh,a0 (a’)wfj;ag,l(a)Dn,h,ag,IPn (wh,ao,lKh,agen)
- egcn;hﬂlo,QTsD;}),agﬂwbﬂoﬁ(G)Kbﬂlo (a)wzzjaoz(a)[);,i,ao,zpn (wb,am?KlLao 9“)
+7hei Dy [@h,ao,l(a) — Wh,a0,1(@)Wh 00 1 (@)D, o0 1P (0,1 Knag) | Khao (@)

Try—1
X €3 Dn,b,ao,QPn (wb,ao,QKbﬁao On),
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where 0,, : a = [ p,(a, w) dQ,(w), and we note that

T -1
]P)n”Yn h,bao — €1 Dn h,ao, 1P (wh a0, 18 hag Wh gy, 1) Dn h ao, 1P (Wh,a0,1Kn,0067)

T 1
— €3Cn,h,a0,2Th Dn b,ao, oFPn (wb ao,28b, aowb Ja0, 2) Dn b,ao, P (Wp,a0,2Kb,006n)

+ 7 n€l D;h ,a0,1 {Pn (Dh,a0,1Kh,a0) — Pr (wh,ao,lwh,a0,1Kh,ao) D;h ,a0, 1Pn (’lI)h7ao7lKh,a0):|
X €3 D04 0o 2Pr(Wh,a0,2K5,000n)
= Dn 1h ,a0, 1Dn7hua031D;,1}L7a071Pn (wh,ao,lKh,aO 9“)
—€3 Cn,h,ao,27'72LD;,%;,a0,2Dn,b,ao,2D;,}:,ao,2pn (Wb,a0,25,a00n)
el Dy | P (@001 Kao) = Dinhiag1 Dy g 1P (wh,ao,lKh,ao)] €3 D1 a0 2 Pr(Wh.ag,2 K00 0n)

a0 1 Pr (Whiao,1Kh,a00n) — €3 Cnhag 2T D, Pp, (Wb,a0,2Kb,a00n)

Dn h,ap,1 n b ,a0,2
T
= ( Dn h,a0,1Wh, ao,lKh»ao 0 — €3 Cn,h,a0,2Tp, Dn b,ag,2Wh, ao,ZKb aop Gn)

= Pn Fn,h,b,aoen) .

We then define the plug-in influence function estimator ¢; , , . as

5 i 00:10) 5= Ty (0060 (520 0) =3 0) + [ rnh,b,%(){un(a w0~ [ ma )dQn(w)} Fo (@),

and we note that

P7L¢$17h,b7a0 = Pn (Fn,h,b,aofn) - Pn’ﬁ;h,b,ao + // Fn,h,b,ao,un an dQn - // Fn,h,b,aoﬂn dQn an
= IP)'rLFn,hJ),ao (fn - 9n> = Pnrn,h,bﬂgwn = en,h,b(aO) - IP)nFnJL,b,aoen~

Therefore, 0, 1.6(a0) = Pl hb,a00n + Prdl hbao? which establishes the one-step representation of the debiased

estimator. By adding and subtracting terms and using the derivations above, we can now write

9n7h7b(ao) — 00((10) = ]P)n(vbi.o,h,b,ao + (]Pn — Po) ((rbz,h,b,ao — (rzsgo,h,b,ao) + {Pnrn,h,b,aoen 90 h b(a()) + P0¢n,h,b,a0}
+ {bo,np(a0) — bo(ao)} -
We note that the last summand in braces equals R, p p,4,,1. This is a standard first-order expansion of the estimator
On.hp(ao) of the pathwise differentiable parameter 6y j,,(ag) for fixed h and b, though our analysis in subsequent

results will consider the case where h and b go to zero as n grows.
We now enter a calculation showing that the second and third summands above equal Z?:z Ry hobao,j- For
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convenience, in this derivation we omit the subscripts h, b, and ag when it is clear. We have
(Pn = Po) (D3, nbiao — Poornbian) T {Pnlnnbaobn = Oo.n0(a0) + Pody np.ao t

:(]P)n_PO) ({ann+rn/ﬂndQn_’Yqi"_/]-—‘n,ufnan}

{Fo1/)oo+Fo/Moo dQo “YoJr/FouoodFo})

+ {Mrnen) — Py(Tobo) + Py (ann 4T, / i dQr — 2+ / Tty A — / / Typin dF,, dQn) }
= (Pn - PO)(Fn¢n - F0¢oo) + {_(Pn - PO)’Y; =+ Pn(rnan) - PO'YSL} + {(]P)n - P0)70 + PO(FnGO) - PO(FOGO)}

+ / / Tpottn {dQn d(Eyy — Fo) + dFy d(Qn — Qo) + dQu dFy + dF, dQo — dF, dQyy — dQo dFy)
- // Topioo {dQo d(F,, — Fy) + dFy d(Qr — Qo) }
+ {PO(ann) + // Fn,un dQO dFO - PO(FnHO)} (9)

We note that we added and subtracted the terms f f U dQo dFy and PyI',,0p above. We address each of the
summands in equation (9) in turn. First, we write

(Pn - PO)(ann - Fowoo) = (Pn - PO) {(Fn - FO)L/)H} + (Pn - PO) {F0(¢n - woo)} :

Next, we note that since P,vS = P, (T'n0,), —(Pn — Po)yS + Pn(Tnbn) — Poye = 0. Next, defining D()’h =
PO(uN)h,ao,lKh,ao) and Dn,h = Pn(wh,ao,lKh,ao) we have

(Pn — PO)'}’O + Po(Fneo) — Po(Foeo)
= e Dy, (Dyn —Don) Dy Po (whao,1 K ay0)
—e3¢0272Dg (D — Do s) Dy Po (Whag,2Kb.a,600)
+ G?TELDJ’}l (Dn,h — Dn,hDO_;LDOJJ egDO_Jl)PO (wb,ao,QKb,ag 00)
+ef (D;,lh - D&i) Po (whao,1Kn.aot0) — €3 co 277 (DZ,%; - D&i) Po (w,a0,2Kb,0060)
— To(en2 — c0,2)e3 Dy Po (wh,a0,2Kp,a000) — i (2 — co2)e3 (DZL}) - D&i) Py (w,a0,2K,0060)

et [Do_,zlan,h(DE}L -D, ;) + (D, )}, - DE}J} Po (Wh,a0,1Kh,a000)

T [D(;;Dmb(D(;; -D; )+ (D} - ng})} Po (wp.ag.2Kp.a00)
+el'72 (D5} D = Dy DunDy s Don = Dy} D+ Dg . Do) €7 D53 Po (0,002 K.0000)
—12(cna — coo)ed (D;j) - Da,zl)) Po (We,a9,2Kp,0000)

€1 Dg 1, (Do — Dyn)(Dy ), — Dy ) Po (Wh a1 Knao o)

—e3¢02772 D4, (Doy — D) (D, — Dy ) Po (wh,ap,2K,a000)

- 6{7’3 (D;lh - D&i) {(Dn,h - Do,h) + D(I}L (DO,h - Dn,h) DO,h egDa’;Po (wb,ao’gKb,a()@O)

— 7-72L(CTMQ - 6072)65 (]:);j7 - D(;,lln) PO (wb7a072Kb7a000) y
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which equals Rp.pp.a0.6. We address the next two terms in equation (9) together:
// Uppn {dQ, d(F, — Fy) + dF, d(Qn — Qo) + dQ,, dFy + dF, dQo — dF,, dQ,, — dQo dFy}
~ [ o (0Qud(E, ~ Fo) + dEa (@ - Q)
_ // Dot {dQy dFy — dQo dFy} — // Togin {dQo d(Fy — Fo) + dFy d(Qn — Qo)}
+ [ [ Tolitn = poc) {dQu d(F, — Fo) + dFo (@, - Qu)}
= // Toppin {dQy dF,, — dQo dFy — dQo d(F,, — Fy) — dFy d(Qrn — Qo)}
[ [ Yol — o) (A0, ~ o) + dFo d(@u ~ Qo)
+ //(Fn —To)pn {dQo d(F,, — Fo) + dFp d(Qn — Qo) } -
We then note that
// Tppin {dQy dF,, — dQo dFy — dQo d(F,, — Fy) — dFy d(Qn — Qo)}
= // Tppin {dQy dF, — dQo dF,, — dFy dQ,, + dQo dFo}
— [[ P (@, - Qud(E, ~ Fo)

which equals Ry, 1 p,60,5- Finally, we have

Po(Tti) + [ [ Torin dQudy ~ Po(Tat0) = o ( Ho — “”) J[ vt = o) aao iy
= // { (o = ttn) + (pn — Mo)} dQo dFy
// <1 — ) fin — po) dQo dFy,

which equals Ry, ;40,4 Putting these derivations back into equation (9), we have

(Pr. — Po) (D5 hbiay — Poonbiag) + {Onnb(a0) — Oo.np(a0) + Podr nbayt
- (Pn - PO) {(Fn - FO)'(/)n} + (Pn - PO) {FO(wn - ’(/)oo)}

+ // Lo(ptn — too) {dQo d(Fy, — Fy) 4 dFy d(Qr — Qo) }

+ [ [0 = Ton 1dQud(F, - Fo) + aFy (@, - Q)
+ Rn,h,b,aOA + Rn,h,b,ag,f) + Rn,h,b,ag,G

= (Pn — P) [{Fo (T?n + /Mn on) + /Foun dFo} - {Fo (1%0 + /uoo on) + /Fouoo dFoH

+ (P, — F) {(Fn —To) (wn + /un on> + /(Fn —To)pn dFo}

+ Rn,h,b7a074 + Rn,h,b7a0,5 + Rn,h,b,ag,b’a

. 6
which equals ZFQ Rounbao,j-
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Supplement E  Proof of Theorems

Proof of Theorem 1. By Lemma 3, we have

6
Brnn5(a0) = 00(a0) = Pt nag T D Ruuhibiao.i-

j=1

By Lemma 7, Ry pb09,1 = 0 (h?). By Corollary 4 and Lemmas 17, 19, and 20, Ry p.b,q0,; = 0p ({nh}~1/?) for each
j € {2,...,6}. This establishes the first claim. By Lemma 5, (nh)'/?P, ¢* converges in distribution to the

00,h,b,a0

claimed limit distribution. If nh® = O(1), then (nh)2Ry pp 001 = 0 ({nh®}/?) = o(1), so
(nh)1/2 [en,h,b(ao) —bo(ao)] = (nh)l/QPn(bZo,h,b}ao + Op(1)7

so (nh)Y2 [0, ns(ao) — Oo(ap)] converges to this same limit. For the final statement, by Lemma 21, afl’h’b(ao) =

hP,( :,h,b,a0)2 satisfies ai,hyb(ao) — hPy( ;1h7b’a0)2 = 0p(1). By Lemma 5, hP0(¢(*)o’h1b7a0)2 converges to the variance
of the limit distribution. Hence, 05, 5.5(ao) converges in probability to the standard deviation of the limit distribution,
so the final statement follows by Slutsky’s theorem. O

Proof of Theorem 2. By Theorem 1 and since nh® = O(1), we have

On,np(a1) — Oo(ar) P hbay
(nh)"/? : = (nh)' PPy | + 0p(1).
gn,h,b(am) - 00(am) ¢Zo,h,b,am
The result follows by Lemma 6 and Slutsky’s theorem. O

Proof of Theorem 3. By Lemma 3, we have

6

SUp [0, np(a) = Oo(a)| = sup [Prglepa+ Y Rohbas|-
a€Ao acAg

j=1

By Lemma 7, sup,c 4, [Rnnba1l = O(h?*+94) for some d; > 0. By Corollary 6 and Lemmas 17, 19 and 20,
SUPgea, | Bnshpiaj| = 0p ({nhlogn}=1/2) for j € {2,... 6}. We now write

W' 205 hba

Too,h,b(a)
h26% hba

Too,h,b(@)

1/2 1%
h / (boo,h,b,a

Uoo,h,b(a)

sup |]P)n¢2<>,h,b,a| = (nh)fl/2 SUp |Ooo,h,b(a)Gy

acAg ac€Ap

< (nh)fl/2 Sup |ooo,np(a)| sup |Gy,

a€Ag acAg

Gn

acAg a€Ap a€ Ay

= (nh)_l/2 Sup |ooo,nb(a)] [sup — sup |Zoo7h,b(a)|]

+ (nh) Y2 sup |ooonp(a)| SUp |Zeons(a)l.

acAg ac Ao

By Lemma 22, Sup,e 4, |0o0,n,5(a)] = O(1), by Lemma 24, sup,¢ 4, | Zoo,n,5(a)] = Op({log h~=1}/2), which is O, ({log n}'/?)
R1/2g"
G

co,h,b,a
" 0so,n,b(a)

since nh — oo, and by Lemma 25, sup,¢ 4, —SUP,e A, |Zoo,np(a)] = 0p(1). Hence,

sup |]Pn¢Zo,h,b7a| =0, ({nh/ 1Ogn}71/2) '
a€Ap

This proves the first claim. The second claim follows by Lemma 21.
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For the final claim, by the triangle inequality, we have

On,hp(a0) — Oo(ao)

sup | Py ( sup (nh)!/?

§ t) — PO ( max |Zn7h’b(a0)| S t | On> ’

teR ag€Ap Un,h,b(ao) ap€An
0 — 0,
< sup | Py ( sup (nh)'/? mnp(a0) ~ bolao) < t) - ( Sup | Zoo,n,b(a0)| < t)‘
teR ap€Ap 0'71,}17(;((10) ap€Ao

+ sup | Py ( SUp | Zoonp(ag)| < t> - P, ( max |Zoonp(ag)| < t)’
teR ap€Ag agEA,

+ sup | Py ( max |Zoonp(ag)| < t) - P, (max | Zn.hp(a0)] <t On) )
teR ap€A, ap€A,

The first term on the right hand side is o(1) by Lemma 27. The second term on the right hand side is o(1) by
Lemma 28. The last term on the right hand side is 0,(1) by Lemma 29. O
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Supplement F Analysis of the leading term

We first establish the following result on the behavior of D(I%ha(nl and D(;i,ao,3 as h,b — 0.
Lemma 4. If conditions (A1) and (A5) hold, then DO_,}l,a(],l = folao) 'Sy + O(h) and co p.ay2 = c2 + O(h) as
h—0, and Dy, . o = fo(ag)*S5' + O(b) as b — 0.

If conditions (A1) and (A8) hold, then sup,, ¢ 4,

D b0 — fo(ao)—ls;H = O(h), SUPye A, [C0,h,a0,2—C2| =

O(h), and sup .4, |Dobans - fo(ao)‘lsgluoo — O(h) as h —s 0.

Proof of Lemma 4. The proof is analogous to that of Section 3.7 of Fan and Gijbels (1996) and many others. By
definition of Dy j,4,,1 and the change of variables u = (t — ag)/h,

_ j+k—2 B 4
Donaoalichl = [ (F52) K (52 dRa(t) = [ w2 R A + o) du

By (A5), folao + uh) = fo(ag) + O(uh), and since K has support [—1,1] by (A1), we then have

/ WK () fo(ao + uh) du = folao) / 2K () du+ O(h) = folao)esn—s + O(h).

Hence, Do pa0.1 = fo(ao)Sz + O(h), so Dy, .\ = fo(a)~'S; "' + O(h) since f(ag) > 0. The proof for Do p.a,.2 is
analogous. By the same logic, we have Py(Wn a0.1Kh.ao) = folao)(cz2,c3)T + O(h). Hence,

€0.ha0,2 = €1 D b ao 1 P0(@hiao 1 Knao) = €1 [folao) 'S5 " + O(B)] [fo(ao)(c2,0)" + O(h)] = €] S5 (¢2,0)" + O(h)
= co + O(h).

For the uniform result, we have for each j, k € {1, 2},

sup |Do,n,a0,104, k] — folao)cjiri2| = sup /Uj+k72K(u) [fo(ag + uh) — fo(ao)] du
ap€Ag ap€Ag
< sup / |ul 7 K (u) | folao + uh) — folao)| du
ap€Ag
<Ch

for some C' < oo because fy is Lipschitz on As, and K is uniformly bounded with compact support. The result
follows, and a similar argument yields the results for co 40,2 and Dy} a0.2° O

Lemma 5. If (A1)-(A2), (A4)(a), and (A5) hold, then

(Rh) 2Pt b an —+ N (0, Vic.r folao) 0B (ao)) ,

where
2 2 2 % * * * 2 %
u)? — ¢ T4C5 . — CoC ¢y — 2ca¢5 + c5¢
Vi, = / {K(u) — 73027( ) 5 2K(Tu)} du = ¢ — 273 cy—2T 5 S Ehe S
€4 —C €4 — Cy (ca — c2)
is a positive, finite constant for all T € (0,00) and kernels K satisfying (A1). Furthermore, hPO((;S:;o’h’b’a())2 converges

to Vi r05(ao)/ folao) as h — 0.

Proof of Lemma 5. By adding and subtracting P,,I'g 5 b 4,00, We can rewrite P,,¢ as

*
00,h,b,ag

Prnoionpao = Pn{l0nb,a0(§c = 00)} + Pr{T0,1,6,a000 — Y0,h,0,00 } + Pr {/To,h,b,ao <Moo - /,uoo on> dFo}
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We show that only the first term contributes to the limit distribution; the remaining two terms are each op({nh}*l/ 2.
We use the Lyapunov central limit theorem for triangular arrays to demonstrate that the first term is asymp-
totically normal. The Lyapunov CLT implies that if for each n, X, 1, X, 2,... Xy, are IID, mean-zero random
variables that satisfy (1) lim, ., Var(X,;) = % > 0, and (2) there exists § > 0 such that n=%/2E|X,, ;|**® =
o(1), then n=1/23"" | X,,; converges in distribution to N'(0,%). We can write (nh)Y2P, {To n.p.00(€co — 00)} =
n~23" | X, for
Xoni 1= 0T baq (Ai) {€oo (Y, Ai, Wi) — 00(Ai)} -

Since (A4)(a) holds, Fy [€x(Y, A, W) | A =a] = 0p(a) for Fy-almost every a € Bs, (ag) by Lemma 2, and by (A1),
Tohpao(a) =0 for all a ¢ B, (ap) and h < é;. Hence, for all n large enough, Fy[X,, ;] = 0 for all i. We thus have

Var (Xp,i) = hEo [Toua0 (4)° € (Y, A, W) = 60(4)} |
—h / T a0 (0)203 (@) dFo a)
Try-1 T 21y—1 2 5
= h/ {61 DO,h,a07lwh,ao,1(a>Kh7a0 (a) —e3 CO,h,ao72TnD0,b7a072wb,ao,2(a)Kb,ao (a)} o (a) fo(a) da
2
- / {eTDO}WO (1)K (1) = €F conag 2o Dy b ag o1 ,{Tnu},{Tnu}Z)TK(Tnu)} 02 (ag + uh) fo(ao + uh) du.
By (Ab), 0¢ and fy are continuous at ag. Also, DE}WOJ, €0,h,a0,2, and D(;,I%,ao,Z converge to fo(ag) 'Sy !, ¢z, and

folag)~'S3!, respectively, as b,h — 0 by Lemma 4, and 7,, — 7 € (0,00). The preceding display thus converges
to

2(ao) folao)™ /{e Y, u) T K (u) — 6§CQT3851(1,{TU},{T’U,}Q)TK(T’LL)}Q du.

Now, 'Sy (1,u)” = 1, and using the block structure of Sz, we find that e} S;* =

can simplify the above to o2 (ao) fo(ao) Vi, for

Vs = / {K(u) - TSCQ(T“)Q_QC?K(W)}Q du

(—c2,0,1). Therefore, we

1
C4q 765

Cq4 — Cy
_ /K(u)2 du— 273, J(Tu)?K (u) K (Tu) du —202 [ K(u)K(tu) du
Cq4 — C5
62 [(ru)* K (tu)? du — 2¢5 [(tu)?K (tu)?du+ ¢3 [ K(Tu)? du
°cs
(s — €2)?

7_20* — cock *x _ 9 * 2 %

=ch— 273 ¢5 —27 D7 ; 0.7 + 7'50% “ €262 +2CZCO
Cq4 — C5 (64 — ¢9)

Hence, Var(X,, ;) converges to 03 (ag)fo(ag) ' Vi - as claimed. If 7 = 1, then the above simplifies to

2
cq — cou? chcd — 2cacqch + C3¢
Va1 = — 5 K(u)p du= 212 :
cq — €5 (ca —c3)

Clearly, Vi . > 0, with equality if and only if the expression in the integral is zero identically. When 7 # 1, the
differing supports of K (u) and K (7u) guarantees that this is not the case, and if 7 = 1 then the expression is zero if
and only if ¢; = ¢4 = 0, which is not the case. Hence, Vi, > 0 for any 7 € (0, 00). Furthermore, by the boundedness
of K and since ¢ < ¢4 by Jensen’s inequality, Vi , is finite for every 7 € (0, 00).

For the second condition of the Lyapunov CLT, we first note that

sup  Ep [|€ao(Y, A, W) — 6(A))* T2 | A=a| < C.

la—ap|<d1

for some C < 00 since i is uniformly bounded and g, is uniformly bounded away from zero by (A4)(a) and
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Eo(|Y|?*%2 | A = a,W = w) is uniformly bounded over a € Bs, (ap) and w € W by (A5). Therefore, for all n large
enough,

E|X,,|*T02 = pt+o2/2 / ICo(a)]**%2 By ||€x(y, a,w) — o (a)*T2 | A = a} fola)da

< et [ 0o(@)*** fofa) da

By the triangle inequality, we then have

246 1/(2+462) . . 245, 1/(2+442)
{[ro@r swanf " < { [Py rtnaon@i(@| ™ fofe) da

atl

2482
{/ ‘ 0, 0 a0 (1 U)TK(U)‘ h= (492 5 (ag + uh) du

fola)da

T 2191 2+62
€3 €0,h,a0,2T D07b,ao,2wb7a0,2(a)Kb7ao (a)‘

}1/(24-52)

}1/(2+52)

2455 1/(2+62)
+ {/ ’egco}h’ao’gTQDa’i,ao,Q(1,u,ug)TK(u)) h=(F92) fo(ag + uh) du} .

By Lemma 4, (A1), (A2), and (A5), the preceding display is bounded up to a constant by h~(192)/(2+92)  Hence,
for all n large enough, E|Xn,i|2+52 is bounded up to a constant by h~%/2. Therefore,

0B X, 425 = O ({nh} /) = o(1)
since nh — oo by assumption.
Next, we show that P, (To n.b.a000 — Y0,h,b,00) = Op({n/h}_l/Q), which implies that it is op({nh}_l/z). We
note that since Py(T'0.5,5,0000) = PoY0,h,b,a05 £0 [Pr(T0.h.b,a000 — V0,h,,a0)] = 0 and Var [P, (T'o.5.6,a000 — 70,h,b,a0)] =
n Py (Lo, b0 00 — ’yo,h,b7a0)2. Thus, it is sufficient to show that Py(Lo.n.b.a000 — Y0.h.b.a0)> = O(h). We have

Poy(To,,b,a000 = Y0,h,b,a0)°
2
<2 / (€7D} 0 00,1 (@) K (@) {00(@) = wn,0,1(0) DG h 1y Po (a1 Knano) b fo(a) da
2
42 [ [eh 000 272D5} 1y 2100002000 @) {80(0) = .00 2(0) D L, P (0, 2K0060) )] fo(a)
2 ~ Ty—1 ~ 2
+ 2/ [61 T Do h,ao {wh’ao’l(a) = Wh,ao,1(@)Wh,a0,1(@) Do,h,aOPO(wh,ao,lKh,ao)} Kh,a, (a)} fo(a)da
2
|: Do 11, ,00,2 (wb ag,QKb a090)}
=207 [ [eDG] o, (L K () {Balao + uh) = (107D, Po (a1 Knas0) }] oo +uh) du
—1 T Ty—1 2
+ 2b / {63 C0,h,a0,2Tn, DO b,ao, ) K( ) {90(@0 + ub) — Uy Db,a0,2P0 (wb7a072Kb,a060)}:| fo(ao + ub) du
2
top! / 2Dy h {(uz’uii)T N (1,u)(l,u)TDO‘}L’aOPo(whyao,lKh,ao)} K(u)] folao + uh) du

F
. 2
X[ Dy 5 40,250 (wb7ao72Kb,a090)}

57



where uy denotes the vector (1,u,u?). For the first term, we define B, o, 1 := (6o(ao), h(‘)(()l)(ao))T. We then write

Py (wh,a9,1Kn.a000) — Bo(ao) — uhb" (ao)
0 i,ao,lpo (Wh,a0.1Kh.a000) — (1,u) "D} o 1D0.hag,1Bh.ap1
() h ,a0,1 [PO (wh,ug,lKh,aOHO) - B (wh,ao,lK}L,uow}YL:a[),l) Bh,ao,l]

TDO b ap 10 (wh,a0,1 K a0 [00 — wiamlﬂh,ao,l])

o / W01 (@) Koo (@) [00(@) — wh.a0.1() Braon] fola) da

= (1, )TDO b a0l /(l,v)TK(v) [00(ao + vh) — (1,v)" Bh,ag,1] folao + vh) dv

(1,4) Dy qp

, U

0,
1
1,u
1

(
(
(

, U

)'D
)'D
)
)'D

(1,u

(1,u)"Dy b ooy / (1,0)7 K (v) [90(% +vh) — Oy (ag) — vheg”(ao)] folao + vh) dv
(1, U)TDah 140,19 o(h),

where we have also used (A1) and (A5). Therefore,

" / Doy (1) K ) {90(a0 +uh) = (1,u) Dy} 4, 1P (wh,ao,lKh,aoﬂo)H? folag + uh) du
=n! / { Dy o1 (1Lu) K (u) { [60((10 + uh) — Oy (ag) — uhgél)(ao)}
_ {(1, w) "Dy 01 Po (Whia1 Knaoo) — Bo(ag) — uhgél)(ao)} H 2 folao -+ uh) du
—h! / eTDG 1(1,u)TK(u)o(h)r Folao + uh) du
= o(h),

using Lemma 4, (A1), (A2), and (A5).
For the second term, we similarly define By 4,2 = (Ho(ao),bﬁél)(ao),O)T. By an identical calculation, we can
then show that

WDy o 2P (Wh,a0,2K5,0000) = O0(a0) — ubby (ag) = uf Dy}, ,0(b)

and hence
2
b_l / |:6ng0 h,a0,2Tn D0 b,ao, Uy K( ) {60(@0 + ub) — ugD;i07zR] (U/b’ao’sz#aoe(])}} f(](ao + ub) du = O(b)

Note that we can even show that this term is o(b%) using a second-order Taylor expansion, though this is unnecessary
for the purposes of our proof.

A similar derivation as in the proof of Lemma 4 yields Py(wp,q0,2Kb,a0600) = S2e100(ag) fo(ao) + O(b). Hence,
using Lemma 4, we have

_ 2
ADG Y oy 2P0y 2K 0] = [{€ Foa0) 185" + O(0)} {Saerbo(ao) folao) + OB)}]

[63 S 826190 ao) =+ O(b)]
— o).

In addition, it is straightforward to see that

2
Jlem5h 0, {0 a®) = (L) (00 DG Polinag 1K) K(w)] folan +uh) du = O(1),
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We now have Py(T'g p,p,a000 — 70,h,b,a0)2 = O(h).

Finally, we claim that
P, {/Fo (Moo - /,uoo on) dFo} =0, (n71/2> ,

which implies in particular that it is o, ({nh}_l/ 2). Since the function inside the empirical mean has mean zero, it

is sufficient to show that )
/ { / ry (uoo - / oo on> dFo} dQo = O(1).

Since poo is uniformly bounded by (A4)(a), we have

/ Vro (uoo —/uoo on> dFor dQo < / [/FouwdFo:r 40,

< [ 1D 0000 i (@) (e
2
[ e o0 47D 00200 K@i o) Q)
< [P0 a1 0" K ) o + )|

2
—|—/ ’egco,h,ao 2T D0 : an2(L s u)T K (u) folag + uh)’ du} .

This latter expression is O(1) by Lemma 4, (A1), (A2), and (A5).
For the final statement of the result, using the same decomposition of ¢, , . as above and the fact that
Epléoo | A= a] = 6y(a) for a € Bs, (ap), we can write
Ugo,h,b(GO) hP0¢oo h,b,a0
2
= hFy [F%,h}b,ao (€0 — 90)2} + hPy (Lo hp,aobo — ’Yo,h,b,ao)2 + hB [/ To,h,b,00 (oo — [ oo AQo) dFy

+2hPy [To.nba0 (oo — 90)/F0 hobao (Moo = [ Moo dQo) dFo}

+2h Py | (T0,h,5,0080 — Y0,h,b,a0) /Fo,h,b,ao(uoo — [ oo dQo) dFo} .

We have showed that h Py _Fg bag (G0 — 90)2} converges to Vi »03(ag)/ fo(ag) as h — 0. We have also showed that
hPo (Lo hb,af0 — ’YO,h,b,ag) = O(h?) and hP, [f To.h.5,a0 (Hoo — [ thoo dQ0) dFo] = O(h), so the statement follows.

O
Lemma 6. If the assumptions of Lemma 5 hold for each ag in {ai,...,an}, then
j;o,h,b,al
(nh)'/?P,,
¢?;o,h,b,am

converges in distribution to a mean-zero multivariate normal distribution with zero off-diagonal elements and diagonal

elements Vi - fo(a1) " to2(a1), ..., Vi r fo(am) tod(am). Furthermore, hP (% h.b,a; Poc,hibiay) COMVETGES to zero for

JF#k

Proof of Lemma 6. We focus on the case of m = 2 for simplicity; the proof for m > 2 is entirely analogous. We
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will show that for any t1,%5 € R,

* * d — —
t1(nh) 2Pl ppay + t2(nR) PPadt by —— Vi folar) 10 (a1) 21 + 13V - folaz) " o (a2) Za

where Z; and Zs are independent standard normal random variables. By the Cramer-Wold device, this yields the
result. First, by the derivations in the proof of Lemma 5,

t1Pad hbar = P {tilo.nb,as (§o — 00)} + Op({nh}*1/2) and
t2P"¢Z®,h,b7az =P, {tQFO,h,b,ag (goo — 00)} + Op({nh}_l/Q)_

Hence,
tl(nh)1/2P”¢:o,h,b,a1 + t2(”h)1/2Pn¢zo,h,b,a2 = (nh)Y*P, {(t:iTo,n b, + 1200 hb.as) (Eoo — 00)} + 0p({nh}1/2).

As in the proof of Lemma 5, we demonstrate the convergence of the expression on the right using the Lyapunov CLT
for triangular arrays. We define X,, 1, Xy, 2,..., Xy as

Xoi = hY2 {100 oy (As) + taT0 1 an (A0} {€oo(Yiy Aiy W;) — 00(A;)}

We can then write (nh)'/?P, {(t1T0,h,p,01 + t2T0.1,b,05) (§oo — B0)} as n-1/2 > )N(m'. Hence, the claim follows by
showing that n=1/23"" | X,,; converges in distribution to the claimed limit, which we do using the Lyapunov CLT.
The main condition of the Lyapunov CLT that differs from Lemma 5 is convergence of the variance. By linearity

of expectation and since R)¢;o,h,b,a1 = P()(b;o,h,b,az =0, we have Ey[X,, ;] =0 for all i. We also have

Var (Xp.) = hEo | {6700 (4) + t2To,n0.05(A)} {6 (Vs A, W) = B(4) ]
= 3By [Tonpan (A {6c(Ys A, TV) = 9(4))]
+ Bt3Bo (Lo upan (A) {6elY, A, W) — 60(4)}]

+ 2ht1taEy {Fo,h,b,al (A)T0.nb,as (A) {€c (Y, A W) — 90(14)}2} :

The first two terms converge to t2Vi - fo(a1) “1o3(a1) and t3Vi - fo(az) ~to3(az) by Lemma 5. We can write out the
third term as

B0 [ D0 0,01 (AT0,1.000 (A) {6 (Y, A4, W) = o(4))?]

— [ {eT DR 0h 4@ K, @ET DG 1100 (0 s )

—€3 C0.ha0.2Ta D0 b 0y 5Whiar 3(0) Kb 0, (@)1 Dy} o Wi 0y 1(a) K, ay (a)

—e1 Dy} 0 1Whiar 1(@) K a, (@)€5 €0 hag 2T DG by 2Whaz,2(@) Kb ay ()

+e3Tc0,h7a07273D57;7a1,wa,al,z(a)Kbyal (a)egco,h,ao,zTﬁD&aM72wb,a2,2(G)Kb,a2 (a)} o2(a)fola) da.

The four summands in the above display involve the products Ky, o, Kn ays Kn,ai Kbasr Koas Knays a0d Kp o Kp g,-
Since the support of K is contained in [—1, 1], each of these products is zero for all h, b small enough. Specifically, if
max{h,b} < |a1 — az|/2, then {a : Kj, 4,(a) > 0} N{a: Kpq,(a) >0} ={a:|a—ai| <h}N{a:|a—as] <h} =0
Therefore, the variance converges to t3Vi . fo(a1) "tod(a1) + 3V » fo(az) ~1o3(az). Each term is bounded away from
zero by Lemma 5. The remainder of the conditions of the Lyapunov CLT can be checked using the same derivations
as in Lemma 5 and using the triangle inequality. O
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Supplement G Analysis of remainder term R, 4,1

Lemma 7. If (A1) and (A5) hold, then 0 1, (ag) —6o(ag) = o(h?). If (A1) and (A8) hold, then for some &4 > 0,
SUPage Ao |00,1.5(a0) — Bo(ao)] = O(h*+01).

Proof of Lemma 7. By (A5), the second derivative of a +— 6y(a) is continuous in a neighborhood of a = ag, so
by the mean value form of Taylor’s theorem, for each a in a neighborhood of ag, there exists a,. (depending on a)
between ap and a such that

0o(a) — Oo(ag) = 0y(ao)(a — ao) + 365 (a.)(a — ag)*.
We then have
o,n.b(a0) = /Fo,h,b,ao (a)bo(a) fo(a)da
= /Fo,h,b,ao (a) [6o(ao) + 05(ao)(a — ag) + 56 (a0)(a — ao)?] fo(a) da
43 [ Tonnas @) 65(02) — 65 an)) (a ~ a0)fo(a) da
We show that the first term equals 6y (ag). We have
[ Toan(a) [Bolan) + Bifan) @~ ao) + 365 (an)a — a0)?] fo(a) da
— e{DE}MuO’l /wh,a0,1(a)Kh,ao (a) [6o(ao) + 6 (ao)(a — ao) + 260 (ao)(a — a)?] fo(a) da

~ C0,nao,2(h/0)*€5 Dy 4 /wb,ao,z(a)Kb,ao(a) [60(a0) + 05 (ao)(a — ao) + 305 (a0)(a — ao)?] fo(a) da.

By the definitions of wp,a0,1, Do,k,a0,1, a0d €y p,q0,2, We then have
DG hoaot /wh,ao,l(a)Kh,ao () [Bo(ao) + b5(ao)(a — ao) + 365 (a0)(a — ao)*] fo(a) da
= elTD(;}z,ao,l /wh,ao,1(a)Kh,a0 (@)wh.a.1(a)T fo(a) da [0o(ao), h0j(ao))

4 50205(@0) [ 00010 K@) (@ = a0) /1] fofa) da

= 61TD(;,ilz7ao71DO,h,ao,1 [00(ao), h@é(ag)] + %hQ‘gg(GO)CO,h,ao,z

= 0Op(ao) + %hQ%(ao)Co,h,ao,z
Similarly,
€3 D0} a0 /wb,ao,z(a)Kb,ao(a) [00(a0) + 05 (a0)(a — ao) + 365 (ao)(a — a0)?] fo(a) da

= egDO_,ll),aOQ/wb,aoaz(a)Kb7ao (@)wb,a0,2(a)" fo(a) da [6o(ao), 65 (ao), 565 (ao)]

= egD(Illy,aO,2D0,b,ao,2 [eo(ao), b96(a0), %bZHS(Clo)]

= %bQGg(CLQ)
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Thus,

/Fo,h,b,ao (a) [Bo(ao) + 05(a0)(a — ao) + 507 (ag)(a — ao)?] fol(a) da
= 90(&0) + %hQG/OI(CLo)CO7h,a0,2 — Co7h,a0,2(h/b)2%b208(ao)
= 90(0,0).

Hence,
00,n,b(a0) — bo(ao) = %h2/F0,h,b,ao(a) (06 (a.) — 04 (a0)] [(a — ag)/h)? fo(a) da.

This is o(h?) by continuity of 6§ at aq.
For the uniform statement, using the above derivations, since K is uniformly bounded, we have

sup |0o,n.b(a0) — fo(ao)|
ag€Ag

< h? [ sup
ap€Ag

—1
DO,b,ao,Q

| s s )~ dgtan] sup [fo(ao)
0] ag€Ap |ar—ao|<h ap€Ag

-1 )
Do,h,a0,1 H + Co,h,a0,2 SUP
oS} ap€Ao

By Lemma 4 and (AS8), this is o(h?%%4) for d,4 the Holder exponent of 6.
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Supplement H Analysis of remainder terms R, 4,2 and Ry, 54,3

Before presenting results regarding the remainder terms Ry, 4 p.q0,2 a0d Ry, 1 b qo,3, We state a Lemma regarding the
rate of convergence of Dy, 4. 40.1 — Do h,a0,1-

Lemma 8. Denote by || - || the element- wise mazimum norm. If (A1) and (A5) hold and nh — 00, then
HDn,h,ao, DOhao,1| o and ||Dn Jh,ao,1 Do ka0, 1”00 are O ({nh} 1/2) ”Dn,b,ao,Q Do b,a,, 2[|oc and ”D

(Ill),aoa oo are OIJ({nb} 1/2)) and ¢ hae,2 = C0,hya0,2 = p({nh} 1/2)'

Proof of Lemma 8. We first note that for all (j,k), Eo (D h,a0,1[4,%]) = Do hao.1[d, k] Using the change of
variables u = (a — ag)/h, we have

Var (Do oo 1lis K] Var{ 1276( , >j+k2h1K<Ai;ao>}
el (45 (25

k=2 g

< (nh) ZZEO {< ao> K M }

- n1h2/{<ah“0)j+k_21< <ah“0>}2 dFy(a)

— (nh)"! / w202 2 () fo (a0 + uh) du.

n,b,a0,2

Since fo(ap +uh) = fo(ag) + O(uh) by (A5) and K is uniformly bounded with compact support by (A1), we have

(nh)™* / w2 K2 (1) fo(ag + uh) du = (nh) ™! fo(ag) { / WU K2 (4) du + O(h)}
= (nh) ™" folao)ca(ivj—2).2 + o({nh} ")

for 1 < j,k, < 2. By Chebyshev’s inequality, we then have Dy, , 4014, k] — Do.h.ag.1[J, k] = Op({nh}~'/2). Since this
holds for all 1 < j,k,< 2, we conclude that [|Dy, n.a,1 — Do,hao,1llec = Op({nh}*l/Q). The result for ||Dy, p.q0.2 —
Do.b,00,2/lcc = O ({nb} 1/2) can be shown analogously.

TO ShOW tha‘t ||Dn h,ap,1 DO h,ao, 1”00 = Op({nh}7 ) we ﬁl"St write Dn h,ap,1 DO }L ,a0,1 D;71}117a071(D(]7h7a0’1 -
D ha01 )Dah a1+ Denoting by | - |l the L; matrix operator norm, it follows from the fact that the L; norm is
sub—multlphcatlve

HDn h,ao,1 Do h,ao, 1||oo - ||Dn h,ao, 1(D0,h,ao,1 - Dn,h,ao’ )Do h,ao, 1||oo
< C”Dn h ,Q0, 1(D07h7a071 - D77«7h7‘1011)D(;,h,a0,1 Hl
<C|p:

1 ||D0,h,a0,1 - Dn,h,ao,l ||1 ||D(;,ilz,a0,1 Hl

n,h,ag,1

We then note that fo(ag) > 0 implies that HDo h.ao.1ll1 = O(1) by Lemma 4. Since nh — oo, Lemma 4 also implies
that Dn hao 1 L, folap)~'S5t, so by the contlnuous mapplng theorem, HDn hao.1ll1 L, | fo(ao)~*S5* |1 and hence
ID;, 0.1l = Op(1). We conclude that |[D; — Dy ayallee = Op({nh}~ 1/2) The derivation above holds for

finite dimensional matrices, and thus a similar argument yields that D} b2 — Do, ’ ap.2lloo = Op({nb}~ 12y,
Finally, we have

n,h,ap,1

1 -1 1 ~
Cn,h,a0,2 — €0,h,a0,2 = (Dn h,a0,1 DO,h,ao,l) P (wh ao, 1Kh ag) + €1 DO h,ao, 1(P - PO) (wh,ao,lKh,ag) .

Both terms are O,({nh}~1/2) by the calculations above. O
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We establish rates of convergence of Ry, h.b.a0,2 a0d Ry, p p,q,,3 Using empirical process theory. Before presenting
supporting lemmas, we review key definitions and notation used in empirical process theory. For a class of functions
‘H defined on a domain X, a probability measure Q on X, and any € > 0, the e-covering number N (e, H, L2(Q)) of H
relative to the Lo(Q) metric is the smallest number of Ly(Q)-balls of radius less than or equal to £ needed to cover
H. A function H on X' is called an envelope function for H if sup, ¢4, [n(x)| < H(x) for all z € X'

We first consider the sequence of stochastic processes {V,,(X) : A € A}, for V,,(A) := Gpnp q0,5,1, Where

j—1
a — aop
nh7a07j’)\(y7a7w) = h1/2 (h> Kh,a,o (a))\(y,a,U}).

We note that n depends on n through h. We also make use of the following semi-metric on A:
) 1/2
Pane(Nasda) i= sup (Bo [{n(r A W) = xa(V, A W)Y [A=a]) .
a—ap|<e

We then have the following lemma.
Lemma 9. Suppose (A1), (A2), and (AS5) hold, and that A is a class of functions with envelope L satisfying:

1. SUp|_qq|<s, Eo [L2F92 | A= a] < oo for some 61,69 > 0; and

1 1/2
2. [} {supglog N (¢]| L] g2, A, La(Q))}/? de < oo.
Then for each j € {1,2,3,4}, supycp |Gnnn,a0,5,0| = Op(1), and for any possibly random sequences An1, Ana € A such

that pay,e(An1; An2) = 0p(1) for some € > 0, Gn{Nh,a0,j, 71 — Mh,ao,jAne b = 0p(1), 50 Gy {hl/QFO,h’b,aU (M — /\gn)} =
0p(1) as well.

Proof of Lemma 9. We first establish properties of the class Hp q0,5 := {Nh,a0,j,1 : A € A}. Since L is an envelope
for A,

j—1
a — a
Hp,a0,5(y, @, w) == h/? <]710> K ao(a)L(y, a,w)

is an envelope for Hj, q,,;. By the tower property and a change of variables, we then have for all h < 6;

_ 2(5-1)
PoHE o 5 = /h <a hao) Kh.ao(a)*Ey [L* | A= a] fo(a)da
= /u2(j*1)K(u)2E0 [L? | A= ag +uh] folao + uh)du

< sup Ey[L*|A=d] /uz(jfl)K(u)2 folaop + uh) du.

la—ag|<d1

The last expression above is O(1) by assumption, (A1), and (A5).

Next, we study the uniform entropy of the class Hp q,,5. We clearly have Hp, 4,; = G a5\, Where Gy, 4,5 is the
class consisting of the single function a + h'/%[(a — ag)/h}? Kp 4, (a). We then have by, e.g. Lemma 5.1 of van der
Vaart and van der Laan (2006), that

SgPN(EHHh,ao,j Q.2 Hhao,5: L2(Q)) < sgpN(allLIIQ,z,A,Lz(Q))

for any € > 0. We can now establish the first claim of Lemma 9. By Theorem 2.14.1 of van der Vaart and Wellner
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(1996), we have

sup |G|

E, {sup |Gn77h,a0,h,)\|:| = Ep
AEA N€Mh,ag,j

1/2

1
SAPH; o 5} Sgp/o {1 +10g N (el Hnvao,ill Q.20 Hiaojs L2(@Q))}/? de

1/2

1
<o) [ {suwiog N GlLlonriLa@)}  de

The integral is finite by assumption, which establishes the claim.

We will establish the second statement by showing that the sequence of processes is asymptotically uniformly
Pag,e-equicontinuous (Pollard, 1984; van der Vaart and Wellner, 1996). To do so, we will use Theorem 2.11.1 (see
also Theorem 2.11.22) of van der Vaart and Wellner (1996), which implies that {V;, : n =1,2,...} is asymptotically
uniformly pg, .-equicontinuous if the following conditions hold:

(a) PoHj ,, ; =O(1);
(b) Py [Hz,ao,jI{Hh,ao,j > sn1/2}] = o(1) for every € > 0;
(c

)
) SUP,, (\ Ag)<o, FolMhaon — Mhiaojne }> = 0(1) for every d, — 0; and
)

(d) for every d, = o(1), sup, fo‘;n {log N(e||Hp.ag.5 1l 0.2 Hiag s L2 (@)} de = o(1).

We prove that {G,nn,a0,5,x : A € A} 1S pa, .-equicontinuous by establishing these conditions, and the result follows.
We showed condition (a) above. For (b), we have again by the tower property and a change of variables

Fo {H’%vaod‘r (Hh"“”j ~ 5n1/2>} - /h (a _ha0>2(j1) Kh.a0(a)* Eo {sz (Hh,ao,j > sn1/2> | A= a} fo(a) da

= /uQ(j_l)K(u)on [LQI (Hh7ao7j > Enl/z) | A=agp+ uh} folag + uh) du.
Now we note that since the kernel K is uniformly bounded by, say K < oo, and has support contained in [—1, 1],
I (Hnags > en'?) = T (B2[(A = a0) [0V ™ Koy (AL > en/2) < T (KL > (nh)2).

Hence, for all h < 41,

ol {H,%)ao,jf (Hh,ao,j > 5n1/2>} < K2 /11 Ey [L2I (L > e(nh)l/Q/f{) | A=ao+ uh} folao + uh) du

< sup Ep [L2I (L > a(nh)l/z/l_() | A= a} .

‘(L—ao‘<(51
Then by Holder’s inequality,

_ _ d2/(2+02
Eo [LQI (L > s(nh)1/2/K> A= a} < {Ey [L**% | A =q]}/ {Po (L > e(nh) V2K | A= a)} e
and by Markov’s inequality,
_ _ 02
P (L > e(nh)V2 /K | A = a) < By [L2™ | A=d]/ {s(nh)l/Q/K} e

Thus,

sup FEy [LQI (L > 5(nh)1/2/f{) | A= a} < {5(nh)1/2/f{} o sup FEy [L2+52 | A=ad].

\a7a0\<51 ‘afao‘<51
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Since nh — oo, this latter expression tends to zero by assumption for every £ > 0, which verifies (b).
For (c), by a similar calculation we have for all A small enough that

a — ag

2(3-1)
PO {nh,ao,]'7A1 - nh,ao,j7/\2}2 = /h’ ( ) Kh,ao (a)2E0 |:{A1 - )‘2}2 | A= CL:| fo(a) da

= /u2(j*1)K(u)2EO [{)\1 XY | A=ao+ uh} folag + uh) du

SC s Eyl[{ha -} | A=d

la—ap|<e

= pag,E()\lﬂ )\2)2~

Hence,

2 2
sup  Po{Nh.ao. i — Mhaojre} S O
p(A1,A2)<dn

so that (c) is satisfied.
For (d), using the entropy bound established above, we have

5 s 1/2
aup / {10g N (] Hyao s 0.2 oo s La(@))} 2 de < / {SgPIOgN(€||L||Q,2»A7L2(Q))} de.
0 0

Since the integral on the right is convergent by assumption, the expression converges to zero as § — 0, which verifies
(d)-

For the final statement, by Lemma 4, we can write

2 3
1/2 _ /
h2T0 hpag A = E Ch,ao,jMh,a0,j.x T E Chbag,jM.a0.d.\
=1 =1

for some constants Ch q,,; = O(1) and C} = O(1). By the result above, we then have

h,b,a0,j
2 3
Gy {hl/QFo,h,b@o (Atn — Azn)} = ChiapiCn {Mhao i = Mhaoiirest + D ChibraoiCn {Mbao i = Mbiag.jires }
j=1 j=1
2 3
= Z O(1)oy(1) + ZO(I)OP(l) = 0p(1).
=1 P

Next, we consider the sequence of stochastic processes {V,,(A\) : A € A}, for V,,(\) := G,7 a,.5,1, Where

j—1
a — a
ﬁh,ao,j,A(y, a,w) := / nil (ho) K40 (@)My, a,w) dFp(a).

Lemma 10. Suppose (A1), (A2), and (A5) hold, and that A is a class of functions uniformly bounded by L < oo
and satisfying supglog N (g, A, Ly(Q)) < Ce™V for some C < oo and V € (0,2). Then supycp |Gnilh,ao ] =
0p(h2=3)/29)) for every s € (V v 1,2) and each j € {1,2,...}. Hence, supyea |Gn (f hl/zfoyh’b,ao)\dﬂ)ﬂ =
0,(h2=3)/(29)) for every s € (V,2) as well.

Proof of Lemma 10. We let Hp ayj := {7lh,a0,j,x : A € A}. We use Theorem 2.14.1 of van der Vaart and Wellner
(1996). We first bound the uniform entropy of Hj, 4,,;. Lemma 5.1 of van der Vaart and van der Laan (2006) implies
that the class of functions Fj, o0 j := {(y,a,w) — h1/2 (%)Jfl Kh oo (@) (y,a,w) : X € A} satisfies

sup N (el Fh.ao,ill@.2) Frsao,is L2(Q)) < Sup N (eL; A, L2(Q))
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relative to the envelope function Fy, 4, ; : a — Lh'/?|(a — ag)/h|? Kp 4, (a). We note that for s > 1,

1/s

1/s
{/Fh7a07j(a)SdFo(a) = LhY/2t1=s)/s Uu|s<ﬂ'1>K(u)Sfo(ao+uh) du} < p(2=8)/(2s)

by (A1) and (A5). Hence, Hj , := Ch?=2)/(25) is an envelope for Hy, 4, ; for some C' < co. By Lemma 5.2 of
van der Vaart and van der Laan (2006) (with » = ¢t = 2), the above bound for the uniform entropy of F q,,;, and
the assumed bound for the uniform entropy of A, we then have
SgplogN (el Hn,sll @2 Hhao,5: L2(Q)) < SgplogN (62/5||Fh,ao,jHQ,Q/T/S,fh,ao,ijZ(Q)>
< suplog N (=2/°L/27/* A, L(Q))
Q

S 6_2V/S.

Theorem 2.14.1 of van der Vaart and Wellner (1996) then gives

Ly

sup |G|
ﬁEHh,aO,j

1 1/2
< IIHh,sIIP,2/ {1 +Sgp10gN (el Hp,s| Q727Hh,ao,j’L2(Q))} de
0

1
< h(2—s)/(28)/ {1+5_2V/8}1/2 e
0

The integral is finite so long as V/s < 1. Thus,

Ey| sup |G,7] :O(h(zfs)/(zs))

7767:[11,@0_7‘

for all s > V. Furthermore, for any s > V, there exists s’ € (V| s), so that

Ey| sup [Guil| =0 (h<2—s/>/<2s'>> —0 (h@—s)/(?s))_

N€EHh,aq,j

The final statement regarding {G, (f h1/2I‘0’h,b,a0)\dF0) : A € A} follows by decomposing I pq, and using
Lemma 8, as in the proof of Lemma 9. O

We now use these results to establish rates of convergence of the remainder terms Ry, . p,q0,2 a0d Ry 1 b,a0,3-
Corollary 4. If (A1)-(AS5) hold, then Ry, p p.a0,2 = Op ({nh}’l/Q) and Ry h.bay,3 = Op ({nh}*l),
Proof of Corollary 4. We can write

(nh)Y2 Ry hbap2 = Gn {h1/2ro,h,b,ag (thn — ¢m)} +G, {hl/zro,h,b,ao (/ Hn dQo — //~Loo on) }
+ G, {/ hY2T0 1y ao im dFo} -G, {/ W21 g Hoo dFo} (10)

and
(nh)Y? Ry hpag3 = Gn {h1/2 (Tohbiao — Lo.kba0) 1/1n} + G, {h1/2 (Thnohprao — Lonubia0) /,un on}
+G, {/h1/2 (Tobiao — Loshubao) tin dFo} (11)
We address the first two terms in each expansion using Lemma 9. For the first term, we set A := {0 — [y —

wla,w)]/gla,w) : p € Fu,g € Fgt. By (A3), an envelope function for A is L(y,a,w) = C + C'|y| for some
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C, (" < co. Hence, by the triangle inequality,

sup  Eo [L*™ |A=d] = sup K [{C’ +OY T2 A= a}

la—ao|<d1 la—ao| <81

C+C" sup (Eo{|Y]*|A=a})

\a—a0\<61

24355
1/(2+52)1

which is finite by (A5). Therefore, condition 1 of Lemma 9 holds. For condition 2 of Lemma 9, we note that
permanence properties of uniform entropy numbers and uniform entropy integrals (see, e.g., Theorem 2.10.20 of
van der Vaart and Wellner, 1996 and Lemma 5.1 of van der Vaart and van der Laan, 2006) in conjunction with (A3)
implies that A possesses finite uniform entropy integral. Finally, we show that pa.s, (¥n,¥sc) = 0p(1). By Jensen’s
inequality,
E, (YQ | A=a,W = w) < [EO (|Y|2+62 | A=a,W = w)]Q/(2+52)

which is uniformly bounded for a € Bs, (ag) and Py-almost every w by (A5). We also note that by (A3) and (A4),
for any functions 71,72 of (a,w),

sup {Bo [{1(a, W) = 72(a, W)} | A= d] }1/2 = sup { B |go(a, W) (0, W) = 720, W)} }1/2

la—ao|<d1 la—ao|<d1

< s {5 [ w) —gae ]}

la—ag|<d1

= sup {F {IBgl(ao)xw(a»W){%(avW)_72(“’W)}2H1/2

‘CL—CLU‘<(51
3

<Y sup {EO {ISJ- (a, W) {7 (a, W) - VQ(G’W)}Q] }1/2

=1 la—ao|<d1
3
Z (71,72 Bs, (ao), Sj) -

We then have

1/2
Pag,1 (d’nﬂ/bo) = o Salil\j<51 {EO [ = CL}}
/
- m>{%hu%%}w pnd {00 = 9n) = 11/g0} (1~ poc})* | A =]}
la—ap|<d1
1/2 ) 1/2
S . Salﬁ)@l {Eo [YQ )| A= a” + B {Eo [ui (gn —90)” | A= a”
1/2
TR
3
S sup { [Eo (Y| A=a,W) (g0 —9x)" | A= a} }1/2 + Y d(gn, goo Bs, (a0), S)
la—ao|<d1 ji=1
3
+ Z d (Mna Hoos B51 (aO)’ Sj)
j=1
3
S Zd(gnvgoo§ Bs, (aO)aSj) + Zd(:um Hoos Bs, (a0)78j) .
j=1 j=1

Hence, by (A4), pag.s; (¥n, Vo) = 0p(1). Lemma 9 thus implies that G, {h*/?T¢ 4 p.a0(¥n — ¥eo)} = 0,(1), which
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addresses the first term in equation (10). For the first term in equation (11), we note that

Gy, {h1/2 (T,nbiao — Lo,nibiao) W} =ep (D;,lh,aoyl - D(Iilz-,ao»l) G {hl/th’“OflKh’“m"}
- cO,h,ao,Q(h/b)2eg <D7_L,1h,a0,2 - D()_}L,ao,z) Gn {hl/zwb,aoﬂKb,agqpn}

- (th,aoﬂ - CO,h,a0,2) (h/b)2€§D;’1h’ao,2Gn {h1/2wb,a072Kb,ao¢n} .

Since we have established that the conditions of Lemma 9 hold for the class A that ,, falls in, Lemma 9 implies that
all elements of G,, {h1/2wh)a0)1Kh}a0’(/Jn} and G, {h1/2wb,a0}2Kb7ann} are Op(1). In conjunction with Lemma 8, we
then have

Gn {h1/2 (Fn,h,b,ao - FO,h,b,aO) qZ}n} = Op ({nh}il/Z) .

For the second term in equation (10), we use Lemma 9 with A := {a > [ pu(a,w)dQo(w) : p € F, }, which is a
uniformly bounded class with envelope L = C by (A3). Hence, condition (1) of Lemma 9 hold trivially for this class.
For condition (2), (A3) and Lemma 5.2 of van der Vaart and van der Laan (2006) (with r = s = ¢t = 2) together
imply that condition (2) of Lemma 9 is satisfied. Therefore, if pa,. 5, (An, Aoo) = 0p(1) for Ay, : a = [ iy (a, w) dQo(w)
and Ao 1 a = [ fioo(a, w) dQo(w), Lemma 9 implies that

G, {h1/2F0,h,b,ao (/ o dQo — /,Uoo dQO)} = Op(l)'

Since A\, and A\ are functions just of a, we have

2
pao s doc)’ = sup { [ lnta ) = o) dczo<w>} < s [ lrnosw) = el 0 dQuw),

la—ag|<d1 la—ao|<61

which is 0,(1) by (A4) as noted above. A similar argument yields that the second term of (11) is O, ({nh}_l/Q).
For the third and fourth terms in equation (10), we use Lemma 10 with A = F,,. The conditions of the lemma
are satisfied by (A3), so that

sup
HEF,

Gn {/ hl/QFO,h,b,aglu‘ dFO}‘ =0p (h(Q*S)/(QS))

for every s € (V},,2). Since pn, oo € F,, almost surely for all n large enough, the result follows.
For the third term in equation (11), we note that

Gn {/ W2 (Tonbao = Tohbiao) fn dFo} =e] (DZ,lh,ao,l - D&i,ao,l) Gn {/hl/Qwh,ao,lKh,aoun dFO}
- coxh7a072(h/b)2€g (D'r_h%?,ao,Q - DO_;,Go,Z) Gn {/ hl/zwh7a0a2Kh;aDlJ’n dFO}

— (Co.na0,2 — CO,h,a0,2)(h/b)QesTD;i’ao’QGn {/hl/Qwh,ao,2Kh,aoMn dFo}

Each of the terms in G, { [ R 2wy 00 1 K ag fin dFy} and G, { [ hY 2wy 00 3K ag tin dFy} are o, (h(Q*S)/(zs)) by Lemma 10,
so they are also Op(1). In conjunction with Lemma 8, we then have

Gy, {/ /2 (Fn,h,b,ao - Fo,h,b,ao) Mn, dFo} = Op ({nh}—l/Q) ,

as claimed. ]

We now turn to uniform control of R, 4 4.s.2 and Ry, 5 3 Over ag € Ag. Let F be a class of measurable functions
equipped with a measurable envelope F. We say that F is VC type with envelope F if there exists a constant V' > 0
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such that supy N (e[| Fllq.2, F. L2(Q)) S e~V when £ < 1 and the supremum is taken over all probability measures.

Lemma 11. If (A1) holds, then {a — (452 )I 7 K (95%) : ag € Ao} is VC type for each fized h > 0 and positive
integer j.

Proof of Lemma 11. By (A1), K is supported on [—1, 1] and is uniformly bounded. Hence,

(5) w55 () v (5)

which implies that the class in question is contained in the product of the two classes of functions

(i (t5) e o {(15) (5] 1) e

The first class is VC type by (A1) and the results of Giné and Guillou (2002). For the second class, we first rewrite

this class as
a—a
{¢Opj< N 0> 1006/10},

where where ¢ := u — ul(Ju| < 1) and p; := u + u/. Since ¢ is a bounded real function of bounded variation and
p; is a polynomial, Giné and Guillou (2002) implies that this class is also VC. Since the product of VC classes is also
VC, (e.g., Lemma 5.1 of van der Vaart and van der Laan, 2006), the result follows. O

a — Qg

a — ap

Corollary 5. For ag € Ag and h,b > 0, consider the following function:

Uh,b,ao : (y, a, ’U)) = h1/20;ol,h,b(a0)¢>;o,h,b,ao (ya a, w)
If (A1) holds, then the class of functions Hpp := {Nhb,ae : a0 € Ao} is VC type.

Proof of Corollary 5. For each ag € Ay, p,pq, is defined as

20 00) [Pt (00600 0:) =000 @) + [ Tonsae(@) {uww,w) - [ ta0) on<w>} dfb(a)] |

Any collection of constants {c,, : ap € Ao} is a VC class with VC index 1 because no set of size 2 can be shattered.
This implies that {oecn(a0) : a0 € Ao}, {Po (Wh.ap1 Kn.aobo) : a0 € Ao}, {Dg o 1lird] a0 € Ao} for each (i, ),
and { [ To.n.b,a0 (@) oo (@, @) dQo(w) dFy(a) : ag € Ao} are all VC type. We note that by permanence properties of
uniform covering numbers, sums and products of VC classes of functions are also VC type. It thus remains to show
that {To.n,b,00 (@) (¥, a,w) : ag € Ao}, {V0,n,b,a0(@) : ag € Ao} and {[ T np.a0 (@) 1eo (@, w) dFp(a) : ag € Ao} are
VC-type.

We recall that

Lo.hbao(@) = €1 DG h 00 1Whiag1 (@) Kn gy (@) = €3 o na 2(h/0)° Dy o0 5Wh.ag,2(a) Kpao(a)-

By Lemma 11, each entry of {wp q0,1(0)Kn,a(a) @ a0 € Ao} and {wp,e0.2(a)Kpa,(a) : ag € Ao} are VC type.
Combined with the discussion of sets of constants above, this implies that {T'g . p.4,(a) : ao € Ao} is VC type for
each h,b > 0. By Lemma 2.6.18 of van der Vaart and Wellner (1996), element-wise products of a fixed function and
a VC class of functions are also VC type. Hence, it follows that {Tg p p.a, ()0 (y, a, w) : ag € Ay} is also VC type.
Similarly, {T'0.h,p,00 (@) ftoo (@, W) : ag € Ag} is VC type. Lemma 5.2 of van der Vaart and van der Laan (2006) (with
r=s=1t=2) then implies that { [ T (@)oo (@, w) dFy(a) : ag € Ag} is also VC type.
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Finally, we recall that

Y0,h,b,a0 (@) = elTD(I}lLaonh,ao,l(a)Kh,au (a)wg,s,l(a)Dcz}lL,aogpo (Wh,aq,15n,a000)
— ca(h/0)*e3 Dy} o 2Whia0,2(@) Kb ag (a)w] 4 2(a)Dgy o0 5 Po (wh.aq,2Kp,aeb0)
+ (h/)*eI Dy}, 0o 1 [0h.a0,1(a) = Whae1(€)Wh,a0,1(@) Do h.ag1 Po(Wh,a0,1 Kn.ag)] Knay(a)

T -1
xe3Dgy o0 250 (Wb,a0,2K7b,a,00)

As in Lemma 11, each entry of {wp, q,,1(a)Kh a0 (a)wg’aml(a) tag € Ao}, {wpa0,2(a)Kp o (a)waaoz(a) tag € Ao},
and {Wn,aq,1(a) Kn.ao (@)W ., 1(a) : ag € Ao} are VC type. Thus by the permanence property of VC-type function
classes, we conclude that {Yo,5,p,q4, (@) : ap € Ag} is also VC type. O

Lemma 12. If (A1) and (A8) hold, then sup, ¢ 4, Dn,h,a0,1=D0,h,a0,1llcc andsUD, e a, [Pn,bia0,2—=D0.ba0,2lcc are
)

O,({nh/log h='}~1/2). Ifin addition nh/log h~' — oo, then SUPg, e A, ||D7:jz,a0,1*D0,h,ao,1||0<>7 SUPg, e A, ||D;}),a0,27

DO_,lla,ao,2HO<>7 and SUPgqeAy |Cn7h,ao72 - CO,h,a0,2| are OP({nh/ log hil}il/z)'

Proof of Lemma 12. For all 1 < j k <2, we can write
a— ap k=2 a— ap
sup. Do H = Do il =17 sup | [ (4590) ke (U5 (ara) - ar(a)
ap€Ag ap€Aop h’ h

=0 2T sup (G

fE€EFjtk—2.n

a—ag\'TF? a—a
‘Fj+k—2,h = {al—> ( h 0) K< h O) tap G.Ao}.

By (A1) and Lemma 11, F,1;_2 p is a uniformly bounded VC class. For all ag € Ay,

) e {5 ()
A w () ] e

= / huTHR=2) K (u)? fo (uh + ao) du

for

< bl follooC2(j+k—2)-

Additionally, we have that sup, c, | (%)ﬂk%K (5%) | < ||K|ls by (A1). Hence, Fjip—2 satisfies the
conditions of Theorem 2.1 of Giné and Guillou (2002) with ¢ proportional to h, which implies that that

sup |G, f| =0, ({hlog h_l}l/z) .
fEFj4k—2,n

Hence,

. ) log h~! 1/2
sup |Dun.hao,1d, k] — Do,hao1 14, k]| = Op ({ g }

ap€Ao nh

for each 1 < j,k < 2. We conclude that sup, c 4, Dn.n,a0,1 = Do,ha0,1l00 and SUp,, e 4, Dn,h,a0,2 — Do,hyao,2lc are
both O,({nh/logh=1}~1/2). The results for the inverse matrices follow along the lines of Lemma 8, where we use
the assumption that nh/logh™' — oo to conclude that sup, c 4, IDn.ha0,1 — Do,a0,1]loc = 0p(1).
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Finally, we can write

sup [Py, (Wh,a0,1Kn,a0)]

T —1 —1
€1 (Dn,h,ao,l - DO,h,ag,l)
ap€Ag

DG} 1| S (B = P) (1001 K]
aop 0

sup |Cn,h,a0,2 - CO,h,ao,QI < sup
ap€Ag ag€Ag

+ sup
ap€Ap

The first term is O, ({nh/logh=1}~1/2) by the result for sup,, ¢4, HDT_hlh’aO’1 - D(I,ll’ao’l |loo, and the second term is
O,({nh/logh='}~1/2) by a similar calculation to that above. O
As above, we define
a — Qo
h

and we let Ao be a fixed function in A. We also define the following semi-metric on A:

j—1
nh,ao,j,k(ya a, U)) = h1/2 < > Kh,ao (a‘) A(ya a, U/),

) 1/2
pas(de) = sup (B [{A(Y, A, W) = 0V, A, W) [ A=)
ap€EAs

where As := {a : Jag € Ao, |a — ag] < §}. For each r > 0, we then define A, := {A € A : pa, (N Ao) < 7}
and Hp jr = {Mh,aoir — Mhaojre © G0 € Ao, A € Ay} If A is equipped with an envelope function L, then
Hj, :=2h"'/2||K|| L is an envelope for Hy, ;. The next Lemma controls the uniform entropy of Hy, ;. in terms of
that of A.

Lemma 13. Suppose A has envelope function L with PL? < 0o and such that supg log N (]| L||g,2, A, L2(Q)) < Ce™V
for some C,V < oo. If (A1) also holds, then

suplog N(el Hilg:2: i L2(@) < C'™

for alle <1 and some C' < cc.

Proof of Lemma 13. For each h > 0 and j € {1,...,4}, we define

_ i—1 _
Khn,j :-{(a ha0> K(a ha0> IGOGAO},

which is uniformly bounded by ||K|/o.. We have that Hy ;. is then contained in the product of h='/2K; ; and
A — Ao, which has envelope 2L. Lemma 5.1 of van der Vaart and van der Laan (2006) implies that

SUPIOg N (&1 o s L2(Q)) < suplog N (/21K oo, k™K, £2(Q) ) +suplog N (el Lz, A, L2(@))

for any € > 0. By Lemma 11, K}, ; is VC type, which implies by Theorem 2.6.7 of van der Vaart and Wellner (1996)
that
suplog N (ch™ 2 [ ow, 572K 12(@)) = suplog N (€] K oe, Kin g, L2(Q)) < loge ™,
Q Q
which is bounded up to a constant by e~V O
<

Lemma 14. Suppose A is a class of functions uniformly bounded by L < oo and satisfying supg log N (g, A, L2(Q))
Ce™V for some C < o0 and V € (0,2) such that n [h/(log n)]% — 00. If r =1, >0 is a sequence satisfying

r=o (hﬁ{logn}_ﬁ)
and (A1) holds, then

Eol sup |G| = o({logn}~'/?)

CeHh,j,r
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for each j € {1,2,3,4}. Consequently, if the above conditions hold and A\, € A is a sequence of possibly random
functions satisfying

pas O Aoc) = 0 (777 {log )27 )

for some § > 0 and (A8) also holds, then

sup
ag€Ap

G, {hl/QFO,h,b,ao(An - Am)}‘ =0, ({1ogn}—1/2) .

Proof of Lemma 14. For each 1, q, ;. » such that b < §, we have

j-1 2
_ a—a a — q
Po(nh,a0,5x = Mhiaojre)” = h 1/{( W 0) K( . 0) (A—Aoo)(y,a,w)} dPy(y,a,w)

_ h*1/ (“ h“°>2(j1) {K <“ h“°> }2 Eo{(A=Aoo)? | A =a} fo(a)da

= /u2<i—1>K(u)2E0{(A —Xoo)? | A = ag + uh} fo(ag + uh) du
< K% sup Bof{(A = Ax)® | A = a}| folloo

ac€As
= HKHgopA(s()‘»)\oo)Q”fOHOO

Hence, for all ¢ € Hyj, with h < 6, we have Py¢? < 72||K|%||follo- Since A is uniformly bounded by L,
Hp, j.r is uniformly bounded by Hy ;, = 2h"'/2L||K ||, and hence POHEJ-’T = 4h~'L?||K||%,. Therefore, Py(? <
C2hr2P0H,2l7j,r for all ¢ € Hp,j» with h < 6, where C' = ||f0||¥2/(2L) does not depend on h or r. Theorem 2.1 of
van der Vaart and Wellner (2011) (applied to F = Hp, j r/Hp j,r, which is uniformly bounded by 1) then implies that
for all n large enough,

EO sup |Gnd

CEHn,j,r

J(CrhY2 Hp, j vy Lo)
C2hr2nl/2 ’

<ShTY2J(Crh 2 Hi vy Lo) {1 +

where

T (@, Hjr, L2) = Sgp/ V118N (| Hirllga Hir L2(Q) de 5/ e VP de StV
0 0

for all z € (0, 1] by Lemma 13. Therefore,

2—-V 2-V
1/2 1/27-1/2 2-V 2-V r-z h 4
{logn}"?Ey CES}ILlELJGnd S {logn}'/2h 2 e h {1+ hr2nl/2
1 1% % 1 1 1+V -V
= {r[logn}ﬁ h—m} +{r[logn]’W nzvh2v }
—{rs} T+ {1}V,
where s := [log n]ﬁ h™2@ ) and t = [log n]_% nzv h'2v . We note that

t)s = {n[h/(logn)]%}ﬁ o

by assumption. We now define 7 := max{r, [st]"/2}. Since r < 7, we then have

sup  |G,¢l < sup  |G(]
CEHn,j,r CEHn j,7
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almost surely by the increasing nature of the sets Hy, ;. Using the above bound applied to 7, we also have

{logn}l/on[ sup  [GuCl| S (s} T + ()Y,
Ce

h,j, 7

By assumption, rs = o(1), and [st]~'/2s = [s/t]'/2, which tends to zero since t/s — 0o as noted above. Therefore,
2—-V

s = o(1). In addition, 7t > [st]"1/2t = [t/s]'/2 — co. Hence, {Fs} 2 + {Ft}"" = o(1). Putting it together, we

have

< {logn}'/*Ey S{rs) 7+ {7V = o),

{logn}/2E, Csup |G|

h.j,r

sup |G (|
¢

h,j, 7

which proves the first claim.
For the second claim, as in the proof of Lemma 9, we can write

2 3
W20 hbaoA = Y Choao iMhaoir + O Chbiag.i Mo i
j=1 j=1
for some constants Cp q,,; and Cj q,,; such that sup, c 4, [Ch,ao,j| = O(1) and sup, e 4, [C 4 4,51 = O(1) by the
uniform statements of Lemma 4. Thus,
2 3
sup |Gy, {hl/QFO,h,lLao (An — )‘00>}‘ < Z sup |Ch,aoyj| sup |Gn77h7ao7j,>\n + Z sSup ’C}/l,b,ao,j| sup ‘Gnnb,ao,jv\n
ap€Ao —1 a0€Ao ap€Ao j=1a0€Ao ap€Ap
2 3
=0(1)) sup [GCninaejn.| +O1) Y sup [Gutagjn, -
=1 ag€Ap j=1 ap€Ap

Hence, if we can show that sup, c 4, |Gnlh,a0,.0, | = 0p ({log n}~1/2) for each j, then the claim follows.
For any v,y > 0, we have

Py ( sup |Gntn,ao,5.0, | > v/{log n}1/2> <P ( sup |Gnn,a.5.0. | > v/{log n}l/gvas (Ans As) < 'V/S>
ap€Ao apE€Ao
+ P (pAa (/\nv /\oo) > 7/3) :
Now, pas(An;Aso) < v/s implies that 9y ag,j,x, € Hp,j~/s» 50 by Markov’s inequality,

Py ( SUp | Gthag,jrn | > v/{logn}' /2, pag 5s(Ans Asc) < 7/8) <P ( sup |G| > V/{logn}1/2>
ap€EAg Ceﬂhvjy'v/a

< v~ {logn}"/2E,

CGHh,,j,'y/s

Applying the same the same technique as used above, we then have

2—-V

{logn}'/?E, sup  |Gu(¢|| S [max{'y/s(st)_lﬂ}s} oy {max{*y/s, (st)_l/z}t} -

CEHn jv/s

2-V
2

= [t (s//2)] 7+ [maxtateys). /2]
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Therefore, for any v,y > 0, we have

2—-V
2

P ( sup Gnnnao.sna | > u/{logn}l/z) <v! [maX{v, (s/t)l/Q}} 4t [Hlax{’y(t/s), (t/5)1/2) -V
+ P (pAs()\na )‘oo) > ’Y/S)

Since s/t — 0, pa;(Ans Aoo) = 0p(s71), and v was arbitrary, for any fixed v > 0, we can choose 7 to make the above
expression as small as we like for all n large enough. This implies that

Py ( sup |Gnfh,ag,jan| > V/{logn}1/2> —0

apg€Ap

for any v > 0, so that sup,,c 4, |Gnln,a0.,0 | = 0p ({logn}~1/2) for each j € {1,2,...}, which completes the proof.
O

Next, we define

j—1
a — Qq
Th,ao,j (Y @, W) = /nh,ao,j,x(yﬂ,w) dFy(a) = /h1/2 <ho> Kha0(a)N(y, a, w) dFy(a).

The next lemma provides a rate of convergence for sup,cs xea |Gniin,s,j,x |, which is sufficient to obtain a rate of conver-
gence of sup, ¢ 4, [Bn,hb,s,2| and sup, ¢ 4, [BRn,h,b,5,3]. We note that we could obtain an even faster rate of convergence
for supses xena 1Gn {7h.s.5.0 = Th,s.j. ) }| using similar techniques to those above for sup,c s yea (Gn {hs. 5.0 = Mh,s.jro -
However, the integration over a in 7y ;. is sufficient to obtain a rate of convergence without localizing around A\,
which provides a sufficient rate for our purposes.

Lemma 15. Suppose A is a class of functions uniformly bounded by L < oo and satisfying supg log N (g, A, L2(Q)) <
Ce™V for some C < oo andV € (0,2). If (A1) holds, then sup,, c 4, xea |Gnilh,ao.jx| = Op (hlav + {nhl‘mv}_l/2
for every j € {1,2,...}. Consequently, if (A8) holds as well, then

Gy, {/hl/ZF(,,h’b,ao/\dFOH -0, (hl’zv + {nh1+2V}—1/2) .

sup
aoGAo,)\GA

Proof of Lemma 15. We consider the class of functions 7:[;1,]- = {Th,a0,j,x : @0 € Ao, A € A}. We equip this class
with the envelope function Hy, = h™'/?L||K | s. We also define Hh,j = {Mh,a0,,1 : @0 € Ao, A € A}, and we note that
Hy, is also an envelope for H;, ;. Hence, by Lemma 5.2 of van der Vaart and van der Laan (2006) with s =¢ =r =2
and Lemma 13, we have

sgplogN (eHp, Hn,j, L2(Q)) < sgplogN(sHh/2,/Hh,j7L2(Q)) <e V.

Therefore,

J(x, Hp j, La) := sup/ \/1 +log N (eHp, Hnj, L2(Q)) de S a'=V/2
Q Jo

for all z € (0,1]. We also have

j—1 2
_ a — aqy
Poil} gy jx < h71L? {/ K( - 0) dFo(a)}

2
= hL? {/|u|j1K(u) fo(ag + uh) du}
< hL?|| foll 21K 1|5

a — Qg

for every ag € Ag and A € A. Hence, Poﬁ}%’ao’j’/\ < |\ follZh?>PoH} for every in.a0.jx € Hn,j. By Theorem 2.1 of
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van der Vaart and Wellner (2011), we then have

Ey | sup |Gy(]

CEHn,;

_ J oohvt}:l '7L
5 h_1/2J(Hf0||ooh7Hh’j,L2) {1 + (Hf()” h,j 2) }

2| fol 212

Sh {ranmepm Y
e N S

The second claim follows as in the proof of Lemma 14.

A O

Lemma 16. Suppose A is a class of functions uniformly bounded by L < oo such that supg log N (g, A, L2(Q))
Ce™V for some C < 0o and V € (0,2). If (A1) holds, then for each j € {1,2,...}, sup, e 4, xen Cn [Mh.a0,5,7]
O, (h=1/?).

Proof of Lemma 16. Since L is an envelope for A, h™'/2||K||» L is an envelope for {np a1 : a0 € Ao, A € A}

by (A1l). By Lemma 13, the uniform entropy integral of this class is finite. Hence, by Theorem 2.14.1 of van der
Vaart and Wellner (1996), we have

Ey

sup  Gn 740,51
ap€Ag,\EA

and the result follows. O

Corollary 6. If (A1)-(A3), (A6), (A7)(d), and (A8) hold and nh? —; 0 for somep > 0, then sup,,c 4, |Rn b b,a0,2| =
Op ({nh logn}*lﬂ) and Sup, e, | R hb,a0,3| = 0p ({nhlog n}*l/z),

Proof of Corollary 6. As in the proof of Corollary 4, we can write

sup | {nh} /2 R ppan 2| < 0 |Go {02T0 0000 (0 = ) }| (12)
ap€EAg ap€Ap
+ sup (G, {hl/szh,b,ao (/ fin dQo —/uoo on)H
ap€ Ao
+ sup |G, {/hl/zro,h,b,aoun dFo}’ + sup |G, {/hl/QFO,hJLaoUoo dFoH- (13)
ap€Ao ap€Aog

For the first term, we use Lemma 14 with A := {0 — [y — p(a,w)]/g(a,w) : p € Fu,g9 € F4}. By (A3) and (AS8),
A is uniformly bounded by some L < oco. By (A3) and permanence properties of uniform entropy integrals,
supg log N(g,A, Ly(Q)) < Ce™V for V. = max{V,,V,} € (0,2), and by (A6), n[h/(logn)]% — oo. Using a
similar argument to that used in the proof of Corollary 4 and using the assumption that |Y]| is bounded almost
surely, we can show that

pA53 (’@[Jnvl/]oo) 5 d(gnvgoo§~'4537v4 X W) + d(,unnu/oo;AﬁgvA X W)

Hence, by (AT)(d), pa,, (¥n, o) = 0p (h2<2‘i"> {log n}fﬁ) Thus, the conditions of Lemma 14 hold, and it follows

that SUPg,e4, |G"{h1/21—\07h,b,a0 (wn - 112100)}‘ = OP({log n}71/2).
For the second term in equation (13), we also use Lemma 14 with A = {a — [ p(a,w) dQo(w) : p € F,, }. This
class is uniformly bounded since F,, is uniformly bounded by (A3). By (A3) and Lemma 5.2 of van der Vaart and

van der Laan (2006), supglog N (e, A, L2(Q)) S eV < eV, and by (A6) n[h/(logn)]% — 00. By Jensen’s
inequality and (A7)(d),

P s, ( / fin dQo, / oo dczo> < (jtns oo Asyy A X W) = 0, (BT 77 {logn} =7 ).
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The conditions of Lemma 14 are satisfied, and it follows that

Gn {h1/21—‘0,h,b,ao (/ o dQo — /Moo dQO) H = 0Op ({logn}_1/2) .

For the third and fourth terms in equation (13), we use Lemma 15 with A = F,,. The conditions of the lemma are

satisfied by (A3), so that
Gn {/h1/2ro,h,b,aoNdFO}

By (A6), nh® — oo, which implies that nh'*2Ve /logn — oo since V,, € (0,1). By assumption, nh? —s 0 for

sup
apg€Ap

{logn}'/?  sup =0, ({log n}1/2h# + {nh1+2v“/logn}71/2> .

agEAo,uEF,

some p > 0, and since V}, € (0, 1), this implies that {log 71}1/211172‘/H = o(1) as well. Hence,

G, {/hl/Qro,hMOu dFOH =0, ({1ogn}*1/2) .

sup
apg€Ag,nEF,

We have now shown that every term of equation (13) is o) ({log n}*l/z)7 so we conclude that sup, c .4, [Rn,hba0,2| =

Op ({nh log n}_l/Q).

We can similarly decompose Ry, p 40,3 25

sup (nh)l/QRmh,b,ao,Z% S sup Gn {h1/2 (Fn,h7b,a0 - 1_‘O,h,b,ao) wn}‘
ag€Ao ap€Ao
+ sup Gn {h1/2 (Fn,h,b,ao - 1—‘O,h,b,ao) /Mn dQO}
ag€Ag
+ sup |G, {/h1/2 (Tr,hbiao — Lo,hbiac) fin dFoH : (14)
ag€Ag

For the first term in equation (14), we note that

sup

T (-1 -1 1/2
€1 (Dn,h,ao,l - DO,h,a0,1> G" {h whﬂaOlehvaO/d)n}
ag€Ao

Gn {h1/2 (Fn,h,b,a(, - FO,h,b,ao) Z/Jn} = Ssup
ap€Ag

— C0h,a0,2(h/b)%€5 (D;}),ao,z - D&zl,,ao,z) Gn {hl/wa,ao,sz,ao%}

_(Cn,h,ao,Z - CO,h,a0,2)(h/b)2egD;}) a QGn h1/2wb,ao,2Kb,a0wn
»0,40,

-1 -1 1/2 T
S sup | Dihans = Pohaoa|| 510 |G {n 20000117 Kt ||
ap€Ao 0 apEAg
-1 —1 1/2 T
+ sup Dn,b,ao,Q_Do,b,ao,Q sup |G, {h Wh,q0,21 Kb,aol/Jn}‘
ap€Ag 0 ap€Ag

1/2 T
+ Sup [Cnh,a0,2 = Coha02| SUP |Gy, {h / Wh,a0,21 Kb,aown}"

apE€Ag ap€Ao

-1 -1
D - DO,h,ao,lH )
o0

n,h,ap,1

By (A6), nh® — oo, which implies that nh/logh~' — co. Hence, by Lemma 12, SUDg, e A,
, and SUP,, 4, [Cnhia0,2 — Conac2| are all Op({nh/log h=1}~1/2). In addition, by

G, {hl/%,{mlf(h,aown} G, {h1/2w£a0721Kb,a0wn}

—1 —1
SUPg,eAy Dn,b,ao,Q - DO,b,ao,QHOO

are both

Lemma 16, we have that sup, ¢4,
O,(h~'/?). We then have

and SUDg,eAq

{logn}'/? sup
ap€Ag

nh2 —-1/2
2 -T ‘ = - _
Gn {h ( n,h,b,ag O,h,b,ao) '(/)n} OP <{ log h—1 log n } )

77



. 2
Since nh3 — oo and nh? — 0 for some p > 0, m

addressed in the same way using Lemma 5.2 of van der Vaart and van der Laan (2006).
We can similarly bound the third term in equation (14) up to a constant by

—1 —1 1/2, T
Sup Dn,h,aml - DO,h,ao,lH sup |Gy, {/h / whﬂmllKhvaU'u’" dFO}’
ag€Ap 0 ageAg
—1 —1 1/2, T
+ sup Dn,b,ao,2 — DO,b,ao,2H sup |G, {/h / Wh a0,21 Kb ag fin dFo}‘
ag€Ap @ ageAg

+ SUpP [Cnha0,2 — Cohac2| SUp |Gn {/hl/ngjao,leb,aoﬂn dFoH

apEAp apE€Ap

By Lemmas 12 and 15, we then have

{logn}'/? sup
ap€Ag

nh -1/2 —1/2
_ (1-V,)/2 142V,
O ({logh—llogn} {h + (nh ) }

—0 nhVe e N nhttVu -
7 log h=1logn (logh—llogn)l/2

By (A6), both terms are o(1).

Gn {/ h1/2 (Fn,h,b,ao - 1—‘O,h,b,ao) 1229 dFO}‘
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Supplement I Analysis of remainder term R, ;4,4
Lemma 17. If (A1)-(A4) hold, then Ry ppaga = 0p({nh}~2). If (A1)-(A3), (A7), and (A8) hold, then
SUP,, e Ay [ Bonshobiao,a| = 0p ({nhlogn}=1/2).

Proof of Lemma 17. We note that I', ;5 4, (a) = 0 for all a such that |a — ag| > max{h, b} by (A1). Hence, for
max{h,b} < 01, I'yy hp.ao(a) =0 for a ¢ Bs, (ap). Therefore, using (A4), for all max{h,b} < 1, we can write

= a a,w) — a,w 7M a w
|Rn,h,b,ao,4|‘ S o Tt o) pofa ) {1~ 205 L aFofa) dnto

i//s Lo b0 (@) {1n (@, w) = po(a, w)} {1 - 90(“’“’;} dFy(a) dQo(w)

gnla,w

(a, w)

< 2_: S 1@ o) = )] 1 = 222 a7 a) o).
Now we note that for any uniformly bounded function A : A x W — R and S C A x W, we have
J [ 05 @)Ky (@A 0)] dFoe) d Qo)
-/ 11 (o) K 0) [ Tstan + wh,w) Nao + b, )] d@o(w)fo(ao + ub) du

< sup /Ig(a,w) [A(a,w)| dQo(w).

la—ao|<h

Hence, for all n large enough, we have

// o0 ) = o, ) jl - MI 0Fo(a) dQo(w)
1— go(a, W) ’}

S (ol omba ], s, s )t = ety = 2055

la—ao|<d1

< Op(1)d (pn, po; Bs, (a0), Sj) d (gns go; Bs, (ao), Sj) ,

where for the last inequality we used Lemma 8, the Cauchy-Schwartz inequality, and the uniform boundedness of
1/gn guaranteed by (A3). We now use (A4) to see that

d (pin, p1o; Bs, (ao), S1)
d(gnago; 351 (GO)aSQ)

d (pn, pro; Bs, (a0), S3) d (gn, go; Bs, (ao), S3)

op ({nh}™2),
Op ({nh}*1/2> , and
op ({nh}71/2> .

Thus, R h.bae4 = Op ({nh}_1/2).
For the uniform statement, we note that Iy, , p.q,(a) = 0 for all ag € Ay, a ¢ A.,, and max{h,b} < e3. Hence,
for max{h,b} < e3, we can write

a,w
s (Rl = 500 | [] i@ o) = pafacw} {1 = 2092 aria) aufu)
ap€Ap ap€Ag Az xW gn(av w)
3
go(a, w)
< sup // Lyhobao (@) | pin (@, w) — po(a, w ll‘dFadQ w).
> s [ oo @l intor) = a1 SZC5 | i) e
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Using the derivations above, we then have

a,w
oy |rn,h,b,ao<a>||un<a,w>—m(mw»\l—90( )]dF()(a)on(w)
ap€Ag SJ’. gn(a7w)
_ _ W)
S Db+ [ Dok Bo {15y, W) lin(a,0) = o )] |1 — 4270
S s [0+ [Prhae] ] 50 o {2y (@9 lenterw) = a1 - P

rS Op(l)d (,UJnvlu’O;AE:;?SJI') d (gn7907-’46378_;) )

where the last inequality uses Lemma 12 and the uniform boundedness of 1/g,, guaranteed by (A3). We now use
the faster rates guaranteed by (AT) to see that

A{jin, 10; Ay S1) = 0, ({nhlogn}~2)
A(gns go: Aey: S5) = 0, ({nhlogn}™/?)  and

A(jt 105 Ay $5)d (90, 05 sy S3) = 0y ({nhlogmy™1/2).

Op

Thus, Sup,, e, [Bnhbaoa] = 0p ({nhlogn}=1/2). O
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Supplement J Analysis of remainder term R, ;4,5

Lemma 18. Suppose X1, Xs, ... is a sequence of IID random variables on sample space X with marginal distribution
Py. Let P, be the empirical distribution corresponding to (X1,...,X,), and F be a collection of measurable functions
from X x X to R with envelope function F. Then

1
sup ‘/ fx1,22) d(Py — Po)(21) d(Py — Po)(z2)| Sn™" HFHPoxPU,Q/O [1 + logSgPN(ffHFHQ,m]:, L2(Q))} de

fer

1 1/2
—|—71_3/2||f*_’||poxpo72/0 {1+logs1épN(aF||Q,2/2,}",L2(Q))] de.

Proof of Lemma 18. For each f € F, define the symmetrized, centered version of f as
(w1, 22) i= f(w1,22) + f(22,21) —/[f(u,x1)+f(u,xz) + f(@1,u) + f22,u)] dPy(u) +2/ f(u,v) dPy(u) dPo(v).

We note that f° is symmetric in its arguments, meaning f°(z1,z2) = f°(z2,21) for all 1,22 € X, and [ f(z1,u) dPy(u) =
0 for all z; € X. We let F° := {f°: f € F}, and we note that an envelope function for F° is F*° for

F°(x1,29) := F(x1,22) + F(22,21) + / [F(u,z1) + F(u,z2) + F(x1,u) + F(x2,u)] dPy(u) + 2 //F(u,v) dPy(u) dPy(v).

By adding and subtracting terms, we can write

//fxl,xg AP, — Po)aa) d(Bo — Po)(w2) = 55 LS X)) //fxl,xg dPy(21) d(Fp — Py)(2)

1,j=1
i#£j

- %/ f(x1,22) d(Pp — Po)(21) dPo(2)

_ %/ f(z1,z2) dPy(z1) dPy(z2)

By Lemma 3 of Westling et al. (2020), we have

1 ! . .
B | 5oz sup §jf X[ S 21 e [ [1+logsupN<s||F |Q,2,f,L2<Q>>} .
e n 0 Q
i#£]

By the triangle inequality and Jensen’s inequality, |[F°||p, « p, o < 8[| F[|p, « p, - We also note that by definition of
f°, F° is contained in the sum of F and the following classes:

Fri={(z1,22) = f(xa,21) : f € F}, Fi = {331 — —/f(xl,u)dPo(u) :f e f},
Fio = {xl — —/f(u,xl)dPo(u) cfe ]—'}, For = {xg — —/f(xg,u)dPo(u) fe ]—'},
Fop 1= {z2 - f/f(u,xg)dPo(u) fe ]—'}, and F,, := {2/ f(u,v)dPy(u) dPy(v) : f € f}.

By Lemma 5.1 of van der Vaart and van der Laan (2006), logsupg N (¢||F°||q,2, F°, L2(Q)) is bounded by the sum
of the uniform entropies of each of the above classes. The uniform entropy of F, is the same as that of F because
for any measure Q on X x X,

/[f1(x1,x2) — fa(@1,22)]? dQ (1, 2) = /[f1(x2,x1) — fa(@a, 21)]? dQr (21, 22),
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where Q,. is defined as dQ,.(z1,x2) := dQ(z2,1). We equip Fi; with the envelope function
B 1/2
Fuuian o U Fla1,u)? dPy(u)

We note that || Fi1]|p, 2 = | F||p,xp,.2- By Lemma 5.2 of van der Vaart and van der Laan (2006) (with r = s =t = 2),
we have

SgPN(€||F11\ 0.2, F11, L2(Q)) < SIéPN(€||F||Q,2/2,]:,L2(Q))-

Identical results hold for Fio, Foi1, and Fhy. For F,, equipped with envelope | F|| 2, x py,2, Wwe have
SgpN(€||F||P0XP072"FTTL7L2(Q)) < SgpN<EHFI|P0><P0,2?]:’ Ls(Q))

since

< ||f1 - f2||P0><P0,2

H/ﬁ d(Py x Py) — /fg d(Py x Py)

‘/fl d(Py x Py) — /f2 d(Py x Py)

Q.2
for any probability measure ). Therefore, we have

1

1
Py |1+ 1050 NElF 02,7, 12(@))| & £ [Py [ |1+ 1omsup NElFlloa 7. £2(Q)|
0 0

Next, we have

Eq |supn~* //f($1,$2)dpo(171)d(Pn — Py)(22) ] =n""2Ey | sup |G, f||.
feFr fEFa
By Theorem 2.14.1 of van der Vaart and Wellner (1996),
- B 1 B B 1/2
Eq | sup |Gnf|| S ||F22Hp0,2/ [1 + logsup N (5|F22||Q,27f227L2(Q))] de.
fEF22 0 Q

Hence,

1/2

] 1
J[ 1 anen) a@, - Ra)| | S0l [ {1+logsgpN(€||F||Q,2/277:,L2(Q))} de.

Ey |supn~t
_fe}‘

By an identical argument, we also have

] 1 1/2
Ey |sup [ srzz)ate, - @) dPoea)| | S0 Fllrsne | [1 +logsup N (& Flga/2. 7. Lﬂ@))} de.
€ 0
Finally,
?ugn_l // f(z1,22) dPy(z1) dPy(z2)| < n_1||F||p0Xp072.
c
Putting together the pieces yields the result. O

Lemma 19. If (A1)-(A3), and (A5) hold, then Ry, hp.ao5= Op({nh*/?}~1). If (A1), (A3), and (A8) hold and
nh/logh™" — oo, then sup,,c 4, |Rn,hbao,5| = Op({nh}1).
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Proof of Lemma 19. For the pointwise statement, we write
Ronns = [ [ Tt @ne,) dQu — Qo)) d(F, — Fo)a)
=D} [ 00 @)K @) (0,0 (@, = Qo)) d(F, ~ Fo)(a)

> e S / / W 2(@) K ag (@)pin(a,0) d(Qn — Qo)(w) d(Fa — Fo)(a).

By Lemmas 4 and 8§,
such that

D! H and HDf1 H are both O,(1). Hence, there exist constants C,, ; = O,(1)

n,h,ap,1 n,h,ag,2

/ / (@ — a0) /B g (@) (0 0) d(Qn — Qo) (w) d(Fy — Fo)(a)

| R hb,a0,5

4
<> Cny
j=0

For each j, we then write

[ 60 )1 K 010 (@ = Qo)) P~ Fu)0)

= ‘// fn,h,ao,j(alawlaa%wQ) d(]P)n - Po)(ahwl)d(]?n - Po)(GQ,wz)

< s | [[ fnwnanw) d®, - P o wn) d(B, - P)(ea. ).
fE€EFn,aq,j
where
fn,h,ao,j(ahwlva%wZ) = [(al - ao)/h]th,ag(al)Nn(ahw2) and

Fhao,j = { (a1, w1, a2, ws) = [(a1 — ag)/h} Kp ao (a1)p(ar, wa) : pp € Fu} .

By (A1) and (A3), an envelope function F}, o, for F 4,5 is given by a constant times Kp, o, (a1), and || Fp a0 [l (pyx )2 S
h~1/2 by the standard change of variables. In addition, by (A3),

SgPIOgN (el Fha0 |l (Pox Po) 25 Fhao,i» L2(Q)) S e Ve,

where V,, € (0,1). Hence, by Lemma 18,

Ey sup

fE€Fh,ag.i

// flar,wy,az, we) d(P,, — Po)(ar,wr) d(P, — Py)(az, ws2)

] S n_lh_1/2

for each j, and the pointwise result follows.

—1
Dn,h,ao,l Hoo and SUPg,eAq

For the uniform result, by Lemmas 4 and 12, sup, ¢ 4, Dr_ﬁl 0.2 H are both O,(1).

Hence, there exist constants C;, ; = O,(1) such that

sup R h.b,ao,5
ap€Ag

/ / (@ — a0) /B Ky (@) (0 0) d(Qnr — Qo) (w) d(Fy — Fo)(a)

2
< C! . sup
; e ap€Ao
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As above, for each j we then write

sup | [[1(a = ao) /Ky (@an(0,1) dQu — Qo)) d(F, ~ Fo)(a)
ap€Ag
= sup / Jnhao,j (@1, w1, az, we) d(Py, — Po)(a1,wr) d(Pp, — Py)(az, wa)
ap€Ap
< sup //f(ahwhaz,wz) d(P, — Py)(a1,wr) d(P,, — Po)(az,ws)|,
fEFn,;

where

Fnj = {(al,wl,ag,wz) > [(a1 — ao)/h) Knay(a1)p(ar, we) : € Fuyag € Ao}.

By (A1) and (A3), Fj; is uniformly bounded up to a constant by A~!, and by Lemma 13 and (A3), Fj ; has
uniform entropy bounded up to a constant by e~ "» relative to this envelope. Thus, by Lemma 18,

Ey fsup // flar,wy,az,ws) d(P, — Py)(ar,w1) d(P, — Py)(ag, ws) ] < (nh)~!
EFh,j
for each j, and the result follows. O
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Supplement K Analysis of remainder term R, 4,6

Lemma 20. If (A1), (A2), and (A5) hold, then |Rp php.agcl = Op({nh}~1). If (A1), (A2), and (A8) hold and
nh/logh~! — oo, then SUP e Ao | Bnhbiao,6] = Op({nh/ log h=1}—1h).

Proof of Lemma 20. We note that by (A1) and (A5), | Py (Wh,a0,1Kh.a080)]s | Po (Wh,a0,2Kb,0000) |, and | Py (Wh,a0,2K a0 )|
are O(1), and by OhaolH and HDOba 2

‘ are also O(1). Hence,

Bl S D001 = Do 1o [ Dr ot = Ditht]|

+HD0bao,2_Dnbao,2| ‘DnbaOQ Dozl;ao 2H
+|P2 0t = Dbt | 10 = o) (001 K)o
+ HDZIh w01 = Dohaont H 1Do,n,a0,1 = Dinyhiao, il
+ |en,h,a0,2 = €0,ha0,2] HDn byao,2 D(Izl;,ao,zHoo

By Lemma 8, each of the differences is O,({nh}~1/2). Thus, Ry np.ae6 = Op({nh}~1). For the uniform statement,
by (A]') a‘nd (AS)? SupaoEAo |P0 (wh,ao,lKh,a090)|, Supa()G.Ao |P0 (wb7a072Kb7a000)|’ and SupaoEAo |P0 (wh,ao,QKh,a()”
are all O(1). By Lemma 4 and (A8), sup, ¢4,

12, the differences are all O, ({nh/logh=}~/2) uniformly over ag € Ay. We thus conclude SUDP e A, [Ronhibia0,6
O,({nh/logh='}71).

are also O(1). By Lemma

—1 . -1
DO,h,ag,l and bupaoE.Ao DO,b,a0,2
9] S
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Supplement L. Analysis of the covariance estimator
Lemma 21. If (A1)-(A5) hold for ap = u and ag = v, then

hPy, (d)n ,h,b, 1L¢n,h,b,v) hPO((boo h,b 1L¢oo,h,,b,v) = Op(l)'
If (A1)-(A8) and (A6)-(A8) hold and nh® = O(1), then

Slé& {hP P b Prhbw) — hPO(¢Zo,h,b,u¢Zo,h,b,v)| = Op(n7?)
u,v 0

for some p > 0.

Proof of Lemma 21. Analysis of this expression uses many of the techniques developed throughout this document.
Hence, for brevity, we omit some of the details in this proof.
For convenience, we define

Ma(0) 1= [ L) lnla,0) = [ 102 4Qu) dF (o). and
M) = [ Tonsa(a) poe(a,0) = f i dQu) dFo(a).
Up to terms with u and v swapped, we then expand hlP, (@}, , , w5 1 p.0) = BPO (D50 1 b uPhonb) 3

n~%G, (AT pulnhb0€s) + nY2Gy, (Wnhputnhbw) — 172Gy (WCo b Ynhbwbn)
+ Py [h (Trnpuw — Lonbu) Tnhboén — Ynohbo) Enl + Po [AL0.kb,u {T0,h,6,0 (§n + o) — Yo,m,0,0 )} {60 — Exc}

—Po[ (To,n,b,uén — Y0,h,0,u) (Y, kb — Y0,h,b,0)]
n (hnn,h,b wTln,h,b 11) + ]P (th,h,b,unn h,b vfn) - (h')/n,h,b,unn,h,b,v)
- Po (h10,h,b,uM0,h,6,0) — Po (hT0,1,b,uM0,h,b,0E00) + Po (MY0,h,6,u70,h,b,0) - (15)

For the first term in (15), by expanding I'y, ;. p,uLn, 56,0 and Lemmas 4 and 8, Gy, (hL'y j,p,uLn,n,6,062) can be decom-
posed into O, (1) times terms of the form

Gn (hwh,u,jwh,v,kKh,uKb,vfi) .
By the bounded fourth moment of Y and condition (A3), the class
{hwh,u,jwh,v,kKh,uKb,vgfL By S fuagn € fg}

has finite uniform entropy integral and an envelope that is a square-integrable function times h~'. Hence, by Theo-
rem 2.14.1 of van der Vaart and Wellner (1996), G, (hL'y,pb,ul'n nb,0E2) = Op(h™!). Similarly, by conditions (A1)
and (A3), the class

{hwpuj w0k KK o€l ¢ pn € Fuuygn € Fgou € Ao, v € Ao}

possesses finite uniform entropy integral and under (A8), an envelope that is bounded up to a constant by h~!.
Therefore, by Lemmas 4 and 12, sup,, ,c 4, |Gn (th7h,b7an7h7b7U§%) | = Op(h™') as well. Using an analogous ar-
gument, we can show that G, (hyn h.puVn,hbo) a0d Gy (AL hbwYh kb wén), Which are the second and third terms
n (15) are O,(h~') both pointwise and uniformly.

The fourth term in (15) can be written as a constant times a sum of terms of the form

h (Dnz u,j DO }11 U ]) PO [wh,u,kKh,u (Fn,h7b,v§n - ’Yn,h,b,v) gn] .
By Lemma 8, ||Dnhu] Ohu]HOO = O,({nh}~'/2?). Using a change of variables, we can also show that

lwh,u ke K nubnllLa(py) = Op(h™Y2) and [Ty pp,0€n — YnhbollLa(ro) = Op(h~1/2). Hence, under the pointwise con-
ditions this term is Op({nh}*l/ 2) = 0,(1). Under the uniform results, the same rates hold except that Lemma 12
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includes an extra log h~! term. Hence, under the uniform conditions, this term is O,({nh/logh='}=1/2) = O,(h)
uniformly over u,v € Ap. A similar analysis applies to the sixth term in (15).

For the fifth term in (15), we can show that ||Tonbu(§n — &oo)llza(py) = op(h_1/2) and ||To b0 (§n + &) —
Yo,hbwllLa(py) = Op(h™1/2), so the pointwise result follows by the Cauchy-Schwarz inequality. For the uniform
result, by (A6)(e),

7‘/ — ——
Sup IT0,1,6,u(En — o)l La(ry) = Op <h71/2h2‘2*” {logn} 2‘1V> ;
u€Ao

A% P S, .
so we obtain a uniform rate of o, (h 22-) {log n}_2—1V) for this term.

For the seventh term in (15), by the boundedness of u, we have for any u, v

|Pn (hnn,h,b,unn,h,b,v)‘ 5 h/ ‘Fn,h,b,u| an / ‘Fn,h,b,v| an

As in the proof of Lemmas 8 and 12, we can show that each of these terms is O,(1) pointwise and uniformly under
the appropriate conditions. The same holds when P, is replaced with Py above. Similarly, for the eighth term in (15),
we have

|]P)n (hrn,h,b,unn,h,b,vgn” 5 h]P)n |Fn,h,b,u§n‘ / |Fn,h,b,v| an

We can show that both terms are O, (1) pointwise and uniformly. The remainder of the terms in (15) can be handled
using a similar argument.
We have now shown that

hPy [(D5 hb — Poonbn) Pribw) = 0p(1)

under the pointwise conditions, and

sup 1 |Po (D5 b — Poonbu) Prnsnl| =0p (n77)
u,vEAg

for some p > 0 since nh® = O(1).
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Supplement M Lemmas supporting uniform result

We now present a series of supporting lemmas towards the construction of uniform bands for 6y(ay).

Lemma 22. Let 02, 5, ,(a0) := hPo(0% jp.a,)’ If (A1)-(A2), (AT)(a), and (A8) hold, then there exist constants
¢,C € (0,00) such that ¢ < Uw7h,b(a0) < C for all ag € Ag and all h small enough.

Proof of Lemma 22. We note that (A8) implies that (A5) holds for all ag € Ap, and (A7)(a) implies that (A4)(a)
holds for all ag € Ag. Therefore, the conditions of Lemma 5 are met for every ag € Ag, so azo, hyb(ao) converges to
Vi +02(ao)/ folao) for each ag € Ag. Since Aj is compact, this convergence is also uniform in ag. By Lemma 5,
Vir € (0,00), so by (A8), there exist ¢, C' € (0,00) such that ¢ < Vi 08 (ao)/folag) < C for all ag € Ag. Hence,
for all h small enough, ¢ < o2 (ap) < C for all ag € Ap. O

0o, h,b

Lemma 23. If (A1), (A7)(a), and (A8) hold, then sup, ¢ 4, Polhd} |*¥ < h for all h small enough.

oo,h,b,ag

Proof of Lemma 23. First by the triangle inequality, we have that

. 1k 1/k 1/k
sup [Polhé% ppa )" < sup [Po\hFo,h,,baofoolk} + sup [Polfwo,h,b,ao\k}
ap€Ag apE€Ap ap€Ag
w1 1/k
+ sup |y h/FOhbaO( ){uoo(a w) — /um( @) dQo(@ )} dFy(a) ] . (16)
ap€Ao

We show that three terms on the right hand side of the above display are bounded up to a constant by h'/*,
which implies that sup, e, Polh®%, 1 b ao |¥ is bounded up to a constant by h. Noting that || is Py-almost surely
uniformly bounded by (A7)(a) and (A8), we have

1/k
sup [P0|hF0hba0€oo| < sup [/VLFOhbaO * dFy(a )]
ap€Ap ap€Ag

) 1/k
< sup { [ eI Dg oy s @] R}

ap€Ag
. 1/k
2 T1y—1
+ sup {/’hCo,h,ao,zTneaDo,b,ao,zwb,ao,z(a)Kb,ao(a)‘ dFO(a)}
apE€Ap

< hY%E sup
ap€Ag

€0,h,a0,2T, e3 Do b,a0,2 1’

ey Dgh ao. 11’ + hl/krgl/k sup

ap€Ao
By Lemma 4 and (A8), sup, ¢4, \elTDOi}L’aO’l\ and sup,, ¢ 4, |CO,h,ao,2TgegD&i,ao,2| are both O(1). Therefore, the
first term on the right hand side of (16) is bounded up to a constant by h'/* as h — 0. The second term on the
right hand side of (16) can similarly be shown to be bounded up to a constant by h'/* using Lemma 4 and the fact

that po is uniformly bounded since |Y] is Py-almost surely uniformly bounded by (A8).
Finally, the last term of (16) can be bounded using Jensen’s inequality as follows:

k

dQo(w)

k

dFy(a) dQo(w)

sup / ‘h / Tonp.as (@) { oo (@ ) — [ 1o (@, ) dQo ()} dFp (@)

ag€Ag

< s [f ‘hromo )l 0) = [ (a0 du(o)}

< sup /|hF0hba0 dFo((i)
ap€Ao

where the final inequality follows from the uniform bound on p, assumed by (A7)(a). The final integral is bounded
up to a constant by h as shown above. O
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Lemma 24. Let {Zso np(ao) : ao € Ao} be the mean-zero Gaussian process with covariance function
Sooshb + (U 0) = hPo (9% 1 b,uPoo,h b0)/ [Too,hb (W) Too,nb (V)]

If (A1)-(A2), (A7)(a), and (A8) hold, then {Zoonyp : ag € Ao} is tight in £°°(Ag), Eo [Supa,ca, |Zoo.nb(a0)]] <
Cy/log(1/h) for a constant C' not depending on h, and

) A 12
E| sup [Zeons(u) = Zoons(0)|| < C'RTY2([26] A h)L/? [log
S e ) = Zeeans ) 2N S e )

for all [26] A h < |Ag|/8 and a constant C' not depending on h.

Proof of Lemma 24. Let po 1, be the standard deviation semi-metric corresponding to Zo pp; i.e.

P2 (V) = E [ Zoo o (1) = Zoonp(0)]” = [Soo b (1 1) = 2800 .61, 1) + oo (v, 0)| = 2|1 = Lo s (u,v)]

because Lo np(u, w) =1 for any u by definition. We first establish that peo pp is Lipschitz in |u —v|. By Lemma 22,
there exist constants ¢,C' € (0,00) such that for all A small enough and all ag € Ag, ¢ < quh,b(ao) < C. We can
then bound |1 — Xo 1.4(u, v)| as follows:

11— S np(,0)] = |1 = BPy Dk h b i hbw)/ [To0,nb (W) o0 n b (V)]
Uoo,h,b(u) . hP0¢;o,h,b,u(¢:o,h,b,v - ¢:o,h,b,u)

= 11—
Too,h,b(V) T ool b (1) Too b (V)

Coons(t) — Toonp(®)] N ‘P0¢Zo,h,b,u(¢§o,h,b,v — Do hbu)

Too,h,b(V) To0,hb(W)To0, b (V)

_ 175 ) = goeina@) 4 02 [P0 i = O]

1/2

Too,n,b(V)

_ _ % % 1/2
S c 1/2 |JOO,h7b(’U’) - UOOJL,b(U)‘ +c 1/2h1/2 [P0(¢m,h,b,u - (boo,h,b,v)Q] / .

Since oo p(1) and oo 4 4(v) are bounded away from zero for all h small enough and = + /2 is Lipschitz on [g, 00)
for any € > 0, we also have

Gocn 1) = Toona(0)] = | [RPo( 6 p0)*] " = [P (@ )] |

S/ h |P0(¢;o,h,b,u)2 - P0(¢;o,h,b,v)2|
=h |P0 (¢Zo,h,b,u - ¢Zo,h,b,v) oo n b+ Fo (qsioo,h,b,u - ¢Zo,h,b,v> (bioo,h,b,v‘

* * 1/2

< h1/2 [PO((boo,h,b,u - (boo,h,b,v)Z{o-OO,h,b(u)Z + UOO,h,b(U)Q}} /
. . 1/2

< /2 [Po(@k hbw = Poonwn)] -

Hence, we can turn our attention to bounding h'/2[Py( bbb~ ¢Zo7h,b7v)2]1/2- We have
. . 211/2 1/2 1/2
n? [Po (@50 — Do hbw) } < W2 [Po{ (Conn = Ton) €3] + B2 [Po(o,n = t0n00)2]
1/2

+ B2

2
Py (/ {Tonbu —Tonbot {Moo - /,uoo on} dF0>
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For the first term in the display, since |{| is Pp-almost surely uniformly bounded, we have
1/2
[Po{(To b — o) 223"

5 1/2
< [/ {G?D&i,u,lwhm,l(G)Kh,u(a) —61TDE}L,U,1wh,v71(G)Kh,v(a)} fo(a) da}

9 1/2
472 { / {co7h,u7gegD(;11)’u72wb7u72(a)K;hu(a)—co7h7,U72e3TD0_’,1],v’2wb,v72(a)Kb,U(a)} fo(a)da] .

For the first term, we note that since the support of K is contained in [—1, 1], if |u —v| > 2h, then either K}, ,(a) =0
or K, »(a) = 0 for all a. Hence, if |u — v| > 2h, then

1/2
{/ {elTDa),lwylwh,u,l(a)Kh,u(a) - elTD(;}l,v,1Whvv,1(G)Kh’v(a)}Q fola) da}
9 9 1/2
— [ {mi @B} @ dat [ {05 (@K@} o)

2 2 1/2
_ 12 [/ {elTD&}l7u71(1,t)K(t)} Folu + th) dt+/{e{D;;m(1,t)K(t)} folv +th) dt] :

which is bounded up to a constant by h~'/2 by the boundedness of K, fy, and Lemma 4. If |u — v| < 2h, then we
further decompose

1/2
[ J{eDihwnn @K - Dby 0n i (@K (@)} fola) da]
9 1/2
< [ J D0 010 (@) = w0 (@]} K@) fofa) da}
) 1/2
[ D5 = Dok (@) K@ hota) da

.
o[ JeDeh s @) (st ~ Koot o de]

For the first term, we have wy, 4 1(a) — who1(a) =
u)Da}L,u71[1, 2] = (v —uw)O(1) since Do_,}hu,l fo(u)~
the first term is bounded up to a constant by

(0, ( uw)/h), 50 el Dy g [whui (@) = wpwa(a)] = (v -
1S O(h) by Lemma 4 and S, is a diagonal matrix. Hence,

1/2

= of | [ (@) fula ] ey [ EOF i

which is bounded up to a constant by h~'/2|u — v| for all h small enough.
. ﬁFor the second term, we can write DO_}W,1 - Da,i,v,l = D0_7}L,’U,1(D07h‘7v71 - D07h7u,1)D&}l7U71, and we have by
efinition

T T
Dohw.1 — Dot = Po (Whw1wh o1 Knw — Whu 1w 1 Knou)

=P ([wh,v’lwiv’l - wh,u,1w£,u’1] Kh,v + wh,u,lw]?u,l [Kh,v - Kh,u]) .

We then note that

Whio,1(@)Wh,w,1 (@) = w1 (@)wnua (@) = b7 o —u) <(1) [2a — ul— v]/h> '
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With the change of variables t = (a — v)/h, we then have

’PO ([whﬂ’»lwiv,l - wh,u,lwiuvl] Kh71;)| = h71|u — ’U|

/((1) 2t+(vl_u>/h> K(t)fo(’Uthh)dt‘.

Since we are considering the case |u — v| < 2h, the absolute value of this expression is bounded up to a constant by
h™|u — v|. We also have

9

| Po (whyugwh 1 [Knw — Knal)| = ‘/(1,t)(1,t)T [K(t) — K(t+ [u—v]/h)] folu +th)dt

which is bounded up to a constant by A~!|u — v| by the Lipschitz assumption on K. Hence,

) 1/2
e [Pohn = Dok ] 0@} Ko@) fo(o)dal
5 1/2
< Ch™u — vl [/ {elTD(I}L,u,llD(IIIL,quhw,l(a)} Knu(a)?fola) da]

9 1/2
— Ry — [/ {elTDOj}L’UVJD(;}L’UJ(Lt)} K(t+ (v—u)/h)fo(v+th) da} ,

which is bounded up to a constant by h=%/2[u — v|.
For the final term, since K is assumed to be Lipschitz, we have

9 1/2
[P0 (@) i)~ Bl ol
1/2

< | [k ponn@} 172 - w/n = (o = 0 fofa)
VI U [eTDy) .0, t)}2 Folu+ th) dt] "

which is bounded up to a constant by h=3/2|u — v|.
Putting it together, we have that

0 1/2
Rl/2 [/ {e{D&}L’quhm,l(G)Khm(a) - e{Doi}L’v’lwh,vJ(a)Kh,v(a)} fo(a) da]

is bounded up to a constant by h~%/2|u — v| when |u —v| < 2h and is bounded up to a constant when |u — v| > 2h.
Analysis of the second term of (17) follows the same logic, and yields the same result. We can also show using

the above techniques that hl/2 [Po(fyo,h,bﬂ — ’YO,h,b,v)Q} 1/2 satisfies the same bound. Finally, since o is uniformly
bounded, we have

2
P (/ {To.npu—Tonbot {Moo - /Moo on} dFo)

1/2
< C/ ITo.,b,u — Lonbw| dFo

1/2
<c [ / (Tombm — Conoo)? dFy|

which is the same as the expression we bounded above.
We have now shown that there exist a constants C; and Cs not depending on A, u, or v such that pe p.p(u,v) <
C1h™'2|u — v|Y/2 for |u —v| < 2h, and peo pp(u,v) < Cy for |u —v| > 2h. Without loss of generality, we can take
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Cy = v/2C} so the bound is continuous. Suppose ¢ € (0, Cl/\/i] and |u —v| < 4Cf2h52. Then |u — v| < 2A, s0
Poop(t,v) < CLA™Y2 |y —vM/? < 2.

Hence, for ¢ < C1/v/2, N(g, Ao, poonp) < C3|Ao|/(4he?). For ¢ > C1/v/2 and |u — v| < 2h, we have poo pp(u,v) <
C1h= Y2y —v|}/? < \/2C) < 2e. For e > C1/v/2 and |u —v| > 2h, we have poo p.p(u,v) < V20 < 2¢. Therefore, all
u,v € A fit in a single poo 5 ball of radius €, so N (e, Ag, poo.np) = 1 for e > C1/V/2.

This implies that Ag can be covered by finitely many poo p 4 balls of radius ¢ for every € > 0. Hence, the semimetric
space (Ao, poc,np) is totally bounded, and hence separable (see, e.g. page 17 of van der Vaart and Wellner, 1996).
Furthermore, since Z, p, 5 is a Gaussian process, it is sub-Gaussian with respect to its intrinsic semimetric poo p,p-
We thus conclude {Z 5(a0) : ap € A} is a separable sub-Gaussian process with respect to peo,n,p. We then have
by Corollary 2.2.8 of van der Vaart and Wellner (1996) that

o0
E sup |Zoo,h,b(a0)|] SE[\Zm,h,b(al)l]Jr/ {log N (2, Ao, poopp)}/* de
apEAo 0

C/v2 1/2
<1+ / {log (C2| Aol /[4he?)) V2 de
0

Ch [1 + log (| 4o|/2h])]
2 [log (|4o|/[2h])]/*

<1+

which is bounded up to a constant by [logh™!] Y2 for all h small enough. For every § € (0,C;/v/2), we also have by
Corollary 2.2.8 of van der Vaart and Wellner (1996) that

E

8
Sup |Z°O’h’b(a1)_zoo’h,b(t)|] S/ {log N(e, Ao, pocnp)}/? de.
0

Poo,h,b(8,t)<8

Since the integral is finite over [0, 00) (as shown above), the integral over [0, ] goes to zero as ¢ goes to zero. Hence,
the sample paths of Z 5, are almost surely uniformly po 5 p-continuous. Since (A, poo,n,p) is totally bounded, this
implies that Zu pp is tight in £>°(Ap).

Finally, since peo p.p(u, v) < C1h~1/2(min{|u — v|, 2h})/?, we have again by Corollary 2.2.8 of van der Vaart and
Wellner (1996) that

E| sup |Zeonp(u) = Zoonp(v)|| < E sup | Zoo,n,p(w) — Zoo,h,b(fu)|‘|
[u—v|<§ Poo,h,b(u,0)<C1h—1/2(5A[2R])1/2
C1h~ Y2 (5A[2R]))1/? s
</ {10g N (=, Ao, poc ) }'/? d
0
Crh™Y 2 (5A[n/2)) 2 12
</ {1og (€240l /14h) } /2 de
0
Aol 1/2
< h2((26) A )2 log A0l
< (28] A ) {log g
as long as [26] A h < | Agl/8. O

Lemma 25. If (A1)-(A2), (A7)(a), and (A8) hold, then

h1/2</>* i
sup |G, colubao | qup | Zoo,h,p(@0)] = Op ({nh}*l/z{log n}32 + {nh}~Y*{logn}®/* + {nh} ¢ log n) .
ap€Ap O—oo,h,b(GO) ag€Ag
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Hence, if in addition nh? — oo for some p > 1, then

P | sup
ap€Ag

Proof of Lemma 25. These results are an application of Corollary 2.2 and Lemma 2.4 of Chernozhukov et al.
(2014). For each ag € A and h,b > 0, we consider the following function:

h1/2¢oo h,b,a0

G,
Too,h,b(@0

sup
teR

=o(1).

< t) -P < sup [Zoo,n,b(ao)| < t)

ap€Aop

NMhbao = (y,a w) = h1/2 0 h b(a0)¢m h,b,ag (ya avw>‘

We then define the class of functions Hp b = {Nhp,e : @0 € Ag}. In the notation of Chernozhukov et al. (2014), we
have F = Hpp U —Hnp,

h1/2¢

00,h,b,a
G, —————>=¢

Z =sup G, f = sup |Gnn‘ = sup
Too,hb(0)

fer NE€EHn,b apEAp

and Z = SUPy, e Ay | Zoo,h,b(00)], Where by definition, Zo 5 5(ao) is a mean-zero Gaussian process on Ag with covariance
function (u,v) — Po(Mh,b.uh.bo)-

We now verify the conditions of Corollary 2.2 of Chernozhukov et al. (2014). First, Hy, 5 is pointwise measurable
because K is uniformly continuous by (A1), and by Corollary 5, Hy,, is VC type. For each ag € Ap and h,b > 0,
we have P077}2L,b,a0 =1 by definition of 0o 5,5(a0). By Lemmas 22 and 23, we have

PO h1/2¢

o0,h,b,ag

—-1/2
s

sup P0|77|3: sup
n€Hnpb ap€Ap Uoo,h,b(ao)

Hence, in the notation of Chernozhukov et al. (2014), we have 02 = 1 and b = h~'/2 up to a constant not depending
on h. We next establish that Hj p is uniformly bounded up to a constant by h=1/2. We let 1 be a vector of 1’s of
the appropriate dimension. Using the boundedness and bounded support of K as well as the uniform boundedness
of pieo, for each ag € Ay, we have that

1068% 100 (0 @50)| < [T DGL o0 11+ onan2(h/8) €] DGE o, oL {00 (. @, ) [+ 2K0} | K oo
+ | DG g 117D 1| 1P (00 Ko 00 1K o
 [eonan 2(0/D)*eE DG 4y 2117 DG} o 1Po (W, 2K 60)] 16 o
+ (1/)* [T DG 1| |1+ 117D} oy 1 Pl Koo 1K

TH—1
X ’63 Dy b a9.2F0 (wb,ao,sz,aﬁO)’

By Lemma 4, the elements of D0 hao,1 and D0 boag,2 AT€ uniformly bounded over ag € Aj and for all h small enough.
By the uniform boundedness of 0o and fo in an enlargement of Ag, we can also show using a change of variables that
| Po (Wh,a0,1 K h,a000)| and |Po (wp,ay,2Kp,4000)| are uniformly bounded for all ap € Ay and h small enough. Hence,
there are finite positive constants C; and C not depending on h, ag, or (y,a,w) such that \he%_ ;. (v, a,w)’ <
Cy + Cs)€oo (y, a, w)| for all (y,a,w), ag € Ag and h small enough. Therefore, by Lemma 22, an envelope function for
Hp,p is given by h='/2(C + Ch|¢x|) for finite positive constants C} and Ch. By (AT)(a) and (A8), |¢x| is uniformly
bounded. Thus, H}p is uniformly bounded up to a constant by b = h=1/2, so0 the moment and envelope conditions
of Corollary 2.2 of Chernozhukov et al. (2014) hold.

We have now checked all the conditions of Corollary 2.2 of Chernozhukov et al. (2014), so with v, = (logn)~!,
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it follows that for all A small enough and a constant C' not depending on h,

G pL/2 PZo,hbao Ch=1/2{logn}3/? N Ch='/*{logn}®/* Ch=1/6 logn>

P | sup — Sup |Zoonb(9)]| >
( ap€Ao O—OO,h,b(aO) ap€Ao ‘ > ( | n1/2 n1/4 nl/G
< 1 +log;n
~ logn n
We conclude that
o |G, Petbao | P _0
sup |Gp SUp | Zoo,nb(a0)|| = Op (1)
ap€Ag Uoo,h,b(ao) ap€Ag

for
= {nh} Y {logn}*? + {nh}~Y*{logn}>/* + {nh} /% logn.

For the second statement, we use Lemma 2.4 of Chernozhukov et al. (2014). In their notation, we have F,, =
(h=Y2HU, ) U(—h~'/?H}, ). We have already established that this class is pointwise measurable, that its envelope is
square integrable, and that its variance function is uniformly bounded above and below for all n. Lemma 24 implies
that F,, is Pyp-pre-Gaussian. For the final condition of Lemma 2.4 of Chernozhukov et al. (2014), by Lemma 24, we
have EoSupg,, e 4, |Zoo,nb(a0)] = O ({log(1/h)}/?). The assumption that nh? — oo for some p > 1 then implies
that 7, {log(1/h)}'/? = o(1), which verifies the last condition of Lemma 2.4 of Chernozhukov et al. (2014).

O

Lemma 26. If the conditions of Lemma 24 hold, then for any e > 0,

sup P (
teR

SUp | Zoons(ag)| —t| < e [1ogh1}‘”2> < Ce+o(1)
ap€Ag

as h — 0 for C not depending on h or e.

Proof of Lemma 26. We use Lemma A.1 from the supplementary material of Chernozhukov et al. (2014). We
define the class of functions Hp, p, := {¢%, 1, s/Tc0,h,b,(5) : s € S}, and in the notation of Lemma A.1 of Chernozhukov
et al. (2014), we set F = Hpp U —Hpp. By Lemma 24, a tight Gaussian process in £°°(F) exists, so F is Py-pre-
Gaussian, and by definition, Varg(f) = 1 for all f € F. Hence, the conditions of Lemma A.1 of Chernozhukov et al.
(2014) are satisfied, and we have

sup P < Sup | Zoo,hp(ao0)| — t’ < ¢ [log h_1]1/2>
teR ap€Ap
< Ce [log h—1]71/2 [Eo { Sup |Zoo,h,b(a0)} + {log ([log h—1}1/2 /5) }1/2}
apE€Ag

for C not depending on h or e. By Lemma 24, Eg {sup,, c .4, | Zoo,npo(s)|} = O({log h~1}1/2). Furthermore,

£ [log h_l]_l/Q {log ([log ht 1/ /5) }1/2 =o(1)

as h — 0 for any ¢ > 0. The result follows. O
Lemma 27. If (A1)-(A8) and (A6)-(A8) hold, then

On.h,p(a0) — 6o(ao)
On,hb(a0)

Py < sup (nh)'/?
ap€Ao

sup

teR ap€Ag

< t) - Py ( SUp |Zoo,np(ag)| < t)‘ =o(1).

Proof of Lemma 27. Since (AT) implies that (A4) holds for all ag € Ap, by Lemma 3,

On,np(ao) — Oo(ag)
Tn,hb(a0)

P< sup (nh)'/?
ap€Ao

< t) - P( Sup |G (a0) + Ru(ao)| < t) ,

apgEAp
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where we define

(ap) — C’n,h,b(ao) G h /2¢oo h,b,ao
n
Tn,hb(a0) Too,hp(@0)

6
Oco,h,b
Ry (ao) = (nh)1/2 ZRn,hb,ao,j/amh,b(ao) + =
j=1

1/2
P20 b e

" 0oo,n,b(ao0)

and G (ag) =G . By the triangle inequality, we have

P <sup|Gn| <t- sup|Rn|> <P (sup |Gy, + Ry | < t) <P (sup|Gn| < t+sup|Rn>
Ao .Ao .Ao -AO AO
for each t € R. We then have
P <sup |Gr, + Ry| < t> -P (sup | Zoo.h | < t>
.Ao -AO
<P (sup |G| < t+sup Rn|> -P (sup | Zoo,hp] < t+sup |Rn|)

+P (sup | Zoo,np| <t +sup |Rn|> - P (Sup | Zoonn| < t)
Ao Ao Ao

< ’P (sup |Grn| < t+ sup |Rn|> -P (sup | Zoo np| < t+sup |Rn|> ‘ +P (t < sup | Zoonp| <t+sup |Rn|>
AO .AO Ao .Ao .Ao .Ao
<sup |P (sup |G| < t) - P (sup | Zoo.np] < t) ’ + P ( SUp | Zoo,n,b| — t‘ < sup |Rn> .
teR Ao Ao Ao Ao
Similarly,

P (sup |G + Ry| < t) —P (sup | Zoo.hp] < t>
.A() -AO
> P <sup |Gn| <t —sup |Rn> - P (Sup | Zoo,np| <t —sup Rn|>
.Ao .A() .A() -AO

+ P (sup | Zoo,hp| <t —sup |Rn|) - P <sup [ Zoo,hp] < t>
Ao Ao Ao

> ‘P (supGl < 0= sup o] ) = P (s 1o s:ssupRn|>' =Pt sup ol <5up | Zoc sl <)
Ao Ao Ao Ao Ao Ao
> —sup |P (sup |G| < t) - P (Sup | Zoo,hp] < t)‘ - P < SUpP | Zoo,hb| — t‘ < sup Rn|) .
teR Ao Ao Ap Ap

Hence,
0 — 0o(

sup | P < sup (nh)'/2 Srnpls) = Bols) 0 ) < Sup | Zoo,n,(a0)] < t)‘

teR apE€Ao On,h,b Ubo ap€Ag

h1/2¢

<sup|P| sup |G, ——=12% h’b’ao SuUp | Zoo,np(ao)| < t)

teR ap€Ap Oc0,h,b aO a()E.Ao

+sup P < SUp | Zoo,np(ao)| — t‘ < sup |Rn(a0)|)
teR ag€Ag ap€Ap
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The first term on the right hand side is o(1) by Lemma 25. For the second term, for any £ > 0, we can write

supP( SUp | Zoonp(ao)| —t| < sup |Rn(a0)|> < supP( SUp | Zoo np(ao)| t‘ <e [log hl]_l/Q)
teR ag€EAp apg€Ag teR ap€Ao
+P ( sup |Ry(ao)| > € [log hl}_1/2> : (18)
ap€Ag

By Lemma 26, the first term is bounded by Ce + o(1) for C not depending on ¢ or h. For the second term, since
nh — 0o, we have

6
_1n1/2 _
(logh™")"" sup [Rpao| S | sup on,n0(a0) 1} Y (nhlogn)/? sup [Roppa.]

ap€Ap ag€Ap j=1 ag€Ap

h1/2¢* b
+ (logn)*? sup |ow.ns(ao) — Goonplao)| sup |G, ——20200 1|
ap€Ao ag€Ag Uoo,h,b(ao)

By Lemmas 22 and 21, sup,,c4, Ooc,nb(@0) " = Op(1). By Lemma 7, sup,,ca, |[Rnhbao1| = O(R?T%4) for
some &; > 0. Since nh® = O(1), we then have sup, c4, |Rnhbao1]l = o({nhlogn}~1/2). By Corollary 6,
SUP,, e Ag | Bonshobiao,2| and supg, e 4, [Runib.ao,2| are o,({nhlogn}=1/2) as long as nh? = o(1) for some p > 0, which
holds for p = 6 since nh® = O(1) and h = o(1). By Lemma 17, sup, c 4, |Bn.h.b,a0.4] = op({nhlogn}~1/2). By
Lemma 19, sup,, e 4, | Bnhbao,5] = Op({nh} 1) = o,({nhlogn}~1/2) since nh/log h~=* and nh/logn both go to co
by (A6). Finally, by Lemma 20, sup, ¢, |Rn,hba06] = Op({nh/logh™'}=1) = o,({nhlogn}~1/2) by the same

logic. Hence, Z?:1 SUDP Gy e Ay R hbiao,j] = 0p({nhlog n}t/?).
By Lemmas 24 and 25,

h1/2¢20 h,b,a 1/2
sup |G, ———=20| = O({logn}'/?) + 0,(1),
ap€Ag Joo,h,b(a())

and by Lemma 21, sup, ¢ 4, [0n,1,6(00) — 0oo,np(a0)| = 0p({log n}=1).
We have now shown that (log h_l)l/ 2 SUP 4, e 4, [Rn.a0] = 0p(1), which implies that the second term on the right
hand side of (18) goes to zero for any £ > 0. Since ¢ was arbitrary, this implies that

sup P <
teR

sup |Zoo,h,b<ao>|—t\ < sup Rn<ao>|) — (1),
ap€Ap ap€EAp

which concludes the proof. O

Lemma 28. If the conditions of Lemma 24 hold and w,, = o (h?) for some p > 1, then

P() ( sup |Zoo7h,b(a0)\ S t) — Po < max |Zoo7h,b(a0)| S t)‘ = 0(1).

sup
ao€Ao ag€A

terR

Proof of Lemma 28. We write

P (sup | Zoonp| < t> - Py (max|Zm7h,b| < t)‘ = ‘EO {I (sup | Zoonp| < t) -1 <max | Zoonb| < t)”
Ao An Ao An

<EO|:

I (SUP | Zoo,np| < t) -1 (r&ax|Zm7h’b < t) }

Ao

< Py <Sup | Zoo,np| < t,max |Zoo pp| > t)
A A,

0

+ Py (sup | Z oo hb| > t,rrvhax|Zoo,h,b| < t) .
A n

0
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We address the two probabilities in the final expression in the same way, so we only provide the derivation for the
first term. For any € > 0, we can write

sup P (Sup | Zoo.h b < t,max|Zoo np| > t) <sup P, (sup | Zoonpl <t—ce [log h_l} —1/2 ,max | Zoo pp| > t)
teR Ag An teR Ao An

+sup P, (t — ¢ [log h_l]fl/2 < sup | Zoo,hp| < t)
teR Ao

SP0<
A

SUp [ Zoo,hp| — max | Zoonpl| > € [log h™] 1/2)
+ sup Py (
teR

0

SUp | Zoo b| — t’ <e [log h_l} 1/2> )
A

0

By Lemma 26, the second term in the last inequality is bounded by Ce + o(1). For the first term, we note that by
the definition of the mesh w,, of A,,

< sup | Zoonp(U) = Zoonp(V)]

[u—v|<wy

sup |Zoo,h,b| — max ‘Zoo,h,b|
Ao Ap

almost surely. By Markov’s inequality and Lemma 24, we then have

p0<
A

SUD [ Zoo .| — maX | Zoo |
0 n

|

sup  |Zoo,np(u) — Zoo,h,b(v)ll

Jlu—v|<wn,

> ¢ [logh™!] 1/2> <e !logh™!] /2 E, [

SUD [ Zoo .| — maX | Zoo b
. .

<e ' [log h’l]l/z Ep

1/2 [ Ao| He
SJ 671 [lOg hil] h71/2([2wn] A h)1/2 |:10g 2([2&)”]/\h):|

1/2
=¢g! {log h™Y([2w,/h] A1) log 2([21;3%} .

Now w,, = o (h?) implies that w,/h — 0, so for all n large enough the above expression is equal to

1/2
! {hl log h™w, log |A0q .
4w,

This goes to zero by the assumed rate for w, for every € > 0. O

Lemma 29. If (A1)-(A3) and (A6)-(A8), nh® = O(1), and mn? = O(1) for some d € (0,00), then

sup
teR

P, Zo <t)—-F Zn, <t|0,||l= 1).
0 (ﬁe%i(ﬂ,' np(ao)] < ) 0 (a{)neaz(nl n(ao)] <t )‘ 0p(1)

Proof of Lemma 29. Given O1,...,0y,, Z, rp is a Gaussian process on A,. Hence, we can use the Gaussian
comparison result of Theorem 2 of Chernozhukov et al. (2014). Let A,, := {a1 < a2 < -+ < an,}. In their notation,
we then have Y; = Zonp(a;) and X; = Zp, pp(a;) for 1 < j < m, and Y; = —Z pp(a;) and X; = —Z, pp(a;)
for 14+ m < j < 2m. Hence, maxi<;<om Y; = MaXaoe A, |Zoo,h,b(00)] and maxi<j<om, X; = maxaeca, |Zn,ns(c0)|-
Hence, we have p = 2m. Since Z, p 5 and Z, 5, » are both normalized, we have U]}g = ;; =1 for all j. By Lemma 24,
we have

oy < B sup 1 Zpafoo)] = O (1logny2).

apg€Ap
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We define

A, = sup P (R, B ) [0n (W) 1 o (0)] = Po(hle b u®ho o)/ [000h b () Too np(v)]] -
u,vEAq

Then by Theorem 2 of Chernozhukov et al. (2014),

sup
teR

Py ( max |Zoo np(a0)] < t) . ( max | Znpp(a0)| <1 | On>’ < [An{log(2m)}log (A1 v A2,
apgEAR apEAn

By Lemmas 21 and 22, A, = o,(n~P) for some p > 0. Since logm < logn by assumption, the right hand side of the
preceding display is op(1).
O
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Supplement N Additional results from numerical studies

This section presents additional results from the numerical study described in Section 4 of the main text. In addition
to data adaptive nuisance estimators, we consider the following parametric estimators. First, we estimated ug using a
correctly specified logistic regression model to obtain estimators of 1, 2, 73 and 4. We estimated gy using maximum
likelihood estimation with a correctly specified parametric model to obtain an estimator of 3. To investigate the
double-robustness of our estimator, we also estimated pg and gg using incorrectly specified parametric models. For
o, we used the incorrectly specified logistic regression model that assumes pg(a,w) = expit (’7?@ + '~yga) for some
71 € R3, 79 € R, where w := (1,wy,ws). For go, we used the incorrectly specified linear regression model that assumes
that given W = w, A follows a normal distribution with mean 37 for some 43 € R? and constant variance.

Figures 7 and 8 display the pointwise empirical bias and variance for sample sizes n = 500, 1000, and 2500.
Figure 7 corresponds to the nuisance parameter estimation based on parametric models and Figure 8 corresponds to
the nuisance parameter estimation based on SuperLearner. The squared bias of the local linear estimators remains
large for n = 2500 unless undersmoothing is employed. The variance of the local linear estimator, on the other hand,
is smaller than that of the debiased estimator compared with the corresponding bandwidth selection procedure. The
variance of undersmoothed local linear estimator is comparable with the debiased estimator using LOOCYV, and it
increases faster than the optimal rate n*/®. The variance of all estimators is generally larger when the outcome
regression model is misspecified. The conclusion is similar when using parametric and SuperLearner-based nuisance
estimators.

Figure 9 displays the pointwise empirical mean squared error (MSE) of the estimators for n = 500, 1000 and
2500. The results include both parametric model-based and SuperLearner-based nuisance estimators. For all sample
sizes, the debiased local linear estimator with the plug-in bandwidth selection procedure attains the smallest MSE
for most interior points we considered. The local linear estimator using plug-in bandwidth selection attains a small
MSE at points where the second derivative of 6y is close to zero, but for points where the second derivative is far from
zero, it has a larger MSE due to its bias. For the debiased estimator, the LOOCV bandwidth selection yields similar
MSESs regardless of optimizing over both b and h or just over A with b = h fixed. When n = 500, the undersmoothed
local linear estimator displays a slightly smaller MSE than the debiased estimator with LOOCV bandwidth selection;
however, as n increases, the MSE grows, indicating suboptimal convergence rate of MSE when undersmoothing is
employed. The undersmoothing technique consistently yields larger MSEs compared to the debiased local linear
estimator with the plug-in bandwidth selection for all interior points and sample sizes considered. All estimators
display larger MSE towards the boundary points.

Figure 10 displays the empirical coverage of pointwise 95% confidence intervals for sample sizes n = 500, 1000
and n = 2500. The coverage of confidence intervals based on the local linear estimator does not improve when the
sample size is larger. On the other hand, the coverage of the confidence intervals based on the debiased estimator
are slightly lower for n = 500, and generally very close to 95% when n = 2500. The coverage accuracy is particularly
good when at least one of the nuisance estimators is based on a correctly specified parametric model. On the other
hand, we observe slightly worse coverage near the boundary when only conditional density is correctly specified and
is based on SuperLearner.

Figure 11 displays the median length of pointwise 95% confidence intervals for two sample sizes, n = 500, 1000
and n = 2500. We observe that the widths of the confidence intervals are generally comparable between local
linear estimators and the debiased estimators when the plug-in method is used, indicating that the bias correction
has a relative minor impact on confidence interval widths. When undersmoothing is used, the confidence intervals
widen and align with the debiased local linear estimators obtained through LOOCYV bandwidth selection procedures.
Comparatively, the confidence intervals based on the debiased local linear estimator with the plug-in method exhibit
narrower widths than those of the local linear estimator with undersmoothing. This gap widens as the sample size
n increases, as undersmoothing results in a suboptimal convergence rate.

Figures 12 and 13 display the empirical coverage of confidence intervals for the causal effect 6y(a) —0,(0.5) based
for sample sizes n = 500,1000 and n = 2500. The conclusion is similar to the case with n = 1000 from the main
text; the confidence intervals based on the asymptotic independence are conservative when the distance between the
evaluation points is small. This is still a problem at n = 2500. The influence function-based confidence intervals
perform particularly well when nuisance function is estimated based on parametric models as seen in Figure 12. The
conclusion for SuperLearner-based methods are similar except that the influence function-based confidence intervals
based on the plug-in bandwidth selection overcover when the outcome regression is misspecified.

Figures 14 displays the empirical coverage of the uniform confidence bands over Ay = [0,1.0] obtained from
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nuisance estimators based on parametric models and SuperLearner. The coverage accuracy of uniform bands does
not show a significant difference between parametric and data-adaptive nuisance estimators. The plug-in bandwidth
selection performs well for sample sizes greater than 1000 while methods based on cross-validation show slight
undercoverage for large sample sizes.

Figure 15 displays distributions of the bandwidth & selected by the five procedures. We note that the bandwidth
for the plug-in method is the same for the local linear and debiased estimators. The plug-in method generally selects
larger bandwidths than the LOOCYV methods. This explains the larger bias and smaller variance of the estimators
based on the plug-in method. The distribution of h for the LOOCV method that selects both h and b has the largest
variance. Figure 16 shows the densities of 7 = h/b for the LOOCYV method that selects both h and b. Surprisingly,
the procedure seems to favor smaller 7 than one. This explains the larger variance of the LOOCV method that
selects both h and b relative to the LOOCV method that fixes b = h.

Finally, Figure 17 displays the true covariate-adjusted regression function used across the numerical study and
its second derivative. The location that corresponds to a large second derivative in its absolute value coincides with
the area where local linear estimators demonstrate larger bias and poor coverage.
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Both nuisances correct Correct outcome regression Correct conditional density
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Figure 7: Empirical squared bias and variance of the estimators from sample sizes n = 500, 1000
and 2500 when parametric models are used for estimating nuisance functions. The values are scaled
by n*/ and displayed on the log scale.
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Both nuisances correct Correct outcome regression Correct conditional density
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Both nuisances correct Correct outcome regression Correct conditional density
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Both nuisances correct Correct outcome regression Correct conditional density
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Figure 10: Empirical coverage of 95% pointwise confidence intervals based on the debiased local
linear estimator and the local linear estimator for sample sizes n = 500 and 2500.
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Figure 11: Median width of 95% pointwise confidence intervals based on the debiased local linear
estimator and the local linear estimator with sample sizes n = 500, 1000 and 2500.
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Figure 12: Empirical coverage of 95% pointwise confidence intervals for 6y(a) — 6(0.5) based on
the debiased estimator when parametric methods are used for nuisance function estimation. The
intervals in the top two rows use the sum of two variance estimators; those in the bottom rows use
the influence function-based variance estimator.
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Figure 13: Empirical coverage of 95% pointwise confidence intervals for 6p(a) —6y(0.5) based on the
debiased estimator when SuperLearner-based methods are used for nuisance function estimation.
The intervals in the top two rows use the sum of two variance estimators; those in the bottom rows
use the influence function-based variance estimator.
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Figure 15: Distribution of the bandwidth A selected by the five different procedures over the 1000
simulations in each setting and for each sample size.
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Figure 16: Density of h/b found by the LOOCV method that selects both h and b for the debiased
estimator.
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