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We demonstrate that, for systems with spin-orbit coupling and an odd number of electrons,
the standard fewest switches surface hopping (FSSH) algorithm does not conserve the total
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nuclear coupling I' - P (see Eq. (25)) and we delineate the conditions that must be satisfied
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electronic spin degrees of freedom altogether are all coupled together, hopefully including

systems displaying the chiral induced spin selectivity (CISS) effect.
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I. INTRODUCTION

Nonadiabatic processes that violate the Born-Oppenheimer approximation are prevalent in phys-
ical and chemical dynamics, including photochemical and charge transfer reactions. Quite often,
the electronic spin is an important ingredient (and not an innocent bystander) that can facilitate an
important relaxation process: intersystem crossing (ISC)!~>. Now, while many chemists routinely
discuss triplet versus singlet dynamics (distinguishing spin state by their total spin [ S?] eigenvalue),
itis worth noting that in systems with reasonably strong spin-orbit coupling or in a strong magnetic
field*, the spin direction (m,) can also be quite important; for instance, S, can play an important
role in maintaining total angular momentum conservation, L,oiecule = Linuctear + Leetectron +Selectron- 1N
fact, recent ab initio studies>® have pointed out that spin cannot be ignored when running molecular
dynamics if one wishes to conserve angular momentum, and in principle spin-dependent nuclear

motion is measurable and can have strong consequences” ™.

When simulating nonadiabatic dynamics, one must inevitably make approximations on account
of computational cost. To that end, Tully’s fewest switch surface hopping (FSSH)? is perhaps the
most widely used approach in practice. Since the framework of surface hopping does not depend on
the specific electronic Hamiltonian, one might presume that FSSH can directly model systems with
different m4 quantum numbers (e.g. triplet states) simply by expanding the electronic Hilbert space
to include all three basis functions in the triplet subspace; indeed, several research groups>!%-!?
have successfully run such dynamics to look at photochemical problems. We will show below,
however, that these studies do not conserve the total (nuclear plus electronic) angular momentum
either during propagation or during a hop (in agreement with a recent finding by Shu et al'* who
investigated FSSH without SOC). In general, on account of this finding, it is clear that one must be
cautious when analyzing the details of which m; spin state relaxes in which way. More generally,
without a proper treatment of conservation laws, there is no way to confidently apply the surface
hopping approach to study interesting physics at the intersection of spintronics and dynamics, e.g.
the chirality induced spin selectivity (CISS) effects! or the dynamics of spin-dependent chiral

phonons®1¢,

In the present paper, we will directly address this lack of momentum conservation in the context
of the FSSH algorithm and we will isolate the underlying problem. Most importantly, we will
show below that FSSH can be fixed up to conserve linear and angular momentum by building an

electronic Hamiltonian (to be diagonalized) that depends on the nuclear velocity, leading to so-
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called phase-space surface hopping (PSSH). For the seasoned reader, in Egs. (38)-(41) below, we
show the necessary conditions required for PSSH methods to conserve momentum. We believe that
the present manuscript should pave the way for new hopping algorithms that conserve momentum

and automatically incorporate the molecular Berry curvature effects'’2!.

An outline of this paper is as follows. In Sec. II, we provide the reader with the relevant back-
ground needed: we present the fine-structure Hamiltonian, we define the relevant definitions of mo-
mentum/angular momentum operators in the context of mixed quantum-classical frameworks, and
we discuss how the relevant matrix elements behave under translations and rotations. In Sec. III, we
reconsider the standard surface hopping algorithm, and demonstrate conclusively that the algorithm
does not satisfy either linear or angular momentum conservation. The heart of this manuscript is
Sec. IV, where we show that certain phase-space generalizations of FSSH (PSSH) can in fact re-
cover linear and angular momentum conservation, and we explicitly list the conditions that must
be satisfied in order to maintain such conservation. We further discuss the nuances of hopping
directions within a PSSH scheme. In Sec. V, we conclude and point out some key future directions
for this research. Notably, in Appendix C, we connect the main body of the text presented here

with the original PSSH algorithm proposed by Shenvi?.

Before concluding, given the many different degrees of freedom inherent in a mixed quantum-

classical algorithm, we list below (in Table. I) our indices and nomenclature:

Symbol |Denotes

a, 3,7, 9, C|Spatial directions (x, ¥, 2)
I,J Nuclear indices
a,b Electronic indices

7,k Adiabats

Poull

The active adiabat in FSSH
m,n |Phase-space adiabats

n The active phase-space adiabat in PSSH

TABLE I: List of Indices

Vectors in 3 or 3N dimensional space are written in boldface.



II. BACKGROUND

Below, we will work with the standard molecular Born-Oppenheimer (BO) Hamiltonian that

includes electrostatic interactions and spin-orbit coupling:
QrQs 1 Pa Pa | ¢
+ ) = E ——— *+Vso ey
Z]RI—RJ| Z\Rl—r | ;]ra—rb\ — 2m,
where the SOC term is

L Q N\ L
VSO_C_QIZ |1“a R1| 3 X Pa ] " Sa )

Here, the (1, ) ; are the nuclear charges, R is the nuclear coordinate, and r, p and S are the elec-
tronic position, momentum and spin operators, respectively. Throughout this paper, we will use
the hat notation (") to represent electronic operators.

Note that, in Egs. (1) and (2), we have summed over all electrons. Below and henceforward, it
will be convenient to switch to a second-quantized formalism where we replace, e.g., the momen-
tum operator for a single electron with the momentum operator for all of the electrons (in Fock

space):
Poa =Y Pao
=S e )
5a =) Saa

Here, a indexes the individual electrons. a

Before we address momentum conservation, we will now review several definitions and sym-

metry properties as relevant for a quantum mechanical system.

A. Mixed Quantum-Classical Definition of Linear and Angular Momentum

Within a mixed quantum-classical framework, the total nuclear linear momentum and angular

momentum are defined by

E Z M; Ryq )
1

L O |
I:.:": - Lnu,a = Z Eaﬁ'yMIRI,BRI'y )
<% L 1By



where Rj, is the coordinate of atom [/ in direction «, M7 is the nuclear mass, and €,g, is the
Levi-Civita symbol. The total molecular linear momentum and angular momentum are defined by

summing over the nuclear and electronic quantities:

Pmol,a = Z MIRIOc + <¢|ﬁa|¢> (6)
1
Lmol,a = Z Eoz,B'yMIRIBRIV + <Q/)|Za + §a>|w> (7)
1B~

where 1) is the electronic wavefunction, and p, [ and § are the single-body electronic momentum,

orbital angular momentum and electronic spin operators, respectively.

B. The Behavior of the Hamiltonian and the Set of Adiabatic States Under Translations

and Rotations

In this paper, we restrict ourselves to finite systems which can be translated and rotated in free
space without any change in the fundamental physics. To that end, note that the BO Hamiltonian 1%
in Eq. (1) is invariant to the fotal (nuclear + electronic) translation/rotation of the system; one cannot
translate or rotate the individual nuclear/electronic components without changing the physics. To
explore the consequences of these symmetries, let us define total nuclear momentum and angular

momentum operator S

B
— —ih
Po = —i 21: T (8)
. )
Lo=—ih) €opy Rip5p— 9)
1B~ Iy

By translational/rotational invariance, the Hamiltonian presented in Eq. (1) satisfies

[V, Pa+Pa) =0 (10)
[V, Lo+ 1o+ 384 =0 (11)
ch
= Now, the BO picture defines a set of adiabatic basis |k(R)), which are electronic wavefunctions
[T parameterized by the nuclear coordinates R. Importantly, the BO framework is not compete with-
(o9 { out defining the phases of the relevant adiabatic states. As pointed out by Littlejohn?}, momentum
<0 conservation makes the most sense if one chooses the adiabat states |k) to have phases defined as
Q|
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follows:

(Pa+Da) k) =0 (12)
(Lo+ 1o+ 382) k) =0 (13)

for all a. Eq. (12) and (13) dictate that one chooses well-defined phases of the adiabatic states
that are functions of only the relative (not absolute) coordinates of the nuclei and electrons. As we
discuss in Appendix A (and as shown in Ref.??), Egs. (12) and (13) are always valid provided one
applies a bra (j| (7 # k) to these equations; however, a phase convention is necessary if we want

these equations to hold in general (with j = k).

C. The Behavior of the Hamiltonian Gradients and Derivative Couplings Under Various

Symmetries

In this section, we will derive a few symmetry properties of the Hamiltonian gradients V'V, =
V (j|V|k) and derivative couplings d;, = (j|V|k), when the phases of the basis states |5) and
|k) follow the phases in Egs. (12) and (13) for translational and rotational motion. We begin with
the derivative couplings. By projecting Eqgs. (12) and (13) to some other state (j|, we find that d

satisfies
—ih Y diy + (jlpalk) =0 (14)
I
—ih Y eapy Ripdyl + (jllo + Salk) =0 (15)

LBy

which indicates that the derivative coupling between two states has both a translational and a rota-
tional component. Summed over nuclei, these translational and rotational components are equal to
the transition electronic momentum?* and angular momentum matrix elements>.

As for the gradients, in Appendix E, we show that these matrix elements satisfy:
> ViVik =0 (16)
I

Z Ea,ByRIBVIv‘/jk =0 (17)
LBy

Egs. (16)-(17) will be helpful for proving the relevant conservation laws for various surface hopping

methods below.



III. STANDARD FSSH AND MOMENTUM CONSERVATION

Let us now briefly review the algorithm of the standard FSSH. FSSH spawns a swarm of trajec-
tories, each associated with a nuclear coordinate R, a nuclear momentum P, an active adiabatic
surface & and an electronic amplitude c; on adiabat k. At each timestep, these quantities are prop-

agated by (here we assume the EOMs are written in Cartesian coordinates)

: Pla
_ o 1
Ria M, (18)
Ppo = — </;\v,av\/;> (19)
¢ = E i — Y Rradlic (20)

I,a,k

At each timestep, the trajectory has a chance to change its active surface (“hop”). The hopping
rate from surface j — k is given by g;,x = max(2Re[)_; R[ad§g0k/0j], 0). As derived by
Pechukas®, Herman?’, Kapral?®, and Tully?’, at each successful hop from j — k, the momentum
is rescaled along the direction of the derivative coupling d;; to conserve energy.

At this point, we have enough background to prove that a naive implementation of FSSH does

not conserve either the total linear momentum P,,,,; or the total angular momentum L,,,,;.

A. Linear and Angular Momentum During Motion Along A Single Surface

When running without a hop, FSSH is equivalent to Born-Oppenheimer dynamics, where only
the total nuclear quantities P,,, and L,,, are conserved (Ref.?}). In such a case, the molecular
quantities P,,,,; or L,,,,; defined in Egs. (6) and (7) will be conserved only when the electrons have
vanishing expectation values of momentum ( <l%‘f)‘l~c>> or angular momentum ( </;:‘i + é)l;:>)

More generally, however, there is no reason to assume that these expectation values need to be
zero. In particular, non-vanishing expectation values will arise when the surface of interest lacks of
time reversibility, e.g., a degenerate surface corresponding to a system with an odd number of elec-
trons. In such a case, it is well known that (8) # 0 and so classical BO dynamics will not conserve
the total angular momentum. As a side note, in a recent article®, we showed that, in order to main-
tain angular momentum conservation, one possible approach is to include the Berry force (i.e. the
pseudo-magnetic force arising from the Berry curvature), f<"¥ = 3 58 (V Iadkk: V 55dl) Ry

However, as we will show below, there is a more natural approach to achieve angular momentum
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conservation that is easier to include within a surface hopping formalism (that does not require an

arbitrary choice of any doublet).

B. Linear and Angular Momentum During a Hop

During the course of a hop in FSSH, the nuclear momentum is rescaled along the direction of

the derivative coupling (here we assume a hop from j — k):
P — P+ hndj 21)

where 7 is a real valued (one-dimensional) amplitude that must be calculated on the fly.

The rescaling in Eq. (21) can easily violate the relevant conservation laws. In particular, since
the naively calculated derivative couplings generally satisfy Eqgs. (14) and (15), they necessarily
have some translational and rotational component. Therefore, neither P,,,; nor L,,,; is generally
conserved for each trajectory that hops. Interestingly, for spin-irrelevant, time-reversible systems,
this hopping problem can be nominally avoided using existing tricks in the literature. For instance,
one can eliminate the translational and rotational component by adding electronic translational fac-
tors (ETFs)?*3%3¢ and electronic rotational factors (ERFs)!*37. After these corrections, the deriva-

tive couplings satisfy (to the first order of m, /M)

Z d}r‘?,ETF =0 (22)

I

I
Z €apyRr 5djz,ETF+ERF =0 (23)
LBy

Moreover, the expectation values of electronic momentum ( (k|p|k)) and angular momentum
( (k!i + s|k)) are zero on each adiabat (as a consequence of time-reversibility). Thus, the total
linear momentum (P,,,;) and angular momentum (L,,,;) will not change if the rescaling is done
along the ETF/ERF-boosted derivative coupling directions. In other words, FSSH will conserve
the total momentum and total angular momentum within a single trajectory.

Unfortunately, however, the strategy above is not general and is not appropriate for systems with
an odd number of electrons. In such a case, the expectation value of electronic angular momen-
tum will be surface dependent (i.e., in general (k|14 §|k) # (j]1+8|j) for k # j), so that L,,,;
can change during a hop even if L, remains constant and there is no easy way to maintain angu-

lar momentum conservation. In the end, our feeling is that even though many of the nuances of
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momentum conservation can seemingly be swept under the rug for systems with an odd number
of electrons, the best semiclassical approach is to treat systems with both odd and even numbers
of electrons equivalently. For instance, it is straightforward to show?® that for a system with an
even number of electrons, the electronic Hamiltonian can be made strictly real valued with zero
on-diagonal Berry curvature (unlike the case with an odd number of electrons). Nevertheless, as
showed in Ref.!>* the best semiclassical approach is clearly to directly treat the non-diagonal
Berry forces (for a system with an even number of electrons) just as one would treat the diagonal
Berry forces (for a system with an odd number of electrons). Thus, in general, one would like to
do better than FSSH when it comes to linear and angular momentum conservation, which brings

us to the notion of phase-space surface hopping.

IV.  PHASE-SPACE SURFACE HOPPING
A. The PSSH Algorithm

The PSSH algorithm??, originally proposed by Shenvi, is one approach forward towards mo-
mentum conservation. According to PSSH, one runs normal surface hopping dynamics but with
a small twist: one builds an electronic Hamiltonian that depends on both nuclear position and
momentum by incorporating the derivative coupling terms explicitly into the nuclear equation of
motion. The full nonadiabatic electronic Hamiltonian is given by

Hy(R,P) = —zhz I“d Z% (24)
i Vi My ik 2M;

I,a,l

By diagonalizing the Hamiltonian, generating the derivative couplings, and then re-diagonalizing
the Hamiltonian in Eq. (24), Shenvi argues (and has some data proving) that this dressing of the
electronic states by momentum can yield some very powerful results*’. In a recent paper (Ref.*?),
we have argued that a similar formalism can also be valid in a totally different basis (other than
adiabatic basis). More generally, in order to deliver the most insight on the nature of conservation
law in PSSH-like methods, we will now consider a PSSH with an arbitrary vector-valued electronic

operator I';;; that couples to momentum (and replaces the derivative coupling in Eq. (24)):

. Pra 1o
Hj(R,P) = Vy —ih Y —2Ti8 (25)



To make our analysis more concise, in Eq. 25, we have dropped the second derivative coupling
term (the last term in Eq. (24)). We will show in Appendix D, that the inclusion of the second
derivative coupling terms does not change any of the results below.

For the sake of concreteness, let us now review the PSSH algorithm that revolves around
Eq. (25). The phase-space (PS) adiabats |n) are linear combinations of the selected BO states,

where the coeflicients are obtained by diagonalizing the nonadiabatic Hamiltonian Eq. (25):
Z #(R,P) (kln) = EJ*(R, P) (jln) (26)

Like in FSSH, each trajectory in PSSH is assigned an active surface |72) and a set of amplitudes
¢y, on different PS surfaces. These quantities are propagated by Hamilton’s equation and the time-

dependent Schrodinger equation:

OELS  Pro  Pra—ih 32, Tig (alj) (kln)

R "= — 27
= 9P, T M, 7
. OELPS i e

Pro = ~Gp— = - Z (l3) (K1) V1o (28)

. 7 . Ta PIa To . > T
Cm = _ﬁEmcm - % <Rla€mn - M ]Zk ij <m|.]> <k|n> + P]aTmn) Cn (29)

Here,
0
Ta = 30
€l = (ml 5 ) (0)
1o = ] o [n) 6D
mn aPIOé

are the total position and momentum derivative couplings (respectively) between phase-space adi-
abats. A derivation of Eq. (29) is found in Appendix B. Note that, according to Eq. (27), PSSH
dynamics always include vector potentials and Berry forces in the sense that R #+ P /M.

By defining the adiabatic density matrix of the active surface O'j[ k] = > (Jl7) (2[k) and the

transition density matrix aj[r,?_m] = (j|n) (m|k), Egs. (27)-(29) can be recast as

Pro —ihitr[oT,]

R o= 32
! M7y (52)
. - [7] o I Jo
P, = —tr[a VIQH} = —tr|o™ Vi,V —ih E V[afjg (33)
c.m = _iEmcm - E Rfagla —- = tr [O-[m n]FIOz] + IIO(TI& Cn (34)
h o mee My mn
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For a trajectory on active surface m, at each step, the hopping probability to surface n is:

s = ax (2 Re

. P, _ . .
> (Bragis, = 5 tr[o™7"Tr] + Pfa#,fmc—] ,0> (35)
I« 1 Cm

Alternatively, by plugging in Eq. (32), the hopping probability can be written as

> (fe el r)

Jm—sn = Max <2 Re
I,a

+Promie — gk tr[of ]FMD s—”} ,0) (36)

Upon a successful hop, the canonical momentum (P) is rescaled to maintain energy conserva-
tion. Unlike Shenvi’s PSSH?? or our pseudo-diabatic PSSH*’, the rescaling direction for a general
Hamiltonian of the form in (25) is not clear yet. Nevertheless, by analogy to FSSH, according to

Eq. (36), a reasonable choice for the rescaling direction is
Asn = & — tr[o"7"T] (37)

Below we will analyze this solution and discuss the relevant conservation laws in Sec. IV C.

B. Conservation Laws in PSSH During Dynamics Along a Phase-Space Adiabatic Surface

The fundamental results of this paper are as follows: PSSH dynamics will conserve the total

linear momentum when moving along a given phase space adiabat if for all o, 6, J, 7, k,
—th 19+ (jlpalk) =0 (38)
> Vil =0 (39)
I

Similarly, PSSH dynamics will conserve the total angular momentum when moving along a given

phase space adiabat if for all «, 9, J, 7, k,

—ih Y €asy RigT i + (jlla + 3alk) = 0 (40)
1.8~
> eapy RigVi T + > cascle =0 (41)
I8 ¢

Furthermore, we show in Appendix C that, provided we use a basis satisfying Eqgs. (12) and (13),
Shenvi’s PSSH (i.e. Eq. (25) where I' = d is used) will conserve both linear and angular momen-

tum.
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1. The Linear Momentum

For a trajectory propagated on phase-space adiabat 7., the change in the total molecular linear

momentum P,,,,; is (using. Eq. (32)):

deol,a n
dt - dt (ZMIRIa+tr[ 7l })
= ZI: P, + E tr | o™ (—ih ZI: [ + pa>

According to Eq. (38), the last term is zero, which implies Pmom =>; P, =— >otr [JW VieH ] )

(42)

Plugging in Eq. (33), we find

AProta Z r[o Tivas H]

dt
- [7] ]Jé T i
= — E tr|o ;Ioc Z‘LZ ;Ioz Jé ( 3)

According to Eqgs. (16) and (39), >, VoV =0and ), VMF}’,S = 0 for all 4, k, J, 6. Therefore

Eq. (43) evaluates to zero. As aresult, PSSH conserves the total linear momentum when a trajectory

is propagated along a phase-space adiabat.

2. The Angular Momentum

According to the definition of the total molecular angular momentum L,,,; in Eq. (7), for a
trajectory propagating on phase-space adiabat n, the change in the total angular momentum is

(again using Eq. (32)):

dLmo «@ n
dtl’ = dt (Z Eoég,yM[R[/BR[,y + tr[ ](l + Sa):|)

LBy
d d (]
=9 €apyRiPry + T tr|o —ih Z €apyRisl' 1y + l + 54 44)
1,8,y I.Byy
According to Eq. (40), the second term is zero, and therefore
AL ol o d . .
& = =% > eapyRigPry = (Z €apy(RipPry + RigP, Iv)) (45)
1,8y LBy
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Plugging in Eq. (32) for R and Eq. (33) for P, we find

dLmol,a PIﬁPIfy . [71] PI'y
T Izﬁ;eam ( M, ihtr[o™T 5] —2

0' <VI7 —1h Z PJ6 VI—YFJ§> ] ) (46)

In Eq. (46), the first term is zero since it is a cross product between a vector and itself, and according

_Rjﬁ tr

to Eq. (17), the V1,V term is also zero. The remaining terms are

dLmol o PI PJ(S
= —ih Z €apy tr [0’ (F]ﬂ M R]ﬂ Z EV[VPJ(; (47)
1By J,6
Plugging in Eq. (41), we find
dLmol NeY P PJ§
- _ nlp 2 [a] Z 70
= —1ih I;Y €apBy tr |: F]ﬁ M[:| ih ;C €ad¢ tr |: MJ FJC:| (48)

Replacing the dummy indices 6 — ~,( — [3,J — I, and utilizing the antisymmetric property of

the Levi-Civita symbol, Eq. (48) becomes

dLmo a P P
Lo — _ih Z €apry tr[ FIBM} —ih Z €anp tr[ [i }M_fjpm} —0 (49)

I,B,y 1,8,y

Thus, PSSH conserves the total molecular angular momentum when a trajectory is propagated

along a phase-space adiabat.

C. Conservation Laws in PSSH In the Course of a Hop

Here we discuss the effect of momentum rescaling (according to Eq. (37)) as far as the relevant
conservation laws. We assume that the hop is from phase-space adiabat m to n.

Before we begin our discussion, one point must be emphasized: Although \,,_,,, defines a
direction in coordinate space, this vector cannot be used in a naive black-box fashion, as both &
and I' in Eq. (37) are usually complex-valued and gauge-dependent. In practice, a phase factor is
required if we wish to map the direction \,,,_,,, onto a real-vector in the Cartesian space. Therefore,

the general expression for the rescaled canonical momentum should read
AP, = hnRe[Apne™] (50)

where 7 is a unitless (one dimensional) rescaling amplitude and €’? is the relevant phase factor. In

Ref.*!, we have shown that from the quantum-classical Liouville equation (QCLE), a good way to
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choose such phase factoris P - X* . /|P - A% . |. Below, we will discuss this choice of phase and
others.
In order to proceed any further, it will be necessary to evaluate the matrix elements of A\, _,, =

Emn — tr [a[”H"] F} . Now, &,,,,, can be better understood by repeatedly inserting resolutions of the

identity, 32, k) (] and 37, 17) (1

Enn = (| Via|n) =Y (m| Via([k) (Kln))

k

—Z (m|V1ak) (k|n) +Z (mlk) V5o ({k|n))
—Z (7V1ak ><kln>+2<mlk> Via((kln)) (51)

In the first term in Eq. (51), (j|V k) = d§§ is just the normal adiabatic derivative coupling. The
second term in Eq. (51) arises from the rotation from adiabats to the phase-space adiabats, and can
be evaluated by the Hellmann-Feynman theorem (note here we assume phase-space adiabats are
non-degenerate, which is reasonable since the matrix I';;, is generally dense):

> (mlk) Via((Kln))

k

1 : : Pys
= grs—prs 2 (i) (ViaVie = ih 3 5B V1al) (kin) (52)
n moogk J,0

Altogether, if we plug Egs. (52) and (51) into Eq. (37), and substitute the definition of olm=1l we

arrive at

ViV —ihY s 287, T s
Moo= tr [g[mﬁnl (dla — T+ 77 _"’Eé‘fg (53)

Finally, when considering both linear and angular momentum below, it will be helpful to eval-

uate the change in the nuclear kinetic momentum component after a hop. According to Eq. (32),

we find this quantity is:

MART=™ = hypRe[ A2

m—)n

e'?] —ihtr [ a0 — ol™)] (54)

1. Energy Conservation

Unlike FSSH, the surfaces in PSSH depend on nuclear momentum and will change upon mo-

mentum rescaling. Therefore, in order to satisfy energy conservation exactly, one generally cannot
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solve for the rescaling amplitude 7 analytically, but rather one must solve a self-consistent equation:
EPS(R,P + hnRe[Apm_ne™]) = EPS(R, P) (55)

where the functional E7%(R, P) is given by Eq. (26).

2. The Linear Momentum in Rescaling

The change of molecular linear momentum is given by

mol,« nu,o el,a

= S MAARG 4 (alpal) = (mlpelm)

(o — ol (pa —ihy PIQ)] (56)
1

= hnZRe [NFmei®] 4 tr

According to Egs. (38), the second term of Eq. (56) is zero. If we substitute Eq. (53) for the first

term, we find

APT" = hnRe

mol,a

. ViV —ih> 5 25N Tys
€' tr [a[m*nl > (dla —Tpo + TP _""iEf; (57)
I n m

Let us now examine the individual terms in Eq. (57). According to Egs. (14), (16), we have

> (g =T = == ({ilbalk) = (Glpalk)) =0 (58)

1

According to Egs. (38) and (39), we also have
P P
Z ViaVje — ih Z —"‘SvmrﬁS —ih Z LN (59)

Therefore, every term in Eq. (57) evaluates to zero, which indicates that the total molecular linear

momentum does not change during momentum rescaling, regardless of the phase factor used.
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3. The Angular Momentum in Rescaling

The change of molecular angular momentum is given by

mol,a nu,o el,« el,a
= €ap MiRIgART™ + (nlo + 8aln) — (mllo + $alm)
1By
= h?’] Z €aBry Re[Rm/\}';_mei‘z’]
LBy
— tr [(UM — o) (Za +8q—ih Y eaMRmFM>] (60)
1By

Similar to the case of linear momentum, according to Eq. (40), the second term of Eq. (60) is zero.

If we substitute Eq. (53) for the first term, we find

AL%O_;’Z = h?] Re eiqﬁ tr O_[m—m] Z €a57R15 (d],y — F[7
LB~
. P
. ViV —ihy s M#;v,,yr‘m)” 1)
ETILDS _ ETITJZS

Again, we examine the individual terms in Eq. (61). According to Egs. (15) and (17), we have

v, . (7 .
S ass Bas(di = T170) = = ((lla + alk) = (illa + 3alk)) = 0 (©2)

I,B,y

According to (40) and (41), we also have

. P
Z €apyFirg (Vmij —ih Z VhrﬁjM_‘]‘S)
Ly J6 J
; P : P
= 0 + Zh Z eaﬁgr‘;]lgM—Jd = Zh Z EQIB'YM_IBFI’}/ (63)
186 T g !

Therefore, the total angular momentum change during the momentum rescaling is

_ ip Zh m—n PI/BFI’Y
ALmoha = hn Re |e W tr [0'[ - Z €apy M[
LBy
h*n « Pyl
ey id [m—n] 1L Iy
=~ Ps — Ps Im | e tr [a - Izﬁ: ol ] (64)
b 7’y

Eq. (64) cannot be further simplified. Thus, the momentum rescaling scheme proposed in Eq. (37)

will generally (and unfortunately) bring about a nonzero change in the total molecular angular
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momentum. That being said, it is crucial to emphasize that the magnitude of the change in angular
momentum scales as * in Eq. (64) — whereas the corresponding change would scale as / in FSSH.

Empirically, we have found in a few test cases (unpublished) that this error is usually very small.

4. Restoring the Exact Conservation Laws

Finally, we note that, if one is determined to satisfy conservation of linear momentum and angu-
lar momentum exactly, there is one very straightforward path. Namely, one can pick the rescaling

direction to be:
A = tr[ol™7(d - T)] (65)

In other words, one merely drops the second term in Eq. (51). Admittedly, such a rescaling does
not reduce to Shenvi’s PSSH algorithm where I' = d (because the rescaling direction would be
undefined in such a case). Nevertheless, if one can choose a relatively smooth and small I, the algo-
rithm will be well-defined and the rescaling direction should be close the original PSSH approach
as well.

Lastly, as far as the phase ¢’ is concerned, one might be tempted to choose ¢ such that | AL, | is
minimized (and the change in angular momentum is even further reduced). After some experience
with PSSH, however, our feeling is that this is not a productive path forward. In general, following

Ref.*?, it seems best to simply choose ¢ such that [Re[Ae™]| is maximal.

V. CONCLUSION

In this paper, we have analyzed the conservation of linear and angular momentum within two
different surface hopping methods: The standard, fewest switches surface hopping (FSSH) by Tully,
and the phase-space surface hopping (PSSH) approach of Shenvi. In a separate paper, we have
recently analyzed the relevant Ehrenfest dynamics, and the reader should also see Ref. 21 for a
relevant discussion in terms of exact factorization.

For FSSH, the electronic Hamiltonian depends only on nuclear position. In such a case, nei-
ther the total linear nor the total angular momentum of a trajectory is conserved if we account for
electronic momentum or angular momentum. The FSSH algorithm conserves only the nuclear

momenta. Moreover, if we hop in the direction of the derivative coupling, the resulting momentum
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rescaling will break both linear and angular momentum conservation. Patches like ETFs and ERFs

I'* and our group®’) can restore the conservation of the nuclear

(e.g. those developed by Shu et a
momenta, but the algorithm still will not recover the correct total momenta. The latter scenario
should be most problematic in the presence of degeneracy (e.g. a Kramers’ spin doublet) when the
surfaces are time-irreversible.

For PSSH, the electronic Hamiltonian depends on both nuclear position (R) and nuclear mo-
mentum (P). We imagine adding a term I'- P where I is a matrix that depends on position (R) and
is to be determined. We find that such a generalized PSSH conserves both the linear and the angular
momentum of a trajectory during propagation provided that I" satisfies the symmetry constraints in
Eqgs. (38)-(41); all Berry forces are automatically included in PSSH. Moreover, if the momentum
rescaling direction is chosen as in Eq. (65), the resulting PSSH algorithm exactly conserves linear
and angular momentum during a hop; if the momentum rescaling is chosen as in Eq. (37), the al-
gorithm nearly conserves angular momentum change during a hop, but not exactly — the resulting
error should be proportional to 2. Eqgs. (38)-(41) are satisfied if we substitute I' = d (the actual
derivative coupling), confirming that Shenvi’s original adiabatic PSSH does maintain linear and
angular momentum conservation.

The most important next step in this research is how to choose I'. There are several reasons that
one should fear setting I' = d (Shenvi’s algorithm). First, as shown by Gherib er al, the resulting
method fails near conical intersections because of the divergence of d**; one wants to use PSSH
to fix up the Born-Oppenheimer approximation far from a crossing but standard surface hopping
already works well near a crossing** and one does not want a correction that actually makes the
results worse. Second, in practice, one will need to differentiate the electronic Hamiltonian for
dynamics and differentiating the derivative coupling will be extremely expensive. Third, in the
case where one works with SOC and an odd number of electrons, the derivative coupling is not
well-defined so that the resulting PSSH algorithm would be gauge dependent. For all of these
reasons, it is quite logical to search for and explore different possible I' matrices in the future.
While one can certainly “guess” the correct I' operators for some model problems®*, the optimal
choice of I' in general remains an important open question. In publishing this paper, our hope is
that the theory community will now actively pursue this goal.

Looking forward, provided one can isolate meaningful, physically based I' matrix elements, it
seems very possible we will be able to explore the very rich intersection of nonadiabatic dynamics

and spintronics, ideally using ab initio electronic structure theory, in the near future.
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Appendix A: Gauge Conditions for Adiabats

In this section we provide a brief discussion of Egs. (12) and (13). For non-degenerate adiabats,
it can be shown rigorously that (j|P, + pa|k) = 0 and (j|La + lo + 5a|k) = 0 for any j # k.
Here is a proof for translation:

. ~ . <]|EJ(P04 +ﬁa) - (Pa +ﬁa)Ek|k>
<]‘Pa +pa|k> = E; — B

IV, Pa + pallR)
E; — E,
In the last equality of Eq. (A1) we have used Eq. (10). A similar proof holds for rotation. Accord-

=0 (A1)

ingly, since the adiabats form a complete basis, enforcing Eqgs. (12) and (13) is really just a matter
of phase conventions for the case ; = k. These phase conventions are usually discussed in the

context of the on-diagonal derivative coupling djy:

A T i

0= (k[P + palk) = —ﬁgjd% + (klpalk) (A2)

0= (k| Lo+ Lo+ 8alk) = —% 3" eas Risdiy + (kllo + 3alk) (A3)
1By

In words, Egs. (A2) and (A3) indicates that the phase of adiabats should be chosen such that the
translational and rotational constraints are met. The phase choosing procedure is detailed in Ref.??

and Eqgs. (12) and (13) can be satisfied for states even when there is degeneracy.

Appendix B: Equation of Motion for the Amplitudes in PSSH

Here we provide a derivation of the PSSH equation of motion for the amplitudes (Eq. (29)). The

time-dependent Schrodinger equation reads

ol _ iy
B ﬁV ) (B1)
Now, for the amplitude in PSSH, ¢,,, = (m/|¢), we have
Oy, 0 (m)| d|v)
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Using the chain rule of derivative for the first term, and substituting Eq. (B1) for the second term,

we find
oc,, 7 ~
— o P - V B3
> IZ 18R Z / = (m|V]Y) (B3)
Inserting the resolution of identity >, In) (n|, we further find
8cm m| ~
> Ria G ) (ol +§LPM Sp ) @lw) = 5 3 (mlVn) (nle)
== Ria(mlgp—In)en = Pra m\ Z VinnCn (B4)
I,a,n I,an

Since m, n are phase-space adiabats, according to Eq. (26), we can gather matrix elements:

P
Vi = Bl +ih > T2 fj (ml5) (k|n) (B5)

1,5,k

If we substitute this expression into Eq. (B4), we finally have

oc,, ) 0 Pro ja .
S == 5 (1) — T2 () ) )

Iamn
1
— P —F B
Iza:n Ia m|apja|n> h mCm ( 6)

which is just Eq. (29).

Appendix C: Transformation Properties of the Gradients of The Derivative Couplings

Here we will show that for a basis set |j) , |k) that satisfies Eqs. (12) and (13), Eq. (39) and (41)
will automatically hold by replacing I';;, with the derivative couplings dy.

First, let us show that Eq. (39) holds for I'j;, = d ;. Expanding the LHS, we have
> Viadl =Y (V1| Vask) + (] Via([V5K)))
I I
=" ((V1ailV 5k) + (5] V1s(|V 1ak)))

(_ <Paj|vJ5k7> + <]| VJ6(|Pak3>) (Cl)

ST

2] Utilizing Eq. (12), we find
@ Z Viadjy = +((aj|Vsk) — (jIV ssDak))
= = 5 (l[as V1511 ) (C2)
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Since p,, is an electronic operator that does not depend on the nuclear position, the expression

evaluates to zero.
Second, let us show that Eq. (41) holds for I';;, = d;;. Expanding the LHS, we find

> ap RisVind) = capy Y Ris((V1yi|Vsk) + (5] Vi, (IV sk))) (C3)
1,8,y I

For the second term in the RHS of (C3), by the chain rule of derivative, we arrive at

> Rig (GIVL(IVisk)) =D Gl Vis(RiViy k) — (| [Vm > RV | |k)
I I ji
=" (I Vas(RisV iy k) — 015055 (5| V1 |k) (C4)
I
If we plug in Eq. (C3), we find
Z eaﬁvRIﬁvlvd}]Ig = Z €apy 15 (Vi1,|V ssk)
1,8,y I8,y
+ D oy (11 Vas(Rip [V 1K) = D asy (7 Vv [K)
LBy v
= (= (Lad| Vsk) + GILaVssk)) = D €asyel] (C5)
v
where £ was defined in Eq. (9). If we now plug in Eq. (13), the result is
i N
Z Gaﬁvvlwd}]g =7 (<(la + Sa)]‘vJ§k>
LBy
= (3|Vaslla + 30K )) = 3 €asnd]]
Y
= = {illla + S0, Vsl k) = D casydii (C6)

Y

As above, since ia + 3, is an electronic operator that must commute with V 5, the first term is zero.

In the second term, by replacing the dummy index v by (, we arrive at

> ap Viad + > easedyy =0 (C7)
LBy ¢
This concludes the proof.

Appendix D: Inclusion of the Second Order Derivative Coupling Terms

Below we will show that when Eq. (25) is replaced by

Tam o
a Pro 14 il
— ik = Vi, —ih F — _ D1
= 3 J Z Jk g 2M;
Q
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the resulting PSSH equations of motion still conserves the molecular linear and angular momentum
during propagation.
Below we will assume the trajectory is propagating on the phase-space adiabat 2. According to

the Hamilton’s equation, Eq. (32) remains unchanged, but Eq. (33) now becomes
P]a = —tr [O'[ﬁ]vIaH]

Ts, Vial
S — [0[" (v,a - mZ—vmrM —Ry L5 2]\2, Jﬁ]*)] (D2)

J,0

where |-, -]+ stands for the matrix anticommutator.
As compared against Eq. (33), the only difference in Eq. D2 is the extra anticommutator term,

and so it makes sense to follow the derivations above in Sec. IV B above.

* For the case of linear momentum conservation, we follow the derivation in Sec. [V B 1 (using
the expression in Eq. (43)), and when Hamiltonian (D1) is used instead of the Hamiltonian

in Eq. (25), we find

deol a 7 . PJ6 [FJé vlaFJ5]+
2= N |l —ihy =2V s — R ’
d zj: r [0‘ (VMV 1 ; MJ V]a Js Z 2MJ

J,6

(D3)

The first two terms in Eq. D3 are discussed in Sec. IVB 1. The last term is zero since

> 1 V1ol j5 = 0. Therefore the total molecular momentum is conserved.

* For the case of angular momentum, we follow the derivation in Sec. IV B 2 (using the ex-

pression in Eq. (47)), and when Hamiltonian (D1) is used instead of the Hamiltonian in Eq.

(25), we find
dL P,
T D et { (—zhrw i
LBy
Pys 9 (s, Vi Lol
+ZTLR15 E _V['YFJ(S +h R]ﬁ JE oM, (D4)

As discussed in Sec. IV B 2, the first two terms on the RHS of Eq. D4 evaluate to zero.

Therefore we are left with

dLmol « |: 7] [FJ(;, V[WFJ5]+:| (DS)

2 — 2 €apyRrgtr|o
dt > camBiis oM,
I)J767776
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By Eq. (41) we have

dLmot,a 2 D, Doels
X ase b [A] 1= Jo» = Jo I+ D6
dt ;E % r{" oM, (Do)

Because the expression in the trace above is symmetric between ¢ and (, in the end the
term is zero — which indicates that running PSSH with Hamiltonian (D1) conserves the total

molecular angular momentum.

Appendix E: Proof of Eq. (16) and (17)

In this section, we will prove Eq. (16) of the main text (and the proof of Eq. (17) follows by an
analogous procedure). If we expand Vj;, = < J ‘Vk> and apply the del operator to each term, we
find

V) + (il Via

Vk:>) (E1)

> ViaVik =3 (Vraj
I I

By replacing the del operator by P, and noting that >, (V1aj| = (3, [Viai))T = (3 [Pad))t =

—% (P.jl|, we find:
> ViaVo = =, (PedlVIE) + Gl P Vk))
= —g%ﬂvl@ + £<J|V|7Dak’> + ﬁ(]HPmVHk) (E2)

If we substitute Eq. (12) for both |j) and |k), we find
T, e [BPRTSE v, ~
> ViaVik = 5 (BadlVIk) = 3 (G1V[Pak) + 3 (7][Pas VII)
T
T, 1. ~ T, ~
= = (llpa, VIIE) + = (l[Pas VIIE) = & (jl[Pa + Pa, VIIE) (E3)

Since our Hamiltonian is invariant to translation (Eq. (10)), Eq. (E3) equals zero.
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