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ABSTRACT

Large language models (LLMs) demonstrate remarkable perfor-

mance on knowledge-intensive tasks, suggesting that real-world

knowledge is encoded in their model parameters. However, besides

explorations on a few probing tasks in limited knowledge domains,

it is not well understood how to evaluate LLMs’ knowledge system-

atically and how well their knowledge abilities generalize, across a

spectrum of knowledge domains and progressively complex task

formats. To this end, we propose KG�iz1, a knowledge-intensive

benchmark to comprehensively investigate the knowledge gener-

alization abilities of LLMs. KG�iz is a scalable framework con-

structed from triplet-based knowledge, which covers three knowl-

edge domains and consists of �ve tasks with increasing complexity:

true-or-false, multiple-choice QA, blank �lling, factual editing, and

open-ended knowledge generation. To gain a better understanding

of LLMs’ knowledge abilities and their generalization, we evaluate

10 open-source and black-box LLMs on the KG�iz benchmark

across the �ve knowledge-intensive tasks and knowledge domains.

Extensive experiments demonstrate that LLMs achieve impressive

performance in straightforward knowledge QA tasks, while set-

tings and contexts requiring more complex reasoning or employing

domain-speci�c facts still present signi�cant challenges. We en-

vision KG�iz as a testbed to analyze such nuanced variations

in performance across domains and task formats, and ultimately

∗equal contribution
1The KGQuiz benchmark and code are available at
https://github.com/leopoldwhite/KGQuiz.
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to understand, evaluate, and improve LLMs’ knowledge abilities

across a wide spectrum of knowledge domains and tasks.
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1 INTRODUCTION

Large language models (LLMs) have demonstrated incredible abili-

ties to encode and represent real-world knowledge in their model

parameters, advancing knowledge-intensive tasks such as open-

domain question answering [14, 15, 33, 58, 59, 63], dialogue gener-

ation [1, 12, 34], summarization [17, 35, 62], and more. However,

their knowledge abilities could also be quite brittle, with LLMs

generating hallucinated information [3, 8, 23, 37, 44], struggling

to encode long-tail facts [37], and falling short of abstaining when

relevant information is not present in model parameters [7].

As a result, studies and benchmarks have been proposed to probe

the knowledge abilities of LLMs [11, 20, 39, 46, 52, 64]. Later works

also looked into temporality, evaluating whether LLMs could tackle

time-sensitive facts and information [11]. In addition to merely

probing LLM knowledge, knowledge-intensive tasks such as open-

domain QA [27, 31, 45], fact-checking [32, 38, 45], and more are

also proposed and employed to evaluate LLM knowledge abilities.

Despite these works’ contributions to understanding and expanding

the stored knowledge of large language models, we identify two

important yet underexplored factors in LLM knowledge abilities.
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KnowledgeUtilization: Previous works have primarily focused

on limited task formats such as �ll-in-the-blank questions to test the

model’s knowledge abilities [42, 46, 51]. However, the complexity or

format of a taskmight in�uence amodel’s knowledge abilities, while

this crucial aspect often goes unaddressed in the current literature.

For example, factual editing [2, 6] requires the model to identify

factual inconsistency and make corrections, rather than simply

evaluating memorization; reasoning with structured knowledge [9,

60] examines the model’s ability to model knowledge in networks

and graphs, instead of only probing knowledge at the atomic level.

That being said, how well do LLM knowledge abilities generalize

to tasks and contexts of varying format and complexity remain

underexplored.

Knowledge Breadth: Existing works predominantly consider

Wikipedia or a speci�c domain like biomedical knowledge as the

knowledge source for evaluation. However, it has been observed

that LLM performance can vary signi�cantly across di�erent knowl-

edge domains [39, 52] - an aspect that has not been adequately

addressed in the previous works of LLM knowledge probing and

understanding. As a result, the lack of a multi-domain knowledge

evaluation of large language models, covering diverse knowledge

sources, subject areas, and more, is hindering a comprehensive

understanding of LLM knowledge abilities.

To this end, we propose KG�iz, a comprehensive benchmark

designed to evaluate the knowledge abilities of large language

models across multiple knowledge utilization patterns in diverse

knowledge domains. Speci�cally, the KG�iz benchmark is con-

structed with structured information from knowledge graphs (KGs)

from three varying domains, representing commonsense, ency-

clopedic, and domain-speci�c (biomedical) knowledge. For each

knowledge graph, the KG�iz benchmark presents a collection

of 41,000 knowledge-intensive questions, covering �ve tasks of

increasing complexity: true-or-false, multiple choice, blank-�lling,

multi-hop factual editing, and open-ended text generation. These

progressively di�cult tasks represent the multitudes of LLM knowl-

edge and reasoning abilities, providing a comprehensive and com-

parative setting to assess LLMs’ abilities: they respectively test

LLMs’ abilities to judge factual correctness, select facts based on

model con�dence, retrieve entities, perform factual editing, and gen-

erate long-form knowledge documents, presenting a holistic probe

of LLM knowledge abilities in di�erent application scenarios.

We evaluate 10 open-source and black-box large language mod-

els on the KG�iz benchmark to better understand which LLM

covers what knowledge domain better, and under which utilization

contexts. Our experiments demonstrate that: 1) LLM performance

greatly varies across knowledge domains. For instance, on Task

5: Open-Ended Text Generation, ChatGPT [43], ChatGLM [13], and

text-davinci-003 [43] respectively perform best when it comes

to YAGO, ConceptNet, and UMLS, three knowledge graphs repre-

senting varying knowledge domains. 2) Knowledge utilization

greatly impacts LLM’s ability to retrieve and employ factual

knowledge. For instance, ChatGPT’s performance on biomedical

knowledge drops by 30% from the �ll-in-the-blank task to the fac-

tual editing task, suggesting that the additional multi-hop context

in factual editing poses new challenges to LLM knowledge abilities.

Together, our extensive experiments demonstrate that probing the

knowledge abilities of LLMs is nuanced and multi-faceted, with the

largest LLMs excelling in simple knowledge utilization tasks on

general knowledge domains, while advanced knowledge contexts

and domain-speci�c information remain open challenges. KG�iz

helps pinpoint the strengths and knowledge limitations of LLMs

with respect to tasks and domains. We envision KG�iz as a valu-

able testbed to understand, evaluate, and improve LLM knowledge

abilities across varying knowledge domains and utilization con-

texts.

2 THE KGQUIZ BENCHMARK

KG�iz employs knowledge graphs from diverse domains to con-

struct �ve knowledge-intensive tasks with increasing complexity.

We denote a knowledge graph as a set of triples T , where the :-th

triple is T: = (ℎ: , A: , C: ), andℎ: , A: and C: represent the head entity,

relation, and tail entity, respectively. We use E and R to denote the

sets of all entities and relations in the knowledge graph.

2.1 Task 1: True-or-False

As a base assessment of knowledge abilities, True-or-False questions

ask whether a given statement is factually correct or not. In a way,

this task tests the LLMs’ ability to verify the factuality of KG-based

information, which is the most fundamental ability to distinguish

between true and false knowledge [10].

Task FormulationWe construct two sets of KG triples to rep-

resent positive and negative samples (Tpos and Tneg). For a positive

triple (ℎ, A, C) ∈ Tpos, we replace the tail entity C with another entity

C ′ to generate a negative sample and add it to Tneg. We then use the

prompt for the positive or negative triple (ℎ, A, C): “Is the statement

ℎ A C True or False?“. We expect LLMs to answer with True or False,

indicating their judgment of the knowledge statement based on

their parametric knowledge.

Negative Sampling We propose four approaches to sample

negative entities C ′ in the knowledge graph to obtain increasingly

challenging negative samples.

• Random We randomly sample an entity from a set of entities

not connected to the head entity ℎ as C ′, formally C ′ ∈ E − E(ℎ),

where E(ℎ) denotes the set of entities connected to ℎ.

• Semantic Similarity We hypothesize that semantically similar

entities could provide a more challenging setting with harder

negative examples.We �rst use theRandommethod to sample<

negative entities. These sampled entities form the set E< . Then,

we employ an encoder-based language model, denoted as enc(·),

to encode the names of these entities. Finally, we use cosine simi-

larity sim(·, ·) to select an entity C ′ that is most similar to C in the

embedding space. Formally, C ′ = argmax4∈E< sim(enc(e), enc(t)).

• Relation SharingWe hypothesize that using entities sharing the

same relation, A , as the selected negative sample would provide a

challenging adversarial setting. We �rst obtain the set of entities

that are also associated with relation A as E (A ) , then randomly

sample one entity from E (A ) as the negative sample C ′.

• Network Proximity We hypothesize that entities that are close

to ℎ in the KG could also present a hard negative example. We

obtain the set of entities that are connected to ℎ and randomly

sample one entity from it as the negative sample C ′.

Evaluation We use accuracy as the evaluation metric for the

binary output of True or False.
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Viktor Dvirnyk is affiliated to [MASK].

A. Tingsryds AIF         B. Villa Rio Esporte Clube

C. AC Sparta Prague   D. FK Polet Ljubić

Please choose one from A, B, C, D:

AnswerAnswer : C

Is the statement "Michal Meduna is

affiliated to AC Sparta Prague" True or

False?

AnswerAnswer : True

Miroslav Koubek plays for [MASK].

What should [MASK] be?

AnswerAnswer : AC Sparta Prague

Please correct the mistake in the following statement:

Miroslav Koubek plays for Dukla Prague is located in

Prague.

AnswerAnswer : Miroslav Koubek plays for AC Sparta Prague

is located in Prague.

Tell me some facts about Jaroslav Heyrovský:

Answer:Answer:  Jaroslav Heyrovský was born on

December 20, 1890, in Prague...

is affiliated to

graduated from

was born In

plays for

is affiliated to

?

?plays for ?
?

?
?

??

is located In

Knowledge Graph

plays for
is located in

Task 4: Factual Editing 

Viktor DvirnykMichal Meduna AC Sparta Prague

Task 5: Open-Ended Text GenerationTask 3: Blank-Filling

Task 2: Multiple-ChoiceTask 1: True-or-False

Miroslav Koubek

AC Sparta Prague

Answer

Miroslav Koubek
AC Sparta Prague

Prague

Miroslav Koubek Prague

Dukla Prague

Miroslav Koubek

AC Sparta Prague

Michal Meduna

Prague

Jaroslav Heyrovský

Nobel Prize

UCL

is affiliated to

Viktor Dvirnyk

AC Sparta Prague

Tingsryds AIF

Villa Rio Esporte Clube

FK Polet Ljubić

is affiliated to

has won prize

graduated from

was born in

UCL
Prague

Jaroslav Heyrovský

Nobel Prize

B

A

C

D

plays for

has won prize

is located in

Figure 1: Overview of the KG�iz Benchmark, featuring �ve knowledge-intensive tasks with increasing complexity. We

illustrate the diverse tasks employed in KG�iz to test large language models, highlighting the examples and corresponding

natural language prompts used to examine their knowledge abilities across domains and contexts.

2.2 Task 2: Multiple-Choice

Building up from the True-or-False task, the multiple-choice task

introduces distractors [21, 48, 53]. This task not only tests the ability

of LLMs to determine what is factually correct but also their ability

to discern the false options from the true options. Therefore, the

Multiple-choice task presents a higher degree of complexity, as

LLMs need to evaluate the plausibility of di�erent answer options

based on their parametric knowledge.

Task Formulation We randomly sample a subset of the knowl-

edge graph, denoted as TB . For (ℎ, A, C) ∈ TB , we replace the tail

entity C with [MASK] and provide< answer options, including the

correct entity C and< − 1 distractors. We follow the same negative

sampling strategies in Task 1: True-or-False to obtain the distractors.

Evaluation We similarly use accuracy as the evaluation metric.

2.3 Task 3: Blank-Filling

The Blank-�lling task requires LLMs to directly generate the miss-

ing information for a given statement [46], compared to the two

previous tasks where the correct answer already appeared some-

where in the prompt context. While in tasks 1 and 2, models might

just take guesses as they can simply choose one of the available

options without knowing the actual answer, in Task 3: Blank-Filling,

LLMs are required to retrieve the correct answer without any hints

or options.

Task Formulation We randomly sample one subset of the

knowledge graph, denoted as TB . For (ℎ, A, C) ∈ TB , we replace the

tail entity C with [MASK]. The model is asked to generate the correct

answer to replace [MASK].

EvaluationWe denote the model output as C> and we use the

following metrics for evaluation:

• LCS: We denote the Longest Common Subsequence of C> and C

as s, and LCS is de�ned as: LCS =

Len(s )
max{Len(C> ),Len(C ) }

• F1-score: We denote the set of common tokens in both C> and

C as � . We denote the F1-score of C> and C as F1 =
2%'
%+' , where

% =

|� |
|C> |

,' =

|� |
|C6 |

.

• Semantic Match: We measure semantic similarity between the

model’s output and the correct answer using cosine similarity

on embeddings obtained via InstructGPT Ada LLM enc(·). This

gives us the AdaScore(C> , C) = sim(enc(to), enc(t)). A thresh-

old \ of Adascore is based on a held-out validation set (detailed

in Appendix D) to determine whether the model-generated an-

swer and the ground truth are a semantically exact match. Con-

cretely, we de�ne the semantic match metric as SM(C> , C) = 1 if

AdaScore(C> , C) ≥ \ , else 0.

2.4 Task 4: Factual Editing

The Factual Editing task presents enhanced challenges compared to

task 3 by moving from a single knowledge statement to a multi-hop

knowledge statement. Task 4 requires LLMs to not only memorize

and recall the facts, but also to identify which part of multi-hop

knowledge is inconsistent and revise accordingly. While previous

works have also explored LLMs’ potential in factual editing [2, 6],
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Model
Task Domain

Avg.
T1 T2 T3 T4 T5 YAGO CPNet UMLS

Ada 8.3 9.7 6.1 5.1 4.8 †6.5 6.8 7.1 6.5

Babbage 7.0 6.0 5.0 5.0 3.8 5.7 5.5 †4.8 5.7

Curie 8.7 9.3 2.8 4.0 2.7 †5.2 6.1 5.2 5.2

Davinci 2.0 2.0 1.7 1.6 3.0 †1.9 2.0 2.3 1.9

Turbo 1.0 1.0 3.0 3.9 2.8 †2.3 2.4 2.3 2.3

GPT-J 7.0 7.3 8.7 7.7 9.0 8.0 †7.6 8.1 8.0

OPT 9.0 7.0 8.0 7.8 9.8 †8.2 8.5 8.3 8.2

ChatGLM 4.7 3.0 4.0 7.1 3.8 4.3 †4.0 5.3 4.3

LLAMA 4.0 5.7 8.9 8.1 7.3 7.2 7.1 †6.1 7.2

Alpaca 3.3 4.0 6.9 4.8 7.8 5.6 †4.9 5.6 5.6

Table 1: Overall average rankings of ten LLMs on KG�iz

across �ve tasks and three knowledge domains. Bold,

underline represents the highest and the second highest

ranking on each task (or knowledge domain). † denotes the

knowledge domain on which each model has its best rank-

ing.

we uniquely focus on a multi-hop format where one of the hops

features inconsistent factual information. This task tests LLMs’

abilities to handlemulti-hop information, localize errors, edit factual

inconsistencies, and more.

Task Formulation Given a knowledge graph, we �rst sample a

:-hop path, and we use a structured format to present the multi-

hop knowledge path as d =(ℎ1, A1, 41, A2, ..., C: ).
2 We then randomly

replace one of the entities in the path (denoted as 4B ) with 4′ sam-

pled with the negative sampling strategies described in Section 5

to obtain d
′. We concatenate the names of original entities and

relations to form a multi-hop knowledge statement denoted as d

and swap one entity with its negative sample to obtain d′. This task

prompts LLMs to correct the factual inconsistency in d
′.

Evaluation We denote the left part of d (tokens before n (4B ))

as R, and the right part of d (tokens after n (4B )) as X. We �rst

perform the longest common substring match between the output

d
(> ) of the model and R, X in turn, and delete the obtained common

substring from d
(> ) to retrieve the revised entity given by LLMs.

Then, We adopt the same set of evaluation metrics as task 3, namely

LCS, F1-score, and Semantic Match, to compare the ground truth

entity 4B and the revised entity given by LLMs.

2.5 Task 5: Open-Ended Text Generation

The Open-Ended Text Generation task moves from handling iso-

lated facts (as in the previous tasks) to generating multiple factual

associations about a given entity. We evaluate whether the gener-

ated factual associations are alignedwith the information in existing

knowledge graphs. This comparison aims to measure the ability of

LLMs to generate accurate and comprehensive factual knowledge

of a particular entity. In addition, while tasks in previous works

mostly focus on a single factual association [21, 53], we propose

the Open-Ended Text Generation task to encourage the knowledge

abilities of LLMs in multi-fact and knowledge synthesis settings.

Task Formulation We randomly sample one subset of KG,

denoted as TB . For (ℎ, A, C) ∈ TB , we ask the model to “Tell me some

2To avoid confusion, we denote 4< as the tail entity C< of the <-th triple in the
knowledge path. At the same time, it also serves as the head entity ℎ<+1 of the
(< + 1)-th triple in the knowledge path.

YAGO ConceptNet UMLS
40

50

60

70

80

90

100

A
cc
ur
ac
y

Ada
Babbage
Curie

Davinci
Turbo
GPT-J

OPT
ChatGLM

LLAMA
Alpaca

Figure 2: Model performance on Task 1: True-or-False. Larger

LMs are better at judging factual correctness, while the same

LM performs di�erently across varying knowledge domains.
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Figure 3: LLM performance on Task 2: Multiple-Choice.

Davinci and Turbo consistently outperform other mod-

els, indicating their superior knowledge abilities under the

multiple-choice knowledge utilization format.

facts about ℎ“. We denote all triplets containing ℎ in the knowledge

graph as G = {(ℎ, A6, C6) ∈ T }.

EvaluationWe evaluate Open-Ended Text Generation genera-

tion by comparing the model outputs with the information about

entity ℎ in the original knowledge graph, denoted as G. Concretely,

we �rst prompt a GPT-3.5 LLM to turn the givenmodel output in nat-

ural language into a list of fact triplets O = {(ℎ, A> , C> )} inspired by

previous works [25, 41], where we further evaluate this approach in

Appendix D. We then employ the semantic match metric SM in task

3, we de�ne the Precision and Recall between model predictions

O and ground truth G as: Precision =

| O∩G|
| O |

, Recall =
| O∩G|
| G |

,

where O ∩ G denotes the set of triples that are both in model

predictions and the knowledge graph with SM = 1.

3 EXPERIMENT SETTINGS

Knowledge Domains. In our experiments, we posit that the per-

formance of LLMs in knowledge-intensive tasks is greatly in�u-

enced by diverse knowledge domains. Thus, we consider knowl-

edge graphs from three distinct domains in our experiments: com-

monsense, encyclopedic, and domain-speci�c. For commonsense

knowledge, we leverage the ConceptNet knowledge graph [50]

with 1,103,036 entities, 47 relations, and 3,098,674 triples. For en-

cyclopedic knowledge, we adopt the YAGO knowledge graph [36]

with 123,182 entities, 37 relations, and 1,089,040 triples. For domain-

speci�c knowledge, we mainly consider the biomedical domain and
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Model
YAGO ConceptNet UMLS

F1-score LCS Sem. Match F1-score LCS Sem. Match F1-score LCS Sem. Match

Ada 2.26 18.24 61.67 1.24 11.76 45.43 5.72 19.43 55.52

Babbage 2.60 17.63 60.48 2.07 12.06 64.67 10.37 21.68 71.43

Curie 5.38 19.63 71.54 3.32 15.11 78.68 10.90 26.04 84.70

Davinci 14.02 28.65 73.00 6.27 27.40 91.19 8.28 23.81 87.88

Turbo 4.47 11.83 52.33 5.56 14.42 80.48 19.44 28.18 89.27

GPT-J 0.56 10.75 24.55 1.20 4.53 39.07 9.38 11.74 73.17

OPT 0.66 10.75 27.33 0.75 4.40 45.55 6.88 11.21 73.52

ChatGLM 3.53 21.50 72.27 2.35 20.15 88.07 4.04 19.45 58.71

LLAMA 1.24 11.43 35.97 1.03 3.42 25.96 7.44 9.31 76.64

Alpaca 3.16 10.37 41.52 1.92 6.25 56.55 10.63 13.61 81.88

Table 2: LLM performance on Task 3: Blank-Filling. Sem. Match is short for the semantic match metric. Davinci leads on YAGO

and ConceptNet, while Turbo performs best on UMLS, indicating that LLM knowledge abilities vary greatly across knowledge

domains.

adopt the UMLS knowledge graph [4] with 297,554 entities, 98 rela-

tions, and 1,212,586 triples. By conducting our evaluations across

knowledge graphs that span varying domains, we aim to provide a

comprehensive assessment of how the knowledge abilities of LLMs

fare across diverse knowledge domains.

Models and Settings. Weevaluate both black-box and open-source

LLMs on the KG�iz benchmark. For black-box LLMs, we adopt

InstructGPT [43] (text-ada-001, text-babagge-001, text-curie-

001, and text-davinci-003) and ChatGPT (gpt-3.5-turbo) through

the OpenAI API. For open-source LLMs, we adopt GPT-J [56], OPT

(6.7B) [61], ChatGLM [13], LLAMA (7B) [55], and Alpaca [54] in the

experiments. We use a temperature of g = 0 to reduce randomness.

Task Settings. For Task 1: True-or-False, we construct 10k exam-

ples for each knowledge graph and adopt semantic similarity as the

default negative sampling method. In our experiments, we noticed

that some LLMs could not answer true-or-false questions based on

zero-shot instructions, thus we have added one in-context example

to demonstrate the QA format. For Task 2: Multiple-Choice, we use

four answer options as the default setting and construct 10k exam-

ples for each knowledge graph. Here, too, we incorporate a single

in-context example for clari�cation. For Task 3: Blank-Filling, we

randomly sample 10k triplets for each knowledge graph to generate

the blank-�lling questions. Moving on to Task 4: Factual Editing,

we construct 10k knowledge walks for each knowledge graph with

the default walk length : = 3. Given that some LLMs struggled

with this task, an in-context example is provided. Lastly, for Task 5:

Open-Ended Text Generation, we select 1k entities in each knowledge

graph and ask LLMs to perform open-ended generation3. We use

Semantic Similarity to sample negative examples in our subsequent

experiments.4

3For some tasks, we use in-context examples. More details in Appendix D.
4The speci�c e�ect of these four strategies and our choice for Semantic Similarity is
detailed in section 5.1.1.

4 RESULTS

We �rst calculate the ranking of each model on each task, domain,

metric separately. The Task rankings in Table 1 are averaged �rst

by metric, then by domain. The Domain rankings are averaged �rst

by metric, then by task. The Avg. rankings are averaged �rst by

metric, then by task, and �nally by domain. These elaborate rank-

ings help to provide a big picture of the strengths and weaknesses

of LLM knowledge abilities, while the following performance for

each individual task provides more detailed insights.

4.1 Task 1: True-or-False

As depicted in Figure 2, among the assessed LLMs, four of them

(text-davinci-003, gpt-3.5-turbo, ChatGLM) performed substan-

tially better than random chance (50%) on all KGs. Notably, gpt-3.5-

turbo achieved the best overall performance, showcasing its ability

to discern correct from incorrect knowledge statements. Observa-

tion of improved performance with larger model sizes suggests that

models with more parameters can encode more knowledge and

leverage the stored knowledge to accurately identify the veracity

of knowledge statements. Additionally, Even in the simple binary

task, many LLMs show accuracy close to 50%, indicating di�culty

in distinguishing true and false statements. This suggests a need

for further improvement in LLMs’ knowledge abilities, particularly

for smaller language models.

4.2 Task 2: Multiple-Choice

Figure 3 showcases that text-davinci-003 and gpt-3.5-turbo con-

sistently outperform other LLMs in understanding and applying

knowledge across all KGs and domains. An observation from tasks

comparison revealed that text-davinci-003 and gpt-3.5-turbo’s

improved performance in Task 2: Multiple-Choice compared to Task

1: True-or-False. However, Alpaca’s relative performance dwindled

in Task 2, suggesting that the speci�c knowledge utilization for-

mat signi�cantly in�uences an LLM’s ability to retrieve potentially

correct answers.
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Model
YAGO ConceptNet UMLS

F1-score LCS Sem. Match F1-score LCS Sem. Match F1-score LCS Sem. Match

Ada 2.50 14.51 86.76 0.12 14.65 83.84 2.50 18.11 59.85

Babbage 2.90 9.47 90.68 0.02 10.42 86.53 2.90 17.78 60.03

Curie 6.21 8.93 91.20 0.10 15.92 83.14 6.21 19.76 60.24

Davinci 16.99 20.58 91.77 5.15 17.31 93.25 5.44 7.28 64.19

Turbo 12.29 13.24 91.06 0.51 1.28 93.32 0.88 8.93 59.05

GPT-J 0.03 0.17 90.34 0.00 0.22 93.21 0.20 0.71 59.98

OPT 0.01 0.06 90.37 0.00 0.06 93.24 0.30 0.88 59.96

ChatGLM 4.94 1.32 89.66 0.14 4.57 90.62 0.42 2.58 76.26

LLAMA 0.03 0.04 90.33 0.00 0.00 93.20 0.43 1.81 59.98

Alpaca 6.80 12.27 90.20 0.87 14.84 93.20 1.46 8.66 59.93

Table 3: LLM performance on Task 4: Factual Editing. Model performance is generally higher than blank-�lling, indicating the

helpfulness of additional context and emphasizing the in�uence of knowledge utilization. Models such as Turbo, Davinci,

and ChatGLM show variations in performance across di�erent knowledge graphs, highlighting the in�uence of knowledge

domains.

4.3 Task 3: Blank-Filling

Compared to true-or-false and multiple-choice questions, blank

�lling requires LLMs to retrieve the correct answer from their

parametric knowledge without relying on any options. In Table 2,

the overall low LCS scores re�ect that LLMs’ generated answers

struggle to match the exact target answer. Moreover, the models’

abilities di�er signi�cantly, with text-davinci-003 excelling in two

domains (YAGO and ConceptNet) but gpt-3.5-turbo performing

better in the biomedical domain (UMLS). Additionally, we observe

a noticeable decrease in performance in the biomedical domain,

suggesting that the models may not be as pro�cient in handling

domain-speci�c knowledge.

4.4 Task 4: Factual Editing

Compared to blank-�lling, Task 4: Factual Editing involves identi-

fying and rectifying factual inconsistencies within given knowl-

edge statements. According to the results in Table 3, the additional

context indeed aids certain models in generating fact-checked

responses on certain KGs (YAGO and ConceptNet), with text-

davinci-003 and gpt-3.5-turbo scoring well for YAGO and Con-

ceptNet respectively, and ChatGLM excelling on UMLS. It highlights

that tasks such as dialogue generation and summarization, which

usually come with relevant context, may work better with LLMs.

However, when provided only with a short question, QA models

may get confused easily. The task-wise change in top-performing

models indicates that the form of knowledge utilization impacts an

LLM’s knowledge abilities signi�cantly.

4.5 Task 5: Open-Ended Text Generation

Open-ended generation tasks present a more complex challenge

to LLMs as it requires not just speci�c factual associations, but

also the generation of a consistent paragraph about a certain entity

encapsulating assorted facts and knowledge. As observed in Table

4, text-davinci-003 tops the chart with the highest AdaScore_s

score across all three KGs, denoting its pro�cient ability to pro-

duce well-structured and factually accurate knowledge paragraphs.

Model
YAGO ConceptNet UMLS

Precision Recall Precision Recall Precision Recall

Ada 75.84 34.89 90.93 24.90 59.45 19.47

Babbage 84.66 35.34 95.01 18.84 81.52 22.93

Curie 85.69 38.64 96.59 22.46 83.43 26.80

Davinci 76.39 53.96 88.12 41.55 77.48 46.06

Turbo 77.28 57.63 89.39 40.53 75.94 43.89

GPT-J 11.97 8.78 24.11 12.07 10.72 5.96

OPT 14.06 7.72 16.89 5.26 10.35 5.43

ChatGLM 71.00 54.54 88.05 46.49 63.59 39.72

LLAMA 39.17 29.29 36.78 11.78 26.14 11.85

Alpaca 22.96 17.77 28.63 13.94 12.69 7.53

Table 4: Model performance on Task 5: Open-Ended Text Gen-

eration. Di�erent from previous tasks, generating long and

open-ended statements about entities poses new challenges

to LLMs.

text-curie-001 stands out with the highest Precision score, indi-

cating its preference to generate knowledge closely in line with the

respective knowledge graph. From a Recall perspective, the best

performances are achieved by gpt-3.5-turbo, ChatGLM, and text-

davinci-003 on the three respective KGs. These �ndings emphasize

that the knowledge domain signi�cantly a�ects the performance of

LLMs in knowledge-intensive tasks, underscoring the need for com-

prehensive evaluations of LLMs’ knowledge abilities that consider

varying knowledge domains.

5 ANALYSIS

5.1 Benchmark analysis

5.1.1 Negative Sampling Strategy. In section 2.1, we propose and

formalize four negative sampling methods to generated questions

in the KG�iz benchmark. In order to investigate their impact

on the di�culty of the task, we use the four negative sampling

strategies, Random (RA), Semantic Similarity (SS) Relation Sharing

(RS), and Network Proximity (NP) to generate questions for Task 1:

True-or-False based on the YAGO knowledge graph. We evaluate
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Figure 4: Performance on Task 1: Ture-or-False with varying

negative sampling methods. The choice of negative sampling

has a signi�cant impact on the di�culty of the task.

text-davinci-003 and gpt-3.5-turbo as shown in Figure 4. These

results show that di�erent negative sampling methods do impact

on the di�culty of the problem, ranging from easy to di�cult in the

following order: Random, Semantic Similarity, Relation Sharing, and

Network Proximity. It is also demonstrated that whether LLMs can

select the correct answer is impacted by the plausibility of negative

examples.

In particular, we employed Semantic Similarity as an intermedi-

ate strategy presenting reasonable complexity. This strategy, while

challenging, does not make the task excessively di�cult. Further-

more, while we propose this speci�c strategy, KG�iz benchmark

supports the �exibility of adopting other negative sampling settings.

5.1.2 �estion Sampling. In KG�iz, for each task, we generate

questions by randomly sampling triplets (or head entities) from the

KG, while whether the randomly sampled subsets is represented of

the whole KG remain underexplored. To this end, we design two

additional ways to sample a problem subset:

• Relation Proportion: We �rst calculate the proportion of re-

lations in the KG, then sample triplets based on the relation

distribution. This ensures that the proportion of relations in the

sampled triples is consistent with the proportion of relations in

the entire knowledge graph.

• Entity Clustering: First, we use knowledge graph embedding

model TransE [5] to obtain the embedding for each entity, then

we use K-means to obtain 10 clusters of entities. We sample

triplets based on the proportions of the number of entities in

each cluster.

We generated 1,000 Task 1: True-or-False questions and 1,000 Task 2:

Multiple-Choice questions on ConceptNet using these two methods

respectively. According to Figure 5, we �nd that after changing to

these two sampling methods that can theoretically better represent

the features of the knowledge graph, the performance of eachmodel

did not change signi�cantly (compared to random sampling). This

indicates that randomly sampled triples can also re�ect the features

of the entire knowledge graph and the corresponding results are

representative.

5.1.3 Exact Match vs. Semantic Match. We conduct qualitative anal-

ysis for Task 3: Blank-Filling and present a few examples in Table 5.

It is demonstrated that answers generated by LLMs do not exactly

match the gold label, where the exact match (EM) metric would

treat the answer as incorrect. However, the generated responses

are semantically equivalent. For instance, in the �rst example, the

Davinci Turbo ChatGLM
60

70

80
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100

A
cc

ur
ac

y

Task 1: True-or-False
Random
Relation Proportion
Entity Clustering

Davinci Turbo ChatGLM
50
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110
Task 2: Multiple-Choice

Random
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Figure 5: Comparison of model performance across di�erent

question sampling methods. Models are evaluated on 1,000

Task 1: True-or-False questions and 1,000 Task 2: Multiple-

Choice questions sampled via three di�erent methods.

Question Prediction Gold

Bob Hawke graduated

from ____

Oxford University University of Oxford

Rosemary Sutcli� has

won prize ____

The Carnegie Medal Carnegie Medal (liter-

ary award)

Taito Corporation is

located in ____

Tokyo, Japan Shibuya, Tokyo

Table 5: Qualitative analysis of Task 3: Blank-Filling, sug-

gesting that our proposed Semantic Match presents a more

nuanced metric for knowledge probing.

word order is di�erent but both answers convey the same meaning.

Similarly, in the third example, “Tokyo, Japan” is more general than

the gold answer “Shibuya, Tokyo” but it still provides the correct lo-

cation information. While the exact match metric would treat them

as incorrect, under our proposed Semantic Match, all four answers

are deemed as correct, indicating that Semantic Match presents

a better evaluation metric in LLM knowledge probing given the

nuanced nature of entity names [30].

5.1.4 Negative Sampling Evaluation. Regarding the four negative

sampling methods we proposed, a potential issue is that the sam-

pled data may not be genuine negative samples. Therefore, in order

to investigate the e�ectiveness of our negative sampling methods,

we manually evaluated 20 samples for each method. In our manual

evaluation, all the sampled examples were indeed true negative

samples, which validated the e�ectiveness of our negative sampling

methods. We further expand this evaluation by employing Perplex-

ity AI 5, a state-of-the-art fact-checking tool, to examine a subset

of negative samples on YAGO: they have all been identi�ed by

Perplexity AI as either not in accordance with the facts or lacking

information to support this statement.

5.2 LLM analysis

5.2.1 Consistency Study. In this study, we investigate the robust-

ness towards minor changes in prompts and knowledge statements.

We select 100 questions from the YAGO knowledge graph in Task

1: True-or-False and evaluate with �ve di�erent prompts and in-

structions (more details in Appendix E.1). We measure response

5https://www.perplexity.ai/
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Model
Text Triplets

Precision Recall Precision Recall

Davinci 76.39 53.96 85.21 37.58

Turbo 77.28 57.63 91.42 37.21

Table 6: Comparison of precision and recall for open-ended

text generation and direct triplet generation using text-

davinci-003 and gpt-3.5-turbo.

consistency of the �ve black-box LLMs using the Fleiss Kappa mea-

sure [16]. The experiment results show that LLMs have varying

robustness towards prompt formats: Turbo (0.645) has the highest

score, suggesting a moderate level of agreement. Davinci (0.285)

exhibits a lower but still positive value. However, Ada (-0.187), Bab-

bage (-0.057), and Curie (-0.168) show negative Fleiss Kappa values,

indicating poor agreement and suggesting that model responses

are less consistent towards minor changes in knowledge probing

instructions. This study highlights that the robustness to minor

changes in knowledge-intensive prompts is in itself part of LLM’s

knowledge abilities.

5.2.2 Generating Triplets vs. Text. We use text-davinci-003 and

gpt-3.5-turbo to directly generate factual triplets about a certain

entity (by giving an in-context example) and reported the preci-

sion and recall in Table 6. It can be observed that although the

precision has improved, the recall has dropped signi�cantly. We

analyzed that this is due to the model generating only a few high-

con�dence triplets when directly asked for triplets, which led to the

aforementioned results. However, for other smaller-scale models,

directly generating factual triplets is not feasible, as they cannot

adequately understand the prompt’s instructions, resulting in poor

performance.

6 RELATEDWORK

LLM Knowledge Probing. Research into what knowledge is stored

in LLMs has drawn signi�cant interest. Pioneering work like LAMA

[46], TempLAMA [11], MMLU [20] quantitatively measured the fac-

tual knowledge in these models. Other approaches have expanded

these probing techniques, exploring topics like few-shot learning

and 2-hop relational knowledge [19]. Furthermore, open-domain

question-answering benchmarks like Natural Questions [28], and

TriviaQA [24] have been used to measure the practical knowledge

abilities of these models, aligning the probing tasks with real-world

applications.

Improving LLM Knowledge Abilities. E�orts to enhance LLM’s

knowledge abilities include augmenting language models with

knowledge graphs for structured, factual knowledge [40, 47] and

using retrieval-augmented methods like RAG [29], REALM [18],

and REPLUG [49] to incorporate external documents as a dynamic

knowledge source. Further, REMEDI [22] aims to create a �ner con-

trol over knowledge in LLMs by understanding fact encodings in the

model’s internal representation system. In parallel, the framework

Knowledge Card [14] suggests using specialized language models

to provide modular and up-to-date knowledge in a collaborative

process.

Investigating the Limitation of LLM Knowledge Abilities. As LLMs

have shown promise in knowledge-based tasks, researchers have

also started examining the limitations of these models’ knowledge

abilities. This includes their ability to handle con�icted information

[8, 57], recall abilities [37], and self-evaluating skills [26]. By inves-

tigating these limitations, researchers aim to not only devise ways

to address them but also shed light on how LLMs can operate more

e�ectively in more sophisticated tasks, particularly in professional

domains [39, 52].

In summary, while considerable work has been done in prob-

ing the knowledge abilities of LLMs, improving these abilities, and

investigating their limitations, two major aspects have seen less

consideration: knowledge utilization and knowledge breadth. Com-

pared to previous work[45], the �ve tasks in KG�iz feature in-

creasing di�culty in knowledge utilization patterns, which can aid

the critical analysis of LLM knowledge abilities. Also, instead of fo-

cusing on employing external knowledge sources for tasks, KG�iz

tests the robustness and generalization of the internal knowledge

stored in LLM parameters. Moreover, a key feature of KGQuiz is

that it can be seamlessly extended to new knowledge domains using

our dataset construction methodology. This �exibility to use diverse

knowledge sources to create new evaluation protocols following

our methodology sets it apart from other benchmarks.

7 CONCLUSION

We propose KG�iz, a benchmark for probing the knowledge gen-

eralization abilities of Large Language Models (LLMs). Unlike previ-

ous work, our benchmark focuses on two often-overlooked aspects:

the complexity of knowledge utilization and the breadth of knowl-

edge domains. Our benchmark uses structured information from

knowledge graphs (KGs) across three diverse domains, and it con-

sists of several tasks representing increasingly complex forms of

knowledge utilization. Our experimental results illustrate varying

performances of several LLMs across di�erent domains and tasks,

underscoring the multi-faceted nature of knowledge abilities in

LLMs. This also demonstrates the importance of considering Knowl-

edge Utilization and Knowledge Breadth. We envision KG�iz as a

comprehensive testbed to evaluate, understand, and improve the

knowledge abilities of LLMs across varying domains and tasks.

ACKNOWLEDGEMENTS

We thank the reviewers, the area chair, members of Tsvetshop, the

LUD Lab, and the UW NLP Group for their feedback. This research

is supported in part by the O�ce of the Director of National Intel-

ligence (ODNI), Intelligence Advanced Research Projects Activity

(IARPA), via the HIATUS Program contract #2022-22072200004.

This material is also funded by the DARPA Grant under Contract

No. HR001120C0124. We also gratefully acknowledge support from

NSF CAREER Grant No. IIS2142739, NSF Grants No. IIS2125201,

IIS2203097, and the Alfred P. Sloan Foundation Fellowship. The

views and conclusions contained herein are those of the authors

and should not be interpreted as necessarily representing the o�-

cial policies, either expressed or implied, of ODNI, IARPA, or the

U.S. Government. The U.S. Government is authorized to reproduce

and distribute reprints for governmental purposes notwithstanding

any copyright annotation therein.

2233



KGQuiz: Evaluating the Generalization of Encoded Knowledge in Large Language Models WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] Leonard Adolphs, Kurt Shuster, Jack Urbanek, Arthur Szlam, and Jason Weston.

2022. Reason �rst, then respond: Modular Generation for Knowledge-infused
Dialogue. In Findings of the Association for Computational Linguistics: EMNLP 2022.
Association for Computational Linguistics, Abu Dhabi, United Arab Emirates,
7112–7132. https://aclanthology.org/2022.�ndings-emnlp.527

[2] Vidhisha Balachandran, Hannaneh Hajishirzi, William Cohen, and Yulia Tsvetkov.
2022. Correcting Diverse Factual Errors in Abstractive Summarization via Post-
Editing and Language Model In�lling. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Abu Dhabi, United Arab Emirates, 9818–9830. https://aclanthology.
org/2022.emnlp-main.667

[3] Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan
Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu,
and Pascale Fung. 2023. A Multitask, Multilingual, Multimodal Evaluation of
ChatGPT on Reasoning, Hallucination, and Interactivity. ArXiv abs/2302.04023
(2023).

[4] O. Bodenreider. 2004. The Uni�ed Medical Language System (UMLS): integrating
biomedical terminology. Nucleic Acids Research 32, 90001 (Jan. 2004), 267D–270.
https://doi.org/10.1093/nar/gkh061

[5] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-Relational
Data. In Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2 (Lake Tahoe, Nevada) (NIPS’13). Curran Associates
Inc., Red Hook, NY, USA, 2787–2795.

[6] Anthony Chen, Panupong Pasupat, Sameer Singh, Hongrae Lee, and Kelvin Guu.
2023. PURR: E�ciently Editing Language Model Hallucinations by Denoising
Language Model Corruptions. arXiv preprint arXiv:2305.14908 (2023).

[7] Hung-Ting Chen,Michael Zhang, and Eunsol Choi. 2022. Rich Knowledge Sources
Bring Complex Knowledge Con�icts: Recalibrating Models to Re�ect Con�icting
Evidence. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, Abu Dhabi,
United Arab Emirates, 2292–2307. https://aclanthology.org/2022.emnlp-main.146

[8] Jiangjie Chen, Wei Shi, Ziquan Fu, Sijie Cheng, Lei Li, and Yanghua Xiao.
2023. Say What You Mean! Large Language Models Speak Too Positively
about Negative Commonsense Knowledge. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers). Association for Computational Linguistics, Toronto, Canada, 9890–9908.
https://doi.org/10.18653/v1/2023.acl-long.550

[9] Shiqi Chen, Yiran Zhao, Jinghan Zhang, I-Chun Chern, Siyang Gao, Pengfei
Liu, and Junxian He. 2023. FELM: Benchmarking Factuality Evaluation of Large
Language Models. arXiv:2310.00741 [cs.CL]

[10] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael
Collins, and Kristina Toutanova. 2019. BoolQ: Exploring the Surprising Di�-
culty of Natural Yes/No Questions. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). 2924–2936.

[11] Bhuwan Dhingra, Jeremy R. Cole, Julian Martin Eisenschlos, Daniel Gillick, Jacob
Eisenstein, and William W. Cohen. 2022. Time-Aware Language Models as
Temporal Knowledge Bases. Transactions of the Association for Computational
Linguistics 10 (2022), 257–273. https://doi.org/10.1162/tacl_a_00459

[12] Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason
Weston. 2019. Wizard of Wikipedia: Knowledge-Powered Conversational Agents.
In International Conference on Learning Representations. https://openreview.net/
forum?id=r1l73iRqKm

[13] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and
Jie Tang. 2022. GLM: General Language Model Pretraining with Autoregressive
Blank In�lling. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 320–335.

[14] Shangbin Feng, Weijia Shi, Yuyang Bai, Vidhisha Balachandran, Tianxing He,
and Yulia Tsvetkov. 2023. CooK: Empowering General-Purpose Language Models
with Modular and Collaborative Knowledge. arXiv:2305.09955 [cs.CL]

[15] Yanlin Feng, Xinyue Chen, Bill Yuchen Lin, PeifengWang, Jun Yan, and Xiang Ren.
2020. Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question
Answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Association for Computational Linguistics, Online,
1295–1309. https://doi.org/10.18653/v1/2020.emnlp-main.99

[16] Joseph L. Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychological Bulletin 76 (1971), 378–382.

[17] Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2023. News Summarization and
Evaluation in the Era of GPT-3. arXiv:2209.12356 [cs.CL]

[18] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang.
2020. REALM: Retrieval-Augmented LanguageModel Pre-Training. In Proceedings
of the 37th International Conference on Machine Learning (ICML’20). JMLR.org,
Article 368, 10 pages.

[19] Tianxing He, Kyunghyun Cho, and James Glass. 2021. An Empirical
Study on Few-shot Knowledge Probing for Pretrained Language Models.

arXiv:2109.02772 [cs.AI]
[20] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika,

Dawn Song, and Jacob Steinhardt. 2021. Measuring Massive Multitask Lan-
guage Understanding. In International Conference on Learning Representations.
https://openreview.net/forum?id=d7KBjmI3GmQ

[21] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. 2021. Measuring Massive Multitask Language Under-
standing. Proceedings of the International Conference on Learning Representations
(ICLR) (2021).

[22] Evan Hernandez, Belinda Z. Li, and Jacob Andreas. 2023. Inspecting and Editing
Knowledge Representations in Language Models. arXiv:2304.00740 [cs.CL]

[23] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Yejin Bang, Wenliang Dai, Andrea Madotto, and Pascale Fung. 2022. Survey of
Hallucination in Natural Language Generation. Comput. Surveys 55 (2022), 1 –
38.

[24] Mandar Joshi, Eunsol Choi, DanielWeld, and Luke Zettlemoyer. 2017. TriviaQA: A
Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
Vancouver, Canada, 1601–1611. https://doi.org/10.18653/v1/P17-1147

[25] Martin Josifoski, Marija Sakota, Maxime Peyrard, and Robert West. 2023. Exploit-
ing asymmetry for synthetic training data generation: Synthie and the case of
information extraction. arXiv preprint arXiv:2303.04132 (2023).

[26] Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain,
Ethan Perez, Nicholas Schiefer, Zac Hat�eld-Dodds, Nova DasSarma, Eli Tran-
Johnson, Scott Johnston, Sheer El-Showk, Andy Jones, Nelson Elhage, Tris-
tan Hume, Anna Chen, Yuntao Bai, Sam Bowman, Stanislav Fort, Deep Gan-
guli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna Kravec, Liane
Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom
Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah,
and Jared Kaplan. 2022. Language Models (Mostly) Know What They Know.
arXiv:2207.05221 [cs.CL]

[27] Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and Davood Ra�ei. 2023. Evalu-
ating Open-Domain Question Answering in the Era of Large Language Models.
In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
Toronto, Canada, 5591–5606. https://doi.org/10.18653/v1/2023.acl-long.307

[28] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red�eld, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee,
Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M.
Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural Questions: A
Benchmark for Question Answering Research. Transactions of the Association for
Computational Linguistics 7 (2019), 452–466. https://doi.org/10.1162/tacl_a_00276

[29] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. In Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.),
Vol. 33. Curran Associates, Inc., 9459–9474. https://proceedings.neurips.cc/
paper_�les/paper/2020/�le/6b493230205f780e1bc26945df7481e5-Paper.pdf

[30] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. 2020. A survey on deep
learning for named entity recognition. IEEE Transactions on Knowledge and Data
Engineering 34, 1 (2020), 50–70.

[31] Junlong Li, Zhuosheng Zhang, and Hai Zhao. 2022. Self-Prompting Large Lan-
guage Models for Open-Domain QA. ArXiv abs/2212.08635 (2022). https:
//api.semanticscholar.org/CorpusID:254823646

[32] Miaoran Li, Baolin Peng, and Zhu Zhang. 2023. Self-Checker: Plug-and-Play
Modules for Fact-Checking with Large Language Models. ArXiv abs/2305.14623
(2023). https://api.semanticscholar.org/CorpusID:258865801

[33] Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang Ren. 2019. KagNet:
Knowledge-Aware Graph Networks for Commonsense Reasoning. In Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, China,
2829–2839. https://doi.org/10.18653/v1/D19-1282

[34] Shilei Liu, Xiaofeng Zhao, Bochao Li, Feiliang Ren, Longhui Zhang, and Shujuan
Yin. 2021. A Three-Stage Learning Framework for Low-Resource Knowledge-
Grounded Dialogue Generation. In Conference on Empirical Methods in Natural
Language Processing.

[35] Yixin Liu, Alexander R. Fabbri, Pengfei Liu, Dragomir Radev, and Arman Cohan.
2023. On Learning to Summarize with Large Language Models as References.
arXiv:2305.14239 [cs.CL]

[36] FarzanehMahdisoltani, Joanna Asia Biega, and FabianM. Suchanek. 2015. YAGO3:
A Knowledge Base from Multilingual Wikipedias. In Conference on Innovative
Data Systems Research.

[37] Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Han-
naneh Hajishirzi. 2023. When Not to Trust Language Models: Investigating E�ec-
tiveness of Parametric and Non-Parametric Memories. arXiv:2212.10511 [cs.CL]

2234



WWW ’24, May 13–17, 2024, Singapore, Singapore Yuyang Bai and Shangbin Feng et al.

[38] Potsawee Manakul, Adian Liusie, and Mark John Francis Gales. 2023. SelfCheck-
GPT: Zero-Resource Black-Box Hallucination Detection for Generative Large
Language Models. ArXiv abs/2303.08896 (2023). https://api.semanticscholar.org/
CorpusID:257557820

[39] Zaiqiao Meng, Fangyu Liu, Ehsan Shareghi, Yixuan Su, Charlotte Collins, and
Nigel Collier. 2022. Rewire-then-Probe: A Contrastive Recipe for Probing Biomed-
ical Knowledge of Pre-trained Language Models. In Proceedings of the 60th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, Dublin, Ireland, 4798–4810.
https://doi.org/10.18653/v1/2022.acl-long.329

[40] Todor Mihaylov and Anette Frank. 2018. Knowledgeable Reader: Enhancing
Cloze-Style Reading Comprehension with External Commonsense Knowledge.
In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
Melbourne, Australia, 821–832. https://doi.org/10.18653/v1/P18-1076

[41] SewonMin, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, PangWei Koh,
Mohit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023. FActScore: Fine-
grained Atomic Evaluation of Factual Precision in Long Form Text Generation.
arXiv preprint arXiv:2305.14251 (2023).

[42] Vishwas Mruthyunjaya, Pouya Pezeshkpour, Estevam Hruschka, and Nikita
Bhutani. 2023. Rethinking Language Models as Symbolic Knowledge Graphs.
ArXiv abs/2308.13676 (2023). https://api.semanticscholar.org/CorpusID:
261242776

[43] Long Ouyang, Je�rey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training
language models to follow instructions with human feedback. In Advances in Neu-
ral Information Processing Systems, Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (Eds.). https://openreview.net/forum?id=TG8KACxEON

[44] Artidoro Pagnoni, Vidhisha Balachandran, and Yulia Tsvetkov. 2021. Under-
standing Factuality in Abstractive Summarization with FRANK: A Benchmark
for Factuality Metrics. In Proceedings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, Online, 4812–4829.
https://doi.org/10.18653/v1/2021.naacl-main.383

[45] Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani,
Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Mail-
lard, Vassilis Plachouras, Tim Rocktäschel, and Sebastian Riedel. 2021. KILT:
a Benchmark for Knowledge Intensive Language Tasks. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational
Linguistics, Online, 2523–2544. https://doi.org/10.18653/v1/2021.naacl-main.200

[46] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin,
Yuxiang Wu, and Alexander Miller. 2019. Language Models as Knowledge Bases?.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong,
China, 2463–2473. https://doi.org/10.18653/v1/D19-1250

[47] Moritz Plenz, Juri Opitz, Philipp Heinisch, Philipp Cimiano, and Anette Frank.
2023. Similarity-weighted Construction of Contextualized Commonsense Knowl-
edge Graphs for Knowledge-intense Argumentation Tasks. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics, Toronto, Canada,
6130–6158. https://doi.org/10.18653/v1/2023.acl-long.338

[48] Joshua Robinson, Christopher Michael Rytting, and David Wingate. 2022. Lever-
aging Large Language Models for Multiple Choice Question Answering. arXiv
preprint arXiv:2210.12353 (2022).

[49] Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike
Lewis, Luke Zettlemoyer, and Wen tau Yih. 2023. REPLUG: Retrieval-Augmented
Black-Box Language Models. arXiv:2301.12652 [cs.CL]

[50] Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. ConceptNet 5.5: An Open
Multilingual Graph of General Knowledge. In Proceedings of the Thirty-First AAAI
Conference on Arti�cial Intelligence (San Francisco, California, USA) (AAAI’17).
AAAI Press, 4444–4451.

[51] Kai Sun, Yifan Ethan Xu, Hanwen Zha, Yue Liu, and Xin Luna Dong. 2023. Head-
to-Tail: How Knowledgeable are Large Language Models (LLM)? A.K.A. Will
LLMs Replace Knowledge Graphs? arXiv:2308.10168 [cs.CL]

[52] Mujeen Sung, Jinhyuk Lee, Sean Yi, Minji Jeon, Sungdong Kim, and Jaewoo Kang.
2021. Can Language Models be Biomedical Knowledge Bases?. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Online and Punta Cana, Dominican
Republic, 4723–4734. https://doi.org/10.18653/v1/2021.emnlp-main.388

[53] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2019. Com-
monsenseQA: A Question Answering Challenge Targeting Commonsense Knowl-
edge. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis,

Minnesota, 4149–4158. https://doi.org/10.18653/v1/N19-1421
[54] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos

Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_
alpaca.

[55] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and E�cient Foundation Language Models.
arXiv:2302.13971 [cs.CL]

[56] Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Parameter Autore-
gressive Language Model. https://github.com/kingo�olz/mesh-transformer-jax.

[57] Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and Yu Su. 2023. Adaptive
Chameleon or Stubborn Sloth: Unraveling the Behavior of Large Language Mod-
els in Knowledge Clashes. arXiv:2305.13300 [cs.CL]

[58] Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren, Xikun Zhang, Christo-
pher D. Manning, Percy Liang, and Jure Leskovec. 2022. Deep Bidirectional
Language-Knowledge Graph Pretraining. In Neural Information Processing Sys-
tems (NeurIPS).

[59] Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure
Leskovec. 2021. QA-GNN: Reasoning with Language Models and Knowledge
Graphs for Question Answering. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational Linguistics, Online, 535–546.
https://doi.org/10.18653/v1/2021.naacl-main.45

[60] Jifan Yu, Xiaozhi Wang, Shangqing Tu, Shulin Cao, Daniel Zhang-Li, Xin Lv, Hao
Peng, Zijun Yao, Xiaohan Zhang, Hanming Li, Chunyang Li, Zheyuan Zhang,
Yushi Bai, Yantao Liu, Amy Xin, Nianyi Lin, Kaifeng Yun, Linlu Gong, Jianhui
Chen, Zhili Wu, Yunjia Qi, Weikai Li, Yong Guan, Kaisheng Zeng, Ji Qi, Hailong
Jin, Jinxin Liu, Yu Gu, Yuan Yao, Ning Ding, Lei Hou, Zhiyuan Liu, Bin Xu, Jie
Tang, and Juanzi Li. 2023. KoLA: Carefully Benchmarking World Knowledge of
Large Language Models. arXiv:2306.09296 [cs.CL]

[61] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali
Sridhar, Tianlu Wang, and Luke Zettlemoyer. 2022. OPT: Open Pre-trained
Transformer Language Models. arXiv:2205.01068 [cs.CL]

[62] Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown,
and Tatsunori B. Hashimoto. 2023. Benchmarking Large Language Models for
News Summarization. arXiv:2301.13848 [cs.CL]

[63] Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy Liang,
Christopher D Manning, and Jure Leskovec. 2021. GreaseLM: Graph REASoning
Enhanced Language Models. In International Conference on Learning Representa-
tions.

[64] Ruilin Zhao, Feng Zhao, Guandong Xu, Sixiao Zhang, and Hai Jin. 2022. Can Lan-
guage Models Serve as Temporal Knowledge Bases?. In Findings of the Association
for Computational Linguistics: EMNLP 2022, Yoav Goldberg, Zornitsa Kozareva,
and Yue Zhang (Eds.). Association for Computational Linguistics, Abu Dhabi,
United Arab Emirates, 2024–2037. https://doi.org/10.18653/v1/2022.�ndings-
emnlp.147

A LIMITATIONS

LLM and KG selection. Due to computational and budget con-

straints, we restricted our study to ten representative LLMs and

three knowledge graphs each from a di�erent domain. As we plan

to make KG�iz publicly accessible, further investigation into the

performance of a broader range of LLMs on assorted knowledge

graphs is left for future endeavors.

Evaluation Metrics. Being the case that LLMs might not fully

adhere to the context in our prompts, we were required to de-

ploy human-crafted string-processing functions to preprocess the

content the models generated, to evaluate the results. This step is

susceptible to errors that may lead to inaccurate results. As the

Semantic Match method is not 100% accurate, we report both the

semantic similarity and exact match side-by-side and we believe

they should be taken together. We argue that similar metrics such

as BERTscore and BARTscore also have similar pros and cons.

Knowledge Coverage. Due to the vast scale of real-world knowl-

edge, we are unable to evaluate whether all the content generated
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ID Prompt

1 Is the statement “[Insert statement here]“ True or False?

2 Given the statement “[Insert statement here]“, is this factually correct? Please answer with True or False.

3 Assess the validity of this claim: “[Insert statement here]“. Respond with only True or False.

4 Is the following statement factually accurate? “[Insert statement here]“ Provide your answer as either True or False.

5 Can you con�rm if this statement is true or false? “[Insert statement here]“. Reply with just True or False.

Table 7: Five prompt templates we used to investigate the robustness towards minor changes in prompts and knowledge

statements. We use the sampled knowledge statement to replace [Insert statement here] in each template and obtain 5 di�erent

prompts for the same knowledge statement.

by the model is completely factual in our benchmark. We can only

assess whether the content generated by the model aligns with the

knowledge stored in the knowledge graphs. However, the coverage

of real-world knowledge by the knowledge graph is limited, leading

to potential errors in our evaluation. However, as our benchmark

is scalable, we can mitigate this limitation to some extent by gen-

erating corresponding tasks (questions) using broader (or more

applicable) and more up-to-date knowledge graphs.

Knowledge Breadth. Our benchmark takes into account the knowl-

edge of three domains: commonsense, encyclopedic, and biomedical.

The �rst two domains are more general, while only biomedical is

domain-speci�c. However, our benchmark can be easily extended

to knowledge graphs in other domains, as long as there are corre-

sponding triplet data. This, to some extent, mitigates this limitation.

Evaluation of the Generalization of LLM Encoded Knowledge.

While LLMs do have a wide spectrum of abilities, in this work

our focus is the generalization of LLM encoded knowledge, i.e. how

well could LLM leverage the knowledge stored in its model param-

eters to answer questions in varying contexts. By designing and

experimenting with a taxonomy of 5 knowledge-probing tasks, we

advance the understanding of LLM knowledge while pinpointing its

limitations on certain tasks and domains. We envision KGQuiz as a

valuable benchmark to guide the e�orts for improving LLM knowl-

edge abilities, while the holistic evaluation of all LLM capabilities

might be beyond the scope of an 8-page paper

B ETHICS STATEMENT

Privacy. As KGs encompass a wealth of knowledge on a multifar-

ious range of topics, it can include sensitive or private information.

The potential for an LLM, that e�ectively covers and utilizes this

knowledge domain, could generate responses disclosing personal

details of individuals or organizations. This introduces privacy con-

cerns and reinforces the need for developing privacy-conscious

approaches when leveraging and assessing LLMs and KGs.

Accessibility. In making KG�iz publicly accessible, we aspire

to propel further research on LLMs’ knowledge abilities. However,

the use of this benchmark may necessitate signi�cant resources due

to the inherent complexities of large language models. Similarly,

evaluating black-box LLMs could incur signi�cant costs, potentially

creating barriers to access to the benchmark for researchers with

limited computational resources or budget, contributing to elevated

entry barriers in this �eld.

C DISCUSSION

D KGQUIZ DETAILS

In-Context Examples. Through experiments, we discovered that

for the majority of LLMs, their performance in a zero-shot setting is

unusually low on some tasks. We think this is because they are un-

able to precisely comprehend the question’s meaning (instructions),

and they cannot produce output in the format we expect. Therefore,

to preserve fairness without compromise, we have incorporated an

in-context example into the prompts of each question for Task 1:

True-or-False, Task 2: Multiple-Choice, and Task 4: Factual Editing,

which will enable a better assessment of the model’s knowledge

abilities.

Threshold for Semantic Match. For three knowledge graphs, we

randomly selected 1,000 entities each. For each entity, we prompted

GPT-4 to generate �ve entities with the same reference and �ve

entities with di�erent references. As a result, we obtained a total of

3×1, 000×5 positive samples and 3×1, 000×5 negative samples. For

each sample pair, we calculated their AdaScore. We chose a thresh-

old so that if a positive sample’s AdaScore is above the threshold

or a negative sample’s AdaScore is below the threshold, the sample

pair is correctly classi�ed; otherwise, it is misclassi�ed. We selected

the threshold that minimized the number of misclassi�ed samples

as the Semantic Match threshold.

LLMs Details. To better understand the experimental methods

and analysis results, we present the model size and the training

data of each large language model used in KG�iz in Table 8.

E ANALYSIS (CONT.)

E.1 Consistency Study

In Section 5.2.1, we investigate the robustness towardsminor changes

in prompts and knowledge statements.We select 100 questions from

the YAGO knowledge graph in Task 1: True-or-False and evaluate

with �ve di�erent prompts and instructions. We present the �ve

di�erent prompts we used in Table 7.

E.2 Validity of Semantic Similarity Method

In section 2.1, we proposed the Semantic Similarity method for neg-

ative sampling. To reduce the computational cost, we only compare

similarities among randomly selected m entities. Table 9 presents

four Task 2: Multiple-Choice questions generated through the ss

algorithm sampling. From this, we can see that although there are
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Model Open? Size Training Data

Ada N ∼350m N/A

Babbage N ∼1.3b N/A

Curie N ∼6.7b N/A

Davinci N ∼175b N/A

GPT-3.5Turbo N N/A N/A

GPT-J Y ∼6b The Pile, a 825 GiB diverse, open source language modelling data set

OPT Y ∼6.7b a concatenation of BookCorpus, CCNews, The Pile, and PushShift.io Reddit

ChatGLM Y ∼6b N/A

LLaMA Y ∼7b a mixture of several sources: CommonCrawl, C4, Github, Wikipedia, Books, ArXiv, and StackExchange

Alpaca Y ∼7b �ne-tuned LLaMA with instruction-following dataset

Table 8: Details of LLMs used in KG�iz.

Owen Pickard is a�liated to [MASK].

A. F.C. Lixa B. Bideford A.F.C. C. Stenhousemuir F.C. D. Erith & Belvedere F.C.

Please choose one from A, B, C, D:

Ground Truth: B. Bideford A.F.C.

Los Angeles International Airport is connected to [MASK].

A. Guangzhou Baiyun International Airport B. Honolulu International Airport C. Rohtak D. General Rodolfo Sánchez

Taboada International Airport

Please choose one from A, B, C, D:

Ground Truth: A. Guangzhou Baiyun International Airport

Nicolás Lodeiro plays for [MASK].

A. Brentwood Town F.C. B. Club Nacional de Football C. Thailand national under-23 football team D. Luverdense Esporte

Clube

Please choose one from A, B, C, D:

Ground Truth: B. Club Nacional de Football

French Polynesia has capital [MASK].

A. Preveza B. Alberto Lattuada C. Ulcinj D. Papeete

Please choose one from A, B, C, D:

Ground Truth: D. Papeete

Table 9: Examples of multiple-choice questions generated using the Semantic Similarity (SS) method for negative sampling.

The ground truth answer is indicated for each question. Despite a few dissimilar entities, most of the negative samples have

high semantic similarity with the ground truth entity, demonstrating the e�ectiveness of this method

a few negative sample entities that are not semantically similar to

the ground truth entities, most of the negative sample entities have

a high semantic similarity to the corresponding ground truth. This

demonstrates that this sampling method can, to some extent, select

semantically similar entities as negative samples, thereby increasing

the di�culty of the problem compared to random sampling.
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