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Abstract

The rampant proliferation of large language

models, fluent enough to generate text indistin-

guishable from human-written language, gives

unprecedented importance to the detection of

machine-generated text. This work is moti-

vated by an important research question: How

will the detectors of machine-generated text

perform on outputs of a new generator, that the

detectors were not trained on? We begin by

collecting generation data from a wide range of

LLMs, and train neural detectors on data from

each generator and test its performance on held-

out generators. While none of the detectors can

generalize to all generators, we observe a con-

sistent and interesting pattern that the detectors

trained on data from a medium-size LLM can

zero-shot generalize to the larger version. As

a concrete application, we demonstrate that ro-

bust detectors can be built on an ensemble of

training data from medium-sized models.

1 Introduction

Thanks to large-scale pretraining and tuning with

human feedback (Ouyang et al., 2022), large lan-

guage models (LLMs) (Chung et al., 2022; Zhang

et al., 2022; Touvron et al., 2023) are now able

to follow instructions and generate realistic and

consistent texts. A prominent example is the re-

cently developed ChatGPT or GPT4 model (Ope-

nAI, 2023), which when instructed, can write docu-

ments, create executable code, or answer questions

that require world knowledge. In a lot of scenarios,

the machine-generated texts have high quality and

cannot easily be distinguished from genuine human

texts (Dugan et al., 2022; Gehrmann et al., 2019).

These trends give an unprecedented importance

to the detection of machine-generated text (Su et al.,

2023; Jawahar et al., 2020; Pagnoni et al., 2022a).

A lot of work has been devoted to proposing ef-

ficient detection models or algorithms (Mitchell

Code and datasets will be available at https://github.
com/SophiaPx/detectors-generalization.

et al., 2023; Kirchenbauer et al., 2023; Zellers

et al., 2019). However, in most studies, the de-

tector is tested on the same generator model that it

is trained/tuned on.

This study is motivated by an underexplored re-

search question: How will the detector perform on

a different generator that it is not trained on? This

question is important due to multiple reasons: (1)

LLMs are becoming increasingly large and expen-

sive. Some of the most recent models are either

too large to fit into a common GPU (e.g., LLaMA-

65B) or require payment from the user (OpenAI,

2023), making the collection of training samples

difficult. (2) The number of released LLMs is grow-

ing rapidly. In a real application scenario, the detec-

tor needs to cover a wide range of LLMs (including

the ones the detector is not trained on), instead of

only one generator.

In this work, we collect generation data from a

wide range of LLMs. We then train neural detec-

tors on data from each generator and test its perfor-

mance on other generators. Our primary findings

include: (1) In many cases, detectors can zero-shot

generalize to a held-out generator (Figure 1). In

particular, we observe an interesting pattern that

the detector for the medium version of an LLM can

generalize to the larger version. (2) None of the

detectors generalizes to all generators, implying

that an ensemble of detectors/data is necessary for

a wider coverage. (3) As a concrete application, we

demonstrate that robust detectors can be built on

an ensemble of training data from medium-sized

models; Excluding large-versions only leads to a

minor drop in performance.

2 Methodology

We begin by giving an overview of our experiment

structure and establish some notations. This study

includes detection of a range of popular LLMs (de-

tailed in §3), and we construct train/dev/test sets for

each generator. In §4.1, we train neural detectors on
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Figure 1: The generalization ability of detectors when applied to differsent generators, measured by Acc-Gap

(defined in §2). Detectors for a medium-size generator can zero-shot generalize to the larger-version model

(highlighted by dotted green).

data from each generator and test its performance

on other generators. In §4.2, we further consider

an ensemble setting, where the detector is trained

on data composed of multiple generators, and test

its generalization ability on held-out generators.

We denote the detector model trained on data

from generator model M as DM . Since we will

test the accuracy of DM on data from different gen-

erators, we use AccN (DM ) to denote the accuracy

of DM on the test set of generator N . Finally, we

define Acc-GapDM

N
to measure the drop of perfor-

mance when the detector is trained on generator M

instead of N itself:

Acc-GapDM

N
= AccN (DN )− AccN (DM ). (1)

We expect Acc-Gap to be larger than zero in gen-

eral, and a large Acc-Gap means DM has poor

generalization on generator N .

3 Experiment Setup

Generators We include the detection of a total

of 13 popular LMs in our study, including GPT-

1 (Radford et al., 2018), GPT-2 models (small,

medium, large, and xl) (Radford et al., 2019), GPT-

3 (text-davinci-003) (Ouyang et al., 2022), GPT-4

(OpenAI, 2023), three GPT-Neo models (125M,

1.3B and 2.7B) (Black et al., 2021; Gao et al.,

2020), GPT-J (Wang, 2021), and LLaMA (7B and

13B) (Touvron et al., 2023).1

Datasets We consider data from three do-

mains: news, reviews and knowledge. For the news

domain, we utilize the RealNews dataset, which

1There are larger versions of LLaMA, but we find it diffi-
cult to fit it into our GPU.

M N
RealNews IMDBReview

Gap
DM

N
Gap

DN

M
Gap

DM

N
Gap

DN

M

GPT3 GPT4 3.64% 5.46% 1.47% 5.48%
LLa7B LLa13B -1.11% 1.18% -1.50% 1.47%

Neo1.3B Neo2.7B 0.04% 2.16% -2.31% 3.41%
GPT2lg GPT2xl -4.40% 4.94% -0.02% 0.32%

Table 1: Acc-Gap from medium-version to large-version

models based on the ELECTRA detector, as well as in

the opposite direction. The generalization from the

medium-version model to the large-version is better

than the opposite direction.

is a subset of the c4 dataset (Raffel et al., 2019)

named "realnewslike". For the reviews domain,

we utilize the IMDBreview dataset (Maas et al.,

2011). As for the knowledge domain, we utilize

the Wikipedia dataset (Foundation) 2.

For each dataset, we first randomly sample

5000 real-world human-written samples, with a

train/dev/test split ratio of 8:1:1. For all samples,

we truncate the first 20 tokens to serve as prompts

and feed them into different generators for text con-

tinuation, yielding 5000 machine-generated sam-

ples. For generation we apply nucleus sampling

(Holtzman et al., 2020) with p = 0.96, following

the setting in Pagnoni et al. (2022b). We truncate

each sample so that its length is around 120 tokens.

For all training or test sets in this work, we keep

the ratio of human and machine text to be 1:1.

Detectors For data from each generator, we

train a ELECTRA-large model (Clark et al., 2020)

as a binary classifier. The detectors were trained

for 1 epoch with a learning rate of 5e-6 (training

2The Wikipedia dataset we used is directly obtained from
Hugging Face, data subset "20220301.en" (Page link: https:
//huggingface.co/datasets/wikipedia).
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Baseline Pruned (Proposed) Pruned (Comparison)

RealNews Ensemble
Data-mix

-GPT4 -GPT4-GNeo2.7B -GPT3 -L13B

Acc(%) Vote Prob-avg -L13B -L13B-GPT2xl -GPT4 -L7B

Average 81.1 81.1 88.0 88.6 (+0.6) 88.2 (+0.2) 79.5 (-8.5) 91.6 (+3.6)

Worst-case 50.6 50.5 84.5 84.6 (+0.1) 83.6 (-0.9) 42.7 (-41.8) 80.8 (-3.7)

GPT4 50.6 50.5 88.2 84.6 (-3.6) 85.9 (-2.3) 42.7 (-45.5) 93.2 (+5.0)

GPT3 52.9 52.8 87.0 87.2 (+0.2) 87.5 (+0.5) 52.3 (-34.7) 91.4 (+4.4)

L13B 58.8 58.4 84.5 85.0 (+0.5) 83.6 (-0.9) 83.5 (-1.0) 80.8 (-3.7)

L7B 61.6 61.3 86.0 86.1 (+0.1) 86.1 (+0.1) 83.7 (-2.3) 82.6 (-3.4)

IMDBReview Ensemble
Data-mix

-GPT4 -GPT4-GNeo2.7B -GPT3 -L13B

Acc(%) Vote Prob-avg -L13B -L13B-GPT2xl -GPT4 -L7B

Average 85.2 85.1 94.3 93.2 (-1.1) 94.1 (-0.2) 89.0 (-5.3) 93.7 (-0.6)

Worst-case 52.0 51.8 93.7 92.2 (-1.5) 92.7 (-1.0) 62.6 (-31.1) 89.8 (-3.9)

GPT4 52.0 51.8 94.4 93.4 (-1.0) 94.4 (0) 62.8 (-31.6) 94.4 (0)

GPT3 54.1 54.2 93.7 93.1 (-0.6) 93.5 (-0.2) 62.6 (-31.1) 93.7 (0)

L13B 70.2 70.1 94.0 92.2 (-1.8) 92.7 (-1.3) 93.5 (-0.5) 89.8 (-4.2)

L7B 72.1 71.9 94.1 93.0 (-1.1) 93.9 (-0.2) 93.7 (-0.4) 91.7 (-2.4)

Table 2: Accuracy of the baseline detectors and detectors trained on pruned data. “L13B/7B” refers to the LLaMA

13B/7B generator. We highlight the results for the data-mix model becuase it serves as the base for the pruned

models. It is shown that pruning out the large-version LLMs only induce minimal accuracy loss.

for more epochs only gives minimal improvement

on the dev set). For the data-mix baseline and

pruned models in §4.2, 3 epochs of training is used.

We use Adam optimizer (Kingma and Ba, 2014)

with β1 = 0.9, β2 = 0.999. The average accuracy

(when tested on the same generator it is trained

on) of all detectors in news, review and knowledge

domains are 94.1%, 96.2% and 94.9%, separately.

4 Experiment Results

4.1 On Generalization Ability of Detectors

As explained in §2, we compute Acc-Gap to reflect

the generalization ability of detectors trained on

each generator. Figure 1 depicts the Acc-Gap of

each detector/generator pair. We link from node

M to node N if Acc-GapDM

N
< T (good gener-

alization), where the threshold T is set to a small

number from {1%, 2%, 4%}. On the other hand,

in Figure 3 (Appendix B), node M is linked to

node N when Acc-GapDM

N
> 20% (poor gener-

alization). For statistical significance, we utilize

bootstrapping (Koehn, 2004) and generate 100 vir-

tual test sets by sampling with replacement from

the original test set. We then conduct one-sided

t-test and use a p-value of 0.05.

We observe two interesting patterns shared

across the three datasets. First, the detectors for

the medium-version LLMs can generalize to the

large-version models. For example, DLLaMA7B

generalizes to LLaMA13B, and DGPT3 general-

izes to GPT4.3 This is somewhat surprising be-

cause generations from the large-version generator

is commonly considered to have higher quality.

Interestingly, the generalization of the reverse di-

rection is weaker on RealNews and IMDBReview.

As shown in Table 1, when attempting to general-

ize from the large-version models to medium ones

using ELECTRA detectors, the generalization per-

formance is slightly worse, reflected by a larger

Acc-Gap. For the reason behind, we conjecture

that comparing to the larger model, the medium

generator is making a similar but wider range of

artifacts in its generations, leading to a smooth gen-

eralization to the detection of the larger model. We

also experiment with additional base detectors, e.g.

ALBERT Large v2 (Lan et al., 2019) and find that

the key observation—that the detectors trained for

the medium-size models can generalize to larger-

size models—still holds. These results are omitted

for brevity.

Second, Figure 3 (Appendix B) shows that none

of the detectors, on its own, can generalize to all

generators. In particular, GPT3 and GPT4 seem

“isolated” from other families of generators. This

result indicates that if we want an “universal” de-

tector which can cover all generators, an ensemble

of detectors/data is necessary. We explore this di-

rection in the next section.

3Strictly speaking, GPT3 is not a “small version” of GPT4.
But they are from the same company, and our experiments
consistently show they are strongly related.
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4.2 Pruning Out Large-Version LLMs in a

Mixed Training Dataset

We now demonstrate a concrete application of our

findings, and the following realistic threat scenario

is considered: The task is still binary classification

but the machine text is composed of generations

from a range of models (listed in §3). For simplic-

ity, we use a uniform data ratio for the generators.

Following results of the last section, an ensemble

of detectors/data is necessary. We begin by com-

paring two baselines: (1) Model ensemble, where

we aggregate predictions from all detectors by ma-

jority voting or confidence (probability) average;

(2) Data mixing, where we train a new ELECTRA-

large detector by mixing up the training data from

all generators.4

For each baseline detector D, we report the aver-

age accuracy on all generators, and the worst-case

accuracy which is min
N

AccN (D). Accuracy on the

four largest generators is also reported. We con-

duct experiments on RealNews and IMDBReview

datasets, and the results for baselines on are shown

in the left part of Table 2. It is shown that the data-

mix model outperforms the ensemble approach by

a large margin. Therefore, we base our pruning

experiments on the data-mix model.

Following insights from the last section, we then

prune out data from the large-version language

models (i.e., GPT4, GPT-Neo2.7B, LLaMA13B

and GPT-2xl) and train a detector by mixing up

training data from the remaining generators. 5 The

degree of drop on the worst-case accuracy reflects

the zero-shot generalization ability of the proposed

detector.

Also shown in Table 2, the accuracy of the pro-

posed detectors (both average and worst-case) re-

mains similar to or only slightly decreases com-

pared to the data-mix baseline. Figure 2 provides

detailed information on the changes in accuracy

after pruning out four large-version models. The

accuracy of the proposed detector only experiences

a slight decrease (<3%) for GPT4 and LLaMA13B.

Our results show that in the case of limited

budget or computing, data from the medium-

version LM can decently approximate the large-

version in an ensembled data collection.

On the right part of Table 2, we conduct com-

4We have also tried another baseline where we average
parameters from all detectors. However, the performance is
worse than the majority-voting baseline, and we omit this
result.

5Our data collection for GPT4 costs around $450.

Figure 2: Accuracy comparison on each generator be-

fore and after pruning out four large-version LLMs on

the RealNews dataset.

parison experiments where both medium and large

versions are pruned out. As expected, this results

in a worse performance on detection of the pruned

generators, reflected by the worst-case accuracy.

Especially, the comparison experiment of pruning

out both GPT3 and GPT4 is quite alarming: The

detector trained from combined data of all other

generators only has accuracy around 42% (Real-

News) or 62% (IMDBReview). This implies that if

OpenAI did not give public access to generations

of the two models, existing detectors would fail.

5 Related Work

We now discuss the literature most related to our

work, and defer a more complete review to Ap-

pendix A. Pagnoni et al. (2022a) demonstrate the

degraded performance of trained detectors under

different threat scenarios, while the range of gener-

ator models is not as wide or up-to-date as our work.

Liang et al. (2023) study the bias of detectors for

LLMs in the case of non-native English writers. In

a very recent and concurrent work, Mireshghallah

et al. (2023) study the generalization of detectors

under the DetectGPT (Mitchell et al., 2023) algo-

rithm, which is also shown to be far from perfect.

Comparing to a trained detector, DetectGPT relies

on access to the generator LLM, which might be

expensive.

6 Conclusion and Discussion

In this work, we observe a generalization relation-

ship among detectors trained on different genera-

tors in three domains, where detectors for medium-

version models demonstrate the ability to effec-

tively generalize to the larger-version. Building

upon this finding, we prune out data from large-

version generators in an ensembed training dataset

and demonstrate that the performance loss is min-
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imal. Our results indicate that practitioners with

limited budget or computing resources can use data

from medium-size LLMs as a good approximation

for the large version.

With the rapid release of various LLMs and gen-

eration APIs, a detector needs to cover a wide range

of generators. While our work makes some initial

progress, our experiments show that the detection

of an unseen (or non-public) generator is still a dif-

ficult and open question. We hope our work could

motivate more research devoted to this important

direction.

Limitations

Our work focuses on supervised detector mod-

els and there are other approaches for machine-

generated text detection (Appendix A). In a very

recent and concurrent work, Mireshghallah et al.

(2023) studies the generalization of detectors under

the DetectGPT (Mitchell et al., 2023) algorithm,

which is also shown to be far from perfect. Com-

paring to a trained detector, DetectGPT relies on

access to the generator LLM, which might be ex-

pensive. It is also interesting to base the detector on

a larger LM than ELECTRA-large, but we surmise

the observations should be similar.

The zero-shot generalization ability of detectors

shown in this work implies that different genera-

tors are making similar artifacts based on which

the detectors make decisions. As future work, it

would be interesting to examine the salient features

(Zeiler and Fergus, 2014) and compare between

machine/human-generated text.

Finally, our experiments show that the detec-

tion of an unseen or non-public generator is still

a difficult and open question. For example, the

combination of data from all other generators can

not generalize to GPT3 and GPT4. This important

research direction deserves more research efforts.

Ethics Statement

The detection of machine-generated text has impor-

tant applications such as detecting fake news and

fake reviews on the internet. However, it could also

introduce new risks: Malicious parties can use re-

leased detectors to develop text generation systems

that evade existing detectors in an adversarial man-

ner. Our experiments show that the detection of an

unseen (or non-public) generator is still a difficult

and open question, and we hope our work could

motivate more research devoted to this important

direction.
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Supplemental Materials

A Related Work

Research on detecting machine-generated text can

be roughly divided into two categories: supervised

training and zero-shot detection (To clarify, in the

literature “zero-shot” usually means that the ap-

proach does not require training data, while our

work focus on zero-shot generalization to the de-

tection of a held-out generator).

In the case of supervised methods, Bakhtin et al.

(2019) train an energy-based model to identify

machine-generated text. Zellers et al. (2020) trainn

a GROVER detector and finds that models exhibit-

ing superior performance in generating neural dis-

information are also highly effective in detecting

their own generated content. Both Solaiman et al.

(2019) and Ippolito et al. (2020) propose zero-shot

approaches to detect machine-generated text and

evaluate the capability of pretrained models. Liu

et al. (2022) present a coherence-based contrastive

learning model to detect the machine-generated

text under low-resource scenario. Kirchenbauer

et al. (2023) propose a watermarking method (Ab-

delnabi and Fritz, 2021) which introduces designed

noise which is imperceptible to human readers.

Mitchell et al. (2023) propose DetectGPT, a zero-

shot method that utilizes a novel curvature-based

criterion to determine whether a text is generated by

a specific model. This approach has demonstrated

superior detection capabilities compared to other

existing zero-shot methods. While DetectGPT does

not require training a separate detector, it relies on

access to the generator LLM, which can be costly.

Recently, Su et al. (2023) follow up the work of De-

tectGPT and introduce two new zero-shot methods:

DetectLLM-LRR and DetectLLM-NPR.

B Auxiliary Results

In Figure 3, we plot detector-generator pairs with

large (>20%) Acc-Gap on the three datasets. It

shows that none of detectors is able to generalize

to all generators. For example, all detectors except

DGPT4 has large accuracy gap for GPT3.

In Figure 4, 5 and 6, we give detailed heatmaps

of Acc-Gap for every detector/generator pair on

the three datasets. The reported numbers are cal-

culated as the averages of Acc-Gap obtained by

bootstrapping 100 times.
Figure 3: Detector-generator pairs with large (>20%)

accuracy gap.
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Figure 4: Heapmap of Acc-Gap for detector/generator pairs on the RealNews dataset.

Figure 5: Heapmap of Acc-Gap for detector/generator pairs on the IMDBReview dataset.
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Figure 6: Heapmap of Acc-Gap for detector/generator pairs on the Wikipedia dataset.
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