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Abstract

The clustered observational study (COS) design is the observational study coun-
terpart to the clustered randomized trial. In a COS, a treatment is assigned to intact
groups, and all units within the group are exposed to the treatment. However, the
treatment is non-randomly assigned. COSs are common in both education and health
services research. In education, treatments may be given to all students within some
schools but withheld from all students in other schools. In health studies, treatments
may be applied to clusters such as hospitals or groups of patients treated by the same
physician. In this manuscript, we study the identification of causal e↵ects in clustered
observational study designs. We focus on the prospect of di↵erential selection of units
to clusters, which occurs when the units’ cluster selections depend on the clusters’
treatment assignments. Extant work on COSs has made an implicit assumption that
rules out the presence of di↵erential selection. We derive the identification results
for designs with di↵erential selection and that contexts with di↵erential cluster selec-
tion require di↵erent adjustment sets than standard designs. We outline estimators
for designs with and without di↵erential selection. Using a series of simulations, we
outline the magnitude of the bias that can occur with di↵erential selection. We then
present two empirical applications focusing on the likelihood of di↵erential selection.
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1 Introduction

Many applied analyses focus on whether a treatment given to some set of units causes

a hypothesized e↵ect. In some settings, treatments of interest are allocated individually.

That is, a treatment is assigned to certain people individually and not to others. However,

in other settings, the treatment is allocated to groups or intact clusters of units – e.g.,

to hospitals or schools – while outcomes of interest are measured at the unit level— e.g.,

patients or students. The critical feature of such treatment assignment processes is that

all or none of the units within a cluster are exposed to the treatment of interest. When

group-level treatments are randomly assigned, the study design commonly is referred to

as a clustered randomized trial (CRT) (Raudenbush, 1997; Hedges and Hedberg, 2007).

In a clustered observational study (COS), treatment is still assigned at cluster level but

assignment is non-random (Page et al., 2020). Given non-random assignment in a COS,

di↵erences in outcomes may reflect pretreatment di↵erences in treated and control groups

rather than actual treatment e↵ects (Hansen et al., 2014). Moreover, the COS design

requires specialized forms of statistical adjustment for observed confounders (Keele and

Zubizarreta, 2017; Pimentel et al., 2018). Next, we highlight two areas of applied research

where the COS design is common.

1.1 Education

COSs are common in educational research, where treatments are often applied to schools.

For example, Adelson et al. (2012) study how changes in gifted programs in some schools

a↵ect student-level outcomes. Much research has focused on whether Catholic schools are

more e↵ective than public schools in fostering student achievement (Coleman et al., 1982;

Ho↵er et al., 1985; Coleman and Ho↵er, 1987). Often a new reading program may be imple-

mented in some schools but not in others (Page et al., 2020). Other interventions broadly

seek to change entire school structures in hopes of improving chronically underperforming
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schools (Bryk et al., 2015; Mehta et al., 2012; McGuinn, 2006). For example, in 2015-16,

the Wake County Public School System implemented a school turnaround strategy known

as the Elementary Support Model (ESM) in 12 selected schools. Schools in the ESM condi-

tion received a range of supports over three years, including governance reform, additional

sta�ng, and instructional coaching (Paeplow et al., 2019). This program implementation

is prototypical of the COS template; the intervention is non-randomly assigned to and

delivered at the school level, but the investigators are focused on academic and behavioral

outcomes measured at the student level.

1.2 Health Services Research

The COS design is also common in comparative e↵ectiveness research (CER), which focuses

on evaluating the causal e↵ects of health care strategies on patient outcomes (Hernán, 2018).

CER encompasses patient level treatments and the e↵ects health care delivery, organization

and financing, as well as public health interventions (Institute of Medicine, 2009). In CER,

COS designs often mirror those in education where interventions are applied to entire

hospitals. For example, the COS design has been applied at the hospital level to study

the e↵ect of the work environment and amount of autonomy given to nurses (Rao et al.,

2017; Silber et al., 2016), the e↵ect of medical residents’ duty hours (Bilimoria et al., 2016;

Patel et al., 2014; Silber et al., 2014), and the e↵ect of Magnet certification for high quality

nursing (Barnes et al., 2016; McHugh et al., 2013). The COS design in CER also arises at

the level of the physician. In this setting, a treatment is applied to some physicians but not

others, but outcomes are measured at the patient level. COS designs of this type include

studies on the e↵ects of training in a teaching hospital (Navathe et al., 2013a,b; Srinivas

et al., 2013; Lorch et al., 2012) and the e↵ect of a university-based surgical residency (Sellers

et al., 2018).
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1.3 Clustered Observational Studies

In both of these applied fields, a randomized trial would require randomly assigning en-

tire clusters to treatment or control status. However, in educational and health settings,

such randomization can often be impractical or even impossible, and so we require dif-

ferent analytic strategies to address questions of cause and e↵ect. In such cases, critical

research questions can only be investigated using clustered observational studies. The ex-

tant literature on the COS study design, however, critically assumes that the population of

units within the clusters is not a↵ected by treatment assignment (Keele and Zubizarreta,

2017; Pimentel et al., 2018; Hansen et al., 2014). Here, we focus on a feature of clustered

treatment assignment that may result in a form of selection bias arising from di↵erential

selection of units – patients or students – across treated clusters. Specifically, we consider

the possibility that the population of units within treated clusters changes in reaction to

the treatment being assigned to the cluster. For example, once an intervention such as

ESM is put into place, families with high achieving students may move to treated school

catchment areas. Under this form of di↵erential selection, di↵erences in outcomes between

treated and control students with similar pre-treatment characteristics may be a result of

peer e↵ects rather than the treatment e↵ect, because schools with ESM may attract higher

achieving students. That is, ESM may appear to have improved outcomes, when in fact it

only attracted higher achieving students. Ogburn and VanderWeele (2014) refer to this as

allocational interference.

In this manuscript, we present a series of new results for clustered observational studies.

First, we develop a notational framework that allows for di↵erential selection of units to

clusters as a function of treatment assignment. We use the target trial framework to

define three distinct trials that di↵er in terms of whether unit to cluster assignment is

a↵ected by the treatment. We highlight how extant COS research has been based on a

hidden assumption that rules out the possibility of di↵erential selection. We show that
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identification for each target trial depends on conditioning on di↵erent types of covariates,

to which we refer as the conditioning or adjustment set. We also outline the additional

assumption that identifies causal e↵ects under di↵erential selection. We then conduct a

simulation study investigating how bias can arise in the analysis of COS designs, when the

wrong target trial is assumed. We present results from two di↵erent applications, one from

education and one from health services research. Finally, we conclude with a discussion of

key implications for applied research.

2 COS Framework

To understand issues of causal identification in this context, we use the target trial frame-

work. Target trial emulation calls for applying design principles from randomized trials

to the analysis of observational data (Hernán and Robins, 2016). More specifically, in

the target trial framework, the investigator derives estimands and identification conditions

from the hypothetical experimental trial that is being emulated. From a practical stand-

point, the target trial of interest may be infeasible as an actual randomized trial. However,

that is largely irrelevant for our technical, analytic purpose, which is to use the target

trial to structure the design and analysis of an observational study. Next, we outline two

hypothetical target trials that are relevant to COS designs.

2.1 Target Trials for the COS Design

Here, we provide an informal outline of two hypothetical target trials, where in both cases

there are n units and m clusters. In both of these target trials, there are two stages of

assignment, the order of which represent the key di↵erence between these two target trials.

In Figure 1, we provide a graphical illustration of these two target trials, with individual

units represented by circles and groups or clusters represented by rectangles. In target trial
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1, units are first assigned (randomly or not) to clusters and then clusters are randomly

assigned to treatment or control. Target trial 1 also includes the setting where the unit-

cluster pairing at the first stage is fixed, which is typical in the literature on CRTs. In target

trial 2, on the other hand, we consider a scenario where at the first stage, m clusters are

randomized to receive treatment or control, and at the second stage, n units are randomly

assigned to the m clusters. This setting is also common in CRTs when units are recruited

after clusters are randomized.

If the two stages of randomization are independent of each other—if the stage 2 ran-

domization does not depend on the outcome of stage 1 assignments—we will show that the

identification conditions for target trial 1 and 2 are equivalent. However, these two target

trials di↵er if the treatment assignment depends on unit-cluster pairing in target trial 1, or

if the unit-cluster pairing depends on clusters’ treatment assignments in target trial 2. In

particular, target trial 1 precludes the possibility of di↵erential selection, but target trial 2

does not when unit selection is no longer randomized at the second stage. Next, we develop

notation that allows us to formally describe these two target trials.

2.2 Notation

Let A = (A1, . . . , Am) be the observed binary treatment indicators for all clusters, and let

J(a) = (J1(a), . . . , Jn(a)) denote the clusters that the n subjects would be assigned to had

the clusters received exposure: a = (a1, . . . , am). We use this potential-selections notation

to capture the fact that the subject-cluster pairing may depend on treatment status of

clusters, A. We use J = J(A) to denote the observed cluster values for the n subjects.

Next, let Yi(a, j) be the potential outcome for subject i had A = a and J = j, where

j = (j1, . . . , jn). This notation allows for unit outcomes to depend on both treatment and

cluster assignments. Finally, Yi = Yi(A,J) is the observed outcome for subject i.

For each unit i, we observe a vector of baseline covariatesXi that describe the units (age,
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Figure 1: Schematic of two di↵erent types of target trials with di↵erent unit-cluster

selection mechanisms. Dashed line represents cluster-level treatment assignment. The gray

color represents treated units.

race, etc), and for each cluster j, we also observe baseline covariatesWj that describe cluster

characteristics (school or hospital size). Denote W = (W1, . . . ,Wm), X = (X1, . . . , Xn),

and Y = (Y1, . . . , Yn). Given the natural clustering in a COS, we also observe covariates

that are aggregates of the individual-level covariates in the cluster denoted as h(X[j]),

where X[j] = {X1, . . . , Xn : Ji = j} is the collection of covariates for subjects belonging to

the cluster j, which is a function of (X,J). Some commonly-used h(·) functions include

the mean and quantile functions.

We assume that subjects’ potential outcomes depend on A only through the exposure

value of their own cluster, but not other clusters’ exposure values, i.e., for any two exposure

vectors a and a0 such that aji = a0
ji , we have Yi(a, j) = Yi(a0, j). Thus, the potential

outcome Yi(a, j) can be simplified and written as Yi(aji , j), and the observed outcome

satisfies Yi = Yi(A,J) = Yi(AJi ,J). In the identification analysis that follows we focus on

a common target estimand the average treatment e↵ect formalized as:

E[Yi(1,J)� Yi(0,J)]. (1)
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This estimand represents the average di↵erence between the potential outcomes that would

be observed if all clusters were treated versus if all clusters were untreated, while the cluster

membership is kept as the observed (possibly random) value in the actual observational

study, which for the second trial could depend on the observed treatment. In target trial

2, this estimand is similar to that of a natural direct e↵ect in a mediation analysis (Van-

derWeele, 2016).

3 Identification

Next, we turn to issues of causal identification. Under the target trials articulated in Figure

1 with randomization of both units and clusters, the average treatment e↵ect is identified.

Here, we derive the relevant identification conditions for both of the target trials reconsti-

tuted as observational studies assuming treatments are not randomly assigned. We focus

on the identification conditions through conditioning on baseline covariates. We outline

that each target trial identification depends on di↵erent adjustment or conditioning sets.

We demonstrate, in particular, that the presence of di↵erential selection at the individual

level requires conditioning on unit-level covariates.

3.1 Target Trial 1: Fixed Unit-Cluster Pairing

First, we focus on target trial 1 where unit-cluster pairing occurs before treatment assign-

ment. For target trial 1, identification of the treatment e↵ect is possible using a version of

the standard conditional ignorability assumption altered to reflect cluster-level treatment

assignment (VanderWeele, 2008; Hansen et al., 2014). That is, one assumes that treatment

assignment is random within strata of the cluster-level covariates Wj and h(X[j]) which are

aggregates of the individual-level covariates in the cluster. Formally, the key identification

assumption is written as
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Aj Y

Wj

h(X[j]) J

X

Figure 2: A DAG illustrating identification conditions for cluster j in target trial 1. Con-

ditioning on Wj and h(X[j]) renders the treatment-outcome relationship unconfounded.

Assumption 1 (Target Trial 1). (i) J = J(1) = J(0); (ii) For every i, j, a, and j,

Aj ? {J ,X, Yi(a, j)} | Wj, h(X[j]).

Assumption 1(i) describes a unit-cluster pairing mechanism that is una↵ected by cluster-

level treatment assignments. Assumption 1(ii) says that each cluster’s treatment assign-

ment probability is a function of the cluster’s characteristics and certain aggregate of the

individual-level covariates in the cluster. We should note that outside of the COS setting,

it is not common to require X conditionally independent of Aj. Figure 2 represents this

assumption for each cluster as a directed acyclic graph (DAG). The key feature of this

DAG is that conditioning on Wj and h(X[j]) blocks all backdoor paths from Aj to Y and

renders the treatment-outcome relationship unconfounded (Pearl, 1995).

Next, we provide a formal statement of identification under this assumption. Define

µwh(a, w, h) = E[Yi | AJi = a,WJi = w, h(X[Ji]) = h] and ⌧wh = E[µwh(1,WJi , h(X[Ji])] �

E[µwh(0,WJi , h(X[Ji])]. Similarly, define µwhx(a, w, h, x) = E[Yi | AJi = a,WJi = w, h(X[Ji]) =

h,Xi = x] and ⌧whx = E[µwhx(1,WJi , h(X[Ji]), Xi)]� E[µwhx(0,WJi , h(X[Ji]), Xi)].

Proposition 1 shows that there are two ways of identifying the treatment e↵ect in target

trial 1.

Proposition 1 (Target Trial 1). Under Assumption 1, ⌧wh = ⌧whx = E[Yi(1,J)]�E[Yi(0,J)].

The proof of Proposition 1 and all other proofs are in the supplementary material.
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Proposition 1 shows that the treatment e↵ect is identifiable even if we do not condition

on unit-level covariates X. This is due to the fact that in Assumption 1, X does not

directly a↵ect clusters’ treatment assignment. However, adjusting for unit-level covariates

may improve e�ciency.

3.2 Target Trial 2: Cluster Treatment Assignment First

Next, we consider identification for target trial 2. Here, the identification conditions di↵er

from target trial 1. Critically, we must now account for the possibility that when cluster

treatment assignment precedes unit-cluster pairing, J is post-treatment and can directly

a↵ect subjects’ outcomes. Notably, under target trial 2, we consider two di↵erent mecha-

nisms for how subjects are selected into clusters. As such, we split target trial 2 into two

target trials that we denote as 2(a) and 2(b). Specifically, we denote blinded unit-cluster

pairing as target trial 2(a), and we denote unblinded unit-cluster pairing as target trial

2(b). Here, di↵erential selection is possible under target trial 2(b), due to the unblinded

unit-cluster pairing mechanism.

3.2.1 Target Trial 2(a): Blinded Unit-Cluster Pairing

For target trial 2(a), units are blinded to clusters’ treatment status when selecting clusters,

which we formalize through the following assumption:

Assumption 2 (Target Trial 2). (i) J = J(1) = J(0); (ii) for every i, j, a, and j, Aj ?

{J ,X, Yi(a, j)} | Wj.

Assumption 2 formalizes the scenario where at the first stage, clusters (e.g., schools,

hospitals, physicians) adopt the treatment or not independently, and at the second stage,

subjects select clusters with knowledge of clusters’ characteristicsW but with no knowledge

of clusters’ treatment assignment A. The key di↵erence under Assumption 2 we are no

10



Aj Y

Wj

J

X

Figure 3: A DAG illustrating identification conditions for cluster j in target trial 2(a).

Conditioning on Wj renders the treatment-outcome relationship unconfounded.

longer conditioning on h(X[j]). As such, for target trial 2(a) identification is possible by

conditioning on reduced set of covariates as compared to target trial 1.

This scheme is illustrated by a DAG in Figure 3, which would arise, for example, when

a new reading curriculum is assigned to some schools but not others. If students and their

parents are unaware of the new reading curriculum when deciding which school to attend,

this would preclude the possibility that the student population could shift to di↵erent

schools in response to the treatment. On the other hand, it does allow for a scenario,

where parents select schools based on school characteristics such as test scores history or

lagged student demographics.

Next, we formalize identification under Assumption 2. Define µw(a, w) = E[Yi | AJi =

a,WJi = w] and ⌧w = E[µw(1,WJi)]�E[µw(0,WJi)]. Under Assumption 2, we can identify

the average treatment e↵ect in three di↵erent ways.

Proposition 2 (Target Trial 2(a)). Under Assumption 2, ⌧w = ⌧wh = ⌧whx = E[Yi(1,J)]�

E[Yi(0,J)].

Proposition 2 shows that conditioning on W su�ces to identify the treatment e↵ect.

This is because according to Assumption 2, X and J do not directly a↵ect clusters’ treat-

ment assignment. However, adjusting for unit-level covariates and their aggregates may

improve e�ciency.
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Note that target trial 2(a) is an instance of target trial 2 where the second stage ran-

domization is independent of the first stage randomization. That is, the unit-cluster pairing

does not depend on clusters’ treatment assignments. In parallel, Assumption 2 and Propo-

sition 2 can also be applied to target trial 1 when the treatment assignment depends on

clusters’ characteristics W but does not depend on unit-cluster pairing. Therefore, we see

that if the two stages of randomization are independent of each other, the identification

conditions and results for target trial 1 and 2 are equivalent.

In target trial 1 and 2(a) where the unit-cluster pairing does not depend on the treat-

ment assignment, we can simplify the notation. That is, the index j in the definition

of potential outcomes can be omitted, since J(1) = J(0) = J . Specifically, we can de-

fine Yi(aJi) := Yi(aJi ,J) as the potential outcome for subject i. Under this notation, the

possibility of units di↵erentially selecting into clusters in response to treatment is pre-

cluded. Under this set of potential outcomes, the observed outcomes can be expressed

as Yi = Yi(AJi ,J) = Yi(AJi) = AJiYi(1) + (1 � AJi)Yi(0), and the average treatment ef-

fect E[Yi(1,J)� Yi(0,J)] can be expressed in the following familiar form E[Yi(1)� Yi(0)],

and our identification result is consistent with the results in VanderWeele (2008). This

discussion highlights that extant work on identification in COS designs has implicitly as-

sumed that J is not a↵ected by the treatment assignment and has ruled out the presence

of di↵erential selection (Hansen et al., 2014; Keele and Zubizarreta, 2017; Pimentel et al.,

2018). This assumption holds in target trial 1 where unit-cluster pairing precedes clusters’

treatment assignment. In target trial 2, this assumption is also innocuous when units are

unaware that clusters have been assigned to the treatment. For example, checklists are

often used to reduce medical errors. Hospitals may adopt such interventions with little to

any awareness by the patients. In educational settings, many interventions may be alter-

ations of the curriculum that students or parents are unaware of. Qualitative information

on whether units are likely to be aware of the intervention will be critical to assessing the
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plausibility of target trial 2(a).

3.2.2 Target Trial 2(b): Unblinded Unit-Cluster Pairing

Now we consider the scenario under target trial 2 with unblinded unit-cluster pairing. As

we noted above, we refer to this as target trial 2(b). Here, the unit-cluster pairing mediates

the e↵ect of treatment on the outcome. Specifically, the unit-cluster pairing J plays the

role of a mediator that is a↵ected by the treatment and also can directly a↵ect subjects’

outcomes; see review of mediation analysis in VanderWeele (2016). In this case, the primary

causal e↵ect of interest is arguably the direct e↵ect of the treatment, because the goal is

to learn about the e↵ect of treatment itself separated from any e↵ect due to changing the

unit composition of the clusters.

To make progress under this target trial, we introduce an additional assumption about

the structure of interference to further simplify the definition of potential outcomes, which

may be plausible for a variety of settings. For any two j and j 0 such that aji = aj0i ,Wji =

Wj0i
, and h(X[ji]) = h(X[j0i]

), we have Yi(aji , j) = Yi(aj0i , j
0). This assumption intuitively

asserts that the potential outcomes of subject i remain the same as long as its associated

cluster receives the same treatment, has the same cluster characteristics, and consists of

subjects with the same individual covariate summaries. This type of assumptions is termed

as stratified interference by Hudgens and Halloran (2008). Under the stratified interference

assumption, the potential outcome can be further simplified and written as Yi(a, w, h) =

Yi(aji = a,Wji = w, h(X[ji]) = h). Under target trial 2(b), the causal estimand is expressed

as

E[Yi(1,WJi , h(X[Ji]))]� E[Yi(0,WJi , h(X[Ji]))].

This estimand is the average e↵ect of the treatment for each unit while fixing the cluster-

and aggregated individual-level characteristics of the associated cluster to the natural values

that occur. As such, this estimand quantifies the e↵ect that is purely due to the treatment.
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The stratified interference assumption renders this estimand equivalent to the estimand in

(1).

Figure 4 contains the DAG for target trial 2(b). Unlike the DAGs for target trials 1

and 2(a), the DAG for target trial 3 is indexed by subject i to account for unit selection

to clusters, and there are now arrows from A to J�i and Ji because of unblinded unit-

cluster pairing. Based on the DAG in Figure 4, we formalize the key assumption needed

for identification using Assumption 3:

Assumption 3 (Target Trial 2(b)). AJi ? Yi(a, w, h) | WJi , h(X[Ji]), Xi for every a, w, h, i.

Under this assumption, to disentangle treatment e↵ect and peer e↵ect, we propose

comparing treated and control units that have similar observed characteristics and are

in similar clusters with similar peers. The formal statement of identification under this

assumption is contained in the following proposition:

Proposition 3 (Target Trial 2(b)). Under Assumption 3, ⌧whx = E[Yi(1,WJi , h(X[Ji]))]�

E[Yi(0,WJi , h(X[Ji]))].

Proposition 3 shows that under target trial 2(b), the treatment e↵ect is identifiable condi-

tioning on the cluster-level covariates WJi , individual-level covariates Xi, and aggregates of

the individual-level covariates in the cluster h(X[Ji]). Here, conditioning on WJi , h(X[Ji])

is analogous to conditioning on mediators when the target parameter is the direct e↵ect of

the treatment (VanderWeele, 2016). Critically, we also need to adjust for Xi to account for

possible di↵erential unit-level distributions within clusters. Therefore, unlike target trials

1 and 2, identification now depends on conditioning on the full set of baseline covariates.

The key insight from the identification results is that di↵erent target trials imply dif-

ferent adjustment sets (e.g., covariate sets on which we must condition). For target trial 1,

identification is dependent on a conditioning set that includes {W,h}. For target trial 2(a),

identification requires a conditioning on {W}, while target trial 2(b) requires conditioning
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AJi Yi

h(X[Ji])

Ji

J�i

A

W

Xi

X�i

WJi

Figure 4: Directed acyclic graph (DAG) illustrating identification conditions for subject

i in target trial 2(b). Conditioning on WJi , h(X[Ji]), Xi renders the treatment-outcome

relationship unconfounded.

on {W,h,X}. For applied analysts, knowing which target trial fits a given application will

primarily depend on detailed knowledge of possible mechanisms for di↵erential selection.

That is, it is not possible to use the data to test between the di↵erent target trials. Crit-

ically, however, while it may not be possible to distinguish between the target trials in

specific applications, we next use simulations to explore how using di↵erent conditioning

sets can shed light on the appropriate target trial.

3.3 Estimation and Inference

If the appropriate adjustment set is selected, estimation is relatively straightforward. For

example, to estimate ⌧w, we can impose a parametric model of µw(a, w), denoted by

µw(a, w; ⌘a). Let ⌘̂a denote the solution to the score equations corresponding to the likeli-

hood of Yi conditional on AJi = a and WJi , the estimator of ⌧w is given by

⌧̂w =
1

n

nX

i=1

µw(1,WJi ; ⌘̂1)�
1

n

nX

i=1

µw(0,WJi ; ⌘̂0).
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Estimators for ⌧̂wh and ⌧̂whx can be constructed in a similar fashion. This method of

estimation is also called the parametric g-formula, see Hernan and Robins (2020, ch. 13)

for a detailed review. Briefly, the estimation process consists of three steps. First, we fit

two outcome models, one for treated and one for control. Second, we obtain the fitted

values for all n subjects under the outcome models. Third, we standardize by separately

averaging over the fitted values under treated and control, and calculate the di↵erence.

Variance estimators can be obtained using the block bootstrap which resamples both the

clusters and all the units within the resampled clusters (Davison and Hinkley, 1997). We

leave the development of more complex estimation methods to future work.

4 Simulations

We conduct a simulation study to further evaluate how the specification of adjustment

set can a↵ect the amount of bias when estimating treatment e↵ects in the COS design,

especially when the adjustment set does not match the correct target trial. We consider

the following data-generating process. First, we generate the baseline covariates at the

cluster- and unit- level in the population as:

Wj ⇠ N(0, 1), j = 1, . . . ,m,

Xi1 ⇠ N(0, 1), Xi2 ⇠ Binom(0.4), i = 1, . . . , n.

For each target trial, we use these baseline covariates to govern how units are assigned to

clusters. For target trial 1, we stipulate unit-cluster assignments with the following model:

P (Ji = j | Xi1, Xi2,W ) =
exp{0.2Wj · (1 +Xi1 +Xi2)}hPm
j=1 exp{0.2Wj · (1 +Xi1 +Xi2)}

i . (2)

Next, for a fixed unit-cluster pair, we calculate aggregate versions of Xi1 and Xi2. Specifi-

cally, we aggregate to the 25%, 50%, 75% percentiles forXi1’s and the mean forXi2’s in clus-

ter j, which are respectively denoted as hj1, hj2, hj3, hj4, for j = 1, . . . ,m. Finally, we assign
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clusters to treatment via the following model: logit{P (Aj = 1 | Wj, hj1, hj2, hj3, hj4)} =

0.2Wj +0.2(hj1+hj2+hj3)+0.2(hj4� 0.4). Critically, consistent with target trial 1, treat-

ment assignment depends on the cluster-level covariate and cluster aggregates of unit-level

covariates.

For target trial 2, we assign the treatment to clusters according to logit{P (Aj = 1 |

Wj)} = 0.2Wj, such that treatment assignment only depends on the cluster-level covariate,

Wj. Then units are assigned to clusters using model (2) without information on clus-

ters’ treatment assignments. For target trial 3, we also assign the treatment according to

logit{P (Aj = 1 | Wj)} = 0.2Wj, but we alter the model that assigns units to clusters using

the following model:

P (Ji = j | Xi1, Xi2,W ) =
exp{(0.2Wj + 0.2Aj) · (1 +Xi1 +Xi2)}hPm
j=1 exp{(0.2Wj + 0.2Aj) · (1 +Xi1 +Xi2)}

i .

The key di↵erence is that unit to cluster assignment now depends on treatment assignment.

For all three target trials, we generate outcomes using the same model:

Yi = Xi1 +Xi2 + 0.4AJi(Xi1 +Xi2) + 0.5(WJi + hJi1 + hJi2 + hJi3 + hJi4) + 0.1eJi + ✏i

where ej, ✏i ⇠ N(0, 1) for j = 1, . . . ,m, i = 1, . . . , n. The true average treatment e↵ect is

0.4E[Xi1 +Xi2] = 0.16.

The primary element of the analysis we vary is the adjustment set. That is, for each

target trial, we use three di↵erent adjustment sets: {W}, {W,h}, and {W,h,X}, through

which we seek to understand how the adjustment set a↵ects the treatment e↵ect estimates.

Specifically, we expect that under target trial 1, adjustment for {W,h} should be su�cient

for consistent estimation of the treatment e↵ect. For target trial 2, adjustment for {W}

should be su�cient. For target trial 3, adjustment for {W,h,X} is necessary. We also

vary sample sizes and consider (m,n) = (50, 4000), (100, 4000), and (50, 8000). For each

simulation scenario, we estimate treatment e↵ects using separate linear model fits for the
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treated and untreated units. The standard errors are obtained using the block bootstrap

with 300 bootstrap samples. We used 1,000 simulation repetitions for each scenario.

Results from the simulation study are in Table 1. First, we review the results for target

trial 1. For target trial 1, if we only adjust for {W} this leads to a biased estimates. How-

ever, the bias is relatively modest. When we only adjust for {W}, the average treatment

e↵ect is 0.19 versus the true treatment e↵ect of 0.16 – see row 1 of Table 1. When we

adjust for either {W,h} or {W,h,X}, the bias is negligible. For target trial 2, all three

adjustment sets lead to unbiased treatment e↵ect estimates, since all three adjustment sets

contain {W}. For target trials 1 and 2, we find that doubling the number of clusters or

doubling the total samples sizes substantially reduces the standard errors. However, in

either case as long the adjustment set is appropriate, coverage rates perform as expected.

For target trial 3, specifying the correct adjustment set is critical. Under target trial 3,

if we only adjusting for {W}, the estimate is substantially biased. When we only adjust

for {W}, the estimated treatment e↵ect is too large by over a factor of 4. That is, the

estimated treatment e↵ects in this scenario are approximately 0.73 relative to the true

treatment e↵ect of 0.16. When we adjust for {W,h}, the bias is still present but much

more modest with the estimate e↵ect being approximately 0.19. Finally, if we adjust for

the full set of covariates, {W,h,X}, treatment e↵ects are unbiased. For target trial 3,

doubling the number of units does not lead to a reduction in the standard error estimates.

That is, additional units do not increase the information in the data given the clustering

of units. Here, doubling the number of clusters reduces the size of the standard errors and

produces coverage probabilities that are close to the nominal level.

The results from the simulation study agree with the identification results in Section 3.

Unbiased estimates depend critically on matching the correct adjustment set to the appro-

priate target trial. Critically, the key threat is from under-specification. Only under target

trial 2 will adjustment for {W} alone result in unbiased estimates. In general, we find that
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Table 1: Mean, standard deviation (SD), average standard error (SE), and coverage prob-

ability (CP) of 95% asymptotic confidence interval for the true average treatment e↵ect

⌧ = 0.16 based on 1,000 simulations.

Target trial Sizes Adjustment Set Mean SD SE CP

1 m = 50, n = 4000 W 0.185 0.106 0.104 0.929

W,h 0.160 0.051 0.080 0.974

W,h,X 0.160 0.049 0.078 0.966

m = 100, n = 4000 W 0.199 0.102 0.099 0.916

W,h 0.158 0.043 0.045 0.954

W,h,X 0.158 0.040 0.042 0.946

m = 50, n = 8000 W 0.170 0.077 0.078 0.946

W,h 0.161 0.040 0.055 0.979

W,h,X 0.162 0.038 0.053 0.980

2 m = 50, n = 4000 W 0.159 0.098 0.104 0.961

W,h 0.161 0.050 0.066 0.975

W,h,X 0.161 0.048 0.063 0.980

m = 100, n = 4000 W 0.160 0.099 0.099 0.943

W,h 0.160 0.043 0.044 0.952

W,h,X 0.160 0.041 0.042 0.947

m = 50, n = 8000 W 0.161 0.076 0.078 0.955

W,h 0.159 0.042 0.053 0.978

W,h,X 0.159 0.041 0.051 0.972

3 m = 50, n = 4000 W 0.732 0.104 0.104 0.001

W,h 0.191 0.070 0.109 0.957

W,h,X 0.161 0.067 0.101 0.979

m = 100, n = 4000 W 0.739 0.097 0.099 0.000

W,h 0.188 0.052 0.054 0.926

W,h,X 0.160 0.050 0.052 0.962

m = 50, n = 8000 W 0.737 0.075 0.078 0.000

W,h 0.187 0.072 0.118 0.972

W,h,X 0.156 0.071 0.112 0.980
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adjustment for the full set of covariates, {W,h,X}, never leads to biased estimates. Given

that in many applied applications there may be some uncertainty in terms of which target

trial is appropriate, it would be wise to adjust for the full set of covariates.

5 Applications

We present two empirical applications: one from education and one from health services

research, which are selected to contrast how key aspects of COS designs can vary depending

on the applied context. For each application, we focus on the likelihood of di↵erential

selection of units to clusters. In both cases, di↵erential selection is possible, but more

likely in one case than in the other. In either case, we are unable to rule out the presence

of di↵erential selection.

5.1 Summer School Reading Intervention

In the first application, the empirical question of interest is whether a summer school

reading intervention in Wake County, NC improved students’ reading scores (Pimentel

et al., 2018; Page et al., 2020). Specifically, in the summer 2013, the Wake County Public

School System (WCPSS) selected myON, a computer-aided reading program, for use in

the summer school program for elementary school students. myON is a web-based software

product designed to increase summer school attendees’ reading comprehension. Due to

technical constraints, only some summer-school sites used myON. WCPSS o�cials selected

the schools that used myON, and principals and schools themselves had no input on pro-

gram participation. Students at selected schools used the program for up to thirty minutes

during the daily summer-school literacy block and could continue using it at home with

a device and internet connection. Overall, 3,434 students from 49 di↵erent WCPSS ele-

mentary schools attended summer school. Of these, 1,371 summer-school students from 20
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schools used myON. The primary outcome is student-level reading performance measured

via standardized test scores.

To begin, we consider which target trial is appropriate for analysis of the myON in-

tervention. As this application illustrates, selecting the appropriate target trial analogue

requires a detailed understanding of the substantive context. For myON, treatment as-

signment clearly is clustered in that the treatment was applied to all students in selected

summer school sites. In general, we judge that the possibility of di↵erential selection at the

individual level is quite small. Specifically, students are selected for summer school based on

their school-year performance and are residentially zoned into a particular summer school

site. Further, summer school selection for myON occurred at the district o�ces. Students

and parents were likely unaware of which summer school sites would be using myON. This

is because myON was one relatively small part of the summer school curriculum, and the

district did not advertise its use to students or parents. As such, we have no reason to be-

lieve that parents would have reacted to the selection of certain sites for myON by shifting

student enrollment patterns in a way that would cause di↵erential selection. Nevertheless,

we judge that either target trial 2(a) or 2(b) is more appropriate than target trial 1 because

the selection of the summer school sites precedes students’ summer school selection.

It is important to note however, that we cannot rule out the possible presence of di↵er-

ential selection that would occur under target trial 2(b). Our evidence against di↵erential

selection is based on qualitative reasoning and not a statistical test. However, we can use

balance tests for additional indirect evidence that target trial 2(a) holds. Table 2 contains

balance statistics for student- and school-level covariates. If di↵erential selection did oc-

cur, we would expect student level covariates to be correlated with school level treatment

assignment. For the myON application, we find that there are clear di↵erences between

treated and control schools in terms of school-level covariates such as proficiency in math

and the share of teachers who are novices, but di↵erences across student-level covariates
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are small.

Critically, our identification results do have observable implications for the role of con-

founders. Under target trial 2(a) to identify the e↵ect of the myON intervention, we need to

condition only on school-level covariates. Student-level covariates may improve e�ciency of

our estimates but are unnecessary for identification of the e↵ect of interest. That is, if the

assumptions of target trial 2(a) hold, we should not observe large di↵erences in the magni-

tude of the point estimate across specifications that do and do not control for student-level

covariates. In the analysis that follows, we consider specifications that include and omit

student-level covariates.

For this analysis, we estimate the myON treatment e↵ect using the parametric g-formula

based on a linear regression. We included quadratic terms for all continuous covariates.

More flexible methods of estimation could be used to further expand the specification.

We used 1,000 resamples from the block bootstrap to obtain Efron’s percentile confidence

intervals. For the specification that omits student-level covariates, the estimated treatment

e↵ect is 0.011, which implies that myON increased test scores 0.011 standard deviations.

However, the confidence interval includes zero (95% CI: -0.012, 0.034). When we include

student-level covariates, the estimated e↵ect is 0.017 but the confidence interval is shorter

(95% CI: 0.003, 0.031). In sum, including student-level covariates increases the precision

of our estimate slightly but does not substantively change the magnitude, which provides

further evidence that di↵erential selection did not occur for the myON intervention.

5.2 Surgical Training

One strand of health services research focuses on whether certain aspects of surgical train-

ing have an e↵ect on patient outcomes (Asch et al., 2009; Bansal et al., 2016; Zaheer et al.,

2017; Sullivan et al., 2012). Here, we re-analyze one study from this literature. Sellers

et al. (2018) studied whether surgeons from university-based residency programs produce

22



superior patient outcomes compared to surgeons trained in community-based residency

programs. In their study, they used a data set that merges the American Medical Associa-

tion (AMA) Physician Masterfile with all-payer hospital discharge claims from New York,

Florida and Pennsylvania from 2012–2013. They collected data on residency type, and

surgeons were classified as having attended either a university-based residency (UBR) or a

non-university based residency (NUBR) based on the program listed in the AMA Master-

file. Data on surgeon age, sex and year of training completion were also collected. Surgeon

experience was defined as year of training completion subtracted from year of operation.

They compared surgeon performance between UBR and NUBR surgeons for patients that

underwent one of 44 common operations performed by general surgeons in an inpatient set-

ting. Operations were selected to capture a standard set of procedures routinely performed

by general surgeons (Sellers et al., 2018). The data also contain patient sociodemographic

and clinical characteristics including 31 comorbidities based on Elixhauser indices (Elix-

hauser et al., 1998). The primary outcome is a binary indicator of any postoperative

complications that arise during the hospitalization. Complications were identified using

ICD-9 diagnosis codes and collapsed into a binary variable indicating the development of 1

or more complications. For patients treated by UBR surgeons, 12.7% had a post-operative

complication. For patients treated by NUBR surgeons, 14% had a post-operative complica-

tion. If we estimate the unadjusted treatment e↵ect via a regression model with clustering

at the surgeon level, the di↵erence is statistically significant (p = 0.001).

The UBR study fits the COS template: all patients treated by a UBR surgeon are

exposed to the treatment and vice-versa. However, the structure of the data for this

application is quite di↵erent compared to the myON application. That is, the number

of clusters and units is much larger. There are 498 treated surgeons and 1201 control

surgeons. Overall, there are 86,305 patients operated on by UBR surgeons, and 193,307

patients operated on by NUBR surgeons. The number of patients treated by each surgeon

23



varied from five to 1,074 over the two year period. Thus there are many more clusters, and

there is considerable variation in the number of patients per surgeon. Moreover, we have

88 patient-level covariates but only five surgeon-level covariates.

Next, we consider the possibility of di↵erential selection. Unlike in the myON applica-

tion, we have little qualitative evidence to rule out the possibility of di↵erential selection.

That is, it may be the case that if UBR surgeons are viewed as more skilled, they will be as-

signed patients that have more complex pre-operative conditions or with a generally worse

prognosis. As such, di↵erential selection is an open possibility in this application. Again,

we can use balance statistics to shed light on this possibility. Specifically, we consider

whether UBR patients are observably di↵erent from NUBR patients by examining stan-

dardized mean di↵erences between patients of NUMBER and UBR surgeons. Surprisingly,

we found that none of the patient-level covariates had standardized di↵erences larger than

0.10. This suggests that di↵erential selection may not be in operation. Still, we cannot

rule out that UBR patients have higher levels of unobserved frailty.

Next, we estimate the UBR e↵ect using the parametric g-formula via linear regression.

In our analysis, we used three di↵erent specifications. The first specification only controls

for surgeon-level variables. This specification is consistent with target trial 1. In the

second specification, in addition to the surgeon-level covariates we included the patient-

level variables aggregated to the surgeon level. For the aggregation, we used the average.

This specification would identify the average treatment e↵ect under the assumptions of

target trial 2(a). In the third specification, we include patient-level variables as well. This

specification would identify the average treatment e↵ect under the assumptions of target

trial 2(b). We used 1,000 resamples from a block bootstrap to obtain Efron’s percentile

confidence intervals.

For the surgeon only specification, UBR surgeons had lower complications by 1.5 per-

centage points (95% CI: -0.022, -0.008). Thus controlling for surgeon level covariates leaves
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the estimate nearly unchanged compared to the unadjusted estimate. For the second speci-

fication, the di↵erence between UBR and NUBR surgeons is -0.008 (95% CI: -0.014, -0.003).

Now the estimated di↵erence in complication rates is quite small. As such, adding the ag-

gregated patient covariates reduces the magnitude of the treatment e↵ect substantially. For

the third specification, the di↵erence between UBR and NUBR surgeons is -0.006 (95% CI:

-0.010, -0.002). As such, adding patient level covariates does not change the estimated ef-

fect. This suggests that in this application, patient assignment to surgeons is not a function

of the training, but instead follows some unrelated cluster level mechanism.

6 Discussion

The literature on the COS design has primarily focused on estimation methods and has

operated under identification assumptions that are essentially borrowed directly from study

designs with unclustered treatment assignment. However, those identification assumptions

imply that di↵erential selection does not occur. That is, prior work has assumed that

when treatments are assigned to clusters, this assignment has no e↵ect on the population

of units within the clusters. While this assumption may be innocuous in some settings,

it is implausible in others. For example, in settings where the treatment is a school-wide

reform e↵ort, such as Success for All (Borman et al., 2007), parents may react and move

to or away from the schools that are exposed to the treatment. In this paper, we consider

how di↵erential selection changes the identification assumptions in the context of COSs.

We used the target trial framework to formalize identification conditions for the COS

design with and without di↵erential selection. We outlined three possible target trials to

describe di↵erent scenarios for both the assignment of treatments and units to clusters.

In this framework, we show that for each target trial, the set of covariates that render

treatment assignment ignorable di↵er. Under target trial 1, analysts need to condition on

cluster-level covariates and cluster-level aggregates. Under target trial 2, analysts need to
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condition on cluster-level covariates. Only under target trial 3, do investigators need to

condition on cluster covariates, cluster aggregates, and unit-level covariates. For target trial

3, it is critical to condition on unit-level covariates to control for the possible di↵erential

mix in cluster populations.

Our work has key implications for applied research. In many cases, researchers may not

have definitive information on whether di↵erential selection is present in a COS design. As

we demonstrated in our empirical examples, we may be able to reason about the likelihood

of di↵erential selection but still be unable to rule it out. Critically, we show that condition-

ing on the full set of covariates will reduce bias if di↵erential selection is present. However,

conditioning on the full set of covariates does no harm if di↵erential selection did not oc-

cur. As such, researchers should consider more expansive specifications to reduce possible

bias from di↵erential selection. As an alternative, investigators can compare a specifica-

tion that omits unit-level covariates and a specification that includes unit-level covariates.

If the magnitude of the treatment e↵ect estimate di↵ers across these two specifications,

it provides some evidence for di↵erential selection. As we highlighted, COS designs are

common in many areas of applied research. Our work provides researchers in these areas

with guidance on how to consider the possibility of di↵erential selection and how to select

specifications that reduce bias.
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Table 2: Balance on student- and school-level covariates for myON application.

Student Covariates Treated Mean Before Control Mean Before Std. Di↵erence

Reading pretest score 437.00 437.90 -0.02

Math pretest score 60.25 60.56 -0.02

Male (0/1) 0.36 0.40 -0.09

Special education (0/1) 0.47 0.43 0.09

Hispanic (0/1) 0.53 0.52 0.02

African-American (0/1) 0.22 0.22 0.00

School Covariates

Composite proficiency 60.74 58.56 0.21

Proficient in reading 58.48 57.27 0.11

Proficient in math 60.68 58.41 0.20

Free/reduced lunch eligible 0.50 0.51 -0.10

English language learners 0.13 0.15 -0.29

Novice teachers 0.19 0.17 0.28

Sta↵ turnover 0.11 0.12 -0.28

Nonwhite teachers 0.14 0.18 -0.26

Title I school 0.90 0.93 -0.11

Schools 20 29

Summer school students 1,371 2,063

Note: Standardized di↵erence for a given variable is computed as the mean di↵erence be-

tween treatment and comparison schools or students divided by the pooled standard devia-

tion.
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Supplementary Material

S1 Technical Proofs

S1.1 Proof of Proposition 1

First note

E[Yi(a,J) | AJi = a,WJi = w, h(X[Ji]) = h,Xi = x]

=
mX

j=1

E[Yi(a,J) | Aj = a,Wj = w, h(X[j]) = h,Xi = x, Ji = j]

P (Ji = j | AJi = a,WJi = w, h(X[Ji]) = h,Xi = x)

=
mX

j=1

E[Yi(a,J) | Wj = w, h(X[j]) = h,Xi = x, Ji = j]P (Ji = j | AJi = a,WJi = w, h(X[Ji]) = h,Xi = x)

=
mX

j=1

E[Yi(a,J) | WJi = w, h(X[Ji]) = h,Xi = x, Ji = j]P (Ji = j | WJi = w, h(X[Ji]) = h,Xi = x)

= E[Yi(a,J) | WJi = w, h(X[Ji]) = h,Xi = x]

where the second equality is because Assumption 1 implies that Aj ? {Xi, Yi(a,J), Ji} |

Wj, h(X[j]) for every i, j, and thus Aj ? Yi(a,J) | Wj, h(X[j]), Xi, Ji for every i, j, and

the third equality is because AJi ? Ji | WJi , h(X[Ji]), Xi from P (AJi = 1 | Ji = j,WJi =

w, h(X[Ji]) = h,Xi = x) = P (Aj = 1 | Wj = w, h(X[j]) = h,Xi = x) = ⇡A(w, h, x) =

P (AJi = 1 | WJi = w, h(X[Ji]) = h,Xi = x) also from Assumption 1, where ⇡A(w, h, x) :=

P (Aj = 1 | Wj = w, h(X[j]) = h,Xi = x). Then,

E[Yi | AJi = a,WJi = w, h(X[Ji]) = h,Xi = x]

= E[Yi(a,J) | AJi = a,WJi = w, h(X[Ji]) = h,Xi = x]

= E[Yi(a,J) | WJi = w, h(X[Ji]) = h,Xi = x].
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Hence, E[µwhx(a,WJi , h(X[Ji]), Xi)] = E[Yi(a,J)]. The above results also hold without

conditioning on Xi and thus E[µwh(a,WJi , h(X[Ji]))] = E[Yi(a,J)].

S1.2 Proof of Proposition 2

First note that Assumption 2 implies Assumption 1. Hence the results proved in Proposition

1 still holds under Assumption 2. The results when conditioning on WJi can be proved in

the same way.

S1.3 Proof of Proposition 3

From Assumption 3,

E[Yi | AJi = a,WJi = w, h(X[Ji]) = h,Xi = x]

= E[Yi(a, w, h) | AJi = a,WJi = w, h(X[Ji]) = h,Xi = x]

= E[Yi(a, w, h) | WJi = w, h(X[Ji]) = h,Xi = x],

Hence, E[µwhx(a,WJi , h(X[Ji]), Xi)] = E[Yi(a,WJi , h(X[Ji]))].
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