

KGQuiz: Evaluating the Generalization of Encoded Knowledge in Large Language Models

Yuyang Bai*
 Xi'an Jiaotong University
 Xi'an, China
 1206944633@stu.xjtu.edu.cn

Zhaoxuan Tan
 University of Notre Dame
 Notre Dame, United States
 ztan3@nd.edu

Shangbin Feng*
 University of Washington
 Seattle, United States
 shangbin@cs.washington.edu

Shiqi Lou
 Xi'an Jiaotong University
 Xi'an, China
 lousqi@stu.xjtu.edu.cn

Vidhisha Balachandran
 Carnegie Mellon University
 Pittsburgh, United States
 vbalacha@cs.cmu.edu

Tianxing He
 University of Washington
 Seattle, United States
 goosehe@cs.washington.edu

Yulia Tsvetkov
 University of Washington
 Seattle, United States
 yuliats@cs.washington.edu

ABSTRACT

Large language models (LLMs) demonstrate remarkable performance on knowledge-intensive tasks, suggesting that real-world knowledge is encoded in their model parameters. However, besides explorations on a few probing tasks in limited knowledge domains, it is not well understood how to evaluate LLMs' knowledge systematically and how well their knowledge abilities generalize, across a spectrum of knowledge domains and progressively complex task formats. To this end, we propose KGQuiz¹, a knowledge-intensive benchmark to comprehensively investigate the knowledge generalization abilities of LLMs. KGQuiz is a scalable framework constructed from triplet-based knowledge, which covers three knowledge domains and consists of five tasks with increasing complexity: true-or-false, multiple-choice QA, blank filling, factual editing, and open-ended knowledge generation. To gain a better understanding of LLMs' knowledge abilities and their generalization, we evaluate 10 open-source and black-box LLMs on the KGQuiz benchmark across the five knowledge-intensive tasks and knowledge domains. Extensive experiments demonstrate that LLMs achieve impressive performance in straightforward knowledge QA tasks, while settings and contexts requiring more complex reasoning or employing domain-specific facts still present significant challenges. We envision KGQuiz as a testbed to analyze such nuanced variations in performance across domains and task formats, and ultimately

to understand, evaluate, and improve LLMs' knowledge abilities across a wide spectrum of knowledge domains and tasks.

CCS CONCEPTS

- Computing methodologies → Natural language processing

KEYWORDS

Large Language Models, Knowledge Probing

ACM Reference Format:

Yuyang Bai, Shangbin Feng, Vidhisha Balachandran, Zhaoxuan Tan, Shiqi Lou, Tianxing He, and Yulia Tsvetkov. 2024. KGQuiz: Evaluating the Generalization of Encoded Knowledge in Large Language Models. In *Proceedings of the ACM Web Conference 2024 (WWW '24), May 13–17, 2024, Singapore, Singapore*. ACM, New York, NY, USA, 12 pages. <https://doi.org/10.1145/3589334.3645623>

1 INTRODUCTION

Large language models (LLMs) have demonstrated incredible abilities to encode and represent real-world knowledge in their model parameters, advancing knowledge-intensive tasks such as open-domain question answering [14, 15, 33, 58, 59, 63], dialogue generation [1, 12, 34], summarization [17, 35, 62], and more. However, their knowledge abilities could also be quite brittle, with LLMs generating hallucinated information [3, 8, 23, 37, 44], struggling to encode long-tail facts [37], and falling short of abstaining when relevant information is not present in model parameters [7].

As a result, studies and benchmarks have been proposed to probe the knowledge abilities of LLMs [11, 20, 39, 46, 52, 64]. Later works also looked into temporality, evaluating whether LLMs could tackle time-sensitive facts and information [11]. In addition to merely probing LLM knowledge, knowledge-intensive tasks such as open-domain QA [27, 31, 45], fact-checking [32, 38, 45], and more are also proposed and employed to evaluate LLM knowledge abilities. Despite these works' contributions to understanding and expanding the stored knowledge of large language models, we identify two important yet underexplored factors in LLM knowledge abilities.

*equal contribution

¹The KGQuiz benchmark and code are available at <https://github.com/leopoldwhite/KGQuiz>.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

WWW '24, May 13–17, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 979-8-4007-0171-9/24/05...\$15.00 <https://doi.org/10.1145/3589334.3645623>

Knowledge Utilization: Previous works have primarily focused on limited task formats such as fill-in-the-blank questions to test the model’s knowledge abilities [42, 46, 51]. However, the complexity or format of a task might influence a model’s knowledge abilities, while this crucial aspect often goes unaddressed in the current literature. For example, *factual editing* [2, 6] requires the model to identify factual inconsistency and make corrections, rather than simply evaluating memorization; *reasoning with structured knowledge* [9, 60] examines the model’s ability to model knowledge in networks and graphs, instead of only probing knowledge at the atomic level. That being said, how well do LLM knowledge abilities generalize to tasks and contexts of varying format and complexity remain underexplored.

Knowledge Breadth: Existing works predominantly consider Wikipedia or a specific domain like biomedical knowledge as the knowledge source for evaluation. However, it has been observed that LLM performance can vary significantly across different knowledge domains [39, 52] - an aspect that has not been adequately addressed in the previous works of LLM knowledge probing and understanding. As a result, the lack of a multi-domain knowledge evaluation of large language models, covering diverse knowledge sources, subject areas, and more, is hindering a comprehensive understanding of LLM knowledge abilities.

To this end, we propose KGQUIZ, a comprehensive benchmark designed to evaluate the knowledge abilities of large language models across multiple knowledge utilization patterns in diverse knowledge domains. Specifically, the KGQUIZ benchmark is constructed with structured information from knowledge graphs (KGs) from three varying domains, representing commonsense, encyclopedic, and domain-specific (biomedical) knowledge. For each knowledge graph, the KGQUIZ benchmark presents a collection of 41,000 knowledge-intensive questions, covering five tasks of increasing complexity: *true-or-false*, *multiple choice*, *blank-filling*, *multi-hop factual editing*, and *open-ended text generation*. These progressively difficult tasks represent the multitudes of LLM knowledge and reasoning abilities, providing a comprehensive and comparative setting to assess LLMs’ abilities: they respectively test LLMs’ abilities to *judge factual correctness*, *select facts based on model confidence*, *retrieve entities*, *perform factual editing*, and *generate long-form knowledge documents*, presenting a holistic probe of LLM knowledge abilities in different application scenarios.

We evaluate 10 open-source and black-box large language models on the KGQUIZ benchmark to better understand which LLM covers what knowledge domain better, and under which utilization contexts. Our experiments demonstrate that: 1) **LLM performance greatly varies across knowledge domains.** For instance, on *Task 5: Open-Ended Text Generation*, ChatGPT [43], ChatGLM [13], and TEXT-DAVINCI-003 [43] respectively perform best when it comes to YAGO, ConceptNet, and UMLS, three knowledge graphs representing varying knowledge domains. 2) **Knowledge utilization greatly impacts LLM’s ability to retrieve and employ factual knowledge.** For instance, ChatGPT’s performance on biomedical knowledge drops by 30% from the fill-in-the-blank task to the factual editing task, suggesting that the additional multi-hop context in factual editing poses new challenges to LLM knowledge abilities. Together, our extensive experiments demonstrate that probing the knowledge abilities of LLMs is nuanced and multi-faceted, with the

largest LLMs excelling in simple knowledge utilization tasks on general knowledge domains, while advanced knowledge contexts and domain-specific information remain open challenges. KGQUIZ helps pinpoint the strengths and knowledge limitations of LLMs with respect to tasks and domains. We envision KGQUIZ as a valuable testbed to understand, evaluate, and improve LLM knowledge abilities across varying knowledge domains and utilization contexts.

2 THE KGQUIZ BENCHMARK

KGQUIZ employs knowledge graphs from diverse domains to construct five knowledge-intensive tasks with increasing complexity. We denote a knowledge graph as a set of triples \mathcal{T} , where the k -th triple is $\mathcal{T}_k = (h_k, r_k, t_k)$, and h_k, r_k and t_k represent the head entity, relation, and tail entity, respectively. We use \mathcal{E} and \mathcal{R} to denote the sets of all entities and relations in the knowledge graph.

2.1 Task 1: True-or-False

As a base assessment of knowledge abilities, True-or-False questions ask whether a given statement is factually correct or not. In a way, this task tests the LLMs’ ability to verify the factuality of KG-based information, which is the most fundamental ability to distinguish between true and false knowledge [10].

Task Formulation We construct two sets of KG triples to represent positive and negative samples (\mathcal{T}_{pos} and \mathcal{T}_{neg}). For a positive triple $(h, r, t) \in \mathcal{T}_{pos}$, we replace the tail entity t with another entity t' to generate a negative sample and add it to \mathcal{T}_{neg} . We then use the prompt for the positive or negative triple (h, r, t) : “*Is the statement h r t True or False?*”. We expect LLMs to answer with *True* or *False*, indicating their judgment of the knowledge statement based on their parametric knowledge.

Negative Sampling We propose four approaches to sample negative entities t' in the knowledge graph to obtain increasingly challenging negative samples.

- **Random** We randomly sample an entity from a set of entities not connected to the head entity h as t' , formally $t' \in \mathcal{E} - \mathcal{E}(h)$, where $\mathcal{E}(h)$ denotes the set of entities connected to h .
- **Semantic Similarity** We hypothesize that semantically similar entities could provide a more challenging setting with harder negative examples. We first use the **Random** method to sample m negative entities. These sampled entities form the set \mathcal{E}_m . Then, we employ an encoder-based language model, denoted as $enc(\cdot)$, to encode the names of these entities. Finally, we use cosine similarity $sim(\cdot, \cdot)$ to select an entity t' that is most similar to t in the embedding space. Formally, $t' = \text{argmax}_{e \in \mathcal{E}_m} sim(enc(e), enc(t))$.
- **Relation Sharing** We hypothesize that using entities sharing the same relation, r , as the selected negative sample would provide a challenging adversarial setting. We first obtain the set of entities that are also associated with relation r as $\mathcal{E}^{(r)}$, then randomly sample one entity from $\mathcal{E}^{(r)}$ as the negative sample t' .
- **Network Proximity** We hypothesize that entities that are close to h in the KG could also present a hard negative example. We obtain the set of entities that are connected to h and randomly sample one entity from it as the negative sample t' .

Evaluation We use accuracy as the evaluation metric for the binary output of *True* or *False*.

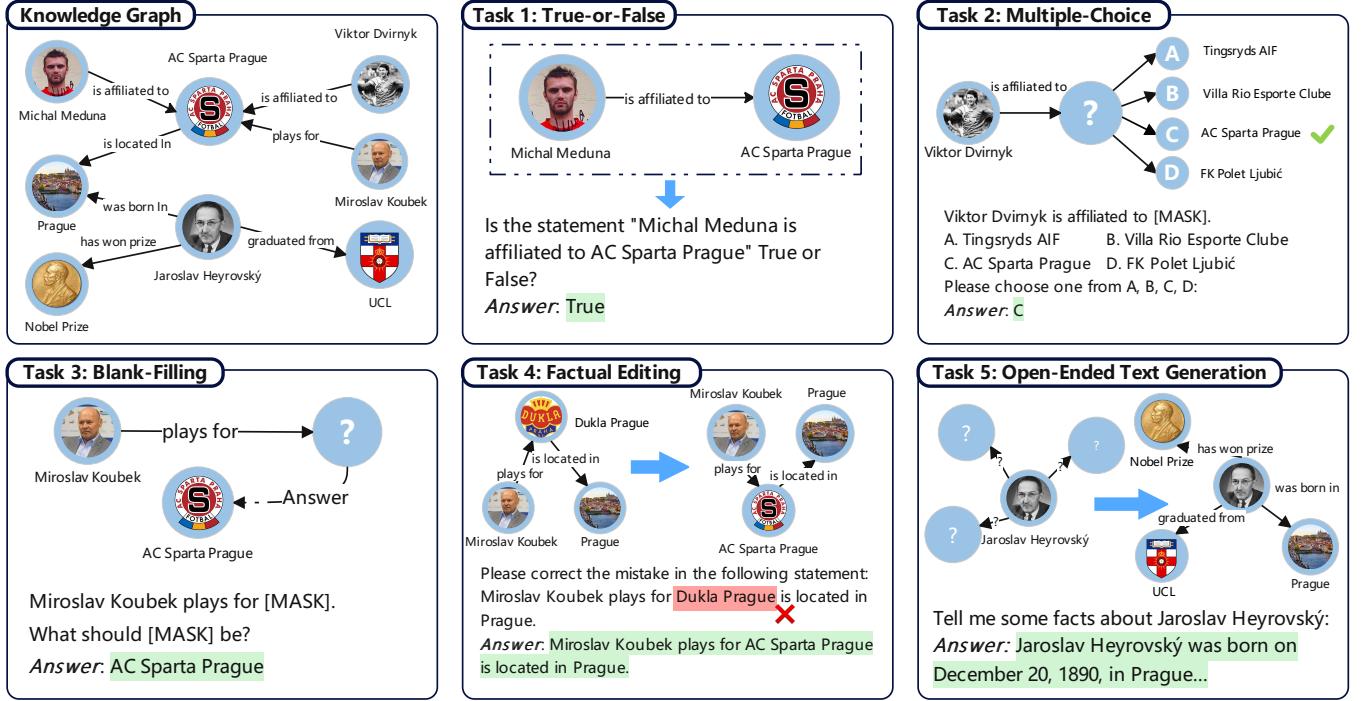


Figure 1: Overview of the KGQuiz Benchmark, featuring five knowledge-intensive tasks with increasing complexity. We illustrate the diverse tasks employed in KGQuiz to test large language models, highlighting the examples and corresponding natural language prompts used to examine their knowledge abilities across domains and contexts.

2.2 Task 2: Multiple-Choice

Building up from the True-or-False task, the multiple-choice task introduces distractors [21, 48, 53]. This task not only tests the ability of LLMs to determine what is factually correct but also their ability to discern the false options from the true options. Therefore, the Multiple-choice task presents a higher degree of complexity, as LLMs need to evaluate the plausibility of different answer options based on their parametric knowledge.

Task Formulation We randomly sample a subset of the knowledge graph, denoted as \mathcal{T}_s . For $(h, r, t) \in \mathcal{T}_s$, we replace the tail entity t with $[MASK]$ and provide m answer options, including the correct entity t and $m - 1$ distractors. We follow the same negative sampling strategies in *Task 1: True-or-False* to obtain the distractors.

Evaluation We similarly use accuracy as the evaluation metric.

2.3 Task 3: Blank-Filling

The Blank-filling task requires LLMs to directly generate the missing information for a given statement [46], compared to the two previous tasks where the correct answer already appeared somewhere in the prompt context. While in tasks 1 and 2, models might just take guesses as they can simply choose one of the available options without knowing the actual answer, in *Task 3: Blank-Filling*, LLMs are required to retrieve the correct answer without any hints or options.

Task Formulation We randomly sample one subset of the knowledge graph, denoted as \mathcal{T}_s . For $(h, r, t) \in \mathcal{T}_s$, we replace the

tail entity t with $[MASK]$. The model is asked to generate the correct answer to replace $[MASK]$.

Evaluation We denote the model output as t_o and we use the following metrics for evaluation:

- **LCS:** We denote the Longest Common Subsequence of t_o and t as s , and LCS is defined as: $\text{LCS} = \frac{\text{Len}(s)}{\max\{\text{Len}(t_o), \text{Len}(t)\}}$
- **F1-score:** We denote the set of common tokens in both t_o and t as C . We denote the F1-score of t_o and t as $\text{F1} = \frac{2PR}{P+R}$, where $P = \frac{|C|}{|t_o|}, R = \frac{|C|}{|t_g|}$.
- **Semantic Match:** We measure semantic similarity between the model's output and the correct answer using cosine similarity on embeddings obtained via InstructGPT Ada LLM $\text{enc}(\cdot)$. This gives us the $\text{AdaScore}(t_o, t) = \text{sim}(\text{enc}(t_o), \text{enc}(t))$. A threshold θ of Adascore is based on a held-out validation set (detailed in Appendix D) to determine whether the model-generated answer and the ground truth are a semantically exact match. Concretely, we define the semantic match metric as $\text{SM}(t_o, t) = 1$ if $\text{AdaScore}(t_o, t) \geq \theta$, else 0.

2.4 Task 4: Factual Editing

The Factual Editing task presents enhanced challenges compared to task 3 by moving from a single knowledge statement to a multi-hop knowledge statement. Task 4 requires LLMs to not only memorize and recall the facts, but also to identify which part of multi-hop knowledge is inconsistent and revise accordingly. While previous works have also explored LLMs' potential in factual editing [2, 6],

Model	Task					Domain			Avg.
	T1	T2	T3	T4	T5	YAGO	CPNet	UMLS	
ADA	8.3	9.7	6.1	5.1	4.8	†6.5	6.8	7.1	6.5
BABBAGE	7.0	6.0	5.0	5.0	3.8	5.7	5.5	†4.8	5.7
CURIE	8.7	9.3	2.8	4.0	2.7	†5.2	6.1	5.2	5.2
DAVINCI	2.0	2.0	1.7	1.6	3.0	†1.9	2.0	2.3	1.9
TURBO	1.0	1.0	3.0	3.9	2.8	†2.3	2.4	2.3	2.3
GPT-J	7.0	7.3	8.7	7.7	9.0	8.0	†7.6	8.1	8.0
OPT	9.0	7.0	8.0	7.8	9.8	†8.2	8.5	8.3	8.2
CHATGLM	4.7	3.0	4.0	7.1	3.8	4.3	†4.0	5.3	4.3
LLAMA	4.0	5.7	8.9	8.1	7.3	7.2	7.1	†6.1	7.2
ALPACA	3.3	4.0	6.9	4.8	7.8	5.6	†4.9	5.6	5.6

Table 1: Overall average rankings of ten LLMs on KGQuiz across five tasks and three knowledge domains. Bold, underline represents the highest and the second highest ranking on each task (or knowledge domain). † denotes the knowledge domain on which each model has its best ranking.

we uniquely focus on a multi-hop format where one of the hops features inconsistent factual information. This task tests LLMs' abilities to handle multi-hop information, localize errors, edit factual inconsistencies, and more.

Task Formulation Given a knowledge graph, we first sample a k -hop path, and we use a structured format to present the multi-hop knowledge path as $\mathbf{d} = (h_1, r_1, e_1, r_2, \dots, t_k)$.² We then randomly replace one of the entities in the path (denoted as e_s) with e' sampled with the negative sampling strategies described in Section 5 to obtain \mathbf{d}' . We concatenate the names of original entities and relations to form a multi-hop knowledge statement denoted as \mathbf{d} and swap one entity with its negative sample to obtain \mathbf{d}' . This task prompts LLMs to correct the factual inconsistency in \mathbf{d}' .

Evaluation We denote the left part of \mathbf{d} (tokens before $e(e_s)$) as L , and the right part of \mathbf{d} (tokens after $e(e_s)$) as R . We first perform the longest common substring match between the output $\mathbf{d}^{(o)}$ of the model and L, R in turn, and delete the obtained common substring from $\mathbf{d}^{(o)}$ to retrieve the revised entity given by LLMs. Then, We adopt the same set of evaluation metrics as task 3, namely LCS, F1-SCORE, and SEMANTIC MATCH, to compare the ground truth entity e_s and the revised entity given by LLMs.

2.5 Task 5: Open-Ended Text Generation

The Open-Ended Text Generation task moves from handling isolated facts (as in the previous tasks) to generating multiple factual associations about a given entity. We evaluate whether the generated factual associations are aligned with the information in existing knowledge graphs. This comparison aims to measure the ability of LLMs to generate accurate and comprehensive factual knowledge of a particular entity. In addition, while tasks in previous works mostly focus on a single factual association [21, 53], we propose the Open-Ended Text Generation task to encourage the knowledge abilities of LLMs in multi-fact and knowledge synthesis settings.

Task Formulation We randomly sample one subset of KG, denoted as \mathcal{T}_s . For $(h, r, t) \in \mathcal{T}_s$, we ask the model to “Tell me some

²To avoid confusion, we denote e_m as the tail entity t_m of the m -th triple in the knowledge path. At the same time, it also serves as the head entity h_{m+1} of the $(m+1)$ -th triple in the knowledge path.

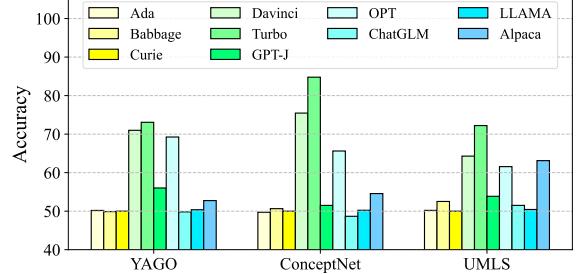


Figure 2: Model performance on Task 1: True-or-False. Larger LMs are better at judging factual correctness, while the same LM performs differently across varying knowledge domains.

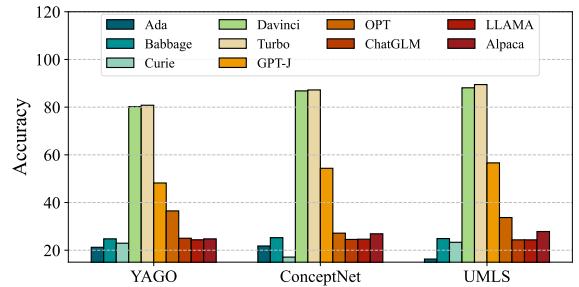


Figure 3: LLM performance on Task 2: Multiple-Choice. DAVINCI and TURBO consistently outperform other models, indicating their superior knowledge abilities under the multiple-choice knowledge utilization format.

facts about h “. We denote all triplets containing h in the knowledge graph as $\mathcal{G} = \{(h, r_g, t_g) \in \mathcal{T}\}$.

Evaluation We evaluate Open-Ended Text Generation generation by comparing the model outputs with the information about entity h in the original knowledge graph, denoted as \mathcal{G} . Concretely, we first prompt a GPT-3.5 LLM to turn the given model output in natural language into a list of fact triplets $\mathcal{O} = \{(h, r_o, t_o)\}$ inspired by previous works [25, 41], where we further evaluate this approach in Appendix D. We then employ the semantic match metric SM in task 3, we define the Precision and Recall between model predictions \mathcal{O} and ground truth \mathcal{G} as: Precision = $\frac{|\mathcal{O} \cap \mathcal{G}|}{|\mathcal{O}|}$, Recall = $\frac{|\mathcal{O} \cap \mathcal{G}|}{|\mathcal{G}|}$, where $\mathcal{O} \cap \mathcal{G}$ denotes the set of triples that are both in model predictions and the knowledge graph with SM = 1.

3 EXPERIMENT SETTINGS

Knowledge Domains. In our experiments, we posit that the performance of LLMs in knowledge-intensive tasks is greatly influenced by diverse knowledge domains. Thus, we consider knowledge graphs from three distinct domains in our experiments: commonsense, encyclopedic, and domain-specific. For commonsense knowledge, we leverage the ConceptNet knowledge graph [50] with 1,103,036 entities, 47 relations, and 3,098,674 triples. For encyclopedic knowledge, we adopt the YAGO knowledge graph [36] with 123,182 entities, 37 relations, and 1,089,040 triples. For domain-specific knowledge, we mainly consider the biomedical domain and

Model	YAGO			ConceptNet			UMLS		
	F1-score	LCS	Sem. Match	F1-score	LCS	Sem. Match	F1-score	LCS	Sem. Match
ADA	2.26	18.24	61.67	1.24	11.76	45.43	5.72	19.43	55.52
BABBAGE	2.60	17.63	60.48	2.07	12.06	64.67	10.37	21.68	71.43
CURIE	<u>5.38</u>	19.63	71.54	3.32	15.11	78.68	<u>10.90</u>	<u>26.04</u>	84.70
DAVINCI	14.02	28.65	73.00	6.27	27.40	91.19	8.28	23.81	<u>87.88</u>
TURBO	4.47	11.83	52.33	<u>5.56</u>	14.42	80.48	19.44	28.18	89.27
GPT-J	0.56	10.75	24.55	1.20	4.53	39.07	9.38	11.74	73.17
OPT	0.66	10.75	27.33	0.75	4.40	45.55	6.88	11.21	73.52
CHATGLM	3.53	<u>21.50</u>	<u>72.27</u>	2.35	<u>20.15</u>	<u>88.07</u>	4.04	19.45	58.71
LLAMA	1.24	11.43	35.97	1.03	3.42	25.96	7.44	9.31	76.64
ALPACA	3.16	10.37	41.52	1.92	6.25	56.55	10.63	13.61	81.88

Table 2: LLM performance on Task 3: Blank-Filling. Sem. Match is short for the semantic match metric. DAVINCI leads on YAGO and ConceptNet, while TURBO performs best on UMLS, indicating that LLM knowledge abilities vary greatly across knowledge domains.

adopt the UMLS knowledge graph [4] with 297,554 entities, 98 relations, and 1,212,586 triples. By conducting our evaluations across knowledge graphs that span varying domains, we aim to provide a comprehensive assessment of how the knowledge abilities of LLMs fare across diverse knowledge domains.

Models and Settings. We evaluate both black-box and open-source LLMs on the KGQuiz benchmark. For black-box LLMs, we adopt InstructGPT [43] (TEXT-ADA-001, TEXT-BABAGGE-001, TEXT-CURIE-001, and TEXT-DAVINCI-003) and ChatGPT (GPT-3.5-TURBO) through the OpenAI API. For open-source LLMs, we adopt GPT-J [56], OPT (6.7B) [61], ChatGLM [13], LLAMA (7B) [55], and Alpaca [54] in the experiments. We use a temperature of $\tau = 0$ to reduce randomness.

Task Settings. For Task 1: True-or-False, we construct 10k examples for each knowledge graph and adopt semantic similarity as the default negative sampling method. In our experiments, we noticed that some LLMs could not answer true-or-false questions based on zero-shot instructions, thus we have added one in-context example to demonstrate the QA format. For Task 2: Multiple-Choice, we use four answer options as the default setting and construct 10k examples for each knowledge graph. Here, too, we incorporate a single in-context example for clarification. For Task 3: Blank-Filling, we randomly sample 10k triplets for each knowledge graph to generate the blank-filling questions. Moving on to Task 4: Factual Editing, we construct 10k knowledge walks for each knowledge graph with the default walk length $k = 3$. Given that some LLMs struggled with this task, an in-context example is provided. Lastly, for Task 5: Open-Ended Text Generation, we select 1k entities in each knowledge graph and ask LLMs to perform open-ended generation³. We use *Semantic Similarity* to sample negative examples in our subsequent experiments.⁴

4 RESULTS

We first calculate the ranking of each model on each task, domain, metric separately. The *Task* rankings in Table 1 are averaged first by metric, then by domain. The *Domain* rankings are averaged first by metric, then by task. The *Avg.* rankings are averaged first by metric, then by task, and finally by domain. These elaborate rankings help to provide a *big picture* of the strengths and weaknesses of LLM knowledge abilities, while the following performance for each individual task provides more detailed insights.

4.1 Task 1: True-or-False

As depicted in Figure 2, among the assessed LLMs, four of them (TEXT-DAVINCI-003, GPT-3.5-TURBO, ChatGLM) performed substantially better than random chance (50%) on all KGs. Notably, GPT-3.5-TURBO achieved the best overall performance, showcasing its ability to discern correct from incorrect knowledge statements. Observation of improved performance with larger model sizes suggests that models with more parameters can encode more knowledge and leverage the stored knowledge to accurately identify the veracity of knowledge statements. Additionally, Even in the simple binary task, many LLMs show accuracy close to 50%, indicating difficulty in distinguishing true and false statements. This suggests a need for further improvement in LLMs' knowledge abilities, particularly for smaller language models.

4.2 Task 2: Multiple-Choice

Figure 3 showcases that TEXT-DAVINCI-003 and GPT-3.5-TURBO consistently outperform other LLMs in understanding and applying knowledge across all KGs and domains. An observation from tasks comparison revealed that TEXT-DAVINCI-003 and GPT-3.5-TURBO's improved performance in Task 2: Multiple-Choice compared to Task 1: True-or-False. However, Alpaca's relative performance dwindled in Task 2, suggesting that the specific knowledge utilization format significantly influences an LLM's ability to retrieve potentially correct answers.

³For some tasks, we use in-context examples. More details in Appendix D.

⁴The specific effect of these four strategies and our choice for *Semantic Similarity* is detailed in section 5.1.1.

Model	YAGO			ConceptNet			UMLS		
	F1-score	LCS	Sem. Match	F1-score	LCS	Sem. Match	F1-score	LCS	Sem. Match
ADA	2.50	<u>14.51</u>	86.76	0.12	14.65	83.84	2.50	<u>18.11</u>	59.85
BABBAGE	2.90	9.47	90.68	0.02	10.42	86.53	2.90	17.78	60.03
CURIE	6.21	8.93	<u>91.20</u>	0.10	<u>15.92</u>	83.14	6.21	19.76	60.24
DAVINCI	16.99	20.58	91.77	5.15	17.31	<u>93.25</u>	<u>5.44</u>	7.28	<u>64.19</u>
TURBO	<u>12.29</u>	13.24	91.06	0.51	1.28	93.32	0.88	8.93	59.05
GPT-J	0.03	0.17	90.34	0.00	0.22	93.21	0.20	0.71	59.98
OPT	0.01	0.06	90.37	0.00	0.06	93.24	0.30	0.88	59.96
CHATGLM	4.94	1.32	89.66	0.14	4.57	90.62	0.42	2.58	76.26
LLAMA	0.03	0.04	90.33	0.00	0.00	93.20	0.43	1.81	59.98
ALPACA	6.80	12.27	90.20	0.87	14.84	93.20	1.46	8.66	59.93

Table 3: LLM performance on Task 4: Factual Editing. Model performance is generally higher than blank-filling, indicating the helpfulness of additional context and emphasizing the influence of knowledge utilization. Models such as TURBO, DAVINCI, and ChatGLM show variations in performance across different knowledge graphs, highlighting the influence of knowledge domains.

4.3 Task 3: Blank-Filling

Compared to true-or-false and multiple-choice questions, blank filling requires LLMs to retrieve the correct answer from their parametric knowledge without relying on any options. In Table 2, the overall low LCS scores reflect that LLMs' generated answers struggle to match the exact target answer. Moreover, the models' abilities differ significantly, with TEXT-DAVINCI-003 excelling in two domains (YAGO and ConceptNet) but GPT-3.5-TURBO performing better in the biomedical domain (UMLS). Additionally, we observe a noticeable decrease in performance in the biomedical domain, suggesting that the models may not be as proficient in handling domain-specific knowledge.

4.4 Task 4: Factual Editing

Compared to blank-filling, *Task 4: Factual Editing* involves identifying and rectifying factual inconsistencies within given knowledge statements. According to the results in Table 3, the additional context indeed aids certain models in generating fact-checked responses on certain KGs (YAGO and ConceptNet), with TEXT-DAVINCI-003 and GPT-3.5-TURBO scoring well for YAGO and ConceptNet respectively, and ChatGLM excelling on UMLS. It highlights that tasks such as dialogue generation and summarization, which usually come with relevant context, may work better with LLMs. However, when provided only with a short question, QA models may get confused easily. The task-wise change in top-performing models indicates that the form of knowledge utilization impacts an LLM's knowledge abilities significantly.

4.5 Task 5: Open-Ended Text Generation

Open-ended generation tasks present a more complex challenge to LLMs as it requires not just specific factual associations, but also the generation of a consistent paragraph about a certain entity encapsulating assorted facts and knowledge. As observed in Table 4, TEXT-DAVINCI-003 tops the chart with the highest AdaScore_s score across all three KGs, denoting its proficient ability to produce well-structured and factually accurate knowledge paragraphs.

Model	YAGO		ConceptNet		UMLS	
	Precision	Recall	Precision	Recall	Precision	Recall
ADA	75.84	34.89	90.93	24.90	59.45	19.47
BABBAGE	84.66	35.34	<u>95.01</u>	18.84	<u>81.52</u>	22.93
CURIE	85.69	38.64	96.59	22.46	83.43	26.80
DAVINCI	76.39	53.96	88.12	<u>41.55</u>	77.48	46.06
TURBO	<u>77.28</u>	57.63	89.39	40.53	75.94	<u>43.89</u>
GPT-J	11.97	8.78	24.11	12.07	10.72	5.96
OPT	14.06	7.72	16.89	5.26	10.35	5.43
CHATGLM	71.00	<u>54.54</u>	88.05	46.49	63.59	39.72
LLAMA	39.17	29.29	36.78	11.78	26.14	11.85
ALPACA	22.96	17.77	28.63	13.94	12.69	7.53

Table 4: Model performance on Task 5: Open-Ended Text Generation. Different from previous tasks, generating long and open-ended statements about entities poses new challenges to LLMs.

TEXT-CURIE-001 stands out with the highest Precision score, indicating its preference to generate knowledge closely in line with the respective knowledge graph. From a Recall perspective, the best performances are achieved by GPT-3.5-TURBO, ChatGLM, and TEXT-DAVINCI-003 on the three respective KGs. These findings emphasize that the knowledge domain significantly affects the performance of LLMs in knowledge-intensive tasks, underscoring the need for comprehensive evaluations of LLMs' knowledge abilities that consider varying knowledge domains.

5 ANALYSIS

5.1 Benchmark analysis

5.1.1 Negative Sampling Strategy. In section 2.1, we propose and formalize four negative sampling methods to generate questions in the KGQuiz benchmark. In order to investigate their impact on the difficulty of the task, we use the four negative sampling strategies, *Random* (RA), *Semantic Similarity* (SS) *Relation Sharing* (RS), and *Network Proximity* (NP) to generate questions for *Task 1: True-or-False* based on the YAGO knowledge graph. We evaluate

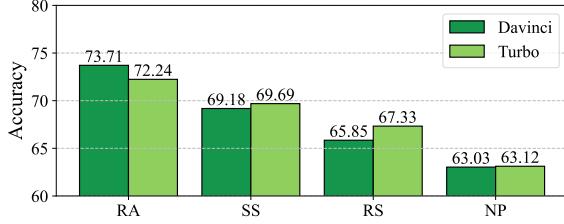


Figure 4: Performance on Task 1: True-or-False with varying negative sampling methods. The choice of negative sampling has a significant impact on the difficulty of the task.

TEXT-DAVINCI-003 and GPT-3.5-TURBO as shown in Figure 4. These results show that different negative sampling methods *do* impact on the difficulty of the problem, ranging from easy to difficult in the following order: *Random*, *Semantic Similarity*, *Relation Sharing*, and *Network Proximity*. It is also demonstrated that whether LLMs can select the correct answer is impacted by the plausibility of negative examples.

In particular, we employed *Semantic Similarity* as an intermediate strategy presenting reasonable complexity. This strategy, while challenging, does not make the task excessively difficult. Furthermore, while we propose this specific strategy, KGQuiz benchmark supports the flexibility of adopting other negative sampling settings.

5.1.2 Question Sampling. In KGQuiz, for each task, we generate questions by randomly sampling triplets (or head entities) from the KG, while whether the randomly sampled subsets is represented of the whole KG remain underexplored. To this end, we design two additional ways to sample a problem subset:

- **Relation Proportion:** We first calculate the proportion of relations in the KG, then sample triplets based on the relation distribution. This ensures that the proportion of relations in the sampled triples is consistent with the proportion of relations in the entire knowledge graph.
- **Entity Clustering:** First, we use knowledge graph embedding model TransE [5] to obtain the embedding for each entity, then we use K-means to obtain 10 clusters of entities. We sample triplets based on the proportions of the number of entities in each cluster.

We generated 1,000 Task 1: True-or-False questions and 1,000 Task 2: Multiple-Choice questions on ConceptNet using these two methods respectively. According to Figure 5, we find that after changing to these two sampling methods that can theoretically better represent the features of the knowledge graph, the performance of each model did not change significantly (compared to random sampling). This indicates that randomly sampled triples can also reflect the features of the entire knowledge graph and the corresponding results are representative.

5.1.3 Exact Match vs. Semantic Match. We conduct qualitative analysis for Task 3: Blank-Filling and present a few examples in Table 5. It is demonstrated that answers generated by LLMs do not exactly match the gold label, where the exact match (EM) metric would treat the answer as incorrect. However, the generated responses are semantically equivalent. For instance, in the first example, the

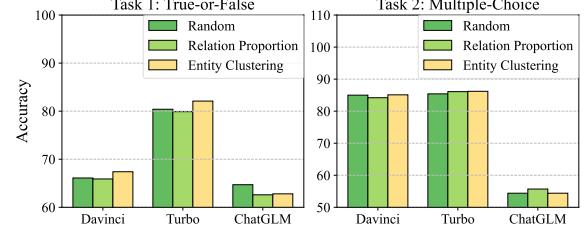


Figure 5: Comparison of model performance across different question sampling methods. Models are evaluated on 1,000 Task 1: True-or-False questions and 1,000 Task 2: Multiple-Choice questions sampled via three different methods.

Question	Prediction	Gold
Bob Hawke graduated from _____	Oxford University	University of Oxford
Rosemary Sutcliff has won prize _____	The Carnegie Medal	Carnegie Medal (literary award)
Taito Corporation is located in _____	Tokyo, Japan	Shibuya, Tokyo

Table 5: Qualitative analysis of Task 3: Blank-Filling, suggesting that our proposed Semantic Match presents a more nuanced metric for knowledge probing.

word order is different but both answers convey the same meaning. Similarly, in the third example, “Tokyo, Japan” is more general than the gold answer “Shibuya, Tokyo” but it still provides the correct location information. While the exact match metric would treat them as incorrect, under our proposed *Semantic Match*, all four answers are deemed as correct, indicating that *Semantic Match* presents a better evaluation metric in LLM knowledge probing given the nuanced nature of entity names [30].

5.1.4 Negative Sampling Evaluation. Regarding the four negative sampling methods we proposed, a potential issue is that the sampled data may not be genuine negative samples. Therefore, in order to investigate the effectiveness of our negative sampling methods, we manually evaluated 20 samples for each method. In our manual evaluation, all the sampled examples were indeed true negative samples, which validated the effectiveness of our negative sampling methods. We further expand this evaluation by employing Perplexity AI⁵, a state-of-the-art fact-checking tool, to examine a subset of negative samples on YAGO: they have all been identified by Perplexity AI as either not in accordance with the facts or lacking information to support this statement.

5.2 LLM analysis

5.2.1 Consistency Study. In this study, we investigate the robustness towards minor changes in prompts and knowledge statements. We select 100 questions from the YAGO knowledge graph in Task 1: True-or-False and evaluate with five different prompts and instructions (more details in Appendix E.1). We measure response

⁵<https://www.perplexity.ai/>

Model	Text		Triplets	
	Precision	Recall	Precision	Recall
DAVINCI	76.39	53.96	85.21	37.58
TURBO	77.28	57.63	91.42	37.21

Table 6: Comparison of precision and recall for open-ended text generation and direct triplet generation using TEXT-DAVINCI-003 and GPT-3.5-TURBO.

consistency of the five black-box LLMs using the Fleiss Kappa measure [16]. The experiment results show that LLMs have varying robustness towards prompt formats: TURBO (0.645) has the highest score, suggesting a moderate level of agreement. DAVINCI (0.285) exhibits a lower but still positive value. However, ADA (-0.187), BAB-BAGE (-0.057), and CURIE (-0.168) show negative Fleiss Kappa values, indicating poor agreement and suggesting that model responses are less consistent towards minor changes in knowledge probing instructions. This study highlights that the robustness to minor changes in knowledge-intensive prompts is in itself part of LLM’s knowledge abilities.

5.2.2 Generating Triplets vs. Text. We use TEXT-DAVINCI-003 and GPT-3.5-TURBO to directly generate factual triplets about a certain entity (by giving an in-context example) and reported the precision and recall in Table 6. It can be observed that although the precision has improved, the recall has dropped significantly. We analyzed that this is due to the model generating only a few high-confidence triplets when directly asked for triplets, which led to the aforementioned results. However, for other smaller-scale models, directly generating factual triplets is not feasible, as they cannot adequately understand the prompt’s instructions, resulting in poor performance.

6 RELATED WORK

LLM Knowledge Probing. Research into what knowledge is stored in LLMs has drawn significant interest. Pioneering work like LAMA [46], TempLAMA [11], MMLU [20] quantitatively measured the factual knowledge in these models. Other approaches have expanded these probing techniques, exploring topics like few-shot learning and 2-hop relational knowledge [19]. Furthermore, open-domain question-answering benchmarks like Natural Questions [28], and TriviaQA [24] have been used to measure the practical knowledge abilities of these models, aligning the probing tasks with real-world applications.

Improving LLM Knowledge Abilities. Efforts to enhance LLM’s knowledge abilities include augmenting language models with knowledge graphs for structured, factual knowledge [40, 47] and using retrieval-augmented methods like RAG [29], REALM [18], and REPLUG [49] to incorporate external documents as a dynamic knowledge source. Further, REMEDI [22] aims to create a finer control over knowledge in LLMs by understanding fact encodings in the model’s internal representation system. In parallel, the framework Knowledge Card [14] suggests using specialized language models to provide modular and up-to-date knowledge in a collaborative process.

Investigating the Limitation of LLM Knowledge Abilities. As LLMs have shown promise in knowledge-based tasks, researchers have also started examining the limitations of these models’ knowledge abilities. This includes their ability to handle conflicted information [8, 57], recall abilities [37], and self-evaluating skills [26]. By investigating these limitations, researchers aim to not only devise ways to address them but also shed light on how LLMs can operate more effectively in more sophisticated tasks, particularly in professional domains [39, 52].

In summary, while considerable work has been done in probing the knowledge abilities of LLMs, improving these abilities, and investigating their limitations, two major aspects have seen less consideration: knowledge utilization and knowledge breadth. Compared to previous work[45], the five tasks in KGQUIZ feature increasing difficulty in knowledge utilization patterns, which can aid the critical analysis of LLM knowledge abilities. Also, instead of focusing on employing *external* knowledge sources for tasks, KGQUIZ tests the robustness and generalization of the *internal* knowledge stored in LLM parameters. Moreover, a key feature of KGQuiz is that it can be seamlessly extended to new knowledge domains using our dataset construction methodology. This flexibility to use diverse knowledge sources to create new evaluation protocols following our methodology sets it apart from other benchmarks.

7 CONCLUSION

We propose KGQUIZ, a benchmark for probing the knowledge generalization abilities of Large Language Models (LLMs). Unlike previous work, our benchmark focuses on two often-overlooked aspects: the complexity of knowledge utilization and the breadth of knowledge domains. Our benchmark uses structured information from knowledge graphs (KGs) across three diverse domains, and it consists of several tasks representing increasingly complex forms of knowledge utilization. Our experimental results illustrate varying performances of several LLMs across different domains and tasks, underscoring the multi-faceted nature of knowledge abilities in LLMs. This also demonstrates the importance of considering Knowledge Utilization and Knowledge Breadth. We envision KGQUIZ as a comprehensive testbed to evaluate, understand, and improve the knowledge abilities of LLMs across varying domains and tasks.

ACKNOWLEDGEMENTS

We thank the reviewers, the area chair, members of Tsvetshop, the LUD Lab, and the UW NLP Group for their feedback. This research is supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via the HIATUS Program contract #2022-2207220004. This material is also funded by the DARPA Grant under Contract No. HR001120C0124. We also gratefully acknowledge support from NSF CAREER Grant No. IIS2142739, NSF Grants No. IIS2125201, IIS2203097, and the Alfred P. Sloan Foundation Fellowship. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

REFERENCES

[1] Leonard Adolphs, Kurt Shuster, Jack Urbanek, Arthur Szlam, and Jason Weston. 2022. Reason first, then respond: Modular Generation for Knowledge-infused Dialogue. In *Findings of the Association for Computational Linguistics: EMNLP 2022*. Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, 7112–7132. <https://aclanthology.org/2022.findings-emnlp.527>

[2] Vidhisha Balachandran, Hannaneh Hajishirzi, William Cohen, and Yulia Tsvetkov. 2022. Correcting Diverse Factual Errors in Abstractive Summarization via Post-Editing and Language Model Infilling. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*. Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, 9818–9830. <https://aclanthology.org/2022.emnlp-main.667>

[3] Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wile, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. 2023. A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity. *ArXiv* abs/2302.04023 (2023).

[4] O. Bodenreider. 2004. The Unified Medical Language System (UMLS): integrating biomedical terminology. *Nucleic Acids Research* 32, 90001 (Jan. 2004), 267D–270. <https://doi.org/10.1093/nar/gkh061>

[5] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Ok-sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-Relational Data. In *Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2* (Lake Tahoe, Nevada) (NIPS'13). Curran Associates Inc., Red Hook, NY, USA, 2787–2795.

[6] Anthony Chen, Panupong Pasupat, Sameer Singh, Hongrae Lee, and Kelvin Guu. 2023. PURR: Efficiently Editing Language Model Hallucinations by Denoising Language Model Corruptions. *ArXiv preprint arXiv:2305.14908* (2023).

[7] Hung-Ting Chen, Michael Zhang, and Eunsol Choi. 2022. Rich Knowledge Sources Bring Complex Knowledge Conflicts: Recalibrating Models to Reflect Conflicting Evidence. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*. Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, 2292–2307. <https://aclanthology.org/2022.emnlp-main.146>

[8] Jiangjie Chen, Wei Shi, Ziqian Fu, Sijie Cheng, Lei Li, and Yanghua Xiao. 2023. Say What You Mean! Large Language Models Speak Too Positively about Negative Commonsense Knowledge. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Association for Computational Linguistics, Toronto, Canada, 9890–9908. <https://doi.org/10.18653/v1/2023.acl-long.550>

[9] Shiqi Chen, Yiran Zhao, Jinghan Zhang, I-Chun Chern, Siyang Gao, Pengfei Liu, and Junxian He. 2023. FELM: Benchmarking Factuality Evaluation of Large Language Models. *arXiv:2310.00741* [cs.CL]

[10] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. 2019. BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*. 2924–2936.

[11] Bhuwan Dhingra, Jeremy R. Cole, Julian Martin Eisenschlos, Daniel Gillick, Jacob Eisenstein, and William W. Cohen. 2022. Time-Aware Language Models as Temporal Knowledge Bases. *Transactions of the Association for Computational Linguistics* 10 (2022), 257–273. https://doi.org/10.1162/tacl_a_00459

[12] Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason Weston. 2019. Wizard of Wikipedia: Knowledge-Powered Conversational Agents. In *International Conference on Learning Representations*. <https://openreview.net/forum?id=r1l73iRqKm>

[13] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM: General Language Model Pretraining with Autoregressive Blank Infilling. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. 320–335.

[14] Shangbin Feng, Weijia Shi, Yuyang Bai, Vidhisha Balachandran, Tianxing He, and Yulia Tsvetkov. 2023. CooK: Empowering General-Purpose Language Models with Modular and Collaborative Knowledge. *arXiv:2305.09955* [cs.CL]

[15] Yanlin Feng, Xinyu Chen, Bill Yuchen Lin, Peifeng Wang, Jun Yan, and Xiang Ren. 2020. Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question Answering. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. Association for Computational Linguistics, Online, 1295–1309. <https://doi.org/10.18653/v1/2020.emnlp-main.99>

[16] Joseph L. Fleiss. 1971. Measuring nominal scale agreement among many raters. *Psychological Bulletin* 76 (1971), 378–382.

[17] Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2023. News Summarization and Evaluation in the Era of GPT-3. *arXiv:2209.12356* [cs.CL]

[18] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. 2020. REALM: Retrieval-Augmented Language Model Pre-Training. In *Proceedings of the 37th International Conference on Machine Learning (ICML '20)*. JMLR.org, Article 368, 10 pages.

[19] Tianxing He, Kyunghyun Cho, and James Glass. 2021. An Empirical Study on Few-shot Knowledge Probing for Pretrained Language Models. *arXiv:2109.02772* [cs.AI]

[20] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 2021. Measuring Massive Multitask Language Understanding. In *International Conference on Learning Representations*. <https://openreview.net/forum?id=d7KBjmj3GmQ>

[21] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 2021. Measuring Massive Multitask Language Understanding. *Proceedings of the International Conference on Learning Representations (ICLR)* (2021).

[22] Evan Hernandez, Belinda Z. Li, and Jacob Andreas. 2023. Inspecting and Editing Knowledge Representations in Language Models. *arXiv:2304.00740* [cs.CL]

[23] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Wenliang Dai, Andrea Madotto, and Pascale Fung. 2022. Survey of Hallucination in Natural Language Generation. *Comput. Surveys* 55 (2022), 1–38.

[24] Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. 2017. TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Association for Computational Linguistics, Vancouver, Canada, 1601–1611. <https://doi.org/10.18653/v1/P17-1147>

[25] Martin Jisosfiski, Marija Sakota, Maxime Peyrard, and Robert West. 2023. Exploiting asymmetry for synthetic training data generation: Synthie and the case of information extraction. *arXiv preprint arXiv:2303.04132* (2023).

[26] Saurav Kadavath, Tom Conery, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer El-Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bowman, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared Kaplan. 2022. Language Models (Mostly) Know What They Know. *arXiv:2207.05221* [cs.CL]

[27] Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and Davood Rafiee. 2023. Evaluating Open-Domain Question Answering in the Era of Large Language Models. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Association for Computational Linguistics, Toronto, Canada, 5591–5606. <https://doi.org/10.18653/v1/2023.acl-long.307>

[28] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural Questions: A Benchmark for Question Answering Research. *Transactions of the Association for Computational Linguistics* 7 (2019), 452–466. https://doi.org/10.1162/tacl_a_00276

[29] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In *Advances in Neural Information Processing Systems*, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 9459–9474. https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf

[30] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. 2020. A survey on deep learning for named entity recognition. *IEEE Transactions on Knowledge and Data Engineering* 34, 1 (2020), 50–70.

[31] Junlong Li, Zhiusheng Zhang, and Hai Zhao. 2022. Self-Prompting Large Language Models for Open-Domain QA. *ArXiv* abs/2212.08635 (2022). <https://api.semanticscholar.org/CorpusID:254823646>

[32] Miaoan Li, Baolun Peng, and Zhu Zhang. 2023. Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models. *ArXiv* abs/2305.14623 (2023). <https://api.semanticscholar.org/CorpusID:258865801>

[33] Bill Yuchen Lin, Xinyu Chen, Jamin Chen, and Xiang Ren. 2019. KagNet: Knowledge-Aware Graph Networks for Commonsense Reasoning. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*. Association for Computational Linguistics, Hong Kong, China, 2829–2839. <https://doi.org/10.18653/v1/D19-1282>

[34] Shilei Liu, Xiaofeng Zhao, Bochao Li, Feiliang Ren, Longhui Zhang, and Shujuan Yin. 2021. A Three-Stage Learning Framework for Low-Resource Knowledge-Grounded Dialogue Generation. In *Conference on Empirical Methods in Natural Language Processing*.

[35] Yixin Liu, Alexander R. Fabbri, Pengfei Liu, Dragomir Radev, and Arman Cohan. 2023. On Learning to Summarize with Large Language Models as References. *arXiv:2305.14239* [cs.CL]

[36] Farzaneh Mahdisoltani, Joanna Asia Biega, and Fabian M. Suchanek. 2015. YAGO3: A Knowledge Base from Multilingual Wikipedias. In *Conference on Innovative Data Systems Research*.

[37] Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi. 2023. When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories. *arXiv:2212.10511* [cs.CL]

[38] Potsawee Manakul, Adian Liusie, and Mark John Francis Gales. 2023. SelfCheck-GPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models. *ArXiv* abs/2303.08896 (2023). <https://api.semanticscholar.org/CorpusID:257557820>

[39] Zaiqiao Meng, Fangyu Liu, Ehsan Shareghi, Yixuan Su, Charlotte Collins, and Nigel Collier. 2022. Rewire-then-Probe: A Contrastive Recipe for Probing Biomedical Knowledge of Pre-trained Language Models. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Association for Computational Linguistics, Dublin, Ireland, 4798–4810. <https://doi.org/10.18653/v1/2022.acl-long.329>

[40] Todor Mihaylov and Anette Frank. 2018. Knowledgeable Reader: Enhancing Cloze-Style Reading Comprehension with External Commonsense Knowledge. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Association for Computational Linguistics, Melbourne, Australia, 821–832. <https://doi.org/10.18653/v1/P18-1076>

[41] Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023. FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation. *arXiv preprint arXiv:2305.14251* (2023).

[42] Vishwas Murthyunaya, Pouya Pezeshkpour, Estevam Rhruschka, and Nikita Bhutani. 2023. Rethinking Language Models as Symbolic Knowledge Graphs. *ArXiv* abs/2308.13676 (2023). <https://api.semanticscholar.org/CorpusID:261242776>

[43] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training language models to follow instructions with human feedback. In *Advances in Neural Information Processing Systems*, Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (Eds.). <https://openreview.net/forum?id=TG8KACxEON>

[44] Artidoro Pagnoni, Vidhisha Balachandran, and Yulia Tsvetkov. 2021. Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*. Association for Computational Linguistics, Online, 4812–4829. <https://doi.org/10.18653/v1/2021.nacl-main.383>

[45] Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillet, Vassilis Plachouras, Tim Rocktäschel, and Sebastian Riedel. 2021. KILT: a Benchmark for Knowledge Intensive Language Tasks. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*. Association for Computational Linguistics, Online, 2523–2544. <https://doi.org/10.18653/v1/2021.nacl-main.200>

[46] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller. 2019. Language Models as Knowledge Bases?. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*. Association for Computational Linguistics, Hong Kong, China, 2463–2473. <https://doi.org/10.18653/v1/D19-1250>

[47] Moritz Plenz, Juri Opitz, Philipp Heinisch, Philipp Cimiano, and Anette Frank. 2023. Similarity-weighted Construction of Contextualized Commonsense Knowledge Graphs for Knowledge-intense Argumentation Tasks. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Association for Computational Linguistics, Toronto, Canada, 6130–6158. <https://doi.org/10.18653/v1/2023.acl-long.338>

[48] Joshua Robinson, Christopher Michael Rytting, and David Wingate. 2022. Leveraging Large Language Models for Multiple Choice Question Answering. *arXiv preprint arXiv:2210.12353* (2022).

[49] Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and Wen-tau Yih. 2023. REPLUG: Retrieval-Augmented Black-Box Language Models. *arXiv:2301.12652* [cs.CL]

[50] Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. ConceptNet 5.5: An Open Multilingual Graph of General Knowledge. In *Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence* (San Francisco, California, USA) (AAAI'17). AAAI Press, 4444–4451.

[51] Kai Sun, Yifan Ethan Xu, Hanwen Zha, Yue Liu, and Xin Luna Dong. 2023. Head-to-Tail: How Knowledgeable are Large Language Models (LLM)? A.K.A. Will LLMs Replace Knowledge Graphs? *arXiv:2308.10168* [cs.CL]

[52] Mujeen Sung, Jinyu Lee, Sean Yi, Minji Jeon, Sungdong Kim, and Jaewoo Kang. 2021. Can Language Models be Biomedical Knowledge Bases?. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*. Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, 4723–4734. <https://doi.org/10.18653/v1/2021.emnlp-main.388>

[53] Alon Talmor, Jonathan Herzog, Nicholas Lourie, and Jonathan Berant. 2019. CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*. Association for Computational Linguistics, Minneapolis, Minnesota, 4149–4158. <https://doi.org/10.18653/v1/N19-1421>

[54] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_alpaca

[55] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models. *arXiv:2302.13971* [cs.CL]

[56] Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. <https://github.com/kingoflolz/mesh-transformer-jax>

[57] Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and Yu Su. 2023. Adaptive Chameleon or Stubborn Sloth: Unraveling the Behavior of Large Language Models in Knowledge Clashes. *arXiv:2305.13300* [cs.CL]

[58] Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren, Xikun Zhang, Christopher D. Manning, Percy Liang, and Jure Leskovec. 2022. Deep Bidirectional Language-Knowledge Graph Pretraining. In *Neural Information Processing Systems (NeurIPS)*.

[59] Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. 2021. QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*. Association for Computational Linguistics, Online, 535–546. <https://doi.org/10.18653/v1/2021.nacl-main.45>

[60] Jifan Yu, Xiaozhi Wang, Shangqing Tu, Shulin Cao, Daniel Zhang-Li, Xin Lv, Hao Peng, Zijun Yao, Xiaohan Zhang, Hanming Li, Chunyang Li, Zheyuan Zhang, Yushi Bai, Yantao Liu, Amy Xin, Nianyi Lin, Kaifeng Yun, Linlu Gong, Jianhui Chen, Zhili Wu, Yunjia Qi, Weikai Li, Yong Guan, Kaisheng Zeng, Ji Qi, Hailong Jin, Jinxin Liu, Yu Gu, Yuan Yao, Ning Ding, Lei Hou, Zhiyuan Liu, Bin Xu, Jie Tang, and Juanzi Li. 2023. KoLA: Carefully Benchmarking World Knowledge of Large Language Models. *arXiv:2306.09296* [cs.CL]

[61] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer. 2022. OPT: Open Pre-trained Transformer Language Models. *arXiv:2205.01068* [cs.CL]

[62] Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B. Hashimoto. 2023. Benchmarking Large Language Models for News Summarization. *arXiv:2301.13848* [cs.CL]

[63] Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy Liang, Christopher D Manning, and Jure Leskovec. 2021. GreaseLM: Graph REASOning Enhanced Language Models. In *International Conference on Learning Representations*.

[64] Ruilin Zhao, Feng Zhao, Guandong Xu, Sixiao Zhang, and Hai Jin. 2022. Can Language Models Serve as Temporal Knowledge Bases?. In *Findings of the Association for Computational Linguistics: EMNLP 2022*, Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.). Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, 2024–2037. <https://doi.org/10.18653/v1/2022.findings-emnlp.147>

A LIMITATIONS

LLM and KG selection. Due to computational and budget constraints, we restricted our study to ten representative LLMs and three knowledge graphs each from a different domain. As we plan to make KGQuiz publicly accessible, further investigation into the performance of a broader range of LLMs on assorted knowledge graphs is left for future endeavors.

Evaluation Metrics. Being the case that LLMs might not fully adhere to the context in our prompts, we were required to deploy human-crafted string-processing functions to preprocess the content the models generated, to evaluate the results. This step is susceptible to errors that may lead to inaccurate results. As the Semantic Match method is not 100% accurate, we report both the semantic similarity and exact match side-by-side and we believe they should be taken together. We argue that similar metrics such as BERTscore and BARTscore also have similar pros and cons.

Knowledge Coverage. Due to the vast scale of real-world knowledge, we are unable to evaluate whether all the content generated

ID	Prompt
1	Is the statement “[Insert statement here]” True or False?
2	Given the statement “[Insert statement here]”, is this factually correct? Please answer with True or False.
3	Assess the validity of this claim: “[Insert statement here]”. Respond with only True or False.
4	Is the following statement factually accurate? “[Insert statement here]” Provide your answer as either True or False.
5	Can you confirm if this statement is true or false? “[Insert statement here]”. Reply with just True or False.

Table 7: Five prompt templates we used to investigate the robustness towards minor changes in prompts and knowledge statements. We use the sampled knowledge statement to replace [Insert statement here] in each template and obtain 5 different prompts for the same knowledge statement.

by the model is completely factual in our benchmark. We can only assess whether the content generated by the model aligns with the knowledge stored in the knowledge graphs. However, the coverage of real-world knowledge by the knowledge graph is limited, leading to potential errors in our evaluation. However, as our benchmark is scalable, we can mitigate this limitation to some extent by generating corresponding tasks (questions) using broader (or more applicable) and more up-to-date knowledge graphs.

Knowledge Breadth. Our benchmark takes into account the knowledge of three domains: commonsense, encyclopedic, and biomedical. The first two domains are more general, while only biomedical is domain-specific. However, our benchmark can be easily extended to knowledge graphs in other domains, as long as there are corresponding triplet data. This, to some extent, mitigates this limitation.

Evaluation of the Generalization of LLM Encoded Knowledge. While LLMs do have a wide spectrum of abilities, in this work our focus is the *generalization of LLM encoded knowledge*, i.e. how well could LLM leverage the knowledge stored in its model parameters to answer questions in varying contexts. By designing and experimenting with a taxonomy of 5 knowledge-probing tasks, we advance the understanding of LLM knowledge while pinpointing its limitations on certain tasks and domains. We envision KGQuiz as a valuable benchmark to guide the efforts for improving LLM knowledge abilities, while the holistic evaluation of all LLM capabilities might be beyond the scope of an 8-page paper

B ETHICS STATEMENT

Privacy. As KGs encompass a wealth of knowledge on a multifarious range of topics, it can include sensitive or private information. The potential for an LLM, that effectively covers and utilizes this knowledge domain, could generate responses disclosing personal details of individuals or organizations. This introduces privacy concerns and reinforces the need for developing privacy-conscious approaches when leveraging and assessing LLMs and KGs.

Accessibility. In making KGQuiz publicly accessible, we aspire to propel further research on LLMs’ knowledge abilities. However, the use of this benchmark may necessitate significant resources due to the inherent complexities of large language models. Similarly, evaluating black-box LLMs could incur significant costs, potentially creating barriers to access to the benchmark for researchers with limited computational resources or budget, contributing to elevated entry barriers in this field.

C DISCUSSION

D KGQUIZ DETAILS

In-Context Examples. Through experiments, we discovered that for the majority of LLMs, their performance in a zero-shot setting is unusually low on some tasks. We think this is because they are unable to precisely comprehend the question’s meaning (instructions), and they cannot produce output in the format we expect. Therefore, to preserve fairness without compromise, we have incorporated an in-context example into the prompts of each question for *Task 1: True-or-False*, *Task 2: Multiple-Choice*, and *Task 4: Factual Editing*, which will enable a better assessment of the model’s knowledge abilities.

Threshold for Semantic Match. For three knowledge graphs, we randomly selected 1,000 entities each. For each entity, we prompted GPT-4 to generate five entities with the same reference and five entities with different references. As a result, we obtained a total of $3 \times 1,000 \times 5$ positive samples and $3 \times 1,000 \times 5$ negative samples. For each sample pair, we calculated their AdaScore. We chose a threshold so that if a positive sample’s AdaScore is above the threshold or a negative sample’s AdaScore is below the threshold, the sample pair is correctly classified; otherwise, it is misclassified. We selected the threshold that minimized the number of misclassified samples as the Semantic Match threshold.

LLMs Details. To better understand the experimental methods and analysis results, we present the model size and the training data of each large language model used in KGQuiz in Table 8.

E ANALYSIS (CONT.)

E.1 Consistency Study

In Section 5.2.1, we investigate the robustness towards minor changes in prompts and knowledge statements. We select 100 questions from the YAGO knowledge graph in Task 1: True-or-False and evaluate with five different prompts and instructions. We present the five different prompts we used in Table 7.

E.2 Validity of Semantic Similarity Method

In section 2.1, we proposed the Semantic Similarity method for negative sampling. To reduce the computational cost, we only compare similarities among randomly selected m entities. Table 9 presents four *Task 2: Multiple-Choice* questions generated through the ss algorithm sampling. From this, we can see that although there are

Model	Open?	Size	Training Data
Ada	N	~350m	N/A
Babbage	N	~1.3b	N/A
Curie	N	~6.7b	N/A
Davinci	N	~175b	N/A
GPT-3.5Turbo	N	N/A	N/A
GPT-J	Y	~6b	The Pile, a 825 GiB diverse, open source language modelling data set
OPT	Y	~6.7b	a concatenation of BookCorpus, CCNews, The Pile, and PushShift.io Reddit
ChatGLM	Y	~6b	N/A
LLaMA	Y	~7b	a mixture of several sources: CommonCrawl, C4, Github, Wikipedia, Books, ArXiv, and StackExchange
Alpaca	Y	~7b	fine-tuned LLaMA with instruction-following dataset

Table 8: Details of LLMs used in KGQuiz.

Owen Pickard is affiliated to [MASK].

A. F.C. Lixa B. Bideford A.F.C. C. Stenhousemuir F.C. D. Erith & Belvedere F.C.
Please choose one from A, B, C, D:

Ground Truth: B. Bideford A.F.C.

Los Angeles International Airport is connected to [MASK].

A. Guangzhou Baiyun International Airport B. Honolulu International Airport C. Rohtak D. General Rodolfo Sánchez Taboada International Airport
Please choose one from A, B, C, D:

Ground Truth: A. Guangzhou Baiyun International Airport

Nicolás Lodeiro plays for [MASK].
A. Brentwood Town F.C. B. Club Nacional de Football C. Thailand national under-23 football team D. Luverdense Esporte Clube
Please choose one from A, B, C, D:

Ground Truth: B. Club Nacional de Football

French Polynesia has capital [MASK].
A. Preveza B. Alberto Lattuada C. Ulcinj D. Papeete
Please choose one from A, B, C, D:

Ground Truth: D. Papeete

Table 9: Examples of multiple-choice questions generated using the Semantic Similarity (SS) method for negative sampling. The ground truth answer is indicated for each question. Despite a few dissimilar entities, most of the negative samples have high semantic similarity with the ground truth entity, demonstrating the effectiveness of this method

a few negative sample entities that are not semantically similar to the ground truth entities, most of the negative sample entities have a high semantic similarity to the corresponding ground truth. This

demonstrates that this sampling method can, to some extent, select semantically similar entities as negative samples, thereby increasing the difficulty of the problem compared to random sampling.