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Abstract: The ratio of the hazard functions of two populations or two

strata of a single population plays an important role in time-to-event analy-

sis. Cox regression is commonly used to estimate the hazard ratio under the

assumption that it is constant in time, which is known as the proportional

hazards assumption. However, this assumption is often violated in practice,

and when it is violated, the parameter estimated by Cox regression is dif-

ficult to interpret. The hazard ratio can be estimated in a nonparametric

manner using smoothing, but smoothing-based estimators are sensitive to

the selection of tuning parameters, and it is often di�cult to perform valid

inference with such estimators. In some cases, it is known that the hazard

ratio function is monotone. In this article, we demonstrate that monotonic-

ity of the hazard ratio function defines an invariant stochastic order, and

we study the properties of this order. Furthermore, we introduce an esti-

mator of the hazard ratio function under a monotonicity constraint. We

demonstrate that our estimator converges in distribution to a mean-zero

limit, and we use this result to construct asymptotically valid confidence

intervals. Finally, we conduct numerical studies to assess the finite-sample

behavior of our estimator, and we use our methods to estimate the hazard

ratio of progression-free survival in pulmonary adenocarcinoma patients

treated with gefitinib or carboplatin-paclitaxel.
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1. Introduction

1.1. Background and literature review

Time-to-event data are commonplace in many fields, including biomedicine, eco-
nomics, and engineering. In many circumstances, interest focuses on comparing
the distribution of the time it takes for some event to occur, known as the event
time, in two populations. For instance, in the medical sciences, patients may
be randomly assigned to treatment or control, and followed until an event of
interest occurs, such as onset, recurrence, or cure of a disease. In this case, the
two populations are patients randomized to treatment and patients randomized
to control. While the methods discussed in this paper are applicable to any
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time-to-event data, we will use "patients" to refer to the units in the population
of interest for convenience.

In the analysis of time-to-event data, one common parameter of interest is
the cumulative distribution function of the event time, or equivalently, its sur-
vival function. However, in many settings, the event time is not observed for
all patients in the study because, for example, some patients may prematurely
leave the study, or the event may not have occurred before the end of the study
period. This is known as right-censoring of the event time. If the censoring pro-
cess is independent of the event process, the Kaplan-Meier estimator [36] is a
consistent nonparametric estimator of the survival function of the event time.

The distribution and survival functions describe cumulative probabilities, but
in some cases it is of interest to quantify the instantaneous rate of the event
at a point in time among patients who have not yet experienced the event of
interest. This is known as the hazard rate. When comparing the distributions
of an event time in two populations, the ratio of the hazard rates, known as
the hazard ratio, describes the relative event rates among patients who have
not yet experienced the event in the two populations over time. Estimating
the hazard rate or ratio is more di�cult than estimating the survival function
because the hazard rate and ratio concern events occurring in an infinitesimal
window of time. However, estimation of the hazard ratio is made much simpler
by assuming that it is constant in time, which is known as the proportional
hazards assumption. When this assumption holds, Cox proportional hazards
regression can be used to estimate the hazard ratio [12]. In this case, the hazard
ratio for comparing two populations reduces to a single number. The hazard
ratio estimated from a simple Cox regression comparing two populations has
become one of the most important tools in the analysis of time-to-event data,
and in some studies it is the only e�ect reported [30].

Despite the widespread use of Cox regression, the proportional hazards as-
sumption underlying it is easily violated. For example, if a treatment only o�ers
short-term benefits over control, then the hazard ratio is unlikely to be constant
[42]. In addition, the proportional hazards assumption implies that the survival
function of one group can be expressed as the survival function of the other
group raised to a constant power. Hence, if the survival curves cross, then the
proportional hazards assumption cannot hold (see, e.g. 39). The hazard ratio
estimated by a Cox regression in a setting where the proportional hazards as-
sumption is violated is approximately a weighted average of the hazard ratio
function over time [56]. However, the weighting function depends on the censor-
ing pattern in the study, which complicates the interpretation of the parameter
estimated by the Cox model in such a misspecificed model [48, 67]

When the proportional hazards assumption is violated, estimating the hazard
ratio function is more di�cult. One simple approach is to estimate the hazard
ratio using the ratio of estimators of the individual hazard rate functions. For
example, if correctly specified parametric models for the distributions are avail-
able, the hazard rates in the two distributions can be estimated using maximum
likelihood estimation [35]. Alternatively, nonparametric methods for estimating
hazard functions based on smoothing have also been proposed [2, 45, 51]. How-
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ever, estimators based on smoothing are often sensitive to the selection of certain
tuning parameters, such as bandwidths, kernel functions, or the number of knots
in a spline function. In addition, obtaining valid inference using a smoothing-
based estimator can be challenging due to bias in the asymptotic distribution
of the estimator (see, e.g. 62 and 10).

In some cases, it may be known that the hazard ratio is monotone as a
function of time. In general, the hazard ratio can be expected to be monotone
when the relative rate of events in the two groups increases or decreases over
time. For example, if the e�ectiveness of a treatment wanes over time, then the
hazard ratio between treated and placebo groups of a randomized trial may
be expected to be monotone non-decreasing [16]. Similarly, harmful exposures
can result in a monotone non-decreasing hazard ratio between the exposed and
unexposed groups [52]. We discuss the motivation and application of monotone
hazard ratios more in Section 2.

We are only aware of a few studies concerning monotonicity of the hazard ra-
tio function. [21] and [14] proposed tests of the proportional hazards assumption
against the non-decreasing hazard ratio alternative. [38] proposed an estimator
of a monotone hazard ratio function using a nonparametric Bayesian approach,
which we discuss further in Section 3.

1.2. Contribution and organization of the article

In this article, we study the situation in which the hazard ratio between two pop-
ulations is known to be non-decreasing in time. First, we define a new stochastic
order called the monotone hazard ratio order, demonstrate that it is an invari-
ant stochastic order in the sense of [41], and study the properties of this novel
stochastic order. As we will discuss more below, this is important because it
gives stability to the monotonicity assumption, and because it connects our
new order to the existing literature on stochastic orders. Second, we propose a
novel estimator of a hazard ratio function under a monotonicity constraint in
the presence of independent right-censoring. Finally, we derive the large-sample
properties of our estimator, including convergence in distribution of our esti-
mator at the rate n≠1/3 to a mean-zero limit, and use this result to construct
asymptotically valid pointwise confidence intervals for the hazard ratio function.
To the best of our knowledge, we are the first to study the stochastic order de-
fined by monotonicity of the hazard ratio function, and we are also the first to
produce asymptotically valid confidence intervals for a monotone hazard ratio
function.

The paper proceeds as follows. In Section 2, we define the monotone hazard
ratio order and establish properties of this order. In Section 3, we introduce
our nonparametric estimator of a monotone hazard ratio function, establish
asymptotic theory of our estimator, and use this theory to construct confidence
intervals. In Section 4, we present numerical studies evaluating the finite-sample
performance of our method. Finally, in Section 5, we use our method to esti-
mate the hazard ratio function comparing the length of progression-free survival
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of pulmonary adenocarcinoma patients treated with gefitinib or carboplatin-
paclitaxel. Proofs of all theorems can be found in Appendix A.

1.3. Notation

For a function H on a domain I ™ R to the extended real line R̄, we let H̄ :=
1 ≠ H. If H possesses limits from the left, then we let H≠ := x ‘æ H(u≠) :=
limuøx H(u) be the left-continuous version of H, and if H possesses limits from
the right, then we let H+ := x ‘æ H(x+) := limu¿x H(u) be the right-continuous
version of H. We set �H := H+ ≠ H≠. If H is left-di�erentiable at x œ I, we
denote by ˆ≠H(x) the left derivative of H at x. We also denote the image of
H by Im(H) := {u œ R : H(x) = u for some x œ I}. If H is non-decreasing,
we define the support of H as Supp(H) := {x œ I : H(u) < H(v) for all
u < x < v}. We define the greatest convex minorant (GCM) of H on I, denoted
GCMI(H) : I æ R̄, as the pointwise supremum of all convex functions on I
bounded above by H. We say that H is monotone on A ™ I if H(x) Æ H(y)
for all x < y with x, y œ A, and similarly we say that H is convex on A
if H(tx + (1 ≠ t)y) Æ tH(x) + (1 ≠ t)H(y) for all x, y œ A and t œ [0, 1]
such that tx + (1 ≠ t)y œ A as well. We set H≠(u) := inf{t Æ u : H(t) Ø
H(u)} as the generalized inverse function corresponding to H. The properties
of such functions when H is a distribution function (in which case H≠ is its
quantile function) are summarized in Chapter 21 of [60]. All integrals should be
interpreted as Riemann-Stieltjes integrals, and

s
t

0 :=
s

(0,t] by default.

2. Monotone hazard ratio order

2.1. Definition of the monotone hazard ratio order

We now introduce and motivate the monotone hazard ratio order. We let S
and T be nonnegative random variables, and we let FS , F̄S , FT , and F̄T be
the distribution and survival functions corresponding to S and T , respectively.
If S and T are absolutely continuous with density functions fS = F Õ

S
and

fT = F Õ
T

, then ⁄S := fS/F̄S and ⁄T := fT /F̄T are the hazard functions
corresponding to S and T , respectively. In this case, we say S ØMHR T if
t ‘æ ◊(t) := ⁄S(t)/⁄T (t) is non-decreasing for t such that fT (t) > 0 or fS(t) > 0.
On the other hand, if S and T are fully discrete random variables with sup-
port contained on a finite or countably infinite set {t1 < t2 < · · · }, then
⁄S(tj) := fS(tj)/F̄S(tj≠1) and ⁄T (tj) := fT (tj)/F̄T (tj≠1) are the corresponding
hazard functions, where fS(t) := P (S = t) and fT (t) := P (T = t) are the corre-
sponding mass functions (and where t0 := ≠Œ). In this case, we say S ØMHR T
if t ‘æ ◊(t) := ⁄S(t)/⁄T (t) is non-decreasing for all t œ {t1, t2, . . . } such that
fT (t) > 0 or fS(t) > 0.

We define ØMHR in such a way that encompasses both the above cases, as
well as more complicated cases where S and T may be mixed discrete-continuous
random variables. We let µ be any sigma-finite measure dominating both FS and
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FT , and we define fS := dFS/dµ and fT := dFT /dµ. We then define the hazard
functions relative to µ as ⁄S := fS/F̄S,≠ on the support of fS , and 0 otherwise,
and similarly for ⁄T . The hazard ratio function ◊ : Supp(FS) fi Supp(FT ) æ
[0, Œ] is then defined as ◊ := ⁄S/⁄T . We note that ◊ does not depend on the
choice of dominating measure µ, that ◊ = 0 on Supp(FT )\Supp(FS), and that
◊ = +Œ on Supp(FS)\Supp(FT ). We then have the following general definition
of the monotone hazard ratio relation.

Definition 1. We say that S ØMHR T if ◊ = ⁄S/⁄T is non-decreasing on
Supp(FS) fi Supp(FT ).

When both S and T are dominated by Lebesgue measure, we recover the first
case discussed above, and when they are both dominated by counting measure
on the countable set {t1 < t2 < · · · }, then we recover the second case.

Monotone hazard ratios abound in the literature because monotonicity of
hazard ratio function can be expected to hold in several general situations. First,
if S is the time to an adverse event under treatment and T is the same under
control, we can expect S ØMHR T if the protective e�ect of the treatment on
those who have not yet experienced it wanes over time. There are many examples
of such treatments, including vaccines [16] and blood transfusion [32]. Second,
if S is the time to an adverse event under control, and T is the same under
exposure to a condition with short-term toxic e�ects, then we may again expect
that S ØMHR T . Drug overdose is an example of such a toxic exposure [31]. We
note that the individual hazard functions of S and T may not be monotone in
the above cases. For instance, there may be underlying time trends (e.g., weekly,
monthly, or seasonal trends) unrelated to treatment that induce non-monotonic
trends in the hazards. If these trends influence the hazards of S and T equally,
then the hazard ratio may still be expected to be monotone.

The statistical model induced by the monotone hazard ratio order is a gen-
eralization of the popular proportional hazards model with a time trend, where
the time trend is allowed to be any monotone function. Choosing a specific time
trend for a proportional hazards model can be di�cult, and if the time trend is
chosen based on the data, obtaining valid inference for the regression coe�cient
is challenging [15]. Hence, the flexibility in permitting any monotone time trend
is appealing because it avoids the need to choose a specific trend.

We will see in Section 3 that when it is known that the hazard ratio is
monotone, this knowledge can be exploited to obtain a simple nonparametric
estimator of the hazard ratio function and asymptotically valid pointwise in-
ference. Furthermore, the estimator and inferential procedure avoid estimating
or modelling the individual hazard functions directly, in the same spirit as the
proportional hazards estimator, which yields improved robustness over meth-
ods that estimate the hazard functions. This will be explored more in numerical
studies in Section 4.
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2.2. Properties of the monotone hazard ratio order

We now establish several important properties of the monotone hazard ratio
order. First, we show that the relation defined above is an invariant stochastic
order in the sense of [41]. Intuitively, stochastic orders are ways of defining what
it means for one probability distribution to be “larger" than another. Specifi-
cally, a stochastic order ØS is a relation on the space of probability distributions
on some measurable space satisfying the conditions of a preorder: for any prob-
ability distributions F , G, and H on the space, (1) F ØS F , and (2) G ØS F
and H ØS G implies that H ØS F . We will be focused on distributions on
the reals. In this case, a stochastic order is invariant under monotone transfor-
mations, or simply invariant, if G ØS F implies G ¶ Â≠1 ØS F ¶ Â≠1 for any
strictly increasing continuous function Â : R æ R with limxæ≠Œ Â(x) = ≠Œ
and limxæŒ Â(x) = Œ. For two real-valued random variables S and T with
distribution functions FS and FT , we say S ØS T for a stochastic order ØS if
FS ØS FT . We now show that these properties hold for the monotone hazard
ratio order defined above.

Theorem 2. (1) For any random variable S, S ØMHR S; (2) for any S, T , and
U such that S ØMHR T and T ØMHR U , it holds that S ØMHR U ; and (3) for
any strictly increasing function Â, S ØMHR T implies that Â(S) ØMHR Â(T ).

The fact that the monotone hazard ratio forms a stochastic order is important
due to the stability it provides when comparing the hazard ratios of multiple
event times. The fact that it is invariant to strictly monotone transformations
is especially important because it means that the order is independent of time
scale. We also note that S ØMHR T and T ØMHR S implies that the hazard
ratio is constant, but does not imply that S = T in distribution. Hence, the
monotone hazard ratio order is not antisymmetric, and therefore does not induce
a partial order. Finally, if Â is not strictly increasing, it need not be the case that
Â(S) ØMHR Â(T ). For instance, if Â(x) = x for x < a or x Ø b and Â(x) = b
for x œ [a, b), S and T are both absolutely continuous, and

FS(b) ≠ FS(a)
FT (b) ≠ FT (a) · F̄T (a)

F̄S(a)
>

fS(b)
fT (b) · F̄T (b)

F̄S(b)
,

then the hazard ratio of Â(S) relative to Â(T ) is not monotone at x = b. This
is case, for example, if S follows a Weibull distribution with shape parameter
equal to 2 and scale paramater equal to 3, T follows a Weibull distribution with
shape 2 and scale 2, and a = 1, b = 2.

We now provide two characterizations of the monotone hazard ratio order
in the special case where FS π FT , i.e. FS is dominated by FT . We define
�S(t) :=

s
t

0 FS(du)/F̄S≠(u) and �T (t) :=
s

t

0 FT (du)/F̄T≠(u) as the cumulative
hazard functions corresponding to S and T , respectively, and we note that if
FS π FT , then �S π �T , and ◊ = d�S/d�T . We also define R = FS ¶ F ≠

T
as

the ordinal dominance curve corresponding to the distributions of S and T . [41]
demonstrated that all invariant stochastic orders are equivalent to a pre-order
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on the space of ordinal dominance curves that is closed under composition. In
the next result, we provide two characterizations of the monotone hazard ratio
order: one in terms of the ordinal dominance curve, and a second in terms of
the cumulative hazard functions �S and �T .

Theorem 3. (a) If FS π FT and ◊ is continuous, then the following are
equivalent:

1. S ØMHR T ;
2. u ‘æ

s
[0,u)(1 ≠ v)/R̄(v) dR+(v) =

s
F

≠
T (u)

≠Œ (d�S/d�T )(t) dFT (t) is convex
on Im(FT );

3. u ‘æ �S ¶ �≠
T

(u) is convex on Im(�T ).

(b) If FS π FT , ◊ is continuous, and S ØMHR T , then ◊(t) = ˆ≠GCMI(�S ¶
�≠

T
) ¶ �T (t) for any t œ Supp(FT ), where I is the smallest closed interval con-

taining Im(�T ).

The assumption that FS π FT is important for the characterizations in
Theorem 3. For example, if FS is the uniform distribution on [0, 1.5] and FT is
the Bernoulli distribution with probability 1/2, then FS is not dominated by
FT , but �S ¶ �≠

T
is convex on Im(�T ) and S ⇤MHR T . This is similar to a

counterexample provided in [46] for the likelihood ratio order. If treatment or
exposure does not change the set of possible event times, which is the case in
many real-world situations, then FS π FT can be expected to hold.

The characterization of the monotone hazard ratio order in terms of the or-
dinal dominance curve provided in Theorem 3 is somewhat more complicated
than the characterization of the other three common invariant stochastic or-
ders discussed below. This is due to the complexity of the general relation-
ship between a hazard function and the corresponding distribution function.
In the case of absolutely continuous FS and FT , the characterization in terms
of the ordinal dominance curve can be stated somewhat simpler. In particular,s

u

0 (1 ≠ v)/R̄(v) dR+(v) is convex if and only if v ‘æ (1 ≠ v)RÕ(v)/R̄(v) is mono-
tone, which holds if and only if t ‘æ e≠tRÕ(1 ≠ e≠t)/R̄(1 ≠ e≠t) is monotone.
Then, since

s
t

0 e≠sRÕ(1≠e≠s)/R̄(1≠e≠s) ds = ≠ log R̄(1≠e≠t), in the absolutely
continuous case the monotone hazard ratio order is equivalent to t ‘æ R(1≠e≠t)
being log-convex on t œ [0, Œ). In this case, it is necessary but not su�cient
that R be log-convex.

The relationship between the hazard and cumulative hazard functions is anal-
ogous to that between a density and distribution function. Hence, the charac-
terization of the monotone hazard ratio order in terms of the cumulative hazard
functions provided in Theorem 3 parallels the characterization of a likelihood
ratio order in terms of the distribution functions [65, 46]. We will see in Section 3
that part (b) of Theorem 3 suggests a natural estimator of ◊.

Theorem 3 can also be used to informally assess the plausibility of the mono-
tone hazard ratio order given data. We note that �S ¶�≠

T
is convex on Im(�T ) if

and only if the parametrized curve {(�T (t), �S(t)) : t œ Supp(FT )} is convex on
Supp(FT ). Hence, if �S,n and �T,n are consistent estimators of �S and �T , re-
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spectively, then S ØMRH T if and only if {(�T,n(t), �S,n(t)) : t œ Supp(�T,n)}
is consistent for a convex function. Hence, comparing this curve to its GCM
gives an informal graphical check of the monotone hazard ratio order. This
same procedure was proposed by [21].

2.3. Relationship to other stochastic orders

A variety of stochastic orders have been studied; [54] contains detailed results
and discussion. We briefly review three of the most common stochastic orders
used in the context of univariate time-to-event analysis. The usual or uniform
stochastic order is defined as G ØST F if G(t) Æ F (t) for all t œ R, where
F and G are cumulative distribution functions on R. Estimators under the
usual stochastic order were developed by [9] and [20], and the corresponding
asymptotic properties were derived by [49]. The hazard rate order is defined
as G ØHR F if F̄ /Ḡ is non-increasing, which is equivalent to f/F̄ Ø g/Ḡ in
the case of absolutely continuous distributions, where f and g are the densities
corresponding to F and G. [18] studied estimation and inference under a hazard
rate order. Finally, the likelihood ratio order is defined as G ØLR F if g/f is
non-decreasing. [19, 68, 46] and [65] considered estimation and inference under
a likelihood ratio order. These three canonical examples of stochastic orders are
themselves ordered: G ØLR F implies G ØHR F implies G ØST F [41, 54, 8].

It is natural to ask where the monotone hazard ratio order fits into the
hierarchy of the three common stochastic orders. It turns out that the monotone
hazard ratio order does not generally imply, nor is it implied by, any of the three
common stochastic orders. To show this, we provide continuous and discrete
counterexamples for each case. These examples are illustrated in Figure 1. We
note that the fact that our order is not implied by nor implies these other orders
means in particular that previously established properties of and methods for
inference under these orders do not apply to the monotone hazard ratio order.

We first show that the monotone hazard ratio order does not imply the usual
stochastic order, which further implies that the monotone hazard ratio order
does not imply the hazard rate or monotone likelihood ratio orders. Suppose
that S and T have Weibull distributions with shape parameters kS and kT

and scale parameters ‡S and ‡T , respectively. Then the hazard ratio function
◊(t) = ⁄S(t)/⁄T (t) is proportional to tkS≠kT for t > 0, so that S ØMHR T if
and only if kS Ø kT , and S ÆMHR T if and only if kS Æ kT . On the other
hand, FS(t) Æ FT (t) if and only if tkS≠kT Æ ‡kS

S
/‡kT

T
. If kS ”= kT , then t ‘æ

tkS≠kT ranges from 0 to Œ, which implies that it cannot be the case that
either S ØST T or T ØST S. Therefore, if kS > kT , then S ØMHR T , but
S ⇤ST T , which also implies that S ⇤HR T and S ⇤LR T . Hence, the monotone
hazard ratio order does not imply any of these other three common orders in the
continuous case (first column of Figure 1). For a counterexample in the discrete
case, suppose that FS follows a geometric distribution with success probability
pS on {1, 2, . . . }, so that ⁄S(k) = pS for all k œ {1, 2, . . . }. Hence, S ØMHR T for
any T supported on {1, 2, . . . } such that ⁄T (k) is non-increasing in k. The usual
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Fig 1. The relationship of ØMHR to other stochastic orders. The upper row shows the sur-

vival functions F̄S and F̄T while the lower row shows the hazard ratio function ⁄S/⁄T .

Column 1: S ≥ Weibull(0.8, 1.2), T ≥ Weibull(0.5, 1.5). Column 2: S ≥ Geometric(0.8),

T ≥ Geometric(0.5). Column 3: S ≥ Beta(0.3, 1), T ≥ Beta(0.3, 6). Column 4: S ≥
Uniform{1, 2, . . . , 5}, T ≥ non-increasing discrete distribution defined in the text.

stochastic order fails to hold if F̄S(k) = (1 ≠ pS)k < F̄T (k) =
r

k

j=1[1 ≠ ⁄T (j)]
for any k œ {1, 2, . . . }. Both of these are the case, for instance, if T also follows
a geometric distribution with success probability pT < pS (second column of
Figure 1).

We now show that the likelihood ratio order does not imply the monotone
hazard ratio order, which further implies that the hazard rate order and usual
stochastic order do not imply the monotone hazard ratio order. For an exam-
ple in the continuous case, suppose that S and T follow Beta distributions
with parameters (–, —S) and (–, —T ) for —S < —T . Then the density ratio is
proportional to (1 ≠ t)—S≠—T , which is strictly increasing, so S ØLR T . Further-
more, if – œ (0, 1), then one can also show that the hazard ratio function is
strictly decreasing, so that S <MHR T . Therefore, the likelihood ratio order
does not imply the monotone hazard ratio order in the continuous case, so nei-
ther do the hazard rate or usual stochastic orders (third column of Figure 1).
For a counterexample in the discrete case, suppose S has a uniform distribu-
tion on {t1 < · · · < tK} for K > 1 and T satisfies (1) fT (tj) Ø fT (tj+1) for
j = 1, . . . , K ≠ 1, and (2) fT (tj) > (K ≠ j + 1)fT (tj≠1)[1 ≠ fT (tj≠1)]/(K ≠ j)
for all j = 2, . . . , K ≠ 1. Both (1) and (2) can be achieved simultaneously if and
only if fT (t1) Ø 1/K. Then the ratio of the mass functions is proportional to
fT , so the likelihood ratio order holds by assumption (1). However, we can also
show that ⁄S(tj≠1)/⁄T (tj≠1) > ⁄S(tj)/⁄T (tj) for all j = 2, . . . , K ≠ 1. So the
monotone hazard ratio order cannot hold (last column of Figure 1).

One special case where the monotone hazard ratio order does imply the haz-
ard rate order, and therefore the uniform stochastic order as well, is when
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limtætmax ⁄S(t)/⁄T (t) Æ 1, where tmax := sup{Supp(FS) fi Supp(FT )}. This
is the case, for instance, when a treatment is known to be non-toxic, or when a
harmful exposure is known to never be beneficial. In particular, if FS and FT are
supported on the same finite discrete set {t1 < t2 < · · · < tK} and fS(tK) > 0
and fT (tK) > 0, then necessarily ⁄S(tK) = ⁄T (tK) = 1 so S ØMHR T implies
S ØHR T .

3. Nonparametric inference with right-censored data

3.1. Statistical setting

In this section, we provide an estimator of a monotone hazard ratio function ◊
using independently right-censored data. We derive the asymptotic distribution
of our estimator, and use this result to construct asymptotically valid pointwise
confidence intervals for ◊.

For each i œ {1, . . . , n}, we let Ai ≥ Bernoulli(fi) indicate the cohort for unit i.
For a randomized study, Ai = 0 corresponds to control, and Ai = 1 corresponds
to treatment, though the data need not be from a randomized trial. We assume
that fi œ (0, 1). For i such that Ai = 1, we let Si ≥ FS be the event time and
Ui ≥ FU be the censoring time. For i such that Ai = 0, we let Ti ≥ FT be the
event time and Vi ≥ FV be the censoring time. We assume that Si and Ui are
independent and Ti and Vi are independent for each i — that is, the censoring
is independent of the event within each treatment arm. If Ai = 1, we observe
the right-censored data Yi := min{Si, Ui} and �i := I(Si Æ Ui), and if Ai = 0,
we observe Yi := min{Ti, Vi} and �i := I(Ti Æ Vi). The observed data for unit
i is then Oi := (Yi, �i, Ai), and we assume that O1, . . . , On are IID.

When FS and FT are discrete, the hazard ratio function can be estimated
using the ratio of the empirical hazard functions within each treatment arm.
The empirical hazard functions converge at the rate n≠1/2 to normal limits, so
by the delta method, their ratio does as well. Hence, inference for the hazard ra-
tio function in this case can be obtained using standard methods. Furthermore,
monotonicity of the hazard ratio function can be enforced by projecting the em-
pirical estimator onto the space of monotone functions [66]. Therefore, here, we
focus on the more challenging case where FS and FT are absolutely continuous
distributions. We make no assumptions about the censoring distributions FU

and FV .

3.2. Proposed estimator

Our estimator is based on the representation of ◊ presented in Theorem 3. We
recall from Theorem 3 that if FS π FT and ◊ is non-decreasing and continuous
on the support of FT , then we can represent ◊ in terms of the cumulative hazard
functions �S and �T as ◊ = ˆ≠GCMI(�S ¶ �≠

T
) ¶ �T , where I is the smallest

closed interval containing Im(�T ). Our estimator is defined by replacing the
unknown elements in this representation with nonparametric estimators thereof.
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We let �S,n be the stratified Nelson-Aalen estimator [47, 1] of the cumulative
hazard function �S based on the cohort for which A = 1. Similarly, we let �T,n

be the stratified Nelson-Aalen estimator of �T based on the control cohort for
which A = 0. We also define ÷n := �T,n(“n), where “n is the minimum of the
empirical 1 ≠ rn quantile of the Yi’s for which Ai = 0 and the empirical 1 ≠ rn

quantile of the Yi’s for which Ai = 1, where rn > 0 is a non-increasing sequence
converging to r Ø 0. It follows that “n is converging to “, the minimum of
the (1 ≠ r)th quantile of Y given A = 1 and the (1 ≠ r)th quantile of Y given
A = 0. Additional conditions on rn and practical suggestions for setting rn will
be provided below. We then define our estimator ◊n of ◊ as

◊n := ˆ≠GCM[0,÷n](�S,n ¶ �≠
T,n

) ¶ �T,n .

It is straightforward to compute ◊n using standard software packages. Specifi-
cally, in the statistical computing software R [50], the Nelson-Aalen estimators
�S,n, �T,n can be obtained using the package survival [58], and the slopes of
the greatest convex minorant of �S,n ¶ �≠

T,n
can be obtained using the package

fdrtool [55]. Code for computing ◊n is provided in Supplementary Material.

3.3. Convergence in distribution

We now demonstrate that n1/3 [◊n(x) ≠ ◊0(x)] converges in distribution for fixed
x to a scaled Cherno� distribution. The (standard) Cherno� distribution is
defined as the derivative at zero of the GCM of a Brownian motion plus a
quadratic; i.e. W := [ˆ≠GCMR(Z)](0), where Z(t) := B(t)+t2 for B a standard
two-sided Brownian motion with B(0) = 0.

Theorem 4. Suppose x œ (0, “) is such that that FS, FT , and ◊ are continuously
di�erentiable at x with finite and strictly positive derivatives, and FS, FU , FT ,
and FV are < 1 in a neighborhood of x. Also suppose that there exist Á, C > 0
such that rn Ø C(log n)2+Á/n for all n. Then

n1/3 [◊n(x) ≠ ◊(x)] d≠æ
;

4◊Õ(x)Ÿ(x)
⁄T (x)2

<1/3
W ,

where W follows the Cherno� distribution and

Ÿ(x) := ◊(x)
5

⁄T (x)
fiF̄S(x)F̄U (x)

+ ⁄S(x)
(1 ≠ fi)F̄T (x)F̄V (x)

6
.

Due to its connection with GCMs, the Cherno� distribution appears in the
asymptotic distribution of summaries of many monotonicity-constrained esti-
mators (e.g., 23, 33, 65, among many others). The properties of the Cherno�
distribution were studied extensively by [26]. In particular, common quantiles
of the distribution are tabulated therein, which facilitates the construction of
asymptotic confidence intervals for ◊ using Theorem 4, as we discuss below.

Theorem 4 implies that ◊n(x) converges to ◊(x) at the rate n≠1/3. This is
slower than the rate n≠2/5 achieved by estimators of the hazard function based
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on kernel smoothing with optimal bandwidth selection [44, 25]. However, this
latter result requires that the hazards possess two continuous derivatives, while
Theorem 4 only requires one continuous derivative of the hazard ratio. In addi-
tion, asymptotically valid inference using estimators based on kernel smoothing
is challenging due to bias arising in the limit distribution [10].

Theorem 4 requires that rn not converge too quickly to zero, meaning that
the upper limit of the region over which the GCM is taken not converge too
quickly to the upper limit of support of the observed times. This ensures that
�T,n and �S,n are uniformly consistent on the increasing interval [0, “n] [57].
The requirement is satisfied if, for instance, rn = r > 0 for all n, or if rn =
(log n)2+Á/n for some Á > 0. In practice, we recommend setting rn = 0.05 for
n < 1000, and rn = (log n)2.1/n for n Ø 1000.

[38] proposed a nonparametric Bayesian approach to estimating a monotone
hazard ratio function. Their model permits either monotone non-decreasing or
non-increasing hazard ratio functions. The type of monotonicity must be known
a priori for our estimator, but we expect that in most cases where monotonicity
can be assumed, the direction of monotonicity is also known. Approximating
the posterior distribution in their model is complicated and possibly computa-
tionally intensive, in contrast to the simple implementation of our procedure.
[37] proved that the rate of convergence of the posterior distribution of the non-
parametric Bayesian estimator proposed by [38] is (n/ log n)≠1/3, which is just a
poly-log factor slower than the rate of convergence of our estimator. However, to
the best of our knowledge, it is not known whether the posterior distribution of
the estimator proposed by [38] yields asymptotically calibrated confidence inter-
vals for ◊(x). In the next section, we use Theorem 4 to construct asymptotically
valid pointwise intervals using our estimator.

3.4. Construction of confidence intervals

We propose two methods of constructing confidence intervals for ◊. The first
method is based on the asymptotic distribution of ◊ provided in Theorem 4.
By Theorem 4, a Wald-type asymptotic (1 ≠ –)-level confidence interval for
◊ is given by ◊n ± ·n(x)q1≠–/2/n1/3, where ·n(x) is a consistent estimator of
·(x) := {4◊Õ(x)Ÿ(x)/⁄T (x)2}1/3, and qp is the pth quantile of the standard
Cherno� distribution. Quantiles of the Cherno� distribution are tabulated in
[26]. We note that ·(x) involves both ⁄S(x) and ⁄T (x), so one approach to
estimating ·(x) would be to plug in consistent estimators of ⁄S(x) and ⁄T (x).
Instead, we rewrite ·(x) as

·(x) =
;

4(◊ ¶ �≠
T

)Õ ¶ �T (x)
5

◊(x)
fiF̄S(x)F̄U (x≠)

+ ◊(x)2

(1 ≠ fi)F̄T (x)F̄V (x≠)

6<1/3
.

This form of ·(x) no longer depends directly on ⁄S or ⁄T . In this expression, ◊n,
�T,n, and the Kaplan-Meier estimators FS,n, FU,n, FT,n, and FV,n can be sub-
stituted for their true counterparts in constructing an estimator ·n(x) of ·(x).
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Hence, the only remaining challenge is to estimate (◊ ¶ �≠
T

)Õ. We do this using
the derivative estimator obtained by applying a local linear kernel smoother to
the set of points {(uk, ◊n ¶ �≠

T,n
(uk)) : k = 1, . . . , mn}, where mn = Án2/3Ë, and

{0 = u1 < u2 < · · · < umn = ÷n} is a uniform grid on [0, ÷n]. We choose the
bandwidth for the kernel smoother using cross validation [27].

We note that using the direct plug-in method for inference requires choosing
the bandwidth parameter of the derivative estimator. Hence, while our estima-
tion procedure does not involve any tuning parameters, our inference procedure
does. However, asymptotic validity of the plug-in method only requires a consis-
tent estimator of the derivative. Nevertheless, it would be preferable to have a
tuning-free method of inference as well. Several such methods have been devel-
oped for other monotone parameters, including inverting likelihood ratio tests
[6, 7] and intervals based on asymptotically pivotal distributions using the length
of flat regions [13]. Extending these methods to our setting is an important area
of future research.

Sample splitting has also been shown to yield valid inference and reduced vari-
ance for estimators with n≠1/3-rate asymptotics without the need to estimate
additional nuisance parameters in the limit distribution [7, 5]. To implement
this method, the n observations are first split randomly into m disjoint subsets
of approximately equal size. The estimator ◊n,j is then computed for each sub-
set j œ {1, . . . , m}. These estimators are averaged to obtain a pooled estimator
◊̄n,m = 1

m

q
m

j=1 ◊n,j . Finally, an asymptotic (1 ≠ –)-level confidence interval for
◊(x) is given by ◊̄n,m(x) ± t1≠–/2,m≠1‡n,m(x)/

Ô
m, where ‡n,m(x) is the empir-

ical standard deviation of the m subset estimators {◊n,1(x), . . . , ◊n,m(x)} and
tp,k is the pth quantile of the t distribution with k degrees of freedom.

4. Numerical studies

To assess the finite-sample performance of our proposed estimator and confi-
dence intervals, we performed the following numerical study. We simulated data
from three di�erent scenarios corresponding to linear, convex, and concave ◊.
Defining ⁄(x) := 0.25 + sin2(6fix), in the linear case, we set ⁄S(x) = x⁄(x) and
⁄T (x) = ⁄(x), so that ◊(x) = x. In the convex case, we set ⁄S(x) = x2⁄(x) and
⁄T (x) = ⁄(x), so that ◊(x) = x2. In the concave case, we set ⁄S(x) = x⁄(x) and
⁄T (x) =

Ô
x⁄(x), so that ◊(x) =

Ô
x. Notably, ⁄S(x) > 0 and ⁄T (x) > 0 for all

x > 0, and are multiples of a periodic function due to the inclusion of sin2. This
is common in many applications where event rates follow weekly, monthly, or
seasonal trends. For the censoring distributions, we set both FU (x) and FV (x)
as 1 ≠ e≠0.1x for 0 Æ x < 1, 1 ≠ e≠0.15x for 1 Æ x < 2, and 1 for x Ø 2.
Hence, the censoring distributions are mixed discrete-continuous distributions
supported on [0, 2], and have discrete components at 1 and 2 with probabilities
0.044 and 0.078, respectively. Finally, we considered fi equal to 0.2, 0.5, and 0.8
in each scenario.

For each sample size n equal to 100, 500, 1000, 5000, and 10000, we simu-
lated 1000 right-censored datasets for each of the nine mechanisms formed by
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the three types of ◊ crossed with the three values of fi. For each dataset and for
each x equal to 0.005, 0.01, . . . , 2, we computed our proposed estimator ◊n(x),
the sample splitting estimator ◊̄n,m(x) with m = 5 splits, and the corresponding
confidence intervals defined in Section 3.4. For comparison, we also computed an
estimator and confidence intervals based on taking the ratio of kernel smoothing
estimators of the individual hazard functions, which does not require or enforce
monotonicity of ◊ [63]. We used the Epanechnikov kernel and selected the band-
width for each hazard function separately using least squares cross validation,
plug-in estimation [4], and undersmoothing by dividing the plug-in bandwidth
by n1/10 and n1/20. Hereafter we refer to these methods as CV, PI, US1, and
US2, respectively. We constructed 95% pointwise Wald-type confidence intervals
for the resulting hazard ratio estimator by estimating the standard deviation
using 100 empirical bootstrap samples. We did not compare our procedure to
that of [38] because of the lack of available computer code implementing their
procedure. Due to the large volume of simulation study results, here, we only
display the results of the monotone estimators and the PI and US1 smoothing
methods for linear ◊ and fi = 0.8. We comment on the other results at the end
of this section, and all results can be found in supplementary material.

The top panel of Figure 2 displays n1/3 times the absolute bias of the esti-
mators as a function of x. The scaled bias of all estimators generally decreases
with sample size, which aligns with the expectation that the biases decrease
faster than n≠1/3 for x œ (0, 2). The absolute bias of the estimators exhibits pe-
riodicity inherited from the periodicity of the underlying hazard functions. All
estimators exhibit large bias near x = 2, which is expected given the challenges
of estimation near the boundary of support. For most values of x, our estimator
has slightly smaller absolute bias than the sample splitting estimator, which is
expected because the sample splitting estimator inherits the bias of our esti-
mator with one-fifth the sample size. The absolute bias of the smoothing-based
estimators relative to that of our estimator is generally proportional to the mag-
nitude of the second derivatives of ⁄S and ⁄T . The absolute bias of our estimator
also generally improves relative to that of the smoothing-based estimators as x
increases. We believe this is due to a combination of the monotonicity assump-
tion and censoring. As x increases, the e�ective sample size decreases as a result
of right-censoring, which generally increases bias. However, the monotonicity
assumption of our estimator may aid in reducing this bias by using information
from earlier time-points, unlike the smoothing-based estimator.

The bottom panel of Figure 2 displays n1/3 times the standard deviation of
the estimators as a function of x. The standard deviation of our estimator is
close to the theoretical limit except for x near 2 for all values of n. The empirical
standard deviation does not capture the periodic pattern of the theoretical stan-
dard deviation because the period is so small, but we expect it would at larger
sample sizes. The standard deviation of the sample splitting estimator is a con-
stant factor smaller than the standard deviation of our estimator, as expected
based on the theory of [5]. The standard deviation of the smoothing-based es-
timators is generally greater than that of our estimator in the sample sizes we
considered. We also notice that when the sample size is small, the empirical
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Fig 2. Top: Absolute bias of the estimators of ◊ scaled by n1/3
as a function of x. Bottom:

Standard deviation of the estimators of ◊ scaled by n1/3
as a function of x, with the theoretical

standard deviation of our estimator showed as the black dashed line in the first row. Columns

correspond to di�erent sample sizes, and rows correspond to the estimators. Here ◊ is linear

and fi = 0.8.
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standard deviation of the smoothing-based estimators is extremely non-smooth
as a function of x. This is a drawback of ratio estimators, since estimates of ⁄S

or ⁄T significantly deflate or inflate the estimates of ◊. However the standard
deviation of the smoothing-based estimators appears to decrease faster than
n≠1/3, as expected, and at even larger sample sizes we expect their standard
deviation to be smaller than that of the monotone estimator.

The top panel of Figure 3 shows the coverage probabilities of the empiri-
cal 95% confidence intervals. Confidence intervals for our estimator have poor
coverage for n = 100 due to under-estimation of ◊Õ at this sample size. The cov-
erage improves as the sample size increases, and is close to the nominal rate for
n Ø 1000 for x not too close to 0 or 2. For values of x close to 0 or 2, the coverage
of the monotone method is poor due to bias of the estimator and the di�culty
of estimating ◊Õ in this region, even with larger samples. The sample splitting
method has poor coverage for n Æ 1000 due to high bias, but the coverage con-
verges to the nominal level as the sample size increases. The smoothing-based
estimators have good coverage for a few values of x when n = 100, but poor
coverage for most values of x. As n grows larger, the smoothing-based esti-
mators have poor coverage for values of x where the second derivatives of the
hazard functions are large due to the bias of the estimators, which results in a
periodic coverage pattern. This is mitigated somewhat but not completely by
undersmoothing, though theory predicts that it would be completely mitigated
by undersmoothing for large enough sample sizes.

The bottom panel of Figure 3 shows the median length of confidence intervals.
We considered the median rather than mean length to avoid the influence of rare
extremely wide intervals, especially at smaller sample sizes for the smoothing-
based estimators. The median length decreases as n grows for all estimators.
Our estimator has slightly narrower median length than the smoothing-based
estimators at larger sample sizes. Undersmoothing slightly increases the median
length.

We now comment briefly on the general patterns of the other simulation
settings. The full results can be found in supplementary material. The bias of
the monotone estimator near x = 0 is highest when ◊ is concave, and its bias for
x between 1 and 2 is largest in when ◊ is convex (Figures S2) because this is when
the derivative of ◊ is largest. The standard deviation of the monotone estimator
increases as a function of x fastest when ◊ is convex, followed by when it is
linear and concave, respectively (Figures S3). This is due to the appearance of ◊
and ◊Õ in the scale parameter in the limit distribution established in Theorem 4.
Both of these values increase fastest when ◊ is convex. The overall patterns of
confidence interval coverage and length for our estimator are not very sensitive
to the shape of ◊ or fi. Similarly, the properties of the sample splitting estimator
relative to the monotone estimator are similar in the other simulation settings
as they are in the ones presented above.

The confidence interval coverage rates of the smoothing-based estimators are
not very sensitive to the shape of ◊, but they are more sensitive to the value of
fi than our estimator. The smoothing-based estimator with plug-in bandwidth
has good coverage for all sample sizes when fi = 0.5 and ◊ is concave, but less
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Fig 3. Top: Empirical coverage probabilities of nominal 95% confidence intervals for the

estimators of ◊ as a function of x, with the nominal 95% coverage probability showed as the

black dashed line. Bottom: The median length of nominal 95% confidence intervals for the

estimators of ◊ as a function of x. Columns correspond to di�erent sample sizes, and rows

correspond to the estimators. Here ◊ is linear and fi = 0.8.
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so when fi = 0.2, fi = 0.8, or ◊ is not concave (Figure S4). On the other hand,
choosing the bandwidth using cross-validation appears to perform well in large
samples when fi = 0.8, but not when fi = 0.5 or fi = 0.2 (Figure S5). The
undersmoothed estimator that divides by n1/10 has the best coverage in large
samples when fi = 0.2 (Figure S6). It would be useful to develop a smoothing-
based estimator of the hazard ratio function that is less sensitive to imbalanced
treatment arms and the shape of the underlying hazard functions.

5. Analysis of treatment of pulmonary adenocarcinoma

In this section, we use the methods developed in this article to estimate the all-
cause mortality hazard ratio of two treatments for pulmonary adenocarcinoma:
gefitinib and carboplatin–paclitaxel. Carboplatin-paclitaxel is a type of intra-
venous chemotherapy, usually taken over a three-hour period once every three
weeks for approximately six cycles [29]. Like many chemotherapies, carboplatin-
paclitaxel is an invasive treatment that can have severe adverse side e�ects.
Gefitinib is a kinase inhibitor that is taken orally as a tablet once per day.
Gefitinib is hence less invasive than carboplatin-paclitaxel, but can also cause
adverse side e�ects. We refer the reader to [43] and [34] for additional details
about these treatments.

We re-analyzed the results of a clinical trial comparing gefitinib and carbo-
platin–paclitaxel first reported in [43]. The cohort consisted of n = 1217 adults
with stage IIIB or IV non–small-cell lung cancer with histologic features of ade-
nocarcinoma, and who were nonsmokers or former light smokers and had no
previous chemotherapy or biologic or immunologic therapy. These patients were
randomly assigned to gefitinib (609 patients) or carboplatin–paclitaxel (608 pa-
tients). Treatment for both groups continued until progression of the disease,
development of unacceptable toxic e�ects, a request by the patient or physician
to discontinue treatment, serious noncompliance with the protocol, or comple-
tion of six chemotherapy cycles. The event time of interest was the time from
randomization to the earliest sign of disease progression or death from any cause.
Additional details of the trial and cohort design can be found in [43]. Since the
raw data from this trial are unavailable, we used the event and censoring times
reconstructed by [3] from the published Kaplan-Meier estimates.

Starting from the beginning of treatment, the 12-month estimated survival
rates were 24.9% (95% CI: 21.4, 29.4) with gefitinib and 6.7% (95% CI: 4.3,
8.9) with carboplatin–paclitaxel, suggesting that gefitinib was more e�ective in
preventing the progression of pulmonary adenocarcinoma. [43] also estimated
a Cox proportional hazard model with treatment by gefitinib, smoking history
and gender and obtained a hazard ratio of 0.74 (95% CI: 0.65, 0.85) correspond-
ing to treatment with gefitinib. They concluded that gefitinib was superior to
carboplatin–paclitaxel for treating pulmonary adenocarcinoma.

Although their experimental results confirmed that assignment to gefitinib
yielded higher overall 12-month survival probability, the survival curves of the
two groups crossed, which suggests that the proportional hazards assumption
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Fig 4. Results of the analysis of the pulmonary adenocarcinoma data. Left panel: the Nelson-

Aalen estimator for the gefitinib group plotted against that of the carboplation-paclitaxel group,

along with the corresponding greatest convex minorant. Right panel: estimated hazard ratio

function and 95% pointwise confidence intervals using our method and the Cox proportional

hazards model.

is violated. Hence, it is of interest to estimate the hazard ratio over time to
assess the time-varying e�ect of gefitinib relative to carboplatin–paclitaxel. The
left panel of Figure 4 displays the Nelson-Aalen estimators of the cumulative
hazard function for the gefitinib cohort versus that of the carboplation-paclitaxel
cohort, and its GCM. This plot suggests that it is reasonable to believe that the
hazard ratio function is monotone. Furthermore, prior estimates of the hazard
ratio function have also suggested that it is monotone [3]. Here, we estimate the
hazard ratio using our monotone estimator, and construct confidence intervals
using the plug-in method described in Section 3.4.

The right panel of Figure 4 displays the estimated hazard ratio of gefitinib
versus carboplation-paclitaxel, as well as the constant hazard ratio estimated by
the proportional hazard model. The hazard ratio is only shown through month
six, since the estimated curve is flat thereafter. We estimate that the hazard
ratio increases to one over the span of four months, after which it increases to
1.6 (95% CI: 1.07, 2.10). Hence, we find evidence that the hazard of disease
progression for patients assigned to gefitinib is lower than that of patients as-
signed to carboplation-paclitaxel through four months post-randomization, but
is greater after four months. This could be due to a stronger early benefit of
gefitinib and a delayed e�ect of carboplation-paclitaxel. Alternatively, it could
be due to heterogeneous e�ects of carboplation-paclitaxel relative to gefitinib.
For example, frailer patients may have been more likely to progress quickly tak-
ing carboplation-paclitaxel than taking gefitinib, leaving a less frail cohort with
better survival prospects after four months.
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6. Discussion

In this paper, we studied the problem of estimation and inference for a mono-
tone hazard ratio function. We first demonstrated that monotonicity of the
hazard ratio function defines a novel invariant stochastic order, and we studied
the properties of the monotone hazard ratio order and connected it to other
well-established stochastic orders. We then proposed a simple estimator of the
monotone hazard ratio function, and provided conditions under which our esti-
mator converges to an unbiased limit distribution. Using this asymptotic result,
we proposed a method of constructing pointwise confidence intervals for the
hazard ratio. In numerical studies, we demonstrated that our methods perform
well in comparison with the ratio of individual smoothing-based hazard func-
tions estimators.

There are several natural directions building on our results, which we briefly
mention. First, since our estimator relies on the assumption that the hazard
ratio function is monotone, it would be important to develop a method to test
this assumption. This test could be developed by studying the asymptotic dis-
tribution of a norm of the di�erence between �S,n ¶�≠

T,n
and its GCM under the

null hypothesis that ◊ is monotone. Second, the method we used for inference
requires estimating the derivative ◊Õ. It would be preferable to develop methods
that avoid estimating this nuisance parameter, such as a bootstrap procedure
[40, 53] or by inverting a likelihood ratio-type test [6, 24]. Third, finding a
way to perform uniform inference for a monotone hazard ratio function would
be of great value. Several general approaches to constructing uniform confi-
dence bands are weak convergence [22, 28] and the multiplier bootstrap [11],
but these approaches do not work for generalized Grenander-type estimators.
[17] demonstrated convergence in distribution of the uniform error of Grenander-
type estimators. However, to the best of our knowledge, no analogous result for
generalized Grenander-type estimators, like ours, yet exists. Fourth, in this pa-
per, we only considered the case of the hazard ratio function between two event
times, which is especially useful in the context of studies with a randomized bi-
nary treatment. However, it is often of interest to adjust for multiple covariates,
especially in the context of observational studies, so generalizing our method
to include covariates would also be important. Finally, an alternative method
to achieving valid inference based on smoothing estimators is robust bias cor-
rection [10], but to the best of our knowledge no method yet exists for robust
bias correction for hazard or hazard ratio functions. This is an important area
of future research.
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Appendix A: Technical proofs

Proof of Theorem 2. (1) For any S, we can take µ = FS , so that fS = 1 on
the support of S, and ⁄S = 1/F̄S≠. We then have ◊ = 1 on the support of S,
which is monotone.

(2) Suppose FS ØMHR FT and FT ØMHR FU . Let S := Supp(FS), T :=
Supp(FT ), and U := Supp(U). We can take µ to be a measure dominating
FS , FT , and FU . We want to show that ⁄S(x)/⁄U (x) Æ ⁄S(y)/⁄U (y) for all
x, y œ S fi U such that x < y. Let x, y œ (S fi T) fl (S fi U) fl (T fi U) be such that
x Æ y. Then since FS ØMHR FT and x, y œ SfiT, ⁄S(x)/⁄T (x) Æ ⁄S(y)/⁄T (y).
Similarly, since FT ØMHR FU and x, y œ T fi U, ⁄T (x)/⁄U (x) Æ ⁄T (y)/⁄U (y).
Hence,

⁄S(x)
⁄U (x) = ⁄S(x)

⁄T (x)
⁄T (x)
⁄U (x) Æ ⁄S(y)

⁄T (y)
⁄T (y)
⁄U (y) = ⁄S(y)

⁄U (y) .

We now need to address

x, y œ (S fi U)\[(S fi T) fl (S fi U) fl (T fl U)] = [S\(T fi U)] fi [U\(S fi T)].

If x œ U\(S fi T), then ⁄S(x)/⁄U (x) = 0, which is guaranteed to be no larger
than ⁄S(y)/⁄U (y). Similarly, if y œ S\(T fi U), then ⁄S(y)/⁄U (y) = +Œ, which
is guaranteed to be no smaller than ⁄S(x)/⁄U (x).

The only remaining case is x œ S\(T fi U) and y œ U\(S fi T). We show there
cannot simultaneously be such x, y with x < y. First, if x œ S\(T fi U), then
⁄S(x)/⁄T (x) = +Œ, which implies since S ØMHR T that ⁄S(z)/⁄T (z) = +Œ
for all z > x with z œ S fi T. This implies that ⁄T (z) = 0 for all such z, so that
z is not in T. Therefore, t < x for all t œ T. Similarly, if y œ U\(S fi T), then
⁄T (y)/⁄U (y) = 0, which implies since T ØMHR U that ⁄T (z)/⁄U (z) = 0 for all
z < y with z œ T fi U. This implies that ⁄T (z) = 0 for all such z, so that z is
not in T. Therefore, t > y for all t œ T. Since T cannot be empty, this completes
the proof of (2).

(3) If FS and FT are both dominated by µ, then FÂ(S) = FS ¶ Â≠1 and
FÂ(T ) = FT ¶ Â≠1 are both dominated by µ ¶ Â≠1. Let fÂ(S) be the density of
FÂ(S) with respect to µ ¶ Â≠1, and fÂ(T ) be the density of FÂ(T ) with respect
to µ ¶ Â≠1. Then fÂ(S)/fÂ(T ) = (fS ¶ Â≠1)/(fT ¶ Â≠1), so

⁄Â(S)
⁄Â(T )

=
fÂ(S)/F̄Â(S),≠

fÂ(T )/F̄Â(T ),≠
=

fÂ(S)
fÂ(T )

F̄Â(T ),≠

F̄Â(S),≠
= fS ¶ Â≠1

fT ¶ Â≠1
F̄T,≠ ¶ Â≠1

F̄S,≠ ¶ Â≠1 = ◊ ¶ Â≠1.

Since ◊ and Â are monotone, so is ◊ ¶ Â≠1. ⌅
Lemma 5. Suppose that J ™ R is an interval and that � : J æ R is a non-
decreasing and càdlàg function, and r : J æ R is continuous on Supp(�).
Let �(x) :=

s
Jfl(≠Œ,x] r(u) d�(u). Then r is non-decreasing on Supp(�) if and

only if � ¶ �≠ is convex on Im(�), and if r is non-decreasing on Supp(�) then
r(x) = ˆ≠GCMI(� ¶ �≠) ¶ �(x) for all x œ Supp(�), where I is the smallest
interval in R containing Im(�).
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Proof of Lemma 5. We first show that if r is non-decreasing on Supp(�),
then �¶�≠ is convex on Im(�). Suppose we have t, u, v œ Im(�), where t < u < v
and u = ”t + (1 ≠ ”)v for ” œ (0, 1). Defining R�,�(x) = � ¶ �≠(x), we have

R�,�(v) ≠ R�,�(u) =
⁄ �≠(v)

�≠(u)
r(x) d�(x)

Ø
#
r ¶ �≠(u)

$ #
� ¶ �≠(v) ≠ � ¶ �≠(u)

$

Ø
C⁄ �≠(u)

�≠(t)
r(x) d�(x)

D 5
� ¶ �≠(v) ≠ � ¶ �≠(u)
� ¶ �≠(u) ≠ � ¶ �≠(t)

6

= [R�,�(u) ≠ R�,�(t)]
5

� ¶ �≠(v) ≠ � ¶ �≠(u)
� ¶ �≠(u) ≠ � ¶ �≠(t)

6
.

Now, for any x œ Im(�), � ¶ �≠(x) = x. Thus, by plugging u = ”t + (1 ≠ ”)v
into the above inequality, we have R�,�(v) ≠ R�,�(u) Ø ”

1≠”
[R�,�(u) ≠ R�,�(t)],

which implies that R�,�(u) Æ ”R�,�(t) + (1 ≠ ”)R�,�(v). Therefore, � ¶ �≠ is
convex on Im(�).

Next, we show that if r is continuous on G := Supp(�), and R�,� = � ¶ �≠

is convex on Im(�), then r is non-decreasing on G.
The idea is to compare the slopes of chords of r using the convexity of R�,�.

Let x, y œ G be such that x < y. Suppose there exist two sequences {zj}jØ1 and
{wj}jØ1 such that limjæŒ sj = r(x) and limjæŒ tj = r(y), where

sj := R�,� ¶ �(x) ≠ R�,� ¶ �(zj)
�(x) ≠ �(zj) and tj := R�,� ¶ �(y) ≠ R�,� ¶ �(wj)

�(y) ≠ �(wj) .

If zj Æ wj for all j large enough, then convexity of R�,� on Im(�) would imply
that sj Æ tj for all j large enough, and hence r(x) Æ r(y). Hence, if we can
find such sequences, we have established the claim. The slopes of the chords of
R�,� depend on the behavior of � near x and y, each of which has three cases.
We note that since y œ Supp(�) by assumption, exactly one of the following
three situations must hold: (y1) �(y) > �(y≠) and there exists p œ [x, y) such
that �(p) = �(y≠), (y2) �(y) > �(y≠) but there’s no p œ [x, y) such that
�(p) = �(y≠), and (y3) �(y) = �(y≠). There are three analogous cases for
x: (x1) �(x) > �(x≠) and there exists q < x such that �(q) = �(x≠), (x2)
�(x) > �(x≠) but there’s no such q < x, and (x3) �(x) = �(x≠). We proceed
by defining {zj}jØ1 and {wj}jØ1 in each case.

In case (y1), we let wj = p for all j. We can set p = �≠ ¶ �(y≠) and still
have �(p) = �(y≠). We note that we must have p Ø x since otherwise � is flat
on [p, y) for p < x, implying that x is not in the support of �. Hence, p œ [x, y);
if p = x then p is in G by assumption, and if p > x, then �(u) < �(p) for all
u œ [x, p) since p = �≠ ¶ �(y≠), in which case p œ G as well. Hence, p œ G
necessarily. We therefore have

tj = R�,� ¶ �(y) ≠ �(p)
�(y) ≠ �(p) = r(y)[�(y) ≠ �(p)]

�(y) ≠ �(p) = r(y)
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since � is by assumption flat on (p, y) and has a jump at y.
In case (y2), we have �≠¶�(y≠) = y. Thus, there exists {wj}jØ1 increasing to

y such that wj œ (x, y) fl G for each j and �(wj) increases to �(y≠). Therefore,
�≠ ¶ �(wj) converges to �≠ ¶ �(y≠) = y. Hence R�,� ¶ �(wj) converges to
R�,� ¶ �(y≠) since � possesses left-limits, showing that tj converges to [R�,� ¶
�(y) ≠ R�,� ¶ �(y≠)]/[�(y) ≠ �(y≠)] = r(y). In case (y3), since y œ G, there
exists {wj}jØ1 that either (y3a) increases to y and �(wj) < �(y) for each
j, or (y3b) decreases to y and �(wj) > �(y) for each j. In case (y3a), since
� ¶ �≠ ¶ �(z) = �(z) for all z, we have

tj =
C⁄ �≠¶�(y)

�≠¶�(wj)
r(u) d�(u)

D
/ [�(y) ≠ �(wj)]

= r(y)
#
� ¶ �≠ ¶ �(y) ≠ � ¶ �≠ ¶ �(wj)

$
/ [�(y) ≠ �(wj)]

+
C⁄ �≠¶�(y)

�≠¶�(wj)
[r(u) ≠ r(y)] d�(u)

D
/ [�(y) ≠ �(wj)]

= r(y) +
C⁄ �≠¶�(y)

�≠¶�(wj)
[r(u) ≠ r(y)] d�(u)

D
/ [�(y) ≠ �(wj)] .

By continuity of r over G, for any ‘ > 0, we can find m such that j Ø m implies
|r(u) ≠ r(y)| < ‘ for all u œ [wj , y] fl G. We then have

|tj ≠ r(y)| Æ
C⁄ �≠¶�(y)

�≠¶�(wj)
|r(u) ≠ r(y)| d�(u)

D
/ [�(y) ≠ �(wj)]

Æ ‘[� ¶ �≠ ¶ �(y) ≠ � ¶ �≠ ¶ �(wj)]
�(y) ≠ �(wj) = ‘

for all j Ø m, so limjæŒ tj = r(y). If (y3b) holds, then a similar argument
shows that limjæŒ tj = r(y). Applying the same exact reasoning for the three
cases for x, we see that sj converges to r(x).

We have now shown that there exist sequences zj and wj such that sj con-
verges to r(x) and tj converges to r(y), where sj and tj are defined above. Hence,
if zj Æ wj for all j large enough, then convexity of R�,� on Im(�) implies that
sj Æ tj for all j large enough, and hence r(x) Æ r(y). It is clear that zj Æ wj

for all 16 pairings of definitions of zj and wj implied by cases (x1)–(x3b) and
(y1)–(y3b) except for when zj decreases to x (case x3b) and wj = p (case y1).
In this case, we note that if x = p, then � is flat on [x, y), so that case (x3b)
cannot hold. Therefore, if zj decreases to x and wj = p, then p must be strictly
larger than x, so that zj < wj for all j large enough.

Next we prove the second claim of the lemma: if r is continuous and non-
decreasing on G, then r(x) = ˆ≠GCMI(� ¶ �≠) ¶ �(x) for all x œ G, where I is
the smallest interval containing Im(�). We have proved that R�,� is convex on
Im(G) under the stated conditions. First, we claim that GCMI(� ¶ �≠) = H,
where H := I æ R has the following form. For any u œ Im(�), H(u) := R�,�(u).



Y. Wu et al./Nonparametric inference under a monotone hazard ratio order 24

If u œ I but u /œ Im(�), then there exists x œ R and ⁄ œ [0, 1) such that
u = ⁄�(x≠) + (1 ≠ ⁄)�(x). We then define H(u) = ⁄R�,�(�(u≠)≠) + (1 ≠
⁄)R�,�(�(u)). Thus defined, H is the linear interpolation of R�,�|Im(�) to all
of I. In order to show that H = GCMI(R�,�), we need to show that (a) H is
convex, (b) H Æ R�,� and (c) H Ø H̄ for any other convex minorant H̄ of R�,�.

For (a), let u, v œ I and p = ⁄u+(1≠⁄)v for ⁄ œ (0, 1). Since I is the smallest
interval containing Im(�), there exist u1 Æ u2 Æ p1 Æ p2 Æ v1 Æ v2 that are
all elements of Im(�) and ⁄S , ⁄T , ⁄3 œ [0, 1] such that u = ⁄Su1 + (1 ≠ ⁄S)u2,
v = ⁄T v1 + (1 ≠ ⁄T )v2, and p = ⁄3p1 + (1 ≠ ⁄3)p2, and such that H(u) =
⁄SR�,�(u1≠)+(1≠⁄S)R�,�(u2), H(v) = ⁄T R�,�(v1≠)+(1≠⁄T )R�,�(v2), and
H(p) = ⁄3R�,�(p1≠)+(1≠⁄3)R�,�(p2). (If u œ Im(�), then we set u1 = u2 = u
and ⁄S = 0. Otherwise, we can find u1 < u < u2 with u1 and u2 in Im(�) exist
since I is the smallest interval containing Im(�), and such a ⁄S exists by the
definition of H. We define p1, p2, v1, v2 similarly, and we can ensure that the
stated ordering is satisfied since u < p < v.)

We define the points U1 := (u1, H(u1)), U2 := (u2, H(u2)), ..., V2 := (v2, H(v2).
The convexity of R�,� implies that the (possibly degenerate) line segment P1P2
lies on or below U2V1, which lies on or below U2V , which lies on or below UV .
Since P lies on P1P2 and the point (p, ⁄H(u) + (1 ≠ ⁄)H(v) lies on the line UV ,
we have H(p) Æ ⁄H(u) + (1 ≠ ⁄)H(v). Since u, v, and ⁄ were arbitrary, this
implies that H is convex.

For (b), if u œ Im(�), by definition H(u) = R�,�(u). If u /œ Im(�), then since
u = ⁄�(x≠) + (1 ≠ ⁄)�(x) for some x, we must have �≠(u) = �≠ ¶ �(x) = x.
Consequently, by the convexity and continuity of H on Im(�)

R�,�(u) = � ¶ �≠(u) = � ¶ �≠ ¶ �(x) = R�,� ¶ �(x)
= ⁄R�,� ¶ �(x) + (1 ≠ ⁄)R�,� ¶ �(x)
Ø ⁄R�,� ¶ �(x≠) + (1 ≠ ⁄)R�,� ¶ �(x)
= ⁄R�,�(�(x≠)≠) + (1 ≠ ⁄)R�,� ¶ �(x)
= H(u).

For (c), if H̄ is another convex minorant of R�,�, then H(u) = R�,�(u) Ø
H̄(u) for all u œ Im(�). If u /œ Im(�), we have u = ⁄�(x≠) + (1 ≠ ⁄)�(x)
for some x œ Im(�). By convexity of H̄ on Im(�) and since H̄ Æ R�,� by
assumption,

H̄(u) = H̄(⁄�(x≠) + (1 ≠ ⁄)�(x)) Æ ⁄H̄ ¶ �(x≠) + (1 ≠ ⁄)H̄ ¶ �(x)
Æ ⁄R�,� ¶ �(x≠) + (1 ≠ ⁄)R�,� ¶ �(x).

If �(x≠) œ Im(�), then R�,� ¶�(x≠) = R�,�(�(x≠)≠) since R�,� is continuous
on Im(�), so the above equals

⁄R�,�(�(x≠)≠) + (1 ≠ ⁄)R�,� ¶ �(x) = H(u).

If �(x≠) /œ Im(�), then for all ‘ > 0 there exists z œ (�(x≠) ≠ ‘, �(x≠)) such
that z œ Im(G), since otherwise � would be flat to the left of x and �(x≠) would
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be in Im(�). We then have H̄(u) Æ ⁄(z)R�,�(z≠)+(1≠⁄(z))R�,�(�(x)), where
⁄(z) œ (0, 1) and ⁄(z) æ ⁄ as z æ �(x≠). Taking the limit of z æ �(x≠), we
have H̄(u) Æ ⁄R�,�(�(x≠)≠) + (1 ≠ ⁄)R�,�(�(x)) = H(u).

Finally, we show that r(x) = (ˆ≠H) ¶ �(x) for all x œ G. If �(x) > �(x≠),
then for all ⁄ œ (0, 1) and u = ⁄�(x≠) + (1 ≠ ⁄)�(x), we have

H(u) = ⁄R�,�(�(x≠)≠) + (1 ≠ ⁄)R�,�(�(x)) = ⁄�(x≠) + (1 ≠ ⁄)�(x).

Thus (ˆ≠H)(u) = [�(x) ≠ �(x≠)]/[�(x) ≠ �(x≠)] = r(x). If �(x) = �(x≠),
then H(u) = R�,�(�(x)) and it’s clear that (ˆ≠H)(u) = r(x). ⌅
Proof of Theorem 3. We note that ◊ = (dFS/dFT )/(F̄S,≠/F̄T,≠) = d�S/d�T

since d�S(u) = dFS(u)/F̄S,≠(u) and d�T (u) = dFT (u)/F̄T,≠(u). In addition,
Supp(FT ) = Supp(�T ). Therefore, we can write �S(t) =

s
t

0 ◊(u) d�T (u). Hence,
(1) ≈∆ (3) and (b) follow by Lemma 5 with � = �S , � = �T , and r = ◊.

It remains to show (1) ≈∆ (2). By Lemma 5 with r = ◊, and � = FT , ◊ is
non-decreasing on Supp(FT ) if and only if

u ‘æ
⁄

F
≠
T (u)

≠Œ
◊ dFT

is convex on Im(FT ). Hence, if
⁄

[0,u)

1 ≠ v

R̄(v)
dR+(v) =

⁄
F

≠
T (u)

≠Œ
◊(v) dFT (v),

then (1) ≈∆ (2). We can write
⁄

[0,u)

1 ≠ v

R̄(v)
dR+(v) =

⁄

[0,u)

1 ≠ v

R̄(v)
dRc

+(v) +
ÿ

v<u

1 ≠ v

R̄(v)
(�R+)(v)

for Rc

+(u) = R+(u) ≠
q

vÆu
(�R+)(v) the continuous part of R+. We address

the discrete and continuous parts of the integral in turn.
We note that �R+(v) > 0 if and only if R+(v) > R(v), which implies that

F ≠
T

(v+) = F ≠
T,+(v) > F ≠

T
(v), since otherwise R+(v) = FS ¶ F ≠

T,+(v) = FS ¶
F ≠

T
(v) = R(v). Furthermore F ≠

T,+(v) > F ≠
T

(v) if and only if FT is flat on
[F ≠

T
(v), F ≠

T,+(v)), which implies FS is too. But if R+(v) > R(v) then FS ¶
F ≠

T,+(v) > FS ¶ F ≠
T

(v), which implies FS , and therefore FT as well, have jumps
at F ≠

T,+(v). Hence, R+(v) > R(v) if and only if FS and FT are both flat on
[F ≠

T
(v), F ≠

T,+(v)) and have a jump at F ≠
T,+(v), and v = FT ¶ F ≠

T
(v) = FT,≠ ¶

F ≠
T,+(v) and FS ¶F ≠

T
(v) = FS,≠¶F ≠

T,+(v). Therefore, for any v with �R+(v) > 0,

1 ≠ v

R̄(v)
�R+(v) = 1 ≠ v

1 ≠ FS ¶ F ≠
T

(v)

Ë
FS ¶ F ≠

T,+(v) ≠ FS ¶ F ≠
T

(v)
È

=
1 ≠ FT,≠ ¶ F ≠

T,+(v)
1 ≠ FS,≠ ¶ F ≠

T,+(v)
(�FS) ¶ F ≠

T,+(v)
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=
(�FS) ¶ G≠

T,+(v)
F̄S,≠ ¶ F ≠

T,+(v)
F̄T,≠ ¶ F ≠

T,+(v)
(�FT ) ¶ F ≠

T,+(v)
(�FT ) ¶ F ≠

T,+(v)

=
⁄S ¶ F ≠

T,+(v)
⁄T ¶ F ≠

T,+(v)
(�FT ) ¶ F ≠

T,+(v).

Therefore,
ÿ

v<u

1 ≠ v

R̄(v)
�R+(v) =

ÿ

v<u

⁄S ¶ F ≠
T,+(v)

⁄T ¶ F ≠
T,+(v)

(�FT ) ¶ F ≠
T,+(v) =

ÿ

t<F
≠
T,+(u)

⁄S(t)
⁄T (t)�FT (t)

=
ÿ

tÆF
≠
T (u)

⁄S(t)
⁄T (t)�FT (t),

where the last equality follows because t < F ≠
T,+(u) if and only if t Æ F ≠

T
(u).

We now address the continuous part of the integral. Using the fact derived
above that FS ¶ F ≠

T
(v) = FS≠ ¶ F ≠

T +(v) for any v with �R+(v) > 0, we have

Rc

+(u) = R+(u) ≠
ÿ

vÆu

(�R+)(v)

= FS ¶ G≠
T,+(v) ≠

ÿ

vÆu

Ë
FS ¶ G≠

T,+(u) ≠ FS ¶ F ≠
T

(u)
È

= FS ¶ F ≠
T,+(v) ≠

ÿ

vÆu

Ë
FS ¶ F ≠

T,+(u) ≠ FS,≠ ¶ F ≠
T,+(u)

È

= FS ¶ F ≠
T,+(v) ≠

ÿ

vÆu

(�FS) ¶ F ≠
T,+(v)

= F c

S
¶ F ≠

T,+(u).

Therefore,
⁄

[0,u)

1 ≠ v

R̄(v)
dRc

+(v) =
⁄

[0,u)

1 ≠ v

F̄S ¶ F ≠
T

(v)
(F c

S
¶ F ≠

T,+)(dv).

We then note that v œ Supp(Rc

+) implies that v œ Supp(F ≠
T,+), and hence

v = FT ¶ F ≠
T,+(v) unless v is at the left end of a flat of F ≠

T,+. Such points form
a Rc

+ measure zero set. Similarly, if �R+(v) = 0, then F ≠
T,+(v) = F ≠

T
(v), and v

such that �R+(v) > 0 form a Rc

+ measure zero set. Therefore, we have
⁄

[0,u)

1 ≠ v

F̄S ¶ F ≠
T

(v)
(F c

S
¶ F ≠

T,+)(dv) =
⁄

[0,u)

F̄T ¶ F ≠
T,+(v)

F̄S ¶ F ≠
T,+(v)

(F c

S
¶ F ≠

T,+)(dv).

Now we note that F ≠
T,+ is strictly increasing on the support of Rc

+, so by the
change of variables y = F ≠

T,+(v), we have
⁄

[0,u)

1 ≠ v

R̄(v)
dRc

+(v) =
⁄

[0,u)

F̄T ¶ F ≠
T,+(v)

F̄S ¶ F ≠
T,+(v)

(F c

S
¶ F ≠

T,+)(dv)
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=
⁄

[F ≠
T,+(0),F

≠
T,+(u))

F̄T (y)
F̄S(y)

F c

S
(dy)

=
⁄

[F ≠
T,+(0),F

≠
T,+(u))

F̄T (y)
F̄S(y)

dF c

S

dF c

T

(y) dF c

T
(y).

Now except on a F c

T
-measure zero set, F̄T = F̄T,≠, F̄S = F̄S,≠, and dF

c
S

dF
c
T

= dF

dG
.

Therefore,
⁄

[0,u)

1 ≠ v

R̄(v)
dRc

+(v) =
⁄

[F ≠
T,+(0),F

≠
T,+(u))

F̄T,≠(y)
F̄S,≠(y)

dFS

dFT

(y) dF c

T
(y)

=
⁄

[F ≠
T,+(0),F

≠
T,+(u))

d�S

d�T

(y) dF c

T
(y).

Finally, we note that if F ≠
T,+(0) > 0, then F c

T
is flat on (≠Œ, F ≠

T,+(0)), and
y < F ≠

T,+(u) if and only if y Æ F ≠
T

(u), so

⁄

[F ≠
T,+(0),F

≠
T,+(u))

d�S

d�T

(y) dF c

T
(y) =

⁄
F

≠
T (u)

≠Œ

d�S

d�T

(y) dF c

T
(y).

Putting together the discrete and continuous parts of the integral, we now have
⁄

[0,u)

1 ≠ v

R̄(v)
dR+(v) =

⁄
F

≠
T (u)

≠Œ

d�S

d�T

(y) dF c

T
(y) +

ÿ

tÆF
≠
T (u)

⁄S(t)
⁄T (t)�FT (t)

=
⁄

F
≠
T (u)

≠Œ

d�S

d�T

(y) dFT (y).

⌅
We denote Pn as the empirical distribution of O1, . . . , On, P as the true dis-

tribution of Oi (as implied by FS , FT , FU , FV , and fi), and Gn = n1/2 (Pn ≠ P ).
For any probability distribution Q and Q-integrable function h, we denote
Qh :=

s
h dQ. We also let fin :=

q
n

i=1 Ai/n be the observed fraction of treated
units.

Proof of Theorem 4. To prove Theorem 4, we will use Theorem 4 of [64].
For convenience, we refer to [64] as WC hereafter. In the notation of WC, we
have �n = �S,n, �n = �T,n, �0 = �S , and �0 = �T . To use Theorem 4 of WC,
we need to first verify that the decomposition of equation (2) of WC holds, and
then verify conditions (B1) – (B5) and (A4) – (A5) of WC. We establish each
of these in turn below.

Equation (2) of WC. We define the influence function Dú
x

and Lú
x

of �S,n(x)
and �T,n(x) as

Dú
x
(y, ”, a) = a

fi

5
I(y Æ x, ” = 1)
F̄S(y≠)F̄U (y≠)

≠
⁄

x·y

0

d�S(v)
F̄S(v≠)F̄U (v≠)

6
, and
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Lú
x
(y, ”, a) = 1 ≠ a

1 ≠ fi

5
I(y Æ x, ” = 1)
F̄T (y≠)F̄V (y≠)

≠
⁄

x·y

0

d�T (v)
F̄T (v≠)F̄V (v≠)

6
.

By adding and subtracting terms, we have �S,n(x) ≠ �S(x) = PnDú
x

+ Hx,n and
�T,n(x) ≠ �T (x) = PnLú

x
+ Rx,n, where

Hx,n = �S,n(x) ≠ �S(x) ≠ PnDú
x

, and
Rx,n = �T,n(x) ≠ �T (x) ≠ PnLú

x
.

These are the functions corresponding to equation (2) of WC.
Condition (B1). We define the local di�erence function gx,u

gx,u := Dú
x+u

≠ Dú
x

≠ ◊0(x)
#
Lú

x+u
≠ Lú

x

$
.

To verify condition (B1), we need to bound the uniform entropy of the class
{gx,u : |u| Æ R} for all R small enough. We further decompose gx,u = gx,u,S ≠
◊0(x)gx,u,T for gx,u,S := Dú

x+u
≠ Dú

x
and gx,u,T := Lú

x+u
≠ Lú

x
. The function

gx,u,S can be written as

gx,u,S(y, ”, a) = a

fi

5
{I(y Æ x + u) ≠ I(y Æ x)} ”

F̄S(y≠)F̄V (y≠)

≠
⁄

I(v Æ y) {I(v Æ x + u) ≠ I(v Æ x)}
F̄S(v≠)F̄V (v≠)

d�S(v)
6

.

The class of functions Cx,R := {y ‘æ I(y Æ x + u) : |u| Æ R} is Vapnik-
C̆ervonenkis (VC) with index 2 (see, e.g. Lemma 2.6.16 of 61). The class

;
(y, ”, a) ‘æ a {I(y Æ x + u) ≠ I(y Æ x)} ”

fiF̄S(y≠)F̄V (y≠)
: |u| Æ R

<

is a Lipschitz transformation of Cx,R and various fixed square-integrable func-
tions, so it is also VC, and hence easily satisfies condition (B1b) of WC. In
conjunction with Lemma 5.2 of [59], this also implies that the class

;
(y, ”, a) ‘æ a

fi

⁄
I(v Æ y) {I(v Æ x + u) ≠ I(v Æ x)}

F̄S(v≠)F̄V (v≠)
d�S(v) : |u| Æ R

<

is VC. Hence, {gx,u,S : |u| Æ R} satisfies (B1b). By the analogous forms of gx,u,S

and gx,u,T , an identical argument shows that {gx,u,T : |u| Æ R} satisfies (B1b),
so {gx,u : |u| Æ R} does as well.

Condition (B2). An envelope function for {gx,u,S : |u| Æ R} is given by
Ĝx,R,S = Ĝx,R,S,1 + Ĝx,R,S,2 for

Ĝx,R,S,1(y, ”, a) = I(|y ≠ x| Æ R)a”

fiF̄S(y≠)F̄V (y≠)

Ĝx,R,S,2(y, ”, a) = a

fi

⁄
x+R

x≠R

I(0 < v Æ y) d�S(v)
F̄S(v≠)F̄V (v≠)

.
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We now verify that P0Ĝ2
x,R,S

= O(R) as R æ 0 under the stated conditions. Due
to the boundedness of F̄S and F̄V away from zero and independent censoring,

P0Ĝ2
x,R,S,1 Æ CP (|Y ≠ x| Æ R, � = 1 | A = 1)

= C

⁄
x+R

x≠R

F̄U (u≠) dFS(u)

Æ C Õ[FS(x + R) ≠ FS(x ≠ R)]

for some C, C Õ < Œ. This latter expression is O(R) as R æ 0 because FS is
continuously di�erentiable at x with finite derivative.

Next, by Jensen’s inequality,

P0Ĝ2
x,R,S,2 = fi≠1E

S

U
I⁄

x+R

x≠R

I(0 < v Æ Y ) dFS(v)
F̄ 2

S
(v≠)F̄V (v≠)

J2

| A = 1

T

V

Æ fi≠1E

C⁄
x+R

x≠R

I(0 < v Æ Y ) dFS(v)
F̄ 4

S
(v≠)F̄ 2

V
(v≠)

| A = 1
D

= fi≠1
⁄

x+R

x≠R

P (Y Ø v | A = 1) dFS(v)
F̄ 4

S
(v≠)F̄ 2

V
(v≠)

= fi≠1
⁄

x+R

x≠R

dFS(v)
F̄ 3

S
(v≠)F̄V (v≠)

.

As above, the last expression is O(R) as R æ 0 because FS is Lipschitz at x and
F̄S and F̄U are both positive in a neighborhood of x. By the triangle inequality,
we then have P0Ĝ2

x,R,S
= O(R).

For the second part of condition (B2), we note that since F̄S and F̄U are
both positive in a neighborhood of x, Ĝx,R,S is uniformly bounded for all
R small enough. Hence, for all ÷, for all R small enough (possibly depend-
ing on ÷), {RĜx,R,S > ÷} is identically 0, which implies in particular that
P0

1
Ĝ2

x,R,S
{RĜx,R,S > ÷}

2
= o(R). Identical analysis applies to an envelope

for {gx,u,T : |u| Æ R}.
Condition (B3). This condition concerns properties of the covariance func-

tion defined as �(s, t) := P [Dú
s

≠ ◊(x)Lú
s
][Dú

t
≠ ◊(x)Lú

t
]. Since a(1 ≠ a) = 0 for

a œ {0, 1}, Dú
s
Lú

t
= 0 for any s, t. Hence, �(s, t) = P [Dú

s
Dú

t
] + ◊(x)2P [Lú

s
Lú

t
].

We write

P [Dú
s
Dú

t
] = fi≠1E

5
I(Y Æ s · t, � = 1)
F̄S(Y ≠)2F̄U (Y ≠)2 | A = 1

6

≠ fi≠1E

C
I(Y Æ s, � = 1)
F̄S(Y ≠)F̄U (Y ≠)

⁄
t·Y

0

d�S(v)
F̄S(v≠)F̄U (v≠)

| A = 1
D

≠ fi≠1E

C
I(Y Æ t, � = 1)
F̄S(Y ≠)F̄U (Y ≠)

⁄
s·Y

0

d�S(v)
F̄S(v≠)F̄U (v≠)

| A = 1
D
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+ fi≠1E

C⁄
s·Y

0

d�S(v)
F̄S(v≠)F̄U (v≠)

⁄
t·Y

0

d�S(v)
F̄S(v≠)F̄U (v≠)

| A = 1
D

.

(A.1)

We will address each term in this expansion. We first have

E

5
I(Y Æ s · t, � = 1)
F̄S(Y ≠)2F̄U (Y ≠)2 | A = 1

6
=

⁄
s·t

0

d�S(v)
F̄S(v≠)F̄U (v≠)

.

Next, the second term can be simplified as follows

E

C
I(Y Æ s, � = 1)
F̄S(Y ≠)F̄U (Y ≠)

⁄
t·Y

0

d�S(v)
F̄S(v≠)F̄U (v≠)

| A = 1
D

=
⁄

s

0

⁄
t·y

0

d�S(v)
F̄S(v≠)F̄U (v≠)

d�S(y)

=
⁄

s·t

0

⁄
s

v

d�S(y) d�S(v)
F̄S(v≠)F̄U (v≠)

=
⁄

s·t

0

�S(s) ≠ �S(v)
F̄S(v≠)F̄U (v≠)

d�S(v).

Similarly, the third term can be written as

E

C
I(Y Æ t, � = 1)
F̄S(Y ≠)F̄U (Y ≠)

⁄
s·Y

0

d�S(v)
F̄S(v≠)F̄U (v≠)

| A = 1
D

=
⁄

s·t

0

�S(t) ≠ �S(v)
F̄S(v≠)F̄U (v≠)

d�S(v).

Finally, for the last term, by decomposing the double integral into two regions,
we can write

E

C⁄
s·Y

0

d�S(v)
F̄S(v≠)F̄U (v≠)

⁄
t·Y

0

d�S(v)
F̄S(v≠)F̄U (v≠)

| A = 1
D

=
⁄

s

0

⁄
t

0

F̄S(u ‚ v≠)F̄U (u ‚ v≠)
F̄S(u≠)F̄U (u≠)F̄S(v≠)F̄U (v≠)

d�S(u)d�S(v)

=
⁄

s·t

0

�S(t) ≠ �S(v)
F̄S(v≠)F̄U (v≠)

d�S(v) +
⁄

s·t

0

�S(s) ≠ �S(v)
F̄S(v≠)F̄U (v≠)

d�S(v).

Hence, the second through fourth terms in the decomposition of P [Dú
s
Dú

t
] pro-

vided in equation (A.1) cancel, and we are left with

P [Dú
s
Dú

t
] = fi≠1

⁄
s·t

0

d�S(v)
F̄S(v≠)F̄U (v≠)

.

By symmetry of Dú
s

and Lú
s
, we also have

P [Lú
s
Lú

t
] = (1 ≠ fi)≠1

⁄
s·t

0

d�T (v)
F̄T (v≠)F̄V (v≠)

.



Y. Wu et al./Nonparametric inference under a monotone hazard ratio order 31

Thus, we can write

�(s, t) =
⁄

s·t

0

5
⁄S(v)

fiF̄S(v≠)F̄U (v≠)
+ ◊(x)2⁄T (v)

(1 ≠ fi)F̄T (v≠)F̄V (v≠)

6
dv.

In the notation of condition (B3) of WC, we have �ú(s, t) = 0,

A(s, t, v, w) = ⁄S(v)
fiF̄S(v≠)F̄U (v≠)

+ ◊(x)2⁄T (v)
(1 ≠ fi)F̄T (v≠)F̄V (v≠)

,

H(v, w) = v, and Q can be taken as any probability measure since there are no
covariates.

Sub-conditions (B3a) and (B3d) are automatically satisfied. Sub-condition
(B3b) is satisfied because A does not depend on s or t. Sub-condition (B3c)
requires that v ‘æ A(x, x, v, w) be continuous at v = x, which would appear to
require that FU and FV are continuous at x. However, in the proof of Theorem 4
on pages 4 and 5 of the Supplementary Material of WC, it is actually only used
that v ‘æ A(x, x, v, w) possesses a right-limit A(x, x, x+, w) as v approaches x
from above (since – in the proof stands in for n≠1/3, which is positive), in which
case A0(x, x, x+, w) should take the place of A(x, x, x, w) in the result. This is
important in our work because in many applications the censoring distributions
FU and FV possess mass points. Hence, this weaker version of sub-condition
(B3c) holds with

A(x, x, x+, w) = ⁄S(x)
fiF̄S(x)F̄U (x)

+ ◊(x)2⁄T (x)
(1 ≠ fi)F̄T (x)F̄V (x)

= ◊(x)
5

⁄T (x)
fiF̄S(x)F̄U (x)

+ ⁄S(x)
(1 ≠ fi)F̄T (x)F̄V (x)

6
.

Thus, condition (B3) holds, and the scale parameter is

Ÿ(x) =
⁄

A(x, x, x+, w)H Õ(x, w)Q(dw)

= ◊(x)
5

⁄T (x)
fiF̄S(x)F̄U (x)

+ ⁄S(x)
(1 ≠ fi)F̄T (x)F̄V (x)

6
.

Conditions (B4) and (B5). We define H̃u,n := Hx+u,n ≠ Hx,n, R̃u,n :=
Rx+u,n ≠ Rx,n and Kn(”) := n2/3 sup|u|Æ”n≠1/3

--H̃u,n ≠ ◊(x)R̃u,n

-- for these two
conditions. For (B4), we need to show that Kn(”) = oP(1) for each ” > 0,
and for (B5), we need to show that for some – œ (1, 2), ” ‘æ ”≠–E[Kn(”)] is
decreasing for all n large enough and ” small enough. As above, we only verify
the conditions for H̃u,n, since verification for R̃u,n is completely analogous.

We define

F̃S(x) := P (Y Æ x, � = 1 | A = 1) ,

R̃S(x) := P (Y Ø x | A = 1) ,
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F̃S,n(x) := Pn(Y Æ x, � = 1 | A = 1) = 1
nfin

nÿ

i=1
I(Yi Æ x, �i = 1, Ai = 1) ,

R̃S,n(x) := Pn(Y Ø x | A = 1) = 1
nfin

nÿ

i=1
I(Yi Ø x, Ai = 1).

Then by the definition of the Nelson-Aalen estimator and the definition of the
cumulative hazard function with independent right censoring, we can write

Hx,n = �S,n(x) ≠ �S(x) ≠ PnDú
x

=
⁄

x

0

dF̃S,n

R̃S,n

≠
⁄

x

0

dF̃S

R̃S

≠
⁄ ;

a

fi

5
I(y Æ x, ” = 1)

R̃S(y)
≠

⁄
x·y

0

dF̃S

R̃2
S

6<
dPn(y, ”, a)

=
⁄

x

0

5
dF̃S,n

R̃S,n

≠ dF̃S

R̃S

≠ fin

fi

dF̃S,n

R̃S

+ fin

fi

R̃S,n

R̃2
S

dF̃S

6

=
⁄

x

0

5
1

R̃S,n

≠ fin

fiR̃S

6
dF̃S,n ≠

⁄
x

0

5
1

R̃S

≠ fin

fi

R̃S,n

R̃2
S

6
dF̃S

=
⁄

x

0

5
fiR̃S ≠ finR̃S,n

fiR̃SR̃S,n

6
d(F̃S,n ≠ F̃S)

≠
⁄

x

0

5
fiR̃S ≠ finR̃S,n

fiR̃SR̃S,n

6 5
R̃S,n

R̃S

≠ 1
6

dF̃S

=
⁄

x

0

5
fiR̃S ≠ finR̃S,n

fiR̃SR̃S,n

6
d(F̃S,n ≠ F̃S) +

⁄
x

0

#
finR̃S,n ≠ fiR̃S

$2

fi2R̃2
S

R̃S,n

dF̃S

+
#
fi≠1

n
≠ fi≠1$ ⁄

x

0

fin

#
finR̃S,n ≠ fiR̃S

$

fiR̃2
S

dF̃S .

We let an,” := x ≠ ”n≠1/3 and bn,” := x + ”n≠1/3. We note that fi > 0 and that
R̃S and R̃S,n are bounded away from zero in a neighborhood of x almost surely
for all n large enough. Hence, there is a constant C such that almost surely for
all n large enough and ” small enough,

E

C
sup

|u|Æ”n≠1/3
|Hx+u,n ≠ Hx,n|

D

= E

C
sup

|u|Æ”n≠1/3

----
⁄

x+u

x

5
fiR̃S ≠ finR̃S,n

fiR̃SR̃S,n

6
d(F̃S,n ≠ F̃S)

+
⁄

x+u

x

#
fiR̃S ≠ finR̃S,n

$2

fi2R̃2
S

R̃S,n

dF̃S

+
#
fi≠1

n
≠ fi≠1$ ⁄

x+u

x

fin

#
finR̃S,n ≠ fiR̃S

$

fiR̃2
S

dF̃S

-----

D
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Æ E

C⁄
bn,”

an,”

----
fiR̃S ≠ finR̃S,n

fiR̃SR̃S,n

---- d|F̃S,n ≠ F̃S |
D

+ E

C⁄
bn,”

an,”

#
fiR̃S ≠ finR̃S,n

$2

fi2R̃2
S

R̃S,n

dF̃S

D

+ E

C
--fi≠1

n
≠ fi≠1--

⁄
bn,”

an,”

fin

--finR̃S,n ≠ fiR̃S

--

fiR̃2
S

dF̃S

D

Æ C
Ó

E
Ë..fiR̃S ≠ finR̃S,n

..
Œ,[an,”,bn,”]

..F̃S,n ≠ F̃S

..
T V,[an,”,bn,”]

È

+ E
Ë..fiR̃S ≠ finR̃S,n

..2
Œ,[an,”,bn,”]

È

+ E
Ë--fi≠1

n
≠ fi≠1-- ..fiR̃S ≠ finR̃S,n

..
Œ,[an,”,bn,”]

ÈÔ

Æ C
Ó

E
Ë..fiR̃S ≠ finR̃S,n

..2
Œ,[an,”,bn,”]

È
E

Ë..F̃S,n ≠ F̃S

..2
T V,[an,”,bn,”]

ÈÔ1/2

+ CE
Ë..fiR̃S ≠ finR̃S,n

..2
Œ,[an,”,bn,”]

È

+ C
Ó

E
Ë--fi≠1

n
≠ fi≠1--2È

E
Ë..fiR̃S ≠ finR̃S,n

..2
Œ,[an,”,bn,”]

ÈÔ1/2
.

We address each term in turn. For any fixed x and ÷ Ø 0, we define the function
class F̃S,÷ := {(y, a) ‘æ I(y Ø u, a = 1) : u œ [x ≠ ÷, x + ÷]}. The class F̃S,÷

is uniformly bounded by 1 and P0-Donsker for any ÷. Since fiR̃S(x) = P (Y Ø
x, A = 1) and finR̃S,n(x) = Pn(Y Ø x, A = 1), we can then write

Ó
E

Ë..finR̃S,n ≠ fiR̃S

..2
Œ,[an,”,bn,”]

ÈÔ1/2
= n≠1/2

Y
_]

_[
E

S

U sup
fœF̃

S,”n≠1/3

|Gnf |

T

V
2
Z
_̂

_\

1/2

= O(n≠1/2) .

Therefore, we also have

E
Ë..finR̃S,n ≠ fiR̃S

..2
Œ,[an,”,bn,”]

È
= O(n≠1).

Next, since F̃S and F̃S,n are non-decreasing functions, we have
..F̃S,n ≠ F̃S

..
T V,[an,”,bn,”] Æ

..F̃S,n

..
T V,[an,”,bn,”] +

..F̃S

..
T V,[an,”,bn,”]

=
#
F̃S,n(bn,”) ≠ F̃S,n(an,”)

$
+

#
F̃S(bn,”) ≠ F̃S(an,”)

$

=
#
F̃S,n(bn,”) ≠ F̃S(bn,”)

$
≠

#
F̃S,n(an,”) ≠ F̃S(an,”)

$

+ 2
#
F̃S(bn,”) ≠ F̃S(an,”)

$

Æ 2
..F̃S,n ≠ F̃S

..
Œ,[an,”,bn,”] + 2

#
F̃S(bn,”) ≠ F̃S(an,”)

$
.

Using a similar approach as for finR̃S,n ≠ fiR̃S , we can show that
Ó

E
Ë..finF̃S,n ≠ fiF̃S

..2
Œ,[an,”,bn,”]

ÈÔ1/2
= O(n≠1/2).
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Turning to F̃S(bn,”) ≠ F̃S(an,”), since F̃S(x) =
s

x

0 FU (t≠) dFS(t) and FS is
continuously di�erentiable in a neighborhood of x, we have

F̃S(bn,”) ≠ F̃S(an,”) =
⁄

x+”n
≠1/3

x≠”n≠1/3
FU (t≠) dFS(t)

Æ FS(x + ”n≠1/3) ≠ FS(x ≠ ”n≠1/3)
= O (”n≠1/3) .

We conclude that
Ó

E
Ë..F̃S,n ≠ F̃S

..2
T V,[an,bn]

ÈÔ1/2
= O (”n≠1/3 + n≠1/2).

Finally, since fi > 0, we have E|1/fin ≠ 1/fi| = O(n≠1/2). Putting it together,
we have

E

C
n2/3 sup

|u|Æ”n≠1/3
|Hx+u,n ≠ Hx,n|

D
= n2/3 O (n≠1 + ”n≠5/6)

= O (n≠1/3 + ”n≠1/6).

This goes to zero for each ” > 0, which verifies (B4), and (B5) is satisfied for
any – œ (1, 2).

Condition (A4). It su�ces to show that E[sup
tÆx+”

|�T,n(t) ≠ �T (t)|] =
o(n≠1/3) for some ” > 0 for condition (A4). We define F̃T , F̃T,n, R̃T , and R̃T,n

as we did above for S, but with A = 0 in the conditionals instead. We then have

|�T,n(t) ≠ �T (t)| =
----
⁄

t

0

dF̃T,n

R̃T,n

≠
⁄

t

0

dF̃T

R̃T

----

Æ
----
⁄

t

0

d(F̃T,n ≠ F̃T )
R̃T,n

---- +
----
⁄

t

0

R̃T ≠ R̃T,n

R̃T R̃T,n

dF̃T

----

Æ
..F̃T ≠ F̃T,n

..
Œ,[0,t]

#
2/R̃T,n(t) ≠ 1

$

+
....

R̃T ≠ R̃T,n

R̃T R̃T,n

....
Œ,[0,t]

F̃T (t).

We used integration by parts to bound the first term in the second inequality.
By assumption, R̃T is bounded away from zero in a neighborhood of x, and as
a result, R̃T,n is almost surely bounded away from zero in a neighborhood of x
for all n large enough. Then, for some ” > 0 and C > 0, almost surely for all n
large enough it holds that

E

5
sup

tÆx+”

|�T,n(t) ≠ �T (t)|
6

Æ CE
Ë..F̃T ≠ F̃T,n

..
Œ,[0,”] +

..R̃T ≠ R̃T,n

..
Œ,[0,”]

È
.

We can show that this expression is O(n≠1/2) using similar empirical process
techniques as we did with S above.

Condition (A5). For this condition, since In µ [0, “n], it su�ces to show
that the stratified Nelson-Aalen estimators are uniformly consistent on [0, “n],
i.e. Î�T,n ≠�T ÎŒ,[0,“n] and Î�T,n ≠�T ÎŒ,[0,“n] tend to zero in probability. This
follows from Corollary 1.2 of [57] by the assumed lower bound for rn. ⌅
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Appendix B: Supplementary figures

Fig S1. A toy example showing the relationship between Nelson-Aalen estimators, GCM and

our hazard ratio estimator ◊n. Left upper panel: the Nelson-Aalen estimor �S,n. Right upper

panel: the Nelson-Aalen estimor �T,n. Left lower panel: �S,n ¶ �
≠
T,n

(dashed line) along with

its GCM (solid line). Right lower panel: estimated hazard ratio function ◊n.
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Fig S2. Absolute bias of the monotone estimator scaled by n1/3
as a function of x. Rows

correspond to di�erent sample sizes, and columns correspond to di�erent shapes of the true

hazard ratio function. The red solid line is for fi = 0.2, the green dotted line is for fi = 0.5,

and the blue dashed line is for fi = 0.8.
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Fig S3. Standard deviation of the monotone estimator scaled by n1/3
as a function of x. Rows

correspond to di�erent sample sizes, and columns correspond to di�erent shapes of the true

hazard ratio function. The red solid line is for fi = 0.2, the green dotted line is for fi = 0.5,

and the blue dashed line is for fi = 0.8.
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Fig S4. Empirical coverage probabilities of nominal 95% confidence intervals for the estimator

PI as a function of x, with the nominal 95% coverage probability showed as the black dashed

line. Rows correspond to di�erent sample sizes, and columns correspond to di�erent values of

fi. The red solid line is for convex ◊, the green dotted line is for linear ◊, and the blue dashed

line is for concave ◊.
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Fig S5. Empirical coverage probabilities of nominal 95% confidence intervals for the estimator

CV as a function of x, with the nominal 95% coverage probability showed as the black dashed

line. Rows correspond to di�erent sample sizes, and columns correspond to di�erent values of

fi. The red solid line is for convex ◊, the green dotted line is for linear ◊, and the blue dashed

line is for concave ◊.
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Fig S6. Empirical coverage probabilities of nominal 95% confidence intervals for the estimator

US1 as a function of x, with the nominal 95% coverage probability showed as the black dashed

line. Rows correspond to di�erent sample sizes, and columns correspond to di�erent values of

fi. The red solid line is for convex ◊, the green dotted line is for linear ◊, and the blue dashed

line is for concave ◊.
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