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Abstract

Wind speed and direction variations across the rotor affect power production. As
utility-scale turbines extend higher into the atmospheric boundary layer (ABL) with
larger rotor diameters and hub heights, they increasingly encounter more complex
wind speed and direction variations. We assess three models for power production
that account for wind speed and direction shear. Two are based on actuator disc rep-
resentations, and the third is a blade element representation. We also evaluate the
predictions from a standard power curve model that has no knowledge of wind shear.
The predictions from each model, driven by wind profile measurements from a profil-
ing LIDAR, are compared to concurrent power measurements from an adjacent
utility-scale wind turbine. In the field measurements of the utility-scale turbine, dis-
crete combinations of speed and direction shear induce changes in power production
of —19% to +34% relative to the turbine power curve for a given hub height wind
speed. Positive speed shear generally corresponds to over-performance and increas-
ing magnitudes of direction shear to greater under-performance, relative to the
power curve. Overall, the blade element model produces both higher correlation and
lower error relative to the other models, but its quantitative accuracy depends on
induction and controller sub-models. To further assess the influence of complex,
non-monotonic wind profiles, we also drive the models with best-fit power law wind
speed profiles and linear wind direction profiles. These idealized inputs produce qual-
itative and quantitative differences in power predictions from each model, demon-
strating that time-varying, non-monotonic wind shear affects wind power
production.
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1 | INTRODUCTION

Mitigation of anthropogenic climate change depends on the decarbonization of carbon-intensive industries, in particular, electricity generation.
The share of wind energy generation in global electricity production has grown rapidly in the preceding two decades, undergoing a factor of 35x
growth in total installed capacity over that time. Concurrently, the physical dimensions of utility-scale turbines have also grown at a rapid rate. In
the United States, the current average hub height (94 m) and rotor diameter (127 m) of land-based turbines are 66% and 164% larger, respectively,
than those 20years ago.1 For off-shore turbines, the average hub height (108 m) and rotor diameter (158 m) are 15% and 24% larger,
respectively, than their land-based counterparts.2 The growth in the physical size of wind turbines has corresponded to an increase in their name-
plate capacity, as well, with the average generating capacity of onshore turbines nearly tripling from around 1 MW to around 3 MW and for off-
shore turbines nearly quadrupling from around 2 MW to around 9 MW.12? These advances in wind energy technology portend future challenges
in turbine power modeling as larger physical dimensions correspond to an increased potential for experiencing complex wind conditions that
affect power production.®

As the size of both land-based and off-shore turbines grows, they reach farther into the atmospheric boundary layer (ABL) where they may
experience more complex wind profiles.? In particular, a characteristic feature of ABL flows is vertical wind shear. In this study, we define speed
shear as the change in the wind speed profile as a function of height and direction shear as a change in the wind direction profile with height.®
Positive direction shear indicates veering (clockwise turning with increasing height away from the ground) and negative direction shear indicates
backing (counterclockwise turning).® Given the presence of the surface, which limits vertical length scales, vertical wind shear tends to dominate
horizontal wind shear in the ABL except in very complex terrain’® and spatially heterogeneous wake interactions.’ Therefore, this study focuses
only on vertical wind shear. However, we note that the influence of horizontal wind shear may be modeled similarly to that of vertical wind shear
if information about horizontal wind shear is available. Shear is important to consider in modeling turbine power production because changes in
wind speed and direction alter the momentum and kinetic energy flux through the rotor.® Moreover, given its dependence on atmospheric charac-
teristics such as Coriolis forces, friction, stability, and large-scale forcings, the degree of shear varies both as a function of time and geographic
location.*®** The inherently site-specific nature of wind shear motivates the need for an accurate parametric model that incorporates its effect
on wind power production, beyond assessment of empirical trends.

Several factors are known to influence the degree of shear present in the ABL. At a given location, the degree of wind shear varies in time
depending on the stability in the ABL.1%*2 For instance, Van Ulden and Holtslag'* analyzed a set of measurements of wind speed and temperature
profiles in the atmosphere taken across several decades and found that the magnitude of direction shear, in particular, is strongly correlated with
stratification. Further, Pefia et al*® found similar results when analyzing a set of LiDAR and meteorological mast data in which both speed and
direction shear tend to be stronger during times of stable stratification than unstable or neutral stratification. Further, wind shear depends on the
particular geographic location of interest. Since wind direction shear primarily manifests from Coriolis effects in the Ekman spiral, its magnitude
inherently depends on latitude.!° Lindvall and Svensson® found that local topography influences the degree of shear that may develop in a given
location, with coastal regions generally seeing lower degrees of direction shear than inland regions. Shu et al*” also found that in these coastal
regions, winds flowing from land towards open water tend to contain larger degrees of direction shear than winds that flow from open water onto
land. Finally, Wharton and Lundquist*®*? observed that even in stably stratified flows where high direction shear would normally be expected,
topography that tends to form channeled flow, such as valleys, appeared to mitigate the frequency of shear.

Given the inherently site-specific nature of wind shear and manufacturer-specific nature of wind turbine design, drawing definitive conclu-
sions with respect to the impact of shear on turbine power production has remained elusive. Wharton and Lundquist*®'? found that at one site,
stable stratification and high shear tended to correlate with higher turbine efficiency, whereas at another site, they found the opposite to be true.
Additional studies by St. Martin et al?® and Vanderwende and Lundquist?! found different effects of shear on power production relative to the
operating regime of the turbines at their respective locations, with stable conditions generally corresponding to increased power production near
rated wind speeds and decreased power production below rated wind speeds. Murphy et al?2 found similar results, indicating that direction shear
occurring at wind speeds below rated had generally statistically insignificant effects on power production. They found furthermore that the
degree of speed shear was only weakly correlated with changes in power production. Howland et al?>?* found that wind speed and direction
shear modify the power production of wind turbines in yaw misalignment, and proposed a blade element model to account for the observed influ-

t2° analyzed the effect of both speed and direction shear, and found that large direction shear and

ence. Finally, Sanchez Gomez and Lundquis
small speed shear tended to correspond to decreased power production, while large speed shear and small direction shear tended to result in
greater power production. The empirical results discussed above are highly varied given the site-specific trends in wind characteristics and topog-
raphy in each study. The general lack of agreement in the results across studies that consider shear in relation to turbine performance suggests a
few conclusions: (1) The topography, stability, and resulting characteristic wind conditions at a given location are strongly related to the observed
trends in power production, and (2) the method of analysis, as well as the specific wind profile and wind turbine characteristics considered, affect
the observed trends in power production.

There have been several models proposed for turbine power production to account for variations in wind speed and direction over the tur-

bine rotor area, however, there exists no clear consensus as to which is most accurate. In this study, we compare three parametric models that
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take in arbitrary wind speed and direction profiles as inputs, and we compare their power predictions to field measurements to quantify their
accuracy. Further, to identify effects of site-specific wind characteristics, as well as the general effect of complexity in wind profiles on model out-
puts, we drive the models with two input classes separately: (1) best-fit canonical ABL profiles in which wind speed follows a power law relation-
ship as a function of height and direction shear is linear over the rotor, and (2) wind speed and direction observations measured by a profiling
LiDAR. This analysis seeks to demonstrate the potential variation produced in the model outputs when smooth, monotonic wind profiles are
assumed in place of finite time-averaged, empirical wind measurements that permit non-monotonic shear.

The organization of this study is as follows: In Section 2, we provide a description of the turbine models considered in this study, including a
discussion of the inputs required for each, the mechanism by which each accounts for shear, and an overview of their numerical implementation.
Section 3 provides a description of the experimental design in which the supervisory control and data acquisition (SCADA) power measurements
and LiDAR wind profile measurements were recorded. This section also includes a justification of the selection of two distinct input classes used
to drive the models. Section 4 includes a quantitative comparison of each of the models and their accuracy in predicting the observed SCADA
power by considering both correlation and overall error. We also discuss the qualitative trends observed in power production in both the
SCADA power measurements and the model predictions, for both the LIiDAR wind profile inputs and the canonical ABL profile inputs. Finally,

Section 5 discusses the implications of the observed results and the subsequent future research directions motivated by these findings.

2 | WIND TURBINE MODELS

The following provides a description of each of the four models included in this study, along with a brief discussion on the mechanism by which

each model considers variations in wind speed and direction. Table 1 summarizes the inputs required for each model.

2.1 | Hub height wind speed model

The power available to a wind turbine is given by the kinetic energy flux through the rotor disc,?® expressed as

1
Ppero = EpAdU:;v (1)

where p is the density of air, A, is the area of the rotor disc, and U is the speed of the air. Following from Equation (1), we introduce the commonly
used hub height wind speed model, given by

1
PHH :E/}AdeU(Zh)S, (2)

where Cp is the coefficient of power and z, is the hub height for a given turbine. Equation (2) is one of two methods specified in IEC Standard
61400-12-1, which provides a standardized method for wind resource assessment across different geographic locations with different site-

specific wind conditions.?”-28 A feature of Equation (2) that bears emphasizing is that it considers wind speed at only a single point (z=z,). Thus,

TABLE 1 Overview of model inputs.

Wind Turbine
Model Speed Direction Integrated Airfoils Rotor
Hub height wind speed U(zn) - Cp - A4
Rotor-equivalent wind speed U(r,y) A(r,y) Cp = Aa,C
Rotor-equivalent power U(ry) A(ry) Cp - Aal
Blade element u(r,w) A(ry) - C.,Cp,c,0 A4,B,C, Q2

Note: A summary of the inputs to each model. Each model takes in the rotor disc area A; and the wind speed U at either hub height z, or as a function of
the local radial position r and azimuth angle y over the rotor area. The rotor-equivalent wind speed, rotor-equivalent power, and blade element models
take in the wind direction A over the rotor area and the nacelle heading ¢. In Section 2, the wind direction and nacelle heading characterize the local wind
misalignment angle y,(r,yw) = A(r,w) —  over the rotor area. The blade element model also takes in the rotor angular velocity £, the number of blades B, the
blade pitch angle 0, the lift and drag coefficients, C; and Cp, and the chord length c for each blade node. The hub height, rotor-equivalent wind speed, and
rotor-equivalent power models take the turbine coefficient of power Cp, integrated over the rotor area.
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4 | Wl LEY MATA ET AL

to be strictly accurate, Equation (2) only applies in cases of uniform inflow where wind speed and direction are constant over the rotor area
(i.e., no speed or direction shear), or where the effect of wind speed and direction shear is empirically incorporated into the coefficient of power
Cp, which is challenging to apply in a generalized, parametric manner. Consequently, the hub height wind speed model is functionally incapable of
directly modeling the dependence of wind power production on wind shear. Therefore, the results of the hub height wind speed model serve as a

benchmark against which the results for the other models considered in this study are compared.

2.2 | Rotor-equivalent wind speed (REWS) model

This section summarizes the method introduced by Wagner et al?? to account for wind speed variations over the turbine rotor disc area and fur-
ther expanded by Choukulkar et al*® to account for wind direction variations. The form of the REWS model is similar to the hub height wind speed
model in that turbine power is calculated from the kinetic energy flux through the rotor disc area. However, the REWS model samples the wind
field at multiple locations over the rotor disc, thereby accounting for shear. Wagner et al?® defined the REWS as

1
Ueq :EZU; A, (3)
i

where the rotor disc area is divided into a series of horizontal segments. U; is the wind speed measured in the ith segment, and A; is the
corresponding area of that segment. In this way, U, is a weighted average of the wind speed measurements taken in each segment of the rotor.
Choukulkar et al®® subsequently expanded on Equation (3) by incorporating information about variations in direction over the rotor by computing
the rotor-normal wind component with a cosine projection of the incident wind vectors. This requires computing the local wind misalignment

angle over the rotor area, given by
Vz(er):A(r’u/)_g’ (4)
where A is the wind direction and ¢ is the turbine nacelle heading. We express the local misalignment angle y, and the wind direction A as func-

tions of the local radial position r measured from the rotor center and the azimuth angle y. The geometry is shown in Figure 1A. This change in

the coordinate system is chosen for convenience in computing the area average of the normal velocity components. Whereas discretizing the

(A) (B)

FIGURE 1 (A) Front view of a turbine rotor showing the conventions used for describing the position of the individual blade elements. The
azimuth angle y is measured from vertical and the local radial position r from the axis of rotation. (B) A cross-sectional view of a blade element as
it passes through azimuth angle y = 0°. The axial and tangential directions are represented by x and z, respectively. The relative wind U, is
computed from the axial and tangential components of the wind incident on the blade element. The axial component of the wind speed is a
function of the freestream wind speed U modified by the axial induction g, the local wind misalignment angle y,, and the azimuth angle of the
blade element y. The tangential component of the velocity is a function of the angular velocity 2 and the local radial position r of the blade
element. The lift and drag forces are a function of the angle of attack, defined as ager = ¢ — 0, where ¢ is the inflow angle of the relative velocity
Uyl and @ is the local pitch angle.
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rotor in Cartesian sectors requires computing the area of each individual sector, performing the integration in polar coordinates negates this step.

Given this modification, the form of the REWS used in this study is given by

2z R

UREws:Ald { [ U(r,w) cosly,(r,y)]rdrdy. (5)

Replacing the hub height wind speed U(z;,) in Equation (2) with Urews Yyields the REWS model, expressed as

2z R 8

1 1
PRE\NS:E/)A(,CP A—d//U(r,y/)cos[yz(r,w)]rdrdy/ . (6)
00

Through simulations of turbine power production using both Equations (2) and (6), Wagner et al?’? found that the REWS model generally
showed higher correlation with measured turbine power when input wind conditions contained large variations in speed and direction. Since it
was introduced, the REWS model has been incorporated into studies on a variety of wind energy-related topics, including theoretical studies on
the effect of turbulence on power production (Clack et al®?), mesoscale modeling and wind farm parameterization (Redfern et al®®), and further

modifications to the form of the REWS model and their effect on predicted turbine power production (Murphy et al??).

2.3 | Rotor-equivalent power (REP) model

This section summarizes an alternative approach, also described by Wagner et al?’ and Choukulkar et al,3° for estimating power production from
arbitrary wind speed and direction inputs. Whereas Equation (6) estimates turbine power production from the kinetic energy flux produced by a
rotor-average wind speed, it is likewise possible to compute the average kinetic energy flux incident on the rotor directly. To accomplish this
requires a single modification to Equation (6). While the REWS model computes Ugrgws, which is then cubed when substituted into Equation (2),
the REP model moves the cube inside the area integrals, producing a single value of REWS cubed. In the REWS model, Ugrews replaces the U(zp)
term in Equation (2), and in the REP model, the REWS cubed replaces the U(zh)3 term, yielding

2z R
Prev=0Cr [ [ 1001 cosly (1) relcly. @)
00

In the formula above, we observe that if the constant terms outside the integral were moved inside, Equation (7) would produce a rotor-

averaged quantity with units of power, hence the REP label applied in this study.

24 | Blade element (BE) model

The REWS and REP models in Equations (6) and (7) consider the rotor to be a permeable actuator disc. In these models, airfoil characteristics and
the rotation of the blades are abstracted with all turbine aerodynamic information contained in the coefficient of power Cp. This representation is
inherently limited in its generalizability to handle nonlinear aerodynamic interactions between the wind turbine and wind shear. BE theory is an
alternative approach that explicitly considers these factors in modeling turbine power production. The following is an overview of BE theory and
the process for evaluating the BE model for an arbitrary set of wind speed and direction inputs.

In a BE model of a turbine rotor, the blades are divided into discrete nodes. Because the airfoil geometry of the blades is a function of the
radial position along the blade, each node will have a corresponding set of airfoil properties that govern the aerodynamics of that node. The basis
of BE theory assumes (1) the forces induced on a given node may be found independently of the other elements along the blade and (2) that those
forces are collectively a function of the airfoil geometry and the incident wind conditions at each element.3*3> As the blades rotate about the cen-
ter axis with inflow containing wind speed and direction variations, the wind vectors incident on each blade node are a function of the azimuthal
angle w of each BE, as well as the radial position r of each element. Kragh and Hansen®® introduced a method for modeling the axial forces
induced on each blade node accounting for speed shear and yaw misalignment. Howland et al?® further generalized the model to account for
speed shear, direction shear, and yaw misalignment in computing the axial and tangential forces acting on each BE, along with a variable angular
velocity that depends on the aerodynamic torque. This study uses the contributions of these prior works in incorporating speed and direction

shear into the BE model.
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[ | Wl LEY MATA ET AL

What follows is a description of the sequence of calculations performed in evaluating the BE model. The process described is repeated for
each element along the turbine blade. The first step in evaluating the BE model is to compute the axial and tangential components of the velocity
incident on each node. Figure 1A provides a depiction of the turbine rotor and the coordinate system used in evaluating the BE model. Figure 1B

shows the incident wind vectors on a blade node as it passes through the vertical position (y = 0°). The axial component of the velocity, given by
Us(ry) = U(r,w) (1 —a) cosy, (r,y) sin(w)] cos[r, (r,y) cos(w)]; (8)

is a function of the freestream velocity U modified by the axial induction a, the local wind misalignment angle y,, and the azimuth angle of the BE
y. Axial induction depends on the specific induction closure model used, which we discuss in Section 2.4.1. The tangential component of the

velocity is given by
Us(r.) = 2r — U(r,p)(1 — @) cosly, (r.w) sin(w)]sinly, (r.y) cos(w)], 9)

where Q is the angular velocity of the rotor. Tangential induction is neglected (see Kragh and Hansen®®). For clarity of presentation, we hereafter
omit the functional dependence of U and other quantities derived from it on r and y. The relative velocity incident on the BE shown in Figure 1B

is a function of both the axial and tangential components of the velocity and is defined by the relationship

U2, =U2 + 12 (10)

rel —

The inflow angle of the relative velocity vector in relation to the BE is given by

¢ =arctan {3—’;} (11)

and is used to compute the angle of attack on the airfoil, defined by
ager=¢ —0, (12)

where 6 is the pitch angle of the BE. From the angle of attack ager (here stylized with “BET” to differentiate it from the speed shear exponent),
the lift and drag coefficients (C; and Cp, respectively) are determined for the BE. The lift and drag coefficients are typically determined empirically
for a given airfoil geometry and tabulated as a function of the angle of attack. This step highlights a potential weakness in implementing the BE
model. Whereas the REWS and REP models require no information about the specific aerodynamic properties of the airfoils used on a given tur-
bine, the BE model must necessarily have this information, which may be less readily available than Cp.

The tangential force induced by the incident wind conditions on a given BE is defined by

df, = %pufe, [Ci(ager) sin(¢h) — Co(aget) cos(¢)]c dr, (13)

where c is the local chord length at each node. The incremental torque induced on each section by the tangential force is given by

dQ=rdf,, (14)
and the incremental power is then a function of the incremental torque and the rotor angular velocity, given by

dP=0dQ. (15)

Combining Equations (13)-(15) and integrating over the rotor area through one full rotation gives the combined rotor power, expressed as

2z R
Poe = 5 B0 / / U2,[C (ager) sin(d) — Co(aser) cos(¢)]cr dr dy, (16)
00

where B is the number of blades. This is the final expression for turbine power for a given arbitrary set of inflow conditions in the BE model. The

influence of wind speed and direction variations on the BE model power predictions is distributed across several of the inputs listed above. The
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model first accounts for shear in the calculation of the relative velocity and accompanying inflow angle, which are functions of the axial and tan-
gential components of the wind incident on each blade node. The inflow angle is then used to determine the angle of attack, which is subse-
quently used to determine the lift and drag coefficients at each node, which appear explicitly in Equation (16). By this mechanism, the effect of
shear on the BE model predictions cascades through the intermediate variables of the model, affecting the calculation of each subsequent variable

appearing explicitly in the final equation for power in Equation (16).

2.4.1 | Induction closure and turbine controller modeling

The BE model requires that the axial induction on the rotor a and the rotor angular velocity Q be specified, two requirements not present in the
REWS and REP models. In standard blade element momentum theory, the BE equations shown in Section 2.4 are coupled with induction closure
based on one-dimensional (streamwise) momentum theory: a=(1—+/1—Cr)/2, where Cr is the thrust coefficient. However, since this relation-
ship is derived under the assumption of uniform streamwise inflow (i.e., no wind speed or direction shear), it is unclear to what extent it is valid in
environments that include wind shear. Further, the rotor angular velocity is not known a priori, and it may depend on the wind speed and direc-
tion shear. In this study, we consider two candidate closures for the axial induction and three possibilities for supplying the rotor angular velocity.

For induction closure, we consider modeling frameworks where (1) axial induction is set as a constant a = 1/3 at the Betz limit value over the
entire rotor (as in Kragh and Hansen®® and Howland et al?®) and (2) the axial induction is closed locally over the rotor, depending on radial and azi-
muthal position, based on one-dimensional momentum theory. For angular velocity, we consider: (1) the angular velocity is taken from the SCADA
data, (2) the angular velocity is estimated by a controller model, and (3) the angular velocity is set to maintain a constant tip-speed ratio. We define
the reference BE case as the one of greatest simplicity, with the axial induction a=1/3, and 2 set to the SCADA-measured values. In the results
(Section 4) for clarity of presentation, only the simple, reference BE model results are shown. The effects of the different induction and rotor
angular velocity modeling choices are shown and discussed separately in Section 4.2.3.

The localized induction model is implemented as described by Madsen et al®” In cases where the thrust coefficient exceeds a critical value of
1, momentum theory breaks down due to an inability to account for the effect of flow separation in the far wake that can cause velocities in that
region to be negative.*3%? To address this, several empirical corrections have been proposed (see, e.g., Burton et al,*® Buhl,** and Madsen et al*”).
From Madsen et al,*” a single polynomial describing the axial induction as a function of the thrust coefficient is used. The coefficients of the poly-
nomial are chosen to best-fit standard one-dimensional momentum theory at low thrust coefficients, and to extrapolate to empirical results in

high-thrust regimes. The localized induction model is given by
a(r,y) = 0.0883C3(r,y) +0.0586C2(r,y) + 0.2460Cr (r,y), (17)
where the axial induction is now a function of radial and azimuthal position. The local thrust coefficient is defined as

U2 Bc

rel

Cr(riy)=—-—
) U(z)*2nr

[C.(ager) cos(¢) + Cp(aper)sin(¢)]. (18)

Tip and hub loss corrections are neglected for simplicity. A sensitivity analysis (not shown for brevity) indicated that inclusion of tip and hub
loss corrections affected the results on the order of <1%.

In the absence of SCADA data containing the turbine's realized tip-speed ratio, the BE model requires this information to be estimated. A
common controller strategy in variable speed, pitch-regulated turbines modulates the generator torque to allow the rotor speed to vary propor-
tionally to the inflow wind speed (referred to here as the k - 22 model). In Region |1, this model seeks to maintain a constant tip-speed ratio that
theoretically maximizes power production in uniform inflow conditions. Because the turbine is tracking a fixed tip-speed ratio, the rotor speed 2
varies proportionally to the incoming wind speed. This in turn means that the torque on the rotor varies proportionally to £2. The aerodynamic

torque is given by

1 sCh o
Qo= 5peR* 202 (19)

In steady-state operation, the controller attempts to keep the generator load torque equal to the aerodynamic torque by modulating the rotor
speed. All variables on the right-hand side preceding £2? are constant, and often referred to collectively as k, hence the name of this model. For
implementation of this controller model, the value of k for this particular utility-scale turbine is computed by taking the slope of the line of best fit
for the rotor torque as a function of the rotor angular velocity squared in the SCADA measurements. The resulting unique value of k is used to

compute the rotor speed, given by
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P,
2 _ BE
kQ?=—, (20)

for all input profiles with arbitrary wind speed and direction shear, where Pgg is the power production estimated by the BE model given in
Equation (16).

The following is a summary of the sensitivity analysis performed here. For induction closure, we consider two cases: (1) constant induction
(a=1/3) and (2) the momentum theory closure described in Equation (17). For the controller model, we consider three cases: (1) the angular
velocity that maintains the target tip-speed ratio within the subset of Region Il determined from the SCADA data (referred to hereafter as 1*),
(2) the k - 22 model described above, and (3) the measured angular velocity from the SCADA data. Note that because of model discrepancy, using
the estimated value of k from the SCADA data does not necessarily achieve the tip-speed ratio that is targeted by the utility-scale turbine in the
field setting (A*). We perform the sensitivity analysis with every combination of induction closure and turbine control. This scheme is designed to
illustrate the influence of each model choice on the final BE model power predictions. Table 2 summarizes the six cases considered.

2.5 | Numerical implementation

Figure 2 shows illustrations of the rotor discretization schemes considered in this study. Figure 2A shows the method described by Wagner
et al?? in which the rotor is divided into a series of horizontal segments of varying area in which individual measurements of the wind field are
taken. The measurements of the wind field in each horizontal segment are assumed to be constant over the segment area. The resulting REWS is
then computed as the weighted average where each measurement of wind speed is weighted by the fraction of the total rotor area that its
respective segment constitutes. Figure 2B shows the discretization method used for the two rotor-equivalent models in this study. We discretize

the rotor into a series of concentric circles emanating from the center and draw a series of radii extending out at evenly spaced azimuth angles.

TABLE 2 Summary of the BE model sensitivity analysis setup.

Case Induction closure Controller model
1 Constant; a=1/3 AscADA

2 Constant; a=1/3 k-2

3 Constant; a=1/3 Constant; 1=41"
4 Momentum theory ASCADA

5 Momentum theory k-2

6 Momentum theory Constant; A1=4"

Note: A description of the induction closure and controller model used in each of the six cases tested in the sensitivity analysis on the BE model.

(A)

FIGURE 2 (A) Cartesian discretization of rotor disc area as described by Wagner et al?? (B) Polar discretization used in this study for the
rotor-equivalent wind speed and rotor-equivalent power models. (C) Blade element representation of the turbine rotor, showing the individual
blade nodes at which the forces imparted by the wind are computed. The number of blade nodes depicted is reduced for visual clarity. Red
markers in each subplot indicate the locations at which the wind field is evaluated.
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The wind field is evaluated at the intersections of these annuli and radii. Figure 2C shows a representation of the BE model for the turbine rotor.
As noted in Section 2.4, BE theory models the blades of the rotor and considers that they are moving through space in time, and therefore experi-
ence different degrees of wind shear as they transit a rotation of the rotor. The red markers in each subplot of Figure 2 indicate the locations at
which the wind field is evaluated for each rotor discretization scheme. The models presented in Section 2 assume tilt and cone angles are zero.
The wind turbine models can be applied with instantaneous values of wind speed U(r,y) and direction A(r,y). However, given the inherent
challenges of measuring two-dimensional instantaneous wind fields in full-scale field environments, these models are often driven by finite
time-averaged wind measurements.2324273% To account for kinetic energy contributions of turbulence in 10 min averaged wind measurements,
Wagner et al?? and Choukulkar et al®® included turbulence intensity in their derivations of the REWS and REP models, with the turbulence inten-
sity characterizing turbulence energetics at timescales smaller than the 10 min time-averaging scale. However, as noted by Choukulkar et al,*° the
influence of turbulence on the rotor aerodynamics (e.g., Cp, C;,Cp) is neglected.42 To be consistent with the shear-dependent REWS, REP, and BE
formulations in the previous subsections, turbulence must be known at each position in the rotor (r,i). In the present field measurements, since
power depends non-linearly on the instantaneous flow, we use 1 min averaged wind measurements rather than 10 min measurements.?* Further,
turbulence intensity at timescales below 1 min averaging is not available from the profiling LiDAR, but turbulence intensity is estimated at hub
height (z=z,) in the wind turbine SCADA data at 1 min resolution. Therefore, the models could be supplemented with the SCADA turbulence
intensity, assuming a constant value over the rotor area. The effect of including the hub height turbulence intensity on the root mean square error
(RMSE) of the model predictions in this study is on the order of 1%. Since this does not change the qualitative or quantitative conclusions of this
study, we therefore neglect turbulence intensity in the model formulations to focus on the primary effects of wind speed and direction shear. We
also neglect consideration of turbulence intensity to maintain a controlled experiment between the two rotor-equivalent models and the BE
model, which does not presently incorporate information about turbulence. Future work should revisit this analysis with measurements of wind
speed, direction, and turbulence kinetic energy across the rotor area in (r,y). Hereafter, we refer to 1 min averaged wind speed and direction mea-

surements as U(r,w) and A(r,y), respectively.

3 | WIND FARM SETUP AND EXPERIMENTAL DESIGN

The wind farm in this study is located in northwestern India. The terrain at the site is primarily flat and changes in elevation by approximately
100 m over the extent of the farm, which is a distance of about 25 km. The farm contains approximately 100 utility-scale horizontal axis wind tur-
bines from a variety of manufacturers. The hub height and rotor diameter of each turbine are both approximately 100 m.2

Measurements of wind velocity at the site were taken with a Vaisala Leosphere Windcube V2.0 aerosol backscatter Doppler LiDAR system.
Wind speed and direction are calculated at predetermined elevations by measuring the Doppler shift in infrared light reflected off of particles in
the atmosphere from successive pulses.** Measurements are made along four beams at a 28° angle and one vertical beam. Uncertainties in the
wind speed and direction measurements are 0.1ms~ and 2°, respectively.2®** A total of 12 range gates from 43 m to 200 m are used, with one
gate located at 104 m to make hub height measurements. Concurrent with the LIDAR measurements, power production, nacelle heading, blade
pitch angle, rotor angular velocity, and other operational parameters for each turbine in the array are recorded by the onboard SCADA system.
The experiment was conducted from February to April 2020. LiDAR wind profile data and SCADA turbine data are collated in 1 min averages.

The empirical results in this study use the SCADA data reported by the first turbine downstream from the LiDAR, located approximately
250 m (about two rotor diameters) away.2® For the Region Il wind speeds considered in this study, the advection timescale between the LiDAR
and the turbine of interest is on the order of 20-30 s. Given the topography of the farm, we assume that the atmospheric conditions are horizon-
tally homogeneous. While the atmosphere is seldom truly homogeneous in reality, this is a common model for the ABL provided the spatial
domain is sufficiently large and flat as is the case at the site (see discussion in Stull*> and Wyngaard*®). While the turbine commands zero yaw
misalignment, due to the time lag in the yaw controller, this does not guarantee a zero-degree yaw offset. The local wind misalignment angle
defined in Equation (4) accounts for this by incorporating the turbine-measured nacelle heading rather than assuming zero yaw offset. Wind pro-

files in which the hub height wind speeds measured by LIDAR were outside of the inner section of Region Il (6-8 ms~1) were also excluded.

3.1 | Site characterization

To determine the effect of discrete combinations of speed and direction shear on turbine power production, we impose a standardized procedure
to classify the degree of each type of shear observed in the LiDAR wind profile measurements. In meteorological and wind energy applications,
two methods are commonly used to model wind speed as a function of height in the ABL. The first of these, the log wind profile, is a semi-
empirical relationship derived from similarity theory in the surface layer, which models the wind speed as a function of the surface roughness
length and surface friction velocity at a given location (see additional discussion in Lundquist® and Emeis and Tirk*”). Since we focus on wind

shear, at least in part, above the surface layer in this study, we use the power law, defined as
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U(z) = Uret Lif] (21)

where the speed shear exponent « is fit to each wind speed profile using least-squares regression. The reference height z. is the lowest elevation
of the rotor, and the reference wind speed U, is the corresponding wind speed at that height.®2> The power law exponent « therefore serves as
a non-dimensional quantification of the degree of speed shear in each profile. The degree of direction shear over the rotor is characterized by the
average degree of turning from the bottom to the top of the rotor, given by

:72(Z:Zh+R)772(Z:Zh7R)

R (22)

p

This method is consistent with several previous studies of direction shear in wind energy (see, e.g., Sanchez Gomez and Lundquist?>*® and
Englberger et al*) and in atmospheric sciences (see, e.g., Shu et al'?), though linear fitting of the wind direction profile over the rotor area is also
common (see, e.g., Brugger et al®®). From sensitivity tests (not shown for brevity), the qualitative conclusions in this study are unaffected by the
choice between Equation (22) and linear fitting methods for direction shear characterization. We follow the convention that negative direction
shear (< 0° m~1) indicates counterclockwise turning over the rotor usually referred to as backing, and positive direction shear (5 >0° m~1) indi-
cates clockwise turning or veering.® For Equation (22) to be an accurate description of the wind direction variation over the rotor, the wind direc-
tion gradient must be approximately linear. To justify the assumption of linear direction shear in this study, we note (1) a review of the relevant
literature for modeling the evolution of wind direction with height yields no generally accepted model (as exists for speed shear), and (2) our anal-
ysis shows that for our site, the assumption of linear direction shear is, in aggregate, more accurate than assuming no shear. In this analysis, we
compute the RMSE between the LiDAR wind direction profiles and (1) profiles that contain no direction shear over the rotor area and (2) profiles
that vary linearly between the wind direction at planes located at the bottom and top of the rotor. The distribution of RMSE for the model assum-
ing no shear shows greater positive skew and a larger median RMSE (3.28°) when compared to the model assuming linear shear (1.51°). We use
the above characterization of shear to qualitatively and quantitatively assess how discrete combinations of speed and direction shear affect power
production observed in the empirical field measurements and in the model predictions.

Wind conditions at the site are dominated by northerly and westerly winds during the period of the experiment (see Figure 3A). Only north-

erly winds (330° to 45°) were retained for analysis to eliminate instances where wake effects from nearby turbines may be present in the inflow
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FIGURE 3 (A)Wind rose showing the distribution of hub height wind speed and direction at the site. Northerly winds inside the black border
are retained for subsequent analysis, those outside are excluded to control for potential wake effects of nearby turbines. Probability distribution
of the degree of (B) direction shear and (C) speed shear over the turbine rotor area. Daytime and nighttime are defined by sunrise and sunset at
the site during the period of the experiment.
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wind conditions. Probability distributions of speed and direction shear (see Figure 3B,C) show strong diurnal variations. Speed shear tends to be
lower during the daytime hours (from sunrise to sunset), consistent with the expectation that turning is generally low in the presence of a convec-
tive boundary layer. For both daytime and nighttime, the frequency of positive speed shear is greater than that of negative speed shear. The
nighttime speed shear distribution is bimodal, indicating a prevalence of shear around a =0.2 and a =0.4. We also note the presence of low-level
jets (LLJs) at the site. An LLJ may occur in the stratified flows occurring at night when inertial oscillations generated by the release of turbulent
stresses from the decay of the convective boundary layer align with the mean wind to form a jet near to the ground.® An analysis of the form
described by Debnath et al*? for systematically identifying the presence of LLJs reveals that LLJs are present in 8% of the 1 min time-averaged
wind profile measurements. This analysis applied the following conditions for determining that an LLJ was present: (1) The wind speed maximum
is inside the rotor area, (2) the absolute dropoff from the wind speed maximum to the local minimum above the core is >2ms~1, and (3) the ratio
of the dropoff to the wind speed maximum is >10%. The combination of both dimensional and non-dimensional conditions is supported by previ-
ous studies (see, e.g., Aird et al,>* Kalverla et al,>? and Luiz and Fiedler®®). The complex shear profiles that can occur in the rotor area as a result of
an LLJ may affect the accuracy of the power law fit in several ways. Especially large magnitudes of shear in parts of the rotor may bias the shear
exponent which is based on a least-squares fit across the entire profile, indicating a higher or lower degree of shear than is present in different
portions of the wind profile. Conversely, positive and negative shear occurring simultaneously over the rotor area may effectively cancel out in a
least-squares fit constrained to the form of the power law profile equation. This causes the shear exponent to over-estimate shear in the negative
shear region of the rotor area while simultaneously under-estimating shear in the positive shear region. This highlights a crucial deficiency with
the characterization of speed shear with the power law. More generally, it is difficult to characterize wind profiles that take on many complex
shapes with one or two-parameter wind profile models. This again motivates the development of an accurate parametric wind power model that
can take arbitrary wind fields as input. Therefore, site and time-varying wind profiles can be provided to the power model to assess their impact
on power production more broadly without requiring qualitative characterization.

Daytime direction shear is most often around =0.0° m~!, with similar degrees of backing and veering overall. Nighttime direction shear is
generally larger and more often veering than backing. Again, this could be indicative of Ekman-type flows associated with LLJs in the stable

boundary layer, although we note it is not a precondition that an LLJ be present for direction shear to occur.>*
3.2 | Wind profile model inputs
We address in Figure 4 the applicability of modeling wind speed profiles with the power law. In subplot (A), we show the power law can be an

appropriate approximation of the median wind speed profile in each speed shear bin. This is possible because the non-monotonic behavior we

observe in the 1 min profiles is time-varying, not always present, and at this particular site, infrequent enough to vanish in a median sense.
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FIGURE 4 Panel (A) shows median wind speed profiles (solid lines) measured by LiDAR binned by shear exponent value and the
corresponding power law profiles (dashed lines) fit to each median profile. Panel (B) shows, for the speed shear bin where a =0.1, the median
wind speed profile in black and 10 randomly selected 1 min time-averaged wind speed profiles in color. These profiles demonstrate significant
heterogeneity despite being characterized by the same speed shear exponent. The dashed grey lines indicate the top and bottom elevations of
the turbine rotor. Note the horizontal scaling in (B) is modified to highlight variation in individual 1 min profiles.
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Conversely, in subplot (B), we show the median wind speed profile associated with the wind speed shear bin for a=0.1 alongside 10 randomly
selected 1 min averaged wind speed profiles that are also characterized by best-fit power laws with a =0.1. While the power law may be descrip-
tive of the median profile in this case, many finite time-averaged profiles exhibit complex vertical trends, including LLJs, that are insufficiently cap-
tured by the power law with a=0.1.

To investigate sensitivities in the power predictions produced by the models based on deviations in the wind speed and direction profiles
from their canonical representations, we test each model with two separate classes of inputs. First, each model is tested with input canonical ABL
profiles where wind speed as a function of height is represented exactly by the best-fit power law relationship and wind direction shear is per-
fectly linear over the rotor area (see Choukulkar et al®® and Walter>®). Second, because these canonical models are not descriptive of the true pro-
files in the ABL for short time averages (as shown in Figure 4), each model is tested with the observed LIiDAR wind speed and direction
measurements from the profiling LIDAR. This numerical experiment will demonstrate the degree to which power predictions stemming from a

power law approximation can represent the power produced by a utility-scale turbine.

3.3 | Power production normalization

Equation (1) shows that power scales as the cube of the wind speed. This relationship tends to dominate the effect of other atmospheric determinants
of power, including speed and direction shear. To isolate the effect of shear on turbine power production, values of power are normalized to account
for the nonlinear relationship between power and wind speed. The basis for this normalization is the median power curve, which we construct from
the SCADA power measurements and their associated LIiDAR wind profile measurements. SCADA power measurements are binned based on the
corresponding hub height wind speed measured by LiDAR in increments of 0.5ms ! and the median is computed for each bin. The resulting curve,
shown in Figure 5, is the median power production of the turbine, denoted by P*, and is a function of hub height wind speed U(z,) measured by

the LiDAR. Normalized SCADA power measurements and normalized model power predictions from LiDAR wind profile inputs are given by

P=p Uy 23

where P is dimensional power and the denominator is the median power curve evaluated at the corresponding hub height wind speed for each
input wind profile. Values of normalized power P relate each SCADA measurement or model prediction of power production to the median opera-
tion of the turbine across all wind conditions encountered. This procedure accounts for the cubic dependence of power on wind speed and the
fact that two wind profiles with a different range of wind speed magnitudes over the rotor area may have the same degree of speed and direction
shear as determined by Equations (21) and (22). Subsequent discussion of the results will reference over-performance with respect to the median
power curve power production, which is defined to be values of normalized power greater than one (P>1), and under-performance, or values of

normalized power less than one (P<1).

1.2 T T
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FIGURE 5 The median power curve P* for the turbine at the site. Measurements of power from SCADA data are binned by their
corresponding hub height wind speed U(z,) measured by LiDAR in increments of 0.5ms ™. The red and blue shaded regions indicate the 25% and
75% quantiles around the median (black line). The dashed lines indicate the subset of Region Il from which the LiDAR wind profiles used in this
study are taken.
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t2° to assess how discrete combinations of speed and direction shear

Following the methodology proposed by Sanchez Gomez and Lundquis
affect power production, we group empirical power measurements based on the degree of shear in their corresponding wind profiles as deter-
mined by Equations (21) and (22). We define bins of width 0.1 for « and 0.1° m~?! for . For SCADA measurements and model predictions from
LiDAR wind profile inputs, we compute the mean value of all normalized measurements of power p placed into that bin based on the degree of

speed and direction shear in the input wind profiles. The resulting bin value is given by

Pain = P(8;,;), (24)

where f’Bm is non-dimensional, the overbar indicates the mean across the independent 1 min averaged samples contained within the bin, and i and
j are the indices for the bins along the direction shear and speed shear axes, respectively.

Conversely, for results from the canonical ABL wind profile inputs, each bin includes a single power prediction generated by the models from
a single input wind profile with the specified degree of speed and direction shear. The hub height wind speed is constant in all canonical power
law profiles for all combinations of speed and direction shear. Normalization by the median power curve, which accounts for different hub height

wind speeds within a single bin, is not warranted. Thus, the bin value in this case is given by
Phin =P(5; ), (25)
where the superscript “M” in PE{}n denotes that each bin contains only a single-dimensional power prediction from the models.

To assess the influence of complexities in the wind profiles not represented by the power law, we introduce a second normalization that
enables a comparison between the power predictions from the simplified canonical ABL inputs and the empirical results. This second normaliza-
tion addresses the fact that the bin values for empirical results (Pg;,) have been non-dimensionalized by Equation (23) while the model predictions
from the canonical ABL inputs (P§}) have not. This test is intended foremost to identify the sensitivity of the model predictions to variations in
the wind speed and direction profiles and deviations from their canonical ABL representations. By extension, this also demonstrates the degree of
potential error that may occur in wind resource assessment performed using these models if canonical ABL profiles are assumed, provided empiri-

cally measured wind profiles are unavailable at a given site or micro-siting location. The resulting normalized empirical results and power predic-

tions from canonical ABL profile inputs are given by

Pein (B, g
- B'”S/’ %) for empirical SCADA power measurements and model
~ PBin(ﬁ:O m*i,a:O)
Pgin (B, 05) = power predictions from LiDAR wind profile inputs, (26)
PEin )

i - for model power predictions from canonical ABL profile inputs.
Pgin(f=0"m"1,a=0)

This normalization relates the power predictions for all combinations of shear to the case where the inflow contains no speed or direction
shear. In all figures where the normalization described in Equation (26) has been applied, the power prediction (with a normalized value of 1) in
the no-shear bin has been removed to indicate that trends in power production are with respect to this bin, not the median power curve. A more
detailed discussion of the differences in the model predictions between the two inputs classes and in relation to the SCADA measurements is

given in Section 5.

4 | RESULTS

In the following section, we discuss the results pertaining to the two primary goals in this study. First, we discuss the trends in power production
observed in the SCADA measurements when the degree of speed and direction shear present in the corresponding LiDAR wind profile measure-
ments is characterized according to Equations (21) and (22). We then move to a discussion of the model predictions. This includes a quantitative
evaluation of the correlation and overall error of the models with respect to the SCADA measurements, as well as trends in model predictions for
each of the two wind profile input classes. Presented first are the model predictions when driven with the best-fit canonical ABL profile inputs,
followed by the model predictions produced by LiDAR wind profile inputs. A quantitative comparison of the model predictions across the two
input classes is provided. We also relate the error for each of the three models that have knowledge of variations in speed and direction over the
rotor area to the hub height wind speed model, which serves as a benchmark for the other models as it does not consider shear. We end by pre-
senting the results of the sensitivity analysis on the BE model with respect to the choice of both the induction closure and turbine controller

models.
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4.1 | Empirical

Figure 6 shows the effect of speed and direction shear observed in the SCADA power measurements described in Section 3.1. The values shown
are the mean of all normalized power observations (f’Bin) within each bin representing a specific combination of speed and direction shear. Only
bins containing 30 or more data points are shown. Greatest over-performance to the median power curve is observed in the region bounded by
a>0.1and #<0.2°m™1. As direction shear increases, the mean normalized power tends to decrease, with the lowest values observed in the upper
right corner, corresponding to speed shear of about a =0.3 and direction shear of about #=0.3°m~1. To demonstrate the statistical significance
of the trends in over-performance and under-performance shown in Figure 6, we compute the 95% confidence interval around the mean values
in each bin using bootstrapping. Bins in which the confidence interval includes the value of normalized power Pg;, = 1 are removed from the color
axis and appear as white.

The results in Figure 6 show qualitative similarities to those observed by Sanchez Gomez and Lundquist?” in a study performed at a wind farm
in central lowa. The region of highest over-performance located in the region bounded by a>0.1 and <0.2°m™1 is characteristic of both sites.
However, Sanchez Gomez and Lundquist did not observe wind shear falling into the region bounded by <0 and £ >0.3°m~1, meaning that the
over-performance observed in this region in Figure 6 cannot be directly compared across sites. Another notable difference in results between
these two studies is the location of the greatest observed under-performance. Whereas the results in this study again show greatest under-
performance in the region bounded by @ > 0.1 and #>0.1°m~1, Sanchez Gomez and Lundquist observed greatest under-performance in the region
bounded by a<0.3 and #>0.1°m™1, similar to, but distinct from the results observed in this study. Several factors could influence these differ-
ences, including different rates of LLJs between the two sites, a factor which complicates analysis of these plots as noted in Section 3.1, and
which will be discussed further in Section 5.

Another key difference between these studies is the time-averaging window for the LIDAR and SCADA data. This study uses 1 min time-
averaged SCADA power measurements and LIDAR wind profile measurements, whereas the analysis by Sanchez Gomez and Lundquist?® used
10 min time-averaged data. By averaging over a larger time window, the tails of the distributions for both speed and direction shear are reduced
as wind profiles approach their respective median representations, as shown in Figure 4. Altering the time-averaging window may affect the
trends observed by again shifting data between bins, potentially altering the mean bin value displayed, consequently changing whether those
values indicate over-performance or under-performance. We therefore note that the conclusions that we draw from these plots are vulnerable to
the method of shear characterization and the data processing methodology used in their generation. The utility this method presents is primarily
in its ability to indicate qualitative trends in the effect of shear on power production across the range of speed and direction shear considered
here, rather than predicting quantitative trends of over-performance and under-performance resulting from an input wind profile with a given
combination of speed and direction shear. Quantitative predictions depending on arbitrary speed and direction shear are the focus of the model-
ing in Section 4.2.

4.2 | Model predictions

Given the complexity of the qualitative description of the wind profiles and of the empirical results, we investigate parametric models to predict
the influence of wind shear on power production. In assessing the models, we wish to address three questions: (1) how do predictions of power
vary based on the two input types used to drive the models, (2) how accurately do the models predict power based on arbitrary inflow conditions

containing wind speed and direction shear from the LIDAR measurements, and (3) how accurately do the models predict power when the effect

Xy 1.08 1.07 0.86

0.3 1.08 0.92 0.84 0.81 >1,

T =
= £
g 02 1.040.96 0.92 0.94 0.87 0.82 3
& 5
Z 01 1.01 | 1.01 BRGEISEE] g
=} =
o <
ERN) IRANEEIIREY 1.07 1.13 121 1.31 1.101.27 <1k
= 2
A .
0.1 110 0.92 1.20 1.34

-03 -02 -01 0 01 02 03 04 05 06 07 08
Speed Shear Exponent ()

FIGURE 6 Bin averages of normalized power (Pg;n) with respect to the median power curve of the turbine at the site for discrete
combinations of speed and direction shear. Only bins containing 30 or more measurements are shown. The colormap highlights regions of over-
performance and under-performance. Bins where the 95% confidence interval around the mean, as estimated by bootstrapping, includes the
value Pg;, = 1 are removed from the color axis and appear as white.
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of shear is isolated from the dominant effect of the wind speed magnitude? To answer the first question, we qualitatively and quantitatively com-

pare the predictions from the models across the two wind profile input classes. To answer the second question, we quantitatively compare the
model predictions to the measured SCADA power data recorded at the same time as the LIDAR wind profiles used to drive the models. To answer
the third question we develop a systematic approach to account for the fact that power scales as the cube of the wind speed. To do this, we nor-
malize the power predictions by the kinetic energy of the inflow wind to remove the first-order effect of wind speed magnitude on power produc-
tion, thereby revealing the effect of shear and other atmospheric determinants of power production. The following provides a discussion of the

results of this study aimed at answering each of the three questions above.

421 | Canonical ABL profile inputs

Figure 7 shows the normalized power predictions (Pgin) for the empirical data and each of the three models driven by canonical power law and lin-
ear direction shear ABL profile inputs. Each of the three models produces different qualitative and quantitative trends in predicted power over
the range of speed and direction shear values considered. The REWS model (Figure 7B) predicts highest performance at the negative speed shear
extreme while the REP model (Figure 7C) predicts highest performance at the positive speed shear extreme. The BE model (Figure 7D), in contrast
to both REWS and REP, predicts similar levels of over-performance at both positive and negative speed shear extremes, with trends appearing to
be approximately symmetric about a speed shear value of approximately «=0.3. We note that the BE model is driven by a constant angular
velocity Q2 for the canonical ABL profile inputs.

Each of the three models also shows distinctly different ranges in the spread of predicted over-performance and under-performance. The
interval of predicted normalized power for each of the three models is as follows: REWS (0.92 < Pg;, < 1.05), REP (0.93 < Pgi, < 1.12), and BE
(0.96 < Pgin < 1.03). The REP model produces the highest predicted normalized power, 6.5% higher than the highest performance of the REWS
model, and 8.4% higher than that of the BE model.

It is worth underscoring again that the input wind profiles corresponding to each shear bin in Figure 7B-D are identical across each of the
three models. Despite this, the power predictions produced by each model show both qualitative and quantitative differences across the range of
shear values tested. With respect to the two rotor-equivalent models in Figure 7B,C, the differences shown highlight the degree of discrepancy
induced by computing power from the REWS and the cube of the REWS. By placing the cube of the wind speed inside the area integral in
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FIGURE 7 Normalized power (Pg;,) with respect to the square representing no speed or direction shear (indicated in black). Panel (A) shows
the SCADA power measurements, (B) the REWS model, (C) the REP model, and (D) the BE model predictions from canonical ABL wind profile
inputs in which wind speed is modeled with the power law and direction shear is linear over the turbine rotor area. The color axis limits are

chosen to highlight trends in the model predictions presented in (B)-(D).
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Equation (7), an additional region of predicted over-performance is created at the positive speed shear extreme (o =0.8) that the REWS model
does not reflect. The BE model shows the least sensitivity to the combinations of speed and direction shear that produce the greatest predicted
over-performance and under-performance in the REWS and REP models. While there are two observed areas of predicted over-performance at
the extremes of the speed shear axis, similar to the REP model results, the maxima are approximately equal, and much lower in magnitude than
those produced by the REP model.

In summary, the two primary results pertaining to the model predictions when driven with canonical ABL profile inputs are as follows:
(1) Among the three models, despite being driven with the same profiles, the predicted power across different combinations of speed and direc-
tion shear are both qualitatively and quantitatively dissimilar, and (2) the trends in power production for each model are qualitatively and quantita-
tively distinct from the empirical results observed in Figure 7A. In both cases, these differences exist despite the stipulation that the degree of

shear in the input wind profiles is classified in the same way (i.e., by Equations 21 and 22).

422 | LiDAR inputs

Figure 8 shows the empirical results and the model predictions for the LIDAR wind speed and direction measurement inputs. We note that the BE
model results here are for Case 1 (constant induction closure of a=1/3 and SCADA-measured angular velocity ). The BE model results for the
other induction closure and controller models are shown in Section 4.2.3. As in the empirical results, only bins containing 30 or more points are
shown. The trends in power are qualitatively and quantitatively distinct from those produced by the models with canonical ABL profile inputs.
The smooth saddle-shape trends observed in the model outputs from canonical ABL wind profile inputs are no longer evident and the spread in
predicted over-performance and under-performance has shifted for each model. The REWS model (see Figure 8B) does not show the characteris-
tic over-performance in the region bounded by @ > 0.1 and < 0.2°m~! as expected from the empirical results, which is present in the REP and BE
models (Figure 8C,D). The 95% confidence interval was computed around the mean for each bin, as was done for the empirical results (see
Figure 6). The model predictions, where bins for which the confidence interval includes ISBin =1 have been removed, are shown in Appendix A
(see Figure A1l). The interval of predicted normalized power for each of the three models with LiDAR inputs is as follows: REWS
(0.89 < Py, < 1.09), REP (0.91 < Pgi, < 1.12), and BE (0.87 < Pgi, < 1.10). One of the primary findings from the results shown in Figure 8B-D is the
discrepancy with the power predictions from canonical ABL wind profile inputs in Figure 7B-D. Even though the values of a and $ are the same
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FIGURE 8 Bin averages of normalized power (Pg;p,) with respect to the median power curve of the turbine at the site for discrete
combinations of speed and direction shear. Panel (A) is reproduced from Figure 6 and shows the SCADA power measurements. Panel (B) shows
the REWS model, (C) the REP model, and (D) the BE model predictions (Case 1) from LiDAR wind profile inputs. The colormap is chosen to
highlight trends in the model predictions presented in (B)-(D).
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for a given wind profile between the two input classes, the trends in predicted normalized power for each of those two inputs are inconsistent
with each other across the range of shear values considered. Figure 9 shows the RMSE, defined as

2
: (27)

Pi _ szn
Pein(f=0°m-1,a=0) P (f=0°m-1,a=0)

1 N
RMSEInputs= N
=1

between the values in each bin for each of the three models with canonical ABL profile inputs. N is the total number of power predictions in each

bin from the LiDAR inputs. Differences in the model predictions between the two input wind profile classes tend to be lowest in the region near
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FIGURE 9 The root mean square error (RMSE) between each of the model outputs from canonical ABL wind profile inputs (see Figure 7B-D)
and each of the model outputs from LiDAR wind profile inputs (see Figure 8B-D). Panel (A) shows the RMSE for the REWS model, (B) the REP
model, and (C) the BE model (Case 1).
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(=0.4°m~1,a=0.2). The highest discrepancy occurs in the bin corresponding to #=—0.1°m~! and a=0.1 for the REWS and BE models. The
highest discrepancy occurs in the bin corresponding to #=0.4°m~! and a = —0.2 for the REP model. The BE model has two additional regions of
high discrepancy located in the area of f=0°m~! and a=0.5 and a =0.7. Maximum deviations in the model predictions between the two input
wind profile classes are 0.24 for the BE model, 0.22 for the REP model, and 0.21 for the REWS model. It is notable that the largest differences
between the canonical and LiDAR input profiles emerge for the BE model. Further, the BE model has the smallest spread in power for canonical
inputs and the largest spread in power for the LiDAR inputs. This suggests that the BE model is more sensitive to nonlinear, non-monotonic varia-
tions in the ABL wind profiles, and also suggests the primary impact of the angular velocity £2. Additional discussion of the variation of rotor angu-
lar velocity across different combinations of speed and direction shear, and of the effect of Q closure on the BE model results, is provided in
Section 4.2.3.

We also compare the model predictions from LiDAR inputs Figure 8B-D to the empirical data shown in Figure 8A. Similar to Equation (27),
the RMSE here is defined as

1l /. . 2
RMSEgmpirical = J NZ (Pi,Empirical - Pi,LiDAR) , (28)
P

and the results are shown in Figure 10. Among the three models, bin RMSE tends to be highest when £ <0.2°m~1. Lowest error is observed in
the region bounded by a<0.3 and 2 0.2°m~1. The REWS model produces the highest bin RMSE at 0.62, with the REP model following at 0.58,
and finally, the BE model producing the overall lowest maximum bin RMSE at 0.51.

We show in Figure 11 the correlation between individual, 1 min averaged power production predictions for each model driven with LIDAR
wind speed profiles compared to the SCADA power measurements from the utility-scale turbine described in Section 3.1. Table 3 provides a con-
cise summary of the Pearson correlation coefficients R and overall RMSE for each model, as well as the performance of the models defined as
the change in RMSE, ermse, relative to the hub height wind speed model, described in more detail below.

Figure 11A-D shows the correlation between model predictions and SCADA data normalized by the rated power of the turbine, a constant
that does not depend on the time-varying hub height wind speed. Consequently, the model power predictions and SCADA power measurements
are dominated by the cubic dependence of power on wind speed. We discuss first the performance of each model when the effect of wind speed
dominates other atmospheric determinants of power, and in the next paragraph, discuss the results when the effect of shear on power production
is isolated. Both the REWS and power models show similar correlations (R =0.66 and 0.68, respectively) and RMSE (0.245 and 0.239, respec-
tively) with SCADA data, with the REP model having slightly higher correlation and lower error. The BE model shows the highest correlation
(R =0.86) and lowest RMSE (0.191) among the four models. The hub height wind speed model, which has no knowledge of shear and is included
as a control, shows the lowest correlation (R = 0.62) and highest RMSE (0.253). Similarly, the BE model shows the largest reduction in RMSE rela-
tive to the hub height wind speed model, egmse = —24.51%, in contrast to —5.53% for the REP model and —3.16% for the REWS model. While
there is considerable spread between the correlations of the two rotor-equivalent model results and the BE model results, all three have lower
error than the baseline hub height power model. The systematic bias in the BE model results in Figure 11D is primarily a result of the assumed
rotor-constant induction and is discussed in more detail in Section 4.2.3. There is no systematic bias in the actuator disc model predictions
(Figure 11B,C) because we use the coefficient of power Cp estimated directly from the empirical data. The lack of systematic bias in the actuator
disc models is therefore a consequence of how the models are fit, not because of inherent knowledge of underlying physical mechanisms. If per-
fect knowledge of mean Cp were removed from the disc models, they would also exhibit a systematic bias.

Figure 11E-H shows the model predictions and SCADA power correlations non-dimensionalized by the aerodynamic power of the rotor com-
puted using the hub height wind speed from each LiDAR wind speed profile, Paero :%pAdU(zh)3. This controls for the cubic dependence of power
on wind speed, revealing the effect of shear, among other atmospheric determinants, on power production. Notably, the correlation between the
two actuator disc model predictions and the SCADA data significantly decreases when the models do not have the benefit of the cubic depen-
dence of power on wind speed. The REWS and REP models again show similar correlations (R =0.30 and 0.34, respectively) and RMSE (0.123
and 0.120, respectively). The REP model again produces slightly higher correlation and lower error. Unlike the two rotor-equivalent models, the
BE model correlation remains relatively high (R =0.84) when the cubic dependence of power on wind speed is normalized out, and the RMSE
remains the lowest among the models (0.093). Again, the BE model produces the largest reduction in RMSE relative to the hub height wind speed
model (ermse = —26.19%), as compared to the two rotor-equivalent models (ermse = —2.38% and —4.76%). As confirmation of the theory used to
justify the normalization scheme in this analysis, the predictions of the hub height wind speed model in Figure 11E are noted to have collapsed
to a flat line with no correlation to the SCADA measurements. Because this model has no knowledge of variations in wind speed and direction,
when normalized by Paero, the predictions should form a line along the value of Cp. This indicates that the results given for the other models in
Figure 11F-H show the effect of shear on power separated from the cubic dependence of power on wind speed. The results demonstrate that
while the REWS and REP models show qualitative differences in their predictions of power based on the inflow shear (the REP model has

improved qualitative representation of the dependence of power on wind shear compared to REWS as shown in Figure 8), it is challenging to
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FIGURE 10 The root mean square error (RMSE) between the empirical values of normalized power (see Figure 8A) and each of the model
outputs from LiDAR wind profile inputs (see Figure 8B-D). Panel (A) shows the RMSE for the REWS model, (B) the REP model, and (C) the BE

model (Case 1).

elucidate which actuator disc model representation is more quantitatively accurate in the present study. Further, these results show that with

respect to the overarching goal of this study to specifically model the effect of wind speed and direction shear on turbine power production, the

BE model demonstrates a quantitative advantage over the two rotor-equivalent models.

423 | Influence of induction closure and controller modeling on BE model results

In this section, we provide the results of the sensitivity analysis on the BE model discussed in Section 2.4.1. Figure 12 shows the correlation

between the BE model predictions and SCADA data in the same fashion as Figure 11, for each of the six cases in the sensitivity analysis (two

choices for induction closure and three choices for the angular velocity closure yielding six total models). The reference case (Case 1) discussed in
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FIGURE 11 Correlation plots for each of the four models against SCADA power. The top row, A-D, shows power predictions normalized by

the rated power of the turbine P/Prateq and illustrates the performance of the models when the cubic dependence of power on wind speed
dominates other atmospheric determinants of power. The bottom row, E-H, shows power predictions normalized by the aerodynamic power of
the rotor where the wind speed is measured at hub height, Paero = %pAdU(zh)3, and illustrates the performance of the models when the effect of
shear and other atmospheric determinants of power are isolated. The Pearson correlation coefficient R is shown for each case.

TABLE 3 Summary of model correlation and overall error.
P/Prated P/Ppero
Model R RMSE ermse (%) R RMSE ermse (%)
Hub height wind speed 0.62 0.253 - 0.00 0.126 -
Rotor-equivalent wind speed 0.66 0.245 -3.16 0.30 0.123 -2.38
Rotor-equivalent power 0.68 0.239 —-5.53 0.34 0.120 —-4.76
Blade element (Case 1) 0.86 0.191 —24.51 0.84 0.093 -26.19

Note: A summary of the model correlations and errors relative to measured SCADA power production. The column labeled P/Pgateq Shows the model
performance when the cubic dependence of power on wind speed dominates other atmospheric determinants of power. The column labeled P/Paero
shows the model performance when the cubic dependence of power on wind speed is removed by normalizing by the aerodynamic power of the rotor
using the hub height wind speed, Paero =%pAdU(zh)3. For both cases, the Pearson correlation coefficient R, the root mean square error (RMSE), and the
percent change in RMSE relative to the hub height wind speed model ermse are shown.

Section 4.2.2 where induction is constant and the tip-speed ratio is taken from SCADA data shows the lowest overall error and highest correla-
tion with the empirical data. Among the five remaining cases, Case 3 (a=1/3;1*) demonstrates the lowest overall error, with an increase in RMSE
relative to the hub height wind speed model of 2.77% when wind speed dominates predictions of power and 1.59% when the effect of shear is
isolated. Case 6 (a from momentum theory; 1*) shows the overall highest error and lowest correlation, with an increase in RMSE relative to the
hub height wind speed model of 34.78% when wind speed dominates predictions of power and 29.37% when the effect of shear is isolated. The
systematic bias of the BE model predictions in Figures 11 and 12 is dependent primarily on the assumed rotor-constant induction. It remains an
open question as to how induction varies as a function of speed and direction shear incident on the rotor. Since we focus in this study on how
shear affects power production relative to median performance, we assume a=1/3 based on the Betz limit (see additional discussion in
Section 2.4.1). In a sensitivity analysis (not shown), we find that induction values greater than a = 1/3 decrease the bias and lower values increase
the bias. In Cases 1-3 of the BE model sensitivity analysis, we hold induction constant and vary only the turbine controller model. Figure 12A-C
shows the results of these tests and demonstrates that bias is also a function of the angular velocity, though the effect in this study is secondary

to that of the induction. The full results of the sensitivity analysis are provided in Table 4.
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FIGURE 12 Correlation plots for each of the six sensitivity analysis cases. The top row, (A)-(F), shows power predictions normalized by the
rated power of the turbine P/Pgateq and illustrates the performance of the models when the cubic dependence of power on wind speed
dominates other atmospheric determinants of power. The bottom row, (G)-(L), shows power predictions normalized by the aerodynamic power of
the rotor where the wind speed is measured at hub height, Paero = %/)AdU(Zh)S, and illustrates the performance of the models when the effect of
shear and other atmospheric determinants of power is isolated. The Pearson correlation coefficient R is shown for each case.

TABLE 4 Summary of correlation and overall error in the BE model sensitivity analysis.

P/Prated P/Ppero

BE model setup R RMSE ermse (%) R RMSE ermse (%)
Case 1 (a=1/3;4scapa) 0.86 0.191 —24.51 0.84 0.093 -26.19
Case 2 (a=1/3;k - 2?) 0.67 0.294 +16.21 0.32 0.143 +13.49
Case3(a=1/3;4") 0.67 0.260 +2.77 0.36 0.128 +1.59
Case 4 (mom. theory; Ascapa) 0.72 0.297 +17.39 0.51 0.143 +13.49
Case 5 (mom. theory; k - ©?) 0.65 0.336 +32.81 0.24 0.160 +26.98
Case 6 (mom. theory; 1*) 0.65 0.341 +34.78 0.28 0.163 +29.37

Note: A summary of the BE model correlations and errors relative to measured SCADA power production. The column labeled P/Prateq Shows the model
performance when the cubic dependence of power on wind speed dominates other atmospheric determinants of power. The column labeled P/Paero
shows the model performance when the effect of shear and other atmospheric determinants of power is isolated through normalization by the
aerodynamic power of the rotor using the hub height wind speed, Paero :%pAdU(Zh)S. For both cases, the Pearson correlation coefficient R, the root mean
square error (RMSE), and the percent change in RMSE relative to the hub height wind speed model egmse are shown.

In Figure 13, we compare the trends in predicted power production between the best performing setup (Case 1, which uses 2 from the
SCADA data), and the best performing setup in which £ is modeled (Case 3). Overall, using the value of 2 corresponding to A* rather than Q2 from
the SCADA measurements reduces the spread in the maximum degree of predicted over-performance and under-performance. Furthermore, in
several bins (e.g., (=0.4°m1,a=—-0.1) and (§=0.3°m~1,a =0.2)), predicted under-performance when the BE model is driven with SCADA 2
becomes predicted over-performance when driven with a constant tip-speed ratio. This comparison, where all other factors are constant between
the two cases, demonstrates the degree to which the BE model predictions are dependent on the rotor angular velocity Q2 closure.

In Figure 14, we analyze the ability of the k - £22 model in Case 2 to predict the realized tip-speed ratio. Subplot (A) shows the mean bin value
for the realized tip-speed ratio from the SCADA data normalized by the target value commanded by the turbine controller (1*). Subplot (B) shows
the mean bin value for the predicted tip-speed ratio from the controller model in Case 2. Subplots (C) and (D) show the same data in (A) and (B),
respectively, normalized by the mean value of the bin corresponding to no speed or direction shear. There exist distinct trends in the SCADA data
(Figure 14A) between above-target tip-speed ratios (1> 1*) and over-performance (Pgi, > 1) in Figure 6. While there does appear to be some
degree of correlation in the model predictions (most noticeable in subplot (D) where normalized 1 values less than 1 generally coincide with
under-performance in Figure 6, these trends are less pronounced. There also exists less spread in the variation of predicted normalized tip-speed
ratios (0.97 to 1.02 in Figure 14D) as compared to the SCADA measurements (0.94 to 1.11 in Figure 14C). We also observe that the k - 2% model
universally predicts at or above-target tip-speed ratios (12 1). This demonstrates a potential weakness with implementing the model based on
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FIGURE 13 Bin averages of normalized power predictions (If’Bin) for the BE model. Panel (A) shows the BE model outputs for Case
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1 (a=1/3;Ascapa), the model with the lowest overall error, and (B) the model predictions for Case 3 (a=1/3;1"), the model setup that produces
the lowest overall error when Q is not taken from the SCADA data.
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FIGURE 14 Panel (A) shows normalized values of the tip-speed ratio 1 from the SCADA data. Panel (B) shows normalized values of the

A/A* normalized by no-shear bin value [-]

predicted tip-speed ratio A from the BE model with constant (a = 1/3) induction closure and the k - 22 controller model (Case 2). All values are
normalized with respect to the target tip-speed ratio in Region Il (1*). Panel (C) shows the same information in (A) normalized by the bin value
corresponding to no speed or direction shear (indicated by the black square). Similarly, panel (D) shows the same information in panel
(B) normalized in the same fashion.

SCADA data. There are inherent differences between the true physical processes taking place at the turbine rotor and the BE model based on the

simplifications and assumptions to the model detailed in this section. Imposing a value of k determined from the SCADA data in the BE model

operates the turbine away from the true target tip-speed ratio in the field measurements, causing the values of 1/4* in Figure 14B to be
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universally above 1. However, in an analysis where k was chosen to on average produce the target tip-speed ratio from the SCADA data 1, the

variations in predicted 4 (i.e., those in Figure 14D) remained unchanged.

5 | DISCUSSION AND FUTURE WORK

In this study, we analyze a set of LIiDAR wind speed and direction measurements and SCADA power measurements to quantify the effect of shear
on turbine power production. We observe distinct regions of over-performance and under-performance based on differing combinations of speed
and direction shear. We relate these observations to a previous study of similar design?® and note that different combinations of shear correspond
to similar but distinct trends in turbine performance between the two studies. A potential cause of differences between the results of these two
studies is the frequency of occurrence of LLJs at each site. As noted in Section 3.1, the power law used to characterize the degree of speed shear
in both studies is not capable of modeling the complex wind speed profiles inherent to LLJs. Specifically, the power law cannot model wind speed
profiles that do not increase or decrease monotonically with height. When the core of an LLJ descends into the turbine rotor area, there exists
some degree of both positive and negative shear over the rotor, which the power law cannot characterize. This may increase the error between
the power law fit and the true wind speed profile, which could shift data between bins in the plots shown in Figures 6-8, thereby changing the
observed empirical trends in over-performance and under-performance.

Given these limitations in parsing the empirical trends based on the high-dimensional ABL flow, we focus on developing and assessing para-
metric models for the effect of wind shear on power production. We assess the predictions of three different models for turbine power produc-
tion that account for wind speed and direction shear over the rotor area and compare these results to a model that has no knowledge of wind
shear. We drive each model with two separate and distinct input classes: (1) best-fit canonical ABL profiles where wind speed is modeled with the
power law and wind direction varies linearly with height and (2) wind speed and direction measurements made by a profiling LIDAR. These two
input types are observed to produce qualitative and quantitative differences in power predictions in each model. These results indicate that the
variations present in complex wind speed and direction profiles that are not present in median profiles have a first-order effect on model outputs.
This implies that the model outputs may vary substantially as the frequency of the input wind conditions changes. That is, as the time-averaging
window of the input wind profiles increases, for instance to 10 min, as is standard in industry wind resources assessments, the model predictions
may vary from those produced by higher frequency inputs like those used in this study. Since power production is a nonlinear function of the
wind speed, the average power production based on instantaneous wind is not equivalent to the power production based on the averaged wind,
and there is therefore inherently a dependence on the time-averaging scale. Future work should further elucidate the time-averaging scale that is
necessary to accurately model the influence of wind shear, since lowering the averaging period will also further complicate the qualitative charac-
terization of the profiles as they become more sensitive to microscale ABL turbulence. Further, the present results have an implication on wind
resource assessment: power predictions assuming power law profile behavior made in the absence of real wind profile measurements may deviate
substantially from true values based on the assumptions made about the input wind profiles. Specifically, if canonical ABL profiles are used in
which no short-term turbulent fluctuations or diurnally varying atmospheric features (such as LLJs) are accounted for, predictions of power may
not accurately reflect the true power production at a given site.

We compare the predictions from each model driven with LiDAR wind speed and direction inputs to concurrent power measurements from a
utility-scale wind turbine located adjacent to the LiDAR system. The hub height wind speed model has no knowledge of variations in wind speed
and direction over the rotor and is included as a reference against which the other models that do have knowledge of variations over the rotor
are compared. We assess the models in two separate ways. First, the model results are analyzed when power predictions are dominated by the
wind speed magnitude in the input wind profile. Second, we isolate the effect of shear and other determinants of power by normalizing the power
predictions by the aerodynamic power of the rotor based on the hub height wind speed of the input wind profile. In both cases, we observe that
the BE model shows the highest correlation and lowest overall error with the SCADA measurements. The two rotor-equivalent models show simi-
lar correlations and overall errors in both cases. However, the correlations of the REWS and REP models to the SCADA measurements decrease
by a factor of 2 when normalized to isolate the effect of shear, whereas the BE model correlation decreases only marginally. The implication of
this is that the BE model is more able to accurately model the effect of speed and direction shear in arbitrary wind profile inputs on turbine power
production than the rotor-equivalent models in their current form.

While the results presented in Figure 11 show promise in capturing the effects of wind shear with a BE approach, a notable weakness for this
model is the additional information required, which is not necessary to drive the two rotor-equivalent models, namely, the airfoil properties
corresponding to each blade node, as well as the rotor angular velocity corresponding to the atmospheric conditions in each input wind profile.
Figure 13 demonstrates the degree to which knowledge of the angular velocity affects the BE model power predictions. When Q is computed
from the target tip-speed ratio of the turbine 1*, the BE model accuracy decreases substantially. The correlation with SCADA power measure-
ments when power is dominated by the cubic dependence of power on wind speed falls to R =0.67, and when the cubic dependence is
accounted for, the correlation is R =0.36. With knowledge of 2 removed, in the best case, results are comparable to the two rotor-equivalent

models and in the remaining cases under-perform even the hub height wind speed model. Moreover, Figure 14A shows that the average tip-
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speed ratio for discrete combinations of speed and direction shear follows similar trends as the normalized power production shown in Figure 8.
This suggests that the BE model depends on information pertaining to the specific operating strategy commanded by the onboard control system,
and when this information is removed by assuming a constant tip-speed ratio for Region Il operation, rather than known a priori, the BE model
has similar performance to the actuator disc models considered. Therefore, future work on accurately estimating the tip-speed ratio depending
on wind shear, and other atmospheric and wind turbine control determinants, is particularly pertinent.

Uncertainty exists around how rotor aerodynamics (e.g., induction factors) are affected by wind speed and direction shear. We test several
simplifications and assumptions to demonstrate their effect on the BE model results. Elucidating how these aerodynamic mechanisms depend on
wind speed and direction shear, and then incorporating any corresponding extensions developed into the BE framework proposed here, is
suggested for future work. In a sensitivity test of the effect of induction closure and turbine control on the BE model results, we find that the
model is dependent on knowledge of the rotor speed to first order. Further, when the tip-speed ratio is estimated using the standard controller
model from the literature (k - 22), the predictions are under-dispersive relative to the measured SCADA values. This result holds regardless of the
induction closure used; however, induction closure from one-dimensional momentum theory appears to further increase error relative to the mea-
sured SCADA data. This indicates that the momentum theory induction closure model has a stabilizing effect on the controller model, such that
when both are used in tandem, feedback between the two models tends to mitigate the effect of arbitrary wind speed and direction shear on
model outputs. Moreover, none of the cases tested in the sensitivity analysis were able to meet or exceed the benchmark correlation or error
achieved by the BE model when run with constant induction closure and the SCADA tip-speed ratio. This again underscores the impact that
knowledge of the tip-speed ratio has on the BE model predictions and denotes limitations in both the induction closure and controller models in
handling inputs containing shear. Future work should focus on understanding how the induced velocities depend on wind speed and direction
shear, and on estimating 4, and by extension €2, based on the turbine controller response to inflow wind conditions. This will enable the BE model
to be used for predictions where SCADA measurements of these quantities are not available (e.g., wind farm siting and design).

Finally, the BE model does not consider the effect of any other determinants of turbine efficiency, such as turbulence at scales smaller than
the time-averaging timescale, which has been studied in empirical investigations and actuator disc formulations extensively (see, e.g., Wharton
and Lundquist,*®*? Murphy et al,?2 Brand et al,>® Ryu et al,® and St. Martin et al?®). While high-frequency turbulence measurements over the rotor
area were not available in this study, future work may assess the potential joint role of shear and turbulence using meteorological tower measure-
ments and computational fluid dynamics. In this study, the BE model demonstrates the lowest error in predicting power depending on wind shear
when rotor speed is known from SCADA measurements, though performance degrades when rotor speed is estimated from BE momentum the-
ory. The model that is found to most accurately predict turbine power production depending on wind speed and direction shear, without knowl-
edge from SCADA measurements, across multiple wind farm sites should be incorporated into future wind resource assessments for wind farm

siting and design.
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APPENDIX A: THE STATISTICAL SIGNIFICANCE OF POWER PREDICTIONS

To determine the statistical significance of the trends in over-performance and under-performance in the empirical results and model predictions,
we perform the following analysis. The 95% confidence interval (Cl) is computed around the mean value of each bin shown in Figure 8 using boo-
tstrapping. In Figure A1, we remove the bins in which the Cl contains the value of normalized power equal to one (Pgin = 1). These bins are
removed because the Cl crosses the threshold of over-performance and under-performance, indicating that at the selected 95% significance level,
the performance reflected in these bins is not statistically significant.
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FIGURE A1 Bin averages of normalized power (Pg;,) with respect to the median power curve of the turbine at the site for discrete
combinations of speed and direction shear. Panel (A) shows the SCADA power measurements. Panel (B) shows the REWS model predictions,
(C) the REP model, and (D) the BE model from LiDAR wind profile inputs. The colormap is chosen to highlight trends in the model predictions
presented in (B)-(D). The 95% confidence interval (Cl) is computed for each bin. Bins for which the Cl spans the value of Pgi, = 1 are removed
because trends in over-performance and under-performance indicated in these bins cannot be discerned reliably with the given data.
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