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Abstract.

Combined wake steering and induction control is a promising strategy for increasing
collective wind farm power production over standard turbine control. However,
computationally efficient models for predicting optimal control set points still need to be
tested against high-fidelity simulations, particularly in regimes of high rotor thrust. In this
study, large eddy simulations (LES) are used to investigate a two-turbine array using
actuator disk modeling in conventionally neutral atmospheric conditions. The thrust
coefficient and yaw-misalignment angle are independently prescribed to the upwind turbine
in each simulation while downwind turbine operation is fixed. Analyzing the LES velocity
fields shows that near-wake length decreases and wake recovery rate increases with increasing
thrust. We model the wake behavior with a physics-based near-wake and induction model
coupled with a Gaussian far-wake model. The near-wake model predicts the turbine thrust
and power depending on the wake steering and induction control set point. The initial wake
velocities predicted by the near-wake model are validated against LES data, and a calibrated
far-wake model is used to estimate the power maximizing control set point and power gain.
Both model-predicted and LES optimal set points exhibit increases in yaw angle and thrust
coefficient for the leading turbine relative to standard control. The model-optimal set point
predicts a power gain of 18.1% while the LES optimal set point results in a power gain of
20.7%. In contrast, using a tuned cosine model for the power-yaw relationship results in a
set point with a lower magnitude of yaw, a thrust coefficient lower than in standard control,
and predicts a power gain of 13.7%. Using the physics-based, model-predicted set points in
LES results in a power within 1.5% of optimal, showing potential for joint yaw-induction
control as a method for predictably increasing wind farm power output.

1 Introduction
Wind farm flow control strategies, such as wake steering and induction control, intentionally operate
upstream turbines in suboptimal conditions to increase total farm power relative to standard turbine
control [1]. Wake steering redirects wakes by introducing a yaw-misalignment angle (γ) at the rotor
with respect to the incoming flow. Induction control modifies the strength of the wake by adjusting the
rotor thrust. Wake steering and induction control can be implemented individually, but recent studies
have demonstrated the complementary benefits of joint wake steering and induction control in large
eddy simulations (LES) [2].
Determining the optimal strategy for collective wind farm control requires computationally efficient
models to estimate both the power production of upstream turbines as well as wake interactions and
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power for downstream turbines. As a turbine is yaw-misaligned, its induced velocity on the incoming
flow changes, which in turn affects its power production [3]. Predicting how wake steering or induction
control affects the power production of a controlled turbine requires a model of the aerodynamics at the
rotor. Correspondingly, the wake of the controlled turbine also changes, which may affect the power
production of turbines downwind. Far-wake models, which parameterize turbulent wake recovery, are
typically used to predict the evolution of the wake downwind [4]. The rotor aerodynamics and power
loss of yawed upstream turbines are often modeled with empirical (cosine) relations that are physically
inconsistent with the far-wake model. Heck et al. [3] recently proposed a coupled approach to near- and
far-wake modeling for wind farm flow control.
Inviscid near-wake models, commonly based on one-dimensional (1D) momentum theory, serve two
functions: predicting the power extracted at the rotor, and the initial conditions for a far-wake model
[3, 4, 5]. Commonly, these two quantities are estimated separately, using empirical fits to estimate the
power loss due to yaw-misalignment with a cosine model cosα(γ), where α is a calibration parameter [6].
Calibrated cosα(γ) models have reported a wide spread of α values, highlighting that this calibration
parameter depends on the turbine control strategy and wind conditions, and does not generalize across
turbines or operating regimes [6, 7]. In contrast, recent physics-based near-wake models, such as that of
Shapiro et al. [5] and Heck et al. [3], have proposed closures to the rotor induction based on
conservation laws. Turbulent far-wake models, including the Jensen and Gaussian wake models [4], use
initial conditions from a near-wake model. Commonly, the initial streamwise velocity deficit is modeled
as δu0 = 2a0 from 1D momentum theory, where a0 is the axial induction factor for yaw-aligned
turbines. Far-wake models also require input calibration parameters, such as the wake spreading rate,
that are traditionally assumed to be independent of the turbine control strategy, but this assumption
has not been conclusively validated across the full range of turbine control inputs [8, 9].
Recent attention has been drawn to high-induction (thrust) rotors in the context of wake steering
control. Using large eddy simulations, Cossu [10] found that high thrust rotors increased power gains
due to yaw and tilt misalignment by two to three fold over standard thrust rotors. Mart́ınez-Tossas
et al. [9] investigated the wake recovery of yaw-aligned rotors under high thrust using LES and observed
enhanced wake recovery due to increased turbulent mixing and wake contraction from a large pressure
drop at the rotor. Additionally, the physics-based near-wake model of Heck et al. [3] predicts that
increasing turbine thrust while yawing minimizes power loss due to yaw-misalignment. For these
reasons, the high-thrust regime of rotor operation is of particular interest to collective wind farm flow
control.
In this study, LES are performed for a partially waked two-turbine array in a conventionally neutral
boundary layer (CNBL). Sweeping over a wide range of yaw and thrust coefficient values, we investigate
the yaw-induction relationship for an actuator disk model (ADM) in CNBL inflow. Next, we compare
the LES power production of a waked turbine to predictions from a calibrated Gaussian far-wake model
[4, 5], coupled with a physics-based near-wake model [3], and we explore how wake model calibration
parameters vary in different regimes of wind turbine control. Finally, we compare the power-maximizing
turbine control set point for thrust and yaw between LES and the wake model predictions. With the
LES data set, we explore the realizable power gain of joint yaw-induction control using a coupled wake
modeling approach and identify relevant wake physics for improving steady-state far-wake models.

2 Large eddy simulation setup
Effects of joint yaw and induction control are studied using LES of a two turbine wind farm in CNBL
conditions. Several calibration cases are also simulated with no downwind turbine to directly study the
effects of yaw and induction control on the unimpinged wake, where the effects of induction from a
downwind turbine are absent. Simulations are performed using the pseudo-spectral LES code PadéOps
[11]. A Monin-Obukhov wall model is used at the bottom boundary, the sigma subgrid model computes
the subgrid stresses [12], and a Rayleigh damping region is used in the top 25% of the vertical domain
to absorb gravity waves. Further numerical details of the LES code can be found in Howland et al. [13].
All simulations use a domain Lx = 3.84 km, Ly = 1.28 km, and Lz = 1.28 km in the streamwise, lateral,
and wall-normal directions, respectively. A staggered grid is used with a vertical resolution of Δz = 5m
and a horizontal resolution of Δx = 10m and Δy = 5m for a total of 25.1 million grid points. The
concurrent precursor method is used [14] with a fringe region [15] in the primary simulation to replenish
momentum lost to the wind turbine wake. Time-averaged statistics are collected beginning two
flow-through times (2Lx/G) after the start of the simulation to allow transients to decay, after which
flow fields and turbine power are time-averaged for two hours.
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2.1 CNBL initialization
We use the procedure of Liu et al. [16] to initialize a CNBL. The CNBL is driven by a geostrophic wind
speed of G = 8ms−1. A free atmosphere lapse rate Γ = 1Kkm−1 simulates a weakly stratified free
atmosphere, and a surface roughness z0 = 1mm is chosen to simulate offshore conditions. The CNBL
spin-up simulation is run for T = 15/fc, where fc = 1× 10−4 s−1 is the Coriolis parameter, to allow the
CNBL to reach a quasi-statistically steady state. Then, a frame angle controller is used to align the flow
at hub height with the x direction [13, 17]. The CNBL which results from our spin-up simulation has a
hub height wind speed u∞ = 7.2m s−1 aligned with the x-axis. The turbulence intensity at hub height
is Iu = σu/u∞ = 5.5%, where σu is the root-mean-square of streamwise velocity fluctuations. The wind
direction changes roughly 2.2◦ across the rotor area due to veer caused by the Coriolis force.

2.2 Actuator disk model
The turbines are modeled as an ADM [18, 19], which imparts a forcing that depends on the disk

velocity given by �FT = − 1
2ρAdC

′
Tu

2
dn̂, where ρ is air density, Ad = πD2/4 is the disk area,

n̂ = ı̂ cos γ + ĵ sin γ is the normal vector to the ADM, and C ′
T is the modified thrust coefficient [18]. The

turbine thrust is dependent on the rotor-averaged velocity at the disk ud ≡ 〈�ud · n̂〉, where 〈·〉 denotes
spatial averaging over the rotor area and �ud is the velocity vector at the rotor, which is modified by
induction in the LES domain. The modified thrust coefficient C ′

T is used as an input instead of CT

because CT varies with yaw (due to induction) whereas C ′
T does not [3]. For a yaw-aligned turbine,

following 1D momentum theory, the modified thrust coefficient is related to the standard thrust
coefficient by C ′

T = CT /(1− a0)
2. In yaw-misalignment, Heck et al. generalized the static induction

factor a0 to the rotor-normal induction an(γ) ≡ 1− ud/(u∞ cos(γ)) such that C ′
T = CT /(1− an(γ))

2.

Here, we define CT = 2|�FT |/(ρAdu
2
∞ cos2(γ)) following Shapiro et al. [5]. The ADM forcing kernel is

smoothed by a Gaussian filtering kernel [18, 19] of width Δ/D = 2.5h, where h = (Δx2 +Δy2 +Δz2)1/2

is the grid size. We use the ADM correction factor proposed by Shapiro et al. [19].

2.3 Single turbine calibration simulations
We first describe a single-turbine LES simulation to study the wake behavior in absence of downstream
turbines. One advantage of studying the unimpinged wake is that the accuracy of the wake model to
predict the velocity field downwind can be studied separately from the accuracy of the model’s
predictions for power downwind, which will depend on interaction between the rotor induction and the
incident wind field. We use the single-turbine simulations for wake model calibration. A single turbine
of diameter D = 100m is placed x = 5D from the inlet of the domain, centered laterally, at a hub
height of zh = 100m. An independent value of the local thrust coefficient C ′

T and the yaw angle γ are
prescribed to the leading turbine only and are constant in time such that each simulation is statistically
steady. In the calibration simulations, the lone turbine is yawed between γ1 ∈ [0◦, 30◦] and the thrust
coefficient is modified between C ′

T,1 ∈ [0.8, 4.0].

2.4 Wind farm simulations
In wind farm simulations, two turbines with diameters of D = 100m are immersed in the CNBL. A
turbine is placed in the wake of the leading turbine with streamwise and lateral spacing Sx = 6D and
Sy = 0.4D, respectively. The lateral offset Sy creates partial waking which favors positive
yaw-misalignments (anti-clockwise viewed from above). In the wind farm simulations, the leading
turbine is yawed between γ1 ∈ [0◦, 45◦] and the thrust coefficient is modified between C ′

T,1 ∈ [0.4, 4.0].
The waked turbine, which has no downstream turbines, operates at the power-maximizing set point
C ′

T,2 = 2.0 and γ2 = 0◦ as predicted by yaw-aligned momentum theory (Betz limit set point). The
control set points of both turbines do not change in time during each simulation. A schematic for the
wind farm setup is shown in Figure 1.

3 Wake modeling methodology
In this section, we outline the wake modeling framework. We use a variant of the Gaussian far-wake
model initially derived by Bastankhah and Porté-Agel [4] and extended by Shapiro et al. [5]. The
far-wake model uses an initial condition from a near-wake model, which predicts the streamwise and
spanwise wake velocity deficits, as well as the rotor induction and power.
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Figure 1: A schematic of the two-turbine configuration with turbine spacing Sx = 6D and Sy = 0.4D.
The leading turbine is controlled while the waked turbine operates at the Betz limit (γ2 = 0, C ′

T,2 = 2.0).

3.1 Near wake modeling
To model the near-wake behavior, we use the near-wake (inviscid) model of Heck et al. [3], which
extends on the work of Shapiro et al. [5]. The velocity at the rotor, which is modified by induction, is
dependent on the thrust and yaw of the wind turbine. By applying conservation of mass, momentum,
and energy, the model introduced by Heck et al. predicts the rotor-normal, rotor-averaged induction
an(γ) and streamwise and spanwise outlet velocities u4 and v4, respectively. The near-wake model (Eq.
(2.15) in Heck et al.) takes independent inputs of yaw-misalignment angle γ and thrust coefficient C ′

T
to solve the coupled, non-linear system of three equations.
The induction an(γ) is used to compute the turbine power

P ≡ −�FT · �ud =
1

2
ρAdC

′
Tu

3
∞ cos3(γ)(1− an(γ))

3, (1)

while the wake strength and deflection depend on the initial wake velocities u4 and v4.

3.2 Far-wake modeling
In the far-wake of a yaw-aligned turbine, wake velocities become self-similar and Gaussian in shape [4].
We assume that the time-averaged wake velocity deficit Δu(x, y, z) ≡ u∞ − ū(x, y, z) is Gaussian and
expands linearly beginning at the near-wake length xNW [8, 5].
In this work, we extend the Gaussian wake model proposed by Shapiro et al. [5]. Beginning with the
linearized Navier–Stokes equations, they proposed a model for the wake deficit field:

Δu(x, y, z) = δu(x)
D2

8σ2
0

exp

(
− (y − yc(x))

2 + (z − zh)
2

2σ2
0(x)d

2
w(x)

)
. (2)

Here, σ0 is the initial wake width at x = 0, dw(x) = 1 + kw ln(1 + exp[2(x− xNW )/D]) is an effective
wake diameter, and yc is the wake deflection. As suggested in Bastankhah and Porté-Agel [8], we fix the

value σ0 = D/
√
8. Note that for this value of σ0, the wake-averaged velocity deficit δu(x) is equal to the

maximum wake velocity deficit. The function dw(x) approaches 1 near the turbine and transitions
smoothly to a linear expansion of slope 2kw beyond x ∼ xNW , where kw is a calibration parameter for
the wake spreading rate. While Shapiro et al. originally proposed fixing xNW = D, we will investigate
the importance of modeling the near-wake length for a wide range of thrust coefficients. The near-wake
closure for xNW , adapted from Bastankhah and Porté-Agel [8], is given by

xNW

D
=

cos(γ)
[
1 +

√
1− C ′

T (1− an(γ))2 cos2(γ)
]

√
2
[
α∗Iu + β∗(1−√

1− C ′
T (1− an(γ))2 cos2(γ))

] , (3)

where α∗ = 2.32 and β∗ = 0.154 are recommended by Bastankhah and Porté-Agel [8]. The near-wake
length can be interpreted as a virtual origin for the far-wake model, which improves predictions of the
wake velocity field [20].
The wake velocity deficit function δu(x) is modeled as a smoothed step function in the vicinity of the
rotor, and the lateral velocity is modeled similarly:

δu(x) =
u∞ − u4

d2w(x)

1

2

[
1 + erf

(
x√
2D/2

)]
; δv(x) =

−v4
d2w(x)

1

2

[
1 + erf

(
x√
2D/2

)]
, (4)
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where u4 and v4 are initial wake velocities from the near-wake model [3]. Finally, the wake deflection is
computed by numerically integrating δv(x) from (4) in the x-direction such that

yc(x) =

∫ x

0

−δv(x′)
u∞

dx′. (5)

No wake superposition method is needed because the downstream turbine wake is not relevant in this
study. Adding additional rows of turbines would require modeling deep array effects, including
secondary steering and wake-added turbulence intensity.
The power of the waked turbine is affected by the wake of the upstream turbine. In the actuator disk
formulation, power is proportional to the cube of the rotor-averaged wind speed ud. To compute the
power production of the waked turbine, we modify u∞ in (1) to include wakes of upstream turbines.
The rotor-averaged wake deficit 〈Δu〉 is subtracted from the freestream flow such that
u∞,2 = u∞ − 〈Δu〉. We compute the waked turbine power using Δu from the wake model and the
momentum theory-based induction closure of Heck et al. discussed in Section 3.1.

3.3 Wake model calibration
Wake models incur error from the model form, as well as from calibration parameters. To minimize the
error resulting from model parameters, we opt to calibrate the coupled wake model introduced in
Sections 3.1 and 3.2 directly to the single-turbine LES velocity field. Because turbine power depends on
the rotor-averaged wind speed, we choose a three-dimensional domain to calibrate the far wake model.
We minimize the mean absolute error between the wake modeled velocity deficit field and the LES
deficit field, computed by subtracting the time-averaged base flow in the precursor simulation from the
time-averaged flow field including a turbine wake. The calibration region we choose centers around the
downwind turbine such that x ∈ [Sx −D,Sx +D], y ∈ [−2D, 2D], z ∈ [zh −D, zh +D]. The
Broyden–Fletcher–Goldfarb–Shanno algorithm [21] is used in the scipy.optimize package to find the
optimal calibration parameter kw.

4 Results
In this section, we compare rotor induction and wake velocities from LES with the near-wake model.
Then, we examine the far-wake behavior in LES. Finally, we calibrate a Gaussian wake model to the
yaw-aligned LES data, and use the calibrated wake data to predict the optimal thrust and yaw of the
two-turbine system.

4.1 Near-wake characteristics
Near-wake properties are shown in Figure 2 as computed from LES data. Both the calibration
(one-turbine, solid plus +) and wind farm (two-turbine, open circle ◦) simulations are used because the
presence of the downwind turbine has only a small effect on the near-wake characteristics. We compute
δu0 = u∞ − u4 from LES as the maximum value of the wake velocity deficit field (Δu). Defining δu0

based on the maximum value from the LES velocity deficit field is useful because the wake strength in
the Gaussian wake model (2) depends on the maximum velocity deficit δu(x). The initial lateral
velocity component δv0 is computed by streamtube-averaging (〈·〉s) the lateral velocity deficit 〈Δv〉s in
the yz-plane. The streamtube is seeded at the ADM at a radius Rs = 0.35D, but results are relatively
insensitive to the initial streamtube seeding position. This is the same approach to identify δv0 as in
Shapiro et al. [5]. The induction factor an is computed from LES using the rotor-averaged disk velocity
ud which includes the ADM correction factor [19].
The rotor-normal induction factor, shown in Figure 2(a), increases with increasing turbine thrust and
decreases with increasing yaw-misalignment magnitude. Overall, the trends for an in the CNBL LES
are similar to those reported in Heck et al. for uniform inflow [3]. Predictions of the induction factor,
which are important for predicting the power of the upstream turbine, show good agreement with LES
up to γ1 ≈ 30◦. The modeled induction factor an decreases in accuracy for increasing thrust coefficient
due to the presence of a non-negligible wake base pressure [9, 22]. The effect of the wake base pressure
decreases the induction and, by extension, decreases the streamwise velocity deficit δu0.
Wake streamwise velocity deficit δu0 in Figure 2(b) matches momentum theory predictions for
yaw-aligned wakes up to C ′

T,1 ≈ 2. Additionally, for constant C ′
T,1, increasing the magnitude of yaw

misalignment decreases the wake strength. For high thrust rotors C ′
T,1 > 2, an overestimation of δu0 is

observed in the model, which is associated with increased model error in the induction stemming from
the wake base pressure. For low thrust coefficients (e.g., C ′

T,1 = 0.8), overestimation of δu0 in the wind
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Figure 2: (a) Rotor-normal, rotor-averaged induction factor an and near-wake velocity deficits in the (b)
streamwise and (c) lateral directions, and (d) thrust coefficient CT . Solid plus + symbols represent data
from single turbine calibration simulations, open circles ◦ are from wind farm simulations, and model
predictions are shown with solid lines.

farm simulations is due to the presence of the induction zone from the waked turbine given the large
near-wake length (Section 4.2). The initial lateral wake velocity deficit δv0 increases in magnitude with
increasing thrust and increasing yaw misalignment angle, as is shown in Figure 2(c). Overall,
predictions of δv0 from the near-wake model are in excellent agreement with LES data, even for high
yaw-misalignment angles γ1 = 45◦ and for high thrust coefficients C ′

T,1 > 2. Finally, in Figure 2(d), we

show CT as a function of C ′
T and yaw. As thrust increases (C ′

T > 3), the model increasingly
underpredicts CT as a result of the overprediction in static induction an. The underprediction of thrust
in the near-wake model from Heck et al. is a persistent challenge for high thrust rotors which is
commonly addressed in blade-element momentum methods with empirical corrections [23]. Improved
modeling of the high-thrust regime should be explored in future work to improve near-wake modeling.

4.2 Far-wake characteristics
In this section, we focus on far-wake analysis using the one turbine calibration data. The underlying
hypothesis is that accurately predicting the wake velocity field will lead to accurate predictions of the
waked turbine power. The maximum wake deficit from LES as a function of downstream distance x is
shown in Figure 3(a) for the yaw-aligned γ1 = 0◦ calibration simulations.
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Figure 3: Yaw-aligned wake characteristics, including (a) maximum wake deficit Δu as a function of
downstream distance for wake model predictions (dashed lines) and LES (open circles ◦) and (b) near-
wake length xNW as a function of thrust coefficient.

The maximum streamwise wake velocity deficit, which is related to the near-wake velocity
(Figure 2(b)), increases as the rotor thrust increases. However, the monotonic trend observed in
max(Δu) for x < 2D does not generally hold for all downstream locations x. Instead, we find that the
rapid wake recovery rate at the highest turbine thrust breaks the monotonicity in max(Δu) before
x = 5D. By x = 8D, the highest thrust turbine produces the wake with the smallest maximum velocity
deficit. The rotor-averaged velocity of a ghost turbine in the wake of the freestream turbine also shows
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shows non-monotonic behavior due to the enhanced wake recovery from the high thrust region (not
shown). This observation is contrary to the traditional approach of induction control, where leading
turbines curtail power by decreasing thrust in an attempt to decrease the strength of the wake
interfering with downwind turbines. Instead, the LES data shows that an alternative to decreasing wake
strength downwind could be to increase the rotor thrust—promoting wake recovery—if the waked
turbine is sufficiently far downwind.
The non-monotonic behavior of the maximum wake strength is the result of two mechanisms. First, the
near-wake length xNW decreases, as is shown visually in Figure 3(a) by the location where the wake
strength begins to decrease. This point is marked by the green diamonds in Figure 3(b). Other
methods of measuring the near wake length xNW are compared in Figure 3(b). These include the
downstream location where the R2 value [24] or Pearson correlation coefficient ρ̄ [25] of the best-fit
Gaussian profile compared to a wake transect at hub height exceeds 0.99 and the location where the
streamtube-averaged wake 〈Δu〉s begins to recover. The near-wake length closure model is also included
in Figure 3 [8]. While different definitions of xNW show different quantitative results, all definitions of
xNW show a decreasing near-wake length as rotor thrust C ′

T increases. The near-wake length
demarcates the boundary between the inviscid region of wake expansion and the turbulent region of
wake recovery. As xNW decreases, the onset of the turbulent wake (and region of wake recovery) occurs
closer to the rotor. Therefore, as rotor thrust increases, the wake velocity has more distance (time) to
recover before it reaches the downwind turbine.
In addition to the decreasing near-wake length is the increased rate of turbulent wake recovery with
increasing rotor thrust. While Mart́ınez-Tossas et al. [9] observed enhanced wake recovery for high
(CT > 1, i.e., C ′

T > 4) rotor thrust coefficients in yaw-aligned uniform inflow, we observe that the wake
recovery rate continuously increases as C ′

T increases, as shown in Figure 3(a). The decrease in
near-wake length and enhanced wake recovery with increasing C ′

T are both driven by increasing the
shear-generated turbulence to replenish momentum into the wake [8, 24]. In summary, high-induction
operation is favored for joint yaw-induction control in three ways: 1) power loss due to yaw
misalignment is partially mitigated by increasing the leading turbine thrust [3], 2) wake deflection
increases as thrust increases, and 3) wake recovery rates increase with increasing thrust.

4.3 Model calibration
The far-wake model is calibrated to LES data using initial wake velocities from the near-wake model of
Heck et al. As noted in Section 4.2, the wake recovery rate, which is related to the wake spreading
parameter kw, changes as a function of thrust. Results of the model calibration are shown in Figure 4.
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Figure 4: (a) Calibration for the wake spreading parameter kw using yaw-aligned LES velocity fields. (b)
Pearsons correlation coefficient for velocity field fit under yaw-misalignment.

The wake spreading rate kw varies significantly with across the range of simulated C ′
T , as shown in

Figure 4(a). For an initial approximation, we fit a least-squares linear regression through the data to
approximate the dependence of kw on thrust, although this trend likely depends on atmospheric
conditions and rotor modeling. Other parameterizations for the dependence of kw on thrust have also
been proposed (e.g., Ishihara and Qian [26]).
Figure 4(b) shows the Pearsons correlation coefficient between the wake model field and LES wake
deficit field in the calibration region. In yaw-misalignment, the model-form error of the Gaussian wake
model increases due to wake curling [8, 27]. In addition, increasing turbine thrust increases the wake
deflection and wake curling, increasing the error between LES and the best-fit Gaussian wake model
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velocity field. As a result, wake calibration in yaw-misalignment leads to inaccurate estimates for kw.
Wake spreading rate, as measured in hub height wake velocity fields, is not strongly dependent on yaw
(not shown), as was noted previously by Bastankhah and Porté-Agel [8]. Therefore we choose to
calibrate kw to each yaw-aligned wake as a function of C ′

T only. The dependence of kw on C ′
T in

Figure 4(a) will be compared with a far-wake model using constant kw, corresponding with C ′
T = 2.0, in

Section 4.4.

4.4 Model power predictions
We compare LES results and model predictions for the efficiency of the upstream turbine and total farm
efficiency ηtot. = (η1 + η2)/2 in Figure 5, where ηi = 2Pi/(ρAdu

3
∞). The Coupled model uses the

induction closure of Heck et al. to compute power, while the Cosine model assumes a relationship
P (γ)/P (γ = 0) = cosα(γ). Here, the parameter α = 1.98 is calibrated to the LES data at C ′

T = 2.0.
Although the Cosine model is calibrated to LES data, while the model of Heck et al. is parameter-free,
predictions of η1 from the cosine model have higher error than the model of Heck et al. when
considering the full range of C ′

T . This is because the power lost due to yaw-misalignment is dependent
on thrust [3]. In both models, we use the same far-wake model where xNW = 3D is fixed, and kw is
calibrated to the single-turbine data at C ′

T = 2.0, γ = 0◦. We find that the variable near-wake length
and variable wake spreading rate kw(C

′
T ) do not improve predictions of waked turbine efficiency η2,

relative to LES, when the leading turbine is yaw-misaligned. This result is due to a combination of
factors. First, the wake curling induced by high yaw γ1 (Figure 4(b)) causes the wake to curl around
the downwind turbine as yaw-misalignment is increased. Neglecting the wake curling results in an
overprediction of the wake strength on the downwind turbine and an underprediction of the waked
turbine power. In addition, the error of the initial streamwise velocity deficit δu0 increases with
increasing rotor thrust C ′

T,1 (Figure 2(b)). The model overprediction of δu0 may be biasing the model

calibration and therefore the functional dependence of kw(C
′
T ). However, we emphasize that the

increased wake recovery as a function of increasing C ′
T is a result that is robust to any potential

calibration bias, as shown in Figure 3(a). Finally, we note that the quantitative trends predicted by the
near-wake length model (3) do not follow trends in the LES. For example, the model predicts that
increasing the yaw-misalignment angle will increase the near-wake length, while we observe xNW

decreasing with increasing yaw-misalignment in the LES data (not shown). The quantitative sensitivity
of choices in the far-wake modeling on ηtot. is shown in Table 1.
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Figure 5: Contours of (a-c) total farm efficiency and (d-f) upstream turbine efficiency η1 for LES, the
coupled near-wake model from Heck et al., and a cosine power loss model calibrated to C ′

T,1 = 2.0. Blue
+ markers denote the set point corresponding with the modeled maximum farm efficiency and red 

markers denote the power-maximizing LES set point.

The wake models are used to predict optimal set points for wind farm flow control. The farm
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power-maximizing set point is denoted with a marker on each plot. The resulting optimal set point
predicted by the Coupled model lies closer to the LES optimal than when using the Cosine model. In
LES, the power-maximizing set point is C ′

T,1 = 4.0, γ1 = 25◦. We note that because the LES
power-maximizing thrust is on the border of the values simulated here, it is possible that the true
optimal thrust is C ′

T,1 > 4.0, and future studies should investigate the true optimal with more
supercomputer availability. Regardless, the LES optimal control strategy indicates CT,1 should be
increased, compared to standard control (C ′

T = 2), rather than decreased. This is captured by the
near-wake model from Heck et al. but not by a calibrated Cosine model.
Table 1 summarizes the accuracy of the different wake model predictions. The baseline strategy
assumes standard control where turbines are yaw-aligned and operate at the Betz limit (C ′

T,1 = 2). The

column labeled LES-equivalent (“LES eq. ηtot.”) is computed by interpolating the LES data at the
model-optimal control set point. When the physics-based near-wake model of Heck et al. is used, the
optimal C ′

T exceeds the Betz limit thrust coefficient recommendation. The power gain at at the optimal
set point is 20.7% above baseline in the LES data. The near-wake model of Heck et al. predicts a power
gain of approximately 18% depending on the far-wake model, while the calibrated Cosine model
predicts a 13.7% power gain. Finally, using the optimal physics-based model set point in LES results in
a farm power within 1.5% of the true optimal farm power in LES.

Table 1: Optimal set point (γ1, C
′
T,1) to maximize array efficiency ηtot. for LES and wake models. The

column “LES eq.” is the LES farm efficiency interpolated at the model-predicted optimal set point.

Near-wake Far-wake
Optimal
γ1 (◦)

Optimal
C′

T

Baseline
ηtot.

Optimized
ηtot.

Gain
(%)

LES eq.
ηtot.

(LES) (LES) 25 4.0 0.447 0.538 20.7 0.539
Heck et al. Fixed xNW 29 2.6 0.425 0.497 18.1 0.530
Heck et al. Variable xNW 27 2.2 0.426 0.503 18.1 0.530
Heck et al. Variable xNW , kw 26 2.1 0.424 0.503 18.8 0.529
Cosine model Fixed xNW 22 1.8 0.426 0.486 13.5 0.520
Cosine model Variable xNW 22 1.8 0.424 0.486 13.7 0.520

5 Discussion and Conclusions
In this study, we investigate the power maximization of a two-turbine wind farm array in partially
waked conditions through joint wake steering-induction control. Using large eddy simulations of a small
wind farm in a conventionally neutral boundary layer, we sweep over a wide range of yaw and thrust
control inputs, highlighting the high thrust region of operation. While the general approach for turbine
operation is to keep the rotor thrust below the Betz optimum (CT = 8/9 or C ′

T = 2.0) to reduce the
velocity deficit strength of wakes downstream, we observe three benefits for operating in the high-thrust
regime in the context of wind farm flow control. First, power loss due to yaw-misalignment of the
leading turbine is partially mitigated by compensatory increases in turbine thrust. Additionally, higher
turbine thrust results in a larger initial lateral velocity downwind of yawed turbines and, by extension,
larger wake deflection. Finally, we observe that as rotor thrust increases, the near-wake length decreases
and the wake recovery rate increases as a result of enhanced shear-generated turbulence, leading to
faster wake recovery. Large eddy simulations of a two-turbine array result in a power-maximizing thrust
of C ′

T,1 = 4.0 and yaw γ1 = 25◦ for the leading turbine. While the magnitude of the optimal rotor
thrust will depend on the array configuration, atmospheric characteristics, and rotor aerodynamics, this
result suggests future research into the wake dynamics and modeling of high-thrust rotors.
Computationally efficient models are necessary for predicting the optimal wind turbine control strategy.
Here, we introduce a coupled wake model which uses the near-wake model of Heck et al. as an initial
condition for a Gaussian far wake model. The wake model captures the power-maximizing wind farm
control strategy with lower error than a calibrated cosine model. However, the near-wake model
degrades in accuracy as rotor thrust is increased, which is related to the wake base pressure for
highly-loaded rotors [22]. As a result, the near-wake model underpredicts the power produced by the
upstream turbine and overpredicts the wake deficit magnitude under high thrust conditions. We
hypothesize that improved near-wake modeling in high-thrust conditions will improve predictions of
wind farm power and power maximizing control set points over current models, when compared with
LES. Additionally, we find that current models for the near-wake length xNW for turbines in yawed
conditions do not quantitatively predict the near-wake length with enough accuracy to improve
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predictions of the power-maximizing set point over assuming a fixed value of xNW . Improved models
for the near-wake length can improve far-wake modeling in the coupled wake modeling framework.
Finally, future work into induction modeling under sheared and partially waked conditions and
improvements in modeling wake turbulence and curling will continue to improve the accuracy of wake
models for wind farm flow control applications.
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