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ABSTRACT

Language model (LM) prompting—a popular paradigm for solving NLP tasks—
has been shown to be susceptible to miscalibration and brittleness to slight prompt
variations, caused by its discriminative prompting approach, i.e., predicting the
label given the input. To address these issues, we propose GEN-Z—a generative
prompting framework for zero-shot text classification. GEN-Z is generative, as
it measures the LM likelihood of input text, conditioned on natural language de-
scriptions of labels. The framework is multivariate, as label descriptions allow
us to seamlessly integrate additional contextual information about the labels to
improve task performance. On various standard classification benchmarks, with six
open-source LM families, we show that zero-shot classification with simple con-
textualization of the data source of the evaluation set consistently outperforms both
zero-shot and few-shot baselines while improving robustness to prompt variations.
Further, our approach enables personalizing classification in a zero-shot manner by
incorporating author, subject, or reader information in the label descriptions.1

1 INTRODUCTION

Language models, trained only on raw text, have been shown to perform new tasks simply by
conditioning on a handful of demonstrations (Brown et al., 2020). However, how language models
acquire this ability, known as in-context learning (ICL), is a subject of debate (Xie et al., 2022; Ahuja
et al., 2023; Hahn & Goyal, 2023; Zhang et al., 2023; von Oswald et al., 2023; Wang et al., 2023) with
several studies suggesting that it merely serves as a way to prime the model with the domain, concepts,
or topics and the format of the target task (Min et al., 2022b; Wang et al., 2023). Furthermore, ICL
has been shown to be very sensitive to the choice of training examples, their order and format in the
prompt (Lu et al., 2022; Sorensen et al., 2022; Sclar et al., 2024) requiring major human effort to
achieve optimal performance. In this work, we ask, “If the right demonstrations are challenging to
find and only serve to implicitly prime the model, can we achieve the same performance zero-shot if
we prime the language model explicitly?”

We introduce GEN-Z, a robust zero-shot generative prompting framework for text classification
(Figure 1) which achieves results on par with in-context learning with much better stability in
performance. Our approach consists of two key ideas. First, most text classification methods follow a
discriminative setup, which involves estimating the probability of the labels given the input, which
can be sensitive to prompt or verbalizer variations. Instead, we use a generative setup, which involves
estimating the probability of generating the input given different labels, which has been shown to
have better worst-case performance (Min et al., 2022a). Second, to prime the models to solve the
task, we propose to explicitly incorporate contextual information via expressive label descriptions.
We first generate a description for each label that captures various factors that can influence the label
and then estimate the probability of generating the input text given the label description (e.g. “This
Reddit post contains hate speech about race” for hate speech detection where the data source “Reddit”
and the subject “race” are additional factors). Finally, to further reduce variance from different label

∗Part of this work was done when Sachin was a PhD student at Carnegie Mellon University.
1We provide the code to reproduce our results at: https://github.com/Sachin19/

generative-classification/
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Figure 1: Illustration of the proposed zero-shot generative text classifier with label description and
examples.

description phrasings, we propose to compute and aggregate the results across multiple paraphrases
of the label descriptions.

We evaluate GEN-Z by conducting experiments with six open-source language model families
(GPT2, OPT, Pythia, GPT-J, Llama, and Llama2) with models ranging from 125M to 13B parameters
on 19 semantic text classification tasks (comprising sentiment, topic, hate speech, and emotion
classification). We show that incorporating readily available additional variables like text source,
domain, subject, information of author, audience, and the addressee of the text, in our approach leads
to substantial improvements compared to vanilla zero-shot baselines, strong retrieval based zero-shot
methods, and performs on par with heavily tuned in-context learning methods.

2 ZERO-SHOT GENERATIVE CLASSIFICATION WITH LABEL DESCRIPTIONS

This section describes our proposed method. First, we motivate our zero-shot setup by drawing
connections to interpretations of in-context learning as concept learning. We then give an overview
of generative classification followed by an explanation of how we incorporate contextual information
into the model using label descriptions.

2.1 IN-CONTEXT LEARNING AS IMPLICIT CONCEPT LEARNING

We seek to build a probabilistic classifier, p(y|x) that takes text x as input and predicts y ∈ Y , the
set of all labels. Language models trained to predict the next token given the history have been
shown to be able to perform classification tasks in-context without fine tuning (Brown et al., 2020).
Given k demonstrations {(x1, y1), . . . , (xk, yk)} and a test example x, the label can be predicted
using, pLM(y|x1, y1, . . . ,xk, yk,x). In practice, the label is verbalized in natural language (e.g., the
words “negative” and ”positive” for sentiment classification). Prior work (Xie et al., 2022) has shown
evidence that in-context learning implicitly performs Bayesian inference where this probability can
written as the following marginalization,

pLM (y|x1, y1, . . . ,xk, yk,x) =

∫
Θ

p(y|x1, y1, . . . ,xk, yk,x,θ)p(θ|x1, y1, . . . ,xk, yk,x)dθ

=

∫
Θ

p(y|x,θ)p(θ|x1, y1, . . . ,xk, yk,x)dθ

where θ ∈ Θ represents a concept or a topic variable, on in general, context required to solve the
task. Following Wang et al. (2023), we also make a simplifying assumption that the test example x is
independent of the sampling of the demonstrations, so y is independent of the demonstrations given θ
and x. That is, the context variable θ acts like an approximate sufficient statistic for the posterior
information related to the demonstrations. The variables are latent and the model is expected to
implicitly figure out the context needed to solve the task from the given demonstrations. Intuitively,
p(θ| . . .) concentrates on the concept mentioned in the demonstrations, that is, the LM softly predicts
this concept. In this work, we take this formulation to the extreme by defining it as a Dirac delta
distribution concentrated on the right concept, that is given the right concept θ∗, we set p(θ∗| . . .) = 1
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and zero everywhere else. For semantic text classification tasks, we argue that the right concepts
can be specified in natural language and hence, the demonstrations may not be necessary. The label
prediction probability is thus reduced to,

pLM(y|x1, y1, . . . ,xk, yk,x) ≈ pLM(y|x, θ∗)

This describes zero-shot inference contextualized on the concepts. In this work, we experiment with
many different kinds of contexts and their influence on text classification performance such as those
describing the domain, source, author, or audience of the input text among others (§3).

2.2 MULTIVARIATE GENERATIVE CLASSIFICATION

The approach discussed so far describes a discriminative classifier, which predicts the label as
ŷ = argmaxyi∈Y p(yi|x). They are designed to distinguish the correct label among possible choices.
A generative classification framework reinterprets this objective using Bayes’ rule and a different
factorization as

ŷ = argmax
yi

p(x, yi)

p(x)

= argmax
yi

p(x|yi)p(yi)

Here the denominator p(x) is independent of the label and can be ignored. Further, assuming
equal prior probability of all labels, p(yi) can also be ignored making the classification objective
argmaxyi

p(x|yi). In a generative setup, we assume a label is generated first (e.g., an author decides
to write a negative review), and then the text (e.g., the negative review) is produced conditioned on
the label. Prior work has shown evidence that generative classifiers can be more robust than the
discriminative ones which may look for shortcuts to predict the label (Yogatama et al., 2017).

To incorporate contextual information θ∗, we propose multivariate generative classification which
generalizes it to more variables that might influence the generative process of the input text, expressing
the generative probability of x as p(x|y, u, v, . . .), where θ∗ = u, v, . . . represent the additional
factors. For example, to generate a review, not only is the author influenced by the polarity but also
by the item they review, the medium where they write the review, their target audience, their writing
style, and so on. Similar context can also be added to a discriminative classifier p(y|x, u, v, . . .)
which is one of our baselines.

2.3 CONTEXTUALIZED LABEL DESCRIPTIONS

In practice, as introduced in (Brown et al., 2020), language models can be used in a zero-shot setup
by computing pLM(z(yi)|x) or in our case, pLM(x|z(yi, u, v, . . .)). Here, z(·) is referred to as a
verbalizer which expresses the label in natural language form so that meaningful probabilities can be
computed. In this work, since the verbalizers are only concerned with the label, we refer to them as
label descriptions. A simple example is “This is terrible.” and “This is amazing.” for negative and
positive label respectively. The choice of this description, however, can lead to large variance in the
model performance with downstream classification performance can range from near perfect to near
chance (Liu et al., 2023; Holtzman et al., 2021; Zhao et al., 2021).

To reduce this variance, we propose to use multiple variations of the descriptions z. More formally,
we modify the generative story as: the labels and other contextual variables generate label descriptions
z which then inform the generation of the text (see Figure 1),

p(yi|x, u, v, . . .) ∝ p(x, yi|u, v, . . .)

=
∑

zi∈Z(yi,u,v,...)

p(x, yi, zi|u, v, . . .)

=
∑

zi∈Z(yi,u,v,...)

p(x|yi, zi, u, v, . . .)p(z|yi, u, v, . . .)p(yi|u, v, . . .)

Here, Z(yi, u, v, . . .) denotes the set of all ways to describe the label yi and the context in natural
language2. p(z|yi, u, v, . . .) measures the existence probability of the description3. Since each

2We show that ∼10 diverse paraphrases of the description are sufficient to obtain good performance.
3Note that we are not measuring grammatical plausibility of a description, hence measure p(z|·) using an

LM is not appropriate in this setting.
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description is equally plausible to exist given the label yi and other variables, we drop p(zi|yi, u, v, . . .)
(see Figure 1 right). Further, assuming independence of the label and the contextual factors4 and equal
prior likelihood of all labels, we also drop p(yi|u, v, . . .).

5 Hence, the first term in the summation can
be reduced to

∑
zi
p(x|zi), which is our inference objective, where we evaluate the probabilities using

the conditional probabilities of the LM. We compute this term for each label under consideration yi
and predict the label which obtains the highest value. Notably, unlike common prompting scenarios,
the label descriptions, zi, are unique for each label yi being considered and can be specialized by
adding any available information about the instance in natural language format. We refer to our
approach as GEN-Z for Generative Zero-Shot Classification.

3 EXPERIMENTAL SETUP

Datasets, Models, and Label Descriptions We evaluate on 18 text classification datasets encom-
passing diverse tasks, domains, and difficulty levels. These datasets include varying numbers of
classes and attributes that can be used as additional context to improve the classification performance.
We consider all contexts that were provided with each dataset. We consider the following tasks
divided in to two groups: (1) sentiment, topic, and hate speech detection which in addition to the
input text are accompanied by information about the domain, source or subject of the input text.
For example, hate speech datasets which contain information about the source (such as Reddit or
Twitter) and the subject of hate (such as national origin or race); and (2) politeness, and empowerment
prediction which are pragmatic tasks that depend on social variables such as demographic information
of the author, addressee, or the reader (such as gender, age, educational background, etc.). Table
4 in the appendix summarizes the details of each dataset we use. We measure performance using
publicly available validation or test sets, without using the training data at all. We experiment with
the six classes of open-source models: GPT2 (Small, Medium, Large, and XL) (Radford et al., 2019),
OPT (Zhang et al., 2022)(1.4B and 2.7B), Pythia (Biderman et al., 2023) (1.4B, 2.8B and 6.7B),
GPT-J (6B) (Wang & Komatsuzaki, 2021), Llama 1 (Touvron et al., 2023a) (7B and 13B) and Llama
2 (Touvron et al., 2023b) (7B and 13B).6 All these models are pretrained on only raw text without
additional fine-tuning on supervised datasets.7

For each task, we manually write one minimal label description per label using a template (see
complete list in Table 5). We then generate 20 paraphrases of each label description by querying
ChatGPT.8 This process needs to be done only once for each task and, in practice, any paraphrasing
model can be employed. We further manually verify the correctness of each paraphrase. For each
dataset, we run the evaluation ten times where in each run we subsample 1 ≤ n ≤ 10 paraphrases
from this set. We evaluate all methods using macro-F1 score and report mean and standard deviation
across these runs.

Baselines We compare GEN-Z with the following zero-shot baselines.

• Discriminative methods predict the label using
∑

zi
p(zi|x). We consider three versions of this

baseline. DISC-SINGLE-NC predicts the label with no context (the context information is removed
from zi) and only one description is considered. This is the simplest zero-shot setup that most prior
work considers canonical. DISC-SINGLE predicts the label using p(zi|x) where zi corresponds
to only one description. DISC-MULTIPLE predicts the label using

∑
zi
p(zi)|x) which is the

discriminative version of our proposed method. For the last two baselines, we further have three

4The true prior probability of any label is unlikely to depend on the contextual factors like the domain of the
text, or the personal attributes of the user reading, writing, or being described in the text.

5While we make this assumption for simplification, future work may consider non-uniform priors to further
improve performance.

6We do not report results with 70B sized models to due to its high computational requirements for the scale
of our experiments. While quantization (Dettmers et al., 2023) approaches have been proposed to run models
of this scale on consumer hardware, in our initial exploration such approaches vastly underperformed 16-bit
versions for our experiments. Further, our budget prohibits us from experimenting with closed-source models
like GPT3 which according to Lyu et al. (2023) can cost more than 4500 USD for the scale of our experiments.
We leave these explorations for future work.

7Instruction-tuned models have shown to also perform well in-context but they are trained primarily as
discriminative classifiers and thus cannot be used for generative classification making comparisons unfair.

8We used the free tier of ChatGPT for this purpose: https://chat.openai.com/chat.
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Table 1: Zero-shot Macro-F1 with GPT-J (6B). We report averagestd over 10 runs. Our proposed
approach is GEN-Z. More results are provided in Appendix C. The baseline names are shortened
with their initials.

DS-N DS DM DP-N DP DPM GS-N GS GEN-Z

SST2 69.5(1.2) 65.9(0.9) 43.6(1.0) 74.5(1.2) 75.7(1.3) 72.3(0.7) 80.0(1.0) 87.1(0.6) 91.7(0.2)

SST5 18.6(0.7) 24.2(0.9) 25.1(0.2) 26.2(0.7) 29.8(0.6) 35.6(0.2) 34.8(0.8) 36.0(1.2) 40.9(0.5)

Yelp2 68.1(1.0) 64.2(1.1) 76.7(0.3) 70.5(0.5) 70.2(0.6) 75.9(0.5) 76.1(0.8) 85.4(0.7) 89.9(0.1)

Yelp5 24.0(1.1) 26.2(0.7) 25.6(0.3) 30.5(1.1) 28.5(1.4) 32.0(0.3) 35.5(0.8) 38.0(0.7) 42.0(0.3)

MR 67.7(0.9) 63.3(1.0) 51.3(0.5) 72.3(1.0) 70.6(1.2) 74.6(0.5) 76.0(0.9) 84.2(0.6) 87.0(0.2)

CR 57.3(2.7) 57.1(2.8) 51.8(1.1) 60.3(2.1) 66.4(2.9) 66.7(0.9) 72.9(1.7) 83.8(1.5) 87.0(0.2)

Tweet3 36.0(0.2) 35.5(0.4) 31.9(0.1) 39.4(0.4) 39.7(0.5) 43.0(0.1) 42.2(0.3) 42.2(0.3) 41.1(0.1)

FP 36.6(2.3) 32.3(2.0) 25.2(0.5) 38.7(1.9) 39.8(3.2) 47.8(1.4) 44.7(1.8) 48.2(2.4) 52.9(1.1)

PS 38.0(5.1) 32.9(4.9) 30.3(1.6) 35.8(3.4) 33.8(4.1) 21.3(1.3) 39.2(3.3) 38.4(4.2) 42.4(1.2)

AGNews 34.8(0.5) 34.8(0.5) 37.9(0.2) 54.6(0.5) 54.6(0.5) 72.0(0.2) 64.9(0.4) 64.9(0.4) 77.0(0.1)

DBPedia 42.5(0.5) 39.4(0.7) 32.8(0.4) 61.7(0.5) 66.6(0.8) 78.9(0.1) 71.7(0.5) 71.7(0.5) 80.1(0.2)

HS18 17.4(0.5) 14.7(0.7) 10.1(0.0) 37.2(1.0) 38.7(0.9) 29.9(0.3) 50.2(0.7) 55.8(0.9) 62.6(0.3)

Ethos (NO) 50.8(3.0) 50.8(3.0) 63.2(3.0) 54.9(2.1) 54.9(2.1) 55.7(1.5) 50.4(3.0) 50.4(3.0) 56.3(0.8)

Ethos (SO) 33.8(4.7) 33.8(4.7) 20.4(0.7) 52.5(5.4) 52.5(5.4) 55.3(1.7) 52.7(2.8) 52.7(2.8) 62.3(1.6)

Ethos (Race) 27.4(3.8) 27.4(3.8) 15.5(0.0) 54.5(4.3) 54.5(4.3) 50.9(1.9) 56.1(3.1) 56.1(3.1) 60.5(1.3)

Ethos (Religion) 48.2(3.9) 48.2(3.9) 42.5(1.8) 62.3(2.8) 62.3(2.8) 62.8(1.3) 62.9(3.7) 62.9(3.7) 70.1(0.9)

Emotions 24.9(0.4) 23.5(0.6) 29.0(0.3) 31.4(1.0) 31.8(1.1) 37.8(0.2) 30.3(0.8) 30.3(0.8) 32.7(0.3)

versions of each which differ in how the context is provided (only in the label, before the input,
and before the input as an instruction; more details in Appendix B. We report results with the first
version in the main paper as it performs the best of the three.).

• Calibrated discriminative methods use p(zi|x)/p(zi|NULL) for label inference (we use BOS
token for the corresponding LMs as NULL). Since language model probabilities can be poorly
calibrated and suffer from competition between different label descriptions with the same meaning,
this method relies on pointwise mutual information (PMI) between x and y to make a predic-
tion (Holtzman et al., 2021). We again consider three versions of this setup: without context
(DISC-PMI-NC), with context but only one label description (DISC-PMI), and with context and
multiple label descriptions (DISC-PMI-MULTIPLE). The last one is the calibrated discriminative
version of our proposed method.

• Generative baselines predicts the label using p(x|zi), that is using only one label description.
We consider two versions of this baseline, one without context (GEN-SINGLE-NC) and one with
context (GEN-SINGLE) in the label description. Both of these are an ablation of our proposed
method. The former method (without context) also describes the method proposed in Min et al.
(2022a).

In addition, we show comparisons with the following baselines which incorporate context implicitly
either via few-shot examples or using retrieval based techniques on unlabeled data. For these baselines,
we experiment with 8- and 16-shot settings and report the best of the two.

• ICL describes in-context learning baselines. We consider four versions of this baseline: (a) ICL-
DISC, a simple discriminative method which compares probabilities of label descriptions, (b)
ICL-GEN, a generative baseline with the exact same setup (Min et al., 2022a), (c) ICL-PMI
which calibrates the probabilities same as DISC-PMI, (d) ICL-DC which is another discriminative
calibration method introduced in Fei et al. (2023b).

• Z-ICL (Lyu et al., 2023) describes a psuedo-demonstration based setup where unlabeled texts are
sampled from a corpus and assigned random labels. This setup is zero-shot but still requires access
to a corpus. For this setup, we reproduce the setup proposed in and report both discriminative and
generative results.

4 RESULTS

We categorize the results into two groups: domain-aware classification, which considers the domain
of the text as an additional factor, and personalized classification, which includes personal attributes
of writers and readers as additional factors.
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Table 2: Best of 8/16 shot baselines vs Gen-Z (zero-shot). We report averagestd over 5 seeds.

ICL (Disc) ICL (CC) ICL (DC) ICL (Gen) Z-ICL (Disc) Z-ICL (Gen) GEN-Z (Ours)

SST2 91.0(6.0) 90.8(3.2) 94.0(1.3) 88.8(1.3) 82.6(0.2) 82.6(0.2) 91.7(0.2)

CR 81.4(6.9) 86.5(0.8) 87.0(4.0) 84.4(2.8) 78.8(0.4) 80.1(0.1) 87.0(0.2)
MR 93.1(0.7) 91.3(1.1) 93.1(0.5) 84.0(6.8) 81.0(0.3) 81.9(0.1) 87.0(0.2)
SST5 42.9(0.9) 40.8(5.4) 40.3(4.9) 42.9(0.9) 30.9(0.3) 38.7(0.5) 40.9(0.5)
FP 46.4(6.9) 46.7(4.2) 61.6(3.3) 43.3(2.3) 44.9(3.0) 51.1(1.2) 52.9(1.1)
PS 26.6(6.1) 25.5(5.2) 31.4(3.0) 39.8(2.1) 39.5(4.0) 43.9(2.7) 42.4(1.2)
AGNews 68.4(9.9) 76.8(7.2) 81.5(5.1) 72.3(3.2) 67.2(1.3) 75.2(0.5) 77.0(0.1)
DBpedia 83.5(3.0) 90.6(1.7) 92.4(1.2) 79.9(3.8) 61.3(0.6) 74.9(3.6) 80.1(0.2)
HS18 51.5(4.7) 41.6(8.6) 57.3(2.5) 45.0(0.5) 43.4(0.6) 51.1(0.7) 62.6(0.3)
E (Religion) 30.7(14.3) 28.0(13.8) 43.8(6.7) 67.9(1.8) 51.0(2.6) 51.0(2.6) 70.1(0.9)
E (NO) 23.1(8.7) 18.2(2.1) 40.7(7.8) 37.6(3.5) 37.6(3.5) 26.2(1.1) 56.3(0.8)
E (Race) 36.4(11.8) 44.7(17.4) 51.4(6.4) 49.1(3.0) 46.3(1.2) 39.7(3.5) 60.5(1.3)

4.1 DOMAIN-AWARE CLASSIFICATION

Table 1 shows the comparison of the performance of different zero-shot methods on sentiment, topic,
emotion, and hate speech classification for GPT-J. Table 2 shows comparisons of GEN-Z with the
few-shot baselines. The remaining results are reported in Appendix C.

We find that GEN-Z overall outperforms all baselines approaches in the zero-shot setting. We do
not see a clear trend in the simple discriminative baselines (DISC-SIMPLE-NC, DISC-SIMPLE, and
DISC-MULTIPLE) where adding contexts and multiple descriptions sometimes help and sometimes
hurts performance. In the calibrated discriminative baselines, the trends become clearer. The
no-context version outperforms simple discriminative baselines as it accounts for surface form
competition. Adding context also helps but adding multiple label descriptions does not always
improve performance. We see this trend also in our full results where we range the number of label
descriptions from 1 to 10. The generative baseline without context and a single description (Min
et al., 2022a, GEN-SIMPLE-NC) outperforms most discriminative approaches and adding context
leads to even more improvements confirming the efficacy of our method.

Furthermore, GEN-Z in a zero-shot setting is either best or second best performing method when
compared to strong few-shot baselines on sentiment and hate-speech detection (Table 1). One
particular dataset where our method lags behind is Dbpedia topic classification where the label
set consists of 14 classes. Our qualitative analysis reveals that most errors made by our approach
correspond to three classes with semantic overlap (Album, Film, Written Work) which given our
simplistic label descriptions make it difficult for the model to distinguish. This requires further
investigations into the specificity of the descriptions which we leave for future work. Finally,
compared to all baselines GEN-Z shows the smallest variance in performance due to prompt selection
by aggregating over multiple prompt paraphrases, whereas few-shot baselines exhibit large deviations.

We additionally conduct ablation studies to assess the impact of each proposed component on
performance. While some of these ablations we used for baseline comparisons in Table 1, here we
give them a more thorough treatment comparing performance across multiple model sizes.

Effect of number of label descriptions. In this ablation, we vary the number of label descriptions
over which the aggregation is perform from l=1 to l=10 and observe the change in performance. For
each l, we do this evaluation 10 times and report the averaged mean and standard deviation across all
17 tasks. We find that in the generative classification settings, in the majority of cases, increasing
the number of label descriptions improves the model performance highlighting the utility of this
approach. Further, we observe that the performance starts to stabilize between k=6 and k=10 which
suggests that not many descriptions are required overall. In contrast, for discriminative baselines in
all three versions we considered, we observe no clear trend as increasing k often results in a decrease
in performance.

Effect of additional variables. To measure the effect of provided contextual information (do-
mains, subject, data source), we conduct ablation by modifying the label description to exclude
this information across different number of label descriptions (similar to GEN-SIMPLE-NC and
DISC-SIMPLE-NC). We report the full results in Appendix C. We observe a significant drop in
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Figure 2: Full results for domain aware classification for GEN-Z. The x-axis shows number of
label descriptions per label and the y-axis indicates the average accuracy across all the tasks except
(Politeness and Empowerment). We conduct a thorough analysis of this setup as discussed in
(section 4): removing domain information from the descriptions, different aggregation strategies as
well as evaluating on different model sizes and families.

the performance across all tasks if we remove the domain or data source information including our
method as well as the baselines. This drop is more significant in larger models. We hypothesize that
specifying the domain information helps prime the model probabilities to the right distributional
landscape allowing more meaningful comparisons between probabilities assigned to different labels.
Further, we hypothesize that in a generative classification setting, the label followed by the input
text, resemble natural data found in pretraining whereas it is difficult to specify this information in a
discriminative setup.

Effect of model size. We measure if the presented results holds across model scales. We repeat
the same experiment across 14 more models with size ranging from 125M to 13B. We find that with
GEN-Z, across reasonably large models, going larger improves performance on average. We see
substantial improvement from GPT2-M to L to XL, and Pythia 1.4B to 2.7B and 6.7B to 12B.9 The
trend is reversed for the Llama2 models where the 13B models performs slightly worse overall and
warrants further investigation.

Ablation on aggregation strategy In GEN-Z, we aggregate the probabilities obtained using
different label descriptions by simply summing them (which is the same as their arithmetic mean, for
comparison purposes). This aggregation is theoretically grounded in the probabilistic framework we
design (Figure 1). Prior work has considered several other aggregation strategies for ensembling model
outputs that we compare with in this ablation. We compare against geometric mean (or arithmetic
mean of the log probabilities, the most common way to aggregate model outputs) and harmonic mean.
We find that in our proposed generative setup, the performance across three aggregation strategies is

9The performance is not strictly comparable across model families due to differences in pretraining corpora.
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Aut. \ Ad. No Yes

No 81.1
(1.43)

84.8
(1.83)

Yes 81.8
(1.07)

85.0
(2.42)

(a) Empowerment (F1).

Age \ Ed. No Yes

No 80.1
(0.30)

81.4
(0.21)

Yes 82.2
(0.32)

83.3
(0.24)

(b) Politeness (Accuracy)

Table 3: Personalized classification results on GPT2-Large with our model. Each cell repre-
sents whether the demographic attribute was used in the label description or not. Aut.=Author,
Ad.=Addressee, Ed.=Education.

largely similar, arithmetic mean outperforming the other two slightly overall with harmonic mean
winning out in smaller models. We hypothesize that this effect is due to harmonic mean’s property
of ignoring outliers. Future work may analyze this strategy in-depth. For the discriminative setup,
arithmetic mean almost always performs the best. Peculiarly, harmonic means shows sharp decrease
in performance with increasing descriptions and warrants further investigation which we leave to
future work.

4.2 PERSONALIZED CLASSIFICATION

In this setup, we evaluate our proposed approach on two datasets where personal information about
the author, the addressee, or even the audience may affect the prediction. We experiment with two
tasks: (1) empowerment prediction (Njoo et al., 2023) where given a Reddit comment, the goal is to
predict whether it empowers or disempowers (or is condescending to) the addressee of the comment.
We use the author’s and the addressee’s gender in this task10. (2) Politeness prediction (Pei & Jurgens,
2023) where given an email snippet the goal is to predict whether it is polite or not. We again consider
binary labels. What is considered polite may vary with the reader dependent on cultural factors. This
dataset consists of information about the annotator’s age, gender, race, and educational background.
We focus on age and educational background as they were the primary delineators of variation
measured by the authors. That is given the author’s age and educational background, we predict the
perceived politeness of the text and sum their probabilities to make the final predictions. We do not
aggregate these probabilities over each possible value of age and educational background but rather
use only the ones reported in the test set. The results for both datasets for GPT2-Large are reported in
Table 311. We only report the results for our proposed approach with varying number of personal
attributes considered, as discriminative models performed poorly in this setup (<50% accuracy across
both tasks). We find that for both test sets, personalizing the predictions with demographic variables
helps improve performance. For empowerment prediction, the gender of the addressee, and politeness,
the age of the annotator affect the performance more than the other variables. The latter is consistent
with prior studies that show cultural differences in politeness across different age groups (Pei &
Jurgens, 2023).

5 RELATED WORK

In-context learning In-context learning (ICL) is the standard paradigm for prompting LMs to
perform tasks (Brown et al., 2020; Liu et al., 2023).Much recent work has been done to understand
why it works and how it can be improved. For example, Xie et al. (2022); Wang et al. (2023); Dai
et al. (2023) have argued that it implements general-purpose learning mechanisms such as Bayesian
inference or gradient descent. Min et al. (2022b) showed that for classification tasks, the input-label
pairing format plays the most crucial role in ICL. We build on these findings and develop a zero-shot
inference approach. While in-context learning with more example has usually performed than zero-
shot inference, it comes at the cost of more token consumption and may hit the context length limit
when the input and output text are long. The choice of demonstrations can lead to high variance in
the model performance (Zhao et al., 2021; Fei et al., 2023a; Han et al., 2023) and prior work has
investigated various demonstration selection- and ordering strategies to boost performance (Lu, 2022).

10We use binary gender here; the evaluation set does not contain any other information
11The results for other models can be found in Appendix C
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In this work, we show that the zero-shot setting is underexplored and can surpass in-context learning
for text classification tasks.

Recent work has also studied instruction following in models, either directly on a pretrained language
model or by fine-tuning it to follow instructions using a collection of NLP tasks framed as instruction
following tasks (Wei et al., 2022). Instructions and few-shot learning can also be used together. Again,
depending on how instructions are phrased, however, can significantly alter the model outputs, even
in instruction fine-tuned models (Sun et al., 2023). In contrast, several studies have also developed
prompt engineering techniques, that is creating a sequence of prefix tokens or prompts that increase
the probability of getting desired output given input (Liu et al., 2023). These techniques rely on
available training data for each task. In this work, we focus on a zero-shot prompting setup operating
in a setting where no training data for customizing classification models is available.

Discriminative versus Generative Classification Text classification studies with prompting have
primarily focused on discriminative classification, which focuses on constructing input prompts that
get prepended to each input text to predict the classification label. That is conditioning on the input
to generate the output. Generative or noisy channel models (Brown et al., 1993) have been previously
investigated for various NLP tasks, such as machine translation (Yamada & Knight, 2001; Yee
et al., 2019) and question answering (Lewis & Fan, 2019). Prior work has empirically demonstrated
that generative models are more robust to distribution shift in text classification than discriminative
models (Yogatama et al., 2017). Recently, Min et al. (2022a) explored the use of a generative model
with prompting, leveraging pretrained language models for various text classification tasks. In this
work, we build a multivariate generative classification by incorporating label descriptions. These
descriptions capture various contextual information associated with each example, allowing for
effective priming and customization of the classifier.

Social and personal factors in NLP Machine learning systems have been shown to reflect and
amplify social prejudices in human-written text, resulting in systemic biases in performance towards
specific demographic groups (Mehrabi et al., 2021). Such classifiers learn spurious correlations
between the label and the demographic information reflected in text either explicitly through their
mentions in the text (such as names, sexuality, and race among others) or their writing style. These
issues are exacerbated through annotation artifacts (Sap et al., 2019; 2022) or unbalanced datasets (Kir-
itchenko & Mohammad, 2018). Various solutions proposed in the literature aim to learn models
that are fair to all demographics using methods like adversarial learning (Han et al., 2021a;b) and
distributionally robust optimization (Zhou et al., 2021). A distinct but closely related motivation to-
wards developing such solutions is user privacy—models should never use any personally identifiable
attributes to make any predictions as it could lead to unintended negative consequences (Elazar &
Goldberg, 2018). Ravfogel et al. (2020; 2022) propose methods to scrub demographic information
from model representations given a trained model with little loss in model accuracy.

In contrast, few studies have shown that incorporating factors such as gender, age, region, or country
of the authors as features can improve text classification performance (Volkova et al., 2013; Hovy,
2015; Yang & Eisenstein, 2017; Lynn et al., 2017; Huang & Paul, 2019; Ostapenko et al., 2022). Most
of these studies are based on the assumption that social and personal factors are causally related to
both the writing style and the target label. As a result, they treat classification as a domain adaptation
problem in which demographic attributes divide the data distribution into different domains.

6 CONCLUSIONS

We introduce GEN-Z, a robust generative zero-shot text classification framework that seamlessly
incorporates contextual information beyond the input text itself. GEN-Z leverages LM likelihood of
generating the input text based on various label descriptions that reflect context, enabling more robust
predictions than discriminative approaches. We evaluate our framework across two task categories:
domain-aware classification and personalized classification, covering 19 diverse text classification
datasets with varying tasks, domains, and difficulty levels, alongside multiple label description
paraphrases. Our experiments show that GEN-Z consistently improves classification performance
over zero-shot baselines and performs on par with strong few-shot baselines. Further, we show that
this approach allows personalizing predictions by incorporating contextual information from label
descriptions.
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LIMITATIONS

The generalizability of our paper’s findings to languages other than English may be limited since
all the datasets used in our study are exclusively in English. We make simplifying assumptions
about prior probabilities of labels and independence of labels and contextual factors, which may
not always hold in practice. We acknowledge that certain demographic attributes in our work may
not fully represent the entire population. For example, due to data availability, we only conducted
experiments with binary gender (male/female) for user information, despite the existence of diverse
genders. Additionally, the definition and categorization of social attributes in the datasets used in
our experiments might predominantly reflect Western-centric perspectives, as the majority of the
work involved in designing and creating such datasets aligns with Western-centric viewpoints. Lastly,
while our experiments encompass a diverse range of text classification tasks, we have not evaluated
its performance on other kinds of tasks like sentence pair classification, question answering, etc. We
leave these evaluations for future wrok.

ETHICS STATEMENT

Personalization presents complex ethical considerations, with both benefits and potential risks. On
the one hand, models tailored to specific settings or groups can yield positive outcomes. However,
these personalized models may inadvertently reinforce biases or result in discriminatory behavior if
their performance is uneven across different groups. Moreover, privacy concerns arise as end users
may be reluctant to have certain attributes or personal information, such as their sexual orientation or
religion, considered by the model. We believe our approach of using label description can mitigate
such ethical concerns, particularly in comparison to embedding-based personalization methods. By
employing interpretable user information through label descriptions, our method fosters transparency
and controllability throughout the entire personalization process. This mitigates potential issues
related to privacy and allows users to have insight into how their information is used. Nevertheless, it
is important to acknowledge potential cases of misuse, where individuals intentionally modify their
user attributes to game the model and achieve desired labels. Such scenarios highlight the need for
future research on mitigating abuse and maintaining the integrity of the personalization framework.
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A CONNECTION TO SURFACE FORM COMPETITION

Discriminative classification from language models have been shown to suffer from “surface form
competition” where multiple surface forms of the label yi may compete for probability mass. To
address this issue, Holtzman et al. (2021); Zhao et al. (2021) proposed calibrating the probability by
using point-wise mutual information (PMI) between the text and the label as the scoring function,

which is given as, ŷ = argmaxyi

p(x,yi)
p(x)p(yi)

. While these works have simplified PMI as p(yi|x)/p(yi),

an alternative way to simplify it is p(x|yi)/p(x) which is the same as the generative classification
setup as described above.

B ADDITIONAL EXPERIMENTAL DETAILS

Discriminative Baselines Variations For each discriminative zero-shot baseline, we consider three
variations (see Table 6): (1) DISC-NONE does not condition the input text on contextual variables,
(2) DISC-CONTEXT conditions the input text on the contextual variables using a simple format, (3)
DISC-INSTRUCT conditions the input text on the contextual variables as well as the labels that the
model is expected to predict. In the main paper, we present results with DISC-NONE, which performs
best out of these variations.

Table 4 summarizes all the datasets we use. Table 5 summarizes the hand written templates we start
with (and later paraphrase to construct label descriptions).
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Dataset Task (Domain) #Classes

SST2 (Socher et al., 2013) Sentiment Classification (movie) 2
SST5 (Socher et al., 2013) Sentiment Classification (movie) 5
Yelp2 (Zhang et al., 2015a) Sentiment Classification (Yelp) 5
Yelp5 (Zhang et al., 2015a) Sentiment Classification (Yelp) 5
Poem Sentiment (PS) (Sheng & Uthus, 2020) Sentiment Classification (Poetry) 4
Financial Phrasebank (FP) (Malo et al., 2014) Sentiment Classification (Economic News) 3
MR (Pang & Lee, 2005) Sentiment Classification (Rotten Tomatoes) 2
CR (Hu & Liu, 2004) Sentiment Classification (Customer Reviews) 2
Tweet3 (Rosenthal et al., 2017) Sentiment Classification (Twitter) 3
AGNews (Zhang et al., 2015b) Topic Classification (News) 4
DBpedia Topic Classification (Wikipedia) 14
Hate_speech18 (de Gibert et al., 2018) Hate Speech (Stormfront) 2
Ethos (4 subsets) (Mollas et al., 2022) Hate Speech by Subject (various social media) 2
Emotion (Saravia et al., 2018) Emotion Recognition (Twitter) 6
Potato Prolific (Pei & Jurgens, 2023) Politeness Classification (Email) 2
Talk Up (Njoo et al., 2023) Empowerment prediction (Reddit) 2

Table 4: Datasets used for the experiments

Task Label Description

Sentiment “This [DOMAIN] leans [POLARITY]: ”; DOMAIN∈{text, movie review, Rot-
tenTomatoes review, tweet, customer review, Yelp review, poem verse, financial
news excerpt}, POLARITY∈{very positive, positive, neutral, negative, very
negative}. We use “positive” and “negative” as POLARITY for binary sentiment
classification.

Hate speech “This [DOMAIN] uses [LABEL] language: ”; DOMAIN∈{text, Stormfront
post}, LABEL∈{hateful, innocuous}.

Ethos “This [DOMAIN] contains hate-speech about [SUBJECT]: ”; DOMAIN∈{text,
social media post}, SUBJECT∈{something, national origin, religion, race, sexual
orientation}. This is a binary classification task where “something” serves as the
negative class for every other subject.

Topic “The topic of this [DOMAIN] revolves around [TOPIC]: ”; DOMAIN∈{text,
news excerpt}, TOPIC∈{world, sports, business, technology} for AGNews,
TOPIC∈{company, educational institution, artist, athlete, office holder, means of
transportation, building, natural place, village, animal, plant, album, film, written
work}

Politeness “According to a [AGE] years old person with a [EDUCATION], this email snippet
is impolite:”; AGE∈ set of integers, EDUCATION∈{High school degree, college
degree, }. Both are provided in the test example.

Emotion “This [DOMAIN] emotes [EMOTION]: ”; DOMAIN={text, tweet}, EMO-
TION={sadness, love, anger, joy, fear, surprise}

Empowerment “This Reddit comment written by a [AUTHOR] empowers and uplifts the ad-
dressed [ADDRESSEE]: ”; AUTHOR={man, woman}, ADDRESSEE={man,
woman}

Table 5: Label description starter templates we hand write. DOMAIN=“text” represents missing
domain information (which is one of our ablation). We generate their variations by asking ChatGPT:
"Write 11 paraphrases of this sentence as a Python list." The full list is provided in the supplementary
material.

C ADDITIONAL RESULTS

We provide averaged macro-F1 for each of the models and each zero-shot method we consider in
Figures 3,4,5,6,7, 8, 9, 10
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Name Format

DISC-NONE “[INPUT] [LABEL DESCRIPTION]”
DISC-CONTEXT “This is a [DOMAIN]. [INPUT] [LABEL DESCRIPTION]”
DISC-INSTRUCT “Is this [DOMAIN] [LIST OF LABEL NAMES]? [INPUT] [LABEL DESCRIP-

TION]”

Table 6: Different variations of DISC models. The results reported in the main paper are from
DISC-NONE as it performed the best overall. In all three settings the label descriptions always contain
the contextual information. The results for all three approaches can be found in Figures 3,4,5,6,7, and
8

Figure 3: Full results for domain aware classification for our zero-shot DISC-NONE setup without
calibration. The x-axis shows number of label descriptions per label and the y-axis indicates the
average accuracy across all the tasks except (Politeness and Empowerment). We conduct a thorough
analysis of this setup: removing domain information from the descriptions, different aggregation
strategies as well as evaluating on different model sizes and families.
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Figure 4: Full results for domain aware classification for our zero-shot DISC-CONTEXT setup without
calibration. The x-axis shows number of label descriptions per label and the y-axis indicates the
average accuracy across all the tasks except (Politeness and Empowerment). We conduct a thorough
analysis of this setup as discussed in (section 4): removing domain information from the descriptions,
different aggregation strategies as well as evaluating on different model sizes and families.
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Figure 5: Full results for domain aware classification for zero-shot DISC-INSTRUCT setup without
calibration. The x-axis shows number of label descriptions per label and the y-axis indicates the
average accuracy across all the tasks except (Politeness and Empowerment). We conduct a thorough
analysis of this setup as discussed in (section 4): removing domain information from the descriptions,
different aggregation strategies as well as evaluating on different model sizes and families.
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Figure 6: Full results for domain aware classification for our zero-shot DISC-NONE setup with PMI
based calibration. The x-axis shows number of label descriptions per label and the y-axis indicates the
average accuracy across all the tasks except (Politeness and Empowerment). We conduct a thorough
analysis of this setup as discussed in (section 4): removing domain information from the descriptions,
different aggregation strategies as well as evaluating on different model sizes and families.
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Figure 7: Full results for domain aware classification for our zero-shot DISC-CONTEXT setup with
PMI based calibration. The x-axis shows number of label descriptions per label and the y-axis
indicates the average accuracy across all the tasks except (Politeness and Empowerment). We conduct
a thorough analysis of this setup as discussed in (section 4): removing domain information from
the descriptions, different aggregation strategies as well as evaluating on different model sizes and
families.
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Figure 8: Full results for domain aware classification for our zero-shot DISC-INSTRUCT setup with
PMI based calibration. The x-axis shows number of label descriptions per label and the y-axis
indicates the average accuracy across all the tasks except (Politeness and Empowerment). We conduct
a thorough analysis of this setup as discussed in (section 4): removing domain information from
the descriptions, different aggregation strategies as well as evaluating on different model sizes and
families.
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(a) GPT-2 Small (b) GPT-2 Medium (c) GPT-2 Large

(d) GPT-2 XL (e) OPT 1.3B (f) OPT 2.7B

(g) Pythia 1.4B (h) Pythia 2.8B

Figure 9: Full results for author and addressee-personalized empowerment prediction with our
proposed setup. The x-axis shows number of label descriptions per label and the y-axis indicates the
average F1-score. The four plots indicate 4 settings described in Table 3.
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(a) GPT-2 Small (b) GPT-2 Medium (c) GPT-2 Large

(d) GPT-2 XL (e) OPT 1.3B (f) OPT 2.7B

(g) Pythia 1.4B (h) Pythia 2.8B

Figure 10: Full results for reader-personalized politeness prediction with our proposed setup. The
x-axis shows number of label descriptions per label and the y-axis indicates the average accuracy.
The four plots indicate 4 settings described in Table 3.
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