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ABSTRACT

Large language models (LLMs) demonstrate remarkable perfor-
mance on knowledge-intensive tasks, suggesting that real-world
knowledge is encoded in their model parameters. However, besides
explorations on a few probing tasks in limited knowledge domains,
it is not well understood how to evaluate LLMs’ knowledge system-
atically and how well their knowledge abilities generalize, across a
spectrum of knowledge domains and progressively complex task
formats. To this end, we propose KGQuiz!, a knowledge-intensive
benchmark to comprehensively investigate the knowledge gener-
alization abilities of LLMs. KGQU1z is a scalable framework con-
structed from triplet-based knowledge, which covers three knowl-
edge domains and consists of five tasks with increasing complexity:
true-or-false, multiple-choice QA, blank filling, factual editing, and
open-ended knowledge generation. To gain a better understanding
of LLMs’ knowledge abilities and their generalization, we evaluate
10 open-source and black-box LLMs on the KGQuiz benchmark
across the five knowledge-intensive tasks and knowledge domains.
Extensive experiments demonstrate that LLMs achieve impressive
performance in straightforward knowledge QA tasks, while set-
tings and contexts requiring more complex reasoning or employing
domain-specific facts still present significant challenges. We en-
vision KGQU1z as a testbed to analyze such nuanced variations
in performance across domains and task formats, and ultimately

“equal contribution
!The KGQuiz benchmark and code are available at
https://github.com/leopoldwhite/KGQuiz.
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to understand, evaluate, and improve LLMs’ knowledge abilities
across a wide spectrum of knowledge domains and tasks.
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1 INTRODUCTION

Large language models (LLMs) have demonstrated incredible abili-
ties to encode and represent real-world knowledge in their model
parameters, advancing knowledge-intensive tasks such as open-
domain question answering [14, 15, 33, 58, 59, 63], dialogue gener-
ation [1, 12, 34], summarization [17, 35, 62], and more. However,
their knowledge abilities could also be quite brittle, with LLMs
generating hallucinated information [3, 8, 23, 37, 44], struggling
to encode long-tail facts [37], and falling short of abstaining when
relevant information is not present in model parameters [7].

As aresult, studies and benchmarks have been proposed to probe
the knowledge abilities of LLMs [11, 20, 39, 46, 52, 64]. Later works
also looked into temporality, evaluating whether LLMs could tackle
time-sensitive facts and information [11]. In addition to merely
probing LLM knowledge, knowledge-intensive tasks such as open-
domain QA [27, 31, 45], fact-checking [32, 38, 45], and more are
also proposed and employed to evaluate LLM knowledge abilities.
Despite these works’ contributions to understanding and expanding
the stored knowledge of large language models, we identify two
important yet underexplored factors in LLM knowledge abilities.
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Knowledge Utilization: Previous works have primarily focused
on limited task formats such as fill-in-the-blank questions to test the
model’s knowledge abilities [42, 46, 51]. However, the complexity or
format of a task might influence a model’s knowledge abilities, while
this crucial aspect often goes unaddressed in the current literature.
For example, factual editing [2, 6] requires the model to identify
factual inconsistency and make corrections, rather than simply
evaluating memorization; reasoning with structured knowledge [9,
60] examines the model’s ability to model knowledge in networks
and graphs, instead of only probing knowledge at the atomic level.
That being said, how well do LLM knowledge abilities generalize
to tasks and contexts of varying format and complexity remain
underexplored.

Knowledge Breadth: Existing works predominantly consider
Wikipedia or a specific domain like biomedical knowledge as the
knowledge source for evaluation. However, it has been observed
that LLM performance can vary significantly across different knowl-
edge domains [39, 52] - an aspect that has not been adequately
addressed in the previous works of LLM knowledge probing and
understanding. As a result, the lack of a multi-domain knowledge
evaluation of large language models, covering diverse knowledge
sources, subject areas, and more, is hindering a comprehensive
understanding of LLM knowledge abilities.

To this end, we propose KGQu1z, a comprehensive benchmark
designed to evaluate the knowledge abilities of large language
models across multiple knowledge utilization patterns in diverse
knowledge domains. Specifically, the KGQuiz benchmark is con-
structed with structured information from knowledge graphs (KGs)
from three varying domains, representing commonsense, ency-
clopedic, and domain-specific (biomedical) knowledge. For each
knowledge graph, the KGQuiz benchmark presents a collection
of 41,000 knowledge-intensive questions, covering five tasks of
increasing complexity: true-or-false, multiple choice, blank-filling,
multi-hop factual editing, and open-ended text generation. These
progressively difficult tasks represent the multitudes of LLM knowl-
edge and reasoning abilities, providing a comprehensive and com-
parative setting to assess LLMs’ abilities: they respectively test
LLMs’ abilities to judge factual correctness, select facts based on
model confidence, retrieve entities, perform factual editing, and gen-
erate long-form knowledge documents, presenting a holistic probe
of LLM knowledge abilities in different application scenarios.

We evaluate 10 open-source and black-box large language mod-
els on the KGQuiz benchmark to better understand which LLM
covers what knowledge domain better, and under which utilization
contexts. Our experiments demonstrate that: 1) LLM performance
greatly varies across knowledge domains. For instance, on Task
5: Open-Ended Text Generation, ChatGPT [43], ChatGLM [13], and
TEXT-DAVINCI-003 [43] respectively perform best when it comes
to YAGO, ConceptNet, and UMLS, three knowledge graphs repre-
senting varying knowledge domains. 2) Knowledge utilization
greatly impacts LLM’s ability to retrieve and employ factual
knowledge. For instance, ChatGPT’s performance on biomedical
knowledge drops by 30% from the fill-in-the-blank task to the fac-
tual editing task, suggesting that the additional multi-hop context
in factual editing poses new challenges to LLM knowledge abilities.
Together, our extensive experiments demonstrate that probing the
knowledge abilities of LLMs is nuanced and multi-faceted, with the
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largest LLMs excelling in simple knowledge utilization tasks on
general knowledge domains, while advanced knowledge contexts
and domain-specific information remain open challenges. KGQuiz
helps pinpoint the strengths and knowledge limitations of LLMs
with respect to tasks and domains. We envision KGQu1z as a valu-
able testbed to understand, evaluate, and improve LLM knowledge
abilities across varying knowledge domains and utilization con-
texts.

2 THE KGQUIZ BENCHMARK

KGQuiz employs knowledge graphs from diverse domains to con-
struct five knowledge-intensive tasks with increasing complexity.
We denote a knowledge graph as a set of triples 7, where the k-th
triple is T = (hg, rg, tg), and hg, r and t represent the head entity,
relation, and tail entity, respectively. We use & and R to denote the
sets of all entities and relations in the knowledge graph.

2.1 Task 1: True-or-False

As abase assessment of knowledge abilities, True-or-False questions
ask whether a given statement is factually correct or not. In a way,
this task tests the LLMs’ ability to verify the factuality of KG-based
information, which is the most fundamental ability to distinguish
between true and false knowledge [10].

Task Formulation We construct two sets of KG triples to rep-
resent positive and negative samples (7505 and Tpeg). For a positive
triple (h,r,t) € Tpos, We replace the tail entity ¢ with another entity
t’ to generate a negative sample and add it to 7;¢g. We then use the
prompt for the positive or negative triple (h, r, t): “Is the statement
h r t True or False?". We expect LLMs to answer with True or False,
indicating their judgment of the knowledge statement based on
their parametric knowledge.

Negative Sampling We propose four approaches to sample
negative entities ¢t in the knowledge graph to obtain increasingly
challenging negative samples.

¢ Random We randomly sample an entity from a set of entities
not connected to the head entity h as t’, formally t’ € & — E(h),
where &E(h) denotes the set of entities connected to h.
Semantic Similarity We hypothesize that semantically similar
entities could provide a more challenging setting with harder
negative examples. We first use the Random method to sample m
negative entities. These sampled entities form the set &y,. Then,
we employ an encoder-based language model, denoted as enc(-),
to encode the names of these entities. Finally, we use cosine simi-
larity sim(-, -) to select an entity ¢’ that is most similar to ¢ in the
embedding space. Formally, t’ = argmax, &, Sim(enc(e), enc(t)).
Relation Sharing We hypothesize that using entities sharing the
same relation, r, as the selected negative sample would provide a
challenging adversarial setting. We first obtain the set of entities
that are also associated with relation r as & ), then randomly

sample one entity from &") as the negative sample ¢’
Network Proximity We hypothesize that entities that are close
to h in the KG could also present a hard negative example. We
obtain the set of entities that are connected to h and randomly
sample one entity from it as the negative sample ¢’.

Evaluation We use accuracy as the evaluation metric for the
binary output of True or False.
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Figure 1: Overview of the KGQuiz Benchmark, featuring five knowledge-intensive tasks with increasing complexity. We
illustrate the diverse tasks employed in KGQu1z to test large language models, highlighting the examples and corresponding
natural language prompts used to examine their knowledge abilities across domains and contexts.

2.2 Task 2: Multiple-Choice

Building up from the True-or-False task, the multiple-choice task
introduces distractors [21, 48, 53]. This task not only tests the ability
of LLMs to determine what is factually correct but also their ability
to discern the false options from the true options. Therefore, the
Multiple-choice task presents a higher degree of complexity, as
LLMs need to evaluate the plausibility of different answer options
based on their parametric knowledge.

Task Formulation We randomly sample a subset of the knowl-
edge graph, denoted as 7. For (h,r,t) € 7, we replace the tail
entity t with [MASK] and provide m answer options, including the
correct entity t and m — 1 distractors. We follow the same negative
sampling strategies in Task 1: True-or-False to obtain the distractors.

Evaluation We similarly use accuracy as the evaluation metric.

2.3 Task 3: Blank-Filling

The Blank-filling task requires LLMs to directly generate the miss-
ing information for a given statement [46], compared to the two
previous tasks where the correct answer already appeared some-
where in the prompt context. While in tasks 1 and 2, models might
just take guesses as they can simply choose one of the available
options without knowing the actual answer, in Task 3: Blank-Filling,
LLMs are required to retrieve the correct answer without any hints
or options.

Task Formulation We randomly sample one subset of the
knowledge graph, denoted as 7s. For (h, r,t) € 75, we replace the
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tail entity ¢t with [MASK]. The model is asked to generate the correct
answer to replace [MASK].

Evaluation We denote the model output as t, and we use the
following metrics for evaluation:

e LCS: We denote the Longest Common Subsequence of ¢, and ¢

. . _ Len(s)
as s, and LCSis deﬁned as: LCS = m
F1-score: We denote the set of common tokens in both t, and
2PR

t as C. We denote the F1-score of f, and t as F1 = 5, where
1cl 1l
P=1mrR= 1l

Semantic Match: We measure semantic similarity between the
model’s output and the correct answer using cosine similarity
on embeddings obtained via InstructGPT Ada LLM enc(-). This
gives us the AdaScore(t,,t) = sim(enc(to), enc(t)). A thresh-
old @ of Adascore is based on a held-out validation set (detailed
in Appendix D) to determine whether the model-generated an-
swer and the ground truth are a semantically exact match. Con-
cretely, we define the semantic match metric as SM(ty,t) = 1 if
AdaScore(ty,t) > 0, else 0.

2.4 Task 4: Factual Editing

The Factual Editing task presents enhanced challenges compared to
task 3 by moving from a single knowledge statement to a multi-hop
knowledge statement. Task 4 requires LLMs to not only memorize
and recall the facts, but also to identify which part of multi-hop
knowledge is inconsistent and revise accordingly. While previous
works have also explored LLMs’ potential in factual editing [2, 6],
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Model Task Domain Avg.
T1 T2 T3 T4 T5 YAGO CPNet UMLS
Apa 83 97 61 51 438 6.5 6.8 7.1 6.5
BABBAGE 70 6.0 50 50 38 5.7 5.5 T4.8 5.7
CURIE 87 93 28 40 27 +5.2 6.1 5.2 5.2
Davinct 20 20 17 16 3.0 1.9 2.0 2.3 1.9
TurBO 1.0 1.0 30 39 28 23 24 23 23
GPT-J 70 73 87 7.7 9.0 8.0 7.6 8.1 8.0
OPT 90 70 80 7.8 98 8.2 8.5 8.3 8.2
CHATGLM 47 3.0 40 7.1 38 4.3 4.0 53 4.3
LLAMA 40 57 89 81 73 7.2 7.1 6.1 7.2
ALPACA 33 40 69 48 738 5.6 4.9 5.6 5.6

Table 1: Overall average rankings of ten LLMs on KGQuiz
across five tasks and three knowledge domains. Bold,
underline represents the highest and the second highest
ranking on each task (or knowledge domain). { denotes the
knowledge domain on which each model has its best rank-
ing.

we uniquely focus on a multi-hop format where one of the hops
features inconsistent factual information. This task tests LLMs’
abilities to handle multi-hop information, localize errors, edit factual
inconsistencies, and more.

Task Formulation Given a knowledge graph, we first sample a
k-hop path, and we use a structured format to present the multi-
hop knowledge path as d =(hq, r1, €1, 12, ..., tk).2 We then randomly
replace one of the entities in the path (denoted as es) with ¢’ sam-
pled with the negative sampling strategies described in Section 5
to obtain d’. We concatenate the names of original entities and
relations to form a multi-hop knowledge statement denoted as d
and swap one entity with its negative sample to obtain d’. This task
prompts LLMs to correct the factual inconsistency in d’.

Evaluation We denote the left part of d (tokens before e(es))
as L, and the right part of d (tokens after e(es)) as R. We first
perform the longest common substring match between the output
d(©) of the model and L, R in turn, and delete the obtained common
substring from d (©) to retrieve the revised entity given by LLMs.
Then, We adopt the same set of evaluation metrics as task 3, namely
LCS, F1-scorg, and SEMANTIC MATCH, to compare the ground truth
entity es and the revised entity given by LLMs.

2.5 Task 5: Open-Ended Text Generation

The Open-Ended Text Generation task moves from handling iso-
lated facts (as in the previous tasks) to generating multiple factual
associations about a given entity. We evaluate whether the gener-
ated factual associations are aligned with the information in existing
knowledge graphs. This comparison aims to measure the ability of
LLMs to generate accurate and comprehensive factual knowledge
of a particular entity. In addition, while tasks in previous works
mostly focus on a single factual association [21, 53], we propose
the Open-Ended Text Generation task to encourage the knowledge
abilities of LLMs in multi-fact and knowledge synthesis settings.
Task Formulation We randomly sample one subset of KG,
denoted as 7s. For (h,r,t) € 75, we ask the model to “Tell me some
2To avoid confusion, we denote e, as the tail entity ., of the m-th triple in the

knowledge path. At the same time, it also serves as the head entity h;,.; of the
(m + 1)-th triple in the knowledge path.

2229

Yuyang Bai and Shangbin Feng et al.

100 [ Ada [ Davinci 3 orT [ LLAMA
[ Babbage [ Turbo [ ChatGLM [ Alpaca

901 1 Curie 3 GPTJ

2 801

<

S

8 704

<
ol ] | Ll
wL O T e
40 y T

YAGO ConceptNet UMLS

Figure 2: Model performance on Task 1: True-or-False. Larger
LMs are better at judging factual correctness, while the same
LM performs differently across varying knowledge domains.
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Figure 3: LLM performance on Task 2: Multiple-Choice.
Davinct and TurBo consistently outperform other mod-
els, indicating their superior knowledge abilities under the
multiple-choice knowledge utilization format.

facts about h*. We denote all triplets containing h in the knowledge
graph as G = {(h,rg,t5) € T }.

Evaluation We evaluate Open-Ended Text Generation genera-
tion by comparing the model outputs with the information about
entity A in the original knowledge graph, denoted as G. Concretely,
we first prompt a GPT-3.5 LLM to turn the given model output in nat-
ural language into a list of fact triplets O = {(h, 1o, to)} inspired by
previous works [25, 41], where we further evaluate this approach in
Appendix D. We then employ the semantic match metric SM in task

3, we define the Precision and Recall between model predictions
O and ground truth G as: Precision = \Olglﬁl’ Recall = ‘O|;|g"
where O N G denotes the set of triples that are both in model

predictions and the knowledge graph with SM = 1.

3 EXPERIMENT SETTINGS

Knowledge Domains. In our experiments, we posit that the per-
formance of LLMs in knowledge-intensive tasks is greatly influ-
enced by diverse knowledge domains. Thus, we consider knowl-
edge graphs from three distinct domains in our experiments: com-
monsense, encyclopedic, and domain-specific. For commonsense
knowledge, we leverage the ConceptNet knowledge graph [50]
with 1,103,036 entities, 47 relations, and 3,098,674 triples. For en-
cyclopedic knowledge, we adopt the YAGO knowledge graph [36]
with 123,182 entities, 37 relations, and 1,089,040 triples. For domain-
specific knowledge, we mainly consider the biomedical domain and
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YAGO ConceptNet UMLS
Model
Fl-score LCS Sem.Match Fl-score LCS Sem.Match Fil-score LCS Sem.Match

AbpA 2.26 18.24 61.67 1.24 11.76 45.43 5.72 19.43 55.52
BABBAGE 2.60 17.63 60.48 2.07 12.06 64.67 10.37 21.68 71.43
CURIE 538  19.63 71.54 332 1511 78.68 1090 26.04 84.70
DAviINCI 14.02 28.65 73.00 6.27 27.40 91.19 8.28 23.81 87.88
TurBo 4.47 11.83 52.33 5.56 14.42 80.48 19.44 28.18 89.27
GPT-] 0.56 10.75 24.55 1.20 4.53 39.07 9.38 11.74 73.17
OPT 0.66 10.75 27.33 0.75 4.40 45.55 6.88 11.21 73.52
CHATGLM 353 2150 72.27 235 2015 88.07 404 1945 58.71
LLAMA 1.24 11.43 35.97 1.03 3.42 25.96 7.44 9.31 76.64
ALpPACA 3.16 10.37 41.52 1.92 6.25 56.55 10.63 13.61 81.88

Table 2: LLM performance on Task 3: Blank-Filling. Sem. Match is short for the semantic match metric. Davinct leads on YAGO
and ConceptNet, while TurBo performs best on UMLS, indicating that LLM knowledge abilities vary greatly across knowledge

domains.

adopt the UMLS knowledge graph [4] with 297,554 entities, 98 rela-
tions, and 1,212,586 triples. By conducting our evaluations across
knowledge graphs that span varying domains, we aim to provide a
comprehensive assessment of how the knowledge abilities of LLMs
fare across diverse knowledge domains.

Models and Settings. We evaluate both black-box and open-source
LLMs on the KGQuiz benchmark. For black-box LLMs, we adopt
InstructGPT [43] (TEXT-ADA-001, TEXT-BABAGGE-001, TEXT-CURIE-
001, and TEXT-DAVINCI-003) and ChatGPT (GPT-3.5-TURBO) through
the OpenAI API For open-source LLMs, we adopt GPT-J [56], OPT
(6.7B) [61], ChatGLM [13], LLAMA (7B) [55], and Alpaca [54] in the
experiments. We use a temperature of 7 = 0 to reduce randomness.

Task Settings. For Task 1: True-or-False, we construct 10k exam-
ples for each knowledge graph and adopt semantic similarity as the
default negative sampling method. In our experiments, we noticed
that some LLMs could not answer true-or-false questions based on
zero-shot instructions, thus we have added one in-context example
to demonstrate the QA format. For Task 2: Multiple-Choice, we use
four answer options as the default setting and construct 10k exam-
ples for each knowledge graph. Here, too, we incorporate a single
in-context example for clarification. For Task 3: Blank-Filling, we
randomly sample 10k triplets for each knowledge graph to generate
the blank-filling questions. Moving on to Task 4: Factual Editing,
we construct 10k knowledge walks for each knowledge graph with
the default walk length k = 3. Given that some LLMs struggled
with this task, an in-context example is provided. Lastly, for Task 5:
Open-Ended Text Generation, we select 1k entities in each knowledge
graph and ask LLMs to perform open-ended generation®. We use
Semantic Similarity to sample negative examples in our subsequent
experiments.*

3For some tasks, we use in-context examples. More details in Appendix D.
4The specific effect of these four strategies and our choice for Semantic Similarity is
detailed in section 5.1.1.
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4 RESULTS

We first calculate the ranking of each model on each task, domain,
metric separately. The Task rankings in Table 1 are averaged first
by metric, then by domain. The Domain rankings are averaged first
by metric, then by task. The Avg. rankings are averaged first by
metric, then by task, and finally by domain. These elaborate rank-
ings help to provide a big picture of the strengths and weaknesses
of LLM knowledge abilities, while the following performance for
each individual task provides more detailed insights.

4.1 Task 1: True-or-False

As depicted in Figure 2, among the assessed LLMs, four of them
(TEXT-DAVINCI-003, GPT-3.5-TURBO, ChatGLM) performed substan-
tially better than random chance (50%) on all KGs. Notably, GpT-3.5-
TURBO achieved the best overall performance, showcasing its ability
to discern correct from incorrect knowledge statements. Observa-
tion of improved performance with larger model sizes suggests that
models with more parameters can encode more knowledge and
leverage the stored knowledge to accurately identify the veracity
of knowledge statements. Additionally, Even in the simple binary
task, many LLMs show accuracy close to 50%, indicating difficulty
in distinguishing true and false statements. This suggests a need
for further improvement in LLMs’ knowledge abilities, particularly
for smaller language models.

4.2 Task 2: Multiple-Choice

Figure 3 showcases that TEXT-DAVINCI-003 and GPT-3.5-TURBO con-
sistently outperform other LLMs in understanding and applying
knowledge across all KGs and domains. An observation from tasks
comparison revealed that TEXT-DAVINCI-003 and GPT-3.5-TURBO’S
improved performance in Task 2: Multiple-Choice compared to Task
1: True-or-False. However, Alpaca’s relative performance dwindled
in Task 2, suggesting that the specific knowledge utilization for-
mat significantly influences an LLM’s ability to retrieve potentially
correct answers.
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YAGO ConceptNet UMLS
Model
Fl-score LCS Sem.Match Fl-score LCS Sem.Match Fil-score LCS Sem.Match

Apa 250 1451 86.76 012 1465 83.84 250 1811 59.85
BABBAGE 2.90 9.47 90.68 0.02 10.42 86.53 2.90 17.78 60.03
CURIE 6.21 8.93 91.20 0.10 15.92 83.14 6.21 19.76 60.24
DAVINCI 16.99  20.58 91.77 515  17.31 93.25 5.44 7.28 64.19
TurBo 12.29 13.24 91.06 0.51 1.28 93.32 0.88 8.93 59.05
GPT-] 0.03 0.17 90.34 0.00 0.22 93.21 0.20 0.71 59.98
OPT 0.01 0.06 90.37 0.00 0.06 93.24 0.30 0.88 59.96
CHATGLM 4.94 1.32 89.66 0.14 4.57 90.62 0.42 2.58 76.26
LLAMA 0.03 0.04 90.33 0.00 0.00 93.20 0.43 1.81 59.98
ALPACA 6.80 12.27 90.20 0.87 14.84 93.20 1.46 8.66 59.93

Table 3: LLM performance on Task 4: Factual Editing. Model performance is generally higher than blank-filling, indicating the
helpfulness of additional context and emphasizing the influence of knowledge utilization. Models such as TurBo, Davinci,
and ChatGLM show variations in performance across different knowledge graphs, highlighting the influence of knowledge

domains.

4.3 Task 3: Blank-Filling

Compared to true-or-false and multiple-choice questions, blank
filling requires LLMs to retrieve the correct answer from their
parametric knowledge without relying on any options. In Table 2,
the overall low LCS scores reflect that LLMs’ generated answers
struggle to match the exact target answer. Moreover, the models’
abilities differ significantly, with TEXT-DAVINCI-003 excelling in two
domains (YAGO and ConceptNet) but GpT-3.5-TURBO performing
better in the biomedical domain (UMLS). Additionally, we observe
a noticeable decrease in performance in the biomedical domain,
suggesting that the models may not be as proficient in handling
domain-specific knowledge.

4.4 Task 4: Factual Editing

Compared to blank-filling, Task 4: Factual Editing involves identi-
fying and rectifying factual inconsistencies within given knowl-
edge statements. According to the results in Table 3, the additional
context indeed aids certain models in generating fact-checked
responses on certain KGs (YAGO and ConceptNet), with TEXT-
DAVINCI-003 and GPT-3.5-TURBO scoring well for YAGO and Con-
ceptNet respectively, and ChatGLM excelling on UMLS. It highlights
that tasks such as dialogue generation and summarization, which
usually come with relevant context, may work better with LLMs.
However, when provided only with a short question, QA models
may get confused easily. The task-wise change in top-performing
models indicates that the form of knowledge utilization impacts an
LLM’s knowledge abilities significantly.

4.5 Task 5: Open-Ended Text Generation

Open-ended generation tasks present a more complex challenge
to LLMs as it requires not just specific factual associations, but
also the generation of a consistent paragraph about a certain entity
encapsulating assorted facts and knowledge. As observed in Table
4, TEXT-DAVINCI-003 tops the chart with the highest AdaScore_s
score across all three KGs, denoting its proficient ability to pro-
duce well-structured and factually accurate knowledge paragraphs.
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Model YAGO ConceptNet UMLS
Precision Recall Precision Recall Precision Recall
Apa 75.84 34.89 90.93 24.90 59.45 19.47
BABBAGE 84.66 35.34 95.01 18.84 8152 22.93
CURIE 85.69 38.64 96.59 22.46 83.43 26.80
Davinct 76.39 53.96 88.12 41.55 77.48 46.06
TurBoO 77.28 57.63 89.39 40.53 75.94 43.89
GPT-] 11.97 8.78 24.11 12.07 10.72 5.96
OPT 14.06 7.72 16.89 5.26 10.35 5.43
CHATGLM 71.00 54.54 88.05 46.49 63.59 39.72
LLAMA 39.17 29.29 36.78 11.78 26.14 11.85
ALPACA 22.96 17.77 28.63 13.94 12.69 7.53

Table 4: Model performance on Task 5: Open-Ended Text Gen-
eration. Different from previous tasks, generating long and
open-ended statements about entities poses new challenges
to LLMs.

TEXT-CURIE-001 stands out with the highest Precision score, indi-
cating its preference to generate knowledge closely in line with the
respective knowledge graph. From a Recall perspective, the best
performances are achieved by GpT-3.5-TURBO, ChatGLM, and TEXT-
DAVINCI-003 on the three respective KGs. These findings emphasize
that the knowledge domain significantly affects the performance of
LLMs in knowledge-intensive tasks, underscoring the need for com-
prehensive evaluations of LLMs’ knowledge abilities that consider
varying knowledge domains.

5 ANALYSIS
5.1 Benchmark analysis
5.1.1 Negative Sampling Strategy. In section 2.1, we propose and

formalize four negative sampling methods to generated questions
in the KGQu1z benchmark. In order to investigate their impact
on the difficulty of the task, we use the four negative sampling
strategies, Random (RA), Semantic Similarity (SS) Relation Sharing
(RS), and Network Proximity (NP) to generate questions for Task 1:
True-or-False based on the YAGO knowledge graph. We evaluate
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Figure 4: Performance on Task 1: Ture-or-False with varying
negative sampling methods. The choice of negative sampling
has a significant impact on the difficulty of the task.

TEXT-DAVINCI-003 and GPT-3.5-TURBO as shown in Figure 4. These
results show that different negative sampling methods do impact
on the difficulty of the problem, ranging from easy to difficult in the
following order: Random, Semantic Similarity, Relation Sharing, and
Network Proximity. It is also demonstrated that whether LLMs can
select the correct answer is impacted by the plausibility of negative
examples.

In particular, we employed Semantic Similarity as an intermedi-
ate strategy presenting reasonable complexity. This strategy, while
challenging, does not make the task excessively difficult. Further-
more, while we propose this specific strategy, KGQuiz benchmark
supports the flexibility of adopting other negative sampling settings.

5.1.2  Question Sampling. In KGQUuiz, for each task, we generate
questions by randomly sampling triplets (or head entities) from the
KG, while whether the randomly sampled subsets is represented of
the whole KG remain underexplored. To this end, we design two
additional ways to sample a problem subset:

o Relation Proportion: We first calculate the proportion of re-
lations in the KG, then sample triplets based on the relation
distribution. This ensures that the proportion of relations in the
sampled triples is consistent with the proportion of relations in
the entire knowledge graph.

Entity Clustering: First, we use knowledge graph embedding
model TransE [5] to obtain the embedding for each entity, then
we use K-means to obtain 10 clusters of entities. We sample
triplets based on the proportions of the number of entities in
each cluster.

We generated 1,000 Task 1: True-or-False questions and 1,000 Task 2:
Multiple-Choice questions on ConceptNet using these two methods
respectively. According to Figure 5, we find that after changing to
these two sampling methods that can theoretically better represent
the features of the knowledge graph, the performance of each model
did not change significantly (compared to random sampling). This
indicates that randomly sampled triples can also reflect the features
of the entire knowledge graph and the corresponding results are
representative.

5.1.3  Exact Match vs. Semantic Match. We conduct qualitative anal-
ysis for Task 3: Blank-Filling and present a few examples in Table 5.
It is demonstrated that answers generated by LLMs do not exactly
match the gold label, where the exact match (EM) metric would
treat the answer as incorrect. However, the generated responses
are semantically equivalent. For instance, in the first example, the
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Figure 5: Comparison of model performance across different
question sampling methods. Models are evaluated on 1,000
Task 1: True-or-False questions and 1,000 Task 2: Multiple-
Choice questions sampled via three different methods.

Question Prediction Gold

Bob Hawke graduated ~ Oxford University University of Oxford
from

Rosemary Sutcliff has  The Carnegie Medal ~ Carnegie Medal (liter-
won prize ary award)

Taito Corporation is
located in

Tokyo, Japan Shibuya, Tokyo

Table 5: Qualitative analysis of Task 3: Blank-Filling, sug-
gesting that our proposed Semantic Match presents a more
nuanced metric for knowledge probing.

word order is different but both answers convey the same meaning.
Similarly, in the third example, “Tokyo, Japan” is more general than
the gold answer “Shibuya, Tokyo” but it still provides the correct lo-
cation information. While the exact match metric would treat them
as incorrect, under our proposed Semantic Match, all four answers
are deemed as correct, indicating that Semantic Match presents
a better evaluation metric in LLM knowledge probing given the
nuanced nature of entity names [30].

5.1.4  Negative Sampling Evaluation. Regarding the four negative
sampling methods we proposed, a potential issue is that the sam-
pled data may not be genuine negative samples. Therefore, in order
to investigate the effectiveness of our negative sampling methods,
we manually evaluated 20 samples for each method. In our manual
evaluation, all the sampled examples were indeed true negative
samples, which validated the effectiveness of our negative sampling
methods. We further expand this evaluation by employing Perplex-
ity Al 5 a state-of-the-art fact-checking tool, to examine a subset
of negative samples on YAGO: they have all been identified by
Perplexity Al as either not in accordance with the facts or lacking
information to support this statement.

5.2 LLM analysis

5.2.1 Consistency Study. In this study, we investigate the robust-
ness towards minor changes in prompts and knowledge statements.
We select 100 questions from the YAGO knowledge graph in Task
1: True-or-False and evaluate with five different prompts and in-
structions (more details in Appendix E.1). We measure response

Shttps://www.perplexity.ai/
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Model Text Triplets
Precision Recall Precision Recall

Davinct 76.39 53.96 85.21 37.58

TurBoO 77.28 57.63 91.42 37.21

Table 6: Comparison of precision and recall for open-ended
text generation and direct triplet generation using TEXT-
DAVINCI-003 and GPT-3.5-TURBO.

consistency of the five black-box LLMs using the Fleiss Kappa mea-
sure [16]. The experiment results show that LLMs have varying
robustness towards prompt formats: TURBO (0.645) has the highest
score, suggesting a moderate level of agreement. Davincr (0.285)
exhibits a lower but still positive value. However, Apa (-0.187), Bas-
BAGE (-0.057), and CURIE (-0.168) show negative Fleiss Kappa values,
indicating poor agreement and suggesting that model responses
are less consistent towards minor changes in knowledge probing
instructions. This study highlights that the robustness to minor
changes in knowledge-intensive prompts is in itself part of LLM’s
knowledge abilities.

5.2.2  Generating Triplets vs. Text. We use TEXT-DAVINCI-003 and
GPT-3.5-TURBO to directly generate factual triplets about a certain
entity (by giving an in-context example) and reported the preci-
sion and recall in Table 6. It can be observed that although the
precision has improved, the recall has dropped significantly. We
analyzed that this is due to the model generating only a few high-
confidence triplets when directly asked for triplets, which led to the
aforementioned results. However, for other smaller-scale models,
directly generating factual triplets is not feasible, as they cannot
adequately understand the prompt’s instructions, resulting in poor
performance.

6 RELATED WORK

LLM Knowledge Probing. Research into what knowledge is stored
in LLMs has drawn significant interest. Pioneering work like LAMA
[46], TempLAMA [11], MMLU [20] quantitatively measured the fac-
tual knowledge in these models. Other approaches have expanded
these probing techniques, exploring topics like few-shot learning
and 2-hop relational knowledge [19]. Furthermore, open-domain
question-answering benchmarks like Natural Questions [28], and
TriviaQA [24] have been used to measure the practical knowledge
abilities of these models, aligning the probing tasks with real-world
applications.

Improving LLM Knowledge Abilities. Efforts to enhance LLM’s
knowledge abilities include augmenting language models with
knowledge graphs for structured, factual knowledge [40, 47] and
using retrieval-augmented methods like RAG [29], REALM [18],
and REPLUG [49] to incorporate external documents as a dynamic
knowledge source. Further, REMEDI [22] aims to create a finer con-
trol over knowledge in LLMs by understanding fact encodings in the
model’s internal representation system. In parallel, the framework
Knowledge Card [14] suggests using specialized language models
to provide modular and up-to-date knowledge in a collaborative
process.

2233

Yuyang Bai and Shangbin Feng et al.

Investigating the Limitation of LLM Knowledge Abilities. As LLMs
have shown promise in knowledge-based tasks, researchers have
also started examining the limitations of these models’ knowledge
abilities. This includes their ability to handle conflicted information
[8, 57], recall abilities [37], and self-evaluating skills [26]. By inves-
tigating these limitations, researchers aim to not only devise ways
to address them but also shed light on how LLMs can operate more
effectively in more sophisticated tasks, particularly in professional
domains [39, 52].

In summary, while considerable work has been done in prob-
ing the knowledge abilities of LLMs, improving these abilities, and
investigating their limitations, two major aspects have seen less
consideration: knowledge utilization and knowledge breadth. Com-
pared to previous work[45], the five tasks in KGQuiz feature in-
creasing difficulty in knowledge utilization patterns, which can aid
the critical analysis of LLM knowledge abilities. Also, instead of fo-
cusing on employing external knowledge sources for tasks, KGQuiz
tests the robustness and generalization of the internal knowledge
stored in LLM parameters. Moreover, a key feature of KGQuiz is
that it can be seamlessly extended to new knowledge domains using
our dataset construction methodology. This flexibility to use diverse
knowledge sources to create new evaluation protocols following
our methodology sets it apart from other benchmarks.

7 CONCLUSION

We propose KGQuiz, a benchmark for probing the knowledge gen-
eralization abilities of Large Language Models (LLMs). Unlike previ-
ous work, our benchmark focuses on two often-overlooked aspects:
the complexity of knowledge utilization and the breadth of knowl-
edge domains. Our benchmark uses structured information from
knowledge graphs (KGs) across three diverse domains, and it con-
sists of several tasks representing increasingly complex forms of
knowledge utilization. Our experimental results illustrate varying
performances of several LLMs across different domains and tasks,
underscoring the multi-faceted nature of knowledge abilities in
LLMs. This also demonstrates the importance of considering Knowl-
edge Utilization and Knowledge Breadth. We envision KGQUuiz as a
comprehensive testbed to evaluate, understand, and improve the
knowledge abilities of LLMs across varying domains and tasks.
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LIMITATIONS
LLM and KG selection. Due to computational and budget con-

straints, we restricted our study to ten representative LLMs and
three knowledge graphs each from a different domain. As we plan

to
pe

make KGQuiz publicly accessible, further investigation into the
rformance of a broader range of LLMs on assorted knowledge

graphs is left for future endeavors.

Evaluation Metrics. Being the case that LLMs might not fully

adhere to the context in our prompts, we were required to de-
ploy human-crafted string-processing functions to preprocess the
content the models generated, to evaluate the results. This step is
susceptible to errors that may lead to inaccurate results. As the
Semantic Match method is not 100% accurate, we report both the
semantic similarity and exact match side-by-side and we believe
they should be taken together. We argue that similar metrics such

as

BERTscore and BARTscore also have similar pros and cons.

Knowledge Coverage. Due to the vast scale of real-world knowl-

edge, we are unable to evaluate whether all the content generated
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Prompt

G W N =

Is the statement “[Insert statement here]* True or False?
Given the statement “[Insert statement here]", is this factually correct? Please answer with True or False.

Assess the validity of this claim: “[Insert statement here]“. Respond with only True or False.

Is the following statement factually accurate? “[Insert statement here]* Provide your answer as either True or False.
Can you confirm if this statement is true or false? “[Insert statement here]“. Reply with just True or False.

Table 7: Five prompt templates we used to investigate the robustness towards minor changes in prompts and knowledge
statements. We use the sampled knowledge statement to replace [Insert statement here] in each template and obtain 5 different

prompts for the same knowledge statement.

by the model is completely factual in our benchmark. We can only
assess whether the content generated by the model aligns with the
knowledge stored in the knowledge graphs. However, the coverage
of real-world knowledge by the knowledge graph is limited, leading
to potential errors in our evaluation. However, as our benchmark
is scalable, we can mitigate this limitation to some extent by gen-
erating corresponding tasks (questions) using broader (or more
applicable) and more up-to-date knowledge graphs.

Knowledge Breadth. Our benchmark takes into account the knowl-
edge of three domains: commonsense, encyclopedic, and biomedical.
The first two domains are more general, while only biomedical is
domain-specific. However, our benchmark can be easily extended
to knowledge graphs in other domains, as long as there are corre-
sponding triplet data. This, to some extent, mitigates this limitation.

Evaluation of the Generalization of LLM Encoded Knowledge.
While LLMs do have a wide spectrum of abilities, in this work
our focus is the generalization of LLM encoded knowledge, i.e. how
well could LLM leverage the knowledge stored in its model param-
eters to answer questions in varying contexts. By designing and
experimenting with a taxonomy of 5 knowledge-probing tasks, we
advance the understanding of LLM knowledge while pinpointing its
limitations on certain tasks and domains. We envision KGQuiz as a
valuable benchmark to guide the efforts for improving LLM knowl-
edge abilities, while the holistic evaluation of all LLM capabilities
might be beyond the scope of an 8-page paper

B ETHICS STATEMENT

Privacy. As KGs encompass a wealth of knowledge on a multifar-
ious range of topics, it can include sensitive or private information.
The potential for an LLM, that effectively covers and utilizes this
knowledge domain, could generate responses disclosing personal
details of individuals or organizations. This introduces privacy con-
cerns and reinforces the need for developing privacy-conscious
approaches when leveraging and assessing LLMs and KGs.

Accessibility. In making KGQuiz publicly accessible, we aspire
to propel further research on LLMs’ knowledge abilities. However,
the use of this benchmark may necessitate significant resources due
to the inherent complexities of large language models. Similarly,
evaluating black-box LLMs could incur significant costs, potentially
creating barriers to access to the benchmark for researchers with
limited computational resources or budget, contributing to elevated
entry barriers in this field.
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C DISCUSSION
D KGQUIZ DETAILS

In-Context Examples. Through experiments, we discovered that
for the majority of LLMs, their performance in a zero-shot setting is
unusually low on some tasks. We think this is because they are un-
able to precisely comprehend the question’s meaning (instructions),
and they cannot produce output in the format we expect. Therefore,
to preserve fairness without compromise, we have incorporated an
in-context example into the prompts of each question for Task I:
True-or-False, Task 2: Multiple-Choice, and Task 4: Factual Editing,
which will enable a better assessment of the model’s knowledge
abilities.

Threshold for Semantic Match. For three knowledge graphs, we
randomly selected 1,000 entities each. For each entity, we prompted
GPT-4 to generate five entities with the same reference and five
entities with different references. As a result, we obtained a total of
3% 1,000X5 positive samples and 3 X 1,000 X 5 negative samples. For
each sample pair, we calculated their AdaScore. We chose a thresh-
old so that if a positive sample’s AdaScore is above the threshold
or a negative sample’s AdaScore is below the threshold, the sample
pair is correctly classified; otherwise, it is misclassified. We selected
the threshold that minimized the number of misclassified samples
as the Semantic Match threshold.

LLMs Details. To better understand the experimental methods
and analysis results, we present the model size and the training
data of each large language model used in KGQuiz in Table 8.

E ANALYSIS (CONT.)
E.1 Consistency Study

In Section 5.2.1, we investigate the robustness towards minor changes
in prompts and knowledge statements. We select 100 questions from
the YAGO knowledge graph in Task 1: True-or-False and evaluate
with five different prompts and instructions. We present the five
different prompts we used in Table 7.

E.2 Validity of Semantic Similarity Method

In section 2.1, we proposed the Semantic Similarity method for neg-
ative sampling. To reduce the computational cost, we only compare
similarities among randomly selected m entities. Table 9 presents
four Task 2: Multiple-Choice questions generated through the ss
algorithm sampling. From this, we can see that although there are
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Model Open?  Size Training Data

Ada N ~350m N/A

Babbage N ~1.3b N/A

Curie N ~6.7b N/A

Davinci N ~175b N/A

GPT-3.5Turbo N N/A N/A

GPT-J Y ~6b The Pile, a 825 GiB diverse, open source language modelling data set
OPT Y ~6.7b a concatenation of BookCorpus, CCNews, The Pile, and PushShift.io Reddit
ChatGLM Y ~6b N/A

LLaMA Y ~7b a mixture of several sources: CommonCrawl, C4, Github, Wikipedia, Books, ArXiv, and StackExchange
Alpaca Y ~7b fine-tuned LLaMA with instruction-following dataset

Table 8: Details of LLMs used in KGQuiz.

Owen Pickard is affiliated to [MASK].
A.F.C. Lixa B. Bideford A.F.C. C. Stenhousemuir F.C. D. Erith & Belvedere F.C.
Please choose one from A, B, C, D:

Ground Truth:  B. Bideford A.F.C.

Los Angeles International Airport is connected to [MASK].

A. Guangzhou Baiyun International Airport B. Honolulu International Airport C. Rohtak D. General Rodolfo Sanchez
Taboada International Airport

Please choose one from A, B, C, D:

Ground Truth: A. Guangzhou Baiyun International Airport

Nicolas Lodeiro plays for [MASK].
A. Brentwood Town F.C. B. Club Nacional de Football C. Thailand national under-23 football team D. Luverdense Esporte
Clube

Please choose one from A, B, C, D:

Ground Truth: B. Club Nacional de Football

French Polynesia has capital [MASK].
A. Preveza B. Alberto Lattuada C. Ulcinj D. Papeete
Please choose one from A, B, C, D:

Ground Truth: D. Papeete

Table 9: Examples of multiple-choice questions generated using the Semantic Similarity (SS) method for negative sampling.
The ground truth answer is indicated for each question. Despite a few dissimilar entities, most of the negative samples have
high semantic similarity with the ground truth entity, demonstrating the effectiveness of this method

a few negative sample entities that are not semantically similar to demonstrates that this sampling method can, to some extent, select
the ground truth entities, most of the negative sample entities have semantically similar entities as negative samples, thereby increasing
a high semantic similarity to the corresponding ground truth. This the difficulty of the problem compared to random sampling.
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