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Abstract

Identifying linguistic differences between di-
alects of a language often requires expert
knowledge and meticulous human analysis.
This is largely due to the complexity and nu-
ance involved in studying various dialects. We
present a novel approach to extract distinguish-
ing lexical features of dialects by utilizing in-
terpretable dialect classifiers, even in the ab-
sence of human experts. We explore both post-
hoc and intrinsic approaches to interpretabil-
ity, conduct experiments on Mandarin, Italian,
and Low Saxon, and experimentally demon-
strate that our method successfully identifies
key language-specific lexical features that con-
tribute to dialectal variations.!

1 Introduction

Dialects and closely related languages exhibit sub-
tle but significant variations, reflecting regional, so-
cial, and cultural differences (Chambers and Trudg-
ill, 1998). Identifying and distinguishing differ-
ences between these dialects is of great impor-
tance in linguistics, language preservation, and nat-
ural language processing (NLP) research (Salameh
et al., 2018; Goswami et al., 2020). Traditionally,
identifying the specific linguistic features that dis-
tinguish dialects of a language has relied on man-
ual analysis and expert knowledge (Cotterell and
Callison-Burch, 2014), as the differences between
these dialects could be subtle and hard to detect
without linguistic expertise (Zaidan and Callison-
Burch, 2011). This process is also time-consuming
and is usually language-specific due to the pecu-
liarities that different languages exhibit.
Extracting distinctive words of particular di-
alects is essential for studying dialectal variation,
especially in dialectology (Chambers and Trudgill,
1980). In this work, we focus on extracting word-
level distinguishing and salient features in dialects,

'Data and code are available: https://github.com/
ruoyuxie/interpretable_dialect_classifier
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sta cosa succidia sulu tra cristiani lu culusseu co | | "'I
tutti saranno coinvolti in questa azione %
Interpretable
Classifier

2

SCN: sta cosa succidia sulu tra cristiani lu culusseu co
IT: tutti saranno coinvolti in questa azione

i 4
Feature
Extractor
Figure 1: (1) given an input text; (2) the interpretable
dialect classifier return labels (SCN and IT) and expla-
nations; (3) the extractor takes the explanations and (4)
outputs meaningful features to the languages.
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SCN: sulu, lu, culusseu ...
IT: saranno, questa, azione ...

Language Unique Features

also called ‘shibboleths’ (Proki¢ et al., 2012). We
propose an automated workflow that could poten-
tially assist researchers such as dialectologists and
corpus linguists in their analysis of dialectal vari-
ations. To achieve this, we leverage strong neural
classifiers of dialects (Aepli et al., 2023; Scher-
rer et al., 2023, 2022) and pair them with model
interpretability techniques to extract these features.

We hypothesize that there are certain distinguish-
ing features in dialects that the models learn dur-
ing training, which enables them to make accu-
rate predictions at test time. We utilize post-hoc
(Simonyan et al., 2014; Ribeiro et al., 2016) and
intrinsic (Alvarez-Melis and Jaakkola, 2018; Arik
and Pfister, 2020) feature attribution explanation
methods to extract these features from model inter-
pretations, in the form of local explanations from
dialect classifiers.

Our experiments focus on three language groups:
Mandarin, Italian, Low Saxon, and their respec-
tive dialects. We demonstrate the effectiveness of
our approach through automatic evaluation, human
evaluation, and extensive analysis. We use known
lexical features of some of the dialects we consider
and show the viability of using explanation meth-
ods to extract unique dialectal features.
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2 Background and Related Work

The importance of interpreting model decisions has
increasingly been recognized in recently (Belinkov
et al., 2020; Koh and Liang, 2017; Mosca et al.,
2022; Rajagopal et al., 2021), primarily due to its
role in deciphering the inner workings of black-box
models. Two main approaches include: (i) post-hoc
methods (Lundberg and Lee, 2017; Ribeiro et al.,
2016; Jin et al., 2019) which provide insights into
the predictions of pre-existing models based on
model internals; (ii) intrinsic methods (Rajagopal
et al., 2021; Alvarez-Melis and Jaakkola, 2018;
Rigotti et al., 2021) where interpretability is an
integral feature that is optimized concurrently with
the model’s main primary task during training.

This paper also closely relates to dialect clas-
sification (Aepli et al., 2023; Scherrer et al.,
2023, 2022; Jauhiainen et al., 2019). Some high-
performing neural dialect classifiers are able to
achieve > 90% accuracy even when there are mul-
tiple categories and levels of noise present or there
are just very subtle differences in general (Srivas-
tava and Chiang, 2023). Most languages world-
wide are under-resourced (Joshi et al., 2020), and
basic tasks like identifying verbs and nouns within
a dialect can be challenging, given that syntactic
parsing is primarily efficient for well-resourced lan-
guages (Hellwig et al., 2023; Hou et al., 2022). In
this work, we focus on extracting lexical differ-
ences between dialects, as they show potential in
distinguishing dialectal variations. The idea of au-
tomatically extracting linguistic features is not new
(Brill, 1991; Demszky et al., 2021). However, we
identify these features through the lens of model
explanations by using feature-attribution methods.
To the best of our knowledge, this is the first study
to undertake such an endeavor.

3 Method

We present a simple yet effective method to extract
lexical differences that distinguish dialects using
explanations obtained from interpretable dialect
classifiers as shown in Figure 1.

3.1 Interpretable Dialect Classifier

Our interpretable dialect classifier, built on top of
transformer-based models, is designed to work with
both post-hoc and intrinsic interpretable methods.
For the scope of this work we focus on Leave-
One-Out (LOO), a popular model-agnostic feature-
attribution method, and SelfExplain (Rajagopal
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et al., 2021), an intrinsic interpretable method that
learns to attribute text classification decisions to
relevant parts in the input text. For the intrinsic
approach, we incorporate the model encoder into
the SelfExplain framework, exclusively extracting
only local explanations. For the post-hoc approach,
we train a separate classifier to calculate the LOO
interpretations.

3.2 Explanation Methods

We start with a dialect classifier trained to take
an input sentence X and predict its corresponding
label y. Let ug be the final layer representation
of the “[CLS]” token for X, which is the sentence
representation typically used to make a prediction.

Post-hoc Approach During inference, LOO esti-
mates the attribution score of each token x; in input
X in relation to model’s prediction §. To do so, u,
is passed through ReL U, affine, and softmax lay-
ers to yield a probability distribution over outputs.
For each feature x;, LOO calculates the change in
probability when {z;} is removed from X. Let
X\{z;} denote input X without feature z; and u;
the final layer representation of the “[CLS]” token
for X\{z;} . We term this the relevance score and
expect that influential features/explanations in the
input X will have higher scores.

£ = softmax(affine(ReLU(uy)))

£; = softmax(affine(ReLU(u;)))
Vi=£—-¢;

ey

Intrinsic Approach For our intrinsic approach
using SelfExplain (Rajagopal et al., 2021), we aug-
ment the dialect classifier with a Local Interpretabil-
ity Layer (LIL) during training. This layer quan-
tifies the relevance of each feature z; in input X
to the final label distribution £ via activation dif-
ference (Shrikumar et al., 2017), and is trained
jointly with the final classifier layer. Taking £ in
Equation 1, the loss is the negative log probability,
summed over all training instances:

Ldialectfclassiﬁer = - Zz lOg E[y:]

where y; is the correct label for instance 7. To
obtain the attribution score of each feature x; in in-
put X, we first estimate the output label distribution
without x; by transforming the difference between
u, and u;, where u; is the MLM representation of
feature x;:

s; = softmax(affine(ReLU(uy) — ReLU(u;)))



loss = Ldialect—classiﬁer +a1Lpp

The relevance of each feature x; can be defined
as the change in probability of the correct label
when x; is included vs. excluded:

rj = [Ely; = [8jly;
where higher r; signifies more relevant features
to the prediction, serving as better explanations.

Mapping Explanations to Lexical Features
We extract explanations from the classifiers out-
lined above. Note, however, that these explanations
are at the sentence level, but one ideally would
need features that in general identify/describe one
dialect in contrast to another at the language level,
i.e., at the corpus level. To achieve this, we devise
a corpus-level feature extraction method that takes
sentence-level explanations as input and produces
“global” features.?

Given a set of sentence-level explanations £ =
{e1,e2,...,e,} from a classifier, we first filter out
explanations from incorrect predictions or those
that are not unique to a specific language variety.
Let E’ represent the filtered set of explanations:

E' = {e € E | isCorrect(e) A isUnique(e)}

Next, we apply Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) to E’ to extract the most
salient global features. Let F' be the final set of
extracted features. The TF-IDF score for a term ¢
in a document d in a corpus D is given by:

TF-IDF(t,d, D) = TF(t,d) x IDF(¢, D)
We can then define the feature extraction as:

F = {TF-IDF(¢,d,E') |t € d,d € E'}
4 Languages and Datasets

4.1 Languages

We discuss below each of the language continua,
which have multiple dialects that vary distinctly
across different regions. We study three distinct
language continua and their respective dialects:
Mandarin, Italian, and Low Saxon (Dutch and Ger-
man). Our selection is largely influenced by cul-
tural and typological diversity concerns, but also
by the dearth of dialectal data for other languages.
More information about the dialects can be found
in Appendix A.

*In this study, we extract distinguishing lexemes (words)
through unigrams. Nonetheless, our approach can be readily

adapted to phrase-level analysis using ngrams, though such an
extension falls beyond the purview of this work.
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4.2 Datasets

We use FRMT dataset (Riley et al., 2022) for Man-
darin dialects. FRMT provides sentence- and word-
level translations of English Wikipedia text into
Mainland Mandarin (CN) and Taiwan Mandarin
(TW). For Italian dialects, we combine data from
the Identification of Languages and Dialects of
Italy (ITDI) shared task (Aepli et al., 2022) and Eu-
roparl v8 corpus (Koehn, 2005). ITDI provides 11
Italian dialects obtained from crawling Wikipedia,
and we use them to mix with the same amount of
data from standard Italian in Europarl. For Low
Saxon dialects, we use LSDC dataset (Siewert et al.,
2020), which consists of 16 West-Germanic Low
Saxon dialects from Germany and the Netherlands.
Appendix B shows the statistics for all datasets. We
remove all punctuations and lowercase all Latin
characters to focus on extracting lexical features.

5 Experiments

In this section, we present multiple experiments
and demonstrate that our method results in distin-
guishing and meaningful feature extraction. For
the main results, we focus on Mandarin (CN-TW)
and Sicilian-Italian (SCN-IT). A total of four anno-
tators are involved in the evaluation process.>

5.1 Models

Our dialect classifiers are built on XLM-RoBERTa
base (Conneau et al., 2020). We maintain the hy-
perparameters and weights from the pre-training
of the encoders and train the models for 5 epochs
with a batch size 16 for each language pair. All
experiments are done on an NVIDIA A100 GPU.

5.2 TF-IDF Baseline

As a baseline, we use TF-IDF to evaluate how effec-
tively it extracts meaningful lexical features from
CN-TW language pair (Table 1). We present an-
notators with the extracted lexical features using
TF-IDF, asking them to determine whether these
features are salient and unique to the language.*

5.3 Explanation Evaluation

We hypothesize that good explanations from highly
performing dialect classifiers should be subsets of

3All annotators are proficient in the annotated language
pairs. Three annotators work on CN-TW, and one for SCN-
IT, as it is difficult to find annotators who are proficient in
multiple dialects.

*The annotators are given options to select if a feature is
likely to belong to one, both, or neither of the dialects.



Option (%) CN TW
CN 70.0 0.0
™ 0.0 60.0

Both 30.0 40.0
None 0.0 0.0

Table 1: Baseline results for capturing language-unique
features for CN-TW.

the input that represent distinctive features of the
respective dialect in which the input is written. We
first evaluate the general robustness of explanations
using Sufficiency (Jacovi et al., 2018; Yu et al.,
2019) (Do explanations adequately represent the
model predictions?) and Plausibility (Ehsan et al.,
2019; Hayati et al., 2023) (Do explanations seem
credible and comprehensible to humans?)

Sufficiency We train a separate classifier to per-
form the dialect classification task with only the
explanations as input, and the predicted labels as
target. Higher accuracy indicates that the explana-
tions are more reflective of the model predictions.
We train these models with the top ranking expla-
nations of each sentence as input, and present the
results in Table 2 for both explanation methods.
Both methods achieve over 90% accuracy when
k > 3, which sets a reliable baseline for further
evaluation. CN-TW and SCN-IT have an aver-
age sentence length of 18.8 and 16.2, respectively,
which implies that our sufficiency scores are trust-
worthy, as we obtain them with less than 20-30%
of an average sentence.

Methods Dialects k=1 k=3 k=5
Selfixy CN-TW 765 967 978
P oseNaIT 878 958 979
CN-TW 813 932 972

LOO  gonar 874 954 966

Table 2: More explanations lead to higher sufficiency.
Both explanation methods are over 90% accurate when
k > 3, setting a reliable baseline for future evaluation.

Plausibility We give each annotator 25 sentences
with the model’s predictions and the top three expla-
nations from LOO and SelfExplain. We randomly
shuffle and anonymize the explanation methods
and ask annotators (i) Should the model classify
a given sentence in certain dialects based on the
explanations? (ii) If the explanations do not ade-
quately justify the model’s prediction, what should
the model’s prediction be based on? The annota-
tors are given options to select one, both, or neither
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explanation method. We present the percentage of
instances that are adequately justified according to
the annotators on Figure 2. Overall, LOO achieves
a higher percentage of perceived adequate justifica-
tion, compared to SelfExplain. Therefore, we will
use LOO as the main explanation method for the
rest of the studies in this work.

= LOO  mmm SelfExplain 92
c 30 80 80
Re]
& 60
.
= 60 5
7
3 10 40
2 28 2
3
L l .
(5]
<

0

CN T™W SCN IT
Language

Figure 2: Adequate justification percentage for LOO
and SelfExplain. Humans found LOO produces more
justifiable explanations across all four dialects.

5.4 Can we extract lexical features by
interpreting dialect classifiers?

Automatic Evaluation As a sanity check, we
propose a simple automatic evaluation metric,
PICK-UP RATE (PR), to evaluate the ability of ex-
planation methods on capturing language-unique
features. Based on comparative dialectology and
other linguistic literature, we identify a small set
of distinctive features for the languages we work
with.? We define PR as the likelihood of language-
unique features being captured in the input sample.
The higher the PR is, the better the explanation
method aligns with some ground truth features.
Given e, as the number of times that a language-
unique feature g is used as an explanation e and ¢,
as the number of times that g appears in a corpus c,
PR(s) = Gic?

FRMT provides a set of Mandarin word trans-
lations between CN and TW. We present the PR
result for these translated words in Appendix C.1.
For both explanation methods, the language-unique
translations tend to only appear in their correspond-
ing classes with reasonable pick-up rates. Note that
script differences between CN and TW make its
fairly easy for the classifiers to correctly classify
them. Therefore, we conduct the same experiments

5 After reviewing the literature, we identified features that
can be easily measured, which allows us to potentially show
that the features that humans described align with the outputs
generated by the model.



on two additional Low Saxon dialect pairs for con-
firmation (Appendix C.2). All experiments showed
similar patterns, indicating that language-unique
lexical features can indeed be retrieved from the
explanations. Further discussion about PR can be
found in Appendix D.1 and D.2.

Human Evaluation Similar to the baseline in
§5.2, we select the top 20 extracted features using
our extraction method as described in §3.2. The
inter-annotator agreement statistics can be found
on Appendix G. We calculate the percentage of
choices made in the each option relative to the total
choices the and present the CN-TW and SCN-IT
results in Table 3 and compare CN-TW results with
baseline in Table 4.

Option (%) | CN TW | Option (%) | SCN 1T

CN 889 10.5 SCN 450 00
™ 0.0 89.5 1T 150 63.2
Both 11.1 0.0 Both 40.0 36.8
None 0.0 0.0 None 0.0 0.0

Table 3: Our extraction method effectively extracts
language-unique features in two language pairs, CN-
TW and SCN-TW.

We observe that for CN-TW, which is easily
distinguishable, our method captures 88.9% and
89.5% of CN and TW features, respectively. Com-
pare to the baseline in §5.2 (70% and 60%), our
method is 27% and 49 % higher. The numbers for
SCN and IT are slightly lower (45% for SCN and
63.2% for IT) but it is important to note that the
two languages do share a large percentage of their
vocabulary, so we believe that these scores are in-
deed encouraging. The reason is that the method
is confirmed to be rather precise: None of the sug-
gested features for Italian would be appropriate
for Sicilian, and only 15% of the suggested SCN
features would not be appropriate for it.

Baseline Ours
Option(%) | CN TW | CN TW
CN 700 00 | 88.9 10.5
™ 0.0 600 | 00 895
Both 30.0 40.0 | 11.1 0.0
None 0.0 0.0 0.0 0.0

Table 4: Comparison of the baseline and our extraction
method on capturing language-unique features for CN-
TW. Our method significantly outperforms the baseline,
capturing nearly 90% of the language-unique features
for both languages.

5.5 Classification Accuracy

While our primary goal is to extract lexical fea-
tures, ensuring high classification accuracy is also
crucial as incorrect predictions could undermine ex-
planations. We train 21 distinct models for binary
classification for all dialect pairs and present their
results on Appendix E. We observe our method
achieves high accuracy across all language pairs,
with an average of 98.7%. This ensures that the
features extracted by the model are supported by
reliable predictions, thereby enhancing the value
and reliability of the explanations it provides.

6 Conclusion

In this work, we introduce a novel approach for
capturing language-unique lexical features from
dialects through interpretable dialect classifiers.
We utilize both post-hoc and intrinsic explanation
methods and experiment on three language groups
- Mandarin, Italian, and Low Saxon, and their re-
spective dialects, conducting extensive evaluation
and analysis to showcase the effectiveness of our
method. In the future, we plan to broaden this
approach to address additional linguistic aspect be-
yond the lexical level (Appendix D.3).

More broadly, our paper takes a first step to as-
sess how interpretability techniques can be used
to unearth lexical and, potentially, other linguis-
tic features. By doing so, we hope to provide a
framework that future studies can build upon.

7 Ethics Statement

We envision a future where researchers, regard-
less of their expertise in a particular language or
dialect, can leverage our method to gain insights
of dialectal variations. While our primary inten-
tion is to promote dialectal inclusivity, we realize
that, like any tool, it could be misused in ways that
might lead to division or stereotyping. As dialects
can be associated with specific ethnic groups or
nationalities, the technology might be misused for
profiling purposes. It might introduce misleading
correlations and negatively impact certain groups.

8 Limitations

A limitation to our work is that we are working with
binary classification and data that we a priori know
to belong to a certain language variety, to provide a
proof-of-concept. If one was applying this work in
the real world, e.g. on data collected from multiple
locations within a language’s geographical area, we



could substitute our classification scheme to now
predict the location or class of the data collection.
While our emphasis is on lexical aspects, it is cru-
cial to acknowledge the broad spectrum of other lin-
guistic elements that contribute to the richness and
complexity of dialects, such as syntactic, phonetic,
and semantic features. Our method demonstrates
excellent performance in lexical feature extraction,
it may not yet adeptly identify and analyze these ad-
ditional facets of linguistic variation. Additionally,
finding annotators proficient in multiple dialects
is challenging. Therefore, some experiments were
only conducted on a subset of languages due to the
limited availability of data and annotators. In the
future, we plan to extend our method to more lan-
guages and integrate modules that will focus specif-
ically on these diverse linguistic features, making
it a more comprehensive tool for dialect analysis.
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A Dialects

Figure 3: A general overview of the geographical areas in Italy for the 11 languages and dialects. While the map’s
vague due to the complexity of the situation, it provides a rough idea of where in Italy to locate the varieties. The
map is sourced from Aepli et al. (2022).

Figure 4: Rough regions where the 16 considered Low Saxon languages and dialects are spoken. This map is taken
from Siewert et al. (2020).

Mandarin Dialects Mandarin, also known as Standard Chinese or Putonghua, is part of the Sinitic
language family and one of the most widely spoken languages worldwide. We focus on two variations of
Mandarin: Mainland Mandarin (CN) and Taiwan Mandarin (TW). The two varieties are closely related
and they share a core vocabulary, but there are variations in the usage of certain words and phrases. In
writing, Mainland Mandarin also has adopted simplified Chinese characters, while Taiwan uses traditional
characters.

Italian Varieties Italian, a Romance language, consists of a diverse range of dialects across different
regions of Italy. While these dialects have evolved from Latin and share many common words, they exhibit
variations in phonetics, vocabulary, and grammar (Figure 3). For example, Sicilian, spoken in Sicily and
the southern regions of Italy, presents distinct phonological features and a rich vocabulary influenced
by Arabic and other languages, and as a result it has its own grammar, vocabulary, and pronunciation
rules, to the point that it can be difficult for Italian speakers to understand. We note that a lot of the Italian
vernaculars are categorized as distinct languages with their own ISO codes (e.g. Venetian, Neapolitan,
Sicilian, to name a few). But nevertheless it is undeniable that all of them fall within the same branch of
Italic languages and in practice for a diverse language continuum.
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Low Saxon Dialects Low Saxon is a West Germanic language that encompasses a range of dialects
spoken in the northern regions of the Netherlands and Germany (Figure 4). There are multiple dialects
that vary distinctly across different regions. For example, the dialects spoken in the Netherlands, such
as Gronings and Twents, have distinct vowel sounds and consonant variations compared to the German

dialects, such as Plattdeutsch.

B Dataset Statistics

Language Dialect Region Train ‘ Test
Mandarin Mainland (CN) 3802 | 467
Taiwan (TW) 3807 | 488
Piemonte (PMS) 3305 | 414
Veneto (VEC) 11249 | 1447
Sicilia (SCN) 3250 | 399
Campania (NAP) 2012 | 254
Emilia Romagna (EML) 1648 | 222
Italian Taranto (ROA TARA) 716 90
Sardegna (SC) 810 99
Liguria (LIJ) 4575 | 558
Friuli (FUR) 2990 | 368
Veneto (LID) - -
Lombardia (LMO) 5846 | 733
Achterhoek (ACH) 791 106
Drenthe (DRE) 5322 | 634
Groningen (GRO) 27 2
Hamburg (HAM) 5559 | 705
Holstein (HOL) 10381 | 1293
Mark-Brandenburg (MAR) 177 20
Mecklenburg-Vorpommern (MKB) | 15654 | 1913
Low Saxon Munsterland (MON) 589 86
Northern Lower Saxony (NNI) 649 80
Lower Prussia (NPR) 298 33
Eastphalia (OFL) 7512 | 952
East Frisia (OFR) 197 25
Overijssel (OVY) 1063 | 113
Eastern Westphalia (OWL) 11480 | 1396
Sauerland (SUD) 13747 | 7425
Twente (TWE) 547 59

Table 5: Dataset Statistics
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C PR Results

C.1 PR on CN-TW

LOO SelfExp.
Label ~ Featre | CNPR TWPR | CNPR TW PR
WE 12.5 0 12.5 0
SRR 38.5 0 15.4 0
= 50 0 66.7 0
FTEIML 33.3 0 33.3 0
i) 0 0 0 0
CN puRiiE 57.1 0 14.3 0
=] 100 0 100 0
BE& K 28.6 0 28.6 0
B 60 0 0 0
EJE 0 0 50 0
EjiZa 50 0 33.3 0
Avg. PR 39.1 0 35 0
JB\ZY 0 33.3 0 55.6
b g5) 0 16.7 0 0
417G B 0 42.9 0 14.3
EIESY 0 83.3 0 50
A& 0 50 0 16.7
™W EERE 0 33.3 0 33.3
fik A 0 0 0 60
in i) 0 0 0 100
e 0 30 0 20
e 0 0 0 0
JEAE 0 75 0 25
Avg. PR 0 33.1 0 34.1

Table 6: Each language-unique feature predominantly appears only in its own class, implying that explanation
methods are capable to extract language-unique features. For example, the CN word % %’ is only used in CN’s
explanation, which is never used as TW’s explanation, and vice versa for its translation ‘BAY

C.2 PR on Low Saxon Dialects

We conduct two additional PR experiments in Low Saxon dialects: (i) The first and second singular
pronouns in Eastphalian (OFL) are ‘mik/dik’, compared to the rest of the Low Saxon dialects (‘mi/di’)
(Siewert et al., 2020) (Table 7); (ii) The differences between all German and Dutch varieties” orthography
for ‘house’ (‘Huus’ vs ‘hoes’) and ‘for’ (‘for’ vs ‘veur’) (Table 8). In both experiments, we find similar
general patterns where language-unique features tend to appear in their corresponding classes, further
enhancing our finding that such dialectal lexical features can be extracted by interpreting dialect classifiers.
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OFL Non-OFL

Count ‘ mik  dik ‘ mi di
OFL Exp. 17 9 0 0
Non-OFL Exp. 1 1 156 57
Text | 34 19 | 577 155

OFL PR (%) 50.0 474 00 0.0
Non-OFL PR (%) | 29 53 | 27.0 38.0

Table 7: The OFL words ‘mik/dik’ are observed in OFL’s explanations about half the time (PR=50%), whereas
the Non-OFL words ‘mi/di’ mainly appear in Non-OFL’s explanations, indicating that explanation methods can
effectively capture language-specific features.

DE Feature = NL Feature

Count ‘ Huus  for ‘ hoes veur
DE Exp. 17 42 0 0
NL Exp. 0 0 0 23

Text | 42 175| 0 63

DEPR (%) | 405 240| 00 0.0
NLPR(%)| 00 00 | 00 365

Table 8: In Low Saxon, German (DE) dialects "house’ are written 'Huus’ and ’for’ is written as 'for’, whereas in
Dutch (NL) are written as "hoes’ and 'veur’ (Siewert et al., 2020). Note that hoes does not appear on the NL corpus.

D Additional Discussion

D.1 Why is Pick-Up Rate Low?

In the CN-TW experiments, the language-unique lexical features (see Table 6) are always correctly
identified, which means that our method has high precision. The fairly low pick-up rates, though, imply
that our method has somewhat low recall. To test if this is indeed the case, we explore whether there exist
other lexical features that may also be language-unique but which are not part of our original feature
list. To do so, we find all features that co-occur with the features in our list for both varieties, and rank
them based on their counts. We then present this updated list of possible language-unique features to our
annotators (in a manner similar to §5.4). We find that the majority of them are indeed good candidates
for language-unique features as well. In particular, 74.2% of the ones selected for CN and 68.3% of the
ones for TW are indeed unique to the respective language. This implies that the apparent low recall of our
method is simply due to the presence of many good options in the data — and the feature lists in Table 6
contain only a subset of the possible explanations.

D.2 Explanations from the Training Sets

We explore how expanding the scale of data points influences the explanation methods’ ability to capture
features. Therefore, we run the classifier on the training set rather than the test set, to collect more
explanations. We conduct experiments on LSDC dataset, similar to §5.4. Comparing the results, presented
in Table 9 with the original test set results in Table 7, we find a substantial increase in the number of data
points along with noticeable fluctuations in PRs. Despite these variations, the language-specific features
continue to mainly appear within their respective predicted classes. This observation reaffirms our findings
that the language-unique lexical features can indeed be captured with high precision by explanations.
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OFL Non-OFL

Count ‘ mik  dik ‘ mi di
OFL Exp. 92 44| 0 0
Non-OFLExp. | 2 9 | 1422 493
Text | 263 150 | 4895 1310
OFLPR (%) [350 293| 00 0.0
Non-OFL PR (%) | 0.76 6.0 | 29.0 38.0

Table 9: Despite an increase in data points and fluctuations in PR values, language-specific features consistently
appear predominantly within their respective predicted classes. This observation strengthens our previous findings,
reaffirming that the explanation method can indeed effectively capture language-unique features, regardless of the
scale of data points.

DE Feature = NL Feature

Count ‘ Huus  for ‘ hoes veur
DE Exp. 101 388 3 0

NL Exp. 2 0 0 182

Text | 327 1492 | 5 559

DEPR (%) | 30.1 26.0 | 6.0 0.0

NLPR (%) | 0.6 0.0 0.0 33.0

Table 10: Evaluating explanations from the training sets for DE vs NL.

D.3 Other Features

While our primary focus is extracting lexical features from dialects, we also explore extracting sub-word
features. We conducted a study using the LSDC dataset (Siewert et al., 2020), which contains examples
where the plural suffix of verbs in the present tense differs among dialects. In dialects MKB, MAR, NPR,
OFR, and GRO (class 1), the plural suffix is -(e)n, while in the rest of the dialects in the dataset (class 0),
it is -(e)t. We counted the occurrences of these two suffixes in the text and used PR to evaluate whether
explanation models can recognize these subtle, language-specific features. Table 11 illustrates the results.
For class 1 the models do indeed return features with its unique feature -(e)n with a relatively high PR
(20%) and it (correctly) does not return features for class O (only 1% PR).

The other type of ending (-(e)f), on the other hand, is not returned as part of the model explanations
for class 0. We hypothesize that this discrepancy is due to feature overload: several other words in
these dialects, which are not present-tense verbs, have the same ending. To accurately capture these
sub-word features, further investigation is necessary, along with the development of morphological and
morphosyntactic analysis tools for these dialects, which extends beyond the scope of our current work.

Count | -et (C.0) | -en (C.1)
C.0 Exp. 39 209
C.1 Exp. 904 4046

Text | 3772 | 21112
COPR(%) | 10 1.0
C.1PR (%) | 240 19.2

Table 11: The PR for the class 1 unique feature -en is higher within its class, but the model’s recognition of the
subtle morphological distinction is unclear, given the PR for -ef is 1% within its class. This could be attributed to
the inclusion of non-present-tense verbs with -ef endings.
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E Classification Results

Dialect Accuracy

Baseline | Ours

EML 98.3 99.1
FUR 99.7 99.8
LIJ 99.7 100.0
LMO 99.7 99.3
NAP 100.0 99.2
PMS 100.0 99.7
ROA 100.0 100.0
SC 98.5 97.4
SCN 99.7 99.2
VEC 99.7 99.4
ACH 93.6 99.1
DRE 97.7 98.6
HAM 94.1 95.0
Low Saxon = HOL 96.0 93.8
MAR 83.3 99.8
MKB 96.5 96.8
MON 85.7 99.1
NPR 87.0 99.6
OFL 97.7 98.3
ovYy 87.0 99.5
Mandarin ™ 99.3 994

Ttalian

Table 12: Pairwise test set accuracy of baseline classifiers versus interpretable classifiers. Our method achieve
generally high accuracy for all language pairs. We see equally high performance on Italian and Mandarin dialects.
However we see a disparity in performance across Low Saxon dialects.

F Feature Counts for CN-TW PR
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Figure 5: SelfExplain CN Class feature counts in explanation and input text.
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SelfExplain TW Class Word Counts in explanation and input text
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Figure 6: SelfExplain TW Class feature counts in explanation and input text.
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Figure 7: LOO CN Class feature counts in explanation and input text.
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Figure 8: LOO TW Class feature counts in explanation and input text.

G Inter-annotator Agreement Statistics

To minimize potential biases, we mixed the features between both classes.
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Figure 9: Inter-annotator agreement statistics on extracted CN features (left) and TW features (right). Most extracted

features align with human annotators.
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Figure 10: Inter-annotator agreement statistics on SCN (left) and IT (right) features. Note that there is only one

annotator in SCN-IT experiment.
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