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Contrastive learning is an effective unsupervised method in graph representation learning. The key com-
ponent of contrastive learning lies in the construction of positive and negative samples. Previous methods
usually utilize the proximity of nodes in the graph as the principle. Recently, the data-augmentation-based
contrastive learning method has advanced to show great power in the visual domain, and some works have
extended this method from images to graphs. However, unlike the data augmentation on images, the data aug-
mentation on graphs is far less intuitive and it is much harder to provide high-quality contrastive samples,
which leaves much space for improvement. In this work, by introducing an adversarial graph view for data
augmentation, we propose a simple but effective method, Adversarial Graph Contrastive Learning (ARIEL), to
extract informative contrastive samples within reasonable constraints. We develop a new technique called
information regularization for stable training and use subgraph sampling for scalability. We generalize our
method from node-level contrastive learning to the graph level by treating each graph instance as a super-
node. ARIEL consistently outperforms the current graph contrastive learning methods for both node-level
and graph-level classification tasks on real-world datasets. We further demonstrate that ARIEL is more robust
in the face of adversarial attacks.
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1 INTRODUCTION

Contrastive learning is a widely used technique in various graph representation learning tasks. In
contrastive learning, the model tries to minimize the distances among positive pairs and maximize
the distances among negative pairs in the embedding space [10, 17, 20, 21, 28, 51, 52, 59, 62, 65].
The definition of positive and negative pairs is the key component in contrastive learning. Earlier
methods such as DeepWalk [37] and node2vec [9] define positive and negative pairs based on the
co-occurrence of node pairs in the random walks. For knowledge graph embedding, it is a common
practice to define positive and negative pairs based on translations [3, 15, 29, 40, 53, 55, 60].

Recently, the breakthroughs of contrastive learning in computer vision have inspired some
works to apply similar ideas from visual representation learning to graph representation learning.
To name a few, Deep Graph Infomax (DGI) [51] extends Deep InfoMax [12] and achieves signifi-
cant improvements over previous random walk-based methods. Graphical Mutual Information
(GMI) [36] uses the same framework as DGI but generalizes the concept of mutual information
from vector space to graph domain. Contrastive multi-view graph representation learning
(MVGRL) [10] further improves DGI by introducing graph diffusion into the contrastive learning
framework. The more recent works often follow the data augmentation-based contrastive learn-
ing methods [5, 11], which treat the data-augmented samples from the same instance as positive
pairs and different instances as negative pairs. Graph Contrastive Coding (GCC) [38] uses ran-
dom walks with restart [48] to generate two subgraphs for each node as two data-augmented
samples. Graph Contrastive learning with Adaptive augmentation (GCA) [65] introduces
an adaptive data augmentation method that perturbs both the node features and edges accord-
ing to their importance. It is trained in a similar way as the famous visual contrastive learning
framework SimCLR [5]. Its preliminary work, which uses uniform random sampling rather than
adaptive sampling, is referred to as GRACE [64] in this article. Robinson et al. [39] propose a way
to select hard negative samples based on the distances in the embedding space, which they use to
obtain high-quality graph embedding. There are also many works [62, 63] systemically studying
the data augmentation on the graphs.

However, unlike the rotation and color jitter operations on images, the transformations on
graphs, such as edge dropping and feature masking, are far less intuitive to human beings. The
data augmentation on the graph could be either too similar to or totally different from the original
graph. This, in turn, leads to a crucial question, that is, how to generate a new graph that is hard
enough for the model to discriminate from the original one plus also maintain the desired properties.

Inspired by some recent works [13, 16, 24, 26, 47], we introduce adversarial training on graph
contrastive learning and propose a new framework called Adversarial GRaph ContrastIvE
Learning (ARIEL). Through the adversarial attack on both topology and node features, we gen-
erate an adversarial sample from the original graph. On the one hand, since the perturbation is
under the constraint, the adversarial sample still stays close enough to the original one. On the
other hand, the adversarial attack makes sure that the adversarial sample is hard to discriminate
from the other view by increasing the contrastive loss. In addition, we propose a new constraint
called information regularization, which could stabilize the training of ArieL and prevent collaps-
ing. We bridge the gap between node-level graph contrastive learning and graph-level contrastive
learning by treating each graph instance as a super-node in node-level graph contrastive learning.
Thus, we make ARIEL a universal graph representation learning framework. We demonstrate that
the proposed ARIEL outperforms the existing graph contrastive learning frameworks in the node
classification and graph classification tasks on both real-world graphs and adversarially attacked
graphs.

In summary, we make the following contributions.
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First, we introduce an adversarial view as a new form of data augmentation in graph contrastive
learning, which makes the data augmentation more informative under mild perturbations.

Second, we propose a new technique called information regularization to stabilize the training
of adversarial graph contrastive learning by regularizing the mutual information among positive
pairs.

Third, we bridge the gap between node-level graph contrastive learning and graph-level con-
trastive learning and we unify their formulation under our framework.

Finally, we empirically demonstrate that ARIEL can achieve better performance and higher ro-
bustness compared with previous graph contrastive learning methods.

The rest of the article is organized as follows. Section 2 gives the problem definition of graph
representation learning and the preliminaries. Section 3 describes the proposed algorithm. The
experimental results are presented in Section 4. After reviewing related work in Section 5, we
conclude the article in Section 6.

2 PROBLEM DEFINITION

In this section, we will introduce all the notations used in this article and give a formal definition
of our problem. In addition, we briefly introduce the preliminaries of our method.

2.1 Graph Representation Learning

For graph representation learning, let G = {V,&,X} be an attributed graph, where V =
{v1,v,...,v,} denotes the set of nodes, & € V X V denotes the set of edges, and X € Rn%d
denotes the feature matrix. Each node v; has a d-dimensional feature X[i,:], and all edges are
assumed to be unweighted and undirected. We use a binary adjacency matrix A € {0, 1}"*" to rep-
resent the information of nodes and edges, where A[i, j] = 1if and only if the node pair (v;, v;) € &.
In the following text, we will use G = {A, X} to represent the graph.

The objective of the graph representation learning is to learn an encoder f : R™" x R"™¢ —
R™ | which maps the nodes in the graph into low-dimensional embeddings. Denote the node
embedding matrix H = f(A, X), where H[i,:] € R? is the embedding for node v;. This representa-
tion could be used for downstream tasks such as node classification. Based on the node-embedding
matrix, we can further obtain the graph embedding through an order-invariant readout function
R(:), which generates the graph representation as R(H) € R%".

2.2 InfoNCE Loss

InfoNCE loss [49] is the predominant workhorse of the contrastive learning loss, which maximizes
the lower bound of the mutual information between two random variables. For each positive pair
(x,x*) associated with k negative samples of x, denoted as {x],%,, -+, x;}, InfoNCE loss could
be written as

~

(x.x%)
-1 J .
b °g<g<x, ) + 25, g(x. x;)) «

Here, g(-) is the density ratio with the property that g(a, b) o 2 ;?ll)’) ,

to. It has been shown by the authors of [49] that —L; actually serves as the lower bound of the
mutual information I(x;x") with

where o stands for proportional

I(x;x%) > log (k) — Lg. (2
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2.3 Graph Contrastive Learning

We build the proposed method upon the framework of SimCLR [5], which is also the basic frame-
work that GCA [65] and GraphCL [62] are built on.

2.3.1 Node-Level Contrastive Learning. Given a graph G, two views of the graph G; = {A;, X}
and G, = {A;, X, } are first generated. This step can be treated as the data augmentation on the orig-
inal graph, and various augmentation methods can be used herein. We use random edge dropping
and feature masking as GCA does. The node-embedding matrix for each graph can be computed as
H; = f(A1,X;) and Hy = f (A2, X3). The corresponding node pairs in two graph views are the pos-
itive pairs and all other node pairs are negative. Define 0(u, v) to be the similarity function between
vectors u and v; in practice, it is usually chosen as the cosine similarity on the projected embedding
of each vector, using a two-layer neural network as the projection head. Denote u; = Hy[i,:] and
v; = Hy[i, :]; the contrastive loss is defined as

n

1
Leon(Gr. Gz) = 7= 3 (1winvi) +1(viwy)), 3)
i=1
ef(uivi)/T

vi)/T + Zj;ti ee(ui,vj)/f + Zj;ti eG(u,—,uj)/f >

(i, vi) =~ log —— )
e 1>

where 7 is a temperature parameter. [(v;, u;) is symmetrically defined by exchanging the variables

in [(u;, v;). This loss is basically a variant of InfoNCE loss, which is symmetrically defined instead.

2.3.2 Graph-Level Contrastive Learning. Graph-level contrastive learning is closer to con-
trastive learning in the visual domain. For a batch of graphs 8 = {Gy, -, Gy}, we obtain the
augmentation of each graph as 8% = {GY, -+ ,G;} through node dropping, subgraph sampling,
edge perturbation, and feature masking as in GraphCL [62]. The loss function is thus defined on
these two batches of graphs as

ORR)) /T

Leon(B,8%) =E |-log (5)

ORRD/T 4 3 GORLR)) /T X s eORER)/T ’
where R; = R(H;) and R} = R(H}).

By abuse of notation, we also use Lo, to denote the loss function for graph-level contrastive
learning. The actual meaning of Lo, is dependent on the input type, graph or set, in the following
text.

Specifically, we notice that a set of graphs with G; = {A;,X;} can be combined into one
graph as

G* = {block_diag(Ay,- - ,Ap), Concat(Xy, -+ ,Xp)}. (6)

Under this transformation, graph embedding of G; can be treated as the embedding of a super-node
in G*. This observation helps us bridge the gap between node-level contrastive learning and graph-
level contrastive learning; the only difference between them is the granularity of the instance in
the contrastive learning loss. Therefore, we can build a universal framework for graph contrastive
learning that can be used for both node-level and graph-level downstream tasks.

2.3.3  Graph Encoder. In principle, our framework could be applied on any graph neural net-
work (GNN) architecture for an encoder as long as it could be attacked. For simplicity, we employ
a two-layer Graph Convolutional Network (GCN) [27] for node-level contrastive learning and
a three-layer Graph Isomorphism Network (GIN) [58] for graph-level contrastive learning in
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this work. Define the symmetrically normalized adjacency matrix
A=DAD?, )

where A = A +1, is the adjacency matrix with self-connections added and I, is the identity matrix,
and D is the diagonal degree matrix of A with D[i,i] = }}; A[i, j]. The two-layer GCN is given as

f(AX) = o(Ac(AXWD )W), (8)

where W) and W are the weights of the first and second layer, respectively, and o (-) is the
activation function.
The Graph Isomorphism operator could be defined as

X’ = h((A + eD)X), 9)

where h(-) is a neural network such as multi-layer perceptrons (MLPs) and € is a non-negative
scalar. A three-layer GIN is the stack of three Graph Isomorphism operators. In this work, h(-) is
a two-layer MLP followed by an activation function and Batch Normalization [14], and € is set as
0 for all operators. Use X¥) to denote the node embeddings after the i-th operator; the final node
embeddings are the concatenation of X H = Concat(X(i) li =1,2,3), and the graph embedding
is the concatenation of the node embeddings after mean pooling, R(H) = Concat(Mean(X®)|i =
1,2,3).

2.4 Projected Gradient Descent Attack

A Projected Gradient Descent (PGD) attack [32] is an iterative attack method that projects
perturbation onto the ball of interest at the end of each iteration. Assuming that the loss L(-) is a
function of the input matrix Z € R"™4 at the {-th iteration, the perturbation matrix A, € R7<d
under an l,-norm constraint could be written as

Ar =T a),<5(Dp—1 + 1 - sgn(VAL(Z + As-y)), (10)

where 7 is the step size, sgn(-) takes the sign of each element in the input matrix, and ITjjz). <5
projects the perturbation onto the §-ball in the [-norm.

3 METHOD

In this section, we will first investigate the vulnerability of the graph contrastive learning, then we
will spend the remaining section discussing each part of ARIEL in detail. Based on the connection
we build upon the node-level contrastive learning and graph-level contrastive learning, we will
illustrate our method from the perspective of node-level contrastive learning and extend it to the
graph level.

3.1 Vulnerability of the Graph Contrastive Learning

Many GNNs are known to be vulnerable to adversarial attacks [2, 66]. Thus, we first investigate
the vulnerability of the GNNs trained with the contrastive learning objective in Equation (3). We
generate a sequence of 60 graphs by iteratively dropping edges and masking the features. Let
Gy = G; for the t-th iteration, we generate G, from G,_; by randomly dropping the edges in
G;-1 and randomly masking the unmasked features, both with probability p = 0.03. Since G,
is guaranteed to contain less information than G;_y, G; should be less similar to Gy than G;_; on
both the graph and node level. Denote the node embeddings of G; as H;; we measure the similarity
O(H,[i,:],Ho[i, :]) and it is expected that the similarity decreases as the iteration goes on.

We generate the sequences on two datasets, Amazon-Computers and Amazon-Photo [43]. The
results are shown in Figure 1. At the 30-th iteration, with 0.973° = 40.10% edges and features
left, the average similarity of the positive samples is under 0.5 on Amazon-Photo. At the 60-th
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Fig. 1. Average cosine similarity between the node embeddings of the original graph and the perturbed graph;
results are on datasets Amazon-Computers and Amazon-Photo. The shaded area represents the standard
deviation.
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Fig. 2. Overview of the proposed ArIeL framework. For each iteration, two augmented views are generated
from the original graph by data augmentation (purple arrows). Then, an adversarial view is generated (red
arrow) from the original graph by maximizing the contrastive loss against one of the augmented views. The
similarities of the corresponding nodes (dashed lines) will be penalized by the information regularization
if they exceed the estimated upper bound. The objective of ARIEL is to minimize the contrastive loss (gray
arrows) between the augmented views, the adversarial view, and the corresponding augmented view, and
the information regularization. Best viewed in color.

iteration, with 0.97%° = 16.08% edges and features left, the average similarity drops under 0.2
on both Amazon-Computers and Amazon-Photo. Additionally, starting from the 30-th iteration,
the cosine similarity has around 0.3 standard deviation for both datasets, which indicates that a
lot of nodes are actually very sensitive to the external perturbations, even if we do not add any
adversarial component but just mask out some information. These results demonstrate that the
current graph contrastive learning framework is not trained over enough high-quality contrastive
samples and is not robust to adversarial attacks.

Given this observation, we are motivated to build an adversarial graph contrastive learning
framework that could improve the performance and robustness of the previous graph contrastive
learning methods. The overview of our framework is shown in Figure 2.

3.2 Adversarial Training

Adversarial training uses the samples generated through the adversarial attack methods to improve
the generalization ability and robustness of the original method during training. Although most
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existing attack frameworks are targeted at supervised learning, it is natural to generalize these
methods to contrastive learning by replacing the classification loss with the contrastive loss. The
goal of the adversarial attack on graph contrastive learning is to maximize the contrastive loss by
adding a small perturbation on the contrastive samples, which can be formulated as

Gagy = arg max Leon(G1,G'), (11)

where G' = {A’, X"} is generated from the original graph G, and the change is constrained by the
budget A and Ax as

Z |A’[i,j] = AL j]l < Aa, (12)

Z'X i,j1 = X[ 1l < Ax. (13)

We treat adversarial attacks as one kmd of data augmentation. Although we find it effective to make
the adversarial attack on one or two augmented views as well, we follow the typical contrastive
learning procedure as in SimCLR [5] to make the attack on the original graph in this work. In
addition, it does not matter whether Gy, G, or G is chosen as the anchor for the adversary; each
choice works in our framework and it can also be sampled as a third view. In our experiments, we
use the PGD attack [32] as our attack method.

We generally follow the method proposed by Xu et al. [57] to make the PGD attack on the graph
structure and apply the regular PGD attack method on the node features. Define the supplement
of the adjacency matrix as A = 1,x, — I, — A, where 1,x, is the ones matrix of size n X n. The
perturbed adjacency matrix can be written as

Asdy = A+ ColLy, (14)
C=A-A, (15)

where o is the element-wise product and Ly € {0, 1}™*" is a symmetric matrix with each element

La[i, j] corresponding to the modification (e.g., add, delete, or no modification) of the edge between
the node pair (v;, v;). The perturbation on X follows the regular PGD attack procedure and the
perturbed feature matrix can be written as

adv X + LX’ (16)

where Lx € R™ is the perturbation on the feature matrix.

For ease of optimization, La is relaxed to its convex hull I:A € [0,1]™", which satisfies Sa
{Lal 2ij La < Aa,La € [0,1]™"}. The constraint on Lx can be written as Sx = {Lx|||Lx |l
8x,Lx € R™9} where we directly treat dx as the constraint on the feature perturbation. In each
iteration, we make the updates

IAN I

£ = 11, [£67 4 a- 60 a7
L;t) =g, [Lg(t*l) +p- sgn(Gg(t))] , (18)

where ¢ denotes the current number of iterations, and
GY = Vi Leon(G1.GE), (19)
Gy’ = VixLeon(G1, Gl ), (20)

denote the gradients of the loss with respect to La at LX_ and Ly at L;é_l), respectively. Here,

G;g Y is defined as {A+Co L(t VX + L<t l)} The projection operation I s, simply clips Lx into
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the range [—0x, dx] element-wisely. The projection operation I s, is calculated as

Poy[Z — pluxn], ifp>0,and 3; ; Po1)[Z — plnxn] = Aas
IIs,(Z) = (21)
P[O’l][Z], lf Zi,j P[O,l] [Z] S AA,

where P(,1][Z] clips Z into the range [0, 1]. We use the bisection method [4] to solve the equation
2i.j Plo.11[Z = pluxn] = Aa with respect to the dual variable p.

To finally obtain La from Ly, each element is independently sampled from a Bernoulli distri-
bution as La[i,j] ~ Bernoulli(La[i, j]). To obtain a symmetric matrix, we only sample the upper
triangular part (the elements on the diagonal are known to be 0 in our formulation) and obtain the
lower triangular part through transposition.

3.3 Adversarial Graph Contrastive Learning

To assimilate the graph contrastive learning and adversarial training together, we treat the adver-
sarial view G,4y obtained from Equation (11) as another view of the graph. We define the adversar-
ial contrastive loss as the contrastive loss between G; and G,q4,. The adversarial contrastive loss is
added to the original contrastive loss in Equation (3), which becomes

L(Gl, Gg, Gadv) = Lcon(GI’ G2) + 6chon(Gla Gadv), (22)

where €; > 0 is the adversarial contrastive loss coefficient. We further adopt two additional sub-
tleties on top of this basic framework: subgraph sampling and curriculum learning. For each iter-
ation, a subgraph G with a fixed size is first sampled from the original graph G. Then, the data
augmentation and adversarial attack are both conducted on this subgraph. The subgraph sampling
could avoid the gradient derivation on the whole graph, which will lead to heavy computation on a
large network. We also observe that subgraph sampling could increase the randomness of the sam-
ple and sometimes boost the performance. To avoid the imbalanced sample on the isolated nodes,
we uniformly sample a random set of nodes and then construct the subgraph on top of them. For
every T epochs, the adversarial contrastive loss coefficient is multiplied by a weight y. Wheny > 1,
the portion of the adversarial contrastive loss is gradually increasing and the contrastive learning
becomes harder as the training goes on.

3.4 Information Regularization

Adversarial training could effectively improve the model’s robustness to perturbations. Nonethe-
less, we find that these hard training samples could impose the additional risk of training collapsing,
i.e., the model will be located at a bad parameter area at the early stage of the training, assigning
higher probability to a highly perturbed sample than a mildly perturbed one. In our experiment, we
find that this vanilla adversarial training method may fail to converge in some cases (e.g., Amazon-
Photo dataset). To stabilize the training, we add one constraint termed information regularization,
whose main goal is to regularize the instance similarity in the feature space.

Data processing inequality [6] states that for three random variables Z;, Z;, and Z; € R™? | if
they satisfy the Markov relation Z; — Z, — Zs, then the inequality I(Z1;Z3) < I(Z;;Z;) holds.
As proved by Zhu et al. [65], since the node embeddings of two views H; and H; are conditionally
independent given the node embeddings of the original graph H, they also satisfy the Markov
relation with H; — H — H, and vice versa. Therefore, we can derive the following properties
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over their mutual information:
I(Hy;Hp) < I(H; Hy), (23)
I(Hi;Hp) < I(H; Hy). (24)
In fact, this inequality holds on each node. A sketch of the proof is that the embedding of each
node v; is determined by all the nodes from its I-hop neighborhood if an [-layer GNN is used as the

encoder, and this subgraph composed of its [-hop neighborhood also satisfies the Markov relation.
Therefore, we can derive the more strict inequalities:

I(Hq[i,:); Ho[i,:]) < I(H[i, :]; Hy[i,:]), (25)
Since —L¢on(Gi, Gz) is only a lower bound of the mutual information, directly applying the above

constraints is har; we only consider the constraints on the density ratio. Using the Markov relation
for each node, we give the following theorem.

THEOREM 1. For two graph views G; and G, independently transformed from the graph G, the
density ratio of their node embeddings Hy and H, should satisfy g(Hz[i,:], Hi[i,:]) < g(Ha[i,:],
H[i,:]), and g(Hy[i,:],Ho[i,:]) < g(H1[i,:], H[i,:]), where H is the node embeddings of the original
graph.

Proor. Following the Markov relation of each node, we get that

p(Ha[i,:]IHy[i,:]) = p(H[i, :]IH[, :])p(H[i, :][Hy [1,:])

27
< p(Ha[i, :]/H[i,:]) @7)
and, consequently,
p(HLi A1) _ p(H [ ML) o
p(Ha[i,:]) p(Hz[i,:])
Since g(a, b) o« p;?ll;) , we get that g(Hy[i, :], Hy [i,:]) < g(Hy[i,:], H[i,:]). A similar proof applies to
the other inequality. O

Note that g(-,-) is symmetric for the two inputs. Thus, we get two upper bounds for g(H;[i,:
1,Ha[i,:]). According to the previous definition, g(a,b) = e?@P)/7 we can simply replace g(-, )
with 0(-, -) in the inequalities. Then, we combine these two upper bounds into one:

2 O(H.[i, ], Ho[i, :]) < O(HL[i, -], H[G, ]) + O(H.[i, -], H[i, :]). (29)

This bound intuitively requires the similarity between H; [i, :] and Hy [i, :] to be less than the similar-
ity between H[i, :] and Hy[i, :] or H[i, :]. Equipped with this upper bound, we define the following
information regularization to penalize the higher probability of a less similar contrastive pair:

di =2 H(Hl [17 :]7 HZ [17 ]) - (0(H2 [17 :]7 H[l’ ]) + Q(Hl [17 :]7 H[l’ ]))’ (30)
L[(G],Gz,G) = %Zmax{di,o}. (31)
i=1

Specifically, information regularization could be defined over any three graphs that satisfy the
Markov relation. However, for our framework, to save memory and time complexity, we avoid
additional sampling and directly ground information regularization on the existing graphs. It is
also fine to apply information regularization on G, G; and G,gy or G, G, and G,gy.
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ALGORITHM 1: Algorithm of ARIEL

Input data: Graph G = (A, X)
Input parameters: a, f, Aa, Ox, €1, €2, y and T
Randomly initialize the graph encoder f
for iterationk =0,1,--- do
Sample a subgraph G from G
Generate two views G; and G, from G
Generate the adversarial view G,qy according to Equations (18) and (17)
Update model f to minimize L(Gj, Gy, Gagy) in Equation (32)
if (k+1) mod T =0 then
Update €; < y * €
end if
end for
return: Node embedding matrix H = f(A, X)

The final loss of ARIEL can be written as
L(Gl, GZ, Gadv) = Lcon(Gls GZ) + 61LC01’1(G17 Gadv) + GZLI(GI, GZ’ G)’ (32)

where €, > 0 controls the strength of the information regularization.
The entire algorithm of ARrIEL is summarized in Algorithm 1.

3.5 Extension to Graph-Level Contrastive Learning

For a batch of graphs 8 and the batch of their augmentation views 8%, we aim to generate a batch
of adversarial views, which we denote as $,4y. Denote the combined graph of each batch as G*,
G**, and G, . The objective of adversarial graph contrastive learning on the graph level can be
formulated as

Badv = arg ng}XLcon(BJrs 3’), (33)
subject to Z |A"[i, j] = A*[i, ]| < Aa, (34)
i,j
DXL 1= XTI < Ax (35)
i,j

It is worth noting that the constraints we use here are applied on the batch rather than each graph,
i.e., we only constrain the total perturbations over all graphs rather than the perturbations on each
graph. This can greatly reduce the computational cost in solving the above-constrained maximiza-
tion problem in that it reduces the number of constraints from twice the batch size to 2. However,
it also introduces the additional risk that the perturbations could be severely imbalanced among
the graphs in the batch, e.g., a graph is heavily perturbed while others are almost unchanged. In
our experiment, we do not observe this problem but it could theoretically happen. A good practice
is to start from this simple form and then gradually add constraints to the vulnerable graphs in
the batch if the imbalanced perturbations are observed.

During the attack stage, the perturbation matrix L and its convex hull L, are further subject
to the constraints that they should be block diagonal matrices with 0 at position (i, j) if node i and
node j are the nodes from two graphs in the batch. This could be easily implemented by using a
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block diagonal mask to zero out the gradients during the forward propagation:
La = block_diag(1,,xn,li =1+ ,b) o La, (36)
La = block_diag(1,,xpn,|i = 1---,b) 0 La, (37)

where n; is the number of nodes in the graph G; in the batch. With this processing, the projection
operation on the adjacency matrix remains the same as in Equation (21). In the case that we need to
apply the constraints for each graph in the batch, we just need to apply the projection operation
defined in Equation (21) on the adjacency matrix of each graph using the bisection method to
solve y for each graph separately. The projection operation on the feature perturbation matrix is
not affected on the graph level, which still clips Lx into the range [—dx, dx] element-wisely.

Information regularization also applies to graph-level contrastive learning, in which we only
need to replace the node embedding with the graph embedding in Equation (30). Hence, we can
derive the bound atop different views of the same graph in 8, 87, and B,4,:

di = 2+ O(R(H), R(Haay,i)) — (O(R(H]), R(H;)) + O(R(Hagyi), R(H))), (38)
b

LB, 8", Bua) = 3 ) max(ds, 0} (39)
i=1

The final loss of ARItL for the graph-level contrastive learning could be written as
L(8B, B+’ Badv) = Leon (B, B+) + EILCOH(B+’ Bagv) + €2L1(B, B+, Badv)- (40)

The graph-level adversarial contrastive learning could also follow the steps outlined in
Algorithm 1 for training by simply replacing the input graph with the input batch in loss
functions.

4 EXPERIMENTS

In this section, we conduct empirical evaluations that are designed to answer the following three
questions:

RQ1. How effective is the proposed ARIEL in comparison with previous graph contrastive learn-
ing methods on the node classification and graph classification tasks?

RQ2. To what extent does ARIEL gain robustness over the attacked graph?

RQ3. How does each part of ARIeL contribute to its performance?

We evaluate our method with the node classification task and graph classification task on real-
world graphs and further evaluate the robustness of it with the node classification task on the
attacked graphs. The node/graph embeddings are first learned by the proposed ArItL algorithm;
then, the embeddings are fixed to perform the classification with a simple classifier trained over it.
All our experiments are conducted on the NVIDIA Tesla V100S GPU with 32 G memory.

4.1 Experimental Setup

4.1.1 Datasets. For node-level contrastive learning, we use eight datasets for the evaluation,
including Cora, CiteSeer, Amazon-Computers, Amazon-Photo, Coauthor-CS, Coauthor-Physics, Face-
book, and LastFM Asia. Cora and CiteSeer [61] are citation networks, in which nodes represent
documents and edges correspond to citations. Amazon-Computers and Amazon-Photo [43] are
extracted from the Amazon co-purchase graph. In these graphs, nodes are the goods and they are
connected by an edge if they are frequently bought together. Coauthor-CS and Coauthor-Physics
[43] are the coauthorship graphs, in which each node is an author and the edge indicates the coau-
thorship on a paper. Facebook [41] is a page-page graph of verified Facebook pages in which edges
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Table 1. Node-Level Contrastive Learning Dataset Statistics —
Number of Nodes, Edges, Node Feature Dimensions, and Classes

Dataset Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15
Coauthor-Physics 34,493 247,962 8,415 5
Facebook 22,470 342,004 128 4
LastFM Asia 7,624 55,612 128 18

Table 2. Graph-Level Contrastive Learning Dataset Statistics —
Number of Graphs, Average Number of Nodes and Degree, and
Number of Node Feature Dimensions and Classes

Dataset Graphs Nodes Degree Features Classes
NCI1 4110 29.87 1.08 37 2
PROTEINS 1113 39.06 1.86 3 2
DD 1178 284.32 2.52 89 2
MUTAG 188 17.93 1.10 7 2

correspond to the likes of each other. LastFM Asia [42] is a social network of Asian users; each
node represents a user and they are connected via friendship.
For graph-level contrastive learning, we evaluate ARIEL on four datasets from the benchmark
TUDataset [33], including the biochemical molecules graphs NCI1, PROTEINS, DD, and MUTAG.
Summaries of the dataset! statistics are presented in Table 1 and Table 2.

4.1.2  Baselines. We consider seven graph contrastive learning methods for node-level con-
trastive learning, including DeepWalk [37], DGI [51], Robust DGI (RDGI) [56], GMI [36], MVGRL
[10], GRACE [64], and GCA [65]. Since DeepWalk only generates the embeddings for the graph
topology, we concatenate the node features to the generated embeddings for evaluation so that the
final embeddings can incorporate both topology and attribute information. We also compare our
method with two supervised methods: GCN [27] and Graph Attention Network (GAT) [50].

For graph-level contrastive learning, we compare ARIEL with the state-of-the-art graph kernel
methods, including graphlet kernel (GL), Weisfeiler-Lehman sub-tree kernel (WL) and deep
graph kernel (DGK), and recent unsupervised graph representation learning methods, including
node2vec [9], sub2vec [1], graph2vec [34], InfoGraph [44], and GraphCL [62].

4.1.3  Evaluation Protocol. For each dataset, we randomly select 10% nodes/graphs for training,
10% nodes/graphs for validation, and the remaining for testing. For contrastive learning methods,
a logistic regression classifier is trained to do the node classification over the node embeddings,
whereas a support vector machine is trained to do the graph classification over the graph embed-
dings. Accuracy is used as the evaluation metric.

For node-level contrastive learning, we search each method over 6 different random seeds, in-
cluding 5 random seeds from our own and the best random seed of GCA on each dataset. For each

! All of the datasets are from PyTorch Geometric 2.0.4: https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.
html
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seed, we evaluate the method on 20 random training-validation-testing dataset splits and report
the mean and the standard deviation of the accuracy on the best seed. Specifically, for the super-
vised learning methods, we abandon the existing splits, for example, on Cora and CiteSeer. Instead,
we do a random split before the training and report the results over 20 splits.

For graph-level contrastive learning, we keep the evaluation protocol the same as the setting in
[44] and [62], where the experiments are conducted on 5 random seeds, each corresponding to a
10-fold evaluation.

Besides testing on the original, clean graphs, we also evaluate our method on the attacked graphs
for node-level contrastive learning. We use Metattack [67] to perform the poisoning attack. Since
Metattack is targeted at graph structure only and computationally inefficient on large graphs, we
first randomly sample a subgraph of 5,000 nodes. If the number of nodes in the original graph
is greater than 5,000, then we randomly mask out 20% of the node features and use Metattack
to perturb 20% of the edges to generate the final attacked graph. For ARIEL, we use the hyperpa-
rameters of the best models we obtain on the clean graphs for evaluation. For GCA, we report
the performance in our main results for its three variants, GCA-DE, GCA-PR, and GCA-EV, which
correspond to the adoption of degree, eigenvector, and PageRank [25, 35] centrality measures, and
use the best variant on each dataset for the evaluation on the attacked graphs.

4.2 Hyperparameters

For node-level contrastive learning, we use the same parameters and design choices for ARIEL’s
network architecture, optimizer, and training scheme as in GRACE and GCA on each dataset. How-
ever, we find that GCA does not behave well on Cora, with a significant performance drop. Thus,
we re-search the parameters for GCA on Cora separately and use a different temperature for it.
Other contrastive learning—specific parameters are kept the same over GRACE, GCA, and ARIEL.
On graph-level contrastive learning, we keep ARIEL’s hyperparameters the same as the ones used
by GraphCL except for its own parameters.

All GNN-based baselines on node-contrastive learning use a two-layer GCN as the encoder.
For each method, we compare its default hyperparameters and the ones used by ArieL and use
the hyperparameters leading to better performance. Other algorithm-specific hyperparameters
all respect the default setting in its official implementation. For graph-level contrastive learning,
ARIEL uses a three-layer GIN as the encoder, and we take the results for each baseline from its
original paper under the same experimental setting.

Other hyperparameters of ARIEL are summarized as follows:

— Adversarial contrastive loss coefficient ¢; and information regularization strength e,. We
search them over {0.5, 1, 1.5, 2} and use the one with the best performance on the validation
set of each dataset. Specifically, we first fix €; as 0 and decide the optimal value for all other
parameters. Then, we search €; on top of the model with other hyperparameters fixed.

— Number of attack steps and perturbation constraints. These parameters are fixed on all
datasets. For node-level contrastive learning, we set the number of attack steps to 5, edge per-
turbation constraint Ay = 0.13; ; A[i, j], and feature perturbation constraint dx = 0.5. For
graph-level contrastive learning, we set the number of attack steps to 5, edge perturbation
constraint Ay = 0.05 3; ; A[i, j], and feature perturbation constraint §x = 0.04.

— Curriculum learning weight y and change period T. In our experiments, we simply fixy = 1.1
and T = 20 for node-level contrastive learning and y = 1 for graph-level contrastive learning.

— Graph perturbation rate « and feature perturbation rate . We search both over
{0.001,0.01, 0.1} and take the best one on the validation set of each dataset.

— Subgraph size. On node-level contrastive learning, we keep the subgraph size at 500 for
ARIEL on all datasets except Facebook and LastFM Asia, where we use a subgraph size of
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Table 3. Node Classification Accuracy in Percentage on Eight Real-World Datasets

. Amazon- Amazon- Coauthor-  Coauthor- LastFM

Method Cora CiteSeer Computers Photo cs Physics Facebook Asia
GCN 84.14 £0.68 69.02+0.94 88.03+1.41 92.65+0.71 92.77+0.19 9576 £0.11 89.98 £0.26 83.96 + 0.47
GAT 83.18 £1.17 69.48 £1.04 85.52+2.05 91.35+1.70 90.47+0.35 94.82+0.21 89.97 £0.39 83.04 +0.39
DeepWalk 79.82+0.85 67.14+0.81 86.23+0.37 90.45+0.45 85.02+0.44 94.57+0.20 86.67 £0.22 83.93 £ 0.61
DGI 84.24 £0.75 69.12+1.29 88.78 £0.43 92.57+0.23 92.26+0.12 95.38+0.07 89.80 +0.27 82.88 + 0.52
RDGI 81.84+1.07 65.92+1.26 88.07+0.28 92.17 +£0.27 OOM OOM OOM 77.34 + 0.69
GMI 82.43+0.90 70.14+1.00 83.57+0.40 88.04 +0.59 OOM OOM OOM 74.71 £ 0.70
MVGRL  84.39 £0.77 69.85+1.54 89.02+0.21 92.92+0.25 92.22+0.22 95.49+0.17 90.60 = 0.28 83.83 + 0.85
GRACE 83.40 £+1.08 69.47+£1.36 87.77+£0.34 92.62+0.25 93.06+0.08 95.64+0.08 88.95+0.31 79.52 £ 0.64
GCA-DE  82.57+0.87 72.11+0.98 88.10+0.33 92.87+0.27 93.08+0.18 95.62+0.13 89.73 +0.37 82.42 +0.46
GCA-PR  82.54+0.87 72.16+0.73 88.18+0.39 92.85+0.34 93.09+0.15 95.58 +£0.12 89.68 +0.36 82.44 + 0.51
GCA-EV 81.80 £0.92 67.07+0.79 87.95+0.43 92.63+0.33 93.06+0.14 95.64+0.08 89.68 +£0.38 82.35+ 0.46
ARIEL 84.28 +0.96 72.74+1.10 91.13 £+ 0.34 94.01+0.23 93.83 +0.14 95.98 £ 0.05 90.20+ 0.23 84.04+0.44

We bold the results with the best mean accuracy. The methods above the line are the supervised ones, and the ones
below the line are unsupervised. OOM stands for Out-of-Memory on our 32-G GPUs.

3,000. We do not do the subgraph sampling on graph-level contrastive learning. Instead, we
control the batch size b, where we fix b = 32 for DD and b = 128 for the other three datasets.

4.3 Main Results

The comparison results of node classification on all eight datasets are summarized in Table 3. Our
method ARIEL outperforms baselines over all datasets except on Cora and Facebook, with results
only 0.11% and 0.40% lower in accuracy than MVGRL. It can be seen that the previous state-of-
the-art method GCA does not bear significant improvements over previous methods. In contrast,
ARIEL can achieve consistent improvements over GRACE and GCA on all datasets, especially on
Amazon-Computers, with almost 3% gain.

In addition, we find MVGRL a solid baseline whose performance is close to or even better than
GCA on these datasets. It achieves the highest score on Cora and Facebook, and the second-highest
on Amazon-Computers and Amazon-Photo. However, it does not behave well on CiteSeer, where
GCA can effectively increase the score of GRACE. To sum up, previous modifications over the
grounded frameworks are mostly based on specific knowledge, for example, MVGRL introduces the
diffusion matrix to DGl and GCA defines the importance on the edges and features, and they cannot
consistently take effect on all datasets. However, ARIEL uses the adversarial attack to automatically
construct high-quality contrastive samples and achieves more stable performance improvements.

In comparison with the supervised methods, ARrieL also achieves a clear advantage over all
of them. Although it would be premature to conclude that ARIeL is more powerful than these
supervised methods since they are usually tested under the specific training—testing split, these
results do demonstrate that ARIEL can indeed generate highly expressive node embeddings for the
node classification task, which can achieve comparable performance to the supervised methods.

The graph classification results are summarized in Table 4. Compared with our basic framework
GraphCL, which uses naive augmentation methods, ARIeL achieves even stronger performance
on all datasets. GraphCL does not show a clear advantage against previous baselines such as In-
foGraph and it does not behave well on datasets with small graph sizes (e.g., NCI1 and MUTAG).
However, ARIEL can take the lead on three of the datasets and greatly reduce the performance
gap on NCI1 with the graph kernel methods. It can be clearly seen that ARiEL behaves better than
GraphCL on NCI1 and MUTAG, with at least 1% improvement in accuracy. In comparison with
another graph contrastive learning method, InfoGraph, we can also see that ARIEL takes an overall
lead on all datasets, even on MUTAG, where InfoGraph shows a dominant advantage against other
baselines.
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Table 4. Graph Classification Accuracy in Percentage on Four Real-World Datasets

82:15

Method NCI1 PROTEINS DD MUTAG

GL - - - 81.66 + 2.11
WL 80.11 £ 0.50  72.92 £+ 0.56 - 80.72 £ 3.00
DGK 80.31 +0.46 73.30 = 0.82 - 87.44 £ 2.72
node2vec  54.89 + 1.61  57.49 + 3.57 - 72.63 £ 10.20
sub2vec 52.84 £ 1.47  53.03 £ 5.55 - 61.05 + 15.80
graph2vec 73.22 +1.81  73.30 + 2.05 - 83.15 £ 9.25
InfoGraph  76.20 £ 1.06 ~ 74.44 +0.31 72.85+1.78 89.01 +1.13
GraphCL  77.87 £0.41 7439+ 0.45 78.62+0.40 86.80 + 1.34

ARIEL 78.91 £ 0.36 75.22 +£0.26 79.15+ 0.53 89.25 + 1.18

We bold the results with the best mean accuracy. The methods above the double line belong
to the graph kernel methods, and the ones below the double line are unsupervised
representation learning methods. The compared numbers are from the original paper under
the same experimental setting.

Table 5. Node Classification Accuracy in Percentage on the Graphs Under Metattack, where Subgraphs of
Amazon-Computers, Amazon-Photo, Coauthor-CS and Coauthor-Physics, Facebook and LastFM Asia are
used for Attack and Their Results are Not Directly Comparable to Those in Table 3

. Amazon- Amazon- Coauthor-  Coauthor- LastFM

Method Cora CiteSeer Computers Photo cs Physics Facebook Asia
GCN 80.03+0.91 62.98+1.20 84.10+1.05 91.72+0.94 80.32+0.59 87.47+0.38 70.07 +0.74 73.22 £ 0.85
GAT 79.49 +1.29 6330+ 1.11 81.60 +£1.59 90.66 £1.62 77.75+0.80 86.65+0.41 72.02 +0.78 73.21 £ 0.64
DeepWalk 74.12+1.02 63.20 £0.80 79.08 £0.67 88.06 £0.41 49.30+1.23 79.26+1.38 59.07 +1.01 67.61 + 0.80
DGI 80.84 +0.82 64.25+0.96 83.36 £0.55 91.27+0.29 78.73+0.50 85.88+0.37 70.52+0.93 71.80 £ 0.59
RDGI 77.29+1.01 59.94+1.29 8235+0.59 90.63+0.41 83.09+0.64 83.58+0.75 67.85+1.19 63.59+0.91
GMI 79.17 £0.76  65.37 £1.03 77.42+0.59 89.44+0.47 80.92+0.64 87.72+0.45 6893 +0.83 5889+ 0.95
MVGRL  80.90 +0.75 64.81+1.53 83.76+0.69 91.76 +0.44 79.49+0.75 86.98+0.61 71.76 £0.69 7342 + 1.11
GRACE 78.55+0.81 63.17+1.81 84.74+1.13 91.26+0.37 80.61+0.63 85.71+0.38 71.97 +£0.98 69.39 + 0.63
GCA 76.79 £0.97 64.89+1.33 85.05+0.51 91.71+0.34 82.72+0.58 89.00+0.31 69.54+0.82 71.83 +£1.03
ARIEL 80.33 £ 1.25 69.13 +£0.94 88.61+0.46 92.99 +0.21 84.43 +0.59 89.09+0.31 71.15+1.19 73.94+0.78

We bold the results with the best mean accuracy. GCA is evaluated on its best variant on each clean graph.

The above empirical results on the node classification and graph classification tasks clearly
demonstrate the advantage of ARIEL on real-world graphs, which indicates the better augmen-
tation strategy of ARIEL.

4.4 Results Under Attack

The results on attacked graphs are summarized in Table 5. Specifically, we evaluate all these meth-
ods on the attacked subgraph of Amazon-Computers, Amazon-Photo, Coauthor-CS, Coauthor-
Physics, Facebook, and LastFM Asia. Thus, their results are not directly comparable to the results
in Table 3. To compare with the previous results, we look at the datasets in which ARrIEL takes the
lead and then find the performance of the second-best method on each dataset for both the orig-
inal graph and the attacked one. If ARIEL outperforms the second-best method by a much larger
margin on the attacked graph compared with that on the original graph, we claim that ArieL is
significantly robust on that dataset.

Under this principle, we can see that ARIEL is significantly robust on CiteSeer, with the margin
to the second-best method increasing from 0.58% to 3.96%, Amazon-Computers, with the margin
increasing from 2.11% to 3.56%, and Coauthor-CS, with the margin increasing from 0.74% to 1.71%.
On Coauthor-Physics, ARIEL and GCA both show clear robustness against the remaining methods.
Although some baselines are robust on specific datasets, for example, MVGRL on Cora, GMI on
CiteSeer, GCN on Facebook, and GCA on Coauthor-CS and Coauthor-Physics, they fail to achieve
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Fig. 3. Effect of adversarial contrastive loss coefficient €; on Cora and CiteSeer. The dashed line represents
the performance of GRACE with subgraph sampling.

consistent robustness over all datasets. Although GCA indeed makes GRACE more robust for most
datasets, it is still vulnerable on Cora, CiteSeer, and Amazon-Computers, with more than 3% lower
than ARIEL in the final accuracy.

We can also see that ARIeL still shows high robustness on the datasets in which it cannot take
the lead. On Cora and Facebook, ARIEL is only less than 1% lower in accuracy than the best method
and it s still better than most baselines. It does not show a sudden performance drop on any dataset,
such as MVGRL on CiteSeer and GCA on Facebook.

Basically, MVGRL and GCA can improve the robustness of their respective grounded frame-
works over specific datasets. However, we find this kind of improvement to be relatively minor.
Instead, ARIEL has more significant improvements and greatly increases robustness. It is worth
noting that though RDGI is also developed to improve the robustness of graph representation
learning, it does not show a clear advantage against DGI in our evaluation. This is mainly because
the original RDGI considers the attack at test time and what we evaluate is the robustness against
the attack at training time, which is more common for the graph learning tasks [2, 66, 67]. Based
on the comparative results, we claim that ARIEL is more robust than previous graph contrastive
learning methods in the face of an adversarial attack.

4.5 Ablation Study

For this section, we first set ¢; as 0 and investigate the role of adversarial contrastive loss. The
adversarial contrastive loss coefficient €; controls the portion of the adversarial contrastive loss in
the final loss. When ¢; = 0, the final loss reduces to the regular contrastive loss in Equation (3). To
explore the effect of the adversarial contrastive loss, we fix other parameters in our best models
on Cora and CiteSeer and gradually increase €; from 0 to 2. The changes in the final performance
are shown in Figure 3.

The dashed line represents the performance of GRACE with subgraph sampling, i.e., ¢ = 0.
Although there exist some variations, ARIEL is always above the baseline under a positive ¢; with
around 2% improvement. The subgraph sampling trick may sometimes help the model; for ex-
ample, it improves GRACE without subgraph sampling by 1% on CiteSeer. However, it could be
detrimental as well, such as on Cora. This is understandable since subgraph sampling can simul-
taneously enrich data augmentation and lessen the number of negative samples, both critical to
contrastive learning. At the same time, for the adversarial contrastive loss, it has a stable and signif-
icant improvement on GRACE with subgraph sampling, which demonstrates that the performance
improvement of ARIEL mainly stems from the adversarial loss rather than the subgraph sampling.
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Fig. 4. Effect of information regularization on Amazon-Photo. The left figure shows the model performance
under different €3 and the right figure plots the training curve of ARIEL under e; = 0 and ez = 1.0.

Next, we fix all other parameters and check the behavior of €;. Information regularization is
mainly designed to stabilize the training of ARIEL. We find that ArRIEL would experience collapsing
at the early training stage and that information regularization could mitigate this issue. We choose
the best run on Amazon-Photo, where the collapsing frequently occurs, and similar to before, we
gradually increase €; from 0 to 2. The results are shown in Figure 4 (left). As can be seen, without
using information regularization, ARIEL could collapse without learning anything, whereas setting
€, greater than 0 can effectively avoid this situation. To further illustrate this, we draw the training
curve of the regular contrastive loss in Figure 4 (right), for the best ARIEL model on Amazon-Photo
and the same model by simply removing the information regularization. Without information
regularization, the model could get stuck in a bad parameter area and fail to converge, whereas
information regularization can resolve this issue.

4.6 Training Analysis

Here, we compare the training of ARIEL on node-level contrastive learning to other methods on
our NVIDIA Tesla V100S GPU with 32 G memory.

Adversarial attacks on graphs tend to be highly computationally expensive since the attack re-
quires the gradient calculation over the entire adjacency matrix, which is of size O(n?). For ARIEL,
we resolve this bottleneck with subgraph sampling on large graphs and empirically show that
the adversarial training on the subgraph still yields significant improvements without increas-
ing the number of training iterations. In our experiments, we find GMI to be the most memory
inefficient, which cannot be trained on Coauthor-CS, Coauthor-Physics, and Facebook. For DGI,
MVGRL, GRACE, and GCA, their training also amounts to 30G GPU memory on Coauthor-Physics
whereas the training of ARIEL requires no more than 8G GPU memory. In terms of the training
time, DGI and MVGRL are the fastest to converge. However, it takes MVGRL a long time to com-
pute the diffusion matrix on large graphs. ARIeL is slower than GRACE and GCA on Cora and
CiteSeer. However, it is faster on large graphs such as Coauthor-CS and Coauthor-Physics, with
the training time for each iteration invariant to the graph size due to the subgraph sampling. On
the largest graph, Coauthor-Physics, each iteration takes GRACE 0.875 second and GCA 1.264
seconds, while it only takes ARIEL 0.082 second. This demonstrates that ARIEL has even better
scalability than GRACE and GCA.

Subgraph sampling, under some mild assumptions, could be an efficient way to reduce the com-
putational cost for any node-level contrastive learning algorithm. In addition to this general trick,
we want to point out that the attack is in fact not always needed on the whole graph to generate
the adversarial view. Another solution to avoid explosive memory is to select some anchor nodes
and only perturb the edges among these anchor nodes and their features. Since the scalability issue
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has been resolved by subgraph sampling on all datasets appearing in this work, we will not further
discuss the details of this method and empirically prove its effectiveness. We leave this for future
work.

5 RELATED WORK

In this section, we review the related work in the following three categories: graph contrastive
learning, adversarial attack on graphs, and adversarial contrastive learning.

5.1 Graph Contrastive Learning

Contrastive learning is known for its simplicity and strong expressivity. Traditional methods
ground the contrastive samples on the node proximity in the graph, such as DeepWalk [37] and
node2vec [9], which use random walks to generate the node sequences and approximate the co-
occurrence probability of node pairs. However, these methods can only learn the embeddings for
the graph structures regardless of the node features.

GNNs [27, 50] can easily capture the local proximity and node features [19, 22, 51, 62, 63]. To
further improve the performance, the Information Maximization (InfoMax) principle [30] has
been introduced. DGI [51] is adapted from Deep InfoMax [12] to maximize the mutual information
between the local and global features. It generates the negative samples with a corrupted graph and
contrasts the node embeddings with the original graph embedding and the corrupted one. Based
on a similar idea, GMI [36] generalizes the concept of mutual information to the graph domain
by separately defining the mutual information on the features and edges. Graph Community
Infomax (GCI) [45] instead tries to maximize the mutual information between the community
representation and the node representation for those positive pairs. Another follow-up work of
DGI, MVGRL [10], maximizes the mutual information between the first-order neighbors and graph
diffusion. On the graph level, InfoGraph [44] makes use of a similar idea to maximize the mutual
information between the global representation and patch representation from the same graph. HDI
[18] introduces high-order mutual information to consider both intrinsic and extrinsic training
signals. However, mutual information-based methods generate the corrupted graphs by simply
randomly shuffling the node features. Recent methods exploit the graph topology and features to
generate better-augmented graphs. GCC [38] adopts a random walk-based strategy to generate
different views of the context graph for a node, but it ignores the augmentation on the feature
level. GCA [64], instead, considers the data augmentation from both the topology and feature
level, and introduces the adaptive augmentation by considering the importance of each edge and
feature dimension. To investigate the power of different data augmentations in graph domains,
GraphCL [62] systematically studies the different combinations of graph augmentation strategies
and applies them to different graph learning settings. Unlike the above methods, which construct
the data augmentation samples based on domain knowledge, ARIEL uses an adversarial attack to
construct the view that maximizes the contrastive loss, which is more informative with broader
applicability.

5.2 Adversarial Attack on Graphs

Deep learning methods are known to be vulnerable to adversarial attacks; this is also the case in
the graph domain. As shown by Bojchevski and Giinnemann [2], both random walk—based meth-
ods and GNN-based methods could be attacked by flipping a small portion of edges. Xu et al. [57]
propose a PGD attack and min-max attack on the graph structure from the optimization perspec-
tive. NETTACK [66] is the first to attack GNNs using both structure attack and feature attack,
causing a significant performance drop of GNNs on the benchmarks. After that, Metattack [67]
formulates the poisoning attack of GNNs as a meta-learning problem and achieves remarkable
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performance by only perturbing the graph structure. Node Injection Poisoning Attacks [46] use a
hierarchical reinforcement learning approach to sequentially manipulate the labels and links of the
injected nodes. Recently, InfoMax [31] formulated the adversarial attack on GNNs as an influence
maximization problem.

5.3 Adversarial Contrastive Learning

The concept of adversarial contrastive learning is first proposed on visual domains [13, 16, 26].
All of these works propose a similar idea to use the adversarial sample as a form of data aug-
mentation in contrastive learning. This can bring better downstream task performance and higher
robustness. ACL [26] studies the different paradigms of adversarial contrastive learning by replac-
ing one or two of the augmentation views with the adversarial view generated by PGD attack
[32]. CLAE [13] and RoCL [16] use FGSM [8] to generate an additional adversarial view atop the
two standard augmentation views. RDGI [56] and AD-GCL [47] are the most relevant work to
ours in graph domains. RDGI quantifies the robustness of node representation as the decrease in
mutual information between the graph and its embedding under adversarial attacks. It learns a
robust node representation by simultaneously minimizing the standard contrastive learning loss
and improving the robustness. Nonetheless, its objective sacrifices the expressiveness of the node
representation for robustness while ARIEL can improve both of them. AD-GCL formulates adver-
sarial graph contrastive learning in a min-max form and uses a parameterized network for edge
dropping. However, AD-GCL is designed for the graph classification task only and does not explore
the robustness of graph contrastive learning. Finally, all previous adversarial contrastive learning
methods do not take scalability into consideration, with visual models and AD-GCL dealing with
independent instances and RDGI only working on small graphs, but ARIEL can work for both inter-
connected instances (node embedding) and independent instances (graph embedding) on a large
scale.

Some recent theoretical analyses further reveal the vulnerability of contrastive learning. Jing
et al. [23] show that dimensional collapse could happen if the variation of the data augmentation
exceeds the variation of the data itself in contrastive learning. Wang et al. [54] prove that con-
trastive learning could cluster the instances from the same class only when the support of different
intra-class samples overlaps under data augmentation. The representations learned by contrastive
learning may fail in downstream tasks when either under-overlapping or excessive overlapping
happens. From these perspectives, searching for adversarial contrastive samples in a safe area is
more likely to generate useful representations for downstream tasks.

6 CONCLUSION

In this article, we propose a universal framework for graph contrastive learning by introducing an
adversarial view, scaling it through subgraph sampling, and stabilizing it through information reg-
ularization. It consistently outperforms the state-of-the-art graph contrastive learning methods in
the node classification and graph classification tasks and exhibits a higher degree of robustness to
the adversarial attack. Our framework is not limited to the graph contrastive learning frameworks
we build on in this article, and it can be naturally extended to other graph contrastive learning
methods as well. In the future, we plan to further investigate (1) the adversarial attack on graph
contrastive learning and (2) the integration of graph contrastive learning and supervised methods.
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