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Abstract

In this article, we study nonparametric inference for a covariate-adjusted regression function.
This parameter captures the average association between a continuous exposure and an outcome
after adjusting for other covariates. Under certain causal conditions, it also corresponds to
the average outcome had all units been assigned to a specific exposure level, known as the
causal dose-response curve. We propose a debiased local linear estimator of the covariate-
adjusted regression function and demonstrate that our estimator converges pointwise to a mean-
zero normal limit distribution. We use this result to construct asymptotically valid confidence
intervals for function values and di↵erences thereof. In addition, we use approximation results
for the distribution of the supremum of an empirical process to construct asymptotically valid
uniform confidence bands. Our methods do not require undersmoothing, permit the use of
data-adaptive estimators of nuisance functions, and our estimator attains the optimal rate of
convergence for a twice di↵erentiable regression function. We illustrate the practical performance
of our estimator using numerical studies and an analysis of the e↵ect of air pollution exposure
on cardiovascular mortality.
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1 Introduction

1.1 Motivation and literature review

In this article, we study nonparametric inference for a covariate-adjusted regression function, which

is also known as a G-computed regression function. This statistical problem arises in the context

of observational studies where interest focuses on the causal e↵ect of a continuous exposure, such

as the dose of a drug, the amount of air pollution exposure, or the amount of a biochemical in

the bloodstream. However, a covariate-adjusted regression function may also be of interest outside

of causal contexts as a one-dimensional marginal summary of a multivariate regression function.

Despite the simple formulation and many applications of this parameter, a method achieving valid

nonparametric inference without undersmoothing is not yet available. In this paper, we close this

gap by introducing a novel nonparametric, doubly-robust estimator, pointwise confidence intervals,

and uniform confidence bands for the covariate-adjusted regression function that do not require

undersmoothing.

One setting where a covariate-adjusted regression function arises is causal inference with a

continuous exposure. The gold standard for assessing the causal e↵ect of a treatment or exposure

on an outcome is a randomized experiment, where units in the population are assigned values of the

exposure by a random process known to the researchers. Frequently, however, such an experiment

is infeasible, unethical, or cost-prohibitive. For example, it is unethical to purposefully expose

people to a chemical or pollutant known to have negative health e↵ects. In such cases, researchers

may instead wish to assess the causal e↵ect of the exposure using observational data in which the

exposure varies according to an unknown mechanism. Recovering a causal e↵ect with observational

data is more challenging due to potential common causes of the exposure and outcome. However, if

all common causes are recorded in the data, then causal e↵ects can be recovered by appropriately

adjusting for them. Specifically, the average outcome had all units been assigned a specific exposure

value, which is known as the causal dose-response curve or average dose-response function, coincides

with the covariate-adjusted regression function, which is known as the G-formula or G-computation

in causal inference (Robins, 1986; Gill and Robins, 2001). Adjusting for covariates can also improve

estimator e�ciency in the context of randomized experiments (Imbens and Rubin, 2015).

The covariate-adjusted regression function is also of interest outside of causal contexts. The
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regression (i.e., the conditional expectation) of an outcome on a vector of covariates can be di�cult

to visualize and summarize when there are more than two regressors and when nonparametric

methods are used. The covariate-adjusted regression function summarizes the adjusted association

between a single continuous covariate and the outcome by averaging the regression function over

all other covariates for each value of the covariate of interest. This is related to the use of marginal

e↵ects to summarize the results of nonlinear regression models (Mize et al., 2019). Furthermore,

since the covariate-adjusted regression is a univariate function, it can serve as a useful visualization

tool (Friedman, 2001; Apley and Zhu, 2020; Cattaneo et al., 2019).

The covariate-adjusted regression function has been used in several recent observational studies

to describe the association between a continuous exposure and an outcome after adjusting for po-

tential confounders. Josey et al. (2023) and Schwartz et al. (2023) assessed the association between

air pollution exposure and health outcomes after adjusting for socioeconomic and demographic fac-

tors. Knaus (2021) assessed the association between time spent playing a musical instrument and

cognitive improvement in youth after adjusting for socioeconomic factors. Oulhote et al. (2019)

assessed the association between exposure to chemicals and pollutants and neurodevelopment in

children after adjusting for sociodemographic and lifestyle factors and medical history. Colangelo

and Lee (2020) assessed the association between hours of job training and subsequent employment

after adjusting for socioeconomic and health factors. Shro↵ and Vamvourellis (2022) assessed the

association between the timing of arraignments and judicial decisions after adjusting for defendant,

charge, and courtroom characteristics. Weng et al. (2022) estimated the association between av-

erage nurse sta�ng on hospital readmission rates after adjusting for hospital characteristics. As

these examples illustrate, the analysis of continuous exposures is of significant statistical interest

across a wide range of disciplines.

Several nonparametric methods exist for estimation and inference for the covariate-adjusted

regression function. Kennedy et al. (2016a) proposed an estimator based on local linear smoothing.

Theirs was the first doubly robust estimator for this parameter, meaning that their estimator is

consistent if either of two nuisance estimators is consistent. van der Laan et al. (2018) and Colangelo

and Lee (2020) also proposed doubly-robust estimators based on smoothing, and used cross-fitting

to remove empirical process conditions for nuisance estimators. Semenova and Chernozhukov (2021)

proposed an estimator based on a series expansion. Finally, Westling and Carone (2020) and
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Westling et al. (2020) explored inference under a monotonicity assumption. Additional literature

related to the covariated-adjusted regression function includes Robins (1986, 2000) and Zhang

et al. (2016), who proposed plug-in estimators based on a parametric outcome regression model;

Hirano and Imbens (2004) and Imai and Van Dyk (2004), who proposed estimators based on a

parametric propensity model; Neugebauer and van der Laan (2007), who studied inference for the

best projection onto a working parametric model; Rubin and van der Laan (2006) and Dı́az and

van der Laan (2013), who proposed data-adaptive methods; Bonvini and Kennedy (2022), who

proposed a higher-order estimator; and Westling (2022) and Weng et al. (2022), who proposed

tests of the null hypothesis that the function is flat.

As is the case for an ordinary regression function, nonparametric inference for the covariate-

adjusted regression function is a challenging task. The bias of smoothing-based methods is not

asymptotically negligible when the bandwidth is chosen to optimize the rate of convergence of the

estimator. This bias complicates the task of obtaining valid inference. Some authors have argued

for interpreting confidence sets constructed based on the resulting limit theorems as valid for a

smoothed parameter (Wasserman, 2006; Kennedy et al., 2016a). An alternative approach is to

choose the bandwidth to go to zero faster than the optimal rate to guarantee that the bias goes to

zero faster than the standard deviation, which is called undersmoothing (van der Laan et al., 2018;

Colangelo and Lee, 2020; Semenova and Chernozhukov, 2021). While this approach theoretically

allows valid inference, it yields a suboptimal rate of convergence for the estimator. Furthermore,

there is little guidance about how to select a bandwidth for undersmoothing in practice beyond

ad-hoc methods. For instance, a common approach to undersmoothing is to divide the bandwidth

selected by cross-validation or another method by a sequence going to infinity slowly with n, such as

n1/10, log(n), or log(log(n)). However, the specific choice of this sequence impacts the finite-sample

performance of the estimator and confidence intervals, and there is no consensus on which sequence

to use in any given situation. It is therefore both theoretically and practically valuable to develop

asymptotically valid inference procedures that do not require undersmoothing.

Recently, Calonico et al. (2018) proposed a method of bias correction for density and regression

functions estimated using kernel smoothing. Bias correction in the context of kernel smoothing

is challenging because the bias depends on the second or higher derivative of the true function,

which is more di�cult to estimate than the function itself (Wasserman, 2006; Hall, 1992). However,
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Calonico et al. (2018) demonstrated that, via a careful choice of the bandwidth parameter of the bias

estimator, it is possible to e↵ectively debias kernel smoothing-based estimators. These estimators

permit asymptotically valid inference without undersmoothing, and unlike undersmoothing, retain

the optimal rate of convergence relative to the assumed smoothness of the true function.

1.2 Contribution and organization of the article

In this article, we contribute to the existing literature in the following ways: (1) we propose a

novel debiased estimator of the covariate-adjusted regression function motivated by the approach

proposed by Calonico et al. (2018); (2) we propose methods of pointwise and uniform inference

and provide conditions under which our methods are asymptotically valid; and (3) we illustrate

the practical performance of our proposed methods using numerical studies and an analysis of the

e↵ect of air quality on health. To the best of our knowledge, ours are the first asymptotically valid

methods of pointwise and uniform inference for the covariate-adjusted regression function without

undersmoothing. We note that our problem is substantively di↵erent from that of Calonico et al.

(2018) due to the presence of nuisance parameters, which introduces remainder terms and technical

considerations not present when estimating density and regression functions. We elucidate these

di↵erences more below. Finally, we have implemented all methods proposed in this article in an R

package available at https://github.com/Kenta426/DebiasedDoseResponse.

The remainder of this article is organized as follows. In Section 2, we define our statistical setting

and proposed estimator. In Section 3, we present our approach to inference and our theoretical

results. In Section 4, we demonstrate the empirical performance of our proposed methods using

numerical studies, and in Section 5, we use our methods to assess the e↵ect of air pollution on

cardiovascular mortality. Section 6 presents brief concluding remarks. Proofs of all theorems are

provided in Supplementary Material.

2 Proposed estimator

2.1 Notation and statistical setting

We now define the statistical setting we will work in and notation we will use. We consider a

univariate outcome Y 2 Y ✓ R, a univariate exposure A 2 A ✓ R, and a vector of covariates
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W 2 W ✓ Rd. We assume that the distribution of A possesses a Lebesgue density. We define

the observed data unit O := (Y,A,W ), which takes values in O := Y ⇥ A ⇥W . We then observe

n independent and identically distributed observations O1, . . . , On from an unknown probability

distribution P0. We denote by Pn the empirical distribution function of the observed data. We

index objects by P when they depend on a generic distribution P over the observed data unit O,

and we use subscript 0 as short-hand for the true distribution P0. For instance, we denote the

expectation under P0 by E0. For a distribution P on O, we denote by FP the marginal distribution

and fP the Lebesgue density of A under P . We denote by QP the marginal distribution of W

under P . We denote by Fn and Qn the empirical distributions of A1, . . . , An and W1, . . . ,Wn,

respectively. We let µP (a,w) := EP (Y | A = a,W = w) denote the outcome regression function

and gP (a,w) :=
⇥

@
@aP (A  a | W = w)

⇤
/fP (a) denote the standardized propensity function. For

a probability measure P and P -integrable function h, we define Ph :=
R
h dP . For q � 1, we

denote by khkP,q := (P |h|q)1/q the Lq(P ) norm of h. For a real-valued function h defined on X , its

supremum norm is denoted by khk1 := supx2X |h(x)|. We also define e1 := (1, 0) and e3 := (0, 0, 1).

2.2 Parameter of interest and its interpretation

Our parameter of interest is the covariate-adjusted regression function a 7! ✓0(a) defined as

✓0(a) := E0 {E0(Y | A = a,W )} = E0 {µ0(a,W )} =

Z
µ0(a,w) dQ0(w).

Under certain conditions, ✓0 has a causal interpretation. For each a 2 A, we define Y (a) as

the potential outcome under an intervention that sets the exposure A to a. If (1) the potential

outcomes of each unit are una↵ected by the exposures of all other units, (2) the observed outcome

Y equals Y (A), i.e., the potential outcome under assignment to the observed exposure A, (3) Y (a)

and A are conditionally independent given W , and (4) g0(a,W ) is almost surely positive, then

✓0(a) = E0[Y (a)]. Hence, under causal conditions (1)–(4), ✓0(a) can be interpreted as the average

potential outcome under the assignment of the entire population to exposure value a. The function

a 7! E0[Y (a)] is called the causal dose-response curve or the average dose-response function. This

causal identification result has been employed in prior work on causal inference with continuous

exposures (e.g., Robins, 1986; Gill and Robins, 2001; Kennedy et al., 2016a; Westling et al., 2020;
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Westling, 2022). These assumptions cannot be verified or tested using the observed data, so their

plausibility depends on the particular scientific application.

As mentioned in the introduction, ✓0 is also of interest outside of causal settings. The outcome

regression function µ0 is the expected outcome given exposure and covariates. Hence, for fixed a,

µ0(a,W ) is a random variable representing the expected outcome value given A = a across the

distribution of the covariates W in the population, and ✓0(a) is the mean of this variable. The

curve a 7! ✓0(a) depicts how this average conditional mean changes with a. Hence, ✓0 is a marginal

summary of the multivariate regression function µ0. Therefore, obtaining nonparametric inference

for ✓0 is a relevant statistical problem even when the causal conditions listed above are implausible

or a causal interpretation is not of interest.

2.3 Debiased local linear estimator

We now define our estimator of the covariate-adjusted regression function. We begin with a review

of the local linear method proposed by Kennedy et al. (2016a) and its key properties. For an

outcome regression function µ, a standardized propensity g, and a covariate distribution Q, we

define the pseudo-outcome mapping

⇠µ,g,Q : (y, a, w) 7! y � µ(a,w)

g(a,w)
+

Z
µ(a, w̄) dQ(w̄). (1)

Theorem 1 of Kennedy et al. (2016a) showed that this mapping possesses a double-robust property:

it holds that E0[⇠µ,g,Q0(Y,A,W ) | A = a0] = ✓0(a0) if either µ = µ0 or g = g0. Kennedy et al.

(2016a) thus proposed first constructing estimators µn and gn of µ0 and g0, respectively, using the

empirical distribution Qn of the observed covariates to estimate Q0, then regressing the estimated

pseudo-outcomes ⇠n(Y1, A1,W1), . . . , ⇠n(Yn, An,Wn) on the observed exposures A1, . . . , An using

local linear regression, where ⇠n := ⇠µn,gn,Qn . Specifically, let K be a kernel function (i.e., a

symmetric density on R), h > 0 be a bandwidth, and Kh,a0(a) := K([a�a0]/h)/h. The local linear

estimator at a point a0 is then defined as the evaluation at a0 of the weighted ordinary least squares

regression of the estimated pseudo-outcomes on intercept and the observed exposures with weights
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Kh,a0(A1), . . . ,Kh,a0(An). Mathematically, the local linear estimator can be written as

✓LLn (a0) := eT1 D
�1
n,h,a0,1

Pn (wh,a0,1Kh,a0⇠n) , (2)

where wh,a0,j(a) :=
�
1, [a� a0]/h, . . . , [a� a0]j/hj

�T
and Dn,h,a0,j := Pn(wh,a0,jw

T
h,a0,j

Kh,a0) for

any integer j � 1. Other authors have used a similar approach as Kennedy et al. (2016a), but

replaced the local linear regression step with an alternative nonparametric regression estimator

(Westling et al., 2020; Semenova and Chernozhukov, 2021; Bonvini and Kennedy, 2022).

As discussed in the introduction, standard approaches to nonparametric regression, including

local linear regression, do not yield valid inference when the bandwidth is chosen to minimize

mean squared error because the bias of the resulting estimator is of the same order as its standard

deviation. Specifically, in their Theorem 3, Kennedy et al. (2016a) showed that under suitable

conditions, including that a0 is in the interior of the support of A, (nh)1/2[✓LLn (a0) � ✓0(a0) �

h2c2✓000(a0)/2] converges to a mean-zero normal distribution, where c2 :=
R
u2K(u) du and ✓000 is

the second derivative of ✓0. To minimize mean squared error, the bandwidth h should be chosen

to balance bias squared and variance, which means choosing h such that (nh)1/2h2 = (nh5)1/2

converges to a positive, finite constant, or equivalently h proportional to n�1/5. Hence, if ✓000(a0) 6= 0,

then (nh)1/2
⇥
✓LLn (a0) � ✓0(a0)

⇤
converges to a normal distribution with non-zero mean, implying

that confidence intervals centered around ✓LLn (a0) will be asymptotically anti-conservative.

We propose debiasing the local linear estimator by subtracting an estimator of the bias in

the spirit of Calonico et al. (2018). We define the debiased estimator as ✓DB
n (a0) := ✓LLn (a0) �

1
2h

2cn,a0,2✓
00
n(a0), where cn,a0,2 := eT1 D

�1
n,h,a0,1

Pn(w̃h,a0,1Kh,a0) for w̃h,a0,1(a) := wh,a0,1(a)[(a�a0)/h]2,

and ✓00n(a0) is a second derivative estimator based on a local quadratic regression with bandwidth

b > 0. We use cn,a0,2 rather than c2 for proper debiasing on and near the boundary of the sup-

port of A, since the limiting constant c2 is di↵erent on the boundary than the interior. The local

quadratic estimator ✓00n(a0) is the second derivative at a0 of the weighted linear least squares regres-

sion of ⇠n(Y1, A1,W1), . . . , ⇠n(Yn, An,Wn) on intercept, A1, . . . , An, and A2
1, . . . , A

2
n with weights

Kb,a0(A1), . . . ,Kb,a0(An). Mathematically, ✓00n(a0) := 2b�2eT3 D
�1
n,b,a0,2

Pn(wb,a0,2Kb,a0⇠n). We can
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write ✓DB
n (a0) = Pn(�n,a0⇠n), where

�n,a0(a) := eT1 D
�1
n,h,a0,1

wh,a0,1(a)Kh,a0(a)� eT3 cn,a0,2(h/b)
2D�1

n,b,a0,2
wb,a0,2(a)Kb,a0(a). (3)

To summarize, for given bandwidths h and b and kernel K, our proposed estimator is constructed

in two steps: (1) construct estimators µn and gn of µ0 and g0 respectively, and (2) compute the

plug-in estimates of pseudo-outcomes ⇠n(Yi, Ai,Wi) = ⇠µn,gn,Qn(Yi, Ai,Wi) for i = 1, . . . , n, and

regress them on the observed exposures using the bias-corrected local linear estimator ✓DB
n (a0) =

Pn(�n,a0⇠n) for each a0. In Section 3, we provide conditions on the true data-generating mechanism

and on h, b, K, µn, and gn, as well as practical guidance for selecting or estimating these quantities.

It may seem that e↵ective debiasing using an estimator of the second derivative would require

additional smoothness of ✓0, hence violating our stated goal of obtaining the optimal rate of conver-

gence relative to the assumed smoothness of ✓0. This is not the case. As an intuitive explanation,

we decompose (nh)1/2[✓DB
n (a0)� ✓0(a0)] as

(nh)1/2
⇥
✓LLn (a0)� ✓0(a0)� 1

2h
2cn,a0,2✓

00
0(a0)

⇤
+ 1

2cn,a0,2(nh
5)1/2

⇥
✓00n(a0)� ✓000(a0)

⇤
.

Under regularity conditions, the first term converges in distribution to a mean-zero limit. Thus,

if nh5 = O(1) and ✓00n(a0)
P�! ✓000(a0), then (nh)1/2[✓DB

n (a0) � ✓0(a0)] converges to this same limit.

However, perhaps surprisingly, ✓00n(a0) need not be consistent for ✓000(a0) to achieve good inference

using ✓n(a0). We show that the variance of ✓00n(a0) is proportional to (nb5)�1. Hence, if h/b �!

⌧ > 0, then the variance of h2✓00n(a0) is of the same order as that of ✓LLn (a0), so the bias correction

will not be asymptotically negligible; it will contribute to the asymptotic variance of the estimator

as in Calonico et al. (2018). If in addition h / n�1/5, then the variance of ✓00n(a0) does not go to

zero, so it is not consistent. However, even in these cases, we show that (nh)1/2[✓DB
n (a0)� ✓0(a0)]

converges to a mean-zero limit distribution.

Even if the bias correction is asymptotically negligible, and especially if it is not, accounting for

its finite-sample variability is important for achieving good finite-sample inference. As discussed

more below, our variance estimator will account for the variability of ✓00n(a0), and in particular, we

can still achieve valid inference when the variance of ✓00n(a0) is not going to zero. We will show that
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✓00n(a0)� ✓000(a0) converges to a mean-zero limit if b �! 0 and ✓000 is continuous at a0 (and additional

technical conditions unrelated to smoothness of ✓0 hold).

2.4 Local parameter and its e�cient influence function

We now provide an alternative motivation for our proposed estimator, which also motivates our

approach to inference. We show that ✓DB
n (a0) can be considered as a one-step estimator of a

debiased smoothed parameter. We recall that an object indexed by the subscript P indicates the

evaluation under a generic probability distribution P in the model, and the subscript 0 indicates

the true value of the object, i.e., evaluated at the true data-generating distribution P0. Hence,

✓0(a0) is the evaluation of ✓P (a0) at P = P0.

The parameter mapping P 7! ✓P (a0) is not pathwise di↵erentiable relative to a nonparametric

model, meaning that it is not smooth enough as a function of the distribution P to permit n�1/2-

rate estimation (Bickel, 1982; Pfanzagl and Wefelmeyer, 1985; Bickel and Klaassen, 1993). One way

to develop inference methods for such a parameter is to consider a sequence of smoothed parameters

approaching the parameter of interest, each of which is pathwise di↵erentiable (van der Laan et al.,

2018). Our debiased local linear estimator can be viewed through this lens. For any distribution

P and an integer j � 1, we define DP,h,a0,j := P (wh,a0,jw
T
h,a0,j

Kh,a0). We then define the debiased

smoothed parameter mapping as P 7! ✓DB
P (a0) := P (�P,a0✓P ) =

R
�P,a0(a)✓P (a) dFP (a), where

�P,a0(a) := eT1 D
�1
P,h,a0,1

wh,a0,1(a)Kh,a0(a)� eT3 cP,h,a0,2(h/b)
2D�1

P,b,a0,2
wb,a0,2(a)Kb,a0(a), (4)

for cP,h,a0,2 := e1D
�1
P,h,a0,1

P (w̃h,a0,1Kh,a0). We refer to ✓DB
P (a0) as smoothed because it is a weighted

average of ✓P (a) for a a neighborhood of a0, with (possibly negative) weights �P,a0(a)fP (a). We refer

to ✓DB
P (a0) as debiased because, as we show in Supplementary Material, if ✓P is twice continuously

di↵erentiable in a neighborhood of a0, h/b �! ⌧ 2 [0,1), and additional mild conditions hold,

then the smoothing bias satisfies ✓DB
P (a0)� ✓P (a0) = o(h2) as h �! 0. The asymptotic properties

of ✓DB
n (a0) can now be understood through the following decomposition:

(nh)1/2
⇥
✓DB
n (a0)� ✓0(a0)

⇤
= (nh)1/2

⇥
✓DB
n (a0)� ✓DB

0 (a0)
⇤
+ (nh)1/2

⇥
✓DB
0 (a0)� ✓0(a0)

⇤
.
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Hence, if nh5 = O(1), then ✓DB
0 (a0) � ✓0(a0) = o({nh}�1/2), and so the first-order asymptotic

properties of (nh)1/2
⇥
✓DB
n (a0)� ✓0(a0)

⇤
are determined by (nh)1/2

⇥
✓DB
n (a0)� ✓DB

0 (a0)
⇤
. This ex-

pression can be studied using semiparametric e�ciency theory. The first step in doing so is to

derive the e�cient influence function of the functional P 7! ✓DB
P (a0). This is the subject of the

following lemma.

Lemma 1 (E�cient influence function). For each h and b > 0 and a0 2 A, P 7! ✓DB
P (a0) is

a pathwise di↵erentiable parameter with respect to the model M consisting of P such that (1)

EP [Y 2] < 1 and (2) there exists  > 0 such that gP (a,w) �  for FP -a.e. all a such that

|a� a0|  max{h, b} and QP -a.e. w, and the e�cient influence function of ✓DB
P (a0) relative to this

model is

�⇤P,a0 = �⇤P,h,b,a0 : (y, a, w) 7! �P,a0(a)⇠µP ,gP ,QP (y, a, w)� �P,a0(a)

+

Z
�P,a0(ā) {µP (ā, w)� ✓P (ā)} dFP (ā), where (5)

�P,a0(a) := eT1 D
�1
P,h,a0,1

wh,a0,1(a)Kh,a0(a)w
T
h,a0,1(a)D

�1
P,h,a0,1

P (wh,a0,1Kh,a0✓P )

� eT3 cP,h,a0,2(h/b)
2D�1

P,b,a0,2
wb,a0,2(a)Kb,a0(a)w

T
b,a0,2(a)D

�1
P,b,a0,2

P (wb,a0,2Kb,a0✓P )

� (h/b)2eT1 D
�1
P,h,a0,1

h
w̃h,a0,1(a)� wh,a0,1(a)w

T
h,a0,1(a)D

�1
P,h,a0,1

P (w̃h,a0,1Kh,a0)
i
Kh,a0(a)

⇥ eT3 D
�1
P,b,a0,2

P (wb,a0,2Kb,a0✓P ).

The proof of Lemma 1 and all other results are provided in Supplementary Material. Lemma 1

establishes that the smoothed and debiased parameter mapping P 7! ✓DB
P (a0) is pathwise di↵er-

entiable relative to a nonparametric model. We will use this result below to derive the asymptotic

properties of ✓DB
n (a0) and to construct a variance estimator for ✓DB

n (a0).

We note that there may be other smoothed parameters with the same properties as ✓DB
P (a0)

that yield an asymptotically mean-zero distribution without undersmoothing—namely, that the

parameter mapping is pathwise di↵erentiable for a fixed bandwidth, and that the approximation

bias as the bandwidth tends to zero is negligible. Furthermore, other smoothed parameters may

result in di↵erent asymptotic variances of the resulting estimator of ✓0(a0). In particular, Theorem 1

below demonstrates that the asymptotic variance of our estimator depends on the kernel function K

and the ratio h/b. Hence, the selection of the precise smoothed parameter impacts the asymptotic
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variance of the estimator. To the best of our knowledge, there is no precise characterization of the

optimality of such approximations. This is an important area of future research.

A simple and popular method of estimating a pathwise di↵erentiable parameter is the so-called

one-step construction (Bickel, 1982; Pfanzagl, 1982). For clarity of exposition, we now briefly

describe the one-step construction in a general setting. Suppose  : M ! R is a real-valued

functional on a model M that is pathwise di↵erentiable relative to M at the true data-generating

distribution P0, and it has e�cient influence function ⌘⇤0. Suppose O1, . . . , On are drawn IID from

P0, Pn is an estimator of P0 based on O1, . . . , On, ⌘⇤Pn
is the e�cient influence function evaluated

at Pn, and that Pn is the empirical distribution of O1, . . . , On. The one-step estimator of  0 is then

defined as  n :=  (Pn) + Pn�⇤Pn
, which can be viewed as the plug-in estimator  (Pn) plus a term

that corrects some of the bias of  (Pn). The one-step estimator can be shown to be asymptotically

linear with influence function ⌘⇤0 under conditions on Pn and the true distribution P0.

We now demonstrate that the debiased local linear estimator ✓DB
n (a0) defined above can be

viewed as a one-step estimator of ✓DB
0 (a0). We define ��n,a0 as the estimated e�cient influence

function obtained by replacing µP and gP from Lemma 1 with estimators µn and gn, QP and FP

with the empirical distributions Qn and Fn, and DP,h,a0,j with Dn,h,a0,j . Due to the cancellation

of terms, it holds that

✓DB
n (a0) =

ZZ
�n,h,h,a0(a)µn(a,w) dQn(w) dFn(a) + Pn�

�
n,a0 . (6)

This representation is proved in Lemma 3 in Supplementary Material. Since the first term is the

plug-in estimator of ✓DB
0 (a0) and ��n,a0 is the plug-in estimator of the e�cient influence function of

✓DB
0 (a0) established in Lemma 1, (6) represents ✓DB

n (a0) as a one-step estimator.

The representation of our debiased estimator as a one-step estimator of a smoothed parameter

plays an important role in motivating our approach to inference and our asymptotic results. We

would typically expect that one-step estimators of pathwise di↵erentiable parameters are asymptot-

ically linear under appropriate conditions. Similarly, in Theorem 1, we will see that a finite-sample

version of asymptotic linearity holds for our estimator: ✓DB
n (a0)�✓0(a0) = Pn�⇤1,a0+op({nh}�1/2),

where �⇤1,a0 is the limiting e�cient influence function defined precisely below. As with asymptotic

linearity, this representation is useful because it reduces the derivation of further asymptotic prop-

13



erties to the study of the linear term Pn�⇤1,a0 . Furthermore, it suggests that the variance of

(nh)1/2[✓DB
n (a0) � ✓0(a0)] can be estimated by �2n(a0) := hPn(�⇤n,a0)

2, where �⇤n,a0 is an estimator

of �⇤1,a0 also defined below. Importantly, this variance estimator accounts for the contribution of

the bias estimator, and in particular it is a consistent estimator of the asymptotic variance even

when the bias estimator contributes to the asymptotic variance.

2.5 Bandwidth selection

As with the debiased density and regression estimators proposed by Calonico et al. (2018), our

estimator requires the choice of two bandwidths. Many bandwidth selection methods for local

polynomial regression can be adapted to our setting. Here, we briefly discuss several strategies

for data-driven bandwidth selection. In Section 4, we compare the empirical behavior of the three

methods outlined here.

First, we can choose the bandwidths to minimize a cross-validated estimator of the integrated

mean squared error (IMSE) of ✓DB
n , as Kennedy et al. (2016a) did for the local linear estimator.

Specifically, since ✓DB
n (a0) can be written as a linear smoother of ⇠n, a computationally e�cient

leave-one-out cross-validated estimator of the IMSE of ✓DB
n is given by

IMSEcv(h, b) :=
1

n

nX

i=1

⇢
⇠n(Yi, Ai,Wi)� ✓DB

n (Ai)

1� �n,Ai(Ai)/n

�2

. (7)

We refer the reader to Chapter 5.3, and specifically Theorem 5.34, of Wasserman (2006) for ad-

ditional discussion of this formula. We then define (hcv, bcv) := argminh,b IMSECV(h, b). Alterna-

tively, we can fix b as a function of h via h/b = ⌧ 2 (0,1). For example, we can fix b = h so that ⌧ =

1. We can then optimize the estimated IMSE over h alone, i.e. hcv,⌧ := argminh IMSECV(h, h/⌧).

Fixing ⌧ removes the need to select b, which reduces the search to a one-dimensional space, and

guarantees that h/b = O(1), which is required by our conditions below. Furthermore, in the setting

of regression estimation, Calonico et al. (2018) found that fixing ⌧ > 0 to a positive constant yields

improved coverage accuracy. However, the choice of ⌧ is somewhat arbitrary, and as we will see in

Theorem 1, ⌧ > 0 also yields an estimator with larger asymptotic variance than that of Kennedy

et al. (2016a).

As a second bandwidth selection procedure, we will consider an adaptation of the plug-in method
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proposed by Calonico et al. (2018) for their debiased local linear estimator of a regression function.

The method works by minimizing an estimator of the IMSE of the local linear estimator ✓LLn over

h. We approximate the large-sample IMSE of ✓LLn with respect to a probability measure ! as

IMSEplug-in(h) := h4
R
B̂LL(a)2d!(a) + (nh)�1

R
V̂ LL(a) d!(a), where

B̂LL(a0) := eT1 D
�1
n,h1,a0,1

1

n

nX

i=1

wh1,a0,1(Ai)Kh1,a0(Ai)
1
2 ✓̂

00
h1
(a0)

✓
Ai � a0

h1

◆2

, and

V̂ LL(a0) := eT1 D
�1
n,h1,a0,1

(
1

n

nX

i=1

wh1,a0,1(Ai)Kh1,a0(Ai)
2�̂2(Ai)w

T
h1,a0,1(Ai)

)
D�1

n,h1,a0,1
e1.

Here, h1 is a pilot bandwidth, ✓̂00h1
is an estimator of ✓000 , and �̂

2(a) is a nearest-neighbors estimator

of the conditional variance of ⇠n given A = a. Since by design neither B̂LL nor V̂ LL depends on h,

the bandwidth hplug-in minimizing IMSEplug-in is given explicitly by

hplug-in := n�1/5

 R
V̂ LL d!

4
R
[B̂LL]2d!

!1/5

.

Finally, the bandwidth bplug-in of the bias correction is defined as bplug-in = hplug-in/⌧ , where ⌧

is user-specified. A benefit of this method is that it does not require numerical optimization. A

second benefit is that the measure ! can be chosen based on the range over which it is of interest

to estimate ✓0.

3 Asymptotic properties of the proposed methods

3.1 Pointwise convergence in distribution

In this section, we study the asymptotic properties of our proposed estimator, and use these proper-

ties to derive approaches to pointwise and uniform inference. We first show that (nh)1/2[✓DB
n (a0)�

✓0(a0)] converges in distribution to a normal limit for fixed a0. We will use this result to show that

pointwise (1� ↵)-level Wald-style confidence intervals are asymptotically valid.

We begin by introducing technical conditions we will rely upon. We discuss these conditions

following the statement of Theorem 1. Our first two conditions concern the kernel function and

bandwidths, which will be required in all of our results.
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(A1) The kernel K is a mean-zero, symmetric, nonnegative, and Lipschitz continuous density

function with support contained in [�1, 1]. Additionally, K belongs to the linear span

of the functions whose subgraph can be represented as a finite number of Boolean

operations among sets of the form {(s, u) 2 R ⇥ R : p(s, u)  '(u)} where p is a

polynomial and ' is an arbitrary real function.

(A2) As n �! 1, the bandwidths h = hn and b = bn satisfy hn �! 0, nhn �! 1, bn �! 0,

and ⌧n := hn/bn �! ⌧ 2 [0,1).

For some results, we will impose additional restrictions on the rate that h approaches zero.

The next condition restricts the uniform entropy of the class of functions in which the nuisance

estimators are assumed to reside. We briefly define uniform entropy; we refer the reader to van der

Vaart and Wellner (1996) for additional details. For a class of functions F , a probability measure

Q and any " > 0, the " covering number N(",F , L2(Q)) of F relative to the L2(Q) metric is defined

as the minimal number of L2(Q) balls of radius less than or equal to " needed to cover F . The

uniform "-entropy of F is defined as supQ logN(",F , L2(Q)), where the supremum is taken over

all probability measures. We now state the following conditions.

(A3) There exist classes of functions Fµ and Fg such that almost surely for all n large

enough, µ0, µn 2 Fµ, g0, gn 2 Fg, and for some constants Cj 2 (0,1), Vµ 2 (0, 1), and

Vg 2 (0, 2):

(a) kµk1  C1 for all µ 2 Fµ, and k1/gk1  C2 and kgk1  C3 for all g 2 Fg; and

(b) supQ logN(",Fµ, L2(Q))  C4"�Vµ and supQ logN(",Fg, L2(Q))  C5"�Vg for all

" > 0.

Next, we control the behavior of limiting functions to which nuisance estimators converge. We

define the following pseudo-distance for any P0-square integrable functions �1, �2 : A ⇥ W 7! R,

A0 ⇢ A, and S ✓ A⇥W :

d(�1, �2;A0,S) := sup
a2A0

�
E0[IS(a,W ){�1(a,W )� �2(a,W )}2]

 1/2

We also define B"(a0) as the closed ball of radius " centered at a0. We then state the final two

conditions concerning the rate of convergence of the nuisance estimators and properties of the
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true distribution P0. These conditions are specific to a value a0 because they will be used in the

pointwise result.

(A4) There exist µ1 2 Fµ and g1 2 Fg, �1 > 0, and subsets S1,S2 and S3 of B�1(a0) ⇥W

such that S1 [ S2 [ S3 = B�1(a0)⇥W and:

(a) µ1(a,w) = µ0(a,w) for all (a,w) 2 S1 [ S3 and g1(a,w) = g0(a,w) for all

(a,w) 2 S2 [ S3;

(b) d(µn, µ1;B�1(a0),S1) = op
�
{nh}�1/2

�
, and d(gn, g1;B�1(a0),S1) = op(1);

(c) d(gn, g1;B(a0; �1),S2)} = op
�
{nh}�1/2

�
, and d(µn, µ1;B(a0; �1),S2) = op(1);

and

(d) d(µn, µ1;B�1(a0),S3)d(gn, g1;B�1(a0),S3) = op
�
{nh}�1/2

�
.

(A5) It holds that:

(a) ✓0 is twice continuously di↵erentiable on B�1(a0);

(b) f0 is positive and Lipschitz continuous on B�1(a0);

(c) there exist �2 > 0 and C6 < 1 such that E0[|Y |2+�2 | A = a,W = w]  C6 for all

a 2 B�1(a0) and P0-almost every w and E0[|Y |4] < 1; and

(d) a 7! �20(a) := E0
⇥
{⇠1(Y,A,W )� ✓0(A)}2 | A = a

⇤
is bounded and continuous on

B�1(a0), where ⇠1 := ⇠µ1,g1,Q0 is the limiting pseudo-outcome.

Finally, we define the limiting influence function

�⇤1,a0 : (y, a, w) 7! �0,a0(a)⇠1(y, a, w)� �0,a0(a)

+

Z
�0,a0(ā)

⇢
µ1(ā, w)�

Z
µ1(ā, w̄) dQ0(w̄)

�
dF0(ā)
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for �P0,a0 = �0,a0 and �P0,a0 = �0,a0 . We also define our estimator �⇤n,a0 of �⇤1,a0 as

�⇤n,a0 : (y, a, w) 7! �n,a0(a)⇠n(y, a, w)� �n,a0(a)

+

Z
�n,a0(ā)

⇢
µn(ā, w)�

Z
µn(ā, w̄) dQn(w̄)

�
dFn(ā), where

�n,a0(a) := eT1 D
�1
n,h,a0,1

wh,a0,1(a)Kh,a0(a)w
T
h,a0,1(a)D

�1
n,h,a0,1

Pn (wh,a0,1Kh,a0⇠n)

� eT3 cn,h,a0,2(h/b)
2D�1

n,b,a0,2
wb,a0,2(a)Kb,a0(a)w

T
b,a0,2(a)D

�1
n,b,a0,2

Pn (wb,a0,2Kb,a0⇠n)

+ eT1 (h/b)
2D�1

n,h,a0,1

h
w̃h,a0,1(a)� wh,a0,1(a)w

T
h,a0,1(a)D

�1
n,h,a0,1

Pn (w̃h,a0,1Kh,a0)
i
Kh,a0(a)

⇥ eT3 D
�1
n,b,a0,2

Pn(wb,a0,2Kb,a0⇠n)

Our variance estimator is then given by �2n(a0) := hPn(�⇤n,a0)
2. We note �⇤n,a0 di↵ers from the

plug-in estimator ��n,a0 in that �n,a0 uses ⇠n rather than µn. We use �⇤n,a0 rather than ��n,a0 for the

variance estimator because it is a better estimator when µn is inconsistent, so that µ1 6= µ0, due

to the appearance of �0,a0 in �⇤1,a0 .

Under the five conditions defined above, we have the following result concerning the pointwise

asymptotics of our estimator.

Theorem 1. If (A1)–(A5) hold, then ✓DB
n (a0) � ✓0(a0) = Pn�⇤1,a0 + op

�
{nh}�1/2 + h2

�
, and

(nh)1/2Pn�⇤1,a0
d�!N

�
0, VK,⌧f0(a0)�1�20(a0)

�
, where

VK,⌧ =

Z ⇢
K(u)� ⌧3c2

(⌧u)2 � c2
c4 � c22

K(⌧u)

�2

du

= c⇤0 � 2⌧3c2
⌧2c⇤2,⌧ � c2c⇤0,⌧

c4 � c22
+ ⌧5c22

c⇤4 � 2c2c⇤2 + c22c
⇤
0

(c4 � c2)
2

for cj :=
R
ujK(u) du, c⇤j :=

R
ujK2(u) du and c⇤j,⌧ :=

R
ujK(u)K(⌧u) du. Hence, if nh5 =

O(1), then (nh)1/2
⇥
✓DB
n (a0)� ✓0(a0)

⇤
converges in distribution to this same limit. Furthermore,

�2n(a0)
P�!VK,⌧f0(a0)�1�20(a0), so (nh)1/2

⇥
✓DB
n (a0)� ✓0(a0)

⇤
/�n(a0)

d�!N(0, 1).

The two most crucial features of Theorem 1 are that the estimator is centered around ✓0(a0),

and that the conditions permit the bandwidth to be selected at the optimal rate for estimation.

In particular, the final statement of Theorem 1 implies that the pointwise (1� ↵)-level confidence
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interval given by

[`n(a0), un(a0)] :=
h
✓DB
n (a0)� (nh)�1/2q1�↵/2�n(a0), ✓

DB
n (a0) + (nh)�1/2q1�↵/2�n(a0)

i
(8)

has asymptotic coverage level 1�↵ for ✓0(a0) without undersmoothing, where qp is the pth quantile

of a standard normal distribution. That is, P0(✓0(a0) 2 [`n(a0), un(a0)]) �! 1 � ↵. The first

statement of Theorem 1 resembles asymptotic linearity but di↵ers in that the influence function

�⇤1,a0 = �⇤1,h,b,a0
changes with n through h and b. Nevertheless, the result is useful for suggesting

a natural variance estimator and in revealing the process driving the first-order behavior of the

estimator.

The limiting variance of our estimator is the same as that of the local linear estimator proposed

by Kennedy et al. (2016a) up to the constant VK,⌧ . When ⌧ = 0, so that h/b �! 0, Vk,0 =
R
K2 = c⇤2, which is the same as the constant in Kennedy et al. (2016a). Hence, in this case, the

bias correction has no impact on the asymptotic variance of the estimator. However, we note that

identifying the optimal rate of convergence of h/b to 0 requires assuming additional smoothness of

✓0. When ⌧ > 0, the asymptotic variance of our estimator is a constant factor larger than that of

the local linear estimator. When ⌧ = 1, the constant simplifies to

VK,1 =
c⇤0c

2
4 � 2c2c4c⇤2 + c22c

⇤
4

(c4 � c22)
2

.

Therefore, if ⌧ > 0, our debiased estimator asymptotically reduces bias at the expense of variance.

For the Epanechnikov kernel, VK,1 = 1.25, while VK,0 = 0.6. Hence, debiasing approximately

doubles the asymptotic variance in this case. However, our variance estimator is consistent even

when the bias estimator contributes to the asymptotic variance. We also note that our variance

estimator is not a plug-in estimator of the asymptotic variance established in Theorem 1, but is

instead based on the estimated influence function of the smoothed and debiased parameter. This

is analogous to the fixed-n variance calculations of Calonico et al. (2018). As in Calonico et al.

(2018), we expect this to improve the finite-sample coverage of our confidence intervals. This is

explored more in numerical studies in Section 4.
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We note that we can decompose the linear term as

Pn�
⇤
1,a0 = Pn {�0,a0(⇠1 � ✓0)}+ Pn {�0,a0✓0 � �0,a0}+ Pn

⇢Z
�0,a0

✓
µ1 �

Z
µ1 dQ0

◆
dF0

�
.

In the proof of Theorem 1, we show that the second and third terms in the above decomposition are

op({n/h}�1/2) and Op(n�1/2), respectively. Both of these are op({nh}�1/2), so under the conditions

of Theorem 1, the simpler representation ✓DB
n (a0) � ✓0(a0) = Pn {�0,a0(⇠1 � ✓0)} + op({nh}�1/2)

holds, and therefore only the first component of �⇤1,a0 contributes to the limit distribution of

the estimator. This suggests hPn
�
�n,a0(⇠n � ✓DB

n )
 2

as an alternative variance estimator. While

this variance estimator would still yield asymptotically valid confidence intervals, including the

additional asymptotically negligible terms in the variance estimator better captures the finite-

sample behavior of the estimator.

We now discuss the conditions used in Theorem 1. Condition (A1) is a standard condition for

kernel smoothing and is satisfied for many common kernel functions. The bounded support condi-

tion is technically convenient but may be avoidable. The subgraph requirement of the condition is

only used for uniform inference but is relatively mild. We impose this condition so that the class

of functions
�
a 7! K

�
a�a0
h

�
: a0 2 R

 
is of VC-type (Giné and Guillou, 2002). The condition is

satisfied in particular if K is of the form � � p, where p is a polynomial and � is a bounded real

function of bounded variation, which is the case for many standard kernels including the triangular,

Epanechnikov, and truncated Gaussian kernels.

The requirements on h in condition (A2) are standard in kernel smoothing. They require that

the bandwidth goes to zero, so that the estimator properly localizes around a0, but that it goes

to zero slower than n�1 so that the estimator does not localize too much. In order to ensure

that o(h2) = o({nh}�1/2), the convergence in distribution part of the result also requires that

nh5 = O(1), which means that h goes to zero at least as fast as n�1/5. This permits but does not

require undersmoothing. The second part of condition (A2) requires that the bandwidth b used

for estimating the second derivative in the bias correction goes to zero, but that it does not go to

zero faster than h.

Condition (A3) requires that the nuisance estimators be contained in uniformly bounded func-

tion classes, and in the case of gn, that the function class be uniformly bounded away from zero
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as well. Furthermore, (A3)(b) restricts the uniform entropy of these function classes. The uni-

form entropy condition for Fg is standard in empirical process theory since it guarantees that the

uniform entropy integral is finite. The uniform entropy condition for Fµ is slightly stronger in

order to control empirical U-processes associated with the integrated term
R
µn(a,w) dQn(w) in

the estimated pseudo-outcomes.

Cross-fitting could be used to avoid the entropy condition (A3)(b) (van der Laan et al., 2018;

Westling et al., 2020; Semenova and Chernozhukov, 2021; Colangelo and Lee, 2020). Estimators

based on cross-fitting have the same asymptotic distribution as those based on the full data, though

their finite-sample variance is often larger because the nuisance estimators are based on a smaller

training sample. However, cross-fitting carries a higher computational cost if the nuisance estima-

tors are estimated for each training set, and the nuisance estimators use a smaller training set.

Hence, it is of interest to determine whether the results can be obtained under entropy conditions.

Furthermore, the conditions for both classes notably do not restrict the nuisance estimator to VC

classes; hence, our conditions permit large function classes typically associated with data-adaptive

estimators.

Condition (A4) is a doubly-robust condition similar to, but slightly more flexible than, that

required by Kennedy et al. (2016a). It requires that at least one of µn and gn be consistent for

µ0 or g0, respectively, in a neighborhood of a0 and for almost all covariate values. It also requires

that the product of the rates of convergence of µn � µ0 and gn � g0 be faster than (nh)�1/2 in

order to ensure negligibility of a second-order remainder term. For points at which only one of the

nuisance estimators is consistent, that estimator must achieve this rate alone. Importantly, this

assumption does not require µn or gn to be estimated using parametric models; the required rate

of convergence can be attained when µn and gn are data-adaptive estimators. If the covariates are

low-dimensional, these rates can be guaranteed by many nonparametric estimators. For moder-

ate or high-dimensional covariates, the nuisance estimators need to take advantage of additional

smoothness or structure of the true nuisance parameters to ensure these rates of convergence are

attainable (Bonvini and Kennedy, 2022). In practice, we recommend leveraging multiple candidate

estimators in an ensemble estimator such as SuperLearner (van der Laan et al., 2007).

Finally, condition (A5) imposes smoothness conditions on features of the true distribution.

Most importantly, (A5)(a) requires that ✓0 be twice continuously di↵erentiable in a neighborhood
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of a0. Hence, as in Calonico et al. (2018), our estimator does not require additional smoothness to

yield asymptotically valid inference. Intuition for how this is possible, despite using a third-order

local polynomial estimator for the second derivative estimator, was provided in Section 2. The

bandwidth conditions permit the estimator to obtain the optimal rate of convergence relative to

its assumed smoothness. Conditions (A5)(c) and (A5)(d) require that Y possesses four bounded

moments, and that the conditional distribution of Y given A and W possesses a uniformly bounded

kth moment for some k > 2. They do not require that Y be uniformly bounded.

We note that conditions (A4) and (A5) assume that a0 is in the interior of the support of F0. If

a0 is on the boundary of the support, but f0(a0) > 0 and (A4) and (A5) hold in a neighborhood of

a0 intersected with the support of F0, then Theorem 1 continues to hold, except that the constant

VK,⌧ is di↵erent. However, since our variance estimator is based on the influence function, and the

influence function is valid for boundary points, our variance estimator is also consistent and the

resulting confidence intervals have valid asymptotic coverage for boundary points. This is analogous

to the validity of local linear estimators at the boundary (see, e.g., Section 3.2.5 of Fan and Gijbels,

1996 and Calonico et al., 2018).

3.2 Inference on causal e↵ects

The pointwise results of Theorem 1 allow us to construct asymptotically valid confidence intervals

for ✓0(a0) for any a0 for which the conditions hold. However, in many cases, it is also of interest to

draw simultaneous inference on a finite collection of values {✓0(a1), . . . , ✓0(am)}. This can be used,

for instance, to construct confidence intervals for causal e↵ects of the form ✓0(a2) � ✓0(a1). For

this, joint convergence of the estimator at several points is necessary. The next result demonstrates

joint convergence in distribution of our estimator at a finite collection of points.

Theorem 2. If (A1)–(A5) hold for each a0 in the finite and fixed collection {a1, . . . , am} and

nh5 = O(1), then

(nh)1/2

0

BBBB@

✓DB
n (a1)� ✓0(a1)

...

✓DB
n (am)� ✓0(am)

1

CCCCA

converges in distribution to a mean-zero multivariate normal distribution with diagonal covariance
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matrix and variances as defined in Theorem 1.

Theorem 2 demonstrates that the estimator is asymptotically independent at any two dis-

tinct points. This is because the covariance of the influence functions provided in Lemma 1, i.e.,

hP0(�⇤1,a1�
⇤
1,a2) converges to zero as h �! 0 for any a1 6= a2. Intuitively, this is due to the fact

that the estimator localizes around each point as the sample size increases. Although this justifies

estimating the covariance matrix using a diagonal matrix with variance estimators �2n(aj) on the

diagonal, we recommend instead estimating the (j, k) element of the covariance matrix using the

estimator hPn(�⇤n,aj�
⇤
n,ak). This is reminiscent of the influence-function based estimator of the co-

variance between two or more asymptotically linear estimators. Though the true covariance is going

to zero, it is not necessarily zero in finite samples, and we expect this estimator to better capture

the finite-sample covariance. In numerical studies, we demonstrate that this estimator can yield

substantial finite-sample improvements over an estimator that utilizes asymptotic independence.

To obtain inference on ⌫(✓0(a1), . . . , ✓0(am)) for a di↵erentiable function ⌫ : Rm ! R, we can com-

bine this covariance estimator with the delta method. Hence, Theorem 2 enables us to perform

asymptotically valid inference on e↵ects of the form ✓0(a1)� ✓0(a2) without undersmoothing.

As with Theorem 1, the conditions of Theorem 2 assume that {a1, . . . , am} are in the interior of

support of A, but the result still holds on the boundary, though with di↵erent asymptotic variances.

Furthermore, our variance estimator is consistent and the resulting confidence intervals have valid

asymptotic coverage for causal e↵ects involving boundary points.

3.3 Uniform inference

We now turn to the uniform behavior of the estimator over a compact set A0. Our goal is to

construct an asymptotically valid uniform confidence band for ✓0 over A0, by which we mean

random functions `�n, u
�
n : A0 7! R such that P0(✓0(a0) 2 [`�n(a0), u

�
n(a0)] for all a0 2 A0) �! 1�↵.

A standard approach to this problem would be to demonstrate that {(nh)1/2[✓DB
n (a0) � ✓0(a0)] :

a0 2 A0} converges weakly as a process to a tight limit in the space `1(A0) of uniformly bounded

functions on A0 equipped with the supremum norm. However, by the asymptotic independence

of (nh)1/2[✓DB
n (a1) � ✓0(a1)] and (nh)1/2[✓DB

n (a2) � ✓0(a2)] demonstrated in Theorem 2, the only

possible limit is a white noise process, which is not tight in `1(A0). Stupfler et al. (2016) explored
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this phenomenon in more depth for kernel density estimators. Instead, we will use the finite-sample

approximation theory developed in Chernozhukov et al. (2014). Using this theory and the first-

order representation ✓DB
n (a0)� ✓0(a0) = Pn�⇤1,a0 + op({nh}�1/2), we approximate the distribution

of supA0
(nh)1/2|✓DB

n � ✓0|/�n with that of maxAn |Zn,h,b|, where An is a finite subset of A0 and

conditional on the data, Zn,h,b is a multivariate Gaussian random vector on An with covariance

given by

Cov (Zn,h,b(a1), Zn,h,b(a2)) = hPn
�
�⇤n,a1�

⇤
n,a2

�
/ [�n(a1)�n(a2)] .

Defining t1�↵,n as the 1 � ↵ quantile of the conditional distribution of maxAn |Zn,h,b| given the

data, the lower and upper limits of our asymptotic (1 � ↵)-level confidence band for ✓0 over

a0 2 A0 are then given by `�n(a0) := ✓DB
n (a0) � (nh)�1/2t1�↵,n�n(a0) and u�n(a0) := ✓DB

n (a0) +

(nh)�1/2t1�↵,n�n(a0). Notably, the limits of this confidence band are proportional to the limits of

the pointwise confidence interval defined in (8).

We now introduce additional conditions we will use. For � > 0, we define A� as the �-

enlargement of A0, that is, the set of a 2 R such that there exists a0 2 A0 with |a� a0|  �.

(A6) The constant V := max{Vµ, Vg}, for Vµ and Vg defined in (A3) and the bandwidth h

satisfy n [h/(log n)]
2+V
2�V �! 1 and nh3 �! 1.

(A7) There exist µ1 2 Fµ, g1 2 Fg, �3 > 0 and subsets S 0
1,S 0

2, and S 0
3 of A�3 ⇥W such that

S 0
1 [ S 0

2 [ S 0
3 = A�3 ⇥W and:

(a) µ1(a,w) = µ0(a,w) for all (a,w) 2 S 0
1 [ S 0

3 and g1(a,w) = g0(a,w) for all

(a,w) 2 S 0
2 [ S 0

3;

(b) d(µn, µ1;A�3 ,S 0
1) = op

�
{nh log n}�1/2

�
;

(c) d(gn, g1;A�3 ,S 0
2)} = op

�
{nh log n}�1/2

�
;

(d) d(µn, µ1;A�3 ,S 0
3)d(gn, g1;A�3 ,S 0

3) = op
�
{nh log n}�1/2

�
; and

(e) d(µn, µ1;A�3 ,A⇥W) and d(gn, g1;A�3 ,A⇥W) are both op
⇣
h

V
2(2�V ) {log n}�

1
2�V

⌘
.

(A8) It holds that:

(a) ✓0 is twice continuously di↵erentiable with Hölder-continuous second derivative on

A�3 ;
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(b) f0 is Lipschitz continuous and bounded away from 0 and 1 on A�3 ;

(c) |Y | is P0-almost surely bounded; and

(d) a 7! E0
⇥
{⇠1(Y,A,W )� ✓0(A)}2 | A = a

⇤
is continuous on A�3 .

We now present a result demonstrating the asymptotic validity of our proposed uniform confidence

band. We define On := (O1, . . . , On) and !n := supa02A0
mina2An |a�a0| as the mesh of An in A0.

Theorem 3. If (A1)–(A3) and (A6)–(A8) hold, and nh5 = O(1), then

sup
a02A0

��✓DB
n (a0)� ✓0(a0)

�� = Op

⇣
{nh/ log n}�1/2

⌘

and supu,v2A0
|hPn(�⇤n,u�

⇤
n,v) � hP0(�⇤1,u�

⇤
1,v)| = op(1), and if !n = o (hp) for some p > 1 and

mnd = O(1) for some d 2 (0,1) as well, then

sup
t2R

����P0

✓
sup

a02A0

{nh}1/2
����
✓DB
n (a0)� ✓0(a0)

�n(a0)

����  t

◆
� P0

✓
max
a02An

|Zn,h,b(a0)|  t | On

◆���� = op(1).

Theorem 3 implies that our proposed uniform confidence band has asymptotically valid coverage.

This is because by definition, P0 (maxa02An |Zn,h,b(a0)|  t1�↵,n | On) = 1�↵, and combined with

Theorem 3 this implies that

P0 (✓0(a0) 2 [`�n(a0), u
�
n(a0)] for all a0 2 A0)

= P0

✓
sup

a02A0

{nh}1/2
����
✓DB
n (a0)� ✓0(a0)

�n(a0)

����  t1�↵,n

◆
�! 1� ↵.

To prove Theorem 3, we first use the results of Chernozhukov et al. (2014) to demonstrate that

the distribution of supa02A0

��Gnh1/2�⇤1,a0/�1(a0)
�� can be approximated by that of supA0

|Z1,h,b|,

where Z1,h,b is a mean-zero Gaussian process on A0 with covariance

Cov(Z1,h,b(a1), Z1,h,b(a2)) := hP0(�
⇤
1,a1�

⇤
1,a2)/[�1(a1)�1(a2)],

where �21(a0) := hP0(�⇤1,a0)
2 and Gn := n1/2(Pn � P0). Notably, the results of Chernozhukov

et al. (2014) cover situations where the empirical process is not converging weakly to a tight

limit, which is the case for our process. Since we also establish that supa02A0
|✓DB

n (a0)� ✓0(a0)�
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Pn�⇤1,a0 | = op
�
{nh log n}�1/2

�
, this means that the distribution of (nh)1/2 supA0

|✓DB
n � ✓0| can

also be approximated by that of supA0
|Z1,h,b|. Finally, we use the results of Chernozhukov et al.

(2015) to demonstrate that the distribution of supA0
|Z1,h,b| can be approximated by that of

maxAn |Zn,h,b|.

In order to show that supa02A0
|✓DB

n (a0) � ✓0(a0) � Pn�⇤1,a0 | = op
�
{nh log n}�1/2

�
, we need

faster rates of convergence for the remainder terms in the first-order expansion of our estimator.

For some remainder terms, this is straightforward. However, for the empirical process remainder

term (Pn � P0)(�⇤n,a0 � �⇤1,a0), it is a challenging task because the usual method of demonstrating

negligibility of this remainder, namely uniform asymptotic equicontinuity, only yields that it is

op
�
{nh}�1/2

�
. In order to achieve the extra {log n}�1/2 term in the rate, we use the local maximal

inequalities of van der Vaart and Wellner (2011). By assuming rates of convergence for µn�µ1 and

gn� g1 in condition (A7)(e), we are able to establish a rate of convergence for P0(�⇤n,a0 ��
⇤
1,a0)

2,

which then permits the use of the results of van der Vaart and Wellner (2011).

We now discuss the additional conditions used in Theorem 3 beyond those used in Theorem 1.

Condition (A6)(a) further restricts the exponent of the uniform entropy of the nuisance classes,

and is used to control the empirical process remainder using local maximal inequalities as discussed

above. If h is chosen at the optimal rate n�1/5, then the condition is satisfied if Vµ, Vg 2 (0, 4/3).

If undersmoothing is employed, then the requirement is stricter. The requirement that nh3 �! 1

can be relaxed somewhat, especially if Vµ is much less than 1, but not beyond nh2 �! 1. Hence,

severe undersmoothing in addition to debiasing is possible without sample-splitting if the nuisance

estimators fall in smaller classes, though we expect this is of less interest because a main point of

debiasing is to avoid undersmoothing.

Condition (A7) is a uniform version of the doubly-robust condition (A4). The rates of conver-

gence of the nuisance estimators on the sets on which they are consistent in parts (b), (c), and (d)

are slightly faster in order to establish the needed rate of convergence of the second-order remainder

term. Part (e) also requires a rate of convergence of the nuisance estimators towards their limiting

objects. As discussed above, this is also to enable the use of local maximal inequalities. If h is

chosen at the optimal rate n�1/5 and Vg < 4/3 as required by (A6)(a), then part (e) is satisfied if

d(µn, µ1;A�3 ,A⇥W) and d(gn, g1;A�3 ,A⇥W) are each op(n�1/5).

Condition (A8) places conditions on the true distribution that are stronger than those required
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in condition (A5) for pointwise convergence. The assumed smoothness of ✓0 and f0 is standard in

the literature (see, e.g., Assumption 3 in Calonico et al., 2018 and R1 in Cheng and Chen, 2019),

and we notably still do not require more than two derivatives for ✓0. Part (c) requires Y to be

uniformly bounded, which is again used to apply the local maximal inequality. However, this could

be relaxed to |Y | having an almost surely finite conditional qth moment for q > 4 at the expense

of stronger and more complicated restrictions on the complexity and rate of convergence of the

nuisance estimators.

Theorem 3 also requires that the mesh !n of An decrease faster than hp for some p > 1 but

that the number of points m in An increase at most at a polynomial rate. The former is to ensure

that the distribution of supAn
|Z1,h,b| is a good enough approximation to that of supA0

|Z1,h,b|,

while the latter is to ensure that the distribution of maxAn |Zn,h,b| is a good enough approximation

of maxAn |Z1,h,b|. These conditions can be simultaneously achieved, for instance, with a uniform

grid of n points on A0.

Conditions (A6) and (A8) imply that A0 does not contain boundary points of A. However, as

with Theorems 1 and 2, Theorem 3 continues to hold when A0 includes boundary points as long

as (A6) and (A8) hold on A�3 intersected with the support of F0. Hence, if the support of A is

compact and the marginal density of A is bounded away from zero on its support, we may be able

to construct asymptotically valid uniform confidence bands over the entire support of A.

4 Numerical studies

4.1 Study design

In this section, we conduct numerical studies to investigate the finite-sample behavior of the pro-

posed methods. We begin by describing our data-generating process. First, we generate covariates

W 2 R4 from a standard multivariate normal distribution. Given W , we then generate A from the

distribution whose conditional density function is given by p0(a | w) := I[0,1](a)[�(w)+2a{1��(w)}]

for �(w) := 0.1+1.8 expit(�Tw), where expit(x) := 1/(1+ e�x). This construction guarantees that

0.1 < p0(a | w) < 1.9 for all a 2 [0, 1] and w 2 R4 and that A is marginally Uniform(0, 1).

Finally, we generate Y given A = a and W = w as a Bernoulli random variable with mean

µ0(a,w) := expit
�
�T1 w̄ + �T2 w̄a+ �3a2 + �4T (a)

�
, where T (a) := sin(3⇡{2a � 1}/2)/(a2 + 1) and
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w̄ := (1, w). We set � = (�1,�1, 1, 1)T , �1 = (�1,�1,�1, 1, 1)T , �2 = (3,�1,�1, 1, 1)T , �3 = 1

and �4 = 1. Figure 17 in Supplementary Material displays ✓0 and its second derivative ✓(2)0 implied

by these settings. The resulting curve is non-monotonic and has large second derivatives for some

regions of [0, 1].

We simulated 1000 datasets using the above process for each n 2 {500, 1000, 2500}. To illustrate

the performance of the proposed procedures when data-adaptive estimators are used for the nuisance

functions, we used SuperLearner (van der Laan et al., 2007). To estimate µ0, we used SuperLearner

with a library consisting of generalized linear models, multivariate adaptive regression splines, and

generalized additive models. To estimate g0, we used the SuperLearner procedure proposed by

Dı́az Muñoz and van der Laan (2011) with the same library. To investigate double-robustness, we

considered using these estimators but omitting W1 and W2 from the estimation procedure. We

then considered three settings: (1) both µn and gn use all covariates, (2) µn uses all covariates,

while gn only uses W3 and W4, and (3) gn uses all covariates, while µn only uses W3 and W4.

We estimated ✓0 using both the local linear estimator of Kennedy et al. (2016a) and our debiased

estimator. For the local linear estimator, we considered three bandwidth selection mechanisms.

First, we used the leave-one-out cross-validation bandwidth selection proposed in Section 3.5 of

Kennedy et al. (2016a), which we refer to as “Local linear (CV)”. Second, we used the plug-

in methodology described in Section 2.5, which we refer to as “Local linear (PI)”. Lastly, we

undersmoothed the bandwidth obtained by LOOCV by dividing it by log10(n), which we refer to

as “Local linear (US)”. For the debiased estimator, we used all three selection procedures described

in Section 2.5. We refer to the estimator with LOOCV bandwidths (hcv, bcv) as “Debiased (CV)”,

the estimator with LOOCV bandwidths (hcv,1, hcv,1) selected by minimizing IMSEcv over h alone

with b = h as “Debiased (CV, h=b)”, and the estimator with bandwidths (hplug�in, hplug�in) based

on the plug-in methodology as “Debiased (PI)”.

We constructed 95% confidence intervals for each a0 2 {0.0, 0.05, 0.1, . . . , 0.95, 1.0}. For the

local linear estimator, we constructed confidence intervals based on the influence function proposed

by Kennedy et al. (2016b), For the debiased estimator, we used equation (8). We also considered

using a plug-in estimator of the asymptotic variance VK,⌧f0(a0)�1�20(a0) established in Theorem 1.

We estimated the marginal density f0(a0) using a kernel density estimator and estimated �20(a0) by

regressing {[⇠n(Yi, Ai,Wi) � ✓LLn (Ai)]2; i = 1, . . . , n} on A1, . . . , An using a local linear estimator.
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Figure 1: Box plots of the bandwidth h selected by the di↵erent procedures.

We refer to the corresponding confidence intervals as “Debiased (PI+AV)”. We constructed 95%

confidence intervals for ✓0(a0)� ✓0(0.5) for a0 2 {0.525, 0.55, . . . , 1.0} using our estimator and both

variance estimators described Section 3.2. Finally, we constructed a 95% confidence band over

A0 = [0, 1] using the method described in Section 3.3. Notably, we considered the properties of

the estimator and confidence intervals both at interior and boundary points, and we considered

confidence bands that include the boundary points.

4.2 Results of numerical studies

For ease of viewing, we focus here on the results for n = 1000. Results for n = 500 and n = 2500 are

provided in Supplementary Material. Figure 1 displays box plots of the bandwidths h selected by

the di↵erent procedures. Undersmoothing tends to select the smallest bandwidth, followed by the

LOOCV methods, and the plug-in method tends to select the largest bandwidth. Figure 2 displays

the pointwise empirical bias and variance of the two methods. As expected, the magnitude of the

bias of both local linear estimators is generally larger than that of all three debiased estimators

unless undersmoothing is employed. In particular, the local linear estimator has large bias where

the second derivative of ✓0 is large. The bias of the debiased estimators and that of the local linear

estimator with undersmoothing are generally comparable.

The variance of the local linear estimator is smaller than that of the debiased estimator when

using the same bandwidth selection procedure. At interior points, the variance of the local linear

estimator is about one-half that of the debiased estimator with the cross-validated bandwidth, which

agrees with the constants computed after Theorem 1. The variance of the debiased estimator with
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Figure 2: Top: squared empirical bias of the estimators on the log scale. The local linear estimator
(shown in red) has large bias at points where the magnitude of the second derivative is large.
Bottom: empirical variance of the estimators on the log scale.

the two LOOCV bandwidth selection procedures is comparable. The variance of both estimators

using plug-in bandwidth selection is smaller than when using LOOCV bandwidth selection, which

is due to the plug-in bandwidths being larger on average. The variance of the debiased estimator

using the plug-in method has comparable variance with the local linear using LOOCV bandwidth

selection, and is much smaller than that of the local linear estimator using undersmoothing. The

variance of all estimators is larger at the boundaries and when the outcome regression model is

misspecified.

Figure 3 displays the empirical coverage of pointwise 95% confidence intervals for ✓0(a0). The

asymptotic bias of the local linear estimator results in poor coverage at points where the sec-

ond derivative is large in magnitude unless undersmoothing is employed. The debiased estimator

has generally good coverage for all bandwidth selection procedures considered when the influence

function-based variance estimator is used. The debiased estimators with LOOCV bandwidth se-

lection have good coverage despite having larger variance because the influence function-based

variance estimator accounts for the bandwidth. The debiased methods have good coverage at the

boundaries, but slightly lower coverage near the boundaries. This issue is not present when using

parametric nuisance estimators (shown in the Supplementary Material), so it could be due to the
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Figure 3: Empirical coverage of 95% pointwise confidence intervals based on the debiased local
linear estimator and the local linear estimator. PI, CV, and US correspond to plug-in, cross-
validation, and undersmoothing respectively, and PI + AV corresponds to the plug-in bandwidth
with the direct plug-in estimator of the asymptotic variance.

finite-sample performance of data-adaptive nuisance estimators over the corresponding region. The

debiased estimator with confidence intervals based on the plug-in estimator of the asymptotic vari-

ance has worse coverage, especially near the boundary, which further illustrates the value of using

the influence function-based variance estimator.

Figure 4 displays the empirical coverage of confidence intervals for the causal e↵ect ✓0(a)�✓0(0.5)

based on the debiased estimator and the two variance estimators described following Theorem 2.

The confidence intervals based on the variance estimator using asymptotic independence (top row)

are conservative when a is close to 0.5 because the finite-sample covariance between the estimators

is positive when the distance between the evaluation points is small. When a is further from 0.5,

the confidence intervals have better coverage. The confidence intervals using the influence function-

based variance estimator (second row) have much better coverage for all values of a, especially at

large sample sizes, because the variance estimator captures some of the finite-sample covariance

between the estimators. For both approaches, the plug-in method is conservative when the outcome

regression is misspecified.

Finally, Figure 5 displays the empirical coverage of the uniform confidence bands. For this

simulation, we considered the augmented set of sample sizes n 2 {500, 750, 1000, 1250, 1500, 2000}.

The plug-in bandwidth selection method exhibits slight undercoverage for sample sizes less than

1000, but generally performs well. However, both bandwidth selection methods based on cross-

validation have serious undercoverage at sample sizes less than 1500. We conjecture that this
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Figure 4: Empirical coverage of 95% pointwise confidence intervals for ✓0(a)� ✓0(0.5) based on the
debiased estimator. The intervals in the top row use the sum of two variance estimators; those in
the bottom row use the influence function-based variance estimator.

undercoverage is a result of the bandwidth selected using LOOCV being smaller on average than

that selected by the plug-in methodology. Smaller bandwidths result in a process with smaller

correlation between points and whose supremum is stochastically larger. This results in a slower

rate of convergence for the approximation in Theorem 3. This further illustrates the benefit of

permitting bandwidths to be selected at the optimal rate.

Figure 5: Empirical coverage of 95% uniform confidence bands based on the debiased estimator.

An important conclusion of the numerical studies is that the plug-in bandwidth selection method

with h = b consistently demonstrates good coverage for all inferential tasks we examined. Addi-
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tionally, the plug-in method yields smaller variance and narrower confidence intervals than the

other debiased methods and the undersmoothed local linear estimator. Based on these findings, we

recommend using the plug-in method with h = b for bandwidth selection.

The Supplementary Material contains additional results from the numerical study, including

the results presented here for more sample sizes, median width of confidence intervals, and results

when the nuisance estimators are based on parametric models.

5 E↵ect of fine particulate matter on cardiovascular mortality

Fine particulate matter is a common air pollutant, and its concentration in the United States is

regulated by the Environmental Protection Agency under the Clean Air Act. Numerous scientific

studies have reported an association between exposure to air pollution and adverse health outcomes.

The reduction in the concentration of particulate matter in the atmosphere over the past several

decades is considered one of the contributors to the declining cardiovascular mortality rate (Pope

et al., 2002, 2009; Correia et al., 2013; Roth et al., 2017; Corrigan et al., 2018).

Wyatt et al. (2020a) recently conducted an observational study to investigate the association

between particulate matter less than 2.5 microns in diameter (PM2.5) and cardiovascular mortality

rate. Socioeconomic factors are a potential confounding of this relationship because they impact

both exposure to PM2.5 and cardiovascular mortality. Using data recorded at the county level in

the United States between 1990 and 2010, the authors found a positive association between PM2.5

and cardiovascular mortality rate after adjusting for socioeconomic characteristics using regression

models.

We used the publicly available data compiled by Wyatt et al. (2020b) to estimate the covariate-

adjusted relationship between PM2.5 and cardiovascular mortality rate using the methods pre-

sented here. The data contains information about n = 2132 counties. Our exposure A was the

county-level annual PM2.5 (in µg/m3) averaged over twenty observations from 1990 to 2010, as

measured by US Environmental Protection Agency’s Community Multi-scale Air Quality modeling

system (Gan et al., 2015). Our outcome Y was county-level cardiovascular mortality rate (CMR,

deaths/100,000 people) in 2010, as measured by the National Center for Health Statistics. Our

covariates W consisted of county-level socioeconomic factors based on 1990 and 2000 census data:
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population, households below the poverty level, proportion of female-headed households with de-

pendent children, vacant housing units, owner-occupied housing units, median household income,

high education rate, unemployment rate, and density of medical facilities. We note that there are

very likely to be violations of the stable unit treatment value assumption in this data since air

pollution in one county could impact the health of residents in neighboring counties. In addition,

the data are unlikely to be independent. It would be of interest in future research to extend the

methods presented here to deal with treatment spillover and dependent data.

We estimated the outcome regression using SuperLearner (van der Laan et al., 2007) with a

library consisting of generalized linear models, multivariate adaptive regression splines, generalized

additive models, and regression trees. We estimated the conditional density using the version

of SuperLearner developed by Dı́az Muñoz and van der Laan (2011) with the same library. We

used the Epanechnikov kernel and selected the bandwidth h using the plug-in method discussed in

Section 2.5 and set b = h. We focus on values of PM2.5 between 2.5µg/m3 and 11.5µg/m3, which

approximately corresponds to the 0.01 and 0.99 quantiles of the marginal empirical distribution of

PM2.5, respectively.

Figure 6: Estimated covariate-adjusted relationship between the concentration of fine particulate
matter (PM2.5) in the atmosphere and cardiovascular mortality rate at the county level. The
regression function is adjusted for socioeconomic factors. The figure shows 95% pointwise confidence
intervals as vertical lines and a 95% uniform confidence band as dashed lines. The right panel
displays the estimated regression function based on the local linear estimator.

Figure 6 displays the estimated covariate-adjusted regression function using our debiased method.

The result based on the local linear estimator with the plug-in bandwidth selection is also provided
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for comparison purposes. Pointwise 95% confidence intervals are displayed using vertical lines, and

a 95% uniform confidence band is displayed using dashed lines. The adjusted expected CMR ap-

pears to be monotone increasing as a function of PM2.5, and its rate of increase is fastest for PM2.5

values between roughly 6 and 8 µg/m3. Our method shows larger uncertainty for PM2.5 levels

below 4 µg/m3 and above 9 µg/m3 due to the low density of PM2.5. It is unclear if average CMR

increases or plateaus over these regions. We estimate that increasing PM2.5 from 6 to 8 µg/m3

corresponds to an increase of 10.3 in expected CMR after adjusting for socioeconomic factors (95%

CI: 7.6–12.9), and increasing PM2.5 from 5 to 9 µg/m3 corresponds to an increase of 17.5 in ex-

pected CMR (95% CI: 14.8–20.2). Our conclusions generally agree with those reported in Wyatt

et al. (2020a), but our flexible approach to estimation and principled approach to inference ensure

that the conclusions are not the result of statistical bias. We also note that in this application, it

may be sensible to assume the dose-response function is monotone increasing, so the methods of

Westling et al. (2020) could be used instead.

6 Concluding remarks

In this article, we studied nonparametric inference for a covariate-adjusted regression function. This

problem has wide applications in observational studies when the exposure of interest is continuous.

In particular, under appropriate causal assumptions, the covariate-adjusted regression function

corresponds to the average counterfactual outcome had all units been assigned to the same fixed

exposure level. We presented conditions under which our proposed procedures yield valid pointwise

and uniform inference. Our conditions do not require undersmoothing and permit the use of

data-adaptive estimators for nuisance functions, and our results do not require more smoothness

conditions than the original local linear estimator.

Our method requires the choice of two tuning parameters: the bandwidth h of the original

local linear estimator and the bandwidth b of the bias correction. We considered several methods

of selecting these tuning parameter and compared them in numerical studies. In practice, we

suggest choosing h using the plug-in method and setting b = h because this method had the best

overall confidence interval and band coverage rates while also maintaining the lowest variance and

narrowest median confidence interval length among the debiased methods.
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There are several natural extensions to our work. Cross-fitting the nuisance estimators would

remove the empirical process conditions. Debiasing higher-order local polynomial estimators would

yield faster rates of convergence under stronger smoothness assumptions. Debiased estimators of

derivatives of the parameter could be obtained using similar methodology. Debiasing a higher-order

corrected estimator would yield weaker assumptions for the rates of convergence of the nuisance

estimators (Bonvini and Kennedy, 2022). Alternative procedures for targeting the smoothed pa-

rameter, such as targeted minimum loss-based estimation (van der Laan and Rose, 2011) could yield

improved finite-sample or asymptotic properties of the methods. Finally, twicing kernels (Newey

et al., 2004; Zhang and Xia, 2012) may be an alternative approach to bias correction.
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Supplementary Material

Supplement A Guide to notation

We recall the data unit is O := (Y,A,W ), and takes value in the sample space Y ⇥ A ⇥W , where Y ✓ R, A ✓ R,
and W ✓ Rd. We observe n IID replicates of this data unit, which we call O1, . . . , On, and we define the unknown
distribution of Oi as P0. We index objects and functions by P when they depend on a distribution P generating
O. We index by 0 when P = P0. We index by n when the object is random depending on the sample O1, . . . , On.
Finally, we index by 1 when the object is a limit of an object indexed by n that may or may not be equal to its
true counterpart depending on P0.

• FP (a) := P (A  a) and fP (a) :=
@
@aFP (a) is the marginal CDF and PDF of A under P

• QP (X ) := P (W 2 X ) is the marginal distribution of W under P

• µP (a,w) := EP (Y | A = a,W = w) as the outcome regression function under P

• ✓P (a) := EP [µP (a,W )] =
R
µP (a,w) dQP (w) is the G-computed regression function

• gP (a,w) :=
⇥

@
@aP (A  a | W = w)

⇤
/fP (a) is the standardized conditional density of A given W = w

• Pf :=
R
f(o) dP (o)

• k�kP,q := (P |�|q)1/q

• k�kZ := supz2Z
|�(z)|

• Pn is the empirical probability measure corresponding to O1, . . . , On

• Gn := n1/2(Pn � P0)

• Qn is the marginal empirical distribution of W1, . . . ,Wn

• Fn is the marginal empirical distribution of A1, . . . , An

• µn is an estimator of µ0 with limit µ1

• gn is an estimator of g0 with limit g1

•  P (y, a, w) := {y � µP (a,w)}/gP (a,w)
•  n(y, a, w) := {y � µn(a,w)}/gn(a,w)
•  1(y, a, w) := {y � µ1(a,w)}/g1(a,w)

• ⇠P (y, a, w) :=  P (y, a, w) +
R
µP (a, w̄) dQP (w̄)

• ⇠n(y, a, w) :=  n(y, a, w) +
R
µn(a, w̄) dQn(w̄)

• ⇠1(y, a, w) :=  1(y, a, w) +
R
µ1(a, w̄) dQ0(w̄)

• Kh,a0(a) := K((a� a0)/h)/h for K the kernel function

• cj :=
R
ujK(u) du

• c⇤j :=
R
ujK2(u) du

• c⇤j,⌧ :=
R
ujK(u)K(⌧u) du

• Sk := (ci+j�2)1i,jk; i.e. the k ⇥ k matrix with (i, j) element ci+j�2

• S⇤

⌧ :=
R
(1, u)T (1, ⌧u, [⌧u]2, [⌧u]3)K(u)K(⌧u) du

• e1 := (1, 0)T , e3 := (0, 0, 1);

• wh,a0,j(a) :=
�
1, [a� a0]/h, . . . , [a� a0]j/hj

�T
for an integer j � 1

• DP,h,a0,j := P
⇣
wh,a0,jKh,a0w

T
h,a0,j

⌘
for an integer j � 1

• Dn,h,a0,j := Pn

⇣
wh,a0,jKh,a0w

T
h,a0,j

⌘
for an integer j � 1

• cP,h,a0,2 := e1D
�1
P,h,a0,1

P (w̃h,a0,1Kh,a0) for w̃h,a0,1(a) := wh,a0,1(a)[(a� a0)/h]2
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• cn,h,a0,2 := e1D
�1
n,h,a0,1

Pn(w̃h,a0,1Kh,a0)

• �P,h,b,a0(a) := eT1 D
�1
P,h,a0,1

wh,a0,1(a)Kh,a0(a)� eT3 cP,h,a0,2(h/b)
2D�1

P,b,a0,2
wb,a0,2(a)Kb,a0(a)

• �n,h,b,a0(a) := eT1 D
�1
n,h,a0,1

wh,a0,1(a)Kh,a0(a)� eT3 cn,h,a0,2(h/b)
2D�1

n,b,a0,2
wb,a0,2(a)Kb,a0(a)

• ✓P,h,b(a0) := ✓DB
P (a0) = P (�P,h,b,a0✓P )

• ✓n,h,b(a0) := ✓DB
n (a0) = Pn(�n,h,b,a0⇠n)

• �P,h,b,a0(a) := eT1 D
�1
P,h,a0,1

wh,a0,1(a)Kh,a0(a)w
T
h,a0,1(a)D

�1
P,h,a0,1

P (wh,a0,1Kh,a0✓P )

� eT3 cP,h,a0,2(h/b)
2D�1

P,b,a0,2
wb,a0,2(a)Kb,a0(a)w

T
b,a0,2(a)D

�1
P,b,a0,2

P (wb,a0,2Kb,a0✓P )

+ eT1 (h/b)
2D�1

P,h,a0,1

h
w̃h,a0,1(a)� wh,a0,1(a)w

T
h,a0,1(a)D

�1
P,h,a0,1

P (w̃h,a0,1Kh,a0)
i
Kh,a0(a)

⇥ eT3 D
�1
P,b,a0,2

P (wb,a0,2Kb,a0✓P )

• �n,h,b,a0(a) := eT1 D
�1
n,h,a0,1

wh,a0,1(a)Kh,a0(a)w
T
h,a0,1(a)D

�1
n,h,a0,1

Pn (wh,a0,1Kh,a0⇠n)

� eT3 cn,h,a0,2(h/b)
2D�1

n,b,a0,2
wb,a0,2(a)Kb,a0(a)w

T
b,a0,2(a)D

�1
n,b,a0,2

Pn (wb,a0,2Kb,a0⇠n)

+ eT1 (h/b)
2D�1

n,h,a0,1

h
w̃h,a0,1(a)� wh,a0,1(a)w

T
h,a0,1(a)D

�1
n,h,a0,1

Pn (w̃h,a0,1Kh,a0)
i
Kh,a0(a)

⇥ eT3 D
�1
n,b,a0,2

Pn(wb,a0,2Kb,a0⇠n)

• �⇤P,h,b,a0
(y, a, w) := �P,h,b,a0(a)⇠P (y, a, w)� �P,h,b,a0(a)

+

Z
�P,h,b,a0(ā)

⇢
µP (ā, w)�

Z
µP (ā, w̄) dQP (w̄)

�
dFP (ā)

• �⇤
1,h,b,a0

(y, a, w) := �0,h,b,a0(a)⇠1(y, a, w)� �0,h,b,a0(a)

+

Z
�0,h,b,a0(ā)

⇢
µ1(ā, w)�

Z
µ1(ā, w̄) dQ0(w̄)

�
dF0(ā)

• �⇤n,h,b,a0
(y, a, w) := �n,h,b,a0(a)⇠n(y, a, w)� �n,h,b,a0(a)

+

Z
�n,h,b,a0(ā)

⇢
µn(ā, w)�

Z
µn(ā, w̄) dQn(w̄)

�
dFn(ā)

• ⌧n := hn/bn

• �2
0(a) := E0

h
{⇠1(Y,A,W )� ✓0(A)}2 | A = a

i

• �2
1,h,b(a0) := hP0

⇣
�⇤
1,h,b,a0

⌘2
.

• �2
n,h,b(a0) := hPn

⇣
�⇤n,h,b,a0

⌘2
.

• !n := supa02A0
infa2An |a0 � an|.

Throughout, we use . to mean “less than up to a constant not depending on n, h, or b.
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Supplement B Conditions

Here, we re-state the conditions we use in our asymptotic results for convenience. These are the same conditions as
stated in the main text.

(A1) The kernel K is a mean-zero, symmetric, nonnegative, and Lipschitz continuous density function with
support contained in [�1, 1]. Additionally, K belongs to the linear span of the functions whose subgraph
can be represented as a finite number of Boolean operations among sets of the form {(s, u) 2 R ⇥ R :
p(s, u)  '(u)} where p is a polynomial and ' is an arbitrary real function.

(A2) As n �! 1, the bandwidths h = hn and b = bn satisfy hn �! 0, nhn �! 1, bn �! 0, and
⌧n := hn/bn �! ⌧ 2 [0,1).

We define the following pseudo-distance for any P0-square integrable functions �1, �2 : A ⇥ W 7! R, A0 ⇢ A,
and S ✓ A⇥W :

d(�1, �2;A0,S) := sup
a2A0

�
E0[IS(a,W ){�1(a,W )� �2(a,W )}2]

 1/2

We also define B"(a0) as the closed ball of radius " centered at a0.

(A3) There exist classes of functions Fµ and Fg such that almost surely for all n large enough, µ0, µn 2 Fµ,
g0, gn 2 Fg, and for some constants Cj 2 (0,1), Vµ 2 (0, 1), and Vg 2 (0, 2):

(a) kµk1  C1 for all µ 2 Fµ, and k1/gk1  C2 and kgk1  C3 for all g 2 Fg;

(b) supQ logN(",Fµ, L2(Q))  C4"�Vµ and supQ logN(",Fg, L2(Q))  C5"�Vg for all " > 0.

(A4) There exist µ1 2 Fµ and g1 2 Fg, �1 > 0, and subsets S1,S2 and S3 of B�1(a0) ⇥ W such that
S1 [ S2 [ S3 = B�1(a0)⇥W and:

(a) µ1(a,w) = µ0(a,w) for all (a,w) 2 S1 [ S3 and g1(a,w) = g0(a,w) for all (a,w) 2 S2 [ S3;

(b) d(µn, µ1;B�1(a0),S1) = op
�
{nh}�1/2

�
, and d(gn, g1;B�1(a0),S1) = op(1);

(c) d(gn, g1;B�1(a0),S2)} = op
�
{nh}�1/2

�
, and d(µn, µ1;B�1(a0),S2) = op(1);

(d) d(µn, µ1;B�1(a0),S3)d(gn, g1;B�1(a0),S3) = op
�
{nh}�1/2

�
.

(A5) It holds that:

(a) ✓0 is twice continuously di↵erentiable on B�1(a0);

(b) f0 is positive and Lipschitz continuous on B�1(a0);

(c) there exist �2 > 0 and C6 < 1 such that E0[|Y |2+�2 | A = a,W = w]  C6 for all a 2 B�1(a0) and
P0-almost every w and E0[|Y |4] < 1; and

(d) a 7! �2
0(a) := E0

⇥
{⇠1(Y,A,W )� ✓0(A)}2 | A = a

⇤
is bounded and continuous on B�1(a0), where

⇠1 := ⇠µ1,g1,Q0 is the limiting pseudo-outcome.

Let A0 be a compact subset of A over which we wish to perform uniform inference. For � > 0 define A� as the
�-enlargement of A0; that is, the set of a 2 R such that there exists a0 2 A0 with |a � a0|  �. We then assume
there exists �3 > 0 such that the following hold.

(A6) The constant V := max{Vµ, Vg}, for Vµ and Vg defined in (A3) and the bandwidth h satisfies n [h/(log n)]
2+V
2�V �!

1 and nh3 �! 1.

(A7) There exist µ1 2 Fµ, g1 2 Fg, �3 > 0 and subsets S 0

1,S 0

2, and S 0

3 of A�3 ⇥W such that S 0

1 [ S 0

2 [ S 0

3 =
A�3 ⇥W and:

(a) µ1(a,w) = µ0(a,w) for all (a,w) 2 S 0

1 [ S 0

3 and g1(a,w) = g0(a,w) for all (a,w) 2 S 0

2 [ S 0

3;

(b) d(µn, µ1;A�3 ,S 0

1) = op
�
{nh log n}�1/2

�
;

(c) d(gn, g1;A�3 ,S 0

2)} = op
�
{nh log n}�1/2

�
;

(d) d(µn, µ1;A�3 ,S 0

3)d(gn, g1;A�3 ,S 0

3) = op
�
{nh log n}�1/2

�
.

(e) d(µn, µ1;A�3 ,A⇥W) and d(gn, g1;A�3 ,A⇥W) are both op
⇣
h

V
2(2�V ) {log n}�

1
2�V

⌘

(A8) It holds that:
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(a) ✓0 is twice continuously di↵erentiable with Hölder-continuous second derivative on A�3 ;

(b) f0 is Lipschitz continuous and bounded away from 0 and 1 on A�3 ;

(c) |Y | is P0-almost surely bounded; and

(d) a 7! E0

⇥
{⇠1(Y,A,W )� ✓0(A)}2 | A = a

⇤
is continuous on A�3 .
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Supplement C E�cient influence function of the local parameter

Proof of Lemma 1. We let {P" : |"|  �} be a one-dimensional quadratic mean di↵erentiable path contained in
the model M such that P✏=0 = P0. We let (y, a, w) 7! ˙̀

0(y, a, w) be the score function of the path at " = 0,
which necessarily satisfies P0

˙̀
0 = 0 and P0

˙̀2
0 < 1. We define the marginal score functions ˙̀

0(a,w) := E0[ ˙̀0 |
A = a,W = w], ˙̀

0(a) := E0[ ˙̀0 | A = a], and ˙̀
0(w) := E[ ˙̀0 | W = w], which all have mean zero under P0 by the

tower property. We also define the conditional score function ˙̀
0(y | a,w) := ˙̀

0(y, a, w) � ˙̀(a,w), which satisfies
E0[ ˙̀0(Y | A,W ) | A = a,W = w] = 0 for P0-almost every (a,w). For convenience, we denote objects depending on
P" with a subscript ".

To demonstrate that �⇤0,h,b,a0
is the nonparametric e�cient influence function of ✓0,h,b(a0) = ✓DB

0 (a0), we show
that

@

@"
✓",h,b(a0)

����
"=0

= P0(�
⇤

0,h,b,a0
˙̀
0)

for each fixed h, b > 0 and a0 2 A. We define

✓P,h(a0) := eT1 D
�1
P,h,a0,1

P0 (wh,a0,1Kh,a0✓P ) and

✓00P,b(a0) := 2b�2eT3 D
�1
P,b,a0,2

P (wb,a0,2Kb,a0✓P ) ,

so that ✓P,h,b(a0) can be expressed as

✓P,h,b(a0) = ✓P,h(a0)� 1
2cP,h,a0,2h

2✓00P,b(a0).

Therefore,

@

@"
✓",h,b(a0)

����
"=0

=
@

@"
✓",h(a0)

����
"=0

� 1
2

@

@"
c",h,a0,2

����
"=0

h2✓00P,b(a0)� 1
2cP,h,a0,2h

2 @

@"
✓00",b(a0)

����
"=0

.

We now provide the derivation of @
@"✓",h(a0)

��
"=0

. We first have by the product rule that

@

@"
✓",h(a0)

����
"=0

=
@

@"
eT1 D

�1
",h,a0,1

P" (wh,a0,1Kh,a0✓")

����
"=0

=
@

@"
eT1 D

�1
",h,a0,1

����
"=0

P0 (wh,a0,1Kh,a0✓0) + eT1 D
�1
0,h,a0,1

@

@"
P" (wh,a0,1Kh,a0✓0)

����
"=0

+ eT1 D
�1
0,h,a0,1

@

@"
P0 (wh,a0,1Kh,a0✓")

����
"=0

.

For the first term, by the definition of DP,h,a0 as the mean of a fixed and uniformly bounded function and the chain
rule, we have

@

@"
eT1 D

�1
",h,a0,1

����
"=0

= �eT1 D
�1
0,h,a0,1

@

@"
D",h,a0,1

����
"=0

D�1
0,h,a0,1

= �eT1 D
�1
0,h,a0,1

P0

⇣
wh,a0,1Kh,a0w

T
h,a0,1

˙̀
0

⌘
D�1

0,h,a0,1
.

Similarly, for the second term, we have

@

@"
P" (wh,a0,1Kh,a0✓0)

����
"=0

= P0

⇣
wh,a0,1Kh,a0✓0 ˙̀0

⌘
.
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For the third term, we have by definition of ✓P

@

@"
P0 (wh,a0,1Kh,a0✓")

����
"=0

=
@

@"

Z
wh,a0,1(a)Kh,a0(a)

ZZ
y dP"(y | a,w) dQ"(w) dF0(a)

����
"=0

=

Z
wh,a0,1(a)Kh,a0(a)

ZZ
y ˙̀0(y | a,w) dP0(y | a,w) dQ0(w) dF0(a)

+

Z
wh,a0,1(a)Kh,a0(a)

ZZ
y dP0(y | a,w) ˙̀0(w) dQ0(w) dF0(a).

By properties of score functions and since g0(a,w) > 0 for F0-a.e. a such that |a � a0|  h and Q0-a.e. w, the first
term equals

ZZZ
wh,a0,1(a)Kh,a0(a)

y

g0(a,w)
˙̀
0(y | a,w) dP0(y, a, w)

=

ZZZ
wh,a0,1(a)Kh,a0(a)

y � µ0(a,w)

g0(a,w)
˙̀
0(y, a, w) dP0(y, a, w).

The second term equals
ZZ

wh,a0,1(a)Kh,a0(a)µ0(a,w) dF0(a) ˙̀0(w) dQ0(w) =

Z
⌘0(w) ˙̀0(w) dQ0(w)

=

ZZZ
⌘0(w) ˙̀0(y, a, w) dP0(y, a, w),

where ⌘0(w) :=
R
wh,a0,1(a)Kh,a0(a)µ0(a,w) dF0(a). Putting it together, we have that @

@"✓",h(a0)
��
"=0

equals

� eT1 D
�1
0,h,a0,1

P0

⇣
wh,a0,1Kh,a0w

T
h,a0,1

˙̀
0

⌘
D�1

0,h,a0,1
P0 (wh,a0,1Kh,a0✓0)

+ eT1 D
�1
0,h,a0,1

P0

⇣
wh,a0,1Kh,a0✓0 ˙̀0

⌘

+ eT1 D
�1
0,h,a0,1

ZZZ ⇢
wh,a0,1(a)Kh,a0(a)

⇢
y � µ0(a,w)

g0(a,w)

�
+ ⌘0(w)

�
˙̀
0(y, a, w)

�
dP0(y, a, w)

= eT1 D
�1
0,h,a0,1

ZZZ ⇢
wh,a0,1(a)Kh,a0(a)

⇢
y � µ0(a,w)

g0(a,w)
+ ✓0(a)� �0,h,a0(a)

�
+ ⌘0(w)

�
˙̀
0(y, a, w)

�
dP0(y, a, w)

where �0,h,a0(a) := wT
h,a0,1

(a)D�1
0,h,a0,1

P0 (wh,a0,1Kh,a0✓0). Therefore, the uncentered influence function of ✓P,h(a0)
at P = P0 is

�0,h,a0(y, a, w) := eT1 D
�1
0,h,a0,1


wh,a0,1Kh,a0

⇢
y � µ0(a,w)

g0(a,w)
+ ✓0(a)� �0,h,a0(a)

�
+ ⌘0(w)

�

Noting that
P0 (wh,a0,1Kh,a0�0,h,a0) = P0⌘0 = P0 (wh,a0,1Kh,a0✓0) ,

the mean of �0,h,a0 is

P0�0,h,a0 = eT1 D
�1
0,h,a0,1

P0 (wh,a0,1Kh,a0✓0) .
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Thus, the centered influence function of ✓P,h at P0 is

�⇤0,h,a0
(y, a, w) = �0,h,a0(y, a, w)� P0�0,h,a0

= eT1 D
�1
0,h,a0,1

wh,a0,1(a)Kh,a0(a)

⇢
y � µ0(a,w)

g0(a,w)
+ ✓0(a)� �0,h,a0(a)

�

+ eT1 D
�1
0,h,a0,1

Z
wh,a0,1(a)Kh,a0(a){µ0(a,w)� ✓0(a)} dF0(a)

By a similar argument, the influence function of ✓00P,b(a0) at P0 is

�⇤0,b,a0
(y, a, w) = 2b�2eT3 D

�1
0,b,a0,2

wb,a0,2(a)Kb,a0(a)

⇢
y � µ0(a,w)

g0(a,w)
+ ✓0(a)� �0,b,a0(a)

�

+ 2b�2eT3 D
�1
0,b,a0,2

Z
wb,a0,2(a)Kb,a0(a){µ0(a,w)� ✓0(a)} dF0(a)

where �0,b,a0(a) := wT
b,a0,2

(a)D�1
0,b,a0,2

P0 (wb,a0,2Kb,a0✓0). We next have

@

@"
c",h,a0,2

����
"=0

=
@

@"
eT1 D

�1
",h,a0,1

P" (w̃h,a0,1Kh,a0)

����
"=0

=
@

@"
eT1 D

�1
",h,a0,1

����
"=0

P0 (w̃h,a0,1Kh,a0) + eT1 D
�1
0,h,a0,1

@

@"
P" (w̃h,a0,1Kh,a0)

����
"=0

= �eT1 D
�1
0,h,a0,1

P0

⇣
wh,a0,1Kh,a0w

T
h,a0,1

˙̀
0

⌘
D�1

0,h,a0,1
P0 (w̃h,a0,1Kh,a0) + eT1 D

�1
0,h,a0,1

P0

⇣
w̃h,a0,1Kh,a0

˙̀
0

⌘
.

Hence, the uncentered influence function of cP,h,a0,2 is

�c0,h,a0
(a) = �eT1 D

�1
0,h,a0,1

wh,a0,1(a)Kh,a0(a)w
T
h,a0,1(a)D

�1
0,h,a0,1

P0 (w̃h,a0,1Kh,a0) + eT1 D
�1
0,h,a0,1

w̃h,a0,1(a)Kh,a0(a)

= eT1 D
�1
0,h,a0,1

h
w̃h,a0,1(a)� wh,a0,1(a)w

T
h,a0,1(a)D

�1
0,h,a0,1

P0 (w̃h,a0,1Kh,a0)
i
Kh,a0(a).

This function has mean zero, so it is the nonparametric e�cient influence function of cP,h,a0,2 at P = P0.
Putting the three pieces together, we have

�⇤0,h,b,a0
(y, a, w) = �⇤0,h,a0

(y, a, w)� 1
2c0,h,a0,2h

2�⇤0,b,a0
(y, a, w)� 1

2�
c
0,h,a0

(a)h2✓000,b(a0)

= �0,h,b,a0(a)

⇢
y � µ0(a,w)

g0(a,w)
+ ✓0(a)

�
� �0,h,b,a0(a) +

Z
�0,h,b,a0(a){µ0(a,w)� ✓0(a)} dF0(a).
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Supplement D Decomposition of the estimator

In this section, we present a decomposition of the estimator into six remainder terms. Before we present the decom-
position, we provide a supporting Lemma showing that the pseudo-outcome function possesses a double robustness
property under (A4)(a).

Lemma 2. If (A4)(a) holds, then

✓0(a) = E0

⇢
Y � µ1(A,W )

g1(A,W )
+

Z
µ1(A,w) dQ0(w)

���A = a

�

for F0-almost every a 2 B�1(a0).

Proof of Lemma 2. By the tower property and since dP0(w | A = a) = g0(a,w) dQ0(w), we have for any a in the
support of A that

E0 {⇠1(Y,A,W ) | A = a} = E0

⇢
Y � µ1(A,W )

g1(A,W )
+

Z
µ1(A,w) dQ0(w)

���A = a

�

=

Z
µ0(a,w)� µ1(a,w)

g1(a0, w)
g0(a,w) dQ0(w) +

Z
µ1(a,w) dQ0(w)

=

Z
{µ0(a,w)� µ1(a,w)}

⇢
g0(a,w)

g1(a,w)
� 1

�
dQ0(w) +

Z
µ0(a,w) dQ0(w)

=

Z
{µ0(a,w)� µ1(a,w)}

⇢
g0(a,w)

g1(a,w)
� 1

�
dQ0(w) + ✓0(a).

Hence,
Z

B�1 (a0)
|E0 {⇠1(Y,A,W ) | A = a}� ✓0(a)| dF0(a)

=

Z

B�1 (a0)

����
Z
{µ0(a,w)� µ1(a,w)}

⇢
g0(a,w)

g1(a,w)
� 1

�
dQ0(w)

���� dF0(a)


ZZ

B�1 (a0)⇥W

����{µ0(a,w)� µ1(a,w)}
⇢

g0(a,w)

g1(a,w)
� 1

����� d(F0 ⇥Q0)(a,w)

=
3X

j=1

ZZ

Sj

����{µ0(a,w)� µ1(a,w)}
⇢

g0(a,w)

g1(a,w)
� 1

����� d(F0 ⇥Q0)(a,w).

By (A4)(a), at least one of the two terms inside the integral is zero for each of the three integrals over S1, S2, and
S3. Hence, the above expression is zero, and the claim follows.

We now provide the decomposition of the estimator that we will use throughout our results. The decomposition
involves a leading empirical mean, Pn�⇤1,h,b,a0

, which drives the first-order asymptotic behavior of the estimator, and
six remainder terms. We separate the remainder into six terms because the methods of controlling these remainders
are conceptually distinct, as we will see in the ensuing results.

Lemma 3. If (A1) and (A4)(a) hold, then the following expansion of the estimator holds for all h 2 (0, �1):

✓n,h,b(a0)� ✓0(a0) = Pn�
⇤

1,h,b,a0
+

6X

j=1

Rn,h,b,a0,j ,

48



where

Rn,h,b,a0,1 := ✓0,h,b(a0)� ✓0(a0),

Rn,h,b,a0,2 := (Pn � P0)

⇢
�0,h,b,a0

✓
 n +

Z
µn dQ0

◆
+

Z
�0,h,b,a0µn dF0

�

�
⇢
�0,h,b,a0

✓
 1 +

Z
µ1 dQ0

◆
+

Z
�0,h,b,a0µ1 dF0

��
,

Rn,h,b,a0,3 := (Pn � P0)

⇢
(�n,h,b,a0 � �0,h,b,a0)

✓
 n +

Z
µn dQ0

◆
+

Z
(�n,h,b,a0 � �0,h,b,a0)µn dF0

�
,

Rn,h,b,a0,4 :=

ZZ
�n,h,b,a0{µn � µ0}

⇢
1� g0

gn

�
dF0 dQ0,

Rn,h,b,a0,5 :=

ZZ
�n,h,b,a0(a)µn(a,w) d(Qn �Q0)(w) d(F0 � Fn)(a), and

Rn,h,b,a0,6 := eT1 D
�1
0,h,a0,1

(D0,h,a0,1 �Dn,h,a0,1)
⇣
D�1

n,h,a0,1
�D�1

0,h,a0,1

⌘
P0 (wh,a0,1K1,a0✓0)

� c0,h,a0,2⌧
2
ne

T
3 D

�1
0,b,a0,2

(D0,b,a0,2 �Dn,b,a0,2)
⇣
D�1

n,b,a0,2
�D�1

0,b,a0,2

⌘
P0 (wb,a0,2Kb,a0✓0)

� ⌧2ne
T
1

⇣
D�1

n,h,a0,1
�D�1

0,h,a0,1

⌘
(Pn � P0)(w̃h,a0,1Kh,a0)e

T
3 D

�1
0,b,a0,2

P0 (wb,a0,2Kb,a0✓0)

� ⌧2ne
T
1

⇣
D�1

n,h,a0,1
�D�1

0,h,a0,1

⌘
D�1

0,h,a0,1
(D0,h,a0,1 �Dn,h,a0,1)P0(w̃h,a0,1Kh,a0)e

T
3 D

�1
0,b,a0,2

P0 (wb,a0,2Kb,a0✓0)

� ⌧2n(cn,h,a0,2 � c0,h,a0,2)e
T
3

⇣
D�1

n,b,a0,2
�D�1

0,b,a0,2

⌘
P0 (wb,a0,2Kb,a0✓0)

Proof of Lemma 3. It is straightforward to see that P0�0,h,b,a0 = P0 (�0,h,b,a0✓0). Since (A4)(a) holds by as-
sumption, Lemma 2 implies that E0 {⇠1(Y,A,W ) | A = a} = ✓0(a) for F0-almost every a 2 B�1(a0), and since (A1)
holds, for all h  �1, �0,h,b,a0(a) = 0 for a such that |a� a0| > �1. Thus,

P0 (�0,h,b,a0⇠1) = E0 [�0,h,b,a0(A)E0 {⇠1(Y,A,W ) | A}] = E0 [�0,h,b,a0(A)✓0(A)] = P0 (�0,h,b,a0✓0) .

Therefore,

P0�
⇤

1,h,b,a0
= P0 (�0,h,b,a0⇠1)� P0�0,h,b,a0 +

ZZ
�0,h,b,a0µ1 dF0 dQ0 �

ZZ
�0,h,b,a0µ1 dF0 dQ0

= P0 (�0,h,b,a0✓0)� P0 (�0,h,b,a0✓0) = 0.

We now define

��n,h,b,a0
(a) := eT1 D

�1
n,h,a0,1

wh,a0,1(a)Kh,a0(a)w
T
h,a0,1(a)D

�1
n,h,a0,1

Pn (wh,a0,1Kh,a0✓n)

� eT3 cn,h,a0,2⌧
2
nD

�1
n,b,a0,2

wb,a0,3(a)Kb,a0(a)w
T
b,a0,2(a)D

�1
n,b,a0,2

Pn (wb,a0,2Kb,a0✓n)

+ ⌧2ne
T
1 D

�1
n,h,a0,1

h
w̃h,a0,1(a)� wh,a0,1(a)w

T
h,a0,1(a)D

�1
n,h,a0,1

Pn (w̃h,a0,1Kh,a0)
i
Kh,a0(a)

⇥ eT3 D
�1
n,b,a0,2

Pn(wb,a0,2Kb,a0✓n),
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where ✓n : a 7!
R
µn(a,w) dQn(w), and we note that

Pn�
�

n,h,b,a0
= eT1 D

�1
n,h,a0,1

Pn

�
wh,a0,1Kh,a0w

T
h,a0,1

�
D�1

n,h,a0,1
Pn (wh,a0,1Kh,a0✓n)

� eT3 cn,h,a0,2⌧
2
nD

�1
n,b,a0,2

Pn

�
wb,a0,2Kb,a0w

T
b,a0,2

�
D�1

n,b,a0,2
Pn (wb,a0,2Kb,a0✓n)

+ ⌧2ne
T
1 D

�1
n,h,a0,1

h
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�
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T
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i
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�1
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= eT1 D
�1
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�1
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Pn (wh,a0,1Kh,a0✓n)

� eT3 cn,h,a0,2⌧
2
nD

�1
n,b,a0,2

Dn,b,a0,2D
�1
n,b,a0,2

Pn (wb,a0,2Kb,a0✓n)

+ ⌧2ne
T
1 D

�1
n,h,a0,1

h
Pn (w̃h,a0,1Kh,a0)�Dn,h,a0,1D

�1
n,h,a0,1

Pn (w̃h,a0,1Kh,a0)
i
eT3 D

�1
n,b,a0,2

Pn(wb,a0,2Kb,a0✓n)

= eT1 D
�1
n,h,a0,1

Pn (wh,a0,1Kh,a0✓n)� eT3 cn,h,a0,2⌧
2
nD

�1
n,b,a0,2

Pn (wb,a0,2Kb,a0✓n)

= Pn

⇣
eT1 D

�1
n,h,a0,1

wh,a0,1Kh,a0✓n � eT3 cn,h,a0,2⌧
2
nD

�1
n,b,a0,2

wb,a0,2Kb,a0✓n
⌘

= Pn (�n,h,b,a0✓n) .

We then define the plug-in influence function estimator ��n,h,b,a0
as

��n,h,b,a0
(y, a, w) := �n,h,b,a0(a)⇠n(y, a, w)� ��n,h,b,a0

(a) +

Z
�n,h,b,a0(ā)

⇢
µn(ā, w)�

Z
µn(ā, w̄) dQn(w̄)

�
dFn(ā),

and we note that

Pn�
�

n,h,b,a0
= Pn (�n,h,b,a0⇠n)� Pn�

�

n,h,b,a0
+

ZZ
�n,h,b,a0µn dFn dQn �

ZZ
�n,h,b,a0µn dQn dFn

= Pn�n,h,b,a0(⇠n � ✓n) = Pn�n,h,b,a0 n = ✓n,h,b(a0)� Pn�n,h,b,a0✓n.

Therefore, ✓n,h,b(a0) = Pn�n,h,b,a0✓n + Pn��n,h,b,a0
, which establishes the one-step representation of the debiased

estimator. By adding and subtracting terms and using the derivations above, we can now write

✓n,h,b(a0)� ✓0(a0) = Pn�
⇤

1,h,b,a0
+ (Pn � P0)

�
��n,h,b,a0

� �⇤
1,h,b,a0

�
+
�
Pn�n,h,b,a0✓n � ✓0,h,b(a0) + P0�

�

n,h,b,a0

 

+ {✓0,h,b(a0)� ✓0(a0)} .

We note that the last summand in braces equals Rn,h,b,a0,1. This is a standard first-order expansion of the estimator
✓n,h,b(a0) of the pathwise di↵erentiable parameter ✓0,h,b(a0) for fixed h and b, though our analysis in subsequent
results will consider the case where h and b go to zero as n grows.

We now enter a calculation showing that the second and third summands above equal
P6

j=2 Rn,h,b,a0,j . For
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convenience, in this derivation we omit the subscripts h, b, and a0 when it is clear. We have

(Pn � P0)
�
��n,h,b,a0

� �⇤
1,h,b,a0

�
+
�
Pn�n,h,b,a0✓n � ✓0,h,b(a0) + P0�

�

n,h,b,a0

 

= (Pn � P0)

✓⇢
�n n + �n

Z
µn dQn � ��n +

Z
�nµn dFn

�

�
⇢
�0 1 + �0

Z
µ1 dQ0 � �0 +

Z
�0µ1 dF0

�◆

+

⇢
Pn(�n✓n)� P0(�0✓0) + P0

✓
�n n + �n

Z
µn dQn � ��n +

Z
�nµn dFn �
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�nµn dFn dQn

◆�

= (Pn � P0)(�n n � �0 1) + {�(Pn � P0)�
�

n + Pn(�n✓n)� P0�
�

n}+ {(Pn � P0)�0 + P0(�n✓0)� P0(�0✓0)}
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⇢
P0(�n n) +
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�nµn dQ0 dF0 � P0(�n✓0)

�
(9)

We note that we added and subtracted the terms
RR

�nµn dQ0 dF0 and P0�n✓0 above. We address each of the
summands in equation (9) in turn. First, we write

(Pn � P0)(�n n � �0 1) = (Pn � P0) {(�n � �0) n}+ (Pn � P0) {�0( n �  1)} .

Next, we note that since Pn��n = Pn(�n✓n), �(Pn � P0)��n + Pn(�n✓n) � P0��n = 0. Next, defining D̃0,h :=
P0(w̃h,a0,1Kh,a0) and D̃n,h := Pn(w̃h,a0,1Kh,a0) we have
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which equals Rn,h,b,a0,6. We address the next two terms in equation (9) together:

ZZ
�nµn {dQn d(Fn � F0) + dFn d(Qn �Q0) + dQn dF0 + dFn dQ0 � dFn dQn � dQ0 dF0}

�
ZZ

�0µ1 {dQ0 d(Fn � F0) + dF0 d(Qn �Q0)}

=

ZZ
�nµn {dQn dFn � dQ0 dF0}�

ZZ
�0µn {dQ0 d(Fn � F0) + dF0 d(Qn �Q0)}

+

ZZ
�0(µn � µ1) {dQ0 d(Fn � F0) + dF0 d(Qn �Q0)}

=

ZZ
�nµn {dQn dFn � dQ0 dF0 � dQ0 d(Fn � F0)� dF0 d(Qn �Q0)}
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ZZ
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We then note that
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=

ZZ
�nµn d(Qn �Q0) d(Fn � F0),

which equals Rn,h,b,a0,5. Finally, we have
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�n
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◆
+
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�
dQ0 dF0

=

ZZ
�n

✓
1� g0
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◆
(µn � µ0) dQ0 dF0,

which equals Rn,h,b,a0,4. Putting these derivations back into equation (9), we have
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which equals
P6

j=2 Rn,h,b,a0,j .
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Supplement E Proof of Theorems

Proof of Theorem 1. By Lemma 3, we have

✓n,h,b(a0)� ✓0(a0) = Pn�
⇤

1,h,b,a0
+

6X

j=1

Rn,h,b,a0,j .

By Lemma 7, Rn,h,b,a0,1 = o
�
h2
�
. By Corollary 4 and Lemmas 17, 19, and 20, Rn,h,b,a0,j = op

�
{nh}�1/2

�
for each

j 2 {2, . . . , 6}. This establishes the first claim. By Lemma 5, (nh)1/2Pn�⇤1,h,b,a0
converges in distribution to the

claimed limit distribution. If nh5 = O(1), then (nh)1/2Rn,h,b,a0,1 = o
�
{nh5}1/2

�
= o(1), so

(nh)1/2 [✓n,h,b(a0)� ✓0(a0)] = (nh)1/2Pn�
⇤

1,h,b,a0
+ op(1),

so (nh)1/2 [✓n,h,b(a0)� ✓0(a0)] converges to this same limit. For the final statement, by Lemma 21, �2
n,h,b(a0) =

hPn(�⇤n,h,b,a0
)2 satisfies �2

n,h,b(a0)�hP0(�⇤1,h,b,a0
)2 = op(1). By Lemma 5, hP0(�⇤1,h,b,a0

)2 converges to the variance
of the limit distribution. Hence, �n,h,b(a0) converges in probability to the standard deviation of the limit distribution,
so the final statement follows by Slutsky’s theorem.

Proof of Theorem 2. By Theorem 1 and since nh5 = O(1), we have

(nh)1/2

0

B@
✓n,h,b(a1)� ✓0(a1)

...
✓n,h,b(am)� ✓0(am)

1

CA = (nh)1/2Pn

0

B@
�⇤
1,h,b,a1

...
�⇤
1,h,b,am

1

CA+ op(1).

The result follows by Lemma 6 and Slutsky’s theorem.

Proof of Theorem 3. By Lemma 3, we have

sup
a2A0

|✓n,h,b(a)� ✓0(a)| = sup
a2A0

������
Pn�

⇤

1,h,b,a +
6X

j=1

Rn,h,b,a,j

������
.

By Lemma 7, supa2A0
|Rn,h,b,a,1| = O(h2+�4) for some �4 > 0. By Corollary 6 and Lemmas 17, 19 and 20,

supa2A0
|Rn,h,b,a,j | = op

�
{nh log n}�1/2

�
for j 2 {2, . . . 6}. We now write

sup
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��Pn�
⇤

1,h,b,a

�� = (nh)�1/2 sup
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������1,h,b(a)Gn
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1,h,b,a

�1,h,b(a)

�����

 (nh)�1/2 sup
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|�1,h,b(a)| sup
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�����Gn

h1/2�⇤
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�����
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"
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�����Gn

h1/2�⇤
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�1,h,b(a)

������ sup
a2A0

|Z1,h,b(a)|
#

+ (nh)�1/2 sup
a2A0

|�1,h,b(a)| sup
a2A0

|Z1,h,b(a)| .

By Lemma 22, supa2A0
|�1,h,b(a)| = O(1), by Lemma 24, supa2A0

|Z1,h,b(a)| = Op({log h�1}1/2), which isOp({log n}1/2)

since nh �! 1, and by Lemma 25, supa2A0

����Gn
h1/2�⇤

1,h,b,a

�1,h,b(a)

����� supa2A0
|Z1,h,b(a)| = op(1). Hence,

sup
a2A0

��Pn�
⇤

1,h,b,a

�� = Op

⇣
{nh/ log n}�1/2

⌘
.

This proves the first claim. The second claim follows by Lemma 21.

53



For the final claim, by the triangle inequality, we have

sup
t2R

����P0

✓
sup

a02A0

(nh)1/2
����
✓n,h,b(a0)� ✓0(a0)

�n,h,b(a0)

����  t

◆
� P0

✓
max
a02An

|Zn,h,b(a0)|  t | On

◆����

 sup
t2R

����P0

✓
sup

a02A0

(nh)1/2
����
✓n,h,b(a0)� ✓0(a0)

�n,h,b(a0)

����  t

◆
� P0

✓
sup

a02A0

|Z1,h,b(a0)|  t

◆����

+ sup
t2R

����P0

✓
sup

a02A0

|Z1,h,b(a0)|  t

◆
� P0

✓
max
a02An

|Z1,h,b(a0)|  t

◆����

+ sup
t2R

����P0

✓
max
a02An

|Z1,h,b(a0)|  t

◆
� P0

✓
max
a02An

|Zn,h,b(a0)|  t | On

◆���� .

The first term on the right hand side is o(1) by Lemma 27. The second term on the right hand side is o(1) by
Lemma 28. The last term on the right hand side is op(1) by Lemma 29.
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Supplement F Analysis of the leading term

We first establish the following result on the behavior of D�1
0,h,a0,1

and D�1
0,b,a0,3

as h, b �! 0.

Lemma 4. If conditions (A1) and (A5) hold, then D�1
0,h,a0,1

= f0(a0)�1S�1
2 + O(h) and c0,h,a0,2 = c2 + O(h) as

h �! 0, and D�1
0,b,a0,2

= f0(a0)�1S�1
3 +O(b) as b �! 0.

If conditions (A1) and (A8) hold, then supa02A0

���D�1
0,h,a0,1

� f0(a0)�1S�1
2

���
1

= O(h), supa02A0
|c0,h,a0,2�c2| =

O(h), and supa02A0

���D�1
0,h,a0,2

� f0(a0)�1S�1
3

���
1

= O(h) as h �! 0.

Proof of Lemma 4. The proof is analogous to that of Section 3.7 of Fan and Gijbels (1996) and many others. By
definition of D0,h,a0,1 and the change of variables u = (t� a0)/h,

D0,h,a0,1[j, k] =

Z ✓
t� a0
h

◆j+k�2

h�1K

✓
t� a0
h

◆
dF0(t) =

Z
uj+k�2K(u)f0(a0 + uh) du.

By (A5), f0(a0 + uh) = f0(a0) +O(uh), and since K has support [�1, 1] by (A1), we then have

Z
uj+k�2K(u)f0(a0 + uh) du = f0(a0)

Z
uj+k�2K(u) du+O(h) = f0(a0)cj+k�2 +O(h).

Hence, D0,h,a0,1 = f0(a0)S2 + O(h), so D�1
0,h,a0,1

= f0(a)�1S�1
2 + O(h) since f(a0) > 0. The proof for D0,b,a0,2 is

analogous. By the same logic, we have P0(w̃h,a0,1Kh,a0) = f0(a0)(c2, c3)T +O(h). Hence,

c0,h,a0,2 = eT1 D
�1
0,h,a0,1

P0(w̃h,a0,1Kh,a0) = eT1
⇥
f0(a0)

�1S�1
2 +O(h)

⇤ ⇥
f0(a0)(c2, 0)

T +O(h)
⇤
= eT1 S

�1
2 (c2, 0)

T +O(h)

= c2 +O(h).

For the uniform result, we have for each j, k 2 {1, 2},

sup
a02A0

|D0,h,a0,1[j, k]� f0(a0)cj+k+2| = sup
a02A0

����
Z

uj+k�2K(u) [f0(a0 + uh)� f0(a0)] du

����

 sup
a02A0

Z
|u|j+k�2 K(u) |f0(a0 + uh)� f0(a0)| du

 Ch

for some C < 1 because f0 is Lipschitz on A�3 and K is uniformly bounded with compact support. The result
follows, and a similar argument yields the results for c0,h,a0,2 and D�1

0,b,a0,2
.

Lemma 5. If (A1)–(A2), (A4)(a), and (A5) hold, then

(nh)1/2Pn�
⇤

1,h,b,a0

d�!N
�
0, VK,⌧f0(a0)

�1�2
0(a0)

�
,

where

VK,⌧ :=

Z ⇢
K(u)� ⌧3c2

(⌧u)2 � c2
c4 � c22

K(⌧u)

�2

du = c⇤0 � 2⌧3c2
⌧2c⇤2,⌧ � c2c⇤0,⌧

c4 � c22
+ ⌧5c22

c⇤4 � 2c2c⇤2 + c22c
⇤

0

(c4 � c2)
2

is a positive, finite constant for all ⌧ 2 (0,1) and kernels K satisfying (A1). Furthermore, hP0(�⇤1,h,b,a0
)2 converges

to VK,⌧�2
0(a0)/f0(a0) as h �! 0.

Proof of Lemma 5. By adding and subtracting Pn�0,h,b,a0✓0, we can rewrite Pn�⇤1,h,b,a0
as

Pn�
⇤

1,h,b,a0
= Pn {�0,h,b,a0(⇠1 � ✓0)}+ Pn {�0,h,b,a0✓0 � �0,h,b,a0}+ Pn

⇢Z
�0,h,b,a0

✓
µ1 �

Z
µ1 dQ0

◆
dF0

�
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We show that only the first term contributes to the limit distribution; the remaining two terms are each op({nh}�1/2).
We use the Lyapunov central limit theorem for triangular arrays to demonstrate that the first term is asymp-
totically normal. The Lyapunov CLT implies that if for each n, Xn,1, Xn,2, . . . Xn,n are IID, mean-zero random
variables that satisfy (1) limn!1 Var(Xn,i) = ⌃ > 0, and (2) there exists � > 0 such that n��/2E|Xn,i|2+� =
o(1), then n�1/2

Pn
i=1 Xn,i converges in distribution to N (0,⌃). We can write (nh)1/2Pn {�0,h,b,a0(⇠1 � ✓0)} =

n�1/2
Pn

i=1 Xn,i for

Xn,i := h1/2�0,h,b,a0(Ai) {⇠1(Yi, Ai,Wi)� ✓0(Ai)} .

Since (A4)(a) holds, E0 [⇠1(Y,A,W ) | A = a] = ✓0(a) for F0-almost every a 2 B�1(a0) by Lemma 2, and by (A1),
�0,h,b,a0(a) = 0 for all a /2 B�1(a0) and h  �1. Hence, for all n large enough, E0[Xn,i] = 0 for all i. We thus have

Var (Xn,i) = hE0

h
�0,h,b,a0(A)2 {⇠1(Y,A,W )� ✓0(A)}2

i

= h

Z
�0,h,b,a0(a)

2�2
0(a) dF0(a)

= h

Z n
eT1 D

�1
0,h,a0,1

wh,a0,1(a)Kh,a0(a)� eT3 c0,h,a0,2⌧
2
nD

�1
0,b,a0,2

wb,a0,2(a)Kb,a0(a)
o2
�2
0(a)f0(a) da

=

Z n
eT1 D

�1
0,h,a0,1

(1, u)TK(u)� eT3 c0,h,a0,2⌧
3
nD

�1
0,b,a0,2

(1, {⌧nu}, {⌧nu}2)TK(⌧nu)
o2
�2
0(a0 + uh)f0(a0 + uh) du.

By (A5), �0 and f0 are continuous at a0. Also, D�1
0,h,a0,1

, c0,h,a0,2, and D�1
0,b,a0,2

converge to f0(a0)�1S�1
2 , c2, and

f0(a0)�1S�1
3 , respectively, as b, h �! 0 by Lemma 4, and ⌧n �! ⌧ 2 (0,1). The preceding display thus converges

to

�2
0(a0)f0(a0)

�1

Z �
eT1 S

�1
2 (1, u)TK(u)� eT3 c2⌧

3S�1
3 (1, {⌧u}, {⌧u}2)TK(⌧u)

 2
du.

Now, eT1 S
�1
2 (1, u)T = 1, and using the block structure of S3, we find that eT3 S

�1
3 = 1

c4�c22
(�c2, 0, 1). Therefore, we

can simplify the above to �2
0(a0)f0(a0)

�1VK,⌧ for

VK,⌧ =

Z ⇢
K(u)� ⌧3c2

(⌧u)2 � c2
c4 � c22

K(⌧u)

�2

du

=

Z
K(u)2 du� 2⌧3c2

R
(⌧u)2K(u)K(⌧u) du� c2

R
K(u)K(⌧u) du

c4 � c22

+ ⌧6c22

R
(⌧u)4K(⌧u)2 du� 2c2

R
(⌧u)2K(⌧u)2 du+ c22

R
K(⌧u)2 du

(c4 � c2)
2

= c⇤0 � 2⌧3c2
⌧2c⇤2,⌧ � c2c⇤0,⌧

c4 � c22
+ ⌧5c22

c⇤4 � 2c2c⇤2 + c22c
⇤

0

(c4 � c2)
2 .

Hence, Var(Xn,i) converges to �2
0(a0)f0(a0)

�1VK,⌧ as claimed. If ⌧ = 1, then the above simplifies to

VK,1 =

Z ⇢
c4 � c2u2

c4 � c22
K(u)

�2

du =
c⇤0c

2
4 � 2c2c4c⇤2 + c22c

⇤

4

(c4 � c22)
2

.

Clearly, VK,⌧ � 0, with equality if and only if the expression in the integral is zero identically. When ⌧ 6= 1, the
di↵ering supports of K(u) and K(⌧u) guarantees that this is not the case, and if ⌧ = 1 then the expression is zero if
and only if c2 = c4 = 0, which is not the case. Hence, VK,⌧ > 0 for any ⌧ 2 (0,1). Furthermore, by the boundedness
of K and since c22 < c4 by Jensen’s inequality, VK,⌧ is finite for every ⌧ 2 (0,1).

For the second condition of the Lyapunov CLT, we first note that

sup
|a�a0|<�1

E0

h
|⇠1(Y,A,W )� ✓0(A)|2+�2 | A = a

i
 C.

for some C < 1 since µ1 is uniformly bounded and g1 is uniformly bounded away from zero by (A4)(a) and
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E0(|Y |2+�2 | A = a,W = w) is uniformly bounded over a 2 B�1(a0) and w 2 W by (A5). Therefore, for all n large
enough,

E|Xn,i|2+�2 = h1+�2/2

Z
|�0(a)|2+�2 E0

h
|⇠1(y, a, w)� ✓0(a)|2+�2 | A = a

i
f0(a) da

 Ch1+�2/2

Z
|�0(a)|2+�2 f0(a) da.

By the triangle inequality, we then have

⇢Z
|�0(a)|2+�2 f0(a) da

�1/(2+�2)


⇢Z ���eT1 D�1

0,h,a0,1
wh,a0,1(a)Kh,a0(a)

���
2+�2

f0(a) da

�1/(2+�2)

+

⇢Z ���eT3 c0,h,a0,2⌧
2D�1

0,b,a0,2
wb,a0,2(a)Kb,a0(a)

���
2+�2

f0(a) da

�1/(2+�2)

=

⇢Z ���eT1 D�1
0,h,a0,1

(1, u)TK(u)
���
2+�2

h�(1+�2)f0(a0 + uh) du

�1/(2+�2)

+

⇢Z ���eT3 c0,h,a0,2⌧
2D�1

0,b,a0,2
(1, u, u2)TK(u)

���
2+�2

h�(1+�2)f0(a0 + uh) du

�1/(2+�2)

.

By Lemma 4, (A1), (A2), and (A5), the preceding display is bounded up to a constant by h�(1+�2)/(2+�2). Hence,
for all n large enough, E|Xn,i|2+�2 is bounded up to a constant by h��2/2. Therefore,

n��2/2E|Xn,i|2+�2 = O
⇣
{nh}��2/2

⌘
= o(1)

since nh �! 1 by assumption.
Next, we show that Pn(�0,h,b,a0✓0 � �0,h,b,a0) = Op({n/h}�1/2), which implies that it is op({nh}�1/2). We

note that since P0(�0,h,b,a0✓0) = P0�0,h,b,a0 , E0 [Pn(�0,h,b,a0✓0 � �0,h,b,a0)] = 0 and Var [Pn (�0,h,b,a0✓0 � �0,h,b,a0)] =

n�1P0 (�0,h,b,a0✓0 � �0,h,b,a0)
2. Thus, it is su�cient to show that P0(�0,h,b,a0✓0 � �0,h,b,a0)

2 = O(h). We have

P0(�0,h,b,a0✓0 � �0,h,b,a0)
2

 2

Z h
eT1 D

�1
0,h,a0

wh,a0,1(a)Kh,a0(a)
n
✓0(a)� wh,a0,1(a)

TD�1
0,h,a0

P0 (wh,a0,1Kh,a0✓0)
oi2

f0(a) da

+ 2

Z h
eT3 c0,h,a0,2⌧

2
nD

�1
0,b,a0,2

wb,a0,2(a)Kb,a0(a)
n
✓0(a)� wb,a0,2(a)

TD�1
b,a0,2

P0 (wb,a0,2Kb,a0✓0)
oi2

f0(a) da

+ 2

Z h
eT1 ⌧

2
nD

�1
0,h,a0

n
w̃h,a0,1(a)� wh,a0,1(a)wh,a0,1(a)

TD�1
0,h,a0

P0(w̃h,a0,1Kh,a0)
o
Kh,a0(a)

i2
f0(a) da

⇥
h
eT3 D

�1
0,b,a0,2

P0(wb,a0,2Kb,a0✓0)
i2

= 2h�1

Z h
eT1 D

�1
0,h,a0

(1, u)TK(u)
n
✓0(a0 + uh)� (1, u)TD�1

0,h,a0
P0 (wh,a0,1Kh,a0✓0)

oi2
f0(a0 + uh) du

+ 2b�1

Z h
eT3 c0,h,a0,2⌧

2
nD

�1
0,b,a0,2

uT
2 K(u)

n
✓0(a0 + ub)� uT

2 D
�1
b,a0,2

P0 (wb,a0,2Kb,a0✓0)
oi2

f0(a0 + ub) du

+ 2h�1

Z h
eT1 ⌧

2
nD

�1
0,h,a0

n
(u2, u3)T � (1, u)(1, u)TD�1

0,h,a0
P0(w̃h,a0,1Kh,a0)

o
K(u)

i2
f0(a0 + uh) du

⇥
h
eT3 D

�1
0,b,a0,2

P0(wb,a0,2Kb,a0✓0)
i2
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where u2 denotes the vector (1, u, u2). For the first term, we define �h,a0,1 := (✓0(a0), h✓
(1)
0 (a0))T . We then write

(1, u)TD�1
0,h,a0

P0 (wh,a0,1Kh,a0✓0)� ✓0(a0)� uh✓(1)0 (a0)

= (1, u)TD�1
0,h,a0,1

P0 (wh,a0,1Kh,a0✓0)� (1, u)TD�1
0,h,a0,1

D0,h,a0,1�h,a0,1

= (1, u)TD�1
0,h,a0,1

⇥
P0 (wh,a0,1Kh,a0✓0)� P0

�
wh,a0,1Kh,a0w

T
h,a0,1

�
�h,a0,1

⇤

= (1, u)TD�1
0,h,a0,1

P0

�
wh,a0,1Kh,a0

⇥
✓0 � wT

h,a0,1�h,a0,1

⇤�

= (1, u)TD�1
0,h,a0,1

Z
wh,a0,1(a)Kh,a0(a)

⇥
✓0(a)� wh,a0,1(a)

T�h,a0,1

⇤
f0(a) da

= (1, u)TD�1
0,h,a0,1

Z
(1, v)TK(v)

⇥
✓0(a0 + vh)� (1, v)T�h,a0,1

⇤
f0(a0 + vh) dv

= (1, u)TD�1
0,h,a0,1

Z
(1, v)TK(v)

h
✓0(a0 + vh)� ✓0(a0)� vh✓(1)0 (a0)

i
f0(a0 + vh) dv

= (1, u)TD�1
0,h,a0,1

o(h),

where we have also used (A1) and (A5). Therefore,

h�1

Z h
eT1 D

�1
0,h,a0,1

(1, u)TK(u)
n
✓0(a0 + uh)� (1, u)TD�1

0,h,a0,1
P0 (wh,a0,1Kh,a0✓0)

oi2
f0(a0 + uh) du

= h�1

Z h
eT1 D

�1
0,h,a0,1

(1, u)TK(u)
nh
✓0(a0 + uh)� ✓0(a0)� uh✓(1)0 (a0)

i

�
h
(1, u)TD�1

0,h,a0,1
P0 (wh,a0,1Kh,a0✓0)� ✓0(a0)� uh✓(1)0 (a0)

ioi2
f0(a0 + uh) du

= h�1

Z h
eT1 D

�1
0,h,a0,1

(1, u)TK(u)o(h)
i2

f0(a0 + uh) du

= o(h),

using Lemma 4, (A1), (A2), and (A5).

For the second term, we similarly define �b,a0,2 := (✓0(a0), b✓
(1)
0 (a0), 0)T . By an identical calculation, we can

then show that

uT
2 D

�1
0,b,a0,2

P0 (wb,a0,2Kb,a0✓0)� ✓0(a0)� ub✓(1)0 (a0) = uT
2 D

�1
0,b,a0,2

o(b)

and hence

b�1

Z h
eT3 c0,h,a0,2⌧

2
nD

�1
0,b,a0,2

uT
2 K(u)

n
✓0(a0 + ub)� uT

2 D
�1
b,a0,2

P0 (wb,a0,2Kb,a0✓0)
oi2

f0(a0 + ub) du = o(b).

Note that we can even show that this term is o(b3) using a second-order Taylor expansion, though this is unnecessary
for the purposes of our proof.

A similar derivation as in the proof of Lemma 4 yields P0(wb,a0,2Kb,a0✓0) = S2e1✓0(a0)f0(a0) + O(b). Hence,
using Lemma 4, we have

h
eT3 D

�1
0,b,a0,2

P0(wb,a0,2Kb,a0✓0)
i2

=
⇥�
eT3 f0(a0)

�1S�1
2 +O(b)

 
{S2e1✓0(a0)f0(a0) +O(b)}

⇤2

=
⇥
eT3 S

�1
2 S2e1✓0(a0) +O(b)

⇤2

= O(b2).

In addition, it is straightforward to see that
Z h

eT1 ⌧
2
nD

�1
0,h,a0

n
(u2, u3)T � (1, u)(1, u)TD�1

0,h,a0
P0(w̃h,a0,1Kh,a0)

o
K(u)

i2
f0(a0 + uh) du = O(1).

58



We now have P0(�0,h,b,a0✓0 � �0,h,b,a0)
2 = O(h).

Finally, we claim that

Pn

⇢Z
�0

✓
µ1 �

Z
µ1 dQ0

◆
dF0

�
= Op

⇣
n�1/2

⌘
,

which implies in particular that it is op
�
{nh}�1/2

�
. Since the function inside the empirical mean has mean zero, it

is su�cient to show that Z Z
�0

✓
µ1 �

Z
µ1 dQ0

◆
dF0

�2
dQ0 = O(1).

Since µ1 is uniformly bounded by (A4)(a), we have

Z Z
�0

✓
µ1 �

Z
µ1 dQ0

◆
dF0

�2
dQ0 

Z Z
�0µ1 dF0

�2
dQ0


Z Z ���eT1 D�1

0,h,a0
wh,a0,1(a)Kh,a0(a)µ1(a,w)

��� dF0(a)

+

Z ���eT3 c0,h,a0,2⌧
2
nD

�1
0,b,a0,2

wb,a0,2(a)Kb,a0(a)µ1(a,w)
��� dF0(a)

�2
dQ0(w)

.
Z ���eT1 D�1

0,h,a0,1
(1, u)TK(u)f0(a0 + uh)

��� du

+

Z ���eT3 c0,h,a0,2⌧
2
nD

�1
0,b,a0,2

(1, u, u2)TK(u)f0(a0 + uh)
��� du

�2
.

This latter expression is O(1) by Lemma 4, (A1), (A2), and (A5).
For the final statement of the result, using the same decomposition of �⇤

1,h,b,a0
as above and the fact that

E0[⇠1 | A = a] = ✓0(a) for a 2 B�1(a0), we can write

�2
1,h,b(a0) = hP0�

⇤2
1,h,b,a0

= hP0

h
�2
0,h,b,a0

(⇠1 � ✓0)
2
i
+ hP0 (�0,h,b,a0✓0 � �0,h,b,a0)

2 + hP0

Z
�0,h,b,a0(µ1 � s µ1 dQ0) dF0

�2

+ 2hP0


�0,h,b,a0 (⇠1 � ✓0)

Z
�0,h,b,a0(µ1 � s µ1 dQ0) dF0

�

+ 2hP0


(�0,h,b,a0✓0 � �0,h,b,a0)

Z
�0,h,b,a0(µ1 � s µ1 dQ0) dF0

�
.

We have showed that hP0

h
�2
0,h,b,a0

(⇠1 � ✓0)
2
i
converges to VK,⌧�2

0(a0)/f0(a0) as h �! 0. We have also showed that

hP0 (�0,h,b,a0✓0 � �0,h,b,a0)
2 = O(h2) and hP0

⇥R
�0,h,b,a0(µ1 � s µ1 dQ0) dF0

⇤2
= O(h), so the statement follows.

Lemma 6. If the assumptions of Lemma 5 hold for each a0 in {a1, . . . , am}, then

(nh)1/2Pn

0

B@
�⇤
1,h,b,a1

...
�⇤
1,h,b,am

1

CA

converges in distribution to a mean-zero multivariate normal distribution with zero o↵-diagonal elements and diagonal
elements VK,⌧f0(a1)�1�2

0(a1), . . . , VK,⌧f0(am)�1�2
0(am). Furthermore, hP0(�⇤1,h,b,aj

�⇤
1,h,b,ak

) converges to zero for
j 6= k.

Proof of Lemma 6. We focus on the case of m = 2 for simplicity; the proof for m > 2 is entirely analogous. We
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will show that for any t1, t2 2 R,

t1(nh)
1/2Pn�

⇤

1,h,b,a1
+ t2(nh)

1/2Pn�
⇤

1,h,b,a2

d�! t21VK,⌧f0(a1)
�1�2

0(a1)Z1 + t22VK,⌧f0(a2)
�1�2

0(a2)Z2

where Z1 and Z2 are independent standard normal random variables. By the Cramer-Wold device, this yields the
result. First, by the derivations in the proof of Lemma 5,

t1Pn�
⇤

1,h,b,a1
= Pn {t1�0,h,b,a1(⇠1 � ✓0)}+ op({nh}�1/2) and

t2Pn�
⇤

1,h,b,a2
= Pn {t2�0,h,b,a2(⇠1 � ✓0)}+ op({nh}�1/2).

Hence,

t1(nh)
1/2Pn�

⇤

1,h,b,a1
+ t2(nh)

1/2Pn�
⇤

1,h,b,a2
= (nh)1/2Pn {(t1�0,h,b,a1 + t2�0,h,b,a2)(⇠1 � ✓0)}+ op({nh}�1/2).

As in the proof of Lemma 5, we demonstrate the convergence of the expression on the right using the Lyapunov CLT
for triangular arrays. We define Xn,1, Xn,2, . . . , Xn,n as

Xn,i := h1/2 {t1�0,h,b,a1(Ai) + t2�0,h,b,a2(Ai)} {⇠1(Yi, Ai,Wi)� ✓0(Ai)} .

We can then write (nh)1/2Pn {(t1�0,h,b,a1 + t2�0,h,b,a2)(⇠1 � ✓0)} as n�1/2
Pn

i=1 X̃n,i. Hence, the claim follows by
showing that n�1/2

Pn
i=1 Xn,i converges in distribution to the claimed limit, which we do using the Lyapunov CLT.

The main condition of the Lyapunov CLT that di↵ers from Lemma 5 is convergence of the variance. By linearity
of expectation and since P0�⇤1,h,b,a1

= P0�⇤1,h,b,a2
= 0, we have E0[Xn,i] = 0 for all i. We also have

Var (Xn,i) = hE0

h
{t1�0,h,b,a1(A) + t2�0,h,b,a2(A)}2 {⇠1(Y,A,W )� ✓0(A)}2

i

= ht21E0

h
�0,h,b,a1(A)2 {⇠1(Y,A,W )� ✓0(A)}2

i

+ ht22E0

h
�0,h,b,a2(A)2 {⇠1(Y,A,W )� ✓0(A)}2

i

+ 2ht1t2E0

h
�0,h,b,a1(A)�0,h,b,a2(A) {⇠1(Y,A,W )� ✓0(A)}2

i
.

The first two terms converge to t21VK,⌧f0(a1)�1�2
0(a1) and t22VK,⌧f0(a2)�1�2

0(a2) by Lemma 5. We can write out the
third term as

E0

h
�0,h,b,a1(A)�0,h,b,a2(A) {⇠1(Y,A,W )� ✓0(A)}2

i

=

Z n
eT1 D

�1
0,h,a1,1

wh,a1,1(a)Kh,a1(a)e
T
1 D

�1
0,h,a2,1

wh,a2,1(a)Kh,a2(a)

�eT3 c0,h,a0,2⌧
2
nD

�1
0,b,a1,3

wb,a1,3(a)Kb,a1(a)e
T
1 D

�1
0,h,a2,1

wh,a2,1(a)Kh,a2(a)

�eT1 D
�1
0,h,a1,1

wh,a1,1(a)Kh,a1(a)e
T
3 c0,h,a0,2⌧

2
nD

�1
0,b,a2,2

wb,a2,2(a)Kb,a2(a)

+eT3 c0,h,a0,2⌧
2
nD

�1
0,b,a1,2

wb,a1,2(a)Kb,a1(a)e
T
3 c0,h,a0,2⌧

2
nD

�1
0,b,a2,2

wb,a2,2(a)Kb,a2(a)
o
�2
0(a)f0(a) da.

The four summands in the above display involve the products Kh,a1Kh,a2 , Kh,a1Kb,a2 , Kb,a1Kh,a2 , and Kb,a1Kb,a2 .
Since the support of K is contained in [�1, 1], each of these products is zero for all h, b small enough. Specifically, if
max{h, b} < |a1 � a2|/2, then {a : Kh,a1(a) > 0} \ {a : Kh,a2(a) > 0} = {a : |a� a1|  h} \ {a : |a� a2|  h} = ;.
Therefore, the variance converges to t21VK,⌧f0(a1)�1�2

0(a1)+ t22VK,⌧f0(a2)�1�2
0(a2). Each term is bounded away from

zero by Lemma 5. The remainder of the conditions of the Lyapunov CLT can be checked using the same derivations
as in Lemma 5 and using the triangle inequality.
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Supplement G Analysis of remainder term Rn,h,b,a0,1

Lemma 7. If (A1) and (A5) hold, then ✓0,h,b(a0)� ✓0(a0) = o(h2). If (A1) and (A8) hold, then for some �4 > 0,
supa02A0 |✓0,h,b(a0)� ✓0(a0)| = O(h2+�4).

Proof of Lemma 7. By (A5), the second derivative of a 7! ✓0(a) is continuous in a neighborhood of a = a0, so
by the mean value form of Taylor’s theorem, for each a in a neighborhood of a0, there exists a⇤ (depending on a)
between a0 and a such that

✓0(a)� ✓0(a0) = ✓00(a0)(a� a0) +
1
2✓

00

0 (a⇤)(a� a0)
2.

We then have

✓0,h,b(a0) =

Z
�0,h,b,a0(a)✓0(a)f0(a) da

=

Z
�0,h,b,a0(a)

⇥
✓0(a0) + ✓00(a0)(a� a0) +

1
2✓

00

0 (a0)(a� a0)
2
⇤
f0(a) da

+ 1
2

Z
�0,h,b,a0(a) [✓

00

0 (a⇤)� ✓000 (a0)] (a� a0)
2f0(a) da.

We show that the first term equals ✓0(a0). We have

Z
�0,h,b,a0(a)

⇥
✓0(a0) + ✓00(a0)(a� a0) +

1
2✓

00

0 (a0)(a� a0)
2
⇤
f0(a) da

= eT1 D
�1
0,h,a0,1

Z
wh,a0,1(a)Kh,a0(a)

⇥
✓0(a0) + ✓00(a0)(a� a0) +

1
2✓

00

0 (a0)(a� a0)
2
⇤
f0(a) da

� c0,h,a0,2(h/b)
2eT3 D

�1
0,b,a0,2

Z
wb,a0,2(a)Kb,a0(a)

⇥
✓0(a0) + ✓00(a0)(a� a0) +

1
2✓

00

0 (a0)(a� a0)
2
⇤
f0(a) da.

By the definitions of wh,a0,1, D0,h,a0,1, and c0,h,a0,2, we then have

eT1 D
�1
0,h,a0,1

Z
wh,a0,1(a)Kh,a0(a)

⇥
✓0(a0) + ✓00(a0)(a� a0) +

1
2✓

00

0 (a0)(a� a0)
2
⇤
f0(a) da

= eT1 D
�1
0,h,a0,1

Z
wh,a0,1(a)Kh,a0(a)wh,a0,1(a)

T f0(a) da [✓0(a0), h✓
0

0(a0)]

+ 1
2h

2✓000 (a0)

Z
wh,a0,1(a)Kh,a0(a) [(a� a0)/h]

2 f0(a) da

= eT1 D
�1
0,h,a0,1

D0,h,a0,1 [✓0(a0), h✓
0

0(a0)] +
1
2h

2✓000 (a0)c0,h,a0,2

= ✓0(a0) +
1
2h

2✓000 (a0)c0,h,a0,2.

Similarly,

eT3 D
�1
0,b,a0,2

Z
wb,a0,2(a)Kb,a0(a)

⇥
✓0(a0) + ✓00(a0)(a� a0) +

1
2✓

00

0 (a0)(a� a0)
2
⇤
f0(a) da

= eT3 D
�1
0,b,a0,2

Z
wb,a0,2(a)Kb,a0(a)wb,a0,2(a)

T f0(a) da
⇥
✓0(a0), ✓

0

0(a0),
1
2✓

00

0 (a0)
⇤

= eT3 D
�1
0,b,a0,2

D0,b,a0,2

⇥
✓0(a0), b✓

0

0(a0),
1
2b

2✓000 (a0)
⇤

= 1
2b

2✓000 (a0).
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Thus,
Z

�0,h,b,a0(a)
⇥
✓0(a0) + ✓00(a0)(a� a0) +

1
2✓

00

0 (a0)(a� a0)
2
⇤
f0(a) da

= ✓0(a0) +
1
2h

2✓000 (a0)c0,h,a0,2 � c0,h,a0,2(h/b)
2 1
2b

2✓000 (a0)

= ✓0(a0).

Hence,

✓0,h,b(a0)� ✓0(a0) =
1
2h

2

Z
�0,h,b,a0(a) [✓

00

0 (a⇤)� ✓000 (a0)] [(a� a0)/h]
2f0(a) da.

This is o(h2) by continuity of ✓000 at a0.
For the uniform statement, using the above derivations, since K is uniformly bounded, we have

sup
a02A0

|✓0,h,b(a0)� ✓0(a0)|

. h2


sup

a02A0

���D�1
0,h,a0,1

���
1

+ c0,h,a0,2 sup
a02A0

���D�1
0,b,a0,2

���
1

�
sup

a02A0

sup
|a1�a0|h

|✓000 (a1)� ✓000 (a0)| sup
a02A0

|f0(a0)|.

By Lemma 4 and (A8), this is o(h2+�4) for �4 the Hölder exponent of ✓000 .
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Supplement H Analysis of remainder terms Rn,h,b,a0,2 and Rn,h,b,a0,3

Before presenting results regarding the remainder terms Rn,h,b,a0,2 and Rn,h,b,a0,3, we state a Lemma regarding the
rate of convergence of Dn,h,a0,1 �D0,h,a0,1.

Lemma 8. Denote by k · k1 the element-wise maximum norm. If (A1) and (A5) hold and nh �! 1, then
kDn,h,a0,1 �D0,h,a0,1k1 and kD�1

n,h,a0,1
�D�1

0,h,a0,1
k1 are Op({nh}�1/2), kDn,b,a0,2 �D0,b,a0,2k1 and kD�1

n,b,a0,2
�

D�1
0,b,a0,2

k1 are Op({nb}�1/2), and cn,h,a0,2 � c0,h,a0,2 = Op({nh}�1/2).

Proof of Lemma 8. We first note that for all (j, k), E0 (Dn,h,a0,1[j, k]) = D0,h,a0,1[j, k]. Using the change of
variables u = (a� a0)/h, we have

Var (Dn,h,a0,1[j, k]) = Var

(
n�1

nX

i=1

✓
Ai � a0

h

◆j+k�2

h�1K

✓
Ai � a0

h

◆)

= (nh)�2
nX

i=1

Var

(✓
Ai � a0

h

◆j+k�2

K

✓
Ai � a0

h

◆)

 (nh)�2
nX

i=1

E0

2

4
(✓

Ai � a0
h

◆j+k�2

K

✓
Ai � a0

h

◆)2
3

5

= n�1h�2

Z (✓
a� a0

h

◆j+k�2

K

✓
a� a0

h

◆)2

dF0(a)

= (nh)�1

Z
u2(j+k�2)K2 (u) f0(a0 + uh) du.

Since f0(a0 + uh) = f0(a0) +O(uh) by (A5) and K is uniformly bounded with compact support by (A1), we have

(nh)�1

Z
u2(j+k�2)K2 (u) f0(a0 + uh) du = (nh)�1f0(a0)

⇢Z
u2(j+k�2)K2 (u) du+O(h)

�

= (nh)�1f0(a0)c2(i+j�2),2 + o({nh}�1)

for 1  j, k, 2. By Chebyshev’s inequality, we then have Dn,h,a0,1[j, k]�D0,h,a0,1[j, k] = Op({nh}�1/2). Since this
holds for all 1  j, k, 2, we conclude that kDn,h,a0,1 � D0,h,a0,1k1 = Op({nh}�1/2). The result for kDn,b,a0,2 �
D0,b,a0,2k1 = Op({nb}�1/2) can be shown analogously.

To show that kD�1
n,h,a0,1

�D�1
0,h,a0,1

k1 = Op({nh}�1), we first write D�1
n,h,a0,1

�D�1
0,h,a0,1

= D�1
n,h,a0,1

(D0,h,a0,1 �
Dn,h,a0,1)D

�1
0,h,a0,1

. Denoting by k · k1 the L1 matrix operator norm, it follows from the fact that the L1 norm is
sub-multiplicative,

kD�1
n,h,a0,1

�D�1
0,h,a0,1

k1 = kD�1
n,h,a0,1

(D0,h,a0,1 �Dn,h,a0,1)D
�1
0,h,a0,1

k1
 CkD�1

n,h,a0,1
(D0,h,a0,1 �Dn,h,a0,1)D

�1
0,h,a0,1

k1
 CkD�1

n,h,a0,1
k1kD0,h,a0,1 �Dn,h,a0,1k1kD�1

0,h,a0,1
k1.

We then note that f0(a0) > 0 implies that kD�1
0,h,a0,1

k1 = O(1) by Lemma 4. Since nh �! 1, Lemma 4 also implies

that D�1
n,h,a0,1

P�! f0(a0)�1S�1
2 , so by the continuous mapping theorem, kD�1

n,h,a0,1
k1

P�!kf0(a0)�1S�1
2 k1 and hence

kD�1
n,h,a0,1

k1 = Op(1). We conclude that kD�1
n,h,a0,1

�D�1
0,h,a0,1

k1 = Op({nh}�1/2). The derivation above holds for

finite dimensional matrices, and thus a similar argument yields that kD�1
n,b,a0,2

�D�1
0,b,a0,2

k1 = Op({nb}�1/2).
Finally, we have

cn,h,a0,2 � c0,h,a0,2 = eT1

⇣
D�1

n,h,a0,1
�D�1

0,h,a0,1

⌘
Pn (w̃h,a0,1Kh,a0) + eT1 D

�1
0,h,a0,1

(Pn � P0) (w̃h,a0,1Kh,a0) .

Both terms are Op({nh}�1/2) by the calculations above.
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We establish rates of convergence of Rn,h,b,a0,2 and Rn,h,b,a0,3 using empirical process theory. Before presenting
supporting lemmas, we review key definitions and notation used in empirical process theory. For a class of functions
H defined on a domain X , a probability measure Q on X , and any " > 0, the "-covering number N(",H, L2(Q)) of H
relative to the L2(Q) metric is the smallest number of L2(Q)-balls of radius less than or equal to " needed to cover
H. A function H on X is called an envelope function for H if sup⌘2H

|⌘(x)|  H(x) for all x 2 X .
We first consider the sequence of stochastic processes {Vn(�) : � 2 ⇤}, for Vn(�) := Gn⌘h,a0,j,�, where

⌘h,a0,j,�(y, a, w) := h1/2

✓
a� a0

h

◆j�1

Kh,a0(a)�(y, a, w).

We note that ⌘ depends on n through h. We also make use of the following semi-metric on ⇤:

⇢a0,"(�1,�2) := sup
|a�a0|<"

⇣
E0

h
{�1(Y,A,W )� �2(Y,A,W )}2 | A = a

i⌘1/2
.

We then have the following lemma.

Lemma 9. Suppose (A1), (A2), and (A5) hold, and that ⇤ is a class of functions with envelope L satisfying:

1. sup
|a�a0|<�1 E0[L2+�2 | A = a] < 1 for some �1, �2 > 0; and

2.
R 1
0

�
supQ logN ("kLkQ,2,⇤, L2(Q))

 1/2
d" < 1.

Then for each j 2 {1, 2, 3, 4}, sup�2⇤ |Gn⌘h,a0,j,�| = Op(1), and for any possibly random sequences �n1,�n2 2 ⇤ such
that ⇢a0,"(�n1,�n2) = op(1) for some " > 0, Gn{⌘h,a0,j,�n1 � ⌘h,a0,j,�n2} = op(1), so Gn

�
h1/2�0,h,b,a0(�1n � �2n)

 
=

op(1) as well.

Proof of Lemma 9. We first establish properties of the class Hh,a0,j := {⌘h,a0,j,� : � 2 ⇤}. Since L is an envelope
for ⇤,

Hh,a0,j(y, a, w) := h1/2

✓
a� a0

h

◆j�1

Kh,a0(a)L(y, a, w)

is an envelope for Hh,a0,j . By the tower property and a change of variables, we then have for all h < �1

P0H
2
h,a0,j =

Z
h

✓
a� a0

h

◆2(j�1)

Kh,a0(a)
2E0

⇥
L2 | A = a

⇤
f0(a) da

=

Z
u2(j�1)K(u)2E0

⇥
L2 | A = a0 + uh

⇤
f0(a0 + uh) du

 sup
|a�a0|<�1

E0

⇥
L2 | A = a

⇤ Z
u2(j�1)K(u)2 f0(a0 + uh) du.

The last expression above is O(1) by assumption, (A1), and (A5).
Next, we study the uniform entropy of the class Hh,a0,j . We clearly have Hh,a0,j = Gh,a0,j⇤, where Gh,a0,j is the

class consisting of the single function a 7! h1/2[(a � a0)/h]jKh,a0(a). We then have by, e.g. Lemma 5.1 of van der
Vaart and van der Laan (2006), that

sup
Q

N ("kHh,a0,jkQ,2,Hh,a0,j , L2(Q))  sup
Q

N ("kLkQ,2,⇤, L2(Q))

for any " > 0. We can now establish the first claim of Lemma 9. By Theorem 2.14.1 of van der Vaart and Wellner
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(1996), we have

E0


sup
�2⇤

|Gn⌘h,a0,h,�|
�
= E0

"
sup

⌘2Hh,a0,j

|Gn⌘|
#

.
�
P0H

2
h,a0,j

 1/2
sup
Q

Z 1

0
{1 + logN ("kHh,a0,jkQ,2,Hh,a0,j , L2(Q))}1/2 d"

 O(1)

Z 1

0

⇢
sup
Q

logN ("kLkQ,2,⇤, L2(Q))

�1/2

d".

The integral is finite by assumption, which establishes the claim.
We will establish the second statement by showing that the sequence of processes is asymptotically uniformly

⇢a0,"-equicontinuous (Pollard, 1984; van der Vaart and Wellner, 1996). To do so, we will use Theorem 2.11.1 (see
also Theorem 2.11.22) of van der Vaart and Wellner (1996), which implies that {Vn : n = 1, 2, . . . } is asymptotically
uniformly ⇢a0,"-equicontinuous if the following conditions hold:

(a) P0H2
h,a0,j

= O(1);

(b) P0

h
H2

h,a0,j
I{Hh,a0,j > "n1/2}

i
= o(1) for every " > 0;

(c) sup⇢a0,"(�1,�2)<�n P0{⌘h,a0,j,�1 � ⌘h,a0,j,�2}2 = o(1) for every �n �! 0; and

(d) for every �n = o(1), supQ
R �n
0 {logN("kHh,a0,jkQ,2,Hh,a0,j , L2(Q))}1/2 d" = o(1).

We prove that {Gn⌘h,a0,j,� : � 2 ⇤} is ⇢a0,"-equicontinuous by establishing these conditions, and the result follows.
We showed condition (a) above. For (b), we have again by the tower property and a change of variables

P0

n
H2

h,a0,jI
⇣
Hh,a0,j > "n1/2

⌘o
=

Z
h

✓
a� a0

h

◆2(j�1)

Kh,a0(a)
2E0

h
L2I

⇣
Hh,a0,j > "n1/2

⌘
| A = a

i
f0(a) da

=

Z
u2(j�1)K(u)2E0

h
L2I

⇣
Hh,a0,j > "n1/2

⌘
| A = a0 + uh

i
f0(a0 + uh) du.

Now we note that since the kernel K is uniformly bounded by, say K̄ < 1, and has support contained in [�1, 1],

I
⇣
Hh,a0,j > "n1/2

⌘
= I

⇣
h1/2[(A� a0)/h]

j�1Kh,a0(A)L > "n1/2
⌘
 I

⇣
K̄L > "(nh)1/2

⌘
.

Hence, for all h < �1,

P0

n
H2

h,a0,jI
⇣
Hh,a0,j > "n1/2

⌘o
 K̄2

Z 1

�1
E0

h
L2I

⇣
L > "(nh)1/2/K̄

⌘
| A = a0 + uh

i
f0(a0 + uh) du

. sup
|a�a0|<�1

E0

h
L2I

⇣
L > "(nh)1/2/K̄

⌘
| A = a

i
.

Then by Hölder’s inequality,

E0

h
L2I

⇣
L > "(nh)1/2/K̄

⌘
| A = a

i

�
E0

⇥
L2+�2 | A = a

⇤ 2/(2+�2)
n
P0

⇣
L > "(nh)1/2/K̄ | A = a

⌘o�2/(2+�2)
,

and by Markov’s inequality,

P0

⇣
L > "(nh)1/2/K̄ | A = a

⌘
 E0

⇥
L2+�2 | A = a

⇤
/
h
"(nh)1/2/K̄

i2+�2
.

Thus,

sup
|a�a0|<�1

E0

h
L2I

⇣
L > "(nh)1/2/K̄

⌘
| A = a

i

h
"(nh)1/2/K̄

i��2
sup

|a�a0|<�1

E0

⇥
L2+�2 | A = a

⇤
.
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Since nh �! 1, this latter expression tends to zero by assumption for every " > 0, which verifies (b).
For (c), by a similar calculation we have for all h small enough that

P0 {⌘h,a0,j,�1 � ⌘h,a0,j,�2}
2 =

Z
h

✓
a� a0

h

◆2(j�1)

Kh,a0(a)
2E0

h
{�1 � �2}2 | A = a

i
f0(a) da

=

Z
u2(j�1)K(u)2E0

h
{�1 � �2}2 | A = a0 + uh

i
f0(a0 + uh) du

. C sup
|a�a0|<"

E0

h
{�1 � �2}2 | A = a

i

= ⇢a0,"(�1,�2)
2.

Hence,
sup

⇢(�1,�2)<�n

P0{⌘h,a0,j,�1 � ⌘h,a0,j,�2}2 . �2n,

so that (c) is satisfied.
For (d), using the entropy bound established above, we have

sup
Q

Z �

0
{logN ("kHh,a0,jkQ,2,Hh,a0,j , L2(Q))}1/2 d" 

Z �

0

⇢
sup
Q

logN ("kLkQ,2,⇤, L2(Q))

�1/2

d".

Since the integral on the right is convergent by assumption, the expression converges to zero as � ! 0, which verifies
(d).

For the final statement, by Lemma 4, we can write

h1/2�0,h,b,a0� =
2X

j=1

Ch,a0,j⌘h,a0,j,� +
3X

j=1

C 0

h,b,a0,j⌘b,a0,j,�

for some constants Ch,a0,j = O(1) and C 0

h,b,a0,j
= O(1). By the result above, we then have

Gn

n
h1/2�0,h,b,a0(�1n � �2n)

o
=

2X

j=1

Ch,a0,jGn {⌘h,a0,j,�n1 � ⌘h,a0,j,�n2}+
3X

j=1

C 0

h,b,a0,jGn {⌘b,a0,j,�n1 � ⌘b,a0,j,�n2}

=
2X

j=1

O(1)op(1) +
3X

j=1

O(1)op(1) = op(1).

Next, we consider the sequence of stochastic processes {V̄n(�) : � 2 ⇤}, for V̄n(�) := Gn⌘̄h,a0,j,�, where

⌘̄h,a0,j,�(y, a, w) :=

Z
h1/2

✓
a� a0

h

◆j�1

Kh,a0(a)�(y, a, w) dF0(a).

Lemma 10. Suppose (A1), (A2), and (A5) hold, and that ⇤ is a class of functions uniformly bounded by L < 1
and satisfying supQ logN (",⇤, L2(Q))  C"�V for some C < 1 and V 2 (0, 2). Then sup�2⇤ |Gn⌘̄h,a0,j,�| =

op(h(2�s)/(2s)) for every s 2 (V _ 1, 2) and each j 2 {1, 2, . . .}. Hence, sup�2⇤

��Gn

�R
h1/2�0,h,b,a0� dF0

��� =

op(h(2�s)/(2s)) for every s 2 (V, 2) as well.

Proof of Lemma 10. We let H̄h,a0,j := {⌘̄h,a0,j,� : � 2 ⇤}. We use Theorem 2.14.1 of van der Vaart and Wellner
(1996). We first bound the uniform entropy of H̄h,a0,j . Lemma 5.1 of van der Vaart and van der Laan (2006) implies

that the class of functions Fh,a0,j :=
n
(y, a, w) 7! h1/2

�
a�a0

h

�j�1
Kh,a0(a)�(y, a, w) : � 2 ⇤

o
satisfies

sup
Q

N ("kFh,a0,jkQ,2,Fh,a0,j , L2(Q))  sup
Q

N ("L,⇤, L2(Q))
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relative to the envelope function Fh,a0,j : a 7! Lh1/2|(a� a0)/h|jKh,a0(a). We note that for s � 1,

Z
Fh,a0,j(a)

s dF0(a)

�1/s
= Lh1/2+(1�s)/s

Z
|u|s(j�1)K(u)sf0(a0 + uh) du

�1/s
. h(2�s)/(2s)

by (A1) and (A5). Hence, H̄h,s := Ch(2�s)/(2s) is an envelope for H̄h,a0,j for some C < 1. By Lemma 5.2 of
van der Vaart and van der Laan (2006) (with r = t = 2), the above bound for the uniform entropy of Fh,a0,j , and
the assumed bound for the uniform entropy of ⇤, we then have

sup
Q

logN
�
"kH̄h,skQ,2,Hh,a0,j , L2(Q)

�
 sup

Q
logN

⇣
"2/skFh,a0,jkQ,2/2

r/s,Fh,a0,j , L2(Q)
⌘

 sup
Q

logN
⇣
"2/sL/2r/s,⇤, L2(Q)

⌘

. "�2V/s.

Theorem 2.14.1 of van der Vaart and Wellner (1996) then gives

E0

"
sup

⌘̄2H̄h,a0,j

|Gn⌘̄|
#
. kH̄h,skP,2

Z 1

0

⇢
1 + sup

Q
logN

�
"kH̄h,skQ,2,Hh,a0,j , L2(Q)

��1/2

d"

. h(2�s)/(2s)

Z 1

0

n
1 + "�2V/s

o1/2
d".

The integral is finite so long as V/s < 1. Thus,

E0

"
sup

⌘̄2H̄h,a0,j

|Gn⌘̄|
#
= O

⇣
h(2�s)/(2s)

⌘

for all s > V . Furthermore, for any s > V , there exists s0 2 (V, s), so that

E0

"
sup

⌘̄2H̄h,a0,j

|Gn⌘̄|
#
= O

⇣
h(2�s0)/(2s0)

⌘
= o

⇣
h(2�s)/(2s)

⌘
.

The final statement regarding {Gn

�R
h1/2�0,h,b,a0� dF0

�
: � 2 ⇤} follows by decomposing �0,h,b,a0 and using

Lemma 8, as in the proof of Lemma 9.

We now use these results to establish rates of convergence of the remainder terms Rn,h,b,a0,2 and Rn,h,b,a0,3.

Corollary 4. If (A1)–(A5) hold, then Rn,h,b,a0,2 = op
�
{nh}�1/2

�
and Rn,h,b,a0,3 = Op

�
{nh}�1

�
.

Proof of Corollary 4. We can write

(nh)1/2Rn,h,b,a0,2 = Gn

n
h1/2�0,h,b,a0 ( n �  1)

o
+Gn

⇢
h1/2�0,h,b,a0

✓Z
µn dQ0 �

Z
µ1 dQ0

◆�

+Gn

⇢Z
h1/2�0,h,b,a0µn dF0

�
�Gn

⇢Z
h1/2�0,h,b,a0µ1 dF0

�
(10)

and

(nh)1/2Rn,h,b,a0,3 = Gn

n
h1/2 (�n,h,b,a0 � �0,h,b,a0) n

o
+Gn

⇢
h1/2 (�n,h,b,a0 � �0,h,b,a0)

Z
µn dQ0

�

+Gn

⇢Z
h1/2 (�n,h,b,a0 � �0,h,b,a0)µn dF0

�
(11)

We address the first two terms in each expansion using Lemma 9. For the first term, we set ⇤ := {o 7! [y �
µ(a,w)]/g(a,w) : µ 2 Fµ, g 2 Fg}. By (A3), an envelope function for ⇤ is L(y, a, w) = C + C 0|y| for some
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C,C 0 < 1. Hence, by the triangle inequality,

sup
|a�a0|<�1

E0

⇥
L2+�2 | A = a

⇤
= sup

|a�a0|<�1

E0

h
{C + C 0|Y |}2+�2 | A = a

i


"
C + C 0 sup

|a�a0|<�1

�
E0

�
|Y |2+�2 | A = a

 �1/(2+�2)

#2+�2

,

which is finite by (A5). Therefore, condition 1 of Lemma 9 holds. For condition 2 of Lemma 9, we note that
permanence properties of uniform entropy numbers and uniform entropy integrals (see, e.g., Theorem 2.10.20 of
van der Vaart and Wellner, 1996 and Lemma 5.1 of van der Vaart and van der Laan, 2006) in conjunction with (A3)
implies that ⇤ possesses finite uniform entropy integral. Finally, we show that ⇢a0,�1( n, 1) = op(1). By Jensen’s
inequality,

E0

�
Y 2 | A = a,W = w

�

⇥
E0

�
|Y |2+�2 | A = a,W = w

�⇤2/(2+�2)

which is uniformly bounded for a 2 B�1(a0) and P0-almost every w by (A5). We also note that by (A3) and (A4),
for any functions �1, �2 of (a,w),

sup
|a�a0|<�1

n
E0

h
{�1(a,W )� �2(a,W )}2 | A = a

io1/2
= sup

|a�a0|<�1

n
E0

h
g0(a,W ) {�1(a,W )� �2(a,W )}2

io1/2

. sup
|a�a0|<�1

n
E0

h
{�1(a,W )� �2(a,W )}2

io1/2

= sup
|a�a0|<�1

n
E0

h
IB�1 (a0)⇥W(a,W ) {�1(a,W )� �2(a,W )}2

io1/2


3X

j=1

sup
|a�a0|<�1

n
E0

h
ISj (a,W ) {�1(a,W )� �2(a,W )}2

io1/2

=
3X

j=1

d (�1, �2;B�1(a0),Sj) .

We then have

⇢a0,�1( n, 1) = sup
|a�a0|<�1

n
E0

h
( n �  0)

2 | A = a
io1/2

= sup
|a�a0|<�1

n
E0

h
({1/(gng1)} {Y � µn} {g1 � gn}� {1/g1}{µn � µ1})2 | A = a

io1/2

. sup
|a�a0|<�1

n
E0

h
Y 2 (gn � g1)2 | A = a

io1/2
+ sup

|a�a0|<�1

n
E0

h
µ2
n (gn � g1)2 | A = a

io1/2

+ sup
|a�a0|<�1

n
E0

h
(µn � µ1)2 | A = a

io1/2

. sup
|a�a0|<�1

n
E0

h
E0

�
Y 2 | A = a,W

�
(gn � g1)2 | A = a

io1/2
+

3X

j=1

d (gn, g1;B�1(a0),Sj)

+
3X

j=1

d (µn, µ1;B�1(a0),Sj)

.
3X

j=1

d (gn, g1;B�1(a0),Sj) +
3X

j=1

d (µn, µ1;B�1(a0),Sj) .

Hence, by (A4), ⇢a0,�1( n, 1) = op(1). Lemma 9 thus implies that Gn{h1/2�0,h,b,a0( n �  1)} = op(1), which
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addresses the first term in equation (10). For the first term in equation (11), we note that

Gn

n
h1/2 (�n,h,b,a0 � �0,h,b,a0) n

o
= eT1

⇣
D�1

n,h,a0,1
�D�1

0,h,a0,1

⌘
Gn

n
h1/2wh,a0,1Kh,a0 n

o

� c0,h,a0,2(h/b)
2eT3

⇣
D�1

n,h,a0,2
�D�1

0,h,a0,2

⌘
Gn

n
h1/2wb,a0,2Kb,a0 n

o

� (cn,h,a0,2 � c0,h,a0,2) (h/b)
2eT3 D

�1
n,h,a0,2

Gn

n
h1/2wb,a0,2Kb,a0 n

o
.

Since we have established that the conditions of Lemma 9 hold for the class ⇤ that  n falls in, Lemma 9 implies that
all elements of Gn

�
h1/2wh,a0,1Kh,a0 n

 
and Gn

�
h1/2wb,a0,2Kb,a0 n

 
are Op(1). In conjunction with Lemma 8, we

then have
Gn

n
h1/2 (�n,h,b,a0 � �0,h,b,a0) n

o
= Op

⇣
{nh}�1/2

⌘
.

For the second term in equation (10), we use Lemma 9 with ⇤ :=
�
a 7!

R
µ(a,w) dQ0(w) : µ 2 Fµ

 
, which is a

uniformly bounded class with envelope L = C1 by (A3). Hence, condition (1) of Lemma 9 hold trivially for this class.
For condition (2), (A3) and Lemma 5.2 of van der Vaart and van der Laan (2006) (with r = s = t = 2) together
imply that condition (2) of Lemma 9 is satisfied. Therefore, if ⇢a0,�1(�n,�1) = op(1) for �n : a 7!

R
µn(a,w) dQ0(w)

and �1 : a 7!
R
µ1(a,w) dQ0(w), Lemma 9 implies that

Gn

⇢
h1/2�0,h,b,a0

✓Z
µn dQ0 �

Z
µ1 dQ0

◆�
= op(1).

Since �n and �1 are functions just of a, we have

⇢a0,�1(�n,�1)2 = sup
|a�a0|<�1

⇢Z
[µn(a,w)� µ1(a,w)] dQ0(w)

�2

 sup
|a�a0|<�1

Z
[µn(a,w)� µ1(a,w)]2 dQ0(w),

which is op(1) by (A4) as noted above. A similar argument yields that the second term of (11) is Op

�
{nh}�1/2

�
.

For the third and fourth terms in equation (10), we use Lemma 10 with ⇤ = Fµ. The conditions of the lemma
are satisfied by (A3), so that

sup
µ2Fµ

����Gn

⇢Z
h1/2�0,h,b,a0µdF0

����� = op
⇣
h(2�s)/(2s)

⌘

for every s 2 (Vµ, 2). Since µn, µ1 2 Fµ almost surely for all n large enough, the result follows.
For the third term in equation (11), we note that

Gn

⇢Z
h1/2 (�n,h,b,a0 � �0,h,b,a0)µn dF0

�
= eT1

⇣
D�1

n,h,a0,1
�D�1

0,h,a0,1

⌘
Gn

⇢Z
h1/2wh,a0,1Kh,a0µn dF0

�

� c0,h,a0,2(h/b)
2eT3

⇣
D�1

n,b,a0,2
�D�1

0,b,a0,2

⌘
Gn

⇢Z
h1/2wh,a0,2Kh,a0µn dF0

�

� (c0,h,a0,2 � c0,h,a0,2)(h/b)
2eT3 D

�1
n,b,a0,2

Gn

⇢Z
h1/2wh,a0,2Kh,a0µn dF0

�

Each of the terms inGn

�R
h1/2wh,a0,1Kh,a0µn dF0

 
andGn

�R
h1/2wb,a0,3Kb,a0µn dF0

 
are op

�
h(2�s)/(2s)

�
by Lemma 10,

so they are also Op(1). In conjunction with Lemma 8, we then have

Gn

⇢Z
h1/2 (�n,h,b,a0 � �0,h,b,a0)µn dF0

�
= Op

⇣
{nh}�1/2

⌘
,

as claimed.

We now turn to uniform control of Rn,h,b,s,2 and Rn,h,b,,3 over a0 2 A0. Let F be a class of measurable functions
equipped with a measurable envelope F . We say that F is VC type with envelope F if there exists a constant V > 0
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such that supQ N("kFkQ,2,F , L2(Q)) . "�V when " < 1 and the supremum is taken over all probability measures.

Lemma 11. If (A1) holds, then {a 7! (a�a0
h )j�1K(a�a0

h ) : a0 2 A0} is VC type for each fixed h > 0 and positive
integer j.

Proof of Lemma 11. By (A1), K is supported on [�1, 1] and is uniformly bounded. Hence,

✓
a� a0

h

◆j�1

K

✓
a� a0

h

◆
= I

✓����
a� a0

h

����  1

◆✓
a� a0

h

◆j�1

K

✓
a� a0

h

◆
,

which implies that the class in question is contained in the product of the two classes of functions

⇢
K

✓
a� a0

h

◆
: a0 2 A0

�
and

(✓
a� a0

h

◆j�1

I

✓����
a� a0

h

����  1

◆
: a0 2 A0

)
.

The first class is VC type by (A1) and the results of Giné and Guillou (2002). For the second class, we first rewrite
this class as ⇢

� � pj
✓
a� a0

h

◆
: a0 2 A0

�
,

where where � := u 7! uI(|u|  1) and pj := u 7! uj . Since � is a bounded real function of bounded variation and
pj is a polynomial, Giné and Guillou (2002) implies that this class is also VC. Since the product of VC classes is also
VC, (e.g., Lemma 5.1 of van der Vaart and van der Laan, 2006), the result follows.

Corollary 5. For a0 2 A0 and h, b > 0, consider the following function:

⌘h,b,a0 : (y, a, w) 7! h1/2��1
1,h,b(a0)�

⇤

1,h,b,a0
(y, a, w).

If (A1) holds, then the class of functions Hh,b := {⌘h,b,a0 : a0 2 A0} is VC type.

Proof of Corollary 5. For each a0 2 A0, ⌘h,b,a0 is defined as

h1/2��1
1,h,b(a0)


�0,h,b,a0(a)⇠1(y, a, w)� �0,h,b,a0(a) +

Z
�0,h,b,a0(ā)

⇢
µ1(ā, w)�

Z
µ1(ā, w̄) dQ0(w̄)

�
dF0(ā)

�
.

Any collection of constants {ca0 : a0 2 A0} is a VC class with VC index 1 because no set of size 2 can be shattered.
This implies that {�1,h,b(a0) : a0 2 A0}, {P0 (wh,a0,1Kh,a0✓0) : a0 2 A0}, {D�1

0,h,a0,1
[i, j] : a0 2 A0} for each (i, j),

and {
RR

�0,h,b,a0(ā)µ1(ā, w̄) dQ0(w̄) dF0(ā) : a0 2 A0} are all VC type. We note that by permanence properties of
uniform covering numbers, sums and products of VC classes of functions are also VC type. It thus remains to show
that {�0,h,b,a0(a)⇠1(y, a, w) : a0 2 A0}, {�0,h,b,a0(a) : a0 2 A0} and {

R
�0,h,b,a0(ā)µ1(ā, w) dF0(ā) : a0 2 A0} are

VC-type.
We recall that

�0,h,b,a0(a) = eT1 D
�1
0,h,a0,1

wh,a0,1(a)Kh,a0(a)� eT3 c0,h,a,2(h/b)
2D�1

0,b,a0,2
wb,a0,2(a)Kb,a0(a).

By Lemma 11, each entry of {wh,a0,1(a)Kh,a0(a) : a0 2 A0} and {wb,a0,2(a)Kb,a0(a) : a0 2 A0} are VC type.
Combined with the discussion of sets of constants above, this implies that {�0,h,b,a0(a) : a0 2 A0} is VC type for
each h, b > 0. By Lemma 2.6.18 of van der Vaart and Wellner (1996), element-wise products of a fixed function and
a VC class of functions are also VC type. Hence, it follows that {�0,h,b,a0(a)⇠1(y, a, w) : a0 2 A0} is also VC type.
Similarly, {�0,h,b,a0(a)µ1(a,w) : a0 2 A0} is VC type. Lemma 5.2 of van der Vaart and van der Laan (2006) (with
r = s = t = 2) then implies that {

R
�0,h,b,s(ā)µ1(ā, w) dF0(ā) : a0 2 A0} is also VC type.
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Finally, we recall that

�0,h,b,a0(a) = eT1 D
�1
0,h,a0,1

wh,a0,1(a)Kh,a0(a)w
T
h,s,1(a)D

�1
0,h,a0,1

P0 (wh,a0,1Kh,a0✓0)

� c2(h/b)
2eT3 D

�1
0,b,a0,2

wb,a0,2(a)Kb,a0(a)w
T
b,a0,2(a)D

�1
0,b,a0,2

P0 (wb,a0,2Kb,a0✓0)

+ (h/b)2eT1 D
�1
0,h,a0,1

⇥
w̃h,a0,1(a)� wh,a0,1(a)wh,a0,1(a)

TD0,h,a0,1P0(w̃h,a0,1Kh,a0)
⇤
Kh,a0(a)

⇥ eT3 D
�1
0,b,a0,2

P0 (wb,a0,2Kb,a0✓0)

As in Lemma 11, each entry of {wh,a0,1(a)Kh,a0(a)w
T
h,a0,1

(a) : a0 2 A0}, {wb,a0,2(a)Kb,a0(a)w
T
b,a0,2

(a) : a0 2 A0},
and {w̃h,a0,1(a)Kh,a0(a)w

T
h,a0,1

(a) : a0 2 A0} are VC type. Thus by the permanence property of VC-type function
classes, we conclude that {�0,h,b,a0(a) : a0 2 A0} is also VC type.

Lemma 12. If (A1) and (A8) hold, then supa02A0
kDn,h,a0,1�D0,h,a0,1k1 and supa02A0

kDn,b,a0,2�D0,b,a0,2k1 are

Op({nh/ log h�1}�1/2). If in addition nh/ log h�1 �! 1, then supa02A0
kD�1

n,h,a0,1
�D�1

0,h,a0,1
k1, supa02A0

kD�1
n,b,a0,2

�
D�1

0,b,a0,2
k1, and supa02A0

|cn,h,a0,2 � c0,h,a0,2| are Op({nh/ log h�1}�1/2).

Proof of Lemma 12. For all 1  j, k  2, we can write

sup
a02A0

|Dn,h,a0,1[j, k]�D0,h,a0,1[j, k]| = h�1 sup
a02A0

�����

Z ✓
a� a0

h

◆j+k�2

K

✓
a� a0

h

◆
{dFn(a)� dF0(a)}

�����

= n�1/2h�1 sup
f2Fj+k�2,h

|Gnf |

for

Fj+k�2,h :=

(
a 7!

✓
a� a0

h

◆j+k�2

K

✓
a� a0

h

◆
: a0 2 A0

)
.

By (A1) and Lemma 11, Fj+k�2,h is a uniformly bounded VC class. For all a0 2 A0,

Var

(✓
A� a0

h

◆j+k�2

K

✓
A� a0

h

◆)
 E0

2

4
(✓

A� a0
h

◆j+k�2

K

✓
A� a0

h

◆)2
3

5

=

Z (✓
a� a0

h

◆j+k�2

K

✓
a� a0

h

◆)2

f0(a) da

=

Z
hu2(j+k�2)K(u)2f0(uh+ a0) du

 hkf0k1c2(j+k�2).

Additionally, we have that supa02A0
|
�
a�a0

h

�j+k�2
K
�
a�a0

h

�
|  kKk1 by (A1). Hence, Fj+k�2,h satisfies the

conditions of Theorem 2.1 of Giné and Guillou (2002) with �2 proportional to h, which implies that that

sup
f2Fj+k�2,h

|Gnf | = Op

⇣�
h log h�1

 1/2
⌘
.

Hence,

sup
a02A0

|Dn,h,a0,1[j, k]�D0,h,a0,1[j, k]| = Op

 ⇢
log h�1

nh

�1/2
!

for each 1  j, k  2. We conclude that supa02A0
kDn,h,a0,1 �D0,h,a0,1k1 and supa02A0

kDn,h,a0,2 �D0,h,a0,2k1 are

both Op({nh/ log h�1}�1/2). The results for the inverse matrices follow along the lines of Lemma 8, where we use
the assumption that nh/ log h�1 �! 1 to conclude that supa02A0

kDn,h,a0,1 �D0,h,a0,1k1 = op(1).
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Finally, we can write

sup
a02A0

|cn,h,a0,2 � c0,h,a0,2|  sup
a02A0

���eT1
⇣
D�1

n,h,a0,1
�D�1

0,h,a0,1

⌘��� sup
a02A0

|Pn (w̃h,a0,1Kh,a0)|

+ sup
a02A0

���eT1 D�1
0,h,a0,1

��� sup
a02A0

|(Pn � P0) (w̃h,a0,1Kh,a0)| .

The first term is Op({nh/ log h�1}�1/2) by the result for supa02A0
kD�1

n,h,a0,1
�D�1

0,h,a0,1
k1, and the second term is

Op({nh/ log h�1}�1/2) by a similar calculation to that above.

As above, we define

⌘h,a0,j,�(y, a, w) := h1/2

✓
a� a0

h

◆j�1

Kh,a0 (a)�(y, a, w),

and we let �1 be a fixed function in ⇤. We also define the following semi-metric on ⇤:

⇢A�(�1,�2) := sup
a02A�

⇣
E0

h
{�1(Y,A,W )� �2(Y,A,W )}2 | A = a0

i⌘1/2
,

where A� := {a : 9a0 2 A0, |a � a0|  �}. For each r > 0, we then define ⇤r := {� 2 ⇤ : ⇢A�(�,�1)  r}
and Hh,j,r := {⌘h,a0,j,� � ⌘h,a0,j,�1 : a0 2 A0,� 2 ⇤r}. If ⇤ is equipped with an envelope function L, then
Hh := 2h�1/2kKk1L is an envelope for Hh,j,r. The next Lemma controls the uniform entropy of Hh,j,r in terms of
that of ⇤.

Lemma 13. Suppose ⇤ has envelope function L with PL2 < 1 and such that supQ logN("kLkQ,2,⇤, L2(Q))  C"�V

for some C, V < 1. If (A1) also holds, then

sup
Q

logN("kHhkQ,2,Hh,j,r, L2(Q))  C 0"�V

for all "  1 and some C 0 < 1.

Proof of Lemma 13. For each h > 0 and j 2 {1, . . . , 4}, we define

Kh,j :=

(✓
a� a0

h

◆j�1

K

✓
a� a0

h

◆
: a0 2 A0

)
,

which is uniformly bounded by kKk1. We have that Hh,j,r is then contained in the product of h�1/2Kh,j and
⇤� �1, which has envelope 2L. Lemma 5.1 of van der Vaart and van der Laan (2006) implies that

sup
Q

logN ("kHh,j,rkQ,2,Hh,j,r, L2(Q))  sup
Q

logN
⇣
"h�1/2kKk1, h�1/2Kh,j , L2(Q)

⌘
+ sup

Q
logN ("kLkQ,2,⇤, L2(Q))

for any " > 0. By Lemma 11, Kh,j is VC type, which implies by Theorem 2.6.7 of van der Vaart and Wellner (1996)
that

sup
Q

logN
⇣
"h�1/2kKk1, h�1/2Kh,j , L2(Q)

⌘
= sup

Q
logN ("kKk1,Kh,j , L2(Q)) . log "�1,

which is bounded up to a constant by "�V .

Lemma 14. Suppose ⇤ is a class of functions uniformly bounded by L < 1 and satisfying supQ logN (",⇤, L2(Q)) 
C"�V for some C < 1 and V 2 (0, 2) such that n [h/(log n)]

2+V
2�V �! 1. If r = rn > 0 is a sequence satisfying

r = o
⇣
h

V
2(2�V ) {log n}�

1
2�V

⌘

and (A1) holds, then

E0

"
sup

⇣2Hh,j,r

|Gn⇣|
#
= o({log n}�1/2)
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for each j 2 {1, 2, 3, 4}. Consequently, if the above conditions hold and �n 2 ⇤ is a sequence of possibly random
functions satisfying

⇢A�(�n,�1) = op
⇣
h

V
2(2�V ) {log n}�

1
2�V

⌘

for some � > 0 and (A8) also holds, then

sup
a02A0

���Gn

n
h1/2�0,h,b,a0(�n � �1)

o��� = op
⇣
{log n}�1/2

⌘
.

Proof of Lemma 14. For each ⌘h,a0,j,� such that h  �, we have

P0(⌘h,a0,j,� � ⌘h,a0,j,�1)2 = h�1

Z (✓
a� a0

h

◆j�1

K

✓
a� a0

h

◆
(�� �1)(y, a, w)

)2

dP0(y, a, w)

= h�1

Z ✓
a� a0

h

◆2(j�1)⇢
K

✓
a� a0

h

◆�2

E0

�
(�� �1)2 | A = a

 
f0(a) da

=

Z
u2(j�1)K(u)2E0{(�� �1)2 | A = a0 + uh}f0(a0 + uh) du

 kKk2
1

sup
a2A�

E0{(�� �1)2 | A = a}kf0k1

= kKk2
1
⇢A�(�,�1)2kf0k1.

Hence, for all ⇣ 2 Hh,j,r with h  �, we have P0⇣2  r2kKk2
1
kf0k1. Since ⇤ is uniformly bounded by L,

Hh,j,r is uniformly bounded by Hh,j,r = 2h�1/2LkKk1, and hence P0H2
h,j,r = 4h�1L2kKk2

1
. Therefore, P0⇣2 

C2hr2P0H2
h,j,r for all ⇣ 2 Hh,j,r with h  �, where C = kf0k1/21 /(2L) does not depend on h or r. Theorem 2.1 of

van der Vaart and Wellner (2011) (applied to F = Hh,j,r/Hh,j,r, which is uniformly bounded by 1) then implies that
for all n large enough,

E0

"
sup

⇣2Hh,j,r

|Gn⇣|
#
. h�1/2J(Crh1/2,Hh,j,r, L2)

⇢
1 +

J(Crh1/2,Hh,j,r, L2)

C2hr2n1/2

�
,

where

J(x,Hh,j,r, L2) := sup
Q

Z x

0

q
1 + logN ("kHh,j,rkQ,2,Hh,j,r, L2(Q)) d" .

Z x

0
"�V/2 d" . x1�V/2

for all x 2 (0, 1] by Lemma 13. Therefore,

{log n}1/2E0

"
sup

⇣2Hh,j,r

|Gn⇣|
#
. {log n}1/2h�1/2r

2�V
2 h

2�V
4

(
1 +

r
2�V

2 h
2�V

4

hr2n1/2

)

=
n
r [log n]

1
2�V h�

V
2(2�V )

o 2�V
2

+
n
r [log n]�

1
2V n

1
2V h

1+V
2V

o�V

= {rs}
2�V

2 + {rt}�V ,

where s := [log n]
1

2�V h�
V

2(2�V ) and t := [log n]�
1

2V n
1

2V h
1+V
2V . We note that

t/s =
n
n [h/(log n)]

2+V
2�V

o 1
2V �! 1

by assumption. We now define r̄ := max{r, [st]�1/2}. Since r  r̄, we then have

sup
⇣2Hh,j,r

|Gn⇣|  sup
⇣2Hh,j,r̄

|Gn⇣|
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almost surely by the increasing nature of the sets Hh,j,r. Using the above bound applied to r̄, we also have

{log n}1/2E0

"
sup

⇣2Hh,j,r̄

|Gn⇣|
#
. {r̄s}

2�V
2 + {r̄t}�V ,

By assumption, rs = o(1), and [st]�1/2s = [s/t]1/2, which tends to zero since t/s �! 1 as noted above. Therefore,

r̄s = o(1). In addition, r̄t � [st]�1/2t = [t/s]1/2 �! 1. Hence, {r̄s}
2�V

2 + {r̄t}�V = o(1). Putting it together, we
have

{log n}1/2E0

"
sup

⇣2Hh,j,r

|Gn⇣|
#
 {log n}1/2E0

"
sup

⇣2Hh,j,r̄

|Gn⇣|
#
. {r̄s}

2�V
2 + {r̄t}�V = o(1),

which proves the first claim.
For the second claim, as in the proof of Lemma 9, we can write

h1/2�0,h,b,a0� =
2X

j=1

Ch,a0,j⌘h,a0,j,� +
3X

j=1

C 0

h,b,a0,j⌘b,a0,j,�

for some constants Ch,a0,j and Cb,a0,j such that supa02A0
|Ch,a0,j | = O(1) and supa02A0

|C 0

h,b,a0,j
| = O(1) by the

uniform statements of Lemma 4. Thus,

sup
a02A0

���Gn

n
h1/2�0,h,b,a0(�n � �1)

o��� 
2X

j=1

sup
a02A0

|Ch,a0,j | sup
a02A0

|Gn⌘h,a0,j,�n |+
3X

j=1

sup
a02A0

��C 0

h,b,a0,j

�� sup
a02A0

|Gn⌘b,a0,j,�n |

= O(1)
2X

j=1

sup
a02A0

|Gn⌘h,a0,j,�n |+O(1)
3X

j=1

sup
a02A0

|Gn⌘b,a0,j,�n | .

Hence, if we can show that supa02A0
|Gn⌘h,a0,j,�n | = op

�
{log n}�1/2

�
for each j, then the claim follows.

For any ⌫, � > 0, we have

P0

✓
sup

a02A0

|Gn⌘h,a0,j,�n | > ⌫/{log n}1/2
◆

 P0

✓
sup

a02A0

|Gn⌘h,a0,j,�n | > ⌫/{log n}1/2, ⇢A�(�n,�1) < �/s

◆

+ P0 (⇢A�(�n,�1) � �/s) .

Now, ⇢A�(�n,�1) < �/s implies that ⌘h,a0,j,�n 2 Hh,j,�/s, so by Markov’s inequality,

P0

✓
sup

a02A0

|Gn⌘h,a0,j,�n | > ⌫/{log n}1/2, ⇢A0,�(�n,�1) < �/s

◆
 P0

 
sup

⇣2Hh,j,�/a

|Gn⇣| > ⌫/{log n}1/2
!

 ⌫�1{log n}1/2E0

"
sup

⇣2Hh,j,�/s

|Gn⇣|
#
.

Applying the same the same technique as used above, we then have

{log n}1/2E0

"
sup

⇣2Hh,j,�/s

|Gn⇣|
#
.
h
max{�/s(st)�1/2}s

i 2�V
2

+
h
max{�/s, (st)�1/2}t

i�V

=
h
max{�, (s/t)1/2}

i 2�V
2

+
h
max{�(t/s), (t/s)1/2}

i�V
.
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Therefore, for any ⌫, � > 0, we have

P0

✓
sup

a02A0

|Gn⌘h,a0,j,�n | > ⌫/{log n}1/2
◆

. ⌫�1
h
max{�, (s/t)1/2}

i 2�V
2

+ ⌫�1
h
max{�(t/s), (t/s)1/2}

i�V

+ P0 (⇢A�(�n,�1) � �/s)

Since s/t �! 0, ⇢A�(�n,�1) = op(s�1), and � was arbitrary, for any fixed ⌫ > 0, we can choose � to make the above
expression as small as we like for all n large enough. This implies that

P0

✓
sup

a02A0

|Gn⌘h,a0,j,�n | > ⌫/{log n}1/2
◆

�! 0

for any ⌫ > 0, so that supa02A0
|Gn⌘h,a0,j,�n | = op

�
{log n}�1/2

�
for each j 2 {1, 2, . . . }, which completes the proof.

Next, we define

⌘̄h,a0,j,�(y, a, w) :=

Z
⌘h,a0,j,�(y, a, w) dF0(a) =

Z
h1/2

✓
a� a0

h

◆j�1

Kh,a0(a)�(y, a, w) dF0(a).

The next lemma provides a rate of convergence for sups2S,�2⇤ |Gn⌘̄h,s,j,�|, which is su�cient to obtain a rate of conver-
gence of supa02A0

|Rn,h,b,s,2| and supa02A0
|Rn,h,b,s,3|. We note that we could obtain an even faster rate of convergence

for sups2S,�2⇤ |Gn {⌘̄h,s,j,� � ⌘̄h,s,j,�1}| using similar techniques to those above for sups2S,�2⇤ |Gn {⌘h,s,j,� � ⌘h,s,j,�1}|.
However, the integration over a in ⌘̄h,s,j,� is su�cient to obtain a rate of convergence without localizing around �1,
which provides a su�cient rate for our purposes.

Lemma 15. Suppose ⇤ is a class of functions uniformly bounded by L < 1 and satisfying supQ logN (",⇤, L2(Q)) 
C"�V for some C < 1 and V 2 (0, 2). If (A1) holds, then supa02A0,�2⇤ |Gn⌘̄h,a0,j,�| = Op

⇣
h

1�V
2 +

�
nh1+2V

 �1/2
⌘

for every j 2 {1, 2, . . . }. Consequently, if (A8) holds as well, then

sup
a02A0,�2⇤

����Gn

⇢Z
h1/2�0,h,b,a0� dF0

����� = Op

⇣
h

1�V
2 +

�
nh1+2V

 �1/2
⌘
.

Proof of Lemma 15. We consider the class of functions H̄h,j := {⌘̄h,a0,j,� : a0 2 A0,� 2 ⇤}. We equip this class
with the envelope function Hh = h�1/2LkKk1. We also define Hh,j := {⌘h,a0,j,� : a0 2 A0,� 2 ⇤}, and we note that
Hh is also an envelope for Hh,j . Hence, by Lemma 5.2 of van der Vaart and van der Laan (2006) with s = t = r = 2
and Lemma 13, we have

sup
Q

logN
�
"Hh, H̄h,j , L2(Q)

�
 sup

Q
logN ("Hh/2,Hh,j , L2(Q)) . "�V .

Therefore,

J(x, H̄h,j , L2) := sup
Q

Z x

0

q
1 + logN

�
"H̄h, H̄h,j , L2(Q)

�
d" . x1�V/2

for all x 2 (0, 1]. We also have

P0⌘̄
2
h,a0,j,�  h�1L2

(Z ����
a� a0

h

����
j�1

K

✓
a� a0

h

◆
dF0(a)

)2

= hL2

⇢Z
|u|j�1 K (u) f0(a0 + uh) du

�2

 hL2kf0k21kKk2
1

for every a0 2 A0 and � 2 ⇤. Hence, P0⌘̄2h,a0,j,�
 kf0k21h2P0H2

h for every ⌘̄h,a0,j,� 2 H̄h,j . By Theorem 2.1 of
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van der Vaart and Wellner (2011), we then have

E0

"
sup

⇣2H̄h,j

|Gn⇣|
#
. h�1/2J

�
kf0k1h, H̄h,j , L2

�
(
1 +

J
�
kf0k1h, H̄h,j , L2

�

n1/2kf0k21h2

)

. h
1�V

2

n
1 + n�1/2h�

2+V
2

o

= h
1�V

2 +
�
nh1+2V

 �1/2
.

The second claim follows as in the proof of Lemma 14.

Lemma 16. Suppose ⇤ is a class of functions uniformly bounded by L < 1 such that supQ logN (",⇤, L2(Q)) 
C"�V for some C < 1 and V 2 (0, 2). If (A1) holds, then for each j 2 {1, 2, . . . }, supa02A0,�2⇤ Gn |⌘h,a0,j,�| =
Op

�
h�1/2

�
.

Proof of Lemma 16. Since L is an envelope for ⇤, h�1/2kKk1L is an envelope for {⌘h,a0,j,� : a0 2 A0,� 2 ⇤}
by (A1). By Lemma 13, the uniform entropy integral of this class is finite. Hence, by Theorem 2.14.1 of van der
Vaart and Wellner (1996), we have

E0

"
sup

a02A0,�2⇤
Gn |⌘h,a0,j,�|

#
. h�1/2,

and the result follows.

Corollary 6. If (A1)–(A3), (A6), (A7)(d), and (A8) hold and nhp �! 0 for some p > 0, then supa02A0
|Rn,h,b,a0,2| =

op
�
{nh log n}�1/2

�
and supa02A0

|Rn,h,b,a0,3| = op
�
{nh log n}�1/2

�
.

Proof of Corollary 6. As in the proof of Corollary 4, we can write

sup
a02A0

���{nh}1/2Rn,h,b,a0,2

���  sup
a02A0

���Gn

n
h1/2�0,h,b,a0 ( n �  1)

o��� (12)

+ sup
a02A0

����Gn

⇢
h1/2�0,h,b,a0

✓Z
µn dQ0 �

Z
µ1 dQ0

◆�����

+ sup
a02A0

����Gn

⇢Z
h1/2�0,h,b,a0µn dF0

�����+ sup
a02A0

����Gn

⇢Z
h1/2�0,h,b,a0µ1 dF0

����� . (13)

For the first term, we use Lemma 14 with ⇤ := {o 7! [y � µ(a,w)]/g(a,w) : µ 2 Fµ, g 2 Fg}. By (A3) and (A8),
⇤ is uniformly bounded by some L < 1. By (A3) and permanence properties of uniform entropy integrals,

supQ logN(",⇤, L2(Q))  C"�V for V = max{Vµ, Vg} 2 (0, 2), and by (A6), n[h/(log n)]
2+V
2�V �! 1. Using a

similar argument to that used in the proof of Corollary 4 and using the assumption that |Y | is bounded almost
surely, we can show that

⇢A�3
( n, 1) . d(gn, g1;A�3 ,A⇥W) + d(µn, µ1;A�3 ,A⇥W).

Hence, by (A7)(d), ⇢A�3
( n, 1) = op

⇣
h

V
2(2�V ) {log n}�

1
2�V

⌘
. Thus, the conditions of Lemma 14 hold, and it follows

that supa02A0

��Gn{h1/2�0,h,b,a0( n �  1)}
�� = op({log n}�1/2).

For the second term in equation (13), we also use Lemma 14 with ⇤ =
�
a 7!

R
µ(a,w) dQ0(w) : µ 2 Fµ

 
. This

class is uniformly bounded since Fµ is uniformly bounded by (A3). By (A3) and Lemma 5.2 of van der Vaart and

van der Laan (2006), supQ logN(",⇤, L2(Q)) . "�Vµ . "�V , and by (A6) n[h/(log n)]
2+V
2�V �! 1. By Jensen’s

inequality and (A7)(d),

⇢A�3

✓Z
µn dQ0,

Z
µ1 dQ0

◆
 d(µn, µ1;A�3 ,A⇥W) = op

⇣
h

V
2(2�V ) {log n}�

1
2�V

⌘
.
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The conditions of Lemma 14 are satisfied, and it follows that

sup
a02A0

����Gn

⇢
h1/2�0,h,b,a0

✓Z
µn dQ0 �

Z
µ1 dQ0

◆����� = op
⇣
{log n}�1/2

⌘
.

For the third and fourth terms in equation (13), we use Lemma 15 with ⇤ = Fµ. The conditions of the lemma are
satisfied by (A3), so that

{log n}1/2 sup
a02A0,µ2Fµ

����Gn

⇢Z
h1/2�0,h,b,a0µdF0

����� = Op
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{log n}1/2h

1�Vµ
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�
nh1+2Vµ/ log n
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⌘
.

By (A6), nh3 �! 1, which implies that nh1+2Vµ/ log n �! 1 since Vµ 2 (0, 1). By assumption, nhp �! 0 for

some p > 0, and since Vµ 2 (0, 1), this implies that {log n}1/2h
1�Vµ

2 = o(1) as well. Hence,
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����Gn
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⇣
{log n}�1/2

⌘
.

We have now shown that every term of equation (13) is op
�
{log n}�1/2

�
, so we conclude that supa02A0

|Rn,h,b,a0,2| =
op
⇣
{nh log n}�1/2

⌘
.

We can similarly decompose Rn,h,b,a0,3 as
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For the first term in equation (14), we note that
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By (A6), nh3 �! 1, which implies that nh/ log h�1 �! 1. Hence, by Lemma 12, supa02A0
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���Gn

n
h1/2wT

h,a0,1
1Kh,a0 n

o��� and supa02A0

���Gn

n
h1/2wT

b,a0,2
1Kb,a0 n

o��� are both

Op(h�1/2). We then have

{log n}1/2 sup
a02A0

���Gn

n
h1/2 (�n,h,b,a0 � �0,h,b,a0) n

o��� = Op

 ⇢
nh2

log h�1 log n

��1/2
!
.
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Since nh3 �! 1 and nhp �! 0 for some p > 0, nh2

log h�1 logn �! 1. The second term in equation (14) can be

addressed in the same way using Lemma 5.2 of van der Vaart and van der Laan (2006).
We can similarly bound the third term in equation (14) up to a constant by

sup
a02A0

���D�1
n,h,a0,1

�D�1
0,h,a0,1

���
1

sup
a02A0

����Gn

⇢Z
h1/2wT

h,a0,11Kh,a0µn dF0

�����

+ sup
a02A0

���D�1
n,b,a0,2

�D�1
0,b,a0,2

���
1

sup
a02A0

����Gn

⇢Z
h1/2wT

b,a0,21Kb,a0µn dF0

�����

+ sup
a02A0

|cn,h,a0,2 � c0,h,a0,2| sup
a02A0

����Gn

⇢Z
h1/2wT

b,a0,21Kb,a0µn dF0

�����

By Lemmas 12 and 15, we then have

{log n}1/2 sup
a02A0

����Gn

⇢Z
h1/2 (�n,h,b,a0 � �0,h,b,a0)µn dF0

�����

= Op

 ⇢
nh

log h�1 log n

��1/2 n
h(1�Vµ)/2 +

�
nh1+2Vµ

��1/2
o!

= Op

0

@
⇢

nhVµ

log h�1 log n

��1/2

+

(
nh1+Vµ

(log h�1 log n)1/2

)�1
1

A .

By (A6), both terms are o(1).
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Supplement I Analysis of remainder term Rn,h,b,a0,4

Lemma 17. If (A1)–(A4) hold, then Rn,h,b,a0,4 = op({nh}�1/2). If (A1)–(A3), (A7), and (A8) hold, then
supa02A0

|Rn,h,b,a0,4| = op
�
{nh log n}�1/2

�
.

Proof of Lemma 17. We note that �n,h,b,a0(a) = 0 for all a such that |a � a0| > max{h, b} by (A1). Hence, for
max{h, b}  �1, �n,h,b,a0(a) = 0 for a /2 B�1(a0). Therefore, using (A4), for all max{h, b}  �1, we can write

|Rn,h,b,a0,4| =

�����

ZZ

B�1 (a0)⇥W

�n,h,b,a0(a) {µn(a,w)� µ0(a,w)}
⇢
1� g0(a,w)

gn(a,w)

�
dF0(a) dQ0(w)

�����

=

������

3X

j=1

ZZ

Sj

�n,h,b,a0(a) {µn(a,w)� µ0(a,w)}
⇢
1� g0(a,w)

gn(a,w)

�
dF0(a) dQ0(w)

������


3X

j=1

ZZ

Sj

|�n,h,b,a0(a)| |µn(a,w)� µ0(a,w)|
����1�

g0(a,w)

gn(a,w)

���� dF0(a) dQ0(w).

Now we note that for any uniformly bounded function � : A⇥W ! R and S ⇢ A⇥W, we have
ZZ

S
|wh,a0,j(a)Kh,a0(a)�(a,w)| dF0(a) dQ0(w)

=

Z 1

�1

��(1, u, . . . , uj)T
��K(u)

Z
IS(a0 + uh,w) |�(a0 + uh,w)| dQ0(w)f0(a0 + uh) du

. sup
|a�a0|h

Z
IS(a,w) |�(a,w)| dQ0(w).

Hence, for all n large enough, we have

ZZ

Sj

|�n,h,b,a0(a)| |µn(a,w)� µ0(a,w)|
����1�

g0(a,w)

gn(a,w)

���� dF0(a) dQ0(w)

.
h���D�1

n,h,a0,1

���
1

+
���D�1

n,h,a0,2

���
1

i
sup

|a�a0|<�1

E0

⇢
ISj (a,W ) |µn(a,w)� µ0(a,w)|

����1�
g0(a,W )

gn(a,W )

����

�

. Op(1)d (µn, µ0;B�1(a0),Sj) d (gn, g0;B�1(a0),Sj) ,

where for the last inequality we used Lemma 8, the Cauchy-Schwartz inequality, and the uniform boundedness of
1/gn guaranteed by (A3). We now use (A4) to see that

d (µn, µ0;B�1(a0),S1) = op
⇣
{nh}�1/2

⌘
,

d (gn, g0;B�1(a0),S2) = op
⇣
{nh}�1/2

⌘
, and

d (µn, µ0;B�1(a0),S3) d (gn, g0;B�1(a0),S3) = op
⇣
{nh}�1/2

⌘
.

Thus, Rn,h,b,a0,4 = op
�
{nh}�1/2

�
.

For the uniform statement, we note that �n,h,b,a0(a) = 0 for all a0 2 A0, a /2 A"3 , and max{h, b} < "3. Hence,
for max{h, b} < "3, we can write

sup
a02A0

|Rn,h,b,a0,4| = sup
a02A0

����
ZZ

A3⇥W

�n,h,b,a0(a) {µn(a,w)� µ0(a,w)}
⇢
1� g0(a,w)

gn(a,w)

�
dF0(a) dQ0(w)

����


3X

j=1

sup
a02A0

ZZ

S
0
j

|�n,h,b,a0(a)| |µn(a,w)� µ0(a,w)|
����1�

g0(a,w)

gn(a,w)

���� dF0(a) dQ0(w).
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Using the derivations above, we then have

sup
a02A0

ZZ

S
0
j

|�n,h,b,a0(a)| |µn(a,w)� µ0(a,w)|
����1�

g0(a,w)

gn(a,w)

���� dF0(a) dQ0(w)

. sup
a02A0

h���D�1
n,h,a0,1

���
1

+
���D�1

n,h,a0,2

���
1

i
sup

a02A"3

E0

⇢
IS0

j
(a,W ) |µn(a,w)� µ0(a,w)|

����1�
g0(a,W )

gn(a,W )

����

�

. Op(1)d
�
µn, µ0;A"3 ,S 0

j

�
d
�
gn, g0;A"3 ,S 0

j

�
,

where the last inequality uses Lemma 12 and the uniform boundedness of 1/gn guaranteed by (A3). We now use
the faster rates guaranteed by (A7) to see that

d(µn, µ0;A"3 ,S 0

1) = op
⇣
{nh log n}�1/2

⌘
,

d(gn, g0;A"3 ,S 0

2) = op
⇣
{nh log n}�1/2

⌘
, and

d(µn, µ0;A"3 ,S 0

3)d2(gn, g0;A"3 ,S 0

3) = op
⇣
{nh log n}�1/2

⌘
.

Thus, supa02A0
|Rn,h,b,a0,4| = op

�
{nh log n}�1/2

�
.
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Supplement J Analysis of remainder term Rn,h,b,a0,5

Lemma 18. Suppose X1, X2, . . . is a sequence of IID random variables on sample space X with marginal distribution
P0. Let Pn be the empirical distribution corresponding to (X1, . . . , Xn), and F be a collection of measurable functions
from X ⇥ X to R with envelope function F . Then

sup
f2F

����
ZZ

f(x1, x2) d(Pn � P0)(x1) d(Pn � P0)(x2)

���� . n�1 kFkP0⇥P0,2

Z 1

0


1 + log sup

Q
N("kFkQ,2,F , L2(Q))

�
d"

+ n�3/2kFkP0⇥P0,2

Z 1

0


1 + log sup

Q
N ("kFkQ,2/2,F , L2(Q))

�1/2
d".

Proof of Lemma 18. For each f 2 F , define the symmetrized, centered version of f as

f�(x1, x2) := f(x1, x2) + f(x2, x1)�
Z

[f(u, x1) + f(u, x2) + f(x1, u) + f(x2, u)] dP0(u) + 2

ZZ
f(u, v) dP0(u) dP0(v).

We note that f� is symmetric in its arguments, meaning f�(x1, x2) = f�(x2, x1) for all x1, x2 2 X , and
R
f(x1, u) dP0(u) =

0 for all x1 2 X . We let F� := {f� : f 2 F}, and we note that an envelope function for F� is F � for

F �(x1, x2) := F (x1, x2) + F (x2, x1) +

Z
[F (u, x1) + F (u, x2) + F (x1, u) + F (x2, u)] dP0(u) + 2

ZZ
F (u, v) dP0(u) dP0(v).

By adding and subtracting terms, we can write

ZZ
f(x1, x2) d(Pn � P0)(x1) d(Pn � P0)(x2) =

1

2n2

nX

i,j=1
i 6=j

f�(Xi, Xj)�
1

n

ZZ
f(x1, x2) dP0(x1) d(Pn � P0)(x2)

� 1

n

ZZ
f(x1, x2) d(Pn � P0)(x1) dP0(x2)

� 1

n

ZZ
f(x1, x2) dP0(x1) dP0(x2)

By Lemma 3 of Westling et al. (2020), we have

E0

2

664
1

2n2
sup
f2F�

��������

nX

i,j=1
i 6=j

f�(Xi, Xj)

��������

3

775 . 1

n
kF �kP0⇥P0,2

Z 1

0


1 + log sup

Q
N("kF �kQ,2,F�, L2(Q))

�
d".

By the triangle inequality and Jensen’s inequality, kF �kP0⇥P0,2
 8 kFkP0⇥P0,2

. We also note that by definition of
f�, F� is contained in the sum of F and the following classes:

Fr := {(x1, x2) 7! f(x2, x1) : f 2 F} , F̄11 :=

⇢
x1 7! �

Z
f(x1, u) dP0(u) : f 2 F

�
,

F̄12 :=

⇢
x1 7! �

Z
f(u, x1) dP0(u) : f 2 F

�
, F̄21 :=

⇢
x2 7! �

Z
f(x2, u) dP0(u) : f 2 F

�
,

F̄22 :=

⇢
x2 7! �

Z
f(u, x2) dP0(u) : f 2 F

�
, and Fm :=

⇢
2

ZZ
f(u, v) dP0(u) dP0(v) : f 2 F

�
.

By Lemma 5.1 of van der Vaart and van der Laan (2006), log supQ N("kF �kQ,2,F�, L2(Q)) is bounded by the sum
of the uniform entropies of each of the above classes. The uniform entropy of Fr is the same as that of F because
for any measure Q on X ⇥ X ,

Z
[f1(x1, x2)� f2(x1, x2)]

2 dQ(x1, x2) =

Z
[f1(x2, x1)� f2(x2, x1)]

2 dQr(x1, x2),
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where Qr is defined as dQr(x1, x2) := dQ(x2, x1). We equip F̄11 with the envelope function

F̄11 : x1 7!
Z

F (x1, u)
2 dP0(u)

�1/2
.

We note that kF̄11kP0,2 = kFkP0⇥P0,2. By Lemma 5.2 of van der Vaart and van der Laan (2006) (with r = s = t = 2),
we have

sup
Q

N
�
"kF̄11kQ,2, F̄11, L2(Q)

�
 sup

Q
N ("kFkQ,2/2,F , L2(Q)) .

Identical results hold for F̄12, F̄21, and F̄22. For Fm equipped with envelope kFkP0⇥P0,2, we have

sup
Q

N ("kFkP0⇥P0,2,Fm, L2(Q))  sup
Q

N ("kFkP0⇥P0,2,F , L2(Q))

since
����
Z

f1 d(P0 ⇥ P0)�
Z

f2 d(P0 ⇥ P0)

����
Q,2

=

����
Z

f1 d(P0 ⇥ P0)�
Z

f2 d(P0 ⇥ P0)

����  kf1 � f2kP0⇥P0,2

for any probability measure Q. Therefore, we have

kF �kP0⇥P0,2

Z 1

0


1 + log sup

Q
N("kF �kQ,2,F�, L2(Q))

�
d" . kFkP0⇥P0,2

Z 1

0


1 + log sup

Q
N("kFkQ,2,F , L2(Q))

�
d"

Next, we have

E0

"
sup
f2F

n�1

����
ZZ

f(x1, x2) dP0(x1) d(Pn � P0)(x2)

����

#
= n�3/2E0

"
sup

f̄2F̄22

��Gnf̄
��
#
.

By Theorem 2.14.1 of van der Vaart and Wellner (1996),

E0

"
sup

f̄2F̄22

��Gnf̄
��
#
. kF̄22kP0,2

Z 1

0


1 + log sup

Q
N
�
"kF̄22kQ,2, F̄22, L2(Q)

��1/2
d".

Hence,

E0

"
sup
f2F

n�1

����
ZZ

f(x1, x2) dP0(x1) d(Pn � P0)(x2)

����

#
. n�3/2kFkP0⇥P0,2

Z 1

0


1 + log sup

Q
N ("kFkQ,2/2,F , L2(Q))

�1/2
d".

By an identical argument, we also have

E0

"
sup
f2F

n�1

����
ZZ

f(x1, x2) d(Pn � P0)(x1) dP0(x2)

����

#
. n�3/2kFkP0⇥P0,2

Z 1

0


1 + log sup

Q
N ("kFkQ,2/2,F , L2(Q))

�1/2
d".

Finally,

sup
f2F

n�1

����
ZZ

f(x1, x2) dP0(x1) dP0(x2)

����  n�1kFkP0⇥P0,2.

Putting together the pieces yields the result.

Lemma 19. If (A1)–(A3), and (A5) hold, then Rn,h,b,a0,5= Op({nh1/2}�1). If (A1), (A3), and (A8) hold and
nh/ log h�1 �! 1, then supa02A0

|Rn,h,b,a0,5| = Op({nh}�1).
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Proof of Lemma 19. For the pointwise statement, we write

Rn,h,b,a0,5 =

ZZ
�n,h,b,a0(a)µn(a,w) d(Qn �Q0)(w) d(Fn � F0)(a)

= eT1 D
�1
n,h,a0,1

ZZ
wh,a0,1(a)Kh,a0(a)µn(a,w) d(Qn �Q0)(w) d(Fn � F0)(a)

� cn,h,a0,2⌧
2
ne

T
3 D

�1
n,b,a0,2

ZZ
wb,a0,2(a)Kb,a0(a)µn(a,w) d(Qn �Q0)(w) d(Fn � F0)(a).

By Lemmas 4 and 8,
���D�1

n,h,a0,1

���
1

and
���D�1

n,h,a0,2

���
1

are both Op(1). Hence, there exist constants Cn,j = Op(1)

such that

|Rn,h,b,a0,5| 
4X

j=0

Cn,j

����
ZZ

[(a� a0)/h]
jKh,a0(a)µn(a,w) d(Qn �Q0)(w) d(Fn � F0)(a)

���� .

For each j, we then write
����
ZZ

[(a� a0)/h]
jKh,a0(a)µn(a,w) d(Qn �Q0)(w) d(Fn � F0)(a)

����

=

����
ZZ

fn,h,a0,j(a1, w1, a2, w2) d(Pn � P0)(a1, w1) d(Pn � P0)(a2, w2)

����

 sup
f2Fh,a0,j

����
ZZ

f(a1, w1, a2, w2) d(Pn � P0)(a1, w1) d(Pn � P0)(a2, w2)

���� ,

where

fn,h,a0,j(a1, w1, a2, w2) := [(a1 � a0)/h]
jKh,a0(a1)µn(a1, w2) and

Fh,a0,j =
�
(a1, w1, a2, w2) 7! [(a1 � a0)/h]

jKh,a0(a1)µ(a1, w2) : µ 2 Fµ

 
.

By (A1) and (A3), an envelope function Fh,a0 for Fh,a0,j is given by a constant timesKh,a0(a1), and kFh,a0k(P0⇥P0),2 .
h�1/2 by the standard change of variables. In addition, by (A3),

sup
Q

logN
�
"kFh,a0k(P0⇥P0),2,Fh,a0,j , L2(Q)

�
. "�Vµ ,

where Vµ 2 (0, 1). Hence, by Lemma 18,

E0

"
sup

f2Fh,a0,j

����
ZZ

f(a1, w1, a2, w2) d(Pn � P0)(a1, w1) d(Pn � P0)(a2, w2)

����

#
. n�1h�1/2

for each j, and the pointwise result follows.

For the uniform result, by Lemmas 4 and 12, supa02A0

���D�1
n,h,a0,1

���
1

and supa02A0

���D�1
n,h,a0,2

���
1

are both Op(1).

Hence, there exist constants C 0

n,j = Op(1) such that

sup
a02A0

|Rn,h,b,a0,5| 
2X

j=0

C 0

n,j sup
a02A0

����
ZZ

[(a� a0)/h]
jKh,a0(a)µn(a,w) d(Qn �Q0)(w) d(Fn � F0)(a)

���� .
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As above, for each j we then write

sup
a02A0

����
ZZ

[(a� a0)/h]
jKh,a0(a)µn(a,w) d(Qn �Q0)(w) d(Fn � F0)(a)

����

= sup
a02A0

����
ZZ

fn,h,a0,j(a1, w1, a2, w2) d(Pn � P0)(a1, w1) d(Pn � P0)(a2, w2)

����

 sup
f2Fh,j

����
ZZ

f(a1, w1, a2, w2) d(Pn � P0)(a1, w1) d(Pn � P0)(a2, w2)

���� ,

where

Fh,j =
�
(a1, w1, a2, w2) 7! [(a1 � a0)/h]

jKh,a0(a1)µ(a1, w2) : µ 2 Fµ, a0 2 A0

 
.

By (A1) and (A3), Fh,j is uniformly bounded up to a constant by h�1, and by Lemma 13 and (A3), Fh,j has
uniform entropy bounded up to a constant by "�Vµ relative to this envelope. Thus, by Lemma 18,

E0

"
sup

f2Fh,j

����
ZZ

f(a1, w1, a2, w2) d(Pn � P0)(a1, w1) d(Pn � P0)(a2, w2)

����

#
. (nh)�1

for each j, and the result follows.
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Supplement K Analysis of remainder term Rn,h,b,a0,6

Lemma 20. If (A1), (A2), and (A5) hold, then |Rn,h,b,a0,6| = Op({nh}�1). If (A1), (A2), and (A8) hold and
nh/ log h�1 �! 1, then supa02A0

|Rn,h,b,a0,6| = Op({nh/ log h�1}�1).

Proof of Lemma 20. We note that by (A1) and (A5), |P0 (wh,a0,1Kh,a0✓0)|, |P0 (wb,a0,2Kb,a0✓0)|, and |P0 (w̃h,a0,2Kh,a0)|
are O(1), and by Lemma 4,

���D�1
0,h,a0,1

���
1

and
���D�1

0,b,a0,2

���
1

are also O(1). Hence,

|Rn,h,b,a0,6| . kD0,h,a0,1 �Dn,h,a0,1k1
���D�1

n,h,a0,1
�D�1

0,h,a0,1

���
1

+ kD0,b,a0,2 �Dn,b,a0,2k1
���D�1

n,b,a0,2
�D�1

0,b,a0,2

���
1

+
���D�1

n,h,a0,1
�D�1

0,h,a0,1

���
1

k(Pn � P0)(w̃h,a0,1Kh,a0)k1

+
���D�1

n,h,a0,1
�D�1

0,h,a0,1

���
1

kD0,h,a0,1 �Dn,h,a0,1k1

+ |cn,h,a0,2 � c0,h,a0,2|
���D�1

n,b,a0,2
�D�1

0,b,a0,2

���
1

By Lemma 8, each of the di↵erences is Op({nh}�1/2). Thus, Rn,h,b,a0,6 = Op({nh}�1). For the uniform statement,
by (A1) and (A8), supa02A0

|P0 (wh,a0,1Kh,a0✓0)|, supa02A0
|P0 (wb,a0,2Kb,a0✓0)|, and supa02A0

|P0 (w̃h,a0,2Kh,a0)|
are all O(1). By Lemma 4 and (A8), supa02A0

���D�1
0,h,a0,1

���
1

and supa02A0

���D�1
0,b,a0,2

���
1

are also O(1). By Lemma

12, the di↵erences are all Op({nh/ log h�1}�1/2) uniformly over a0 2 A0. We thus conclude supa02A0
|Rn,h,b,a0,6| =

Op({nh/ log h�1}�1).
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Supplement L Analysis of the covariance estimator

Lemma 21. If (A1)–(A5) hold for a0 = u and a0 = v, then

hPn(�
⇤

n,h,b,u�
⇤

n,h,b,v)� hP0(�
⇤

1,h,b,u�
⇤

1,h,b,v) = op(1).

If (A1)–(A3) and (A6)–(A8) hold and nh5 = O(1), then

sup
u,v2A0

��hPn(�
⇤

n,h,b,u�
⇤

n,h,b,v)� hP0(�
⇤

1,h,b,u�
⇤

1,h,b,v)
�� = Op(n

�p)

for some p > 0.

Proof of Lemma 21. Analysis of this expression uses many of the techniques developed throughout this document.
Hence, for brevity, we omit some of the details in this proof.

For convenience, we define

⌘n,h,b,u(w) :=

Z
�n,h,b,u(a) [µn(a,w)� s µn dQn] dFn(a), and

⌘0,h,b,u(w) :=

Z
�0,h,b,u(a) [µ1(a,w)� s µ1 dQ0] dF0(a).

Up to terms with u and v swapped, we then expand hPn(�⇤n,h,b,u�
⇤

n,h,b,v)� hP0(�⇤1,h,b,u�
⇤

1,h,b,v) as

n�1/2Gn

�
h�n,h,b,u�n,h,b,v⇠

2
n

�
+ n�1/2Gn (h�n,h,b,u�n,h,b,v)� n�1/2Gn (h�n,h,b,u�n,h,b,v⇠n)

+ P0 [h (�n,h,b,u � �0,h,b,u) (�n,h,b,v⇠n � �n,h,b,v) ⇠n] + P0 [h�0,h,b,u {�0,h,b,v (⇠n + ⇠1)� �0,h,b,v} {⇠n � ⇠1}]
� P0 [h (�0,h,b,u⇠n � �0,h,b,u) (�n,h,b,v � �0,h,b,v)]

+ Pn (h⌘n,h,b,u⌘n,h,b,v) + Pn (h�n,h,b,u⌘n,h,b,v⇠n)� Pn (h�n,h,b,u⌘n,h,b,v)

� P0 (h⌘0,h,b,u⌘0,h,b,v)� P0 (h�0,h,b,u⌘0,h,b,v⇠1) + P0 (h�0,h,b,u⌘0,h,b,v) . (15)

For the first term in (15), by expanding �n,h,b,u�n,h,b,v and Lemmas 4 and 8, Gn

�
h�n,h,b,u�n,h,b,v⇠2n

�
can be decom-

posed into Op(1) times terms of the form

Gn

�
hwh,u,jwh,v,kKh,uKb,v⇠

2
n

�
.

By the bounded fourth moment of Y and condition (A3), the class

�
hwh,u,jwh,v,kKh,uKb,v⇠

2
n : µn 2 Fµ, gn 2 Fg

 

has finite uniform entropy integral and an envelope that is a square-integrable function times h�1. Hence, by Theo-
rem 2.14.1 of van der Vaart and Wellner (1996), Gn

�
h�n,h,b,u�n,h,b,v⇠2n

�
= Op(h�1). Similarly, by conditions (A1)

and (A3), the class �
hwh,u,jwh,v,kKh,uKb,v⇠

2
n : µn 2 Fµ, gn 2 Fg, u 2 A0, v 2 A0

 

possesses finite uniform entropy integral and under (A8), an envelope that is bounded up to a constant by h�1.
Therefore, by Lemmas 4 and 12, supu,v2A0

|Gn

�
h�n,h,b,u�n,h,b,v⇠2n

�
| = Op(h�1) as well. Using an analogous ar-

gument, we can show that Gn (h�n,h,b,u�n,h,b,v) and Gn (h�n,h,b,u�h,h,b,v⇠n), which are the second and third terms
in (15) are Op(h�1) both pointwise and uniformly.

The fourth term in (15) can be written as a constant times a sum of terms of the form

h
⇣
D�1

n,h,u,j �D�1
0,h,u,j

⌘
P0 [wh,u,kKh,u (�n,h,b,v⇠n � �n,h,b,v) ⇠n] .

By Lemma 8, kD�1
n,h,u,j � D�1

0,h,u,jk1 = Op({nh}�1/2). Using a change of variables, we can also show that

kwh,u,kKh,u⇠nkL2(P0) = Op(h�1/2) and k�n,h,b,v⇠n � �n,h,b,vkL2(P0) = Op(h�1/2). Hence, under the pointwise con-

ditions this term is Op({nh}�1/2) = op(1). Under the uniform results, the same rates hold except that Lemma 12
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includes an extra log h�1 term. Hence, under the uniform conditions, this term is Op({nh/ log h�1}�1/2) = Op(h)
uniformly over u, v 2 A0. A similar analysis applies to the sixth term in (15).

For the fifth term in (15), we can show that k�0,h,b,u(⇠n � ⇠1)kL2(P0) = op(h�1/2) and k�0,h,b,v (⇠n + ⇠1) �
�0,h,b,vkL2(P0) = Op(h�1/2), so the pointwise result follows by the Cauchy-Schwarz inequality. For the uniform
result, by (A6)(e),

sup
u2A0

k�0,h,b,u(⇠n � ⇠1)kL2(P0) = op
⇣
h�1/2h

V
2(2�V ) {log n}�

1
2�V

⌘
,

so we obtain a uniform rate of op
⇣
h

V
2(2�V ) {log n}�

1
2�V

⌘
for this term.

For the seventh term in (15), by the boundedness of µn we have for any u, v

|Pn (h⌘n,h,b,u⌘n,h,b,v)| . h

Z
|�n,h,b,u| dFn

Z
|�n,h,b,v| dFn.

As in the proof of Lemmas 8 and 12, we can show that each of these terms is Op(1) pointwise and uniformly under
the appropriate conditions. The same holds when Pn is replaced with P0 above. Similarly, for the eighth term in (15),
we have

|Pn (h�n,h,b,u⌘n,h,b,v⇠n)| . hPn |�n,h,b,u⇠n|
Z

|�n,h,b,v| dFn.

We can show that both terms are Op(1) pointwise and uniformly. The remainder of the terms in (15) can be handled
using a similar argument.

We have now shown that

hP0

⇥�
�⇤n,h,b,u � �⇤

1,h,b,u

�
�⇤n,h,b,v

⇤
= op(1)

under the pointwise conditions, and

sup
u,v2A0

h
��P0

⇥�
�⇤n,h,b,u � �⇤

1,h,b,u

�
�⇤n,h,b,v

⇤�� = op
�
n�p

�

for some p > 0 since nh5 = O(1).
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Supplement M Lemmas supporting uniform result

We now present a series of supporting lemmas towards the construction of uniform bands for ✓0(a0).

Lemma 22. Let �2
1,h,b(a0) := hP0(�⇤1,h,b,a0

)2. If (A1)–(A2), (A7)(a), and (A8) hold, then there exist constants

c, C 2 (0,1) such that c  �2
1,h,b(a0)  C for all a0 2 A0 and all h small enough.

Proof of Lemma 22. We note that (A8) implies that (A5) holds for all a0 2 A0, and (A7)(a) implies that (A4)(a)
holds for all a0 2 A0. Therefore, the conditions of Lemma 5 are met for every a0 2 A0, so �2

1,h,b(a0) converges to

VK,⌧�2
0(a0)/f0(a0) for each a0 2 A0. Since A0 is compact, this convergence is also uniform in a0. By Lemma 5,

VK,⌧ 2 (0,1), so by (A8), there exist c, C 2 (0,1) such that c  VK,⌧�2
0(a0)/f0(a0)  C for all a0 2 A0. Hence,

for all h small enough, c  �2
1,h,b(a0)  C for all a0 2 A0.

Lemma 23. If (A1), (A7)(a), and (A8) hold, then supa02A0
P0|h�⇤1,h,b,a0

|k . h for all h small enough.

Proof of Lemma 23. First by the triangle inequality, we have that

sup
a02A0

⇥
P0|h�⇤1,h,b,a0

|k
⇤1/k  sup

a02A0

h
P0 |h�0,h,b,a0⇠1|k

i1/k
+ sup

a02A0

h
P0 |h�0,h,b,a0 |

k
i1/k

+ sup
a02A0

"
P0

����h
Z

�0,h,b,a0(ā)

⇢
µ1(ā, w)�

Z
µ1(ā, w̄) dQ0(w̄)

�
dF0(ā)

����
k
#1/k

. (16)

We show that three terms on the right hand side of the above display are bounded up to a constant by h1/k,
which implies that supa02A0

P0|h�⇤1,h,b,a0
|k is bounded up to a constant by h. Noting that |⇠1| is P0-almost surely

uniformly bounded by (A7)(a) and (A8), we have

sup
a02A0

h
P0 |h�0,h,b,a0⇠1|k

i1/k
. sup

a02A0

Z
|h�0,h,b,a0(a)|

k dF0(a)

�1/k

 sup
a02A0

⇢Z ���heT1 D�1
0,h,a0,1

wh,a0,1(a)Kh,a0(a)
���
k
dF0(a)

�1/k

+ sup
a02A0

⇢Z ���hc0,h,a0,2⌧
2
ne

T
3 D

�1
0,b,a0,2

wb,a0,2(a)Kb,a0(a)
���
k
dF0(a)

�1/k

. h1/k sup
a02A0

���eT1 D�1
0,h,a0,1

1
���+ h1/k⌧�1/k

n sup
a02A0

���c0,h,a0,2⌧
2
ne

T
3 D

�1
0,b,a0,2

1
���

By Lemma 4 and (A8), supa02A0
|eT1 D�1

0,h,a0,1
| and supa02A0

|c0,h,a0,2⌧
2
ne

T
3 D

�1
0,b,a0,2

| are both O(1). Therefore, the

first term on the right hand side of (16) is bounded up to a constant by h1/k as h �! 0. The second term on the
right hand side of (16) can similarly be shown to be bounded up to a constant by h1/k using Lemma 4 and the fact
that µ0 is uniformly bounded since |Y | is P0-almost surely uniformly bounded by (A8).

Finally, the last term of (16) can be bounded using Jensen’s inequality as follows:

sup
a02A0

Z ����h
Z

�0,h,b,a0(ā) {µ1(ā, w)� s µ1(ā, w̄) dQ0(w̄)} dF0(ā)

����
k

dQ0(w)

 sup
a02A0

ZZ ����h�0,h,b,a0(ā)

⇢
µ1(ā, w)�

Z
µ1(ā, w̄) dQ0(w̄)

�����
k

dF0(ā) dQ0(w)

. sup
a02A0

Z
|h�0,h,b,a0(ā)|

k dF0(ā),

where the final inequality follows from the uniform bound on µ1 assumed by (A7)(a). The final integral is bounded
up to a constant by h as shown above.
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Lemma 24. Let {Z1,h,b(a0) : a0 2 A0} be the mean-zero Gaussian process with covariance function

⌃1,h,b : (u, v) 7! hP0(�
⇤

1,h,b,u�
⇤

1,h,b,v)/[�1,h,b(u)�1,h,b(v)].

If (A1)–(A2), (A7)(a), and (A8) hold, then {Z1,h,b : a0 2 A0} is tight in `1(A0), E0

⇥
supa02A0

|Z1,h,b(a0)|
⇤


C
p
log(1/h) for a constant C not depending on h, and

E

"
sup

|u�v|<�
|Z1,h,b(u)� Z1,h,b(v)|

#
 C 0h�1/2([2�] ^ h)1/2


log

|A0|
2([2�] ^ h)

�1/2

for all [2�] ^ h  |A0|/8 and a constant C 0 not depending on h.

Proof of Lemma 24. Let ⇢1,h,b be the standard deviation semi-metric corresponding to Z1,h,b; i.e.

⇢2
1,h,b(u, v) := E [Z1,h,b(u)� Z1,h,b(v)]

2 = |⌃1,h,b(u, u)� 2⌃1,h,b(u, v) + ⌃1,h,b(v, v)| = 2 |1� ⌃1,h,b(u, v)|

because ⌃1,h,b(u, u) = 1 for any u by definition. We first establish that ⇢1,h,b is Lipschitz in |u� v|. By Lemma 22,
there exist constants c, C 2 (0,1) such that for all h small enough and all a0 2 A0, c  �2

1,h,b(a0)  C. We can
then bound |1� ⌃1,h,b(u, v)| as follows:

|1� ⌃1,h,b(u, v)| =
��1� hP0(�

⇤

1,h,b,u�
⇤

1,h,b,v)/[�1,h,b(u)�1,h,b(v)]
��

=

����1�
�1,h,b(u)

�1,h,b(v)
�

hP0�⇤1,h,b,u(�
⇤

1,h,b,v � �⇤
1,h,b,u)

�1,h,b(u)�1,h,b(v)

����

 |�1,h,b(u)� �1,h,b(v)|
�1,h,b(v)

+
h
���P0�⇤1,h,b,u(�

⇤

1,h,b,v � �⇤
1,h,b,u)

���
�1,h,b(u)�1,h,b(v)


|�1,h,b(u)� �1,h,b(v)|+ h1/2

h
P0(�⇤1,h,b,u � �⇤

1,h,b,v)
2
i1/2

�1,h,b(v)

 c�1/2 |�1,h,b(u)� �1,h,b(v)|+ c�1/2h1/2
⇥
P0(�

⇤

1,h,b,u � �⇤
1,h,b,v)

2
⇤1/2

.

Since �1,h,b(u) and �1,h,b(v) are bounded away from zero for all h small enough and x 7! x1/2 is Lipschitz on [",1)
for any " > 0, we also have

|�1,h,b(u)� �1,h,b(v)| =
���
⇥
hP0(�

⇤

1,h,b,u)
2
⇤1/2 �

⇥
hP0(�

⇤

1,h,b,v)
2
⇤1/2���

. h
��P0(�

⇤

1,h,b,u)
2 � P0(�

⇤

1,h,b,v)
2
��

= h
��P0

�
�⇤
1,h,b,u � �⇤

1,h,b,v

�
�⇤
1,h,b,u + P0

�
�⇤
1,h,b,u � �⇤

1,h,b,v

�
�⇤
1,h,b,v

��

 h1/2
⇥
P0(�

⇤

1,h,b,u � �⇤
1,h,b,v)

2{�1,h,b(u)
2 + �1,h,b(v)

2}
⇤1/2

. h1/2
⇥
P0(�

⇤

1,h,b,u � �⇤
1,h,b,v)

2
⇤1/2

.

Hence, we can turn our attention to bounding h1/2[P0(�⇤1,h,b,u � �⇤
1,h,b,v)

2]1/2. We have

h1/2
h
P0

�
�⇤
1,h,b,u � �⇤

1,h,b,v

�2i1/2  h1/2
⇥
P0{(�0,h,b,u � �0,h,b,v)

2⇠2
1
}
⇤1/2

+ h1/2
⇥
P0(�0,h,b,u � �0,h,b,v)

2
⇤1/2

+ h1/2

"
P0

✓Z
{�0,h,b,u � �0,h,b,v}

⇢
µ1 �

Z
µ1 dQ0

�
dF0

◆2
#1/2

.
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For the first term in the display, since |⇠1| is P0-almost surely uniformly bounded, we have

⇥
P0{(�0,h,b,u � �0,h,b,v)

2⇠2
1
}
⇤1/2

.
Z n

eT1 D
�1
0,h,u,1wh,u,1(a)Kh,u(a)� eT1 D

�1
0,h,v,1wh,v,1(a)Kh,v(a)

o2
f0(a) da

�1/2

+ ⌧2n

Z n
c0,h,u,2e

T
3 D

�1
0,b,u,2wb,u,2(a)Kb,u(a)� c0,h,v,2e

T
3 D

�1
0,b,v,2wb,v,2(a)Kb,v(a)

o2
f0(a) da

�1/2
. (17)

For the first term, we note that since the support of K is contained in [�1, 1], if |u�v| > 2h, then either Kh,u(a) = 0
or Kh,v(a) = 0 for all a. Hence, if |u� v| > 2h, then

Z n
eT1 D

�1
0,h,u,1wh,u,1(a)Kh,u(a)� eT1 D

�1
0,h,v,1wh,v,1(a)Kh,v(a)

o2
f0(a) da

�1/2

=

Z n
eT1 D

�1
0,h,u,1wh,u,1(a)Kh,u(a)

o2
f0(a) da+

Z n
eT1 D

�1
0,h,vwh,v,1(a)Kh,v(a)

o2
f0(a) da

�1/2

= h�1/2

Z n
eT1 D

�1
0,h,u,1(1, t)K(t)

o2
f0(u+ th) dt+

Z n
eT1 D

�1
0,h,v,1(1, t)K(t)

o2
f0(v + th) dt

�1/2
,

which is bounded up to a constant by h�1/2 by the boundedness of K, f0, and Lemma 4. If |u � v|  2h, then we
further decompose

Z n
eT1 D

�1
0,h,u,1wh,u,1(a)Kh,u(a)� eT1 D

�1
0,h,v,1wh,v,1(a)Kh,v(a)

o2
f0(a) da

�1/2


Z n

eT1 D
�1
0,h,u,1 [wh,u,1(a)� wh,v,1(a)]

o2
Kh,u(a)

2f0(a) da

�1/2

+

Z n
eT1

h
D�1

0,h,u,1 �D�1
0,h,v,1

i
wh,v,1(a)

o2
Kh,u(a)

2f0(a) da

�1/2

+

Z n
eT1 D

�1
0,h,v,1wh,v,1(a)

o2
{Kh,u(a)�Kh,v(a)}2 f0(a) da

�1/2
.

For the first term, we have wh,u,1(a) � wh,v,1(a) = (0, (v � u)/h), so eT1 D
�1
0,h,u,1 [wh,u,1(a)� wh,v,1(a)] = h�1(v �

u)D�1
0,h,u,1[1, 2] = (v � u)O(1) since D�1

0,h,u,1 = f0(u)�1S�1
2 +O(h) by Lemma 4 and S2 is a diagonal matrix. Hence,

the first term is bounded up to a constant by

|u� v|
Z

{Kh,u(a)}2 f0(a) da
�1/2

= h�1/2|u� v|
Z

{K(t)}2 f0(u+ th) dt

�1/2
,

which is bounded up to a constant by h�1/2|u� v| for all h small enough.
For the second term, we can write D�1

0,h,u,1 � D�1
0,h,v,1 = D�1

0,h,v,1(D0,h,v,1 � D0,h,u,1)D
�1
0,h,v,1, and we have by

definition

D0,h,v,1 �D0,h,u,1 = P0

�
wh,v,1w

T
h,v,1Kh,v � wh,u,1w

T
h,u,1Kh,u

�

= P0

�⇥
wh,v,1w

T
h,v,1 � wh,u,1w

T
h,u,1

⇤
Kh,v + wh,u,1w

T
h,u,1 [Kh,v �Kh,u]

�
.

We then note that

wh,v,1(a)wh,v,1(a)
T � wh,u,1(a)wh,u,1(a)

T = h�1(v � u)

✓
0 1
1 [2a� u� v]/h

◆
.
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With the change of variables t = (a� v)/h, we then have

��P0

�⇥
wh,v,1w

T
h,v,1 � wh,u,1w

T
h,u,1

⇤
Kh,v

��� = h�1|u� v|
����
Z ✓

0 1
1 2t+ (v � u)/h

◆
K(t)f0(v + th) dt

���� .

Since we are considering the case |u� v|  2h, the absolute value of this expression is bounded up to a constant by
h�1|u� v|. We also have

��P0

�
wh,u,1w

T
h,u,1 [Kh,v �Kh,u]

��� =
����
Z

(1, t)(1, t)T [K(t)�K(t+ [u� v]/h)] f0(u+ th) dt

���� ,

which is bounded up to a constant by h�1|u� v| by the Lipschitz assumption on K. Hence,

Z n
eT1

h
D�1

0,h,u,1 �D�1
0,h,v,1

i
wh,v,1(a)

o2
Kh,u(a)

2f0(a) da

�1/2

 Ch�1|u� v|
Z n

eT1 D
�1
0,h,v,11D

�1
0,h,u,1wh,v,1(a)

o2
Kh,u(a)

2f0(a) da

�1/2

= Ch�3/2|u� v|
Z n

eT1 D
�1
0,h,v,11D

�1
0,h,u,1(1, t)

o2
K(t+ (v � u)/h)f0(v + th) da

�1/2
,

which is bounded up to a constant by h�3/2|u� v|.
For the final term, since K is assumed to be Lipschitz, we have

Z n
eT1 D

�1
0,h,v,1wh,v,1(a) [Kh,u(a)�Kh,v(a)]

o2
f0(a) da

�1/2

.
Z n

eT1 D
�1
0,h,v,1wh,v,1(a)

o2
h�2 [(a� u)/h� (a� v)/h]2 f0(a) da

�1/2

= h�3/2|u� v|
Z n

eT1 D
�1
0,h,v,1(1, t)

o2
f0(u+ th) dt

�1/2
,

which is bounded up to a constant by h�3/2|u� v|.
Putting it together, we have that

h1/2

Z n
eT1 D

�1
0,h,u,1wh,u,1(a)Kh,u(a)� eT1 D

�1
0,h,v,1wh,v,1(a)Kh,v(a)

o2
f0(a) da

�1/2

is bounded up to a constant by h�3/2|u� v| when |u� v|  2h and is bounded up to a constant when |u� v| > 2h.
Analysis of the second term of (17) follows the same logic, and yields the same result. We can also show using

the above techniques that h1/2
⇥
P0(�0,h,b,u � �0,h,b,v)2

⇤1/2
satisfies the same bound. Finally, since µ1 is uniformly

bounded, we have

"
P0

✓Z
{�0,h,b,u � �0,h,b,v}

⇢
µ1 �

Z
µ1 dQ0

�
dF0

◆2
#1/2

 C

Z
|�0,h,b,u � �0,h,b,v| dF0

 C

Z
(�0,h,b,u � �0,h,b,v)

2 dF0

�1/2
,

which is the same as the expression we bounded above.
We have now shown that there exist a constants C1 and C2 not depending on h, u, or v such that ⇢1,h,b(u, v) 

C1h�1/2|u � v|1/2 for |u � v|  2h, and ⇢1,h,b(u, v)  C2 for |u � v| > 2h. Without loss of generality, we can take
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C2 =
p
2C1 so the bound is continuous. Suppose " 2 (0, C1/

p
2] and |u� v|  4C�2

1 h"2. Then |u� v|  2h, so

⇢1,h,b(u, v)  C1h
�1/2|u� v|1/2  2".

Hence, for "  C1/
p
2, N(",A0, ⇢1,h,b)  C2

1 |A0|/(4h"2). For " > C1/
p
2 and |u � v|  2h, we have ⇢1,h,b(u, v) 

C1h�1/2|u� v|1/2 
p
2C1 < 2". For " > C1/

p
2 and |u� v| > 2h, we have ⇢1,h,b(u, v) 

p
2C1 < 2". Therefore, all

u, v 2 A0 fit in a single ⇢1,h,b ball of radius ", so N(",A0, ⇢1,h,b) = 1 for " > C1/
p
2.

This implies thatA0 can be covered by finitely many ⇢1,h,b balls of radius " for every " > 0. Hence, the semimetric
space (A0, ⇢1,h,b) is totally bounded, and hence separable (see, e.g. page 17 of van der Vaart and Wellner, 1996).
Furthermore, since Z1,h,b is a Gaussian process, it is sub-Gaussian with respect to its intrinsic semimetric ⇢1,h,b.
We thus conclude {Z1,h,b(a0) : a0 2 A0} is a separable sub-Gaussian process with respect to ⇢1,h,b. We then have
by Corollary 2.2.8 of van der Vaart and Wellner (1996) that

E


sup

a02A0

|Z1,h,b(a0)|
�
. E [|Z1,h,b(a1)|] +

Z
1

0
{logN(",A0, ⇢1,h,b)}1/2 d"

 1 +

Z C1/
p
2

0

�
log

�
C2

1 |A0|/[4h"2]
� 1/2

d"

 1 +
C1 [1 + log (|A0|/[2h])]
2 [log (|A0|/[2h])]1/2

,

which is bounded up to a constant by
⇥
log h�1

⇤1/2
for all h small enough. For every � 2 (0, C1/

p
2), we also have by

Corollary 2.2.8 of van der Vaart and Wellner (1996) that

E

"
sup

⇢1,h,b(s,t)<�
|Z1,h,b(a1)� Z1,h,b(t)|

#
.
Z �

0
{logN(",A0, ⇢1,h,b)}1/2 d".

Since the integral is finite over [0,1) (as shown above), the integral over [0, �] goes to zero as � goes to zero. Hence,
the sample paths of Z1,h,b are almost surely uniformly ⇢1,h,b-continuous. Since (A0, ⇢1,h,b) is totally bounded, this
implies that Z1,h,b is tight in `1(A0).

Finally, since ⇢1,h,b(u, v)  C1h�1/2(min{|u� v|, 2h})1/2, we have again by Corollary 2.2.8 of van der Vaart and
Wellner (1996) that

E

"
sup

|u�v|<�
|Z1,h,b(u)� Z1,h,b(v)|

#
 E

"
sup

⇢1,h,b(u,v)<C1h�1/2(�^[2h])1/2
|Z1,h,b(u)� Z1,h,b(v)|

#

.
Z C1h

�1/2(�^[2h])1/2

0
{logN(",A0, ⇢1,h,b)}1/2 d"


Z C1h

�1/2(�^[h/2])1/2

0

�
log

�
C2

1 |A0|/[4h"2]
� 1/2

d"

. h�1/2([2�] ^ h)1/2

log

|A0|
2([2�] ^ h)

�1/2

as long as [2�] ^ h  |A0|/8.

Lemma 25. If (A1)–(A2), (A7)(a), and (A8) hold, then

sup
a02A0

�����Gn

h1/2�⇤
1,h,b,a0

�1,h,b(a0)

������ sup
a02A0

|Z1,h,b(a0)| = Op

⇣
{nh}�1/2{log n}3/2 + {nh}�1/4{log n}5/4 + {nh}�1/6 log n

⌘
.
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Hence, if in addition nhp �! 1 for some p > 1, then

sup
t2R

�����P
 

sup
a02A0

�����Gn

h1/2�⇤
1,h,b,a0

�1,h,b(a0)

�����  t

!
� P

✓
sup

a02A0

|Z1,h,b(a0)|  t

◆����� = o(1).

Proof of Lemma 25. These results are an application of Corollary 2.2 and Lemma 2.4 of Chernozhukov et al.
(2014). For each a0 2 A0 and h, b > 0, we consider the following function:

⌘h,b,a0 := (y, a, w) 7! h1/2��1
1,h,b(a0)�

⇤

1,h,b,a0
(y, a, w).

We then define the class of functions Hh,b := {⌘h,b,a0 : a0 2 A0}. In the notation of Chernozhukov et al. (2014), we
have F = Hh,b [ �Hh,b,

Z = sup
f2F

Gnf = sup
⌘2Hh,b

|Gn⌘| = sup
a02A0

�����Gn

h1/2�⇤
1,h,b,a0

�1,h,b(a0)

����� ,

and Z̃ = supa02A0
|Z1,h,b(a0)|, where by definition, Z1,h,b(a0) is a mean-zero Gaussian process onA0 with covariance

function (u, v) 7! P0(⌘h,b,u⌘h,b,v).
We now verify the conditions of Corollary 2.2 of Chernozhukov et al. (2014). First, Hh,b is pointwise measurable

because K is uniformly continuous by (A1), and by Corollary 5, Hh,b is VC type. For each a0 2 A0 and h, b > 0,
we have P0⌘2h,b,a0

= 1 by definition of �1,h,b(a0). By Lemmas 22 and 23, we have

sup
⌘2Hh,b

P0|⌘|3 = sup
a02A0

P0

���h1/2�⇤
1,h,b,a0

���
3

�1,h,b(a0)3
. h�1/2

Hence, in the notation of Chernozhukov et al. (2014), we have �2 = 1 and b = h�1/2 up to a constant not depending
on h. We next establish that Hh,b is uniformly bounded up to a constant by h�1/2. We let 1 be a vector of 1’s of
the appropriate dimension. Using the boundedness and bounded support of K as well as the uniform boundedness
of µ1, for each a0 2 A0, we have that

��h�⇤
1,h,b,a0

(y, a, w)
�� 

���eT1 D�1
0,h,a0,1

1+ c0,h,a0,2(h/b)
3eT3 D

�1
0,b,a0,2

1
��� {|⇠1(y, a, w)|+ 2K0} kKk1

+
���eT1 D�1

0,h,a0,1
11TD�1

0,h,a0,1

��� |P0 (wh,a0,1Kh,a0✓0)| kKk1

+
���c0,h,a0,2(h/b)

3eT3 D
�1
0,b,a0,2

11TD�1
0,b,a0,2

��� |P0 (wb,a0,2Kb,a0✓0)| kKk1

+ (h/b)2
���eT1 D�1

0,h,a0,1

���
���1+ 11TD�1

0,h,a0,1
P0(w̃h,a0,1Kh,a0)

��� kKk1

⇥
���eT3 D�1

0,b,a0,2
P0 (wb,a0,2Kb,a0✓0)

���

By Lemma 4, the elements of D�1
0,h,a0,1

and D�1
0,b,a0,2

are uniformly bounded over a0 2 A0 and for all h small enough.
By the uniform boundedness of ✓0 and f0 in an enlargement of A0, we can also show using a change of variables that
|P0 (wh,a0,1Kh,a0✓0)| and |P0 (wb,a0,2Kb,a0✓0)| are uniformly bounded for all a0 2 A0 and h small enough. Hence,

there are finite positive constants C1 and C2 not depending on h, a0, or (y, a, w) such that
���h�⇤1,h,b,a0

(y, a, w)
��� 

C1+C2|⇠1(y, a, w)| for all (y, a, w), a0 2 A0 and h small enough. Therefore, by Lemma 22, an envelope function for
Hh,b is given by h�1/2(C 0

1+C 0

2|⇠1|) for finite positive constants C 0

1 and C 0

2. By (A7)(a) and (A8), |⇠1| is uniformly
bounded. Thus, Hh,b is uniformly bounded up to a constant by b = h�1/2, so the moment and envelope conditions
of Corollary 2.2 of Chernozhukov et al. (2014) hold.

We have now checked all the conditions of Corollary 2.2 of Chernozhukov et al. (2014), so with �n = (log n)�1,

93



it follows that for all h small enough and a constant C not depending on h,

P

✓���� sup
a02A0

����Gnh
1/2

�⇤
1,h,b,a0

�1,h,b(a0)

����� sup
a02A0

|Z1,h,b(s)|
���� >

Ch�1/2{log n}3/2

n1/2
+

Ch�1/4{log n}5/4

n1/4
+

Ch�1/6 log n

n1/6

◆

. 1

log n
+

log n

n

We conclude that
���� sup
a02A0

����Gn

�⇤
1,h,b,a0

�1,h,b(a0)

����� sup
a02A0

|Z1,h,b(a0)|
���� = Op (rn)

for
rn = {nh}�1/2{log n}3/2 + {nh}�1/4{log n}5/4 + {nh}�1/6 log n.

For the second statement, we use Lemma 2.4 of Chernozhukov et al. (2014). In their notation, we have Fn =
(h�1/2Hh,b)[ (�h�1/2Hh,b). We have already established that this class is pointwise measurable, that its envelope is
square integrable, and that its variance function is uniformly bounded above and below for all n. Lemma 24 implies
that Fn is P0-pre-Gaussian. For the final condition of Lemma 2.4 of Chernozhukov et al. (2014), by Lemma 24, we
have E0 supa02A0

|Z1,h,b(a0)| = O
�
{log(1/h)}1/2

�
. The assumption that nhp �! 1 for some p > 1 then implies

that rn{log(1/h)}1/2 = o(1), which verifies the last condition of Lemma 2.4 of Chernozhukov et al. (2014).

Lemma 26. If the conditions of Lemma 24 hold, then for any " > 0,

sup
t2R

P

✓���� sup
a02A0

|Z1,h,b(a0)|� t

����  "
⇥
log h�1

⇤�1/2
◆

 C"+ o(1)

as h �! 0 for C not depending on h or ".

Proof of Lemma 26. We use Lemma A.1 from the supplementary material of Chernozhukov et al. (2014). We
define the class of functions Hh,b := {�⇤

1,h,b,s/�1,h,b,(s) : s 2 S}, and in the notation of Lemma A.1 of Chernozhukov
et al. (2014), we set F = Hh,b [ �Hh,b. By Lemma 24, a tight Gaussian process in `1(F) exists, so F is P0-pre-
Gaussian, and by definition, Var0(f) = 1 for all f 2 F . Hence, the conditions of Lemma A.1 of Chernozhukov et al.
(2014) are satisfied, and we have

sup
t2R

P

✓���� sup
a02A0

|Z1,h,b(a0)|� t

����  "
⇥
log h�1

⇤�1/2
◆

 C"
⇥
log h�1

⇤�1/2

E0

⇢
sup

a02A0

|Z1,h,b(a0)|
�
+
n
log

⇣⇥
log h�1

⇤1/2
/"
⌘o1/2

�

for C not depending on h or ". By Lemma 24, E0

�
supa02A0

|Z1,h,bo(s)|
 
= O({log h�1}1/2). Furthermore,

"
⇥
log h�1

⇤�1/2
n
log

⇣⇥
log h�1

⇤1/2
/"
⌘o1/2

= o(1)

as h �! 0 for any " > 0. The result follows.

Lemma 27. If (A1)–(A3) and (A6)–(A8) hold, then

sup
t2R

����P0

✓
sup

a02A0

(nh)1/2
����
✓n,h,b(a0)� ✓0(a0)

�n,h,b(a0)

����  t

◆
� P0

✓
sup

a02A0

|Z1,h,b(a0)|  t

◆���� = o(1).

Proof of Lemma 27. Since (A7) implies that (A4) holds for all a0 2 A0, by Lemma 3,

P

✓
sup

a02A0

(nh)1/2
����
✓n,h,b(a0)� ✓0(a0)

�n,h,b(a0)

����  t

◆
= P

✓
sup

a02A0

|Gn(a0) +Rn(a0)|  t

◆
,
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where we define

Rn(a0) := (nh)1/2
6X

j=1

Rn,h,b,a0,j/�n,h,b(a0) +
�1,h,b(a0)� �n,h,b(a0)

�n,h,b(a0)
Gn

h1/2�⇤
1,h,b,a0

�1,h,b(a0)

and Gn(a0) := Gn
h1/2�⇤

1,h,b,a0
�1,h,b(a0)

. By the triangle inequality, we have

P

✓
sup
A0

|Gn|  t� sup
A0

|Rn|
◆

 P

✓
sup
A0

|Gn +Rn|  t

◆
 P

✓
sup
A0

|Gn|  t+ sup
A0

|Rn|
◆

for each t 2 R. We then have

P

✓
sup
A0

|Gn +Rn|  t

◆
� P

✓
sup
A0

|Z1,h,b|  t

◆

 P

✓
sup
A0

|Gn|  t+ sup
A0

|Rn|
◆
� P

✓
sup
A0

|Z1,h,b|  t+ sup
A0

|Rn|
◆

+ P

✓
sup
A0

|Z1,h,b|  t+ sup
A0

|Rn|
◆
� P

✓
sup
A0

|Z1,h,b|  t

◆


����P

✓
sup
A0

|Gn|  t+ sup
A0

|Rn|
◆
� P

✓
sup
A0

|Z1,h,b|  t+ sup
A0

|Rn|
◆����+ P

✓
t < sup

A0

|Z1,h,b|  t+ sup
A0

|Rn|
◆

 sup
t2R

����P
✓
sup
A0

|Gn|  t

◆
� P

✓
sup
A0

|Z1,h,b|  t

◆����+ P

✓����sup
A0

|Z1,h,b|� t

����  sup
A0

|Rn|
◆
.

Similarly,

P

✓
sup
A0

|Gn +Rn|  t

◆
� P

✓
sup
A0

|Z1,h,b|  t

◆

� P

✓
sup
A0

|Gn|  t� sup
A0

|Rn|
◆
� P

✓
sup
A0

|Z1,h,b|  t� sup
A0

|Rn|
◆

+ P

✓
sup
A0

|Z1,h,b|  t� sup
A0

|Rn|
◆
� P

✓
sup
A0

|Z1,h,b|  t

◆

� �
����P

✓
sup
A0

|Gn|  t� sup
A0

|Rn|
◆
� P

✓
sup
A0

|Z1,h,b|  t� sup
A0

|Rn|
◆����� P

✓
t� sup

A0

|Rn| < sup
A0

|Z1,h,b|  t

◆

� � sup
t2R

����P
✓
sup
A0

|Gn|  t

◆
� P

✓
sup
A0

|Z1,h,b|  t

◆����� P

✓����sup
A0

|Z1,h,b|� t

����  sup
A0

|Rn|
◆
.

Hence,

sup
t2R

����P
✓

sup
a02A0

(nh)1/2
����
✓n,h,b(s)� ✓0(s)

�n,h,b(a0)

����  t

◆
� P

✓
sup

a02A0

|Z1,h,b(a0)|  t

◆����

 sup
t2R

�����P
 

sup
a02A0

�����Gn

h1/2�⇤
1,h,b,a0

�1,h,b(a0)

�����  t

!
� P

✓
sup

a02A0

|Z1,h,b(a0)|  t

◆�����

+ sup
t2R

P

✓���� sup
a02A0

|Z1,h,b(a0)|� t

����  sup
a02A0

|Rn(a0)|
◆
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The first term on the right hand side is o(1) by Lemma 25. For the second term, for any " > 0, we can write

sup
t2R

P

✓���� sup
a02A0

|Z1,h,b(a0)|� t

����  sup
a02A0

|Rn(a0)|
◆

 sup
t2R

P

✓���� sup
a02A0

|Z1,h,b(a0)|� t

����  "
⇥
log h�1

⇤�1/2
◆

+ P

✓
sup

a02A0

|Rn(a0)| > "
⇥
log h�1

⇤�1/2
◆
. (18)

By Lemma 26, the first term is bounded by C" + o(1) for C not depending on " or h. For the second term, since
nh �! 1, we have

�
log h�1

�1/2
sup

a02A0

|Rn,a0 | .

sup

a02A0

�n,h,b(a0)
�1

�2

4
6X

j=1

(nh log n)1/2 sup
a02A0

|Rn,h,b,a0,j |

+ (log n)1/2 sup
a02A0

|�n,h,b(a0)� �1,h,b(a0)| sup
a02A0

�����Gn

h1/2�⇤
1,h,b,a0

�1,h,b(a0)

�����

#
.

By Lemmas 22 and 21, supa02A0
�1,h,b(a0)�1 = Op(1). By Lemma 7, supa02A0

|Rn,h,b,a0,1| = O(h2+�4) for

some �4 > 0. Since nh5 = O(1), we then have supa02A0
|Rn,h,b,a0,1| = o({nh log n}�1/2). By Corollary 6,

supa02A0
|Rn,h,b,a0,2| and supa02A0

|Rn,h,b,a0,2| are op({nh log n}�1/2) as long as nhp = o(1) for some p > 0, which

holds for p = 6 since nh5 = O(1) and h = o(1). By Lemma 17, supa02A0
|Rn,h,b,a0,4| = op({nh log n}�1/2). By

Lemma 19, supa02A0
|Rn,h,b,a0,5| = Op({nh}�1) = op({nh log n}�1/2) since nh/ log h�1 and nh/ log n both go to 1

by (A6). Finally, by Lemma 20, supa02A0
|Rn,h,b,a0,6| = Op({nh/ log h�1}�1) = op({nh log n}�1/2) by the same

logic. Hence,
P6

j=1 supa02A0
|Rn,h,b,a0,j | = op({nh log n}1/2).

By Lemmas 24 and 25,

sup
a02A0

�����Gn

h1/2�⇤
1,h,b,a0

�1,h,b(a0)

����� = O({log n}1/2) + op(1),

and by Lemma 21, supa02A0
|�n,h,b(a0)� �1,h,b(a0)| = op({log n}�1).

We have now shown that
�
log h�1

�1/2
supa02A0

|Rn,a0 | = op(1), which implies that the second term on the right
hand side of (18) goes to zero for any " > 0. Since " was arbitrary, this implies that

sup
t2R

P

✓���� sup
a02A0

|Z1,h,b(a0)|� t

����  sup
a02A0

|Rn(a0)|
◆

= o(1),

which concludes the proof.

Lemma 28. If the conditions of Lemma 24 hold and !n = o (hp) for some p > 1, then

sup
t2R

����P0

✓
sup

a02A0

|Z1,h,b(a0)|  t

◆
� P0

✓
max
a02An

|Z1,h,b(a0)|  t

◆���� = o(1).

Proof of Lemma 28. We write
����P0

✓
sup
A0

|Z1,h,b|  t

◆
� P0

✓
max
An

|Z1,h,b|  t

◆���� =
����E0


I

✓
sup
A0

|Z1,h,b|  t

◆
� I

✓
max
An

|Z1,h,b|  t

◆�����

 E0

����I
✓
sup
A0

|Z1,h,b|  t

◆
� I

✓
max
An

|Z1,h,b|  t

◆����

�

 P0

✓
sup
A0

|Z1,h,b|  t,max
An

|Z1,h,b| > t

◆

+ P0

✓
sup
A0

|Z1,h,b| > t,max
An

|Z1,h,b|  t

◆
.

96



We address the two probabilities in the final expression in the same way, so we only provide the derivation for the
first term. For any " > 0, we can write

sup
t2R

P0

✓
sup
A0

|Z1,h,b|  t,max
An

|Z1,h,b| > t

◆
 sup

t2R
P0

✓
sup
A0

|Z1,h,b|  t� "
⇥
log h�1

⇤�1/2
,max

An

|Z1,h,b| > t

◆

+ sup
t2R

P0

✓
t� "

⇥
log h�1

⇤�1/2
< sup

A0

|Z1,h,b|  t

◆

 P0

✓����sup
A0

|Z1,h,b|�max
An

|Z1,h,b|
���� > "

⇥
log h�1

⇤�1/2
◆

+ sup
t2R

P0

✓����sup
A0

|Z1,h,b|� t

���� < "
⇥
log h�1

⇤�1/2
◆
.

By Lemma 26, the second term in the last inequality is bounded by C" + o(1). For the first term, we note that by
the definition of the mesh !n of An,

����sup
A0

|Z1,h,b|�max
An

|Z1,h,b|
����  sup

|u�v|!n

|Z1,h,b(u)� Z1,h,b(v)|

almost surely. By Markov’s inequality and Lemma 24, we then have

P0

✓����sup
A0

|Z1,h,b|�max
An

|Z1,h,b|
���� > "

⇥
log h�1

⇤�1/2
◆

 "�1
⇥
log h�1

⇤1/2
E0

����sup
A0

|Z1,h,b|�max
An

|Z1,h,b|
����

�

 "�1
⇥
log h�1

⇤1/2
E0

"
sup

|u�v|!n

|Z1,h,b(u)� Z1,h,b(v)|
#

. "�1
⇥
log h�1

⇤1/2
h�1/2([2!n] ^ h)1/2


log

|A0|
2([2!n] ^ h)

�1/2

= "�1


log h�1([2!n/h] ^ 1) log

|A0|
2([2!n] ^ h)

�1/2
.

Now !n = o (hp) implies that !n/h �! 0, so for all n large enough the above expression is equal to

"�1


h�1 log h�1!n log

|A0|
4!n

�1/2
.

This goes to zero by the assumed rate for !n for every " > 0.

Lemma 29. If (A1)–(A3) and (A6)–(A8), nh5 = O(1), and mnd = O(1) for some d 2 (0,1), then

sup
t2R

����P0

✓
max
a02An

|Z1,h,b(a0)|  t

◆
� P0

✓
max
a02An

|Zn,h,b(a0)|  t | On

◆���� = op(1).

Proof of Lemma 29. Given O1, . . . , On, Zn,h,b is a Gaussian process on An. Hence, we can use the Gaussian
comparison result of Theorem 2 of Chernozhukov et al. (2014). Let An := {a1 < a2 < · · · < am}. In their notation,
we then have Yj = Z1,h,b(aj) and Xj = Zn,h,b(aj) for 1  j  m, and Yj = �Z1,h,b(aj) and Xj = �Zn,h,b(aj)
for 1 + m  j  2m. Hence, max1j2m Yj = maxa02An |Z1,h,b(a0)| and max1j2m Xj = maxa02An |Zn,h,b(a0)|.
Hence, we have p = 2m. Since Z1,h,b and Zn,h,b are both normalized, we have �X

jj = �Y
jj = 1 for all j. By Lemma 24,

we have

ap  E


sup

a02A0

|Z1,h,b(a0)|
�
= O

⇣
{log h�1}1/2

⌘
.
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We define

�n := sup
u,v2A0

��Pn(h�
⇤

n,h,b,u�
⇤

n,h,b,v)/[�n,h,b(u)�n,h,b(v)]� P0(h�
⇤

1,h,b,u�
⇤

1,h,b,v)/[�1,h,b(u)�1,h,b(v)]
�� .

Then by Theorem 2 of Chernozhukov et al. (2014),

sup
t2R

����P0

✓
max
a02An

|Z1,h,b(a0)|  t

◆
� P0

✓
max
a02An

|Zn,h,b(a0)|  t | On

◆���� 
⇥
�n{log(2m)} log

�
h�1 _��1

n

�⇤1/3
.

By Lemmas 21 and 22, �n = op(n�p) for some p > 0. Since logm . log n by assumption, the right hand side of the
preceding display is op(1).
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Supplement N Additional results from numerical studies

This section presents additional results from the numerical study described in Section 4 of the main text. In addition
to data adaptive nuisance estimators, we consider the following parametric estimators. First, we estimated µ0 using a
correctly specified logistic regression model to obtain estimators of �1, �2, �3 and �4. We estimated g0 using maximum
likelihood estimation with a correctly specified parametric model to obtain an estimator of �. To investigate the
double-robustness of our estimator, we also estimated µ0 and g0 using incorrectly specified parametric models. For
µ0, we used the incorrectly specified logistic regression model that assumes µ0(a,w) = expit

�
�̃T1 w̃ + �̃2a

�
for some

�̃1 2 R3, �̃2 2 R, where w̃ := (1, w1, w2). For g0, we used the incorrectly specified linear regression model that assumes
that given W = w, A follows a normal distribution with mean �̃3T w̃ for some �̃3 2 R3 and constant variance.

Figures 7 and 8 display the pointwise empirical bias and variance for sample sizes n = 500, 1000, and 2500.
Figure 7 corresponds to the nuisance parameter estimation based on parametric models and Figure 8 corresponds to
the nuisance parameter estimation based on SuperLearner. The squared bias of the local linear estimators remains
large for n = 2500 unless undersmoothing is employed. The variance of the local linear estimator, on the other hand,
is smaller than that of the debiased estimator compared with the corresponding bandwidth selection procedure. The
variance of undersmoothed local linear estimator is comparable with the debiased estimator using LOOCV, and it
increases faster than the optimal rate n4/5. The variance of all estimators is generally larger when the outcome
regression model is misspecified. The conclusion is similar when using parametric and SuperLearner-based nuisance
estimators.

Figure 9 displays the pointwise empirical mean squared error (MSE) of the estimators for n = 500, 1000 and
2500. The results include both parametric model-based and SuperLearner-based nuisance estimators. For all sample
sizes, the debiased local linear estimator with the plug-in bandwidth selection procedure attains the smallest MSE
for most interior points we considered. The local linear estimator using plug-in bandwidth selection attains a small
MSE at points where the second derivative of ✓0 is close to zero, but for points where the second derivative is far from
zero, it has a larger MSE due to its bias. For the debiased estimator, the LOOCV bandwidth selection yields similar
MSEs regardless of optimizing over both b and h or just over h with b = h fixed. When n = 500, the undersmoothed
local linear estimator displays a slightly smaller MSE than the debiased estimator with LOOCV bandwidth selection;
however, as n increases, the MSE grows, indicating suboptimal convergence rate of MSE when undersmoothing is
employed. The undersmoothing technique consistently yields larger MSEs compared to the debiased local linear
estimator with the plug-in bandwidth selection for all interior points and sample sizes considered. All estimators
display larger MSE towards the boundary points.

Figure 10 displays the empirical coverage of pointwise 95% confidence intervals for sample sizes n = 500, 1000
and n = 2500. The coverage of confidence intervals based on the local linear estimator does not improve when the
sample size is larger. On the other hand, the coverage of the confidence intervals based on the debiased estimator
are slightly lower for n = 500, and generally very close to 95% when n = 2500. The coverage accuracy is particularly
good when at least one of the nuisance estimators is based on a correctly specified parametric model. On the other
hand, we observe slightly worse coverage near the boundary when only conditional density is correctly specified and
is based on SuperLearner.

Figure 11 displays the median length of pointwise 95% confidence intervals for two sample sizes, n = 500, 1000
and n = 2500. We observe that the widths of the confidence intervals are generally comparable between local
linear estimators and the debiased estimators when the plug-in method is used, indicating that the bias correction
has a relative minor impact on confidence interval widths. When undersmoothing is used, the confidence intervals
widen and align with the debiased local linear estimators obtained through LOOCV bandwidth selection procedures.
Comparatively, the confidence intervals based on the debiased local linear estimator with the plug-in method exhibit
narrower widths than those of the local linear estimator with undersmoothing. This gap widens as the sample size
n increases, as undersmoothing results in a suboptimal convergence rate.

Figures 12 and 13 display the empirical coverage of confidence intervals for the causal e↵ect ✓0(a)�✓0(0.5) based
for sample sizes n = 500, 1000 and n = 2500. The conclusion is similar to the case with n = 1000 from the main
text; the confidence intervals based on the asymptotic independence are conservative when the distance between the
evaluation points is small. This is still a problem at n = 2500. The influence function-based confidence intervals
perform particularly well when nuisance function is estimated based on parametric models as seen in Figure 12. The
conclusion for SuperLearner-based methods are similar except that the influence function-based confidence intervals
based on the plug-in bandwidth selection overcover when the outcome regression is misspecified.

Figures 14 displays the empirical coverage of the uniform confidence bands over A0 = [0, 1.0] obtained from
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nuisance estimators based on parametric models and SuperLearner. The coverage accuracy of uniform bands does
not show a significant di↵erence between parametric and data-adaptive nuisance estimators. The plug-in bandwidth
selection performs well for sample sizes greater than 1000 while methods based on cross-validation show slight
undercoverage for large sample sizes.

Figure 15 displays distributions of the bandwidth h selected by the five procedures. We note that the bandwidth
for the plug-in method is the same for the local linear and debiased estimators. The plug-in method generally selects
larger bandwidths than the LOOCV methods. This explains the larger bias and smaller variance of the estimators
based on the plug-in method. The distribution of h for the LOOCV method that selects both h and b has the largest
variance. Figure 16 shows the densities of ⌧ = h/b for the LOOCV method that selects both h and b. Surprisingly,
the procedure seems to favor smaller ⌧ than one. This explains the larger variance of the LOOCV method that
selects both h and b relative to the LOOCV method that fixes b = h.

Finally, Figure 17 displays the true covariate-adjusted regression function used across the numerical study and
its second derivative. The location that corresponds to a large second derivative in its absolute value coincides with
the area where local linear estimators demonstrate larger bias and poor coverage.
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Figure 7: Empirical squared bias and variance of the estimators from sample sizes n = 500, 1000
and 2500 when parametric models are used for estimating nuisance functions. The values are scaled
by n4/5 and displayed on the log scale.
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Figure 8: Empirical squared bias and variance of the estimators from sample sizes n = 500, 1000
and 2500 when SuperLearner-based methods are used for estimating nuisance functions. The values
are scaled by n4/5 and displayed on the log scale.
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Figure 9: Empirical mean squared error of the estimators based on both parametric and Super-
Learner estimators for nuisance functions. The values are scaled by n4/5 and displayed on the log
scale.
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Figure 10: Empirical coverage of 95% pointwise confidence intervals based on the debiased local
linear estimator and the local linear estimator for sample sizes n = 500 and 2500.
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Figure 11: Median width of 95% pointwise confidence intervals based on the debiased local linear
estimator and the local linear estimator with sample sizes n = 500, 1000 and 2500.
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Figure 12: Empirical coverage of 95% pointwise confidence intervals for ✓0(a) � ✓0(0.5) based on
the debiased estimator when parametric methods are used for nuisance function estimation. The
intervals in the top two rows use the sum of two variance estimators; those in the bottom rows use
the influence function-based variance estimator.
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Figure 13: Empirical coverage of 95% pointwise confidence intervals for ✓0(a)�✓0(0.5) based on the
debiased estimator when SuperLearner-based methods are used for nuisance function estimation.
The intervals in the top two rows use the sum of two variance estimators; those in the bottom rows
use the influence function-based variance estimator.
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Figure 14: Empirical coverage of 95% uniform confidence bands based on the debiased estimator
over A0 = [0, 1].
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Figure 15: Distribution of the bandwidth h selected by the five di↵erent procedures over the 1000
simulations in each setting and for each sample size.
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Figure 16: Density of h/b found by the LOOCV method that selects both h and b for the debiased
estimator.

Figure 17: The true function ✓0 and its second derivative ✓000 used in the numerical experiements.
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