N
Check for
Updates

Hyunsik Yoo
University of Illinois
Urbana-Champaign

hy40@illinois.edu

David Zhou
University of Illinois
Urbana-Champaign

Zhichen Zeng
University of Illinois
Urbana-Champaign

zhichenz@illinois.edu

Zhining Liu
University of Illinois
Urbana-Champaign

david23@illinois.edu liu326 @illinois.edu
Eunice Chan
University of Illinois
Urbana-Champaign
ecchan2@illinois.edu
ABSTRACT

User-side group fairness is crucial for modern recommender sys-
tems, alleviating performance disparities among user groups de-
fined by sensitive attributes like gender, race, or age. In the ever-
evolving landscape of user-item interactions, continual adaptation
to newly collected data is crucial for recommender systems to
stay aligned with the latest user preferences. However, we observe
that such continual adaptation often worsen performance dispari-
ties. This necessitates a thorough investigation into user-side fair-
ness in dynamic recommender systems. This problem is challeng-
ing due to distribution shifts, frequent model updates, and non-
differentiability of ranking metrics. To our knowledge, this paper
presents the first principled study on ensuring user-side fairness in
dynamic recommender systems. We start with theoretical analyses
on fine-tuning v.s. retraining, showing that the best practice is incre-
mental fine-tuning with restart. Guided by our theoretical analyses,
we propose FAir Dynamic rEcommender (FADE), an end-to-end
fine-tuning framework to dynamically ensure user-side fairness
over time. To overcome the non-differentiability of recommenda-
tion metrics in the fairness loss, we further introduce Differentiable
Hit (DH) as an improvement over the recent NeuraNDCG method,
not only alleviating its gradient vanishing issue but also achieving
higher efficiency. Besides that, we also address the instability issue
of the fairness loss by leveraging the competing nature between
the recommendation loss and the fairness loss. Through extensive
experiments on real-world datasets, we demonstrate that FADE ef-
fectively and efficiently reduces performance disparities with little
sacrifice in the overall recommendation performance.!

The code and Online Appendix are available at: https://github.com/hsyo032/fade.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW 24, May 13-17, 2024, Singapore, Singapore.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0171-9/24/05...$15.00
https://doi.org/10.1145/3589334.3645536

3667

Jian Kang

University of Rochester
jian.kang@rochester.edu

Fei Wang
Amazon.com, Inc.
feiww@amazon.com

Ensuring User-side Fairness in Dynamic Recommender Systems

Ruizhong Qiu
University of Illinois
Urbana-Champaign

rq5@illinois.edu

Charlie Xu

Amazon.com, Inc.
caizhx@amazon.com

Hanghang Tong
University of Illinois
Urbana-Champaign
htong@illinois.edu

CCS CONCEPTS

+ Information systems — Data mining; - Computing method-
ologies — Machine learning.

KEYWORDS

recommender systems; user-side fairness; dynamic updates

ACM Reference Format:

Hyunsik Yoo, Zhichen Zeng, Jian Kang, Ruizhong Qiu, David Zhou, Zhining
Liu, Fei Wang, Charlie Xu, Eunice Chan, and Hanghang Tong. 2024. Ensuring
User-side Fairness in Dynamic Recommender Systems. In Proceedings of the
ACM Web Conference 2024 (WWW °24), May 13-17, 2024, Singapore. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3589334.3645536

1 INTRODUCTION

Recommender systems are essential for delivering high-quality per-
sonalized recommendations in a two-sided market (i.e., user-side
and item-side) [8, 40, 46]. In this market, users provide feedback on
recommended items, and the system refines the recommendations
to better reflect their preferences. However, these recommender
systems can perform poorly for users from certain demographic
groups even while delivering high-quality recommendations on
average [5, 37]. For example, a job recommender system might rec-
ommend more irrelevant job opportunities to female engineers in
STEM (Science, Technology, Engineering, and Mathematics), which
can significantly impact their career growth [14, 19]. Thus, it is
important to alleviate the performance disparity between different
user groups in recommender systems [20].

Although there is a parallel line of research on item-side fair-
ness, those methods do not apply to user-side fairness due to the
fundamental distinction between user- and item-side fairness. In
essence, user-side fairness is concerned with ensuring equitable
recommendation quality for different users, while item-side fairness
focuses on providing equal exposure opportunities for items within
recommendations, often addressing the so-called popularity bias
of items through debiasing techniques. For example, several works
for item-side fairness [33, 34, 44, 45] calibrates predicted ratings
with item popularity, which does not apply to user-side fairness.

Furthermore, due to the evolving nature of user-item interactions,
real-world recommender systems continually adapt to new data

https://github.com/hsyoo32/fade
https://doi.org/10.1145/3589334.3645536
https://doi.org/10.1145/3589334.3645536
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589334.3645536&domain=pdf&date_stamp=2024-05-13

WWW ’24, May 13-17, 2024, Singapore, Singapore.

—A— PRETRAIN —l— FINETUNE —@— FADE

N 1072
S 085 1 53

g 080 - & 2

= j=%

g 075 — 51
Lo, o 0

0 1 2 3 4 5 6
Time period

Time period

(a) Recommendation performance over time (b) Performance disparity between user groups

Figure 1: Even though incremental fine-tuning with new data
(red curve) upholds recommendation performance compared
to pretrain (black curve), the disparity gradually expands
over time without fairness regularization. (See §4 for detail.)

over time to improve recommendation quality [17, 42]. However,
as shown in Fig. 1, neglecting fairness during dynamic adaptation
leads to performance disparity between user groups persisting
or even expanding over time. This highlights the importance of
maintaining user-side fairness in dynamic recommendation.

Despite its critical importance, to the best of our knowledge,
user-side fairness [10, 20] has not been explored in the context of
dynamic recommendation, which is in stark contrast to the exten-
sive research effort on item-side fairness in dynamic recommenda-
tion [11, 26, 44]. As item-side methods are inapplicable to user-side
fairness, a thorough study of user-side fairness in dynamic recom-
mendation will substantially expand the frontiers of fair dynamic
recommendation and establish a prospective foundation for future
research on two-sided fairness [7, 41] in dynamic recommendation.

This paper presents the first principled study of user-side fairness
in dynamic/continual recommender systems. We identify and ad-
dress the following challenges: (C1) Distribution shifts. Constant
emergence of new users/items and evolving user preferences lead
to distribution shifts. Distribution shifts not only affects recommen-
dation performance but also worsens performance disparity among
user groups over time. (C2) Frequent model updates. Due to dis-
tribution shifts in dynamic recommendation, recommender systems
need frequent updates to cater to current user preferences. This
imposes efficiency requirements on the model updating method.
However, existing postprocessing methods involve time-intensive
re-ranking [10, 20], which are inefficient for frequent model updates.
(C3) Non-differentiability of ranking metrics. The sorting op-
eration in ranking metrics is non-differentiable. This raises a critical
challenge in end-to-end training because we cannot directly use the
non-differentiable performance disparity as the fairness loss. Even
if one resorts to postprocessing methods like re-ranking [10, 20]
which does not involve end-to-end training, they critically suffer
from the existing performance disparity in candidate item lists.

To address the challenges, we propose FAir Dynamic rEcommender
(FADE), an end-to-end framework employing an incremental fine-
tuning strategy to dynamically alleviate performance disparity be-
tween user groups. Specifically, our key contributions are:

e Problem. We observe that the user-side performance disparity
tends to persist or worsen over time, despite improvements in rec-
ommendation performance. To our knowledge, we are the first to
study user-side fairness in dynamic/continual recommendation.

e Theory. To ground the design of our method, we theoretically
analyze fine-tuning v.s. retraining in terms of generalization er-
ror (recommendation & fairness) under distribution shifts. Our

3668

Hyunsik Yoo et al.

Theorems 3.1 & 3.2 show that the best practice is incremental
fine-tuning with restart.

e Algorithm. Based on theoretical analyses, we propose FADE, a
novel dynamic recommender based on incremental fine-tuning
that balances both recommendation quality and user-side fairness.
To overcome the non-differentiability of recommendation metrics
in the fairness loss, we further introduce Differentiable Hit (DH)
as an improvement over the recent NeuraINDCG method [28],
not only alleviating its gradient vanishing but also achieving
higher efficiency. Besides that, we also address the instability of
the fairness loss by leveraging the competing nature between the
recommendation loss and the fairness loss (Proposition 3.3).

e Experiments. Empirical experiments on real-world datasets
demonstrate that FADE effectively reduces performance disparity
(average decrease of 48.91%) without significantly compromising
overall performance over time (average drop of 2.44%).

2 PROBLEM DEFINITION

In this section, we first present the key notations in the paper. Then
we provide preliminaries on the settings of dynamic recommenda-
tion and user-side fairness. Finally, we formally define the problem
of user-side fairness in dynamic recommender systems.
Notations. Table 1 provides a list of our symbols. We use D; =
{U;, I}, &4, Y+ } to denote the dataset collected at time period t Vi €
{1,...,T}, 2 where the subscript ; indicates the time period ¢, U;
is the user set, 7; is the item set, &; is the user-item interaction
set, and Y; is the user-item interaction matrix. We consider binary
user-item interaction in this work, i.e., Y;[u, i] = 1 if user u has
interacted with item i within the ¢-th time period, and 0 otherwise.
The initial user set, item set, user-item interaction set, and the user-
item interaction matrix before the first time period (i.e., pretrain
data) is denoted as Uy, Ly, Eop, and Yy, respectively. Lastly, we
denote the subscript .; as time period from the beginning up to t.
Dynamic/online recommendation. We assume that an initial rec-
ommendation model has been pre-trained with Dy = {Uy, Lo, Eo, Yo}
in an offline manner, and then the model is trained solely with
the newly collected data D; at the current time period ¢, Vt €
{1,...,T}. Once the model has been trained/fine-tuned on Dy, a
top-K recommendation list [iy, ..., ig] for each user u, ranked by
the predicted scores ?t [u, i], Vi, is generated.

User-side fairness. Given a binary sensitive attribute a € {0, 1}
(e.g., gender), we focus on ensuring user-side group fairness, i.e.,
mitigate the recommendation performance disparity between the
advantaged user group (a = 0) and the disadvantaged user group
(a = 1) [20]. More specifically, the user-side performance disparity

at any time period ¢ is defined as follows.
DEFINITION 1 (User-side performance disparity [20]). For a time

period t with ground-truth test interaction set DI** and for a recom-
mendation metric Perf(-) (such as NDCG@K or F1@K), the user-
side performance disparity is defined by

PD; := Perf (D™ | a = 0) — Perf (DI | a = 1). (1)
Problem definition. We formally define our problem as follows:

ProBLEM 1 (User-side fairness in dynamic recommender sys-
tems). Input: (1) a pre-trained recommendation model with parame-
ters Wo; (2) a continually collected dataset Dy = {U;, I, E4, Y}, Vi €

2Depending on the system, the time period could be either a specific time frame
(e.g., daily or weekly) or until a specific number of interactions has been collected.

Ensuring User-side Fairness in Dynamic Recommender Systems

{1,...,T}; (3) a binary sensitive attribute a € {0,1}; (4) a specific
performance evaluation metric Perf(-) to calculate PD; (see Eq. (1)).

Output: For any time period t, a fairness-regularized model with
the parameters ‘W; that (1) optimizes the PD; to be close to zero and
(2) achieves high-quality recommendations.

3 FADE: A FAIR DYNAMIC RECOMMENDER

In this section, we present FADE, a novel fair dynamic recommender
system designed to effectively and efficiently reduce performance
disparity over time. We begin with theoretical analyses on fine-
tuning v.s. retraining in the context of dynamic fair recommenda-
tion in §3.1, demonstrating that the best practice is incremental fine-
tuning with restart. Then in §3.2, we introduce our incremental fine-
tuning strategy that balances both recommendation performance
and user-side fairness. To address the non-differentiability chal-
lenge, we improve NeuraNDCG [28] and develop Differentiable Hit
(DH), an efficient approximation scheme of the non-differentiable
ranking metric, in §3.3. Building upon DH, we propose a differen-
tiable and lightweight loss function for user-side fairness in §3.4.
Our method is presented in Algorithm 1.

3.1 Fine-Tuning v.s. Retraining

Common practice for evolving data involves incremental fine-tuning
and retraining. To obtain a deeper understanding of their behaviors
in fair dynamic recommendation to guide the design of our method,
we theoretically analyze their generalization error (recommenda-
tion & fairness) under distribution shift. Suppose that the model is
currently trained with Dy U - - U Dy, 1 and is to be tested on Dy, .
For each time period t, let m; := |E;| denote the size of dataset Dy,
let £D: (‘W) denote the empirical loss (recommendation + fair-
ness (e.g., Eq. (7)) over dataset Dy, let L; (W) :=Ep, [L D (W)]
denote the true generalization loss, and let £} := infqy L£; (‘W)
denote the optimal loss value. To obtain concrete yet non-trivial
theoretical results, we let my = - - - = my,—1 < mg and make mild
and realistic assumptions for theoretical analysis (see §A.1).

Next, we introduce our theoretical measure of distribution shift.
There are two sources of distribution shift over time: covariate shift
and concept drift. In dynamic recommendation, covariate shift corre-
sponds to shift of user/item attribute distributions (i.e., the distribu-
tion of (U;, I;, E;)), and concept drift corresponds to evolution of
user preferences (i.e., the conditional distribution Y;|(Uy, I3, Er)).

Regarding covariate shift, a classic measure is the discrepancy
distance [24] (a generalized HAH distance [3]):

dite”"= sup JLL(W) = LW =1 Lo (W) = Lo (W] @)

tote
The intuition is that if there is no covariate shift between t and tie,
then for any two models ‘W, ‘W, their difference of £ should not

differ between t and te, leading to dﬂAH = 0. Regarding concept
drift, we use a classic measure called combmed error [3]:

deomb.— mf(Lz (W) + Lo, (W) = L; - L} .

tote

®)

The intuition is that if there is no concept drift between t and t,
then £; and Ly, can achieve their minimum values with the same
model W, leading to d“’mb = 0. Together, we define a unified
measure of distribution shlft as follows by combining the measures

3669

WWW ’24, May 13-17, 2024, Singapore, Singapore.

Table 1: Main symbols used in this paper.

Symbol Description
Dy Dataset collected at time period ¢
Uy, I;, E; | Sets of users, items, and their interactions at time period ¢
Y: User-item interaction matrix at time period ¢
Y: User-item predicted score matrix at time period ¢
Wy Set of model parameters at time period ¢
a Binary sensitive attribute of a user
Lrec, Lair | Recommendation loss and fairness loss, respectively
Cu, N Set of candidate items for a user u and its size
Su Unsorted list of recommendation scores of items in Cy,
Iy List of items in C,, ranked by their scores in s,
P, Fu Permutation matrix and relaxed permutation matrix for s,
A Scaling parameter for L,;,
T Temperature parameter for ’ﬁsu
u The number of negative items in C,,
n The number of negative items for Lec

of covariate shift and concept drift:

dfiet v di. @

Building upon the measure of distribution shift, we theoretically
analyze the generalization error (recommendation performance &
user-side fairness) of fine-tuning and retraining in the presence of

distribution shift (Theorems 3.1 & 3.2).

dite =

THEOREM 3.1 (FINE-TUNING). Let Lffe denote the best possible
loss of fine-tuning till Dy, 1. Suppose that the number of fine-tuning
epochs at each time periodt > 1 is decided according to the proximity
assumption [30] with some 0 < y < 1 (see §A.1 for detail). Then with
probability at least 1 — 6,

fe—1 2t1e—2
tre—t-1 yte
(1_)/)(2 Eo yte df-tte +4\/(m +

l—y’te

1—y“te*2)lo 2)
o 2
(1-y2)m; S
Ly <L+ 6

THEOREM 3.2 (RETRAINING) Let Lrt be the best possible loss of
retraining on Do U - - - U Dy, 1. With probablllty at least 1 - 6,

tre—1
2modo ¢, +2 Z mids n.

LiosLi+ ©

Proofs are in §A.2. Theorems 3.1 & 3.2 point out two sources of
generalization error: (i) distribution shift in terms of d; z, and (ii)
learning error due to the finite dataset size m;. Regarding distri-
bution shift, since larger time differences typically result in larger
distribution shifts, we have do s, > di4, > -+ > dy.—1,4. Fine-

m0+(tte_1)m1 mn+(tl -1)m log S

tuning can exponentially shrink (via the y%~?~! factor) the in-
fluence of distribution shift while retraining suffers from greater
influence of distribution shift. This is consistent with our intuition
since retraining treats old and new data equally while fine-tuning
pays more attention to newer data. This suggests that we should
use fine-tuning to mitigate the impact of distribution shift. Mean-
(1-y)*
(1=y*)m
because m; < myg. This

while, when t is large, fine-tuning’s learning error will

be greater than retraining’s m
suggests that the performance of dynamically fine-tuned model will
eventually degrade after a number of periods, which is consistent

with our empirical observation (refer to Fig.10 in §B.3).

WWW ’24, May 13-17, 2024, Singapore, Singapore.

Therefore, to leverage the benefits of fine-tuning without sacri-
ficing performance, it is advisable to fine-tune the model for certain
periods T until performance degradation is observed, then retrain
the model from scratch and resume the fine-tuning process.

3.2 Incremental Fine-Tuning Strategy

Building upon our theoretical analysis on (C1) distribution shifts
and for the sake of (C2) time-efficiency, FADE fine-tunes the
model parameters incrementally over time only with the new data
Dy collected at t. We optimize the following loss functions:

L% = L

fair’)
where Lyec is for improving the recommendation performance,
Lg,ir is for regularizing the performance disparity between the dis-
advantaged and advantaged groups, and A is the scaling parameter
for controlling the trade-off between the recommendation perfor-
mance and the fairness. In this paper, we use the classic Bayesian

personalized ranking (BPR) loss [31] as Lyec, i.e.,
1
> 10g(0(sui = suir)),

1&4] i’ € Nui

1
®
(wheg, Nl
where o(-) is the sigmoid function, and Ny; is a set of sampled
negative items for u. Note that this loss can be replaced with any
differentiable recommendation loss that can be optimized by gradi-
ent descent. We will define Lg,;, in §3.4.

By jointly optimizing Lrec and Lg,;, in an end-to-end fashion to
fine-tune the model parameters for each time period, we can dy-
namically and efficiently reduce the performance disparity, which
may otherwise worsen as the optimization continues, while simul-
taneously accurately preserving the user preferences over time.

3.3 Differentiable Hit

Most evaluation metrics for top-K recommendations, such asNDCG@K,

are not differentiable due to their reliance on the ranking/sorting op-
eration of items. As discussed in §1, this (C3) non-differentiability
presents a challenge when optimizing fairness measures, specif-
ically performance disparity, using gradient descent algorithms.
To overcome this challenge, several soft ranking losses have been
proposed to directly optimize relaxed ranking metrics [4, 28, 29].
NeuralNDCG [28] is a recent work on differentiable approximation
of ranking metrics. However, due to the use of the Sinkhorn algo-
rithm, NeuraNDCG may lead to the gradient vanishing issue and
also poses (C2) time-inefficiency. To address these limitations, we
propose Differentiable Hit, a function that is not only effective but
also more lightweight than existing methods, making it well-suited
for dynamic recommendation.

First, let us define a standard Hit function. Suppose a score vector
su = [Su1sSu2s - - -»suN]" for a user u represents the “unsorted” list
of recommendation scores (i.e., sy; = Y¢[u, i]) of N candidate items
in a set C, (with |Cy| = N), a vector r,, represents the “sorted” list
of items ranked in the descending order by their scores in s, and
ry, [k] represents the k-th ranked item.

With the above definitions, we can define the Hit function,
Hit(Cy; k) for k € {1,...,K}, which indicates whether the k-th
ranked item ry, [k] is u’s ground-truth item, as follows:

1 if Ye[u rulk]

. I=1 ©)
0 Y, [ury[k]] = 0.

Hit(Cy: k) = {

3670

Hyunsik Yoo et al.

Here, the sorting operation used to produce the ry,, which can also
be represented as a permutation matrix, renders the Hit, (k) non-
differentiable. However, we can overcome this limitation by using
the continuous relaxation for permutation matrices to approximate
the deterministic sorting operation with a differentiable continuous
sorting [12]. First, for the deterministic sorting, the permutation

matrix P, € RN*N is given by [12]:
1 ifj= N+1-2k - Aul],
Pulk,] = { i) = argmaxl(SumAtl)
0 otherwise,

where 1 is the column vector of all ones and A, is the absolute
distance matrix of s, with Ay [k, j] = |s,x — suj|. For instance, if
we set k = [(N + 1)/2], then the non-zero entry in the k-th row,
Py [k, :], corresponds to the element with the minimum sum of
absolute distances to the other elements, and this corresponds to
the median element, as desired.

Then, the argmax operator is replaced by Gumbel-softmax [15]
to obtain a continuous relaxation of the permutation matrix; the
k-th row of the permutation matrix is relaxed as follows [12]:

Pulk,:] = softmax [((N +1 - 2k)sy — A1) /7], (11

where 7 is the temperature parameter, and P, approaches a permu-
tation matrix (i.e., Eq. (10)) when 7 — 0%. Intuitively, each entry of
P, [k, :] indicates the probability that the corresponding item will
be the k-th ranked item. Since P,, is continuous everywhere and
differentiable almost everywhere w.r.t. the elements of s,,, we can
define a differentiable Hit, as we elaborate below.

Since the k-th row of the permutation matrix Py, [k, :] (i.e., Eq. (10))
is equal to the one-hot vector of the k-th ranked item, we can re-

formulate the Hit function (i.e., Eq. (9)) as follows:
Hit(Cyu; k) = Pulk,:] - Ye[u,:]", (12)

where Y;[u,i] = 1 if the item i is a ground-truth item, and 0 other-

wise. Finally, by replacing Py, [k, :] (Eq. (10)) with Py, [k, :] (Eq. (11)),

we define a Differentiable Hit (DH) as follows:
DH(Cyus; k) = Py[k,:] - Yi[u "

Using DH as a building block, we can differentiably approximate
various top-K recommendation metrics. For example,

(13)

K

1 1 DH(Cu,k)
NDCG@K = —— s 14
@ [U | Z maxDCG(Cy,) Z log, (k +1) (14)
uely k=1
K DH(Cusk)

where maxDCG(Cy) is the maximum possible value of 37, Tog, (k1) *
- 2

computed by decreasingly ordering i € C, by Y;[u, i].
3.4 Fairness Loss

We design our fairness loss for reducing performance disparity
between the advantaged (a = 0) and disadvantaged (a = 1) user
groups. For the sake of training efficiency, we compose each candi-
date set with only 1 positive item and several negative items and
use differentiable Hit@1 in our fairness loss. Formally, for each
(u, 1) € &, we sample 1 negative items N, ;, compose a candidate
set Cy; := {i} UN, and use DH(Cy;; 1) as a surrogate of the mea-
sure of recommendation quality for a user. While this differentiable
Hit@1 used for training encourages the top-1 recommendation, it
could also potentially benefit Hit@K-based metrics. We will empir-
ically demonstrate that these settings consistently yield effective

Ensuring User-side Fairness in Dynamic Recommender Systems

Algorithm 1 Fine-tuning procedure at time period ¢

1: Input: Model parameters W;_1, scaling parameter A, tem-
perature parameter 7, the number of negative items n for
Lrec and p for Lg,;,, sensitive attribute g, incoming dataset
Dy ={Us, It, &1, Y+ }

2: Output: Updated model parameters W;

3: (Wt “— Wt_l;

4: for epoch do

5: for mini-batch 8 obtained from &; do

6: for user-item interaction (u,i) € B do

7: Sample n negative items as Ny;;

8: Sample y negative items as Néi; Cui « {i} U N':i;

9: end for

10: Lrec — _|_é;| Z(u,i)eB ﬁ Zi’eNu,log(U(sui = Sui’));
1 DPD Z(u,i)el(?\é?a)j)l;l(cui;l) _ Z(u,i)el(?\éT;}:DlIf‘(Cui;l);
12: Ltair — —log(o(—DPD));

13: Update ‘W; based on Lyec + A Ly, via gradient descent;
14: end for

15: end for

results across various recommendation metrics that rely on the Hit
function. Based on DH, we define the differentiable performance
disparity (DPD) as follows:

woeian Y wpelien Y
DPDD’ - u,i)e{&E¢|a=0 u,i)e{&s|a=1) (15)
{&Etla =0} [{&E¢la =1}

which is an approximation of PD; in Eq. (1) on the sampled item
set. Then, a naive fairness loss function is to minimize |DPD|:

Lﬂt —

fair-abs "

log(o(~|DPD?*)), (16)

where o (+) is the sigmoid function. However, the non-smoothness
of Lgair-abs Will cause instability in training, as shown in our exper-
iment (Fig. 2). To address this limitation, we leverage the property
of the sigmoid function and surprisingly prove that removing the
absolute value operation | - | can still ensure fairness adaptively.
Formally, we propose the following fairness loss:

L2 = ~log(c(- DPD?)).

fair

17)

Then, we have Proposition 3.3.

PROPOSITION 3.3. Let W; == W, — nVay, (ere)é + /L[Zé)i;) denote
a gradient descent step with learning rate > 0. Suppose that Lyec
causes unfairness (i.e., (Vqy, .ere)ct, Vay, DPDP1) < 0), and that the
Di 20). Then, there exists

fair

fairness loss has influence (i.e., Vay, L
A > 0 such that

DPD2/(‘W,) — DPDL(‘W})
]

sgn(DPDP(W,)) - lim_ < 0. (18)
n—+

In particular, if DPDP4(‘W;) <0, then DPDL«(‘W;) > DPDLe(W;)

asn — +0.

Proof is in §A.3. Intuitively, our Lg,;, aims to benefit the dis-
advantaged user group (a = 1) over the advantaged group (a =0).
Meanwhile, whenever DPD < 0, the influence of Lg,;, will be re-
duced adaptively, so the unfair L will push DPD back to zero.

3671

WWW ’24, May 13-17, 2024, Singapore, Singapore.

3.5 Complexity Analysis

Our fairness loss only adds a constant amount of complexity to
most existing recommendation models. Assuming we employ MF-
BPR [31] as the base recommendation model with user/item embed-
dings of dimensionality d, the time complexity of minimizing ere)c’
is O(|&¢|nd), where n represents the number of negative items.
Regarding our fairness loss, for each user interaction, computing
the score vector s, has a time complexity of O(ud), and computing
DH incurs O(p?) time complexity due to computing P, [k, :] (i.e.,
Eq. (11)), which involves computing A,, € R+ X(#+1) Ag 4 result,
the time complexity of minimizing Lﬂ?& becomes O(|E;|(y? + pud)),

which can be approximated as O (|&;|ud) since p < d. Therefore,
D,

the time complexity of minimizing the recommendation loss, L,

and the fairness loss, .[:él)i; , are comparable.

4 EXPERIMENTS

We design experiments to answer the key research questions (RQs):
RQ1.
RQ2.
RQ3.
RQ4.
RQ5.
RQ6.
Note that additional results are in §B.1-B.5 of the Online Appendix.
4.1 Experimental Settings

4.1.1 Dataset. For experiments, we use two real-world recommen-
dation datasets from different domains.

How does learning new data affect model overall behavior?
How effective is the fairness loss and fine-tuning in FADE?
Does FADE outperform its fairness-aware competitors?
How time-efficient is FADE?

How effective/efficient is the Differentiable Hit in FADE?
How sensitive is FADE to its hyperparameters?

e Movielens3: This dataset contains 836, 478 ratings on 3, 628 movies
by 6,039 users at different timestamps. The sensitive attribute
a is determined by the gender of each user, with male users as
a = 0 (adv.) and female users as a = 1 (disadv.). This classification
is based on the observation that the dataset is male-dominated,
consisting of 4, 330 male users with 627, 933 training instances
and 1, 709 female users with 208, 545 training instances [22].
ModCloth* [36]: This e-commerce dataset contains 83, 147 ratings
on 1,014 items (i.e., women’s clothing) by 37, 142 users at different
timestamps. The sensitive attribute a is determined by the body
shape of each user, with "Small" users as a = 0 (adv.) and "Large"
users as a = 1 (disadv.). The dataset is dominated by "Small" users,
comprising 28,374 "Small" users with 66, 663 training instances
and 8,768 "Large" users with 16, 484 training instances.

Following previous works in recommender systems [16, 43], we
binarize the 5-star ratings for both datasets. We set Y[u,i] = 1 if
user u gives item i a rating greater than 2, and Y[u, i] = 0 otherwise.
To simulate dynamic settings defined in §2, we first sort the
interactions in the dataset in chronological order and use 60%/70%
of them as pre-training data, and 28%/21% as dynamically observed
data for Movielenz/ModCloth. We then split the dynamically ob-
served data into 7 periods, each containing an equal number of
interactions. This process yields {Dg, D1, ..., Dr}, where T = 7.

4.1.2 Compared methods. We use two base system including Ma-
trix Factorization (MF) and Neural Collaborative Filtering (NCF),

Shttps://grouplens.org/datasets/movielens/1m/
“https://github.com/MengtingWan/marketBias

https://grouplens.org/datasets/movielens/1m/
https://github.com/MengtingWan/marketBias

WWW ’24, May 13-17, 2024, Singapore, Singapore.

both with the Bayesian Personalized Ranking (BPR) loss [31]. In
this setup, we aim to validate the effectiveness of our fine-tuning
strategy and the fairness loss used in FADE in ensuring high recom-
mendation quality and user-side fairness over time. To establish a
benchmark, we compare FADE with the following six combinations:

e PRETRAIN/PRETRAIN-FAIR: The static model pre-trained on Dy w/o
and w/ the fairness loss, respectively.

RETRAIN/RETRAIN-FAIR: Fully retraining the model using the ac-
cumulated historical data D.; at each time period ¢, w/o and w/
the fairness loss, respectively.

FINETUNE/FADE-ABs: Fine-tuning the model based on the current
Dy at each t, w/o the fairness loss and w/ the (naive) fairness

loss Leair-abs that uses |[DPD| (Eq. (16)), respectively.

In addition, we also compare FADE with the other fairness-aware
competitors. To ensure a fair comparison, we implemented these
methods with a fine-tuning strategy, even though they were origi-
nally not based on fine-tuning. The competitors we consider are:

o ADVER [21]: This method is based on adversarial learning tech-
nique. It is originally designed to filter out sensitive attributes
from user embeddings, but its primary focus is not on reducing
the performance disparity among different user groups.

Re-rank [20]: This method is a fairness-constrained re-ranking
approach. At each time period, a fine-tuned base model generates
recommendation lists, which are used as the basis for generating

new fair recommendation lists using this method.

4.1.3 Evaluation tasks. To evaluate the recommendation perfor-
mance and PD, we design two types of recommendation tasks:

e Task-Remain (Task-R): Given the model trained up until time
period ¢, the model is tested by recommending items for the
remaining time periods with the test set D' = D1 U---UDry.

o Task-Next (Task-N): Given the model trained up until time period
t, the model is tested by recommending items for the right-next
time period with the test set D}eSt = Dit1.

Note that for both tasks, the data at the last time period, Dr, is only
used for testing and not for training purposes. Due to space issue,
we put the full results for Task-N in §B.3 of the Online Appendix.

We use NDCG@20 and F1@20 to evaluate the top-20 recom-
mendation quality. We adopt a similar approach as previous stud-
ies [17, 20], where we randomly sample 100 items that the user has
not interacted with as negative samples. These negative samples,
along with the ground-truth items, are used for evaluation.

4.1.4 Implementation details. For all compared methods, we set n
(the number of negative samples for BPR loss) to 4, the learning
rate to 0.001, and L2 regularization to 0.0001. We use the Adam
optimization algorithm [18] to update model parameters.

For FADE and ReTRAIN-FAIR based on both MF and NCF, we set
7 = 3, p = 4, and the number of dynamic update epochs to 10,
which consistently show excellent trade-off between performance
and disparity across all metrics and datasets. The A is selected within
range [0, 4] for PRETRAIN-FAIR, RETRAIN-FAIR, FADE-ABs, and FADE
in all cases. We use a random seed for better reproducibility. For the
implementation details of RERANK [20]/ADVER [21], refer to §B.1

3672

Hyunsik Yoo et al.

4.2 The Effect of Learning from New Data

For RQ1 and RQ2, we compare the recommendation performance
and performance disparity, both averaged across each dynamic
update data, of the five methods (PRETRAIN, RETRAIN, FINETUNE,
PRETRAIN-FAIR, RETRAIN-FAIR) with FADE. Fig. 2 shows the results
w.r.t. different metrics, base recommender, and datasets.

First, compared to PRETRAIN, RETRAIN and FINETUNE yield an av-
erage increase of 9.01% and 4.61%, respectively, in recommendation
performance in all cases, indicating that the new data is indeed use-
ful for improving recommendation performance of the models over
time. For PRETRAIN-FAIR, RETRAIN-FAIR, and FADE, the similar trend
is observed: an average increase of 4.66% and 4.09%, respectively.
However, in some cases on ModCloth, FADE performs worse than
PRETRAIN-FAIR due to the initial high disparity of PRETRAIN-FAIR.

Regarding performance disparity, the PDs of RETRAIN tend to
exceed those of PRETRAIN, and those of FINETUNE tend to fall below
but still remain significant. This highlights the need to incorporate
fairness considerations when integrating new data.

4.3 Ablation Study of FADE

4.3.1 With and without fairness loss. To answer RQ2, we continue
comparing FADE with aforementioned five methods. First, regard-
ing disparity, Fig. 2 shows that RETRAIN-FAIR and FADE yield sig-
nificantly lower PDs compared to RETRAIN and FINETUNE, in all
cases, with an average reduction of 47.60% and 48.91%, respectively.
The results indicate that our fairness loss indeed helps reduce the
performance disparity at each time period.

Furthermore, we examine how disparities change over time
with FADE and the three methods, RETRAIN, RETRAIN-FAIR, FINE-
TUNE, as shown in Fig. 3. We can see that without the fairness loss
(RETRAIN/FINETUNE), the PDs tend to persist relatively high over
time in all cases. However, when augmented with the fairness loss
(RETRAIN-FAIR/FADE), the PDs tend to remain stably low.

Besides significant reduction of PDs, FADE has merely marginal
sacrifice (2.44% on average) in recommendation performance com-
pared to FINETUNE, and similar results are observed for RETRAIN and
RETRAIN-FAIR, with an average decrease of 0.495%. This relatively
slight decrease in recommendation performance is because FADE
improves the performance of the disadvantaged group while reduc-
ing the performance of the advantaged group, in all cases, with an
average increase of 2.06% and decrease of 3.37%, respectively.
4.3.2 Fine-tuning v.s. Retraining. Fig. 2 shows that FINETUNE con-
sistently outperform RETRAIN w.r.t. both PD (an average decrease
of 14.79%) and recommendation performance (an average increase
of 1.38%) in all cases. FADE outperform RETRAIN-FAIR w.r.t. PD (an
average decrease of 16.47%) while only slightly compromising rec-
ommendation performance (an average decrease of 0.61%). These
results are consistent with our theoretical findings in §3.1, indi-
cating that retraining is more affected by distribution shifts, while
fine-tuning can exponentially shrink this impact. The lack of a clear
advantage for fine-tuned models in recommendation performance
is due to their eventual degradation after multiple periods, which
is shown, for example, in the results for Movielenz in Fig.8 in §B.3.

4.4 Comparison with Fairness Competitors

To answer RQ3, we further compare FADE with the two fairness-
aware competitors, ADVER and RERANK, in Fig. 2. Note that all of

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13-17, 2024, Singapore, Singapore.

¢ ADVER ¢ RERANK PRETRAIN [0 RETRAIN O FINETUNE A PRETRAIN-FAIR B RETRAIN-FAIR © FADE-ABs @ FADE (Ours)

MF MF NCF NCF MF MF NCF NCF
20 1072 1072 20 1072 1072 1072 1072 50 1072 20 1072
. W‘Dkzoi 0 L - T T 207\ - Ly&o* T O 30 \% o 2»87 T @7
_ 15| 4 o| 15| F - 7.0 & ® | 701 :
> 0 e © e ®o 25 - 27 B
= 1.0 &1 1.0 4 1.0 <) - 10| 6.0~ O m I N 6.0 I 26l B
» A 5.0 [A ’ O
05 LI ™ o5l 4 ® fmy ° 20 o sol. wm ps| &]
0.75 0.80 0.85 0.280.300.320.34 0.83 0.84 0.85 0.320.330.3¢ 0.26 0.27 0.28 0.29 0.07 0.08 0.09 0.10 0.26 0.27 0.28 0.07 0.08 0.09 0.10
NDCG@20 F1@20 NDCG@20 F1@20 NDCG@20 F1@20 NDCG@20 F1@20
(a) Movielenz (b) ModCloth

Figure 2: The trade-off between recommendation performance (NDCG@20 & F1@20) and absolute performance disparity |PD|
of eight compared methods and FADE in Task-R. Employing our fairness loss leads to a substantial reduction in |[PD| across all
cases, with a modest impact on overall performance. Note that the optimal point should be situated in the bottom-right corner.

—HF— RETRAIN —&— FINETUNE —l— RETRAIN-FAIR —@— FADE (Ours)

NDCG@20 / MF F1@20 / MF NDCG@20 / NCF F1@20/ NCF
1072 1072
—] 3.0F 7 T T T =1 20 T T T T
— | — L I — 2.0 —
a g 20 a a
21 B 1o | & 10 & 1.0 -
1 ol =2 | 0.0 L =
1 2 3 4 5 6 1 2 3 4 5 6
Time period Time period Time period Time period
(a) Movielenz
NDCG@20 / MF F1@20 / MF NDCG@20 / NCF F1@20/ NCF
.1\072 T T T ‘1\072 T T
_ 1 _ 80 T 30
a a 2 60l |a
=3 =t SRS & 90
] 4.0 Lo Lo
1 2 3 4 5 6 1 2 3 4 5 6
Time period Time period Time period Time period
(b) ModCloth

Figure 3: The trend of the absolute performance disparity (|PD|) in Task-R. Without the fairness loss, the |PD]| is relatively high
and often increase, while with the fairness loss, particularly in FADE, the |PD| tends to remain relatively low.

those methods are implemented based on fine-tuning strategy for Table 2: Efficiency comparison on the running time (seconds).

fair comparison. First, FADE consistently achieves smaller PDs, Data | Models Full-retrain-based Fine-tune-based
averaging 36.53%, and it offers comparable recommendation perfor- Rerran_ ReTRAIN-FAIR | ADver Rerank Finetune FADE
. | MF | 137317 1401.18 5516 13246 257 408
mance on average 1.49% better than Apver. This is because ADVER Movie. | o | 13150 14885 e w054 507 593
is not designed to reduce the performance gap between user groups; Mod. | MF | 15422 163.12 401 25075 079 093
od.
. . . o . s NCF | 18858 242.29 401 34451 115 1.26
instead, its focus is on removing information related to sensitive
Average | 774.39 82377 | 3121 287.06 2.40 3.05

attributes from user representations.

RErANK and FINETUNE yield similar results in many cases, mean-
ing that its re-ranking algorithm struggle to effectively re-rank
the given recommendation lists. This is because the given base
recommendation lists are already too unfair. For example, for dis-
advantaged users, the predicted scores may not accurately reflect
the user’s true interests, resulting in very low predicted scores for
the ground-truth items in the list. This issue is exacerbated when
the given recommendation lists are short, which is a common in
practice. This observation agrees with our intuition that dynamic
adaptation is necessary rather than using post-processing.

approximately 323/270 times faster running time compared to RE-
TRAIN/RETRAIN-FAIR, indicating that the fine-tuning strategy em-
ployed in FADE enables the models to achieve high time efficiency,
making them ideal for dynamic settings. Secondly, RETRAIN-FAIR/FADE
exhibit approximately 1.06/1.27 times slower running time in com-
parison to RETRAIN/FINETUNE. This suggests that the additional
computational cost introduced by our fairness loss is not signif-
icant. Lastly, FADE demonstrates a time efficiency around 10.23
times and 94.11 times faster than ADVER and RERANK, respectively,
highlighting the lightweight design of our fairness loss compared

. . . to the existing fairness-aware losses.
4.5 Time-efficiency Comparison &

To answer RQ4, we compare running time of FADE with the full-
retraining based methods and the other fairness-aware techniques.
The results are in Table 2 and each entry is the average running
time of a model across the dynamic update data at each time period.

We have several observations based on the running time, aver-
aged over base models and datasets. Firstly, FINETUNE/FADE achieve

4.6 Comparison with Soft Ranking Metrics

Due to the space limit, the results for RQ5 are deferred to §B.4. In
essense, they show that FADE outperforms or matches the variant of
FADE adapting NeuraINDCG in both recommendation performance
and disparity, while being approximately four times faster.

3673

WWW ’24, May 13-17, 2024, Singapore, Singapore.

—— Advantaged group —@— Disadvantaged group

S 0.850 0.340
® (.840 S 0335
SN ® 0.330
g 0.830 £ 0325

| | |
0 01030508 101520
A

| | [
0 01030508 101520
A

Figure 4: The effect of the scaling parameter A on the perfor-
mance of the advantaged and disadvantaged groups.

—— Advantaged group —@— Disadvantaged group

(=1 i=3

g 08 g 0.80
o 080 S 0.60
g 075 Q.
Z (I Z 0.40

| | | | | |
0.1 0.5 1.0 2.0 3.0 4.0 5.0
(b) Tau 7

| |
1 5101520253035404550
(a) The number of epochs

Figure 5: Effect of hyperparamters.
4.7 Hyperparameter Analysis

For RQ6, we investigate the sensitivity of FADE to four hyperpa-
rameters: (1) the scaling parameter A, (2) the number of epochs
of dynamic updates, (3) the temperature parameter 7, and (4) the
number of negative items . Due to the space limit, we only show
the results of FADE based on MF on Movielenz for A, the number of
epochs, and 7 in Figs. 4 & 5. Please refer to §B.5 for the full results.
They illustrate the performance of the advantaged and disadvan-
taged user groups for different values of these hyperparameters.

4.7.1 Effect of scaling parameter A for the fairness Loss. Fig. 4 shows
that the performance of the advantaged group tend to decrease
while that of the disadvantaged group tend to increase as A increases.
In other words, the performance disparity between the two user
groups steadily reduces until A reaches an optimal value, which
varies depending on the specific metric used. The results indicate
that A effectively controls the trade-off between recommendation
performance and performance disparity.

4.7.2 Effect of the number of epochs of dynamic updates. Fig. 5-(a)
shows that the performance of both user groups increases as the
number of epochs of dynamic fine-tuning increases until reaching
a peak around epoch 5 or 10. Subsequently, the performance gradu-
ally declines with further increases in the number of epochs. We
suspect that setting the number of epochs too low may result in the
model not learning enough from the current data. Conversely, when
the number of epochs is set too high, the model potentially loses
the knowledge acquired from historical data. We argue that this
phenomenon is well-suited for the dynamic environment, as setting
a low value for the number of epochs results in high efficiency.

4.7.3 Effect of temperature parameter t in the relaxed permutation
matrix. Higher values of 7 result in smoother rows in the relaxed
permutation matrix, f’u [i,:]. Fig 5-(b) shows that the performance
of both user groups increases until 7 = 2, and then stabilizes. These
findings indicate that FADE is not highly sensitive to 7, consis-
tently delivering excellent performance for both user groups as
long as 7 is not too small. When 7 is set too low, the Gumbel-
softmax distribution becomes sharp, resulting in a nearly deter-
ministic decision-making process for the model, i.e., ﬁu [i,:] will be
close to the one-hot vector of the i-th ranked item. As a result, the
entry corresponding to the positive item in that vector is likely to

3674

Hyunsik Yoo et al.

have an extremely small value, from the initial phase of training,
potentially hindering the the fairness regularization.

5 RELATED WORK

Dynamic recommender systems. Instead of fully retraining with
the entire dataset when new data is collected, which can be time-
inefficient, we can fine-tune the model parameters using only the
new data, which is referred to as dynamic/online recommender
systems in the literature. To effectively learn from relatively sparse
new data, several methods have been proposed based on reweight-
ing either (1) the impact of each user-item interaction [13, 32] or
(2) that of each model parameter [9, 23, 42]; [17] utilizes both ap-
proaches. One unique advantage of the fairness loss in FADE is
that it can be easily applied to any existing dynamic recommender
systems optimized using gradient-based algorithms.
Fair recommender systems in dynamic scenarios. Various
fairness demands exist in recommender systems, including user-
side [35], item-side [6], and two-sided fairness [41], as well as fair-
ness on unipartite networks [1]. User-side fairness ensures fair
recommendation quality for different users, while item-side fair-
ness concentrates on equal exposure opportunities for items Two-
sided fairness seeks to balance these two aspects. While the lit-
erature [11, 26, 44] has addressed item-side fairness in dynamic
recommendations, such as the work by [44] that scales predicted
ratings by item popularity with higher strength over time, user-side
fairness in dynamic settings remains unexplored, to our knowledge.
As described in Section 1, existing user-side fairness-aware re-
ranking methods [10, 20] face the difficulties in dynamic settings.
These methods tend to be time-inefficient, involving optimization
problem akin to 0-1 integer programming problem. Furthermore,
their non-differentiable fairness constraint, separating fairness op-
timization from that of recommendation quality, precludes model
parameters from being regularized by fairness constraints. This
hinders adaptation to distribution shifts in dynamic settings.
Another line of research into user-side fairness [2, 38, 39] em-
ploys adversarial functions to generate fair user representations in-
dependent of sensitive user attributes. However, these formulations
do not explicitly address the reduction of performance disparity.

6 CONCLUSION

In this paper, we study the problem of user-side fairness in the dy-
namic recommendation scenario. We point out three key challenges
in this problem: (1) distribution shifts, (2) frequent model updates,
and (3) non-differentiability of ranking metrics. To address these
challenges, we begin with theoretical analyses on fine-tuning v.s.
retraining, showing that the best practice is incremental fine-tuning
with restart. Guided by these insights, we propose FAir Dynamic
rEcommender (FADE), an end-to-end fine-tuning framework that
dynamically ensures user-side fairness over time. It incorporates
our fairness loss equipped with our lightweight Differentiable Hit,
which enhances efficiency over the recent NeuraINDCG method.
Through extensive experiments, we verify that FADE effectively
and efficiently alleviates the performance disparity without signifi-
cantly sacrificing recommendation performance.

ACKNOWLEDGMENT

This work is partially supported by NSF (1947135, 2134079, 1939725),
DHS (17STQAC00001-07-00), and NIFA (2020-67021-32799).

Ensuring User-side Fairness in Dynamic Recommender Systems

REFERENCES

(1]

[2

[

3

=

=

(5]

=
0

[10

[11

[12

[13]

[14]

[15

[16]

[17]

[18

[19]

[20

[21]

[22]

Nil-Jana Akpinar, Cyrus DiCiccio, Preetam Nandy, and Kinjal Basu. 2022. Long-
term Dynamics of Fairness Intervention in Connection Recommender Systems.
In Proceedings of the 2022 AAAI/ACM Conference on Al Ethics, and Society. 22-35.
Ghazaleh Beigi, Ahmadreza Mosallanezhad, Ruocheng Guo, Hamidreza Alvari,
Alexander Nou, and Huan Liu. 2020. Privacy-aware recommendation with private-
attribute protection using adversarial learning. In Proceedings of the 13th Interna-
tional Conference on Web Search and Data Mining. 34-42.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and
Jennifer Wortman Vaughan. 2010. A theory of learning from different domains.
Machine Learning 79 (2010), 151-175.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129-136.

Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan
He. 2020. Bias and debias in recommender system: A survey and future directions.
ACM Transactions on Information Systems (2020).

Xiao Chen, Wengqi Fan, Jingfan Chen, Haochen Liu, Zitao Liu, Zhaoxiang Zhang,
and Qing Li. 2023. Fairly adaptive negative sampling for recommendations. In
Proceedings of the ACM Web Conference 2023. 3723-3733.

Virginie Do, Sam Corbett-Davies, Jamal Atif, and Nicolas Usunier. 2021. Two-
sided fairness in rankings via Lorenz dominance. Advances in Neural Information
Processing Systems 34 (2021), 8596-8608.

Yushun Dong, Jian Kang, Hanghang Tong, and Jundong Li. 2021. Individual
fairness for graph neural networks: A ranking based approach. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
300-310.

Zhengxiao Du, Xiaowei Wang, Hongxia Yang, Jingren Zhou, and Jie Tang. 2019.
Sequential scenario-specific meta learner for online recommendation. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2895-2904.

Zuohui Fu, Yikun Xian, Ruoyuan Gao, Jieyu Zhao, Qiaoying Huang, Yingqiang
Ge, Shuyuan Xu, Shijie Geng, Chirag Shah, Yongfeng Zhang, et al. 2020. Fairness-
aware explainable recommendation over knowledge graphs. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 69-78.

Yinggiang Ge, Shuchang Liu, Ruoyuan Gao, Yikun Xian, Yunqi Li, Xiangyu Zhao,
Changhua Pei, Fei Sun, Junfeng Ge, Wenwu Ou, et al. 2021. Towards long-
term fairness in recommendation. In Proceedings of the 14th ACM international
conference on web search and data mining. 445-453.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. 2019. Stochastic
Optimization of Sorting Networks via Continuous Relaxations. In Proceedings of
the International Conference on Learning Representations.

Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast ma-
trix factorization for online recommendation with implicit feedback. In Proceed-
ings of the 39th International ACM SIGIR conference on Research and Development
in Information Retrieval. 549-558.

Rashidul Islam, Kamrun Naher Keya, Zigian Zeng, Shimei Pan, and James Foulds.
2021. Debiasing career recommendations with neural fair collaborative filtering.
In Proceedings of the Web Conference 2021. 3779-3790.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

Piyush Kansal, Nitish Kumar, Sangam Verma, Karamjit Singh, and Pranav Poudu-
val. 2022. FLiB: Fair Link Prediction in Bipartite Network. In Advances in
Knowledge Discovery and Data Mining: 26th Pacific-Asia Conference, PAKDD
2022, Chengdu, China, May 16-19, 2022, Proceedings, Part II. Springer, 485-498.
Minseok Kim, Hwanjun Song, Yooju Shin, Dongmin Park, Kijung Shin, and Jae-
Gil Lee. 2022. Meta-Learning for Online Update of Recommender Systems. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 4065-4074.
Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Preethi Lahoti, Krishna P Gummadi, and Gerhard Weikum. 2019. ifair: Learning
individually fair data representations for algorithmic decision making. In 2019
ieee 35th international conference on data engineering (icde). IEEE, 1334-1345.
Yunqi Li, Hanxiong Chen, Zuohui Fu, Yinggiang Ge, and Yongfeng Zhang. 2021.
User-oriented fairness in recommendation. In Proceedings of the Web Conference
2021. 624-632.

Yungqi Li, Hanxiong Chen, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. 2021.
Towards personalized fairness based on causal notion. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 1054-1063.

Yanying Li, Xiuling Wang, Yue Ning, and Hui Wang. 2022. Fairlp: Towards fair
link prediction on social network graphs. In Proceedings of the International AAAI

3675

[23

[24

[25

[26

[27

S
&

[29

[30

[31

(32]

&
&

[34

[35

[36

(39]

[40

[41]

[42

"~
&

[44

[45

[46

WWW ’24, May 13-17, 2024, Singapore, Singapore.

Conference on Web and Social Media, Vol. 16. 628—639.
Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. 2017. Meta-sgd: Learning to

learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835 (2017).
Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. 2009. Domain

adaptation: Learning bounds and algorithms. In Proceedings of The 22nd Annual
Conference on Learning Theory.

Andreas Maurer and Massimiliano Pontil. 2021. Concentration inequalities under
sub-Gaussian and sub-exponential conditions. In Advances in Neural Information
Processing Systems, Vol. 34. 7588-7597.

Marco Morik, Ashudeep Singh, Jessica Hong, and Thorsten Joachims. 2020. Con-
trolling fairness and bias in dynamic learning-to-rank. In Proceedings of the 43rd
international ACM SIGIR conference on research and development in information
retrieval. 429-438.

Allan Pinkus. 1999. Approximation theory of the MLP model in neural networks.
Acta Numerica 8 (1999), 143-195.

Przemystaw Pobrotyn and Radostaw Bialobrzeski. 2021. Neuralndcg: Direct
optimisation of a ranking metric via differentiable relaxation of sorting. arXiv
preprint arXiv:2102.07831 (2021).

Tao Qin, Tie-Yan Liu, and Hang Li. 2010. A general approximation framework
for direct optimization of information retrieval measures. Information Retrieval
13 (2010), 375-397.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. 2019.
Meta-learning with implicit gradients. In Advances in Neural Information Process-
ing Systems, Vol. 32.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu
Meng. 2019. Meta-weight-net: Learning an explicit mapping for sample weighting.
Advances in neural information processing systems 32 (2019).

Harald Steck. 2011. Item popularity and recommendation accuracy. In Proceedings
of the fifth ACM conference on Recommender systems. 125-132.

Harald Steck. 2019. Collaborative filtering via high-dimensional regression. arXiv
preprint arXiv:1904.13033 (2019).

Jiakai Tang, Shiqgi Shen, Zhipeng Wang, Zhi Gong, Jingsen Zhang, and Xu Chen.
2023. When Fairness meets Bias: a Debiased Framework for Fairness aware Top-N
Recommendation. In Proceedings of the 17th ACM Conference on Recommender
Systems. 200-210.

Mengting Wan, Jianmo Ni, Rishabh Misra, and Julian McAuley. 2020. Addressing
marketing bias in product recommendations. In Proceedings of the 13th interna-
tional conference on web search and data mining. 618—626.

Yifan Wang, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma. 2023. A survey
on the fairness of recommender systems. ACM Transactions on Information
Systems 41, 3 (2023), 1-43.

Chuhan Wu, Fangzhao Wu, Xiting Wang, Yongfeng Huang, and Xing Xie. 2021.
Fairness-aware news recommendation with decomposed adversarial learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 4462-4469.
Le Wu, Lei Chen, Pengyang Shao, Richang Hong, Xiting Wang, and Meng Wang.
2021. Learning fair representations for recommendation: A graph-based perspec-
tive. In Proceedings of the Web Conference 2021. 2198-2208.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural
networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1-37.
Yao Wu, Jian Cao, Guandong Xu, and Yudong Tan. 2021. TFROM: A two-sided
fairness-aware recommendation model for both customers and providers. In
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 1013-1022.

Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan Li, and
Yongdong Zhang. 2020. How to retrain recommender system? A sequential meta-
learning method. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 1479-1488.

Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin. 2021.
Disentangling user interest and conformity for recommendation with causal
embedding. In Proceedings of the Web Conference 2021. 2980-2991.

Ziwei Zhu, Yun He, Xing Zhao, and James Caverlee. 2021. Popularity bias in
dynamic recommendation. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining. 2439-2449.

Ziwei Zhu, Yun He, Xing Zhao, Yin Zhang, Jianling Wang, and James Caverlee.
2021. Popularity-opportunity bias in collaborative filtering. In Proceedings of the
14th ACM International Conference on Web Search and Data Mining. 85-93.
Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin.
2019. Reinforcement learning to optimize long-term user engagement in recom-
mender systems. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2810-2818.

WWW ’24, May 13-17, 2024, Singapore, Singapore.

A THEORETICAL ANALYSES

A.1 Assumptions

In this subsection, we introduce our theoretical assumptions, which
are quite mild and realistic.

To ensure that the dataset has a good coverage of the underlying
distribution, a common assumption in literature is independence:

AssuMPTION 1 (DATA INDEPENDENCE). For every t, the data
tuples in Dy are mutually independent.

Regarding the loss function, a well-behaved loss function should
be able to be minimized. Common loss functions satisfy this prop-
erty. This leads us to the following Assumption 2:

ASSUMPTION 2 (EXISTENCE OF INFIMA). For everyt, the infimum
L} = infqy L (W) exists.

Note that we do not assume realizability, i.e., we do not assume
that there exists W that can achieve this infimum. Our Assump-
tion 2 is realistic in machine learning. For example, neural networks
can arbitrarily approximate any continuous function over any com-
pact domain [27], but they may not be exactly equal that function.

Besides that, since data tuples are mutually independent, each
data tuple in the dataset should not have dominant influence on the
overall loss function, which means that the loss function should
use the whole dataset. This leads us to the following Assumption 3:

AssUMPTION 3 (NO DOMINANT INFLUENCE). For everyt, for each
data tuple z € Dy, the loss LP:(W) conditioned on D; \ {z} is
2

s . . : _
m—t—subgaussmn. Without loss of generality, we can assume ¢ = 1 by

rescaling L.

The subgaussian property is a common assumption in machine
learning [25], and common loss functions satisfy our Assumption 3.
Since there exist various definitions of the subgaussian property
(yet equivalent up to constant factors), we clarify our definition as
follows:

DEFINITION 1 (SUBGAUSSIAN PROPERTY). For ¢ > 0, a real-
valued random variable X is said to be ¢?-subgaussian if

E[e?XEIXD] < e5°9"/2 vy e R.

(19)
The equality holds for univariate Gaussians with variance ¢2.
Finally, we state our assumption on fine-tuning and retraining.

For each t > 1, let Wtft denote the model parameters fine-tuned

till D;. To characterize the fact that thefine-tuned ‘Wtft does not

completely forget the previously learned knowledge in W, tft_l we
assume that all time periods share the same parameter space and

use the following classic Assumption 4 (adapted from [30]):

AsSUMPTION 4 (PROXIMAL FINE-TUNING). Thereis0 <y < 1
such that for each t > 1, the number of fine-tuning epochs is decided
such that the fine-tuned ‘M/tft is minimizing

4(W) = LOU(W) +yl-r (W), (20)
where £y (‘W) := Lo (‘W) denotes the pretraining loss function.

3676

Hyunsik Yoo et al.

For retraining, we assume that the influence of each time period
t to the retraining loss is a proportional to the size m; of D;:

ASSUMPTION 5 (RETRAINING LOSS).
Sy mLO (W)
te—1 :
parian
Although this is a simplification of the retraining loss in practice,
it still captures the essential properties of retraining.

Lrt

tie

(W) = (21)

mg

A.2 Proofs of Theorems 3.1 & 3.2
Our proofs of Theorems 3.1 & 3.2 rely on the following Lemma A.1.

LemmA A.l. Fora € R;‘eo with Z:‘:e(;l ar =1 and fore > 0, let

"Wt‘:{’_e1 denote some model parameters such that
€

te—1 te—1
W Li(WEE) <e+inf > ar LPY(W). (22)
; tte 1 rW [Z:(])

Then with probability at least 1 — 6,

te—1
a,e *
‘Ctte((wtte—l) < 'Ette +e+2 Z atdt,tte +4
t=0

Proor oF LEMMA A.1. Generalized from [3]. For k > 1, let

W e L7 ((—o0 L7+ 1]), (23)
W, € (Lo + L) ((~o0, L] + L +dS™ + 1]). (29)
Then for any ‘W, by the triangle inequality,

|(Le(W) = L)) = (Lo (W) - L) (25)
= [|Le(W) = L] = | Lo (W) - L}, | (26)
= (1L (W) = LW = 1 LT (W) = Lo (W)

+ (ILe(W) = Li| = |Le(W) = Le(WE)I) (27)

(1Lt (W) = L} | = | Lt (W) = Lo (WE)]
< |ILe(W) = Le(WE) = 1L (W) = Lo (W]

+[| Lo (W) = L] = | Le(W) = Lo(WE| (28)

1L (W) = L5 = | Lo (W) = Lo (WE|
< dfAH 4 [(Lo(W) = L) = (Lo(W) = Lo(WE)|

+ (L (W) = L5) = (Lo (W) = L (WED] (29)
=AM | Li(WE) - L1+ 1 Lo (WE D - Li | (30)
= Al Ly (W) - L+ Lo (W) - L 6
< d]MH 4 qgomb 4 % (32)
—dpy + % (33)

Ensuring User-side Fairness in Dynamic Recommender Systems

Thus,
te—1
ar(Le(W) = L]) = (Ly (W) - L3) (34)
t=0
te—1 te—1
=| > @ LeW) = L) = Y (Lo (W)= L) (39
t=0 t=0
te—1
= ar(Le(W) = L) = (Ly (W) = L) (36)
=0
te—1
< Z a|(Le(W) = L) = (Ly (W) = L;) (37)
t=0
te—1)
< Z a[(dt’tte + E) (38)
t=0
te—1 1
= atdt,tte + E (39)
t=0
Besides that, by Theorem 3 in [25] and Assumption 3,
tte_l tte_l
P{ DT LPW) = Y arLi(W) +e} (40)
t=0 =0
e? €
< exp (— — 2) = exp (——Z) (41)
42;:0 mt(atmit) 45.2 Z?:al f’i_,t
Then for ¢ = 1, with probability at least 1 — §/2,
ttefl ttefl ttefl az 2
D, t
D@ LP(W) < Y Li(W) + 2\ > logs @)
t=0 t=0 t=0
Similarly, with probability at least 1 — §/2,
te—1 te—1 te—1 a2 2
D@L W) < Y e LP (W) +2 —tlogg. (43)
t=0 t=0 \ t=0 m

3677

WWW ’24, May 13-17, 2024, Singapore, Singapore.

Together, with probability at least 1 — 6,

Lt (W5 (44)
= L?te + Ltte ((Wtf:’—el) - LZ& (45)
fe—1 te—1 .
* o€ *
< Lj+ D alLWEE) — LD+) ardrn + ¢ (46)
t=0 t=0
ttefl ttefl
S L+ D a(LP(WE) - LD+). adps,
t=0 t=0
te—1 2
1 22
+—-+2 — log — 47
P D o logs (47)
=0
te—1 T-1
<Ly ver D a(LP(WE) - L)+ > ardrs,
=0 t=0
te—1 2
1 al 2
+ - +2 — log - 43
P D o loe (48)
=0
ttefl ttefl
< ‘Ct*te +e+ Z at(-ﬁt(("Vt]fe) - L?) + Z ardy .
t=0 t=0
te—1 2
1 a2
+—-+4 — log - 49
FH 2 o ogs (49)
=0
te—1 9 te—1 6(2 2
* k * t
< Ltte + €+ Ltte ((thc) - Lt +2 ; txtd[’tte + E +4 ; m—t lOg E
(50)
fe—1 5
<L +e+2 ; ardpg + 7 +4 (51)
It follows from the continuity of probability that
te—1 te—1 0{2 2
R * t
P{Ltte (WEE) > Ly +e+2) ardrg, +44 D - log(—s}
t=0 t=0
(52)
0 te—1
= P[U {Ltte ((Wt::’_el) > L?te +e+2 Z atdt,tte
k=1 t=0
te—1 2 2
+> 44 —L log = 53
2 " log 5}] (53)
te—1
= klg)l’;o P{L[te ((W;:fl) > L;fkte +e+2 ZO a,dt,tte
t=
te—1 2
3 2 9
+-+4 — log — 54
P 2w e 5} (54)
=0
< lim §=34. o
k—o0
CoROLLARY A.2. Under the setup of Lemma A.1, let
o ._ a,e
Ly = égf(‘) Ly, (the—l) (55)

ecQ
denote the best possible loss w.r.t. a. With probability at least 1 — 6,

te—1 te—1 2

. 2
L;tle < ‘LZE +2 Z atdt,tte +4 Z -+ lOg S

m
=0 =0 't

(56)

WWW °24, May 13-17, 2024, Singapore, Singapore.

ProoOF oF COROLLARY A.2. By the continuity of probability,

te—1 te—1 2
a 2
P{Lg’e > Ly +2 Z ardy +4 Z m—t log 5} (57)
=0 =0 "t
) 1 te—1 te—1 0(2 2
_ [0 4 * t
- P[U {Lne > L 4o t2 D ardpg +4y - log(—s}]
k=1 t=0 t=0
(58)
te— te—1 2
. 1 ay 2
= khjgoP{Ltt Ltt +—+2 Z octd”te+4 Z m—tlog S}
=0 =0
(59
te—1
< lim SupP{.l:tte(te —1) Ltte +2 Z ardep,
k—o0
te—1 2
af 2
+4 — log — 60
2w loe 5} (60)
=0
< limsupd =4. O
k—oo
Now we give the proofs of Theorems 3.1 & 3.2.
Proor oF THEOREM 3.1. By Assumption 4,
te—1
the-1 (W) = LOH (W) 4yl 2(W) = Yy 7LD (W),
=0
(61)
Thus, normalizing the coefficients gives
1= y)yhe—t-1
alt = A=y (62)
1-—- ytte
It follows from Corollary A.2 that
ft
Ltle Lt{txe (63)
fe—1
<L o+2) afd +4 (64)
=0
to—t—1 yPe=2 1—y?te 2 2
. (l—y)(ZtZ Y dttte+4\/(me T (1—y2)m1)10g5
=L+ e £l
PRrooF oF THEOREM 3.2. By Assumption 5, we have
m mg
agt - to—1 = . (65)
Sy my Mot (tte = 1)m
It follows from Corollary A.2 that
rt
L =Ly (66)
fe—1 te—1 (a t)z 2
* rt t
<Ly +2 Z aydy g, +4 Z - log 5 (67)
=0 =0
te—1
2modo,z,, +2 Z midy s, 1
= L* + 4\/ lo g [m]
fe T g + (he - 1)m1 mo+ (e - Dmy 50

3678

Hyunsik Yoo et al.

A.3 Proof of Proposition 3.3

PROOF OF PROPOSITION 3.3. Note that
0 (Wr) = Vay, (~ log(a(— DPDP* (W)))))
= o(DPDP* (W}))Vqy, DPDPt (‘W)).

(68)

falr

(69)

Since V(Wt.CDt

fair

(‘Wr) # 0, then Vo, DPDP: (‘W;) # 0. Consider
2o 2w Ll fet (W), Vay, DPD: (W)

>0. (70
[V, DPDP: (‘W3) |12
By the chain rule,
Dy (AN _ Dy,
i DPD2(Wr) — DPDOA(W,) o
n—+0 n
= ~(Vay, Lot (Wr) + AV ay, L (Wy), Vay, DPDP: (W}))
(72)
= (1= 20(DPD?* (‘W;))) (~(Vay, Lict (W;), Vay, DPDP* (W,))).
(73)
The conclusion follows from the fact that
sgn(x)(1—20(x)) <0, Vx e R. (74)
]

B EXPERIMENTS

e Online Appendix: https://sites.google.com/view/fade-www24/home.

o GitHub repository: https://github.com/hsyoo32/fade
o Official code DOI: https://doi.org/10.5281/zenodo.10669096.

B.1 Implementation Details of Competitors

Due to space constraints, the content for §B.1 is available in the
Online Appendix: https://sites.google.com/view/fade-www24/b-1.

B.2 Software and Hardware Configuration.

Due to space constraints, the content for §B.2 is available in the
Online Appendix: https://sites.google.com/view/fade-www24/b-2.

B.3 Additional Effectiveness Results

Due to space constraints, the content for §B.3 is available in the
Online Appendix: https://sites.google.com/view/fade-www24/b-3.

B.4 Comparison of Soft Ranking Methods

Due to space constraints, the content for §B.4 is available in the
Online Appendix: https://sites.google.com/view/fade-www24/b-4.

B.5 Hyperparameter Analysis

Due to space constraints, the content for §B.5 is available in the
Online Appendix: https://sites.google.com/view/fade-www24/b-5.

https://sites.google.com/view/fade-www24/home
https://github.com/hsyoo32/fade
https://doi.org/10.5281/zenodo.10669096
https://sites.google.com/view/fade-www24/b-1
https://sites.google.com/view/fade-www24/b-2
https://sites.google.com/view/fade-www24/b-3
https://sites.google.com/view/fade-www24/b-4
https://sites.google.com/view/fade-www24/b-5

	Abstract
	1 Introduction
	2 Problem Definition
	3 FADE: A Fair Dynamic Recommender
	3.1 Fine-Tuning v.s. Retraining
	3.2 Incremental Fine-Tuning Strategy
	3.3 Differentiable Hit
	3.4 Fairness Loss
	3.5 Complexity Analysis

	4 Experiments
	4.1 Experimental Settings
	4.2 The Effect of Learning from New Data
	4.3 Ablation Study of FADE
	4.4 Comparison with Fairness Competitors
	4.5 Time-efficiency Comparison
	4.6 Comparison with Soft Ranking Metrics
	4.7 Hyperparameter Analysis

	5 Related Work
	6 Conclusion
	References
	A Theoretical Analyses
	A.1 Assumptions
	A.2 Proofs of Theorems 3.1 & 3.2
	A.3 Proof of Proposition 3.3

	B Experiments
	B.1 Implementation Details of Competitors
	B.2 Software and Hardware Configuration.
	B.3 Additional Effectiveness Results
	B.4 Comparison of Soft Ranking Methods
	B.5 Hyperparameter Analysis

