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ABSTRACT

Accessibility and openness are two of the most important factors
in motivating Al and Web research. One example is as costs to
train and deploy large Knowledge Graph (KG) systems increases,
valuable auxiliary features such as visualization, explainability, and
automation are often overlooked, diminishing impact and popular-
ity. Furthermore, current KG research has undergone a vicissitude to
become convoluted and abstract, dissuading collaboration. To this
end, we present GINKGO-P, a platform to automatically illustrate
any KG algorithm with nothing but a script and a data file. Addition-
ally, GINkGO-P elucidates modern KG research on the UMLS dataset
with interactive demonstrations on four categories: KG Node Rec-
ommendation, KG Completion, KG Question Answering, and KG
Reinforcement Learning. These categories and their many applica-
tions are increasingly ubiquitous yet lack both introductory and
advanced resources to accelerate interest and contributions: with
just a few clicks, our demonstration addresses this by providing an
open platform for users to integrate individual KG algorithms. The
source code for GINKGO-P is available: we hope that it will propel
future KG systems to become more accessible as an open source
project.
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1 INTRODUCTION

Knowledge Graphs (KGs) are relational representations that contain
nodes (denoting a subject or entity) and edges (denoting a verb or
dependence) which connect nodes in either a uni-directional or
bi-directional manner. Specifically, a KG consists of factual triplets
of the form (h, r, t) representing a head node, relation edge, and tail
node. Through this, mathematical symmetry/asymmetry, inversion,
and composition can be represented and used in many applications.

Most research regarding Knowledge Graph Reasoning (KGR)
prioritizes designing cutting-edge algorithms for specific domains.
As such, there is a large gap where users outside these domains
are unable to familiarize themselves with KGR. Furthermore, the
complexity of integrating or accessing KG systems has grown in
proportion with size increases of KGs themselves [3, 17]: this exac-
erbates the challenge of implementation for outside users.

We developed the GINkGO-P demonstration for this reason; it
allows users simple, sleek access to an open and customizable plat-
form which illustrates general Knowledge Graph Reasoning models.
Specifically, we codify seven foundational algorithms on the Unified
Medical Language System (UMLS) dataset as seen in Table 1. In this
manner, GINKGO-P appeals to both the novice and expert: a novice
can sample different core KG algorithms on UMLS to build intuition
while an expert can seamlessly visualize any KG algorithm.

Tasks Algorithm Tasks Algorithm
TransE [2], ComplEx [23]
KG-C RotatE [18], DistMult [26] | KC"QA | EmbedKGQA [15]
Node Recommendation PageRank [1] KG-RL MultiHopKG [8]

Table 1: Overview of Different Algorithms in GINKGoO-P.

Our contributions are three-fold. First, we build a system for
web practitioners and researchers alike which supports general
Knowledge Graph Reasoning tasks. Second, we develop a platform
to illustrate and compare/contrast existing algorithms, prepackag-
ing four categories of reasoning tasks ourselves. Lastly, we deploy
and expose this platform to remove even more pain points of im-
plementation by making our system open and accessible through
the crucial ability to integrate future KG algorithms. The GINkGo-P
platform will run real-time queries and show interactive results.
This may occur in one of two ways: (1) a user may interact with
a responsive and interactive web application to visualize several
preexisting algorithms (which were selected with consideration of
significance and complexity in mind) operating over the UMLS [5]
KG; (2) a user may design his or her own custom KG algorithm and
execute it in the same environment as our prepackaged algorithms.
Lastly, GINkGo-P is published, served, and accessible onlinel.

!https://ginkgo-p.onrender.com/
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Figure 1: A diagram of the GINKGo-P architecture.

2 RELATED WORK

Knowledge Graph Reasoning (KG-R) aims to solve different logical
reasoning tasks, whereby inferring new knowledge from existing
ones [12]. For example, in [2, 18, 23], the authors to predict a missing
tail entity given a partial triple (h, r, ?), while in [11, 15], the authors
leverage the KG to answer natural language "one-hop" or "multi-
hop" input questions. In [13], the authors use the KG to verify the
truthfulness of multi-modal news claims.

KG with Reinforcement Learning (KG-RL) is another way to
perform KGR by modeling queries using a Markov Decision Pro-
cess (MDP), learning a policy 7 to reach for a target node or edge,
whereby inference actions are drawn from 7 [8, 19, 25]. KG-RL has
also been used in conjunction with KG-C [25] and with KG-QA (8]
to learn distant connections. KG-RL tackles not only the obstacles of
KG-C or KG-QA but also the hurdle of learning optimal recollection
to recall inferred relationships in a KG.

However, there exist only a few works that focus on building
KGR systems, including: (1) [10], where the authors build a sys-
tem to support comparative reasoning; (2) [20], where the authors
construct a system used to check the truthfulness of input claims.
In all of these, there is no emphasis on facilitating exploration;
GINkGO-Pboth showcases several algorithms and user input.

3 SYSTEM DESIGN

GINKGO-P has three main architectural components branching into
smaller subcomponents: (1) a navigation and interactive visualiza-
tion frontend component which is the main interface for users; (2) a
scalable, modularized KG algorithm-processing backend component
which processes and handles "demo" requests to show examples
of KG algorithms; (3) a custom component which handles users’
"custom" requests (consisting of custom algorithm and data files).
The backend component contains four branches of KG category
subcomponents which encapsulate the four tasks from Table 1. A
diagram of GINKGO-P can be seen in Figure 1.

Frontend. As seen in Figure 1, users select to run their own custom
KG algorithm with their own data or to run a demonstration on
algorithms from Table 1. For the latter, once the appropriate query
for a category is submitted, the backend retrieves and executes the
query, or if a custom algorithm returns proper JSON according to
GINKGO-P’s specification, a unique graph visualization component
is generated. The dynamic illustration is interactive and the user’s
results will be highlighted as seen in Figure 2, revealing the path
from the input to the result in the KG. For users who wish to
provide a graph to visualize in JSON form, the request circumvents
the backend and shows the interactive result immediately.
Backend. The backend mimics a RESTful API architecture [7] with
a cache. Once a request from a user is received, the backend will
verify the input and check the cache to see if previous users have
requested similar inputs. If the results are found in the cache, they
are immediately returned back to the frontend. If they aren’t, the
backend will spin up a child process of one of several programming
languages, run the request, store it in the cache, and return the
result to the frontend.

Additionally, GINKGO-P handles parallel demonstration requests
using shared memory on the KG. This design choice bypasses the
restriction of spinning up many instances of the same KG to run
different queries. Overall, GINKGO-P efficiently handles any size
KG (provided minimal RAM).

4 SYSTEM DETAILS

In this section, we introduce the details of the algorithms included
in GINKGO-P. For demonstration purposes, each of these models is
trained and deployed using the UMLS dataset [5].

4.1 Integrating Individual Algorithms.

As introduced above, GINKGO-P has two main features: (1) sup-
porting multiple KG algorithms as listed in Table 1; (2) allowing
users to incorporate custom algorithms. GINKGO-P permits users to
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integrate individual, custom algorithms and custom KGs, meaning
that the platform is itself both model-agnostic and data-agnostic;
for example, if a user wants to run a custom KG-QA algorithm on
a custom KG, it it sufficient to simply upload (or reference in a
script) the algorithm script and KG data file to GINKGO-P. Yet, if
a user wishes to visualize their algorithm but run it on their own
system, they must adhere to JSON formatting as defined in the
documentation. Interested readers may refer to our source code?
for further details on implementation, scalability, and performance;
one important note is that GINKGo-P is constrained only by the
compute resources of the hardware it is deployed from. The goal
of this is to take the pain from setting up scaffolding to run one’s
KG research algorithms and obtain an intuitive visualization. This
simplified approach enhances the user experience and eliminates
unnecessary obstacles, allowing researchers to focus more on the
core aspects of their KG research.

4.2 Knowledge Graph Node Recommendation

Node Recommendation is formulated as predicting a neighboring
node 7 given a source node s € G and /i = miél d(n, s) where d(x,y)
ne

refers to a user-defined distance function between nodes x and y.
Nominally, this is a alignment task. In practice, if the node space is
not intractable, this is a simple calculation of the distance between
each pair of nodes in the embedding space. If it is, we utilize the
PageRank-Nibble [1] algorithm to instead search a dense cluster
(e.g. a subgraph) w.r.t to the seed node. This has a large benefit
of reducing the problem’s asymptotic memory complexity from
linear to constant. A core insight of PageRank-Nibble is to calculate
an approximate PageRank vector where the running time is not
impacted by the size of the input graph. This is achieved by running
the Nibble partition: sweeping through the PageRank vector to
identify a cut with a low conductance, producing a localized divide.

Because UMLS’s PageRank scores can be pre-computed, GINKGO-
P deploys and serves regular PageRank without Nibble for the sake
of simplicity [1], but PageRank-Nibble is an important algorithm
for users who input large, custom KGs. Other methods like Random
Walk with Restart [21, 22], (Local) Spectral Clustering [14] can also
be used for the simplified Node Recommendation task. We leave
them to future work.

4.3 Knowledge Graph Completion

KG-C evaluates relationships between entities in a KG using only
the direct connections between entities or connections which are
"one-step" or "one-hop" from the starting entity. Given a partial
triple (?,r,t), (h,r,?) or (h,?,t), KG-C predicts the entity or rela-
tionship most likely to complete the triple. In GINKGO-P, we only
focus on solving (h, r, ?). This reasoning is useful for swiftly pre-
dicting connections using simple questions and is used as a building
block for more complex reasoning tasks. Common KG-C algorithms
include TransE [2], TransH [24] and so on.

In GiNkGo-P, we implement four contrasting KGC methods:
TransE [2], ComplEx [23], RotatE [18], and DistMult [26]. Their
details are important and we leave them to be reviewed outside
the scope of this demonstration, but are foundational to many

Zhttps://github.com/blainehill2001/Ginkgo-P
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other KG algorithms and research. Other KG-C methods such as
those based on neural networks, including Graph Neural Networks
(GNNGs) [4, 16, 27] can also be used. We leave these to future work.

4.4 Knowledge Graph Question Answering

In KG-QA, the goal is to answer [natural language] questions by
querying a KG, locating relevant triplets, and returning an entity.
Different from KG-C, KG-QA may require reasoning over one hop
or multiple hops according to the input query. For GINkGo-P, we
implement EmbedKGQA, which contains two parts [15]. First, it
represents entities and relations in the KG as vector embeddings
analogously to TransE or ComplEx. Futhermore, BERT [6] is used
to consume the input, learning contextualized natural language
embeddings [6]. Second, it defines a scoring function to measure the
similarity between candidate questions and answers. The scoring
function is based on ComplEx [23] and it is given by:

1)

where e; is the entity in the KG, q is the question embedding, and
ey, is the embedding of the topic entity in the input question.

Other KG-QA algorithms, like BiNet, a multi-task approach de-
signed to address both KG-C and KG-QA concurrently, converge to-
wards strong weight optimization in a joint manner [11]. PrefNet [9]
improves accuracy by utilizing a re-ranking module. We plan to in-
tegrate these two algorithms into the system, either in a subsequent
release or in the next version.

Pr(eilq,vp, G) = Re(< q, ep, & >)

4.5 Knowledge Graph Reasoning with
Reinforcement Learning

KG-RL is the most challenging of these tasks due to its complexity:
it requires both traditional approaches in combination with long-
distance reasoning. In GINKGO-P, we use KG-RL across multiple
hops; as a model operates on different time steps, it traverses the KG,
following and learning multiple relationships between the branches
to predict an answer. In GINKGO-P, we implement MultiHopKG [8],
a method to address KG-QA with RL. It answers an input query by
modeling a MDP with the KG as the state-space (or environment)
and the relationships between entities as the action-space.

KG-RL can be applied to problems in KG-QA, KG-C, and more.
Representing KG tasks with MDPs opens the door to reimagining
previous approaches and is a wide-open area of future research.

5 SYSTEM DEMONSTRATION

Figure 2 presents the interface of GINKGO-P with what the user
will see to run a custom experiment and two examples of included
algorithms run on UMLS. For the first example, the middle image
shows the results of TransE on the input query
(amino_acid_peptide_or_protein, causes,?). The top answers
are denoted by the edges of amino_acid_peptide_or_protein
with the best answer shown in yellow. The second image shows the
results of MultiHopKG on the input query (immunologic_factor,
disrupts, ?). As we can see, despite there being no direct edges
connecting immunologic_factor and

body_substance, MultiHopKG locates the result because
immunologic_factor is connected to body_substance via the node
tissue. The result, denoted by the yellow edges, is
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Figure 2: From left to right, one can see the Custom frontend input form, the result of TransE for the input
(amino_acid_peptide_or_protein, causes, ?), and the result of MultiHopKG for the input (immunologic_factor, disrupts, ?).

[(immunologic_factor,disrupts, tissue), (tissue, surrounds,
body_substance)].

Users of GINKGO-P may fall into one of two categories: (1) in-
troductory web practitioners who are interested in visualizing KG
algorithms; (2) expert graph researchers who wish to implement and
deploy their novel algorithms without headache. GiNkco-Pwill be
fully deployed and accessible to allow for open interaction with any
audience. The goal of GINKGO-P is to propel the audience towards
future KG research directions by introducing more researchers
to these core tasks and to automatically and effortlessly visualize
algorithms.
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7 CONCLUSION

In this paper, we demonstrate the first open general Knowledge
Graph Reasoning platform GINKGO-P to spur both fresh interest
and future work on Knowledge Graph (KG) systems. GINKGO-P
includes several prepackaged algorithms over four categories: KG
Node Recommendation, KG Completion, KG Question Answering,
and KG with Reinforcement Learning. This platform allows users
to visualize and compare/contrast both the prepackaged algorithms
as well as any algorithms the user designs and integrates using
GINKGO-P.
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