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Contrastive learning is an effective unsupervised method in graph representation learning. The key com-

ponent of contrastive learning lies in the construction of positive and negative samples. Previous methods

usually utilize the proximity of nodes in the graph as the principle. Recently, the data-augmentation-based

contrastive learning method has advanced to show great power in the visual domain, and some works have

extended this method from images to graphs. However, unlike the data augmentation on images, the data aug-

mentation on graphs is far less intuitive and it is much harder to provide high-quality contrastive samples,

which leaves much space for improvement. In this work, by introducing an adversarial graph view for data

augmentation, we propose a simple but effective method, Adversarial Graph Contrastive Learning (ArieL), to

extract informative contrastive samples within reasonable constraints. We develop a new technique called

information regularization for stable training and use subgraph sampling for scalability. We generalize our

method from node-level contrastive learning to the graph level by treating each graph instance as a super-

node. ArieL consistently outperforms the current graph contrastive learning methods for both node-level

and graph-level classification tasks on real-world datasets. We further demonstrate that ArieL is more robust

in the face of adversarial attacks.
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1 INTRODUCTION

Contrastive learning is a widely used technique in various graph representation learning tasks. In

contrastive learning, the model tries to minimize the distances among positive pairs and maximize

the distances among negative pairs in the embedding space [10, 17, 20, 21, 28, 51, 52, 59, 62, 65].

The definition of positive and negative pairs is the key component in contrastive learning. Earlier

methods such as DeepWalk [37] and node2vec [9] define positive and negative pairs based on the

co-occurrence of node pairs in the randomwalks. For knowledge graph embedding, it is a common

practice to define positive and negative pairs based on translations [3, 15, 29, 40, 53, 55, 60].

Recently, the breakthroughs of contrastive learning in computer vision have inspired some

works to apply similar ideas from visual representation learning to graph representation learning.

To name a few,Deep Graph Infomax (DGI) [51] extends Deep InfoMax [12] and achieves signifi-

cant improvements over previous randomwalk–basedmethods.GraphicalMutual Information

(GMI) [36] uses the same framework as DGI but generalizes the concept of mutual information

from vector space to graph domain. Contrastive multi-view graph representation learning

(MVGRL) [10] further improves DGI by introducing graph diffusion into the contrastive learning

framework. The more recent works often follow the data augmentation–based contrastive learn-

ing methods [5, 11], which treat the data-augmented samples from the same instance as positive

pairs and different instances as negative pairs. Graph Contrastive Coding (GCC) [38] uses ran-

dom walks with restart [48] to generate two subgraphs for each node as two data-augmented

samples. Graph Contrastive learning with Adaptive augmentation (GCA) [65] introduces

an adaptive data augmentation method that perturbs both the node features and edges accord-

ing to their importance. It is trained in a similar way as the famous visual contrastive learning

framework SimCLR [5]. Its preliminary work, which uses uniform random sampling rather than

adaptive sampling, is referred to as GRACE [64] in this article. Robinson et al. [39] propose a way

to select hard negative samples based on the distances in the embedding space, which they use to

obtain high-quality graph embedding. There are also many works [62, 63] systemically studying

the data augmentation on the graphs.

However, unlike the rotation and color jitter operations on images, the transformations on

graphs, such as edge dropping and feature masking, are far less intuitive to human beings. The

data augmentation on the graph could be either too similar to or totally different from the original

graph. This, in turn, leads to a crucial question, that is, how to generate a new graph that is hard

enough for the model to discriminate from the original one plus also maintain the desired properties.

Inspired by some recent works [13, 16, 24, 26, 47], we introduce adversarial training on graph

contrastive learning and propose a new framework called Adversarial GRaph ContrastIvE

Learning (ArieL). Through the adversarial attack on both topology and node features, we gen-

erate an adversarial sample from the original graph. On the one hand, since the perturbation is

under the constraint, the adversarial sample still stays close enough to the original one. On the

other hand, the adversarial attack makes sure that the adversarial sample is hard to discriminate

from the other view by increasing the contrastive loss. In addition, we propose a new constraint

called information regularization, which could stabilize the training of ArieL and prevent collaps-

ing. We bridge the gap between node-level graph contrastive learning and graph-level contrastive

learning by treating each graph instance as a super-node in node-level graph contrastive learning.

Thus, we make ArieL a universal graph representation learning framework. We demonstrate that

the proposed ArieL outperforms the existing graph contrastive learning frameworks in the node

classification and graph classification tasks on both real-world graphs and adversarially attacked

graphs.

In summary, we make the following contributions.
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First, we introduce an adversarial view as a new form of data augmentation in graph contrastive

learning, which makes the data augmentation more informative under mild perturbations.

Second, we propose a new technique called information regularization to stabilize the training

of adversarial graph contrastive learning by regularizing the mutual information among positive

pairs.

Third, we bridge the gap between node-level graph contrastive learning and graph-level con-

trastive learning and we unify their formulation under our framework.

Finally, we empirically demonstrate that ArieL can achieve better performance and higher ro-

bustness compared with previous graph contrastive learning methods.

The rest of the article is organized as follows. Section 2 gives the problem definition of graph

representation learning and the preliminaries. Section 3 describes the proposed algorithm. The

experimental results are presented in Section 4. After reviewing related work in Section 5, we

conclude the article in Section 6.

2 PROBLEM DEFINITION

In this section, we will introduce all the notations used in this article and give a formal definition

of our problem. In addition, we briefly introduce the preliminaries of our method.

2.1 Graph Representation Learning

For graph representation learning, let G = {V,E,X} be an attributed graph, where V =

{v1,v2, . . . ,vn } denotes the set of nodes, E ⊆ V × V denotes the set of edges, and X ∈ Rn×d
denotes the feature matrix. Each node vi has a d-dimensional feature X[i, :], and all edges are

assumed to be unweighted and undirected. We use a binary adjacency matrix A ∈ {0, 1}n×n to rep-

resent the information of nodes and edges, whereA[i, j] = 1 if and only if the node pair (vi ,vj ) ∈ E.
In the following text, we will use G = {A,X} to represent the graph.

The objective of the graph representation learning is to learn an encoder f : Rn×n × Rn×d →
R
n×d ′ , which maps the nodes in the graph into low-dimensional embeddings. Denote the node

embedding matrix H = f (A,X), where H[i, :] ∈ Rd ′ is the embedding for nodevi . This representa-
tion could be used for downstream tasks such as node classification. Based on the node-embedding

matrix, we can further obtain the graph embedding through an order-invariant readout function

R (·), which generates the graph representation as R (H) ∈ Rd ′′ .

2.2 InfoNCE Loss

InfoNCE loss [49] is the predominant workhorse of the contrastive learning loss, which maximizes

the lower bound of the mutual information between two random variables. For each positive pair

(x, x+) associated with k negative samples of x, denoted as {x−1 , x−2 , · · · , x−k }, InfoNCE loss could

be written as

Lk = − log ��
д(x, x+)

д(x, x+) +
∑k

i=1 д(x, x
−
i )

�
�. (1)

Here,д(·) is the density ratio with the property thatд(a, b) ∝ p (a |b)
p (a) , where∝ stands for proportional

to. It has been shown by the authors of [49] that −Lk actually serves as the lower bound of the

mutual information I (x; x+) with

I (x; x+) ≥ log (k ) − Lk . (2)
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2.3 Graph Contrastive Learning

We build the proposed method upon the framework of SimCLR [5], which is also the basic frame-

work that GCA [65] and GraphCL [62] are built on.

2.3.1 Node-Level Contrastive Learning. Given a graphG, two views of the graphG1 = {A1,X1}
andG2 = {A2,X2} are first generated. This step can be treated as the data augmentation on the orig-

inal graph, and various augmentation methods can be used herein. We use random edge dropping

and feature masking as GCA does. The node-embedding matrix for each graph can be computed as

H1 = f (A1,X1) andH2 = f (A2,X2). The corresponding node pairs in two graph views are the pos-
itive pairs and all other node pairs are negative. Define θ (u, v) to be the similarity function between

vectors u and v; in practice, it is usually chosen as the cosine similarity on the projected embedding

of each vector, using a two-layer neural network as the projection head. Denote ui = H1[i, :] and
vi = H2[i, :]; the contrastive loss is defined as

Lcon (G1,G2) =
1

2n

n∑

i=1

(l (ui , vi ) + l (vi , ui )), (3)

l (ui , vi ) = − log
eθ (ui ,vi )/τ

eθ (ui ,vi )/τ +
∑

j�i e
θ (ui ,vj )/τ +

∑
j�i e

θ (ui ,uj )/τ
, (4)

where τ is a temperature parameter. l (vi , ui ) is symmetrically defined by exchanging the variables

in l (ui , vi ). This loss is basically a variant of InfoNCE loss, which is symmetrically defined instead.

2.3.2 Graph-Level Contrastive Learning. Graph-level contrastive learning is closer to con-

trastive learning in the visual domain. For a batch of graphs B = {G1, · · · ,Gb }, we obtain the

augmentation of each graph as B+ = {G+1 , · · · ,G+b } through node dropping, subgraph sampling,

edge perturbation, and feature masking as in GraphCL [62]. The loss function is thus defined on

these two batches of graphs as

Lcon (B,B+) = E
⎡⎢⎢⎢⎢⎣− log

eθ (Ri ,R
+
i
)/τ

eθ (Ri ,R
+
i
)/τ +

∑
j�i e

θ (Ri ,R+j )/τ +
∑

j�i e
θ (Ri ,Rj )/τ

⎤⎥⎥⎥⎥⎦ , (5)

where Ri = R (Hi ) and R
+
i = R (H+i ).

By abuse of notation, we also use Lcon to denote the loss function for graph-level contrastive

learning. The actual meaning of Lcon is dependent on the input type, graph or set, in the following

text.

Specifically, we notice that a set of graphs with Gi = {Ai ,Xi } can be combined into one

graph as

G∗ = {block_diag(A1, · · · ,Ab ),Concat(X1, · · · ,Xb )}. (6)

Under this transformation, graph embedding ofGi can be treated as the embedding of a super-node

inG∗. This observation helps us bridge the gap between node-level contrastive learning and graph-
level contrastive learning; the only difference between them is the granularity of the instance in

the contrastive learning loss. Therefore, we can build a universal framework for graph contrastive

learning that can be used for both node-level and graph-level downstream tasks.

2.3.3 Graph Encoder. In principle, our framework could be applied on any graph neural net-

work (GNN) architecture for an encoder as long as it could be attacked. For simplicity, we employ

a two-layer Graph Convolutional Network (GCN) [27] for node-level contrastive learning and

a three-layer Graph Isomorphism Network (GIN) [58] for graph-level contrastive learning in
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this work. Define the symmetrically normalized adjacency matrix

Â = D̃
− 1

2 ÃD̃
− 1

2 , (7)

where Ã = A+ In is the adjacency matrix with self-connections added and In is the identity matrix,

and D̃ is the diagonal degree matrix of Ã with D̃[i, i] =
∑

j Ã[i, j]. The two-layer GCN is given as

f (A,X) = σ (Âσ (ÂXW(1) )W(2) ), (8)

where W
(1) and W

(2) are the weights of the first and second layer, respectively, and σ (·) is the
activation function.

The Graph Isomorphism operator could be defined as

X
′ = h((A + ϵI)X), (9)

where h(·) is a neural network such asmulti-layer perceptrons (MLPs) and ϵ is a non-negative
scalar. A three-layer GIN is the stack of three Graph Isomorphism operators. In this work, h(·) is
a two-layer MLP followed by an activation function and Batch Normalization [14], and ϵ is set as

0 for all operators. Use X(i ) to denote the node embeddings after the i-th operator; the final node

embeddings are the concatenation of X(i ) , H = Concat(X(i ) |i = 1, 2, 3), and the graph embedding

is the concatenation of the node embeddings after mean pooling, R (H) = Concat(Mean(X(i ) ) |i =
1, 2, 3).

2.4 Projected Gradient Descent Attack

A Projected Gradient Descent (PGD) attack [32] is an iterative attack method that projects

perturbation onto the ball of interest at the end of each iteration. Assuming that the loss L(·) is a
function of the input matrix Z ∈ Rn×d , at the t-th iteration, the perturbation matrix Δt ∈ Rn×d
under an l∞-norm constraint could be written as

Δt = Π ‖Δ‖∞≤δ (Δt−1 + η · sgn(∇ΔL(Z + Δt−1)), (10)

where η is the step size, sgn(·) takes the sign of each element in the input matrix, and Π ‖Δ‖∞≤δ
projects the perturbation onto the δ -ball in the l∞-norm.

3 METHOD

In this section, we will first investigate the vulnerability of the graph contrastive learning, then we

will spend the remaining section discussing each part of ArieL in detail. Based on the connection

we build upon the node-level contrastive learning and graph-level contrastive learning, we will

illustrate our method from the perspective of node-level contrastive learning and extend it to the

graph level.

3.1 Vulnerability of the Graph Contrastive Learning

Many GNNs are known to be vulnerable to adversarial attacks [2, 66]. Thus, we first investigate

the vulnerability of the GNNs trained with the contrastive learning objective in Equation (3). We

generate a sequence of 60 graphs by iteratively dropping edges and masking the features. Let

G0 = G; for the t-th iteration, we generate Gt from Gt−1 by randomly dropping the edges in

Gt−1 and randomly masking the unmasked features, both with probability p = 0.03. Since Gt

is guaranteed to contain less information than Gt−1, Gt should be less similar to G0 than Gt−1 on
both the graph and node level. Denote the node embeddings ofGt asHt ; we measure the similarity

θ (Ht [i, :],H0[i, :]) and it is expected that the similarity decreases as the iteration goes on.

We generate the sequences on two datasets, Amazon-Computers and Amazon-Photo [43]. The

results are shown in Figure 1. At the 30-th iteration, with 0.9730 = 40.10% edges and features

left, the average similarity of the positive samples is under 0.5 on Amazon-Photo. At the 60-th
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Fig. 1. Average cosine similarity between the node embeddings of the original graph and the perturbed graph;

results are on datasets Amazon-Computers and Amazon-Photo. The shaded area represents the standard

deviation.

Fig. 2. Overview of the proposed ArieL framework. For each iteration, two augmented views are generated

from the original graph by data augmentation (purple arrows). Then, an adversarial view is generated (red

arrow) from the original graph by maximizing the contrastive loss against one of the augmented views. The

similarities of the corresponding nodes (dashed lines) will be penalized by the information regularization

if they exceed the estimated upper bound. The objective of ArieL is to minimize the contrastive loss (gray

arrows) between the augmented views, the adversarial view, and the corresponding augmented view, and

the information regularization. Best viewed in color.

iteration, with 0.9760 = 16.08% edges and features left, the average similarity drops under 0.2
on both Amazon-Computers and Amazon-Photo. Additionally, starting from the 30-th iteration,

the cosine similarity has around 0.3 standard deviation for both datasets, which indicates that a

lot of nodes are actually very sensitive to the external perturbations, even if we do not add any

adversarial component but just mask out some information. These results demonstrate that the

current graph contrastive learning framework is not trained over enough high-quality contrastive

samples and is not robust to adversarial attacks.

Given this observation, we are motivated to build an adversarial graph contrastive learning

framework that could improve the performance and robustness of the previous graph contrastive

learning methods. The overview of our framework is shown in Figure 2.

3.2 Adversarial Training

Adversarial training uses the samples generated through the adversarial attackmethods to improve

the generalization ability and robustness of the original method during training. Although most

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 4, Article 82. Publication date: February 2024.
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existing attack frameworks are targeted at supervised learning, it is natural to generalize these

methods to contrastive learning by replacing the classification loss with the contrastive loss. The

goal of the adversarial attack on graph contrastive learning is to maximize the contrastive loss by

adding a small perturbation on the contrastive samples, which can be formulated as

Gadv = argmax
G′

Lcon (G1,G
′), (11)

where G ′ = {A′,X′} is generated from the original graph G, and the change is constrained by the

budget ΔA and ΔX as
∑

i, j

|A′[i, j] − A[i, j]| ≤ ΔA, (12)

∑

i, j

|X′[i, j] − X[i, j]| ≤ ΔX. (13)

We treat adversarial attacks as one kind of data augmentation. Althoughwe find it effective tomake

the adversarial attack on one or two augmented views as well, we follow the typical contrastive

learning procedure as in SimCLR [5] to make the attack on the original graph in this work. In

addition, it does not matter whether G1, G2, or G is chosen as the anchor for the adversary; each

choice works in our framework and it can also be sampled as a third view. In our experiments, we

use the PGD attack [32] as our attack method.

We generally follow the method proposed by Xu et al. [57] to make the PGD attack on the graph

structure and apply the regular PGD attack method on the node features. Define the supplement

of the adjacency matrix as Ā = 1n×n − In − A, where 1n×n is the ones matrix of size n × n. The
perturbed adjacency matrix can be written as

Aadv = A + C ◦ LA, (14)

C = Ā − A, (15)

where ◦ is the element-wise product and LA ∈ {0, 1}n×n is a symmetric matrix with each element

LA[i, j] corresponding to themodification (e.g., add, delete, or nomodification) of the edge between

the node pair (vi ,vj ). The perturbation on X follows the regular PGD attack procedure and the

perturbed feature matrix can be written as

Xadv = X + LX, (16)

where LX ∈ Rn×d is the perturbation on the feature matrix.

For ease of optimization, LA is relaxed to its convex hull L̃A ∈ [0, 1]n×n , which satisfies SA =
{L̃A |
∑

i, j L̃A ≤ ΔA, L̃A ∈ [0, 1]n×n }. The constraint on LX can be written as SX = {LX |‖LX‖∞ ≤
δX, LX ∈ Rn×d }, where we directly treat δX as the constraint on the feature perturbation. In each

iteration, we make the updates

L̃
(t )
A
= ΠSA

[
L̃
(t−1)
A
+ α · G(t )

A

]
, (17)

L
(t )
X
= ΠSX

[
L
(t−1)
X
+ β · sgn(G(t )

X
)
]
, (18)

where t denotes the current number of iterations, and

G
(t )
A
= ∇

L̃A
Lcon (G1,G

(t−1)
adv

), (19)

G
(t )
X
= ∇LXLcon (G1,G

(t−1)
adv

), (20)

denote the gradients of the loss with respect to L̃A at L̃
(t−1)
A

and LX at L
(t−1)
X

, respectively. Here,

G (t−1)
adv

is defined as {A + C ◦ L̃(t−1)
A
,X + L

(t−1)
X
}. The projection operation ΠSX simply clips LX into
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the range [−δX,δX] element-wisely. The projection operation ΠSA is calculated as

ΠSA (Z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P[0,1][Z − μ1n×n], if μ > 0, and

∑
i, j P[0,1][Z − μ1n×n] = ΔA,

P[0,1][Z], if
∑

i, j P[0,1][Z] ≤ ΔA,

(21)

where P[0,1][Z] clips Z into the range [0, 1]. We use the bisection method [4] to solve the equation∑
i, j P[0,1][Z − μ1n×n] = ΔA with respect to the dual variable μ.

To finally obtain LA from L̃A, each element is independently sampled from a Bernoulli distri-

bution as LA[i, j] ∼ Bernoulli(L̃A[i, j]). To obtain a symmetric matrix, we only sample the upper

triangular part (the elements on the diagonal are known to be 0 in our formulation) and obtain the

lower triangular part through transposition.

3.3 Adversarial Graph Contrastive Learning

To assimilate the graph contrastive learning and adversarial training together, we treat the adver-

sarial viewGadv obtained from Equation (11) as another view of the graph. We define the adversar-

ial contrastive loss as the contrastive loss betweenG1 andGadv. The adversarial contrastive loss is

added to the original contrastive loss in Equation (3), which becomes

L(G1,G2,Gadv) = Lcon (G1,G2) + ϵ1Lcon (G1,Gadv), (22)

where ϵ1 > 0 is the adversarial contrastive loss coefficient. We further adopt two additional sub-

tleties on top of this basic framework: subgraph sampling and curriculum learning. For each iter-

ation, a subgraph Gs with a fixed size is first sampled from the original graph G. Then, the data
augmentation and adversarial attack are both conducted on this subgraph. The subgraph sampling

could avoid the gradient derivation on the whole graph, which will lead to heavy computation on a

large network. We also observe that subgraph sampling could increase the randomness of the sam-

ple and sometimes boost the performance. To avoid the imbalanced sample on the isolated nodes,

we uniformly sample a random set of nodes and then construct the subgraph on top of them. For

everyT epochs, the adversarial contrastive loss coefficient is multiplied by a weightγ . Whenγ > 1,

the portion of the adversarial contrastive loss is gradually increasing and the contrastive learning

becomes harder as the training goes on.

3.4 Information Regularization

Adversarial training could effectively improve the model’s robustness to perturbations. Nonethe-

less, we find that these hard training samples could impose the additional risk of training collapsing,

i.e., the model will be located at a bad parameter area at the early stage of the training, assigning

higher probability to a highly perturbed sample than amildly perturbed one. In our experiment, we

find that this vanilla adversarial training method may fail to converge in some cases (e.g., Amazon-

Photo dataset). To stabilize the training, we add one constraint termed information regularization,

whose main goal is to regularize the instance similarity in the feature space.

Data processing inequality [6] states that for three random variables Z1, Z2, and Z3 ∈ Rn×d
′
, if

they satisfy the Markov relation Z1 → Z2 → Z3, then the inequality I (Z1;Z3) ≤ I (Z1;Z2) holds.
As proved by Zhu et al. [65], since the node embeddings of two views H1 and H2 are conditionally

independent given the node embeddings of the original graph H, they also satisfy the Markov

relation with H1 → H → H2 and vice versa. Therefore, we can derive the following properties
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over their mutual information:

I (H1;H2) ≤ I (H;H1), (23)

I (H1;H2) ≤ I (H;H2). (24)

In fact, this inequality holds on each node. A sketch of the proof is that the embedding of each

nodevi is determined by all the nodes from its l-hop neighborhood if an l-layer GNN is used as the

encoder, and this subgraph composed of its l-hop neighborhood also satisfies the Markov relation.

Therefore, we can derive the more strict inequalities:

I (H1[i, :];H2[i, :]) ≤ I (H[i, :];H1[i, :]), (25)

I (H1[i, :];H2[i, :]) ≤ I (H[i, :];H2[i, :]). (26)

Since −Lcon (G1,G2) is only a lower bound of the mutual information, directly applying the above

constraints is har; we only consider the constraints on the density ratio. Using the Markov relation

for each node, we give the following theorem.

Theorem 1. For two graph views G1 and G2 independently transformed from the graph G, the
density ratio of their node embeddings H1 and H2 should satisfy д(H2[i, :],H1[i, :]) ≤ д(H2[i, :],
H[i, :]), and д(H1[i, :],H2[i, :]) ≤ д(H1[i, :],H[i, :]), where H is the node embeddings of the original

graph.

Proof. Following the Markov relation of each node, we get that

p (H2[i, :]|H1[i, :]) = p (H2[i, :]|H[i, :])p (H[i, :]|H1[i, :])

≤ p (H2[i, :]|H[i, :])
(27)

and, consequently,

p (H2[i, :]|H1[i, :])

p (H2[i, :])
≤ p (H2[i, :]|H[i, :])

p (H2[i, :])
. (28)

Since д(a, b) ∝ p (a |b)
p (a) , we get that д(H2[i, :],H1[i, :]) ≤ д(H2[i, :],H[i, :]). A similar proof applies to

the other inequality. �

Note that д(·, ·) is symmetric for the two inputs. Thus, we get two upper bounds for д(H1[i, :
],H2[i, :]). According to the previous definition, д(a, b) = eθ (a,b)/τ , we can simply replace д(·, ·)
with θ (·, ·) in the inequalities. Then, we combine these two upper bounds into one:

2 · θ (H1[i, :],H2[i, :]) ≤ θ (H2[i, :],H[i, :]) + θ (H1[i, :],H[i, :]). (29)

This bound intuitively requires the similarity betweenH1[i, :] andH2[i, :] to be less than the similar-

ity betweenH[i, :] andH1[i, :] orH2[i, :]. Equipped with this upper bound, we define the following
information regularization to penalize the higher probability of a less similar contrastive pair:

di = 2 · θ (H1[i, :],H2[i, :]) − (θ (H2[i, :],H[i, :]) + θ (H1[i, :],H[i, :])), (30)

LI (G1,G2,G ) =
1

n

n∑

i=1

max{di , 0}. (31)

Specifically, information regularization could be defined over any three graphs that satisfy the

Markov relation. However, for our framework, to save memory and time complexity, we avoid

additional sampling and directly ground information regularization on the existing graphs. It is

also fine to apply information regularization onG, G1 and Gadv or G, G2 and Gadv.
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ALGORITHM 1: Algorithm of ArieL

Input data: Graph G = (A,X)
Input parameters: α , β , ΔA, δX, ϵ1, ϵ2, γ and T
Randomly initialize the graph encoder f
for iteration k = 0, 1, · · · do
Sample a subgraphGs from G
Generate two views G1 and G2 from Gs

Generate the adversarial view Gadv according to Equations (18) and (17)

Update model f to minimize L(G1,G2,Gadv) in Equation (32)

if (k + 1) mod T = 0 then

Update ϵ1 ← γ ∗ ϵ1
end if

end for

return: Node embedding matrix H = f (A,X)

The final loss of ArieL can be written as

L(G1,G2,Gadv) = Lcon (G1,G2) + ϵ1Lcon (G1,Gadv) + ϵ2LI (G1,G2,G ), (32)

where ϵ2 > 0 controls the strength of the information regularization.

The entire algorithm of ArieL is summarized in Algorithm 1.

3.5 Extension to Graph-Level Contrastive Learning

For a batch of graphs B and the batch of their augmentation views B+, we aim to generate a batch

of adversarial views, which we denote as Badv. Denote the combined graph of each batch as G∗,
G+∗, and G∗

adv
. The objective of adversarial graph contrastive learning on the graph level can be

formulated as

Badv = argmax
B′

Lcon (B+,B′), (33)

subject to
∑

i, j

|A′∗[i, j] − A∗[i, j]| ≤ ΔA, (34)

∑

i, j

|X′∗[i, j] − X∗[i, j]| ≤ ΔX. (35)

It is worth noting that the constraints we use here are applied on the batch rather than each graph,

i.e., we only constrain the total perturbations over all graphs rather than the perturbations on each

graph. This can greatly reduce the computational cost in solving the above-constrained maximiza-

tion problem in that it reduces the number of constraints from twice the batch size to 2. However,

it also introduces the additional risk that the perturbations could be severely imbalanced among

the graphs in the batch, e.g., a graph is heavily perturbed while others are almost unchanged. In

our experiment, we do not observe this problem but it could theoretically happen. A good practice

is to start from this simple form and then gradually add constraints to the vulnerable graphs in

the batch if the imbalanced perturbations are observed.

During the attack stage, the perturbation matrix LA and its convex hull L̃A are further subject

to the constraints that they should be block diagonal matrices with 0 at position (i, j ) if node i and
node j are the nodes from two graphs in the batch. This could be easily implemented by using a
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block diagonal mask to zero out the gradients during the forward propagation:

LA = block_diag(1ni×ni |i = 1 · · · ,b) ◦ LA, (36)

L̃A = block_diag(1ni×ni |i = 1 · · · ,b) ◦ L̃A, (37)

where ni is the number of nodes in the graphGi in the batch. With this processing, the projection

operation on the adjacencymatrix remains the same as in Equation (21). In the case that we need to

apply the constraints for each graph in the batch, we just need to apply the projection operation

defined in Equation (21) on the adjacency matrix of each graph using the bisection method to

solve μ for each graph separately. The projection operation on the feature perturbation matrix is

not affected on the graph level, which still clips LX into the range [−δX,δX] element-wisely.

Information regularization also applies to graph-level contrastive learning, in which we only

need to replace the node embedding with the graph embedding in Equation (30). Hence, we can

derive the bound atop different views of the same graph in B, B+, and Badv:

di = 2 · θ (R (H+i ),R (Hadv,i )) − (θ (R (H+i ),R (Hi )) + θ (R (Hadv,i),R (Hi ))), (38)

LI (B,B+,Badv) =
1

b

b∑

i=1

max{di , 0}. (39)

The final loss of ArieL for the graph-level contrastive learning could be written as

L(B,B+,Badv) = Lcon (B,B+) + ϵ1Lcon (B+,Badv) + ϵ2LI (B,B+,Badv). (40)

The graph-level adversarial contrastive learning could also follow the steps outlined in

Algorithm 1 for training by simply replacing the input graph with the input batch in loss

functions.

4 EXPERIMENTS

In this section, we conduct empirical evaluations that are designed to answer the following three

questions:

RQ1. How effective is the proposed ArieL in comparison with previous graph contrastive learn-

ing methods on the node classification and graph classification tasks?

RQ2. To what extent does ArieL gain robustness over the attacked graph?

RQ3. How does each part of ArieL contribute to its performance?

We evaluate our method with the node classification task and graph classification task on real-

world graphs and further evaluate the robustness of it with the node classification task on the

attacked graphs. The node/graph embeddings are first learned by the proposed ArieL algorithm;

then, the embeddings are fixed to perform the classification with a simple classifier trained over it.

All our experiments are conducted on the NVIDIA Tesla V100S GPU with 32 G memory.

4.1 Experimental Setup

4.1.1 Datasets. For node-level contrastive learning, we use eight datasets for the evaluation,

including Cora, CiteSeer, Amazon-Computers, Amazon-Photo, Coauthor-CS, Coauthor-Physics, Face-

book, and LastFM Asia. Cora and CiteSeer [61] are citation networks, in which nodes represent

documents and edges correspond to citations. Amazon-Computers and Amazon-Photo [43] are

extracted from the Amazon co-purchase graph. In these graphs, nodes are the goods and they are

connected by an edge if they are frequently bought together. Coauthor-CS and Coauthor-Physics

[43] are the coauthorship graphs, in which each node is an author and the edge indicates the coau-

thorship on a paper. Facebook [41] is a page-page graph of verified Facebook pages in which edges
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Table 1. Node-Level Contrastive Learning Dataset Statistics —

Number of Nodes, Edges, Node Feature Dimensions, and Classes

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7

CiteSeer 3,327 4,732 3,703 6

Amazon-Computers 13,752 245,861 767 10

Amazon-Photo 7,650 119,081 745 8

Coauthor-CS 18,333 81,894 6,805 15

Coauthor-Physics 34,493 247,962 8,415 5

Facebook 22,470 342,004 128 4

LastFM Asia 7,624 55,612 128 18

Table 2. Graph-Level Contrastive Learning Dataset Statistics —

Number of Graphs, Average Number of Nodes and Degree, and

Number of Node Feature Dimensions and Classes

Dataset Graphs Nodes Degree Features Classes

NCI1 4110 29.87 1.08 37 2

PROTEINS 1113 39.06 1.86 3 2

DD 1178 284.32 2.52 89 2

MUTAG 188 17.93 1.10 7 2

correspond to the likes of each other. LastFM Asia [42] is a social network of Asian users; each

node represents a user and they are connected via friendship.

For graph-level contrastive learning, we evaluate ArieL on four datasets from the benchmark

TUDataset [33], including the biochemical molecules graphs NCI1, PROTEINS, DD, and MUTAG.

Summaries of the dataset1 statistics are presented in Table 1 and Table 2.

4.1.2 Baselines. We consider seven graph contrastive learning methods for node-level con-

trastive learning, including DeepWalk [37], DGI [51],Robust DGI (RDGI) [56], GMI [36], MVGRL

[10], GRACE [64], and GCA [65]. Since DeepWalk only generates the embeddings for the graph

topology, we concatenate the node features to the generated embeddings for evaluation so that the

final embeddings can incorporate both topology and attribute information. We also compare our

method with two supervised methods: GCN [27] and Graph Attention Network (GAT) [50].

For graph-level contrastive learning, we compare ArieL with the state-of-the-art graph kernel

methods, including graphlet kernel (GL),Weisfeiler-Lehman sub-tree kernel (WL) and deep

graph kernel (DGK), and recent unsupervised graph representation learning methods, including

node2vec [9], sub2vec [1], graph2vec [34], InfoGraph [44], and GraphCL [62].

4.1.3 Evaluation Protocol. For each dataset, we randomly select 10% nodes/graphs for training,

10% nodes/graphs for validation, and the remaining for testing. For contrastive learning methods,

a logistic regression classifier is trained to do the node classification over the node embeddings,

whereas a support vector machine is trained to do the graph classification over the graph embed-

dings. Accuracy is used as the evaluation metric.

For node-level contrastive learning, we search each method over 6 different random seeds, in-

cluding 5 random seeds from our own and the best random seed of GCA on each dataset. For each

1All of the datasets are fromPyTorchGeometric 2.0.4: https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.

html
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seed, we evaluate the method on 20 random training-validation-testing dataset splits and report

the mean and the standard deviation of the accuracy on the best seed. Specifically, for the super-

vised learning methods, we abandon the existing splits, for example, on Cora and CiteSeer. Instead,

we do a random split before the training and report the results over 20 splits.

For graph-level contrastive learning, we keep the evaluation protocol the same as the setting in

[44] and [62], where the experiments are conducted on 5 random seeds, each corresponding to a

10-fold evaluation.

Besides testing on the original, clean graphs, we also evaluate ourmethod on the attacked graphs

for node-level contrastive learning. We use Metattack [67] to perform the poisoning attack. Since

Metattack is targeted at graph structure only and computationally inefficient on large graphs, we

first randomly sample a subgraph of 5, 000 nodes. If the number of nodes in the original graph

is greater than 5, 000, then we randomly mask out 20% of the node features and use Metattack

to perturb 20% of the edges to generate the final attacked graph. For ArieL, we use the hyperpa-

rameters of the best models we obtain on the clean graphs for evaluation. For GCA, we report

the performance in our main results for its three variants, GCA-DE, GCA-PR, and GCA-EV, which

correspond to the adoption of degree, eigenvector, and PageRank [25, 35] centrality measures, and

use the best variant on each dataset for the evaluation on the attacked graphs.

4.2 Hyperparameters

For node-level contrastive learning, we use the same parameters and design choices for ArieL’s

network architecture, optimizer, and training scheme as in GRACE and GCA on each dataset. How-

ever, we find that GCA does not behave well on Cora, with a significant performance drop. Thus,

we re-search the parameters for GCA on Cora separately and use a different temperature for it.

Other contrastive learning–specific parameters are kept the same over GRACE, GCA, and ArieL.

On graph-level contrastive learning, we keep ArieL’s hyperparameters the same as the ones used

by GraphCL except for its own parameters.

All GNN-based baselines on node-contrastive learning use a two-layer GCN as the encoder.

For each method, we compare its default hyperparameters and the ones used by ArieL and use

the hyperparameters leading to better performance. Other algorithm-specific hyperparameters

all respect the default setting in its official implementation. For graph-level contrastive learning,

ArieL uses a three-layer GIN as the encoder, and we take the results for each baseline from its

original paper under the same experimental setting.

Other hyperparameters of ArieL are summarized as follows:

— Adversarial contrastive loss coefficient ϵ1 and information regularization strength ϵ2. We

search them over {0.5, 1, 1.5, 2} and use the one with the best performance on the validation

set of each dataset. Specifically, we first fix ϵ2 as 0 and decide the optimal value for all other

parameters. Then, we search ϵ2 on top of the model with other hyperparameters fixed.

— Number of attack steps and perturbation constraints. These parameters are fixed on all

datasets. For node-level contrastive learning, we set the number of attack steps to 5, edge per-

turbation constraint ΔA = 0.1
∑

i, j A[i, j], and feature perturbation constraint δX = 0.5. For
graph-level contrastive learning, we set the number of attack steps to 5, edge perturbation

constraint ΔA = 0.05
∑

i, j A[i, j], and feature perturbation constraint δX = 0.04.
— Curriculum learningweightγ and change periodT . In our experiments, we simply fixγ = 1.1
andT = 20 for node-level contrastive learning andγ = 1 for graph-level contrastive learning.

— Graph perturbation rate α and feature perturbation rate β . We search both over

{0.001, 0.01, 0.1} and take the best one on the validation set of each dataset.

— Subgraph size. On node-level contrastive learning, we keep the subgraph size at 500 for

ArieL on all datasets except Facebook and LastFM Asia, where we use a subgraph size of
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Table 3. Node Classification Accuracy in Percentage on Eight Real-World Datasets

Method Cora CiteSeer
Amazon-

Computers

Amazon-

Photo

Coauthor-

CS

Coauthor-

Physics
Facebook

LastFM

Asia

GCN 84.14 ± 0.68 69.02 ± 0.94 88.03 ± 1.41 92.65 ± 0.71 92.77 ± 0.19 95.76 ± 0.11 89.98 ± 0.26 83.96 ± 0.47

GAT 83.18 ± 1.17 69.48 ± 1.04 85.52 ± 2.05 91.35 ± 1.70 90.47 ± 0.35 94.82 ± 0.21 89.97 ± 0.39 83.04 ± 0.39

DeepWalk 79.82 ± 0.85 67.14 ± 0.81 86.23 ± 0.37 90.45 ± 0.45 85.02 ± 0.44 94.57 ± 0.20 86.67 ± 0.22 83.93 ± 0.61

DGI 84.24 ± 0.75 69.12 ± 1.29 88.78 ± 0.43 92.57 ± 0.23 92.26 ± 0.12 95.38 ± 0.07 89.80 ± 0.27 82.88 ± 0.52

RDGI 81.84 ± 1.07 65.92 ± 1.26 88.07 ± 0.28 92.17 ± 0.27 OOM OOM OOM 77.34 ± 0.69
GMI 82.43 ± 0.90 70.14 ± 1.00 83.57 ± 0.40 88.04 ± 0.59 OOM OOM OOM 74.71 ± 0.70

MVGRL 84.39 ± 0.77 69.85 ± 1.54 89.02 ± 0.21 92.92 ± 0.25 92.22 ± 0.22 95.49 ± 0.17 90.60 ± 0.28 83.83 ± 0.85

GRACE 83.40 ± 1.08 69.47 ± 1.36 87.77 ± 0.34 92.62 ± 0.25 93.06 ± 0.08 95.64 ± 0.08 88.95 ± 0.31 79.52 ± 0.64

GCA-DE 82.57 ± 0.87 72.11 ± 0.98 88.10 ± 0.33 92.87 ± 0.27 93.08 ± 0.18 95.62 ± 0.13 89.73 ± 0.37 82.42 ± 0.46

GCA-PR 82.54 ± 0.87 72.16 ± 0.73 88.18 ± 0.39 92.85 ± 0.34 93.09 ± 0.15 95.58 ± 0.12 89.68 ± 0.36 82.44 ± 0.51

GCA-EV 81.80 ± 0.92 67.07 ± 0.79 87.95 ± 0.43 92.63 ± 0.33 93.06 ± 0.14 95.64 ± 0.08 89.68 ± 0.38 82.35 ± 0.46

ARIEL 84.28 ± 0.96 72.74 ± 1.10 91.13 ± 0.34 94.01 ± 0.23 93.83 ± 0.14 95.98 ± 0.05 90.20± 0.23 84.04±0.44
We bold the results with the best mean accuracy. The methods above the line are the supervised ones, and the ones

below the line are unsupervised. OOM stands for Out-of-Memory on our 32-G GPUs.

3, 000. We do not do the subgraph sampling on graph-level contrastive learning. Instead, we

control the batch size b, where we fix b = 32 for DD and b = 128 for the other three datasets.

4.3 Main Results

The comparison results of node classification on all eight datasets are summarized in Table 3. Our

method ArieL outperforms baselines over all datasets except on Cora and Facebook, with results

only 0.11% and 0.40% lower in accuracy than MVGRL. It can be seen that the previous state-of-

the-art method GCA does not bear significant improvements over previous methods. In contrast,

ArieL can achieve consistent improvements over GRACE and GCA on all datasets, especially on

Amazon-Computers, with almost 3% gain.

In addition, we find MVGRL a solid baseline whose performance is close to or even better than

GCA on these datasets. It achieves the highest score on Cora and Facebook, and the second-highest

on Amazon-Computers and Amazon-Photo. However, it does not behave well on CiteSeer, where

GCA can effectively increase the score of GRACE. To sum up, previous modifications over the

grounded frameworks aremostly based on specific knowledge, for example,MVGRL introduces the

diffusionmatrix toDGI andGCAdefines the importance on the edges and features, and they cannot

consistently take effect on all datasets. However, ArieL uses the adversarial attack to automatically

construct high-quality contrastive samples and achieves more stable performance improvements.

In comparison with the supervised methods, ArieL also achieves a clear advantage over all

of them. Although it would be premature to conclude that ArieL is more powerful than these

supervised methods since they are usually tested under the specific training–testing split, these

results do demonstrate that ArieL can indeed generate highly expressive node embeddings for the

node classification task, which can achieve comparable performance to the supervised methods.

The graph classification results are summarized in Table 4. Compared with our basic framework

GraphCL, which uses naïve augmentation methods, ArieL achieves even stronger performance

on all datasets. GraphCL does not show a clear advantage against previous baselines such as In-

foGraph and it does not behave well on datasets with small graph sizes (e.g., NCI1 and MUTAG).

However, ArieL can take the lead on three of the datasets and greatly reduce the performance

gap on NCI1 with the graph kernel methods. It can be clearly seen that ArieL behaves better than

GraphCL on NCI1 and MUTAG, with at least 1% improvement in accuracy. In comparison with

another graph contrastive learning method, InfoGraph, we can also see that ArieL takes an overall

lead on all datasets, even onMUTAG, where InfoGraph shows a dominant advantage against other

baselines.
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Table 4. Graph Classification Accuracy in Percentage on Four Real-World Datasets

Method NCI1 PROTEINS DD MUTAG

GL – – – 81.66 ± 2.11

WL 80.11 ± 0.50 72.92 ± 0.56 – 80.72 ± 3.00

DGK 80.31 ± 0.46 73.30 ± 0.82 – 87.44 ± 2.72

node2vec 54.89 ± 1.61 57.49 ± 3.57 – 72.63 ± 10.20

sub2vec 52.84 ± 1.47 53.03 ± 5.55 – 61.05 ± 15.80

graph2vec 73.22 ± 1.81 73.30 ± 2.05 - 83.15 ± 9.25

InfoGraph 76.20 ± 1.06 74.44 ± 0.31 72.85 ± 1.78 89.01 ± 1.13

GraphCL 77.87 ± 0.41 74.39 ± 0.45 78.62 ± 0.40 86.80 ± 1.34

ARIEL 78.91 ± 0.36 75.22 ± 0.26 79.15 ± 0.53 89.25 ± 1.18

We bold the results with the best mean accuracy. The methods above the double line belong

to the graph kernel methods, and the ones below the double line are unsupervised

representation learning methods. The compared numbers are from the original paper under

the same experimental setting.

Table 5. Node Classification Accuracy in Percentage on the Graphs Under Metattack, where Subgraphs of

Amazon-Computers, Amazon-Photo, Coauthor-CS and Coauthor-Physics, Facebook and LastFM Asia are

used for Attack and Their Results are Not Directly Comparable to Those in Table 3

Method Cora CiteSeer
Amazon-

Computers

Amazon-

Photo

Coauthor-

CS

Coauthor-

Physics
Facebook

LastFM

Asia

GCN 80.03 ± 0.91 62.98 ± 1.20 84.10 ± 1.05 91.72 ± 0.94 80.32 ± 0.59 87.47 ± 0.38 70.07 ± 0.74 73.22 ± 0.85

GAT 79.49 ± 1.29 63.30 ± 1.11 81.60 ± 1.59 90.66 ± 1.62 77.75 ± 0.80 86.65 ± 0.41 72.02 ± 0.78 73.21 ± 0.64

DeepWalk 74.12 ± 1.02 63.20 ± 0.80 79.08 ± 0.67 88.06 ± 0.41 49.30 ± 1.23 79.26 ± 1.38 59.07 ± 1.01 67.61 ± 0.80

DGI 80.84 ± 0.82 64.25 ± 0.96 83.36 ± 0.55 91.27 ± 0.29 78.73 ± 0.50 85.88 ± 0.37 70.52 ± 0.93 71.80 ± 0.59

RDGI 77.29 ± 1.01 59.94 ± 1.29 82.35 ± 0.59 90.63 ± 0.41 83.09 ± 0.64 83.58 ± 0.75 67.85 ± 1.19 63.59 ± 0.91
GMI 79.17 ± 0.76 65.37 ± 1.03 77.42 ± 0.59 89.44 ± 0.47 80.92 ± 0.64 87.72 ± 0.45 68.93 ± 0.83 58.89 ± 0.95

MVGRL 80.90 ± 0.75 64.81 ± 1.53 83.76 ± 0.69 91.76 ± 0.44 79.49 ± 0.75 86.98 ± 0.61 71.76 ± 0.69 73.42 ± 1.11

GRACE 78.55 ± 0.81 63.17 ± 1.81 84.74 ± 1.13 91.26 ± 0.37 80.61 ± 0.63 85.71 ± 0.38 71.97 ± 0.98 69.39 ± 0.63

GCA 76.79 ± 0.97 64.89 ± 1.33 85.05 ± 0.51 91.71 ± 0.34 82.72 ± 0.58 89.00 ± 0.31 69.54 ± 0.82 71.83 ± 1.03

ARIEL 80.33 ± 1.25 69.13 ± 0.94 88.61 ± 0.46 92.99 ± 0.21 84.43 ± 0.59 89.09 ± 0.31 71.15 ± 1.19 73.94 ± 0.78

We bold the results with the best mean accuracy. GCA is evaluated on its best variant on each clean graph.

The above empirical results on the node classification and graph classification tasks clearly

demonstrate the advantage of ArieL on real-world graphs, which indicates the better augmen-

tation strategy of ArieL.

4.4 Results Under Attack

The results on attacked graphs are summarized in Table 5. Specifically, we evaluate all these meth-

ods on the attacked subgraph of Amazon-Computers, Amazon-Photo, Coauthor-CS, Coauthor-

Physics, Facebook, and LastFM Asia. Thus, their results are not directly comparable to the results

in Table 3. To compare with the previous results, we look at the datasets in which ArieL takes the

lead and then find the performance of the second-best method on each dataset for both the orig-

inal graph and the attacked one. If ArieL outperforms the second-best method by a much larger

margin on the attacked graph compared with that on the original graph, we claim that ArieL is

significantly robust on that dataset.

Under this principle, we can see that ArieL is significantly robust on CiteSeer, with the margin

to the second-best method increasing from 0.58% to 3.96%, Amazon-Computers, with the margin

increasing from 2.11% to 3.56%, and Coauthor-CS, with the margin increasing from 0.74% to 1.71%.
On Coauthor-Physics, ArieL and GCA both show clear robustness against the remaining methods.

Although some baselines are robust on specific datasets, for example, MVGRL on Cora, GMI on

CiteSeer, GCN on Facebook, and GCA on Coauthor-CS and Coauthor-Physics, they fail to achieve
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Fig. 3. Effect of adversarial contrastive loss coefficient ϵ1 on Cora and CiteSeer. The dashed line represents

the performance of GRACE with subgraph sampling.

consistent robustness over all datasets. Although GCA indeed makes GRACEmore robust for most

datasets, it is still vulnerable on Cora, CiteSeer, and Amazon-Computers, with more than 3% lower

than ArieL in the final accuracy.

We can also see that ArieL still shows high robustness on the datasets in which it cannot take

the lead. On Cora and Facebook, ArieL is only less than 1% lower in accuracy than the best method

and it is still better thanmost baselines. It does not show a sudden performance drop on any dataset,

such as MVGRL on CiteSeer and GCA on Facebook.

Basically, MVGRL and GCA can improve the robustness of their respective grounded frame-

works over specific datasets. However, we find this kind of improvement to be relatively minor.

Instead, ArieL has more significant improvements and greatly increases robustness. It is worth

noting that though RDGI is also developed to improve the robustness of graph representation

learning, it does not show a clear advantage against DGI in our evaluation. This is mainly because

the original RDGI considers the attack at test time and what we evaluate is the robustness against

the attack at training time, which is more common for the graph learning tasks [2, 66, 67]. Based

on the comparative results, we claim that ArieL is more robust than previous graph contrastive

learning methods in the face of an adversarial attack.

4.5 Ablation Study

For this section, we first set ϵ2 as 0 and investigate the role of adversarial contrastive loss. The

adversarial contrastive loss coefficient ϵ1 controls the portion of the adversarial contrastive loss in

the final loss. When ϵ1 = 0, the final loss reduces to the regular contrastive loss in Equation (3). To

explore the effect of the adversarial contrastive loss, we fix other parameters in our best models

on Cora and CiteSeer and gradually increase ϵ1 from 0 to 2. The changes in the final performance

are shown in Figure 3.

The dashed line represents the performance of GRACE with subgraph sampling, i.e., ϵ1 = 0.

Although there exist some variations, ArieL is always above the baseline under a positive ϵ1 with
around 2% improvement. The subgraph sampling trick may sometimes help the model; for ex-

ample, it improves GRACE without subgraph sampling by 1% on CiteSeer. However, it could be

detrimental as well, such as on Cora. This is understandable since subgraph sampling can simul-

taneously enrich data augmentation and lessen the number of negative samples, both critical to

contrastive learning. At the same time, for the adversarial contrastive loss, it has a stable and signif-

icant improvement on GRACEwith subgraph sampling, which demonstrates that the performance

improvement of ArieL mainly stems from the adversarial loss rather than the subgraph sampling.
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Fig. 4. Effect of information regularization on Amazon-Photo. The left figure shows the model performance

under different ϵ2 and the right figure plots the training curve of ArieL under ϵ2 = 0 and ϵ2 = 1.0.

Next, we fix all other parameters and check the behavior of ϵ2. Information regularization is

mainly designed to stabilize the training of ArieL.We find that ArieL would experience collapsing

at the early training stage and that information regularization could mitigate this issue. We choose

the best run on Amazon-Photo, where the collapsing frequently occurs, and similar to before, we

gradually increase ϵ2 from 0 to 2. The results are shown in Figure 4 (left). As can be seen, without

using information regularization, ArieL could collapse without learning anything, whereas setting

ϵ2 greater than 0 can effectively avoid this situation. To further illustrate this, we draw the training

curve of the regular contrastive loss in Figure 4 (right), for the best ArieL model on Amazon-Photo

and the same model by simply removing the information regularization. Without information

regularization, the model could get stuck in a bad parameter area and fail to converge, whereas

information regularization can resolve this issue.

4.6 Training Analysis

Here, we compare the training of ArieL on node-level contrastive learning to other methods on

our NVIDIA Tesla V100S GPU with 32 G memory.

Adversarial attacks on graphs tend to be highly computationally expensive since the attack re-

quires the gradient calculation over the entire adjacency matrix, which is of sizeO (n2). For ArieL,
we resolve this bottleneck with subgraph sampling on large graphs and empirically show that

the adversarial training on the subgraph still yields significant improvements without increas-

ing the number of training iterations. In our experiments, we find GMI to be the most memory

inefficient, which cannot be trained on Coauthor-CS, Coauthor-Physics, and Facebook. For DGI,

MVGRL, GRACE, and GCA, their training also amounts to 30G GPUmemory on Coauthor-Physics

whereas the training of ArieL requires no more than 8G GPU memory. In terms of the training

time, DGI and MVGRL are the fastest to converge. However, it takes MVGRL a long time to com-

pute the diffusion matrix on large graphs. ArieL is slower than GRACE and GCA on Cora and

CiteSeer. However, it is faster on large graphs such as Coauthor-CS and Coauthor-Physics, with

the training time for each iteration invariant to the graph size due to the subgraph sampling. On

the largest graph, Coauthor-Physics, each iteration takes GRACE 0.875 second and GCA 1.264

seconds, while it only takes ArieL 0.082 second. This demonstrates that ArieL has even better

scalability than GRACE and GCA.

Subgraph sampling, under some mild assumptions, could be an efficient way to reduce the com-

putational cost for any node-level contrastive learning algorithm. In addition to this general trick,

we want to point out that the attack is in fact not always needed on the whole graph to generate

the adversarial view. Another solution to avoid explosive memory is to select some anchor nodes

and only perturb the edges among these anchor nodes and their features. Since the scalability issue
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has been resolved by subgraph sampling on all datasets appearing in this work, we will not further

discuss the details of this method and empirically prove its effectiveness. We leave this for future

work.

5 RELATEDWORK

In this section, we review the related work in the following three categories: graph contrastive

learning, adversarial attack on graphs, and adversarial contrastive learning.

5.1 Graph Contrastive Learning

Contrastive learning is known for its simplicity and strong expressivity. Traditional methods

ground the contrastive samples on the node proximity in the graph, such as DeepWalk [37] and

node2vec [9], which use random walks to generate the node sequences and approximate the co-

occurrence probability of node pairs. However, these methods can only learn the embeddings for

the graph structures regardless of the node features.

GNNs [27, 50] can easily capture the local proximity and node features [19, 22, 51, 62, 63]. To

further improve the performance, the Information Maximization (InfoMax) principle [30] has

been introduced. DGI [51] is adapted from Deep InfoMax [12] to maximize the mutual information

between the local and global features. It generates the negative samples with a corrupted graph and

contrasts the node embeddings with the original graph embedding and the corrupted one. Based

on a similar idea, GMI [36] generalizes the concept of mutual information to the graph domain

by separately defining the mutual information on the features and edges. Graph Community

Infomax (GCI) [45] instead tries to maximize the mutual information between the community

representation and the node representation for those positive pairs. Another follow-up work of

DGI, MVGRL [10], maximizes the mutual information between the first-order neighbors and graph

diffusion. On the graph level, InfoGraph [44] makes use of a similar idea to maximize the mutual

information between the global representation and patch representation from the same graph. HDI

[18] introduces high-order mutual information to consider both intrinsic and extrinsic training

signals. However, mutual information-based methods generate the corrupted graphs by simply

randomly shuffling the node features. Recent methods exploit the graph topology and features to

generate better-augmented graphs. GCC [38] adopts a random walk–based strategy to generate

different views of the context graph for a node, but it ignores the augmentation on the feature

level. GCA [64], instead, considers the data augmentation from both the topology and feature

level, and introduces the adaptive augmentation by considering the importance of each edge and

feature dimension. To investigate the power of different data augmentations in graph domains,

GraphCL [62] systematically studies the different combinations of graph augmentation strategies

and applies them to different graph learning settings. Unlike the above methods, which construct

the data augmentation samples based on domain knowledge, ArieL uses an adversarial attack to

construct the view that maximizes the contrastive loss, which is more informative with broader

applicability.

5.2 Adversarial Attack on Graphs

Deep learning methods are known to be vulnerable to adversarial attacks; this is also the case in

the graph domain. As shown by Bojchevski and Günnemann [2], both random walk–based meth-

ods and GNN-based methods could be attacked by flipping a small portion of edges. Xu et al. [57]

propose a PGD attack and min-max attack on the graph structure from the optimization perspec-

tive. NETTACK [66] is the first to attack GNNs using both structure attack and feature attack,

causing a significant performance drop of GNNs on the benchmarks. After that, Metattack [67]

formulates the poisoning attack of GNNs as a meta-learning problem and achieves remarkable
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performance by only perturbing the graph structure. Node Injection Poisoning Attacks [46] use a

hierarchical reinforcement learning approach to sequentially manipulate the labels and links of the

injected nodes. Recently, InfoMax [31] formulated the adversarial attack on GNNs as an influence

maximization problem.

5.3 Adversarial Contrastive Learning

The concept of adversarial contrastive learning is first proposed on visual domains [13, 16, 26].

All of these works propose a similar idea to use the adversarial sample as a form of data aug-

mentation in contrastive learning. This can bring better downstream task performance and higher

robustness. ACL [26] studies the different paradigms of adversarial contrastive learning by replac-

ing one or two of the augmentation views with the adversarial view generated by PGD attack

[32]. CLAE [13] and RoCL [16] use FGSM [8] to generate an additional adversarial view atop the

two standard augmentation views. RDGI [56] and AD-GCL [47] are the most relevant work to

ours in graph domains. RDGI quantifies the robustness of node representation as the decrease in

mutual information between the graph and its embedding under adversarial attacks. It learns a

robust node representation by simultaneously minimizing the standard contrastive learning loss

and improving the robustness. Nonetheless, its objective sacrifices the expressiveness of the node

representation for robustness while ArieL can improve both of them. AD-GCL formulates adver-

sarial graph contrastive learning in a min-max form and uses a parameterized network for edge

dropping. However, AD-GCL is designed for the graph classification task only and does not explore

the robustness of graph contrastive learning. Finally, all previous adversarial contrastive learning

methods do not take scalability into consideration, with visual models and AD-GCL dealing with

independent instances and RDGI only working on small graphs, but ArieL can work for both inter-

connected instances (node embedding) and independent instances (graph embedding) on a large

scale.

Some recent theoretical analyses further reveal the vulnerability of contrastive learning. Jing

et al. [23] show that dimensional collapse could happen if the variation of the data augmentation

exceeds the variation of the data itself in contrastive learning. Wang et al. [54] prove that con-

trastive learning could cluster the instances from the same class only when the support of different

intra-class samples overlaps under data augmentation. The representations learned by contrastive

learning may fail in downstream tasks when either under-overlapping or excessive overlapping

happens. From these perspectives, searching for adversarial contrastive samples in a safe area is

more likely to generate useful representations for downstream tasks.

6 CONCLUSION

In this article, we propose a universal framework for graph contrastive learning by introducing an

adversarial view, scaling it through subgraph sampling, and stabilizing it through information reg-

ularization. It consistently outperforms the state-of-the-art graph contrastive learning methods in

the node classification and graph classification tasks and exhibits a higher degree of robustness to

the adversarial attack. Our framework is not limited to the graph contrastive learning frameworks

we build on in this article, and it can be naturally extended to other graph contrastive learning

methods as well. In the future, we plan to further investigate (1) the adversarial attack on graph

contrastive learning and (2) the integration of graph contrastive learning and supervised methods.
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