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Abstract

Scientists often embed cells into a lower-dimensional space when studying single-
cell RNA-seq data for improved downstream analyses such as developmental trajectory
analyses, but the statistical properties of such non-linear embedding methods are of-
ten not well understood. In this article, we develop the eSVD (exponential-family
SVD), a non-linear embedding method for both cells and genes jointly with respect
to a random dot product model using exponential-family distributions. Our estima-
tor uses alternating minimization, which enables us to have a computationally-efficient
method, prove the identifiability conditions and consistency of our method, and pro-
vide statistically-principled procedures to tune our method. All these qualities help
advance the single-cell embedding literature, and we provide extensive simulations to
demonstrate that the eSVD is competitive compared to other embedding methods.
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We apply the eSVD via Gaussian distributions where the standard deviations are
proportional to the means to analyze a single-cell dataset of oligodendrocytes in mouse
brains (Marques et al., 2016). Using the eSVD estimated embedding, we then in-
vestigate the cell developmental trajectories of the oligodendrocytes. While previous
results are not able to distinguish the trajectories among the mature oligodendrocyte
cell types, our diagnostics and results demonstrate there are two major developmental
trajectories that diverge at mature oligodendrocytes.

Keywords: gene expression, oligodendrocytes, latent space models, matrix factorization,
random dot product model
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1 Introduction

Single-cell RNA-sequencing data give scientists an unprecedented opportunity to analyze the

dynamics among individual cells based on their gene expressions, but many analyses require

first embedding each cell into a lower-dimensional space as an important preprocessing step

in order to make downstream methods more statistically or computationally tractable. For

example, these low-dimensional embeddings can be used to visualize high-dimensional data,

to control for batch effects, to cluster cells into cell types, to denoise or impute single-

cell data, or to estimate trajectories to understand how cells develop over time; see Sun

et al. (2019) for a comprehensive overview. Typically, these embeddings are computed from

an n × p gene expression matrix, where each of the n rows and p columns represent a

different cell and a different gene respectively. Two of the most common methods to compute

these embeddings, uniform manifold approximation and projection (UMAP, McInnes et al.

(2018)) and the singular value decomposition (SVD), have different weaknesses that we strive

to remedy in this work. On one hand, UMAP produces flexible, non-linear embeddings

that have seen widespread usage for visualization purposes (Becht et al., 2019). However,

since UMAP does not yet have proven statistical properties such as consistency, there is a

lack of consensus on how to tune this method, and methods that build on these UMAP

embeddings inherit this statistical ambiguity; see Cao et al. (2019) and Bergen et al. (2020)

for example. On the other hand, the SVD has been extensively studied in the statistical

literature, but is often restrictive in practice since it yields only linear embeddings. In this

article, we advance the literature by developing the eSVD (exponential-family SVD), a non-

linear embedding method that retains desirable statistical properties. As the name suggests,

the eSVD is a generalization of the SVD, and embeds each cell in a non-linear fashion into a

lower-dimensional space with respect to any one-parameter exponential-family distribution,

allowing the researcher to have much broader modeling flexibility. Methodologically, we
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design the eSVD such that it can be appropriately tuned using matrix-completion ideas.

Theoretically, unlike similar work that also bridges this gap between the SVD and UMAP

for single-cell applications such as Durif et al. (2017) and Risso et al. (2018), we leverage

recent theoretical developments in the nonconvex optimization literature that formalize the

statistical properties of the eSVD. With these insights, we use the eSVD to analyze single-cell

data1 in order to demonstrate better downstream analysis results.

To illustrate the importance of embeddings, we focus on analyzing oligodendrocytes –

cells that enable rapid transmission of signals by producing myelin and providing metabolic

support to neurons in the central nervous system. These cells are intriguing to study due

to their constant development throughout a subject’s lifetime, unlike many other cell types

that mature at adulthood (Menn et al., 2006). As mentioned in Marques et al. (2016)

and Cai and Xiao (2016), understanding how oligodendrocytes develop can lead to new

insights into the cause of myelin disorders such as multiple sclerosis and Alzheimer’s disease.

We discuss the oligodendrocyte dataset and present a preliminary analysis in Section 2,

where we provide various diagnostics demonstrating the shortcomings of the SVD. To better

understand this phenomenon, we review the hierarchical model that the SVD implicitly

assumes in Section 3. Specifically, suppose a hierarchical model where each cell and each

gene has its own low-dimensional latent random vector. In the language of exponential-

family distributions, this model assumes that the cell’s expression of a particular gene is

a one-parameter exponential-family random variable whose natural parameter is the inner

product of the two corresponding latent vectors. By formulating this hierarchical model,

we see that the SVD implicitly assumes a Gaussian distribution with constant variance.

However, this assumption is often violated since the variance of each cell’s gene expressions is

observed to vary dramatically with their mean expression level (Love et al., 2014; Hicks et al.,

1We use the term “single-cell data” to refer to single-cell RNA-sequencing data specifically in the remain-
der of this article.
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2017). Hence, as we will review later, there is a rich line of work that extends hierarchical

models of this type to analyze single-cell data by replacing the Gaussian distribution with

more appropriate exponential-family distributions (Pierson and Yau, 2015; Townes et al.,

2017; Durif et al., 2017; Risso et al., 2018), of which this article continues.

The aforementioned work often add additional nuances on top of the hierarchical model

in order to model single-cell data better, but this often results in complicated estimators

that become too intractable to statistically analyze. Hence, we design the eSVD in such a

way that the posited statistical model retains the most important aspects common to the

aforementioned work, while we can leverage recent theoretical developments to analyze the

estimator’s statistical properties. Specifically, the eSVD uses alternating minimization, a

popular and computationally efficient approach used in the matrix factorization literature to

solve the nonconvex optimization problem at hand, described in Section 4. We present the

eSVD’s statistical theory in Section 5, which builds upon the theoretical analyses of Zhao

et al. (2015) and Lei (2018). These statistical properties include identifiability conditions

and consistency, which ensure that researchers well-understand the estimated embedding

and have a solid statistical foundation to build downstream analyses on top of. However,

to ensure that the eSVD does not sacrifice too much modeling flexibility for theoretical

tractability, we compare the eSVD to competing methods used to analyze single-cell data in

Section 6 using synthetic data.

Finally, we return to our preliminary analysis of oligodendrocytes in Section 7, where we

show that the eSVD embedding improves our analysis of cell developmental trajectories to

match the latest scientific findings. These trajectories explain the heterogeneity among the

oligodendrocytes by describing the smooth transition of gene expression among individual

cells along a continuum, reflecting the cells’ gradual transcriptional changes during devel-

opment (Trapnell et al., 2014). Although early research suggest oligodendrocytes develop

along a single trajectory (Kessaris et al., 2006), recent work suggest that oligodendrocytes
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could potentially branch out into various mature types (Marques et al., 2016; van Bruggen

et al., 2017; Marques et al., 2018). Our improved analysis match these findings – we show

the eSVD embedding estimates two distinct trajectories. We develop visualization tools to

show our developmental trajectory findings, and conclude in Section 8 with practical exten-

sions and theoretical questions left open for future work. While we focus on using the eSVD

embedding to estimate cell developmental trajectories in this article, we emphasize that this

embedding can be used for other applications highlighted earlier in this section, and provide

additional analyses on another single-cell dataset in the appendix.

2 Preliminary analysis

We analyze a dataset of oligodendrocytes from mice brains collected by Marques et al.

(2016) as a prototypical example to demonstrate shortcomings of the SVD embedding when

applied to single-cell data. This dataset, henceforth called the Marques dataset, contains

the gene expression of 5,069 oligodendrocytes that are clustered into thirteen cell sub-types

using a biclustering algorithm (Zeisel et al., 2015) in Marques et al. (2016). These thirteen

cell sub-types were later grouped into six major cell types and manually labeled based on

cell-type specific marker genes (Zhang et al., 2014), shown in Figure 1.. We preprocess the

data by selecting 983 highly informative genes, normalizing each cell by its library size (i.e.,

total counts across all genes), and log2-transforming each entry. These details are described

in Appendix C. As suggested in the literature, it is common to log2-transform the gene

expression matrix prior to using the SVD, since the log2-transformation can ideally stabilize

the variance (Townes et al., 2017; Butler et al., 2018). However, as we see in the preliminary

analysis in this section, this analysis strategy will result in modeling concerns that we wish

to remedy in the rest of this article.

We review the SVD embedding, as it provides motivation for the eSVD in the next
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Figure 1: The SVD embedding of the oligodendrocytes from Marques et al. (2016) after prepro-
cessing including a log2-transformation, shown alongside a table summarizing the cell types. The
six major cell types are listed in the table with the number of cells in each type, along with how
they are differentiated into the thirteen different cell sub-types. The rows are organized from the
“youngest” cell types to “most mature” cell types from top to bottom. The youngest three major
cell types are colored orange. while the oldest three are colored blue, green and yellow respectively.
The second and third latent dimensions are shown on the left, along with contours of the estimated
densities to visualize high-density regions (one for each color of cells).

section. Let A ∈ R
n×p represent the observed single-cell RNA-sequencing data matrix with

rank m, where n is the number of cells and p is the number of genes. Here, loosely speaking,

each entry Aij measures how many instances of genetic material for gene j is observed for

cell i after pre-processing. Let the SVD of A be denoted as ÛD̂V̂ > where Û ∈ R
n×m and

V̂ ∈ R
p×m are both orthonormal matrices and D̂ ∈ R

m×m is a diagonal matrix. For a given

latent dimensionality k ≤ m, the SVD embedding for each cell i ∈ {1, . . . , n} (denoted as
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X̂i ∈ R
k) and each gene j ∈ {1, . . . , p} (denoted as Ŷj ∈ R

k) is defined as

X̂i =
(n
p

)1/4

·
(√

D̂1,1 · Ûi,1, . . . ,

√
D̂k,k · Ûi,k

)
, for i ∈ {1, . . . , n} (2.1)

Ŷj =
(p
n

)1/4

·
(√

D̂1,1 · V̂j,1, . . . ,

√
D̂k,k · V̂j,k

)
, for j ∈ {1, . . . , p}. (2.2)

We can see that the SVD embedding is a linear embedding since X̂i is the first k elements of

the ith row in (n/p)1/4 · AV̂ D̂−1/2. A scatterplot of the second and third latent dimensions

of such an embedding is shown in Figure 1. Later in this article, we will show that this

embedding implicitly assumes a constant-variance Gaussian distribution in Section 3, and

show that this particular formulation handles identifiability concerns discussed in Section 4.

Now, we show that the SVD embedding (and its equivalent reparameterizations) does

not model the data well, which could produce misleading results in downstream analyses.

First, we visualize the quality of fit of the SVD embedding by purposefully omitting a

small subset of randomly-selected entries in A and estimating the embedding as a matrix-

completion problem. We can then assess the quality of fit of the embedding by comparing

the values of these omitted entries in A to their predicted values. Figure 2 demonstrates

this diagnostic, where the left plot shows the observed values in A that are not omitted (i.e.,

the “training set”) verses their respective predicted values, while the right plot shows the

observed values that are omitted (i.e., the “testing set”) verses their respective predicted

values. This missing-value diagnostic is commonly used both for assessing the quality of

fit as well as for model selection (Li et al., 2020), and we will return to it in detail in

Section 4. We see that while the embedding’s performance on the testing set is more-or-

less equivalent to that on the training set, the variability decreases as the gene expression

increases. This is in opposition with the working model in the literature that suggests

that larger gene expressions should be more variable than smaller ones (Witten, 2011; Risso

et al., 2018). In fact, prior to taking the log2-transformation, Figure 3 demonstrates that the
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Figure 2: Diagnostic based on matrix completion to assess the fit using the SVD embedding for
either the observed values that are not omitted (i.e., the “training set”) (A) or the observed values
that are purposefully omitted (i.e., the “testing set”) (B), both verses their respective predicted
values. This embedding is estimated using softImpute (Mazumder et al., 2010). The shaded red
region is centered around the identity function (the ideal mean function) and marks the 10th to 90th
quantiles of the constant-variance Gaussian model (based on the empirical variance) for different
values of the predicted mean. The blue dotted line represents the principal angle between the
observed values and their predicted value counterparts, where we mark its divergence from the
identity function’s 45◦. More details of this diagnostic is discussed in Section 4, while details of the
fitting process using softImpute can be found in Appendix C.

variance in gene expression increases with its mean, reinforcing this model. Combined, all the

diagnostics demonstrate that applying a log2-transform and using the SVD in conjunction

seem to distort the properties of the data. This inspires us to develop a more appropriate

embedding method that still retains desirable statistical properties. In the next section,

we review the optimization problem that the SVD solves and see how it can be extended

to one-parameter exponential families more generally, which will motivate our method, the

eSVD.
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Figure 3: (A) The standard deviation of the expression verses the mean expression across all the
cells, where each point represents one of the 983 genes in the preprocessed single-cell dataset. The
color of each point depends on how evenly the gene is expressed among each of the six oligoden-
drocyte cell types show in Figure 1. The solid red horizontal and vertical lines and the dashed red
line denoting the line y = x are for visual reference. (B) Violin plot of the average expression of
the genes reweighted according to the first principal component among the six oligodendrocyte cell
types, using the color scheme in Figure 1. The statistics in both plots are computed prior to taking
the log2-transformation, and is shown on the logarithm scale in Plot A purely for visualization
purposes. More details about these plots are in Appendix C.

3 Statistical model and background

In this section, we explain the random dot product model that we investigate in this article,

and its relation to other work.
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3.1 Statistical model and estimation strategy

Wemodel the entries of the single-cell dataset A ∈ R
n×p as conditionally independent random

variables drawn from a random dot product model – a latent hierarchical model commonly

used in other work (Pierson and Yau, 2015; Townes et al., 2017; Durif et al., 2017; Risso

et al., 2018). Specifically, for an appropriate one-parameter exponential-family distribution

F parameterized by its natural parameter θij, we impose model,

Aij ∼ F
(
θij = X>

i Yj

)
, for (i, j) ∈ {1, . . . , n} × {1, . . . , p},

where X1, . . . , Xn
i.i.d.∼ G, and Y1, . . . , Yp

i.i.d.∼ H. (3.1)

where G and H represent two latent k-dimensional distributions, where k is much smaller

than n or p. We assume all the latent random vectors Xi’s and Yj’s are jointly independent,

and the observed Aij’s are independent conditioned on the Xi’s and Yj’s. Let the density of

the exponential-family distribution F be denoted as

p(Aij | θij) = h(Aij) exp
(
T (Aij)

>η(θij)− g(θij)
)
, (3.2)

where g(·) is a known log-partition function for F with a domain R, η(·) is a known natural

parameter function, and T (·) is a known sufficient statistic function. For notational conve-

nience, we denote X ∈ R
n×k and Y ∈ R

p×k as the matrices that collect all the latent vectors

X1, . . . , Xn and Y1, . . . , Yp row-wise, and denote Θ = XY > ∈ R
n×p as the rank-k natural

parameter matrix that collects all elements θij. Given the exponential-family form for F

shown in (3.2), we need to impose the following assumption to ensure the inner products

X>
i Yj for all (i, j) ∈ {1, . . . , n} × {1, . . . , p} yield valid natural parameters,

Assumption 3.1 (Bounded inner product). Let R denote the domain of the natural param-
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eters for the distribution F . Assume that for any Xi ∼ G and Yj ∼ H,

P(X>

i Yj ∈ R) = 1, almost surely.

Given the above model, our goal is to estimate the latent random vectors X1, . . . , Xn

since these latent vectors represent the low-dimensional embedding of all n cells. For a

given exponential-family distribution F , an intuitive strategy for estimating our desired

embedding is to minimize the negative log-likelihood based on the observed data A over all

possible vectors X1, . . . , Xn and Y1, . . . , Yp. Specifically, plugging into the exponential-family

form (3.2) into the model (3.1), we derive the loss function

Ln(X, Y ) =
1

np

∑

(i,j)

[
g(X>

i Yj)− T (Aij)
>η(X>

i Yj)
]
, (3.3)

with the constraints X>
i Yj ∈ R for all pairs (i, j). The above loss function is nonconvex, but

if F is the the constant-variance Gaussian distribution, this loss function is proportional to

1

np

∑

(i,j)

(Aij −X>

i Yj)
2,

which is specifically what the SVD minimizes (Maezika, 2016). This particular model is con-

venient to use since the SVD provides a closed-form solution to the corresponding nonconvex

optimization problem, and leads to the SVD embedding shown in (2.1).

3.2 Relation to other work modeling single-cell data

As we have discussed previously in Section 2, this constant-variance assumption is too re-

strictive to properly model single-cell data. Hence, many articles cited above replace the

constant-variance Gaussian distribution with other exponential-family distributions for F
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that allow the variance to increase with the mean. For example, Witten (2011) and Risso

et al. (2018) consider the Poisson and negative binomial distribution specifically, after a suit-

able transformation of the natural parameters. Additionally, these models often add other

random effects on top of the existing random dot product model (3.1) that influence the

entries in A. For example, many methods like pCMF (Durif et al., 2017) allow researchers

to incorporate dropout into the model – a characteristic of single-cell data where a substan-

tial fraction of the gene expression for a cell is recorded as exactly 0 due to low amounts

of RNA in the cell (Kharchenko et al., 2014). Other methods such as ZINB-WaVE (Risso

et al., 2018) go further and allow covariate information such as gene length and cell size.

Most recently, Lopez et al. (2018) use deep autoencoders to estimate the embedding. How-

ever, there is often a lack of theoretical analyses for the aforementioned estimators. This

is because replacing the exponential-family distribution F with any distribution aside from

the constant-variance Gaussian distribution leads to non-trivial nonconvex estimators that

minimize the loss function shown in (3.3), which make traditional statistical techniques for

analyzing these estimators unsuitable. Therefore, concerns such as identifiability are typi-

cally not addressed theoretically, leading to ambiguity on performance of the estimators of

such models.

To resolve this theoretical ambiguity, we design the eSVD to estimate the embedding

based on the random dot product model (3.1) for any exponential-family distribution F

with no other random effects. In this way, we can tractably analyze the statistical properties

of eSVD while retaining abundant flexibility to effectively model single-cell data.

3.3 Matrix factorization

To the best of our knowledge, the first statistical results for estimators that extended the

SVD to generic exponential-family distributions by minimizing a loss function similar to
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(3.3) come from Gunasekar et al. (2014) and Lafond (2015). There, the authors minimize

the loss function over the natural parameter matrix Θ and add a trace penalization term

to encourage the estimate to be low-rank. While this formulation yields a convex opti-

mization problem, it requires solving a semidefinite program which can be computationally

prohibitive for large datasets. This consideration has motivated researchers to investigate

the statistical properties of estimators that minimize the loss function (3.3) directly as a non-

convex optimization problem. Specifically, alternating minimization is a suitable candidate

for this task, where each iteration alternates between optimizing either one of two low-rank

matrices X and Y while treating the other fixed. This algorithmic strategy pre-dates the

convex relaxation approach; see Collins et al. (2002), Jain et al. (2013), Udell et al. (2016),

Landgraf and Lee (2019) and the references within for discussions and additional variants.

From an algorithmic standpoint, our method is a direct continuation of such work. However,

the statistical properties of such estimators have only recently been characterized rigorously.

For example, to accommodate the constraints in Assumption 3.1, Wang et al. (2016), Yu

et al. (2020) and Chi et al. (2019) adapt the theoretical framework to study slightly different

estimators based on alternating projected gradient descent. In contrast, our work will build

on techniques used in Zhao et al. (2015) and Balakrishnan et al. (2017) to retain our focus

on alternating minimization.

However, all the aforementioned theoretical results do not directly apply the random

dot product model (3.1), which contains an additional source of randomness induced by the

hierarchical structure. In contrast, our theory is able to account for this additional source of

randomness by drawing upon connections to the network literature. Specifically, the random

dot product model (3.1) is similar to those used in latent position random graphs studied

in the network literature (Hoff et al. (2002) and Athreya et al. (2017)). Hence, we draw

inspiration from Lei (2018) on how to address these identifiability concerns and to develop

proof techniques in this article.
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There are many other embedding methods in the literature more broadly, such as non-

negative matrix factorization, kernel PCA, and manifold-based embedding methods such as

UMAP and Isomap. We defer a thorough discussion contrasting eSVD with such estimators

to Appendix B.

4 Method: eSVD (Exponential-family SVD)

We describe the eSVD in this section, which is designed to be a general framework to mini-

mize the loss function (3.3) for any choice of a one-parameter exponential-family distribution

F . To keep the presentation clear, we describe some of the more nuanced implementation

details in Appendix B. We also describe an important diagnostic to assess the quality of fit,

as demonstrated in Section 2. This diagnostic can be also be used as a tuning procedure to

select the most appropriate choice for F or nuisance parameters.

4.1 eSVD and its application to the curved Gaussian distribution

Similar to other nonconvex matrix factorization methods (Wang et al., 2016; Yu et al.,

2020), our method requires an initial estimate of the rank-k matrix of natural parameters,

Θ̂′, where k is pre-determined. To achieve this, we use an initialization method based on

Wang et al. (2016). To simplify the presentation here, we provide details in Appendix B.1.

This initialization scheme performs a rank-k SVD based on transforming each entry of A via

the inverse of the log-partition function g(·). Given this initial estimate, consider its SVD

Θ̂′ = UDV >. To start the alternating minimization stage of our method, we set Y
(0)

= V .

After initialization, the eSVD then refines the estimate by performing alternating mini-

mizations. Denoting a generic matrix and its SVD by Θ̂ = UDV >, let LeftSVD(Θ̂) = U , the
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function that maps a matrix to its left singular vectors. Then, for iterations t ∈ {0, . . . , T−1},

X(t+1) = argmin
X∈Rn×k

Ln(X, Y
(t)
) : X>

i Y
(t)

j ∈ R, ∀(i, j), (4.1)

X
(t+1)

=
√
n · LeftSVD(X(t+1)), (4.2)

Y (t+1) = argmin
Y ∈Rp×k

Ln(X
(t+1)

, Y ) : (X
(t+1)

i )>Yj ∈ R, ∀(i, j), (4.3)

Y
(t+1)

=
√
p · LeftSVD(Y (t+1)). (4.4)

After all T iterations, the eSVD outputs the final estimate after a reparameterization. That

is, letting Θ̂(T ) = X
(T )

(Y (T ))> have a rank-k SVD of ÛD̂V̂ >, the final estimates are

X̂i =
(n
p

)1/4

·
(√

D̂1,1 · Ûi,1, . . . ,

√
D̂k,k · Ûi,k

)
, i = 1, . . . , n, (4.5)

Ŷj =
(p
n

)1/4

·
(√

D̂1,1 · V̂j,1, . . . ,

√
D̂k,k · V̂j,k

)
, j = 1, . . . , p. (4.6)

This is the same reparameterization used in (2.1) and (2.2).

Remarks about algorithmic design. We make a few remarks about the design of our

algorithm. Optimizing over X and Y directly raises identifiability issues, since for any

orthogonal matrix Q, Ln(XQ, Y Q>) = Ln(X, Y ). To address this, Ge et al. (2017) append

a penalty term
1

8
‖X>X − Y >Y ‖2F ,

while Zhao et al. (2015) use the QR-decomposition between iterations, and we use the

LeftSVD(·) operator. In practice, we found all three choices behave similarly. The factors
√
n and

√
p in (4.2) and (4.4) are included for theoretical reasons to ensure the spectrum

of the Hessian is well-controlled and to ensure the values do not underflow if n or p are too
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large empirically. Also, the final reparameterizations in (4.5) and (4.6) are designed such

that the sample second-moment matrices of X̂ and Ŷ are both equal and diagonal, i.e.,

1

n
X̂>X̂ =

1

p
Ŷ >Ŷ ,

which is important for our statistical analysis later on.

Lastly, to perform the constrained optimization (4.1) and (4.3), we use a first-order

method called Frank-Wolfe (Jaggi, 2013), which we found more stable compared to using

projected gradient descent. While there are theoretical guidelines for choosing step-sizes

related to the convexity and smoothness for this method, we found these choices often led

to poor empirical performance.

Example with the curved Gaussian distribution. To make the eSVD’s workings more

concrete, we demonstrate what the minimization in (4.1) would entail when we set F to be

the curved Gaussian distribution. This will be useful later in this article when we use this

distribution to analyze the oligodendrocytes. Specifically, we say the random variable Aij

follows a curved Gaussian distribution with a known parameter τ > 0 if Aij ∼ N(µij, µ
2
ij/τ

2),

for an unknown mean parameter µij > 0 (Efron et al., 1978; Liu and Martin, 2020)2. This

sets the standard deviation to be linearly proportional to the mean. Writing this distribution

in exponential-family form (3.2) yields,

p(Aij | θij) =
τ exp(−τ 2/2)√

2π
exp

(

 τ 2Aij

−τ 2A2
ij/2



> 
θij
θ2ij


+ log(θij)

)
, (4.7)

2We call it a curved Gaussian distribution since this distribution is a curved exponential-family distribu-
tion.

17



where the relation between the natural parameter θij and the mean parameter µij can be

derived to be µij = 1/θij. Here, the domain of the natural parameters would be R = R+,

the positive half-line. After simple calculations, one can derive the negative log-likelihood

and conclude that the minimization in (4.1) becomes

X(t+1) = argmin
X∈Rn×k

1

np

∑

(i,j)

[
− log

(
X>

i Y
(t)

j

)
−


 τ 2Aij

−τ 2A2
ij/2



> 
 X>

i Y
(t)

j

(X>
i Y

(t)

j )2



]
.

Analogous calculations for other common distributions are shown in Appendix B.

The curved Gaussian distribution is relevant in practice since if τ ≥ 2, this distribution

reflects the phenomenon that genes with larger expression also exhibit larger variance, while

most of the distribution’s mass is still positive. Additionally, in many instances, this distri-

bution can capture more variability than the Poisson and negative binomial distributions,

which can be beneficial when the single-cell data is intrinsically noisier. In general however,

if the researcher wants to use the eSVD for an arbitrary one-parameter exponential-family

distribution F , all she needs to pass into our implementation is the computation of the loss

function (3.3), its gradients, and information about the domain R.

4.2 Matrix-completion diagnostic and tuning procedure

We provide the following diagnostic to assess the embedding’s quality of fit or to determine

which choice of F is most appropriate for our data, which was used in Figure 2. Inspired

by network cross-validation work such as Li et al. (2020), we use matrix completion to

determine the quality of our model fit. As alluded to in Section 2, to do this, we omit

a small percentage of the entries of A when estimating the embedding and compare these

values to their predicted expected value counterparts. To compute this expected value,

recall that for exponential-family distributions (3.2), g′(·) (the derivative of the log-partition
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function g(·)) maps the natural parameter to the expected value. We note that we are able to

adopt this matrix completion strategy to tune our method since our alternating minimization

procedure can be adapted to handle missing values. In contrast, embedding methods like

ZINB-WaVE (Risso et al., 2018) and PCMF (Durif et al., 2017) do not offer an analogous

tuning procedure. This procedure is formalized below.

1. For bootstrap trials b ∈ {1, . . . , B}:

(a) Randomly sample m of the entries of A, denoted as O = {(i1, j1), . . . , (im, jm)},
which will be omitted in the following estimation step. Here, m can be any small

number, such as d0.01 · (np)e.

(b) Estimate the latent vectors by X̂ and Ŷ according to Subsection 4.1 where the loss

function (3.3) omits the entries in O and is parameterized based on the desired

distribution of F .

(c) Compute v1, defined as the leading eigenvector of the matrix formed by the omit-

ted observed values AO = {Ai1,j1 , . . . , Aim,jm} and their predicted expected value

counterparts g′(X̂Ŷ >)O = {g′(X̂>
i1
Ŷj1), . . . , g

′(X̂>
imŶjm)}.

(d) Compute model fit quality, q(b) defined as the angle between v1 and the vector

(1, 1), representing the identity function.

2. Average the model fit qualities across all trials, q(1), . . . , q(B).

Observe that we define the quality of fit q(b) above by how much the leading eigenvector v1

deviates from 45◦. This angle of v1 is what we called the principal angle in Figure 2. Having

an eigenvector’s angle close to 45◦ means that on average, the predicted values correspond

closely with the observed value. The advantage of this quality-of-fit’s definition is that it is

easily comparable even across different distributions F , unlike the negative log-likelihood or

MSE.

19



While we advocate constructing plots such as Figure 2 to obtain a more holistic sense

of how well the embedding fits the data in general, we can also use the above procedure

to obtain an automated model selection method in the following way – if we try the above

diagnostic for multiple distributions for F , the distribution that yields the smallest average

of q(1), . . . , q(B) is deemed the most appropriate model for A. In this way, we can also use

this diagnostic as a tuning procedure to select the dimensionality of the latent space k or

nuisance parameters for exponential-family distributions such as τ in the curved Gaussian

distribution (4.7) in a grid-search fashion. An additional variant of this tuning procedure is

detailed in Appendix B.

5 Statistical theory

In this section, we prove the consistency for the eSVD when applied to the random dot prod-

uct model (3.1), which is important to ensure that the eSVD is estimating a well-defined

quantity. This result provides the needed statistical foundation for downstream tasks such

as clustering and RNA velocity, as mentioned in Section 1. Additionally, our theory gives us

better insights into the eSVD since our analysis also reveals the identifiability conditions that

formalize to what degree the embedding can be estimated. While our theorems currently

assume the correctly-specified setting (i.e., the eSVD’s choice of F matches the true generat-

ing distribution and k is correctly-specified), we hope these theorems provide a roadmap for

future work to prove analogous statements for broader settings or for more complex methods

like ZINB-WaVE which currently do not exist.

We discuss the additional notation here. For a generic matrix A, let ‖A‖F denote its

Frobenius norm. For two sequences an and bn and two random sequences An and Bn, let

an = O(bn) and An = OP (Bn) denote that an/bn or An/Bn is bounded for large enough n

deterministically or in probability respectively. For all i ∈ {1, . . . , n} and j ∈ {1, . . . , p},
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let the the population second moment matrices of Xi and Yj and the corresponding eigen-

decompositions be defined respectively as

E[XiX
>

i ] = C∗

X = Φ∗Λ∗Φ∗>, and E[YjY
>

j ] = C∗

Y = Ψ∗Γ∗Ψ∗>.

Our proposition below requires the following assumptions.

Assumption 5.1 (Sub-Gaussian distribution of latent vectors). Assume that Xi for all

i ∈ {1, . . . , n} are i.i.d. sub-Gaussian random vectors. That is, there exists a fixed constant

D such that for any vector v ∈ R
k where ‖v‖2 = 1 and any integer c ≥ 1, (E[|X>

i v|c])1/c ≤
Dc1/2, and a similar assumption holds for Yj for all j ∈ {1, . . . , p} with also the same

constant D.

Assumption 5.2 (Second moment properties). First, assume the population second moment

matrices C∗
X and C∗

Y are equal and are both diagonal matrices, where (C∗
X)i,i ≥ (C∗

X)j,j for

any 1 ≤ i < j ≤ k. Second, assume there exists positive numbers c1 ≤ c2 and 1 < α ≤ β

such that for all ` ∈ {1, . . . , k}, the eigenvalues satisfy

c1`
−α ≤ λ∗

` ≤ c2`
−α, and λ∗

` − λ∗

`+1 ≥ c1`
−β,

with the convention that λ∗
k+1 = 0.

Both assumptions are common in work that study the spectrum associated with random

dot product models (Lei, 2018). Assumption 5.1 assumes G and H are sub-Gaussian dis-

tributions, which enables sharp rates for estimating their second-moment matrices C∗
X and

C∗
Y respectively (Vershynin, 2012). On the other hand, the second part of Assumption 5.2

enables our estimator to accurately estimate its eigenvalues and eigenvectors. Importantly

however, the first part of Assumption 5.2 can be interpreted instead as an identifiability

condition, which we formalize below.
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Proposition 5.1. Given two k-dimensional distributions G and H, each with at least two

moments where the population second moment matrices are full rank, consider two indepen-

dent random variables X ′ ∼ G and Y ′ ∼ H. Then there exists a linear and invertible trans-

formation R such that the population second moment matrices of X = RX ′ and Y = R−>Y ′

are the same, i.e.,

E[XX>] = E[Y Y >].

Furthermore, both population second moment matrices of X and Y are diagonal matrices.

The proof is in Appendix I, which provides an explicit construction of the matrix R.

Note that since R is invertible, we guarantee that the distribution of the inner product is

preserved, i.e.,

P
(
(X ′)>Y ′ ≤ t

)
= P

(
X>Y ≤ t

)
, ∀t ∈ R.

Hence, the first part of Assumption 5.2 can be interpreted as an identifiability condition,

since we can only estimate G and H only up to a linear transformation.

Proposition 5.2. Assume the model in (3.1) where Assumptions 5.1 and 5.2 hold. If the

estimator Θ̂ satisfies ‖Θ − Θ̂‖F ≤ ε conditioned on X and Y , and k = o(min{n, p}), then
up to sign,3 eSVD achieves the rate after reparameterizations (4.5) and (4.6),

1

n
‖X − X̂‖2F = OP

(
max

{ k4β−α+4

min{n, p} ,
k2β−α+2 max(ε2, ε)

np

})
. (5.1)

Discussion of consistency. Assuming k is fixed, the above proposition states that the

eSVD embedding is consistent as long as ε (the rate of convergence for the matrix of natural

parameters, ‖Θ−Θ̂‖F ) is faster than OP (
√
np). We formalize this statement in Appendix D,

where we add assumptions common to the literature such as strong convexity and smoothness

3We use “up to sign” similar to Fan et al. (2018), where each column of X̂ can be multiplied by ±1 since
the SVD is not unique.
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of the negative log-likelihood function associated with F . The details are deferred because

these assumptions are technical to describe and detract from the main text. More generally,

however, the above proposition addresses the additional source of randomness induced by

the random dot product model mentioned in Section 3 that other theoretical investigations

typically do not address. Therefore, any such estimator equipped with a rate for ‖Θ− Θ̂‖F
can be plugged into Proposition 5.2 directly. Additionally, note that a similar rate (5.1)

holds for estimating Y , the embedding of the genes.

Application to curved Gaussian model. While Proposition 5.2 and the results in

Appendix D apply for any generic one-parameter exponential-family distribution F satisfying

certain conditions, we specifically apply these results to the curved Gaussian distribution

(4.7) in Appendix E to demonstrate what the rates are for a particular exponential-family

distribution. At a high level, we show that when n and p grow asymptotically at the same

rate and k is fixed,
1

n
‖X − X̂‖2F = OP

( log1/2(n)
n1/2

)
.

6 Numerical study

In this section, we study the performance of the eSVD and other competitive methods based

on synthetic data. Our setup for all the simulations in this section are as follows: based on

model (3.1), we set the dimensionality to k = 2 and sample X1, . . . , Xn i.i.d. uniformly from

four connected linear segments (which we call the “trajectories”) with additive Gaussian

noise, as illustrated in Figure 4. These four segments loosely represent four cell types. We

also sample Y1, . . . , Yp i.i.d. from a mixture of two Gaussians. These sampling procedures

represent G and H respectively, up to identifiability conditions. We enforce XT
i Yj ∈ R for

all pairs (i, j). The distribution family F varies among different simulations. We do not
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Figure 4: (A) The two-dimensional population density of G, visualized as a heat map with contour
lines of the density along with the true “trajectories” (black lines). The mean vector for each of
four cell types are labeled in a different color (blue, yellow, green, orange). (B to D) The estimated
embedding X̂1, . . . , X̂n of the synthetically-generated A for varying levels of n, (i.e., number of cells
or number of rows), colored by the true cell type, which are labels used only for visual reference
and not used during estimation.

use R packages such as Splatter (Zappia et al., 2017) to generate our synthetic data because

we want to have precise control over the true embedding. The full details of the simulation

setups and usage of various estimators in this section are in Appendix F.

Consistency of the estimated embedding. In this first simulation suite, we demon-

strate that the estimated embedding converges towards the true embedding. Specifically,

we generate A ∈ R
n×p where each entry Aij is sampled independently from the negative

binomial distribution with a natural parameter θij = X>
i Yj and r = 50, and fit the eSVD

using the correctly specified model. Figure 4 is an illustration that demonstrates the asymp-

totic properties of the eSVD. Specifically, we see that the distribution of the embedding

X̂1, . . . , X̂n approximates G as n increases. We provide details and additional results that

verify the consistency of the eSVD’s embedding in Appendix F.
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Comparison of different embedding methods. In our second simulation suite, we

demonstrate that the cells’ latent positions estimated by the eSVD are more accurate in

relation to one another than those estimated by other methods. Here, we fix n = 200

and p = 400. We compare the eSVD via the negative binomial distribution to nine other

methods commonly used to embed single-cell data: ZINB-WaVE (Risso et al., 2018), pCMF

(Durif et al., 2017), SVD, non-negative matrix factorization (NMF), independent component

analysis (ICA), UMAP (Becht et al., 2019), t-SNE (Maaten and Hinton, 2008), Isomap

(Tenenbaum et al., 2000) and diffusion map (Haghverdi et al., 2015). The first two methods

and our tuning procedures are explained in Appendix F. Importantly, SVD implicitly assumes

F is a constant-variance Gaussian distribution as mentioned in Section 3, while ZINB-WaVE

and pCMF assume F is a negative binomial and Poisson distribution respectively.

We simulate data from a negative binomial model in this simulation, which is the distribu-

tion that is most commonly used to model sequencing data (Love et al., 2014). Specifically, we

sample the observed count matrix A conditionally independent on X1, . . . , Xn and Y1, . . . , Yp

where Aij’s are sampled from a negative binomial distribution with natural parameter X>
i Yj

and dispersion parameter r = 50. Then, when we estimate the embedding using eSVD, we

use the tuning procedure mentioned in Section 4 to select the most appropriate value of the

dispersion parameter r from the set {5, 50, 100}.
We find that on average across 100 trials, our method estimates the relative latent posi-

tions of each cell to be more accurate than other methods (Figure 5A). To define our notion

of accuracy, consider each cell i and its Euclidean distance to all other n − 1 cells in the

latent space in both the true and estimated embedding. We then compute the Kendall’s tau

correlation between these two vectors, which only relies on the ranks of the distances, and

then average this value over all n cells. Hence, a high averaged Kendall’s tau value suggests

the latent positions of the n cells are well-estimated with respect to one another. We call

this notion of accuracy the relative embedding correlation. We define our notion of accuracy
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in this way to ensure it is insensitive to arbitrary rotations or constant rescalings of the

embedding. Figure 5B compares the different estimated embeddings to the true embedding

as an illustration. Both the eSVD and ZINB-WaVE estimate embeddings where the four

cell types are relatively in the correct configuration, and their accuracy are quite high. For

the other methods, the high variability due to the overdispersion of the negative binomial

seems to dramatically skew the embedding for certain cells. We defer additional simulations

using other distributions F to Appendix F.

Investigation using misspecified models and the effect of k. In our third simulation

suite, we empirically compare the eSVD to other methods when F is misspecified. We also

demonstrate how different values of k can affect the quality of the embedding. While the

theorems we developed in Section 5 do not currently handle such settings, these results help

us understand how the eSVD performs in more realistic and more challenging scenarios. Due

to space constraints, we defer these results to Appendix F, which show that the eSVD can

roughly estimate the relative positions of the cells’ embedding well compared to other meth-

ods despite the model misspecification. All-in-all, our takeaway message is that the eSVD’s

flexibility in choosing which exponential-family distribution F to use and the diagnostics

provided in Section 4 allow our method to remain competitive among the ten methods.
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Figure 5: (A) The density plot of each embedding methods’ accuracy (eSVD, ZINB-WaVE, pCMF,
SVD, NMF, ICA, UMAP, t-SNE, Isomap and diffusion map), based on the relative embedding
correlation. The circles along each method’s x-axis denotes the median accuracy across the 100
trials. Here, both the data-generating distribution F and the eSVD use the negative binomial
distribution. See Appendix F to see how we tuned the methods. (B) The ten estimated embedding,
chosen among the trial with the median accuracy, noted in each plot’s title in parenthesis. The
coloring of the samples persists from Figure 4. The x- and y-axes represent the coordinate system
estimated by the respective embedding methods, reflected in the dashed grids.

7 Single-cell analysis

We return to modeling the Marques dataset (Marques et al., 2016), as described in Sec-

tion 2, to determine if the embedding based on the curved Gaussian distribution (4.7) is

more appropriate than that based on the constant-variance Gaussian distribution, and if so,
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investigate how the embedding affects the downstream trajectory analysis. As alluded to

in Section 2, the six major cell types in Figure 1 have a determined ordering, starting from

Pdgfra+ precursors and ending with the mature oligodendrocytes. Our goal in this analysis

is to estimate the trajectories among the cell sub-types constrained to this ordering. For

example, in Marques et al. (2016), after embedding the cells into a latent space, the authors

estimate one developmental trajectory connecting the first five major cell types starting from

the Pdgfra+ precursors, but do not definitively conclude how the six mature oligodendrocyte

cell sub-types differentiate. Instead, they relied on analyzing the percentage of different cell

types across different brain regions to hypothesize that these six sub-types differentiate into

multiple different trajectories.

7.1 Details of estimating cell developmental trajectories

We provide more details on how we estimate the developmental trajectories based on the

low-dimensional embedding X̂1, . . . , X̂n. As alluded in Section 1, these trajectories show

how these different cell sub-types develop from one to another, assuming the latent vectors

X̂i gradually change along the trajectories. Trajectory analyses are an important step in

studying the cellular dynamics from single-cell data, as most single-cell technologies provide

only a snapshot of all the cells. This is because most technologies destroy the cells during

the sequencing step, which prevent longitudinal studies. In this article, we use Slingshot

(Street et al., 2018) (with minor modifications) to estimate these cell developmental trajec-

tories. Roughly speaking, Slingshot is a two-step algorithm that requires the latent vectors

to already be clustered, where we treat each cell sub-type as a cluster. In the first stage,

Slingshot estimates the number of trajectories and ordering of the cell sub-types based on

minimizing the distances between cell sub-type centers via a minimum spanning tree. In

the second stage, Slingshot fits variants of principal curves (Hastie and Stuetzle, 1989) that
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pass through the cell sub-type centers in the estimated ordering. These principal curves

can be thought of as smooth curves that pass through high-density regions in the latent

space. Throughout our analysis in this section, we apply Slingshot to the embedding using

all latent dimensions, but only visualize the estimated trajectories with respect to the first

three latent dimensions. More details about Slingshot and our modifications of it are given

in Appendix G.

We briefly mention that the original study (Marques et al., 2016) uses the Monocle al-

gorithm (Trapnell et al., 2014), to estimate the cell developmental trajectories. We use

Slingshot instead as it is the current state-of-the-art method based on extensive benchmark-

ing comparisons in Saelens et al. (2019).

7.2 Analysis using the constant-variance Gaussian distribution

Building on the analysis in Section 2, we perform a trajectory analysis using the SVD embed-

ding shown in Figure 1 on the log2-transformed data, which assumes the constant-variance

Gaussian model. Applying Slingshot directly to this embedding results in two trajectories,

both heavily overlapping one another when visualized (Figure 6A). These results are similar

to Marques et al. (2016) in two ways. First, the authors show that all cells develop from

Pdgfra+ precursors to myelin-forming oligodendrocytes in the same way, which we estimate

as well. Second, the authors do not definitively conclude if the mature oligodendrocytes di-

verge in their development. Our trajectories themselves also leave this ambiguity unresolved

due to the heavy overlap between the two trajectories. However, we perform the following

additional visual diagnostic to quantify if these two trajectories are well approximated by a

single trajectory.

To formalize to what degree the different trajectories are the same, we use a bootstrap

resampling procedure to construct a uniform uncertainty tube around each trajectory. These
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Figure 6: (A) Three-dimensional plot of the estimated latent positions via the SVD embedding with
the two estimated cell developmental trajectories laid on top, corresponding to the data shown in
the Figure 1. The thirteen bolded points correspond to the cluster centers of the thirteen cell
sub-types, where the color scheme persists from Figure 1. (B) The uncertainty tube overlaid on
top of Figure A.

tubes capture the variance of each estimated trajectory, and plotting these tubes is a useful

descriptive tool. This is an important tool for our analysis because Slingshot is sensitive

to small perturbations in the data due to its graph-based strategy to estimate the ordering

of the cell sub-types. Specifically, small variations can dramatically change the number of

estimated trajectories or ordering of cell sub-types within those trajectories. Hence, our

procedure to construct these uniform uncertainty tubes first samples with replacement from

all embedded cells within each of the thirteen cell sub-types. For each bootstrap sample,

we apply Slingshot to estimate a new set of trajectories. We then compute the `2 distance

between the new trajectories and the original trajectories. After applying this procedure

multiple times, the 95% quantile of the `2 distances determines the uniform radius of the
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uncertainty tube, centered around the original trajectory. More details of this procedure are

in Appendix G. Based on this construction, both trajectories lie in a single uncertainty tube

(Figure 6B); hence, we conclude there is effectively one trajectory that connects all thirteen

cell sub-types. This result explains why previous work such as Marques et al. (2016) had

difficulty explaining how mature oligodendrocytes differentiate in their trajectory analysis.

7.3 Analysis using the curved Gaussian model

The above conclusions, however, rest on the questionable constant-variance Gaussian dis-

tributional assumption (see Figure 3). As we have seen in Figure 2, our matrix-completion

diagnostic suggests that this assumption is not suitable for modeling the oligodendrocyte

dataset at hand.

This finding motivates us to analyze the data using the eSVD to embed each cell with re-

spect to the curved Gaussian distribution (4.7), and to re-examine the resulting diagnostics.

Following suggestions from articles like Risso et al. (2018) and Durif et al. (2017), we no

longer log2-transform the entries of A for our eSVD analysis, but rather model the counts in

A directly after accounting for the library size. Based on our tuning procedure, the curved

Gaussian distribution with k = 5 and τ = 2 best fits the data, determined among a grid

of candidate values. When we plot the resulting diagnostic for the eSVD in Figure 7, we

obtain results that suggest a much better fit compared to that of the SVD. Specifically, the

variance is appropriately increasing with the mean, unlike the trend shown in Figure 2. We

conclude that the curved Gaussian model (without a log2-transformation) is more appropri-

ate than the constant-variance Gaussian model (with a log2-transformation) for modeling

our oligodendrocyte dataset.

We visualize the eSVD embedding in Figure 8 alongside its estimated trajectories and

uncertainty tubes, and we see two distinct trajectories that differentiate among the mature

31



Figure 7: Diagnostic based on matrix completion to assess the fit using the eSVD embedding via
the curved Gaussian model with k = 5 and τ = 2 for either the observed values that are not omitted
(i.e., the “training set”) (A) or the observed values that are purposefully omitted (i.e., the “testing
set”) (B), both verses their respective predicted values. Both plots are comparable to those in
Figure 2. Specifically, the 10th to 90th quantiles of the curved Gaussian model is marked by the
shaded red region.

oligodendrocytes. Specifically, when we apply Slingshot to the eSVD embedding, we find

that we still retain the conclusion that all cells from Pdgfra+ precursors to myelin-forming

oligodendrocytes develop in the same way, similar to Marques et al. (2016). However, in con-

trast to that work, we are now able to observe substantial differentiation among the mature

oligodendrocytes, with two distinct trajectories supported by the uncertainty tubes. Specif-

ically, within this major cell type, only one of the six mature oligodendrocytes sub-types

is shared between the two trajectories. Among the five remaining mature oligodendrocytes

sub-types, three sub-types branch off in one trajectories while two sub-types branch into

the other trajectory. This is in contrast with the analysis using the SVD embedding where

all the estimated trajectories lay within one uncertainty tube (Figure 6B). We show ad-
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Figure 8: (A) Three-dimensional plot of the estimated latent positions via the eSVD embedding
with the curved Gaussian distribution for k = 5 and τ = 2 with the estimated cell developmental
trajectory laid on top. The thirteen bolded points correspond to the cluster centers of the thirteen
cell sub-types. The two estimated cell developmental trajectories are colored in yellow and blue.
These correspond with the two of six mature oligodendrocytes cell sub-types unique to one tra-
jectory (colored in yellow) and three mature oligodendrocytes cell sub-types unique to the other
trajectory (colored in blue). The remaining mature oligodendrocyte cell sub-type is common to
both trajectories, prior to the branching (colored in gray). The coloring of cells of other cell types
persists from Figure 1. (B) The uncertainty tubes overlaid on top of Figure A. Both plots are
comparable to Figure 6.

ditional plots corresponding to these results, as well as follow-up analyses and diagnostics

of the oligodendrocytes using UMAP or ZINB-WaVE as well as plots based on the highly

informative genes in Appendix H.

In summary, from the diagnostic (Figure 7), we conclude that the curved Gaussian dis-

tribution is more appropriate for the Marques data, and using this model we identify two

distinct developmental trajectories (Figure 8). This is an improvement from the analysis

in Marques et al. (2016) which suggested multiple trajectories, but was not able to directly
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verify this conjecture. Our comparison of the results obtained using the SVD versus the

eSVD embeddings can help explain why previous scientific findings suggest that oligoden-

drocytes effectively follow a single developmental trajectory, while newer analyses based on

more flexible statistical models (van Bruggen et al., 2017; Marques et al., 2018) suggest

multiple trajectories.

We include an analysis of the single-cell dataset released in Zeisel et al. (2015) in Ap-

pendix H to demonstrate eSVD’s performance in a different setting. There, the downstream

task is to cluster cells rather than to infer developmental trajectories.

8 Discussion

In this article, we develop an estimator to non-linearly embed the cells in a single-cell RNA-

sequencing dataset into a lower dimensional space with respect to a random dot product

model where the inner product of two latent vectors is the natural parameter of a one-

parameter exponential-family distribution F . This embedding method can greatly improve

the estimation of cell developmental trajectories overall because it can handle distributions

beyond the constant-variance Gaussian distribution, both in theory and practice. While

the spirit of such embedding is not new, our contribution is two-fold. First, we develop

the eSVD, an alternating minimizing estimator which is computationally efficient and also

enables both a tuning procedure based on matrix completion and a theoretical investigation

of its statistical properties such as identifiability and consistency. Second, we apply our

estimator to analyze the oligodendrocytes in mouse brains, and our results coincide with

recent scientific hypotheses (van Bruggen et al., 2017; Marques et al., 2018).

For future work, we plan to further the eSVD both in its modeling flexibility in practice

as well as its theoretical properties, as we believe embeddings based on the random dot

product model are appealing for single-cell analyses. Specifically, we plan to extend the
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eSVD to model the dropout effect, allow different nuisance parameters for each gene, or

incorporate the library size directly into the statistical model directly. These trends occur

in work such as Witten (2011), Pierson and Yau (2015), Townes et al. (2017) and Risso

et al. (2018). While the models within these investigations are more flexible, we reiterate

that their corresponding estimators were previously often believed to be too complicated to

analyze from a theoretic perspective. Therefore, we are interested in studying how flexible

our methods can be while still retaining tractability for theoretical analyses or how they

perform in misspecified settings. Additionally, our current theory also does not address

the trajectory estimation itself, which we think is another promising direction for theoretical

investigation. On the methodological side, we plan to provide tuning procedures that are less

computationally demanding compared to our current grid-search approach and to work on

investigating other downstream applications of the eSVD embedding, such as cell clustering,

batch correction, imputation, and RNA velocity (La Manno et al., 2018). Also, while this

article focuses trajectory analysis based solely on the cells’ latent vectors, other downstream

applications such as gene clustering and finding marker genes could be developed based on

the genes’ latent vectors.
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