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ABSTRACT

A segment tree is a versatile tree-based data structure over inter-
vals or line segments efficiently supporting several computational
operations such as stabbing query, segment arrangement, and pla-
nar point location, both theoretically and practically. Polygon clip-
ping is a basic operation in domains such as Computer Graphics,
Computer-aided Design, and Geographic Information Science (GIS).
Given two polygons with n vertices, polygon clipping algorithms
find the geometric intersection or union in O(n?) time using Fos-
ter’s all-to-all edge intersection testing and O((n + k) log n) time
using Vatti’s sweep line-based method, where k is the number of
intersections. No known segment tree implementation, including
the CGAL library, supports intersection finding or polygon clipping.
We extended the segment tree leveraging Chaselle’s PRAM-model
augmentation, parallelized the construction of our augmented seg-
ment tree, and employed it to find line segment intersections for
polygon clipping while handling degenerate cases. Augmented seg-
ment tree eliminates 99% of non-intersecting edge pairs compared
to 63% by the state-of-the-art filtering based on common mini-
mum bounding rectangle method employed in Foster’s GPU-based
implementation. This, coupled with Q(nlogn) work on a single
CPU core, beats Foster’s GPU performance with O(n?) work. Our
OpenMP directive based multi-core implementation achieves up to
4X relative speedup for clipping two polygons with 182K vertices
and 5X speedup for five polygons with 398K vertices. We also of-
floaded the parallel kernels to a GPU using OpenACC achieving
performance competitive with Foster’s GPU implementation. Our
profiling indicates limitations of the compiler directives and poten-
tial for superior performance by employing pthread/cuda libraries.
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1 INTRODUCTION

A segment tree is a static binary tree data structure used to store
intervals or segments efficiently [5, 19]. In literature, the segment
tree is used as a data structure for many computational geometry
algorithms such as stabbing query, line arrangement, and planar
point location [14, 16, 23]. A stabbing query takes a point as an input
and returns the set of intervals that contain the given point. Line
arrangement is the subdivision of the plane formed by a collection
of lines. In planar point location, given a partition of the space into
disjoint regions, we have to determine the region where a query
point lies [19]. A polygon is a collection of line segments and in
this work, these line segments of the polygons are used to build
a segment tree. In Fig. 1a, two example polygons are shown. A
segment tree constructed from the segments of these two polygons
is shown in Fig. 1b. For n line segments, a segment tree can be built
in O(nlogn) time and space [8].

Figure 1: (a) The base polygon is denoted in blue and the clip-
ping polygon is denoted in red. There are seven edges in both
polygons. I1, I, I3, I4, Is, I, and I7 are the line segment inter-
section points. The grey region is the result of the polygon
clipping. (b) The corresponding segment tree constructed
using the base and clipping polygons.

Polygons are used to represent boundaries of regions (shapes)
in Geographic Information Science (GIS) and Computer Graphics
domains. Geometric set operations such as intersection, union, and
set difference on very large polygonal datasets are common and
important in these domains. Polygon clipping is the calculation
of BN C between two polygons B and C producing the common
region(s) between the input polygons (Fig. 1a). General polygon
clipping algorithms can handle all types of polygons. They can be
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easily modified to compute other geometric set operations such as
union and set difference [11].

Greiner-Hormann (GH) algorithm and Vatti’s algorithm are two
well-known algorithms for arbitrary polygon clipping [15, 31]. Both
algorithms first discover line segment intersections, then label them,
and finally trace the results with the help of the labels. The domi-
nating computational phase in these algorithms is the line segment
intersection discovery. GH algorithm uses a brute force approach
to report the intersections in O (n?) time, where n is the total num-
ber of vertices in the input polygons. Vatti’s algorithm uses scan
beams to decompose the line segments and finds intersections in
O((n + k) logn) time, where k is the number of line segment in-
tersections. Foster’s polygon clipping algorithm is an extension of
the GH algorithm with proper degenerate case handling which is
limited in the GH algorithm [3, 11].

The objective of this work is to extend the segment trees to han-
dle geometric intersection of polylines and polygons and explore
portable parallelization on multi-core CPUs via OpenMP compiler
directives. With our practical extension, now segment trees can be
used to compute geometric intersections while handling degenerate
cases in addition to stabbing queries, window queries, etc [6, 23].

Parallel pair-wise line segment intersection is a core component
in the polygon clipping algorithms. Goodrich presented an output-
sensitive CREW PRAM algorithm leveraging an extension of the
segment tree to discover line segment intersections in O(logn)
time using O(nlogn + k) number of processors where k is the
number of intersections [14]. In the worst-case scenario k = O(n?).
It leverages Chaselle’s rule for finding line segment intersections
in the segment tree [8]. Goodrich’s PRAM algorithm is not suitable
for an efficient multi-core implementation for real-world polygon
clipping. The real-world polygons involved in clipping have at
most a few hundred thousand edges, therefore segment tree nodes
are comparatively small in terms of the number of line segments
contained in them and parallel overheads dominate.

In this work, we leverage Goodrich’s theoretical work in a practi-
cal setting utilizing it to discover intersections in polygon clipping
efficiently. First, we build an augmented segment tree by inserting
the segments of the input polygons into the tree nodes, with spe-
cial handling for vertical segments. The nodes of the tree maintain
cover lists as well as end lists containing suitable subsets of the line
segments of the input polygons. Next, the output line segment in-
tersection points are computed using the cover-list and the end-list
of the nodes of the tree using Chaselle’s rule. It should be noted
that the cover lists are part of the standard segment tree and end lists
are additionally needed to find the line segment intersections for
polygon clipping. Finally, Foster’s labeling and result tracing steps
are employed to calculate the resulting intersecting polygon(s).

The main contributions of this work are as follows.

o The first work to extend segment tree data structure for
polygon clipping based on Chaselle’s rule and evaluate the
augmented segment trees experimentally.

o Parallelized augmented segment tree construction and line
segment intersection finding on multicore CPUs to handle
polygon clipping using OpenMP directives.

o Effective edge pair filtering employing the segment tree re-
sulting in the elimination of 99% of the non-intersecting edge
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pairs on an average as compared to 63% with common mini-
mum bounding rectangle (CMBR) based filtering employed
in the state-of-the-art Foster GPU implementation [3]. This
yields a single core CPU performance of segment-tree based
polygon clipping with Q(nlog n) work beating the state-of-
the-art many-core GPU performance of Foster’s clipping
with O(n?) work.

e C++ OpenMP based multi-core implementation yields up to
4X speedup over real-world datasets, processing two poly-
gons with a total of 182K vertices on a Xeon Silver 4210R
CPU, compared to the sequential segment tree-based poly-
gon clipping algorithm running on a single CPU core.

e One-to-many polygon clipping utilizing a single segment
tree to discover intersections among multiple polygon pairs
enables 5X relative speedup.

The rest of the paper is organized as follows. Section II intro-
duces the background on polygon clipping algorithms, segment
tree and its augmentation, and segment tree-based line segment
intersection. Section III presents our practical polygon clipping
algorithm based on a parallel augmented segment tree and imple-
mentation details. Section IV contains an experimental evaluation
of the parallel polygon clipping algorithm. Section V presents our
conclusions and future work.

2 LITERATURE AND CONCEPTS
2.1 Polygon Clipping

A polygon is a collection of at least three points in the 2-dimensional
space connecting to construct a closed region. The points are re-
ferred to as vertices. Each adjacent pair of vertices connects using
a straight line segment referred to as an edge.

There are different types of polygons. 1) simple polygon where
its edges do not self-intersect, 2) sel f-intersecting polygon where
at least one edge intersects another edge, 3) convex polygon where
all interior angles are no more than 180°, and 4) concave polygon
where some interior angles are greater than 180°.

Polygon clipping involves the computation of line segment inter-
sections. An intersection point is generated when a segment/edge
from a polygon overlaps or crosses a segment from another poly-
gon. There are well-known sequential and parallel polygon clipping
algorithms in Computer Graphics and GIS domains. Maillot’s algo-
rithm only clips using a rectangle, but not against polygons [18].
Sutherland-Hodgman, Weiler-Atherton, Liang-Barsky, Vatti’s, and
GH algorithms can clip a concave polygon against another concave
polygon [15, 17, 30-32]. Vatti’s and GH algorithms can also clip
arbitrary polygons [15, 31].

In addition to Vatti’s algorithm, plane-sweep based sequential
polygon clipping algorithms are also discussed in [20, 22, 28]. The
GH algorithm has a simpler way to represent polygons than Vatti’s
and its time complexity is not output sensitive. Foster et al. present
an extension to the GH algorithm with the ability to handle degen-
erate cases properly [11].

There are parallel clipping algorithms based on [17, 30] imple-
mented on classic parallel architectures [26]. Naive O(n?) algo-
rithms and grid partitioning have been used in practical GPU over-
lay algorithms discussed in [4, 12]. There is a multi-core Vatti’s
algorithm implementation presented in [24]. Parallel many-core
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and multicore implementations of the GH algorithm are presented
in [25]. Both GPU clipping algorithms discussed in [4, 25] are unable
to handle degenerate cases (see Fig 6). Parallel many-core imple-
mentation of Foster’s algorithm is presented in [3] uses common
minimum bounding rectangle (CMBR) based filtering and line seg-
ment minimum bounding rectangle (MBR) based filtering. CMBR
filter only focuses on the line segments that are within or intersect
the common intersection area between the two polygonal MBRs [3]
(see Fig. 2a). Hence, those line segments that are not part of the
common MBR are filtered out from further processing. In the re-
finement phase, before performing the line segment intersection
test for a pair of line segments, those pairs are further weeded out
whose MBRs do not overlap [3] (see Fig. 2b and 2c). This is referred
to as the line segment MBR (LSMBR) filter in [3].

Pst Pg

P, Py { Polygon Q

Polygon P

Figure 2: (a) Common minimum bounding rectangle (CMBR)
filter: MBRY =[Py, Py, P3, P4], MBRC=[Ps, Ps, P;7, Ps]. CMBR=[Po,
Py, P3, P1o]. Only those edges of P and Q that intersect CMBR
are used for further processing, LSMBR filter: (b) Possible
intersection, (c) no intersection possible [2, 3].

2.2 Segment Tree

A segment tree is a static full and complete binary tree data struc-
ture used to store intervals or segments efficiently [5, 19]. Segment
tree construction runs in O(nlogn) time using O(nlog n) storage,
where n is the number of intervals. Given a collection of line seg-
ments, a segment tree is built in two stages. In the first stage, the
skeleton of the tree is built by sorting the x-coordinates of the
endpoints of the line segments in order to generate the leaf nodes
where each node represents an elementary interval. The interior
nodes are then built using a bottom-up approach by the union of
the interval of their child nodes. In the second stage, all the input
line segments are inserted into the tree.

Assume a set E of n intervals. Let p1, pa, ..., pn be the x-coordinates
of the segments’ endpoints sorted in non-decreasing order. These
endpoints define the elementary intervals corresponding to leaf
nodes of a segment tree. The elementary intervals for this set of
x-coordinates are as follows: (—oo, p1), [p1,p1], (P1,p2), [P2, P21,
(P2, p3)s s (Pn—1,Pn), [P, Pnl, (pn,+00) [19]. Let T denote a seg-
ment tree and let v denote a node in T. Let Iy denote the interval
of node v. For an internal node v € T, II,, denotes the union of all
the intervals of its child nodes. For a node interval representing
a vertical segment with starting and ending points with the same
x-coordinates, IT, = [p;, p;], where 1 < i < n. These point intervals
are always at the leaf level of the segment tree and do not become
internal/parent nodes.

Parallel and distributed segment tree algorithms are presented
in [7, 9, 13, 16, 23, 27, 29, 33]. Dehne and Chaplin presented a
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segment tree implementation on a hypercube [9]. Su presented
theoretical and practical segment tree construction algorithms that
run in polylogarithmic time [29]. Chan et al. presented a distributed
implementation of the segment tree [7]. Gerbessiotis presented a
bulk-synchronous parallel (BSP) segment tree construction algo-
rithm [13]. Zheng et al. presented a distributed segment tree for
efficient query processing [33]. Shen et al. presented a distributed
segment tree supporting both range query and cover query [27].
Jaja discusses a PRAM segment tree construction algorithm [16].

2.3 Chaselle’s Observation

Chaselle observed that a segment tree can be used for line seg-
ment intersection by augmenting its nodes with an end-list at each
node [8]. This work is further improved by Goodrich [14].

Chaselle’s observation involves a cover-list and an end-list at
each segment tree node. A segment e; with endpoints (x;, y;) and
(x},y;) spans the interval IT, of node v if the interval (x;, x}) is a
superset of the interval IT,. A segment e; coversanodeov € T if e;
spans I, but not I1,4rent (o) that is, o is the highest such node that
e; spans [14]. All such segments are in the cover-list of node v.

cover-list(v) = {e € E | e covers v} (1)

An edge can be assigned to no more than 2 nodes at any level of
the tree per this definition of cover list [19].

A segment e; belong to the end-list of anode v € T if e; does not
span IT, but IT, contains an endpoint x; or xlf of e; [8], that is one
of the end points of e; lies within IT,,.

end-list(v) = {e € E | e; does not span 11,

@)

but 11, contains an endpoint of e;}

Figure 3: (a) Line segments s, t, and their related segment tree.
(b) A polygon with edges s1, s2, 53, and s4 and its segment tree.
Node x represents vertical edge s;, which is a point interval.
Nodes a and b are empty nodes added to complete the tree.

Fig. 3a depicts segment s and a segment tree. We illustrate related
concepts for clarity. The segment tree is only sensitive to a single
dimension of values. But a line segment’s endpoints have both x and
y coordinates. Hence, the segment tree uses only the x coordinates
of the endpoints to define the aforementioned cover-lists and end-
lists. The tree node intervals are represented in dotted lines. Nodes
a and b are empty nodes added to complete the tree. Segment s does
not span nodes x, u, w, or v, but their intervals contain endpoints of
s. Segment s covers node y. Segment s gets added to End(x), End(u),
End(w), End(v), and Cover(y).

Fig. 3b depicts a polygon with edges s1, s2, s3, and s4 and the
corresponding segment tree. Node x has a point interval since it
represents vertical segment sp. Segment s covers root node v since



ICPP °24, August 12-15, 2024, Gotland, Sweden

it does not have any parents. Since this segment covers root node,
it does not belong to any end-list. Segment s, covers node x since it
cannot span node u interval (parent(x)). It is in the end-list of node
y since its endpoints are at the border of that node interval and it
does not span node y. Segment s3 covers node u since it does not
cover the parent node of u. Segment s3 is in the end-list of w since
it is on the border of that node’s interval and does not span the
interval. Segment s4 covers node w and it is in the node y’s end-list.
The end-list of point interval nodes are always empty since a point
is sufficient to cover its interval and by doing so, it violates the
end-list definition (see equation 2).

In our implementation of the augmented segment tree to utilize
Chaselle’s observation described next, we used closed intervals
at the leaf level nodes of the tree avoiding point interval nodes
unless they represent a vertical segment. Hence our version of
elementary intervals is as follows: [p1, p2], [p2, p3], --s [Pn—1, Pnls
resulting in some duplicate edges at neighboring end lists, but not
missing any. This approach helps to handle vertical edges properly
and, in post-processing phase, duplicates are eliminated if there are
any.

Chaselle observed that there is a unique node v € T that
discovers any segment pair e; and ey intersection, making one of
the following rules true, where the intersection point is within IT,.

e e1, ey € cover-list(v)
o ¢ € end-list(v) and ey € cover-list(v)
e ¢y € end-list(v) and e1 € cover-list(v)

Thus, finding intersections can be limited to pairwise searches
within the cover-list and cross-pairs searches between the cover-list
and the end-list, and these can be independently performed for each
node.

3 METHODOLOGY

A general polygon clipping algorithm consists of line segment
intersection discovery, intersection labeling, and result tracing,
where the dominating step is line segment intersection discovery [3,
11, 15, 25]. Our alternative approach has three major steps: Segment
tree construction, intersection discovery, and labeling and tracing
results. We employ our augmented segment tree to decompose
the polygon edges to find the intersections faster, replacing the
trivial brute-force all-to-all quadratic-time edge test. We introduce
additional post-processing to save the intersections in the correct
edges of the original polygons in the order they appear. Afterward,
Foster’s labeling and result tracing steps are employed to calculate
the resulting intersecting polygon(s), handling degenerate inputs.

3.1 Augmented Segment Tree Construction

Terminology: We use the following terminology to explain poly-
gon clipping. Let the input base polygon B and the clipping polygon
C consist of edge sets EB and E.Cword respectively. Let the ver-
tex sets of the input polygons be VB and VC, respectively. Let the
resultant polygon after clipping be P. Let the set of x coordinates
in sorted order are X = {x1, x2, ..., Xj, ..., X }, where X = vBuvC
and [ = |EB| + |[EC|. These define the set of intervals of the input
polygons with interval; = [x;, xj4+1]. The segment tree is a full and
complete binary tree represented in a heap-like array of 2/ —1 nodes.
Logically, each node in this tree has a structure as depicted in Fig. 4.
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struct{
Node node[]
} segmentTree

struct{
real intervalStart
real intervalEnd
int coverList[]
int endList[]

} Node

Figure 4: Segment tree data structure.

However, for implementation efficiency, we use three 2-D arrays:
ST-Nodelntvl, Cover-list, and End-list to save node interval, cover-
list, and end-list of each tree node, respectively. Each row of these
arrays represents a node and its columns store the relevant node
intervals, edge IDs of the cover-list, and edge IDs of the end-list,
respectively.

Algorithm 1 - Parallel Augmented Segment Tree Construction

Input: Edge lists from input polygons B and C (E,B EC)
Output: ST-Nodelntol, Cover-list, End-list

1: Read intervals from the x-coordinates of EB and EC.

2: Construct elementarylntervals and the leaf level
ST-Nodelntol.

a. Sort intervals.
b. Remove duplicates from intervals. Add both start and
endpoints when an interval is a point.

3: Construct the ST-Nodelntol (internal node intervals) by
union of children yielding parent’s interval, starting with
leaf level intervals.

4: Construct Cover-list by finding covered nodes for each
edge traversing from the root downward.

5: Construct End-list by populating the end lists of leaves and
merging level by level weeding out duplicates.

Algorithm 1 outlines the steps involved in the parallel segment
tree construction. Step 1 identifies intervals from the input polygons.
An interval is computed using the x-coordinates of two consecutive
vertices. Step 2 computes the elementary intervals using the intervals
calculated before. The elementary intervals is the list of unique
endpoints of the intervals. However, when a particular interval is a
point (when start == end), both start and end points are inserted in
this list. First, the intervals are sorted (Step 2a). Next, the duplicates
are removed unless the points belong to a point interval (Step
2b). The elementary intervals are used to construct the leaf level
intervals of the segment tree. Algorithm 2 sketches the bottom-up
approach used to build the intervals of the segment tree. The levels
are visited from leaf to root level. In Step 3, the intervals of the
internal nodes of the segment tree are constructed using the leaf-
level node intervals. Steps 1 - 3 are also referred to as segment tree
skeleton construction in our run time evaluations. In Algorithm 2,
at a given level, the node intervals can be calculated in parallel.
However, parent-level nodes depend on their child-level nodes in
order to calculate their own intervals. Hence, we only parallelized
the inner for loop and at the end of that loop, we used a barrier
directive to synchronize all threads.
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Algorithm 2 - Build Tree Intervals

Algorithm 4 - Build End-lists

Input: ST-Nodelntvl: Indexed array of leaf level intervals
Output: ST-Nodelntvl: Node intervals for internal nodes of the
tree

1: for each level in Tree do

2 for each node in level do in parallel

3 rightChild = 2 % node

4: leftChild = 2 * node + 1

5 interval.start = rightChild.start

6 interval.end = leftChild.end

7 segmentTreeNodelntervals[node] = interval

Steps 4 and 5 of Algorithm 1 construct a cover-list and an end-
list at each node respectively. These data structures are independent
of each other and can be built simultaneously. Algorithm 3 lays out
the steps in the parallel Cover-list construction using input polygon
edges (E) and tree node intervals (ST-Nodelntvl). Cover-list is a
2-D array used to store the cover-list of each node. For each edge
insertion, a recursive search is used to find the grandparent(s). The
race condition when storing an edge is handled using section locks.
We employ a lock per node to maximize concurrent insertions.

This recursive approach is unsuitable for the GPU. Instead, we
built cover lists at each node scanning a candidate edge set. For any
left child, we only scan the edges whose max points lie between
the node and its parent’s max interval boundaries. For any right
child, we only scan the edges whose min points lie between the
node and its parent’s min interval boundaries. This enabled simul-
taneous construction of all nodes, albeit with more overheads, for
an OpenACC implementation.

Algorithm 3 - Build Cover-lists

Input: E = {EB U ECY, ST-Nodelntol
Output: All Cover-list

1: for each e in E do in parallel start from root node v
2 if interval of node v is contained in e then
3 store e at v atomically
4: exit
5
6
7

else
if e Npefs—child(v) then
insert e in that subtree recursively

e

if e N Right—child(v) then
9: insert e in that subtree recursively

Step 5 of Algorithm 1 constructs an end-list at each node unless
the node is a point interval. We use 2-D array End-list to save the
end-lists of the nodes of the entire segment tree. The end-lists at
point interval nodes are always empty since the end-list definition
does not allow any segment that spans a node interval. Algorithm 4
sketches the bottom-up approach used to construct End-list array.
For each elementary point, their left and right neighboring node IDs
are saved in arrays. In leaf level end-list construction, these arrays
are used to access the left and right neighbors of a given interval
point in O(1) time. All polygon edges (E) are inserted in the right
node of the start vertex of an edge and in the left node of the end
vertex unless the nodes are point intervals. The end-list of a parent

Input: E = {EB U EC}, ST-Nodelntol

Output: End-list
1: for each ep in elementaryPoints do in parallel
2: rightPointMap « right node of ep
3 leftPointMap <« left node of ep
4: for each e in E do in parallel
5: insert e in End-list at rightPointMap|e.end]
6: insert e in End-list at le ftPointMap|e.start]

7. for each level in tree (leaf to root) do

8: for each v in level do in parallel
9: p =index of v

10: leftChild = 2p

1 rightChild = 2p + 1

End-list[p] = End-list[le ftChild]N
End-list[rightChild)]

node is calculated by performing a union operation on the child
end-lists. Hence, the total end-list size at each level is no more than
the total end-list size at the leaf level of the tree. This allows us to
allocate enough memory in the End-list array to save end-lists of
the internal nodes avoiding the need for memory copying of leaf
level end-lists.

The union operation is performed in parallel at each level of the
tree. But each level needs to finish its end-list construction in order
to move to the next level due to the dependency between the parent
and child nodes. The point interval nodes are always assigned at
the leaf level of the tree, thus this operation does not need to handle
them explicitly.

Our experiments showed that the nested loop at Step 9 of Algo-
rithm 4 degrades performance when offloaded in the GPU due to
the complex computation including branching and loops. Hence
we performed this computation over the multi-core environment
employing OpenMP.

Fig. 5 illustrates an example of a segment tree built for a pair of
polygons. The segment tree has 13 elementary intervals and 3 empty
intervals are added to complete the tree. Each node has a cover-list
and an end-list that are shown in green and purple respectively.
The intersections are Iy, Iy, I3, I4, I5, Is, I7, and Ig (see Fig. 5). They
are displayed pointing at the nodes where each is uniquely found.
Edges 3 and d intersect at node 2 producing I which is also found
at node 12. But I, is only contained at node 2. Therefore, node 12
does not report it as an intersection to avoid duplicates. Similarly,
intersections I - I are reported at unique nodes.

3.2 Intersection Finding

Algorithm 5 sketches the steps in intersection calculation. Step 1
discovers intersections utilizing Chaselle’s observation using local
cover-list and end-list data, performing intersection tests between
the edges from the cover-list itself and against the edges from the
end-list. For efficient intersection finding in parallel, we employed
dynamic scheduling in the Step 1 outer loop with a chunk size
of 100. We also leverage the LSMBR filtering presented in [3] to
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Figure 5: Polygon clipping using an augmented segment tree.
The base polygon is denoted in blue and the clipping polygon
is denoted in red. There are 7 edges, each in the base and
clipping polygons. Leaf level node intervals are labeled xvi -
xxxi and the internal node intervals are labeled i - xv. The
cover-list elements at each node are in green letters and the
end-list elements are in purple letters. Intersections are shown
pointing at the nodes where they are found. Iy, I3, 5, Iy, Is, I,
I7, and I3 are intersections.

Algorithm 5 - Parallel Intersection Finding
Input: ST-Nodelntvl, Cover-list, End-list
Output: E/B E/C o.B §.C Neighbors,B NeighborsC arrays

1: for each node v in Tree do in parallel

2 for each edge pair within cover-list do

3: Find intersections.

4 Save intersection types and edge IDs of the input
polygons.

5: for each edge pair across cover-list and end-list do

6: Find intersections.

7: Save intersection types and edge IDs of the input
polygons.

8: Sort intersecting edge IDs of the base polygon.
9: Sort intersecting edge IDs of the clipping polygon.

10: Save intersections and their «, § values.

11: Sort intersections by «, f values separately.

12: Copy the non-degenerate intersections in the base and clip
polygons at the correct locations (E’B and E’C). Mark
degenerate intersections in the source vertex list.

13: Copy a, f values to a,B €. Save clipping polygon edge id in
Neighbors® and base polygon edge id in Neighbors©

M. K. Buddhi Ashan et al.

identify the edge pairs whose MBRs intersect with each other before
employing much more expensive intersection finding. In this step,
the intersection type, base polygon edge id, and clipping polygon
edge id are stored in three arrays.

Step 11 constructs an index array in the sorted order of the inter-
sections by the base polygon edge IDs. Step 12 produces a similar
index array, but sorted by the clipping polygon edge IDs. The sorted
index arrays help to insert the intersections in the source polygons’
edges efficiently. Step 13 saves the intersection coordinates, a, and
P values in three arrays. The « value is the distance ratio from
the parent vertex of the contributing edge of the base polygon to
an intersection. f value is defined similarly, but uses the clipping
polygon’s contributing edge [11].

e S L

(a) ©)

by

/i%//%?”ffé

c
P

Figure 6: Degenerate intersection types [3, 11]. (a) and (b) T-
intersections. (c) V-intersection. Degenerate overlap types [3,
11]. (d) X-overlap. (e) and (f) T-overlap. (g) V-overlap.

Step 14 produces two sorted index arrays by « and f values.
Using these sorted index arrays, Step 15 copies the intersections,
a, and f values in E,’B E’C arrays marking degenerate cases. Fig 6
shows a summary of all degenerate cases. Step 16 copies the non-
degenerate intersections into source polygons along with a and
B arrays. The degenerate intersections update the corresponding
vertices in the input polygons [11]. This step also builds NeighborsB
and NeighborsC arrays. These are used to find the contributing edge
id of an intersection from the other polygon.

3.3 Intersection Labeling and Tracing the
Results

Algorithm 6 - Labeling and Tracing Results

Input: E/BE/C qB ,B,C Neighbors,B Neighbors,c arrays
Output: contour of output polygon(s)

1: Initial labeling in parallel.

2: Copy initial labels and intersection arrays into linked lists.
Perform other labeling on the linked lists.

3: Trace results.

Algorithm 6 outlines the steps in intersection labeling and
tracing to construct the contour of the resulting polygon(s) using the
intersections, their @, 8, and neighbor values that were calculated in
Algorithm 5. The initial labels are calculated in parallel since the
a, B, and neighbor values are locally available at each intersection
vertex. The rest of the intersection labeling uses serial Foster’s
algorithm labeling and result tracing steps.
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Foster’s algorithm uses entry/exit label based on the inside/out-
side status of polygonal edges with respect to another polygon.
There are multiple stages of labeling. In the initial labeling, the
non-overlapping intersections are labeled Crossing or Bouncing
considering the relative location of the contributing edge from the
clipping polygon. Data for initial labeling are locally available at
each edge and can be done in parallel.

The second stage labels the intersection chains starting with a
turn label. Turn labels handle chains of degenerate intersections
properly since they all have the same entry/exit label. In the third
stage, final entry/exit labels are given using second stage labels.
Step 2 then copies the labels in the source polygons and traverses
them to construct the resulting polygon (s). These steps consume a
very small percentage of the total run time thus parallelization is
not practical.

3.4 One-to-Many Polygon Clipping

There are two observations of the one-to-one polygon clipping
approach: (1) segment tree construction which consists of tree
skeleton, cover-list, and end-list constructions is the most expensive
phase (see Fig. 11). (2) this method is inefficient when using smaller
inputs. To mitigate these issues, we investigated one-to-many (1-to-
M) polygon clipping leveraging a segment tree. 1-to-M clipping is
defined as follows. Assume a base polygon B and a set of clipping
polygons CL = {Cy,Cy, ...,C;} where | > 1. 1-to-M clipping calcu-
lates B N CL. Algorithm 7 sketches the steps in 1-to-M clipping
leveraging a segment tree to handle multiple polygon pairs.

Algorithm 7 - One-to-Many Polygon Clipping

Input: Edge lists from input polygons B and CL
Output: contour of output polygons
1: Construct a segment tree S using segments from B and CL.
2: for each CinCL
3 Find intersection of B N C using Cover-list and End-list of
S in parallel.
4: Create E/B E/C o,B ﬁ,C Neighbors,B Neighborsc arrays.
5: Label and trace results using E,"B E’C a,B g.C Neighbors,B

Neighbors€ arrays.
6: Create output polygons.
7: end for

In Step 1, a segment tree is constructed in parallel leveraging
Algorithm 1 using all edges of the input polygons. The base poly-
gon is common for all clipping calculations. Instead of constructing
multiple segment trees for each clipping polygon pair, this approach
uses a single segment tree, where the edges of the base polygon are
shared among multiple clipping polygons to calculate the clipping
results, amortizing the cost of segment tree construction. In Step
2, each clipping layer polygon is clipped against the base polygon
utilizing Algorithms 5 and 6. The resulting clipping polygons of
each pair are reported as the 1-to-M output.

4 EXPERIMENTAL RESULTS

4.1 Testbed

Our workstation is equipped with an Intel Xeon Silver 4210R CPU
running on 2.40GHz with 10 cores with 64 GB of memory, and an
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Nvidia Quadro RTX 5000 GPU card with 16 GB of VRAM, 48 SMs,
and 3072 CUDA cores. We used OpenMP and OpenACC compiler
directives and C++ for our implementation. We used C++ CUDA
implementation of Foster’s GPU polygon clipping algorithm, down-

loadable from the Github repository at https://github.com/buddhi1/GH-

CUDA.

4.2 Datasets

Table 1: Real-world datasets and polygon clipping character-
istics [1, 10, 21].

Intersect

# Datasets |Base| |Clipping| |Result|

count

lakes_174690,
1 parks_321571 102,721 79,686 21,501 228

lakes_ 174690,

2 102,721 81,89 54,214 320
parks_169840 7 897 ’

g lakes 174690, 000l 79602 44,004 106
parks_140315 ’ ’ ’
lakes_174690,
barks 34ez2 102721 54992 27401 212

5 Classic S, C 101,242 72,997 50,312 47

ne_10m_ocean(0),
continents(521)

ne_10m_ocean(0),
continents(1661)

100,612 16,205 37,608 10,082

100,612 12,613 16,895 1,427

We used two real-world polygon datasets for performance evalu-
ation. The dataset consists of selected large polygons extracted from
real-world geospatial datasets: lakes, parks [10], Classic polygon
pair [21], ocean (ne_10m_ocean), and Continents [1]. (see Table 1).

Table 1 reports the polygon IDs, their sizes, resulting clipped
polygon sizes, and the intersection count for each dataset. Datasets
1-4 consist of a large polygon from the lakes dataset and 4 large
polygons from the parks dataset. The four polygons from the parks
dataset were translated in the 2-D space to discover a reasonable
number of segment intersections against the large polygon from
the lakes dataset. On average, the segment tree size is 2.4 times
compared to the number of input edges. On average, 70% of the
segment tree nodes contribute to intersection finding and the rest
30% are there to make the tree binary complete.

Table 2: One-to-many datasets and Polygon Clipping Char-
acteristics [1, 10].

Intersect
# Dataset B Clippi Result
atasets |Base| |Clipping| [Result| count
8 Ip1 102,721 296,177 147,120 866
9 Ip2 196,726 296,791 46,984 290
10 Ip3 206,429 236,095 28,641 114
11 ocl 100,612 28,818 54,503 11,509

The second real-world dataset is used to evaluate the perfor-
mance of the one-to-many approach (see Table 2). The base poly-
gons of Datasets 8 to 10 are chosen from the lakes dataset. Multiple
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clipping polygons are selected from the parks dataset. The polygons
from the parks dataset were translated to discover an ample amount
of segment intersections against the base polygon from the lakes
dataset in 2-D space. Datasets 1-4 in Table 1 are merged into dataset
8 in Table 2. Datasets 6 and 7 in Table 1 are merged into dataset
11 in Table 2. All datasets have multiple clipping polygons to clip
against the base polygon. These datasets will be publicly shared for
reproducibility.

4.3 Augmented Segment Tree Edge Filtering

Table 3: The segment tree edge pair filtering performance
against CMBR filter of Foster’s GPU clipping algorithm.

Total % %
o'ta Using  eliminated eliminated
candidate CMBR . .
edge filter segment with with
pairs tree CMBR segment
filter tree
1 8,185M 3,072M  21,177K 62.47% 99.74%
2 8,413M 1,078M  18,584K 87.19% 99.78%
3 8,177TM 788M 18,079K 90.36% 99.78%
4 5,649M 1,679M  17,533K 70.28% 99.69%
5 7,390M 6,074M 4,118K 17.82% 99.94%
6 1,630M 1,142M 6,026K 29.97% 99.63%
7 1,269M 186M 5,539K 85.34% 99.56%

For a given real-world pair of polygons, the intersecting edge
pair percentage is small [3]. Eliminating non-intersecting edge pairs
using fast filters helps to optimize the overall clipping efficiency.
The GPU-based parallelization of Foster’s algorithm uses a CMBR
filter to eliminate non-intersecting edge pairs by eliminating the
edges that do not fall inside the CMBR of the input polygons. In
the segment tree based polygon clipping, the candidate edge set
for intersection finding is limited to the edge pairs that satisfy
Chaselle’s rules. To further optimize, we employed the LSMBR
filter from Foster’s GPU implementation to prune non-intersecting
edge pairs. This filter is an inexpensive operation based on MBR
intersection to eliminate non-intersecting edge pairs further. In this
section, we compare the performance of the CMBR filter vs the
segment tree based edge filter. We do not consider the LSMBR filter
since both algorithms use it to further refine the filtered results.

i Single-core

Multi-core

Datasets

Figure 7: Performance of the multi-core algorithm over real-
world dataset (with 10 OpenMP threads, excluding I/O times).
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The segment tree-based clipping eliminates most of the non-
intersecting edge pairs at the tree nodes. Table 3 reveals the actual
edge comparisons using the segment tree compared to the trivial
brute force approach. We observe that the segment tree can elim-
inate 99% of the non-intersecting edge pairs. On average, CMBR
filtering in Foster’s GPU implementation eliminates 63% of the edge
pairs ranging from 18% to 90%. The superior filtering of the seg-
ment tree achieves a sequential execution time on par with or better
compared to Foster’s GPU polygon clipping (see Fig 7 and 13). For
example, for Dataset 1, sequential and Foster’s execution times are
around 700 ms and for Dataset 5, sequential time is below 400 ms
while Foster’s is more than 800ms.

4.4 Multi-core/OpenMP Performance

We compare the execution times of our C++ sequential segment
tree-based clipping against the C++ OpenMP multi-core directive
based implementation over the real-world dataset using 10 threads
as shown in Fig 7 (excluding I/O times). The multi-core execution
attains an average of 3.6X speedup over all cases compared to the
sequential version over the real-world dataset with a maximum
speedup of up to 4X. These indicate that the overhead of building a
segment tree can be practically offset by its filtering performance
and OpenMP based parallelization.

M Datasct |
Dataset 2

Dataset 3
m Dataset 4
7 ElH 7 E{ EH B Datasct 5
R e e W o
4 6 8 10

Core count

IHEHEHEEE

SSSRRRRRRRRRSY

Tooom
TRy

[}

Dataset 7

Figure 8: Execution times for different numbers of cores.

Fig. 8 shows run times of our multi-core algorithm using OpenMP
for increasing numbers of cores over real-world datasets. However,
our multi-core implementation achieves an average 3.7X speedup
against the state-of-the-art Foster’s GPU algorithm over the real-
world dataset with a maximum speedup of 7.8X on Dataset 5. This
shows the superior non-intersecting edge pair filtering capability
of the segment tree approach practically, beating a GPU algorithm
by a CPU algorithm only using compiler directives (see Fig 13).

3,500
3,000
22,500
E 2,000

E 1,500 Single-core

= 1,000

500

0

Multi-core

Datasets

Figure 9: Multi-core performance of 1-to-M polygon clipping
(excluding I/0 times) employing 10 threads.
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In our experiments, we do not compare our approach against
the Clipper library which is designed solely for polygon clipping
with little overhead and performs better for clipping polygons as
opposed to our implementation that extends general segment tree
to handle polygon clipping in addition to its other existing use
cases.

4.5 Multi-core One-to-Many Polygon Clipping

We compare the serial 1-to-M polygon clipping approach against
the multi-core 1-to-M polygon clipping approach as shown in Fig 9.
Since our 1-to-M approach does not build segment trees for each
polygon pair, the total run time in this dataset is reduced by 25%.
The multi-core 1-to-M approach achieves up to 5X speedup against
its serial counterpart. Fig 10 depicts run times of our multi-core
algorithm using OpenMP directives for increasing numbers of core
counts over the one-to-many dataset.

3,500
3,000
2 2,500
£ 2,000 Datasct 8
E 1,500 Dataset 9
& 1,000 Dataset 10
500
0 Dataset 11
1 2 4 6 8 10
Core count

Figure 10: 1-to-M clipping times over for different number
of cores.

4.6 Multi-core Run Time Profile

Bz I% EW/A im o 7

Segment tree  End list Cover list  Intersection Labeling and
skeleton  construction construction find and save  stitching
construction results

200

Time (ms)
QXS E DD
oSoocoCcOoOo

® Single-core

SN
[=X=]

Multi-core

<o

Phases in the algorithm

Figure 11: Execution time breakdown for Dataset 5 using 10
OpenMP threads.

We investigated the limits of OpenMP directives for parallelizing
this tree-based workload as our experiments did not achieve more
than 4-fold relative speedup. Our algorithm has five major phases:
Segment tree construction comprising the construction of the tree
skeleton, cover list, and end list, line segment intersection discovery,
and result tracing. Fig. 11 displays the run time breakdown of the
serial and multi-core versions over Dataset 5. The serial algorithm
spends 73% - 83% of its run time in segment tree construction
constituting major overhead. On average, 6% of the run time is
spent on tree skeleton construction, 31% on cover-list construction,
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and 38% on end-list building. Another 23% of the run time is spent
at intersection finding and saving. We focused our parallelization
effort on the dominating tree skeleton construction, cover-list and
end-list constructions, and the output sensitive intersection finding
phases. On average, it is 98% of the total run time.

Time (ms)
Aquire lock 294
Wait for neighbor threads 795
Destroy lock | 8
OpenMP other 32
Spining 156

Computation - | GG <!

Figure 12: Multi-core execution time profile for Dataset 5
employing ten threads.

Fig 12 is a snapshot of the runtime profiling over Dataset 5 us-
ing Intel VTune profiler. The algorithm spends 16% of its run time
acquiring and destroying locks used in the cover list construction
phase. Another 44% of the run time is spent in thread synchroniza-
tion indicating the imbalanced nature of the tree traversal and aug-
mented data structure construction. This also leads the algorithm to
spend 9% of its run time spinning. The algorithm only spends 29%
of its run time on the computations. This shows why the relative
speedup of the algorithm is limited to 3X-4X. The augmented data
structures help to eliminate a massive amount of non-intersecting
edge pairs, but constructing them practically over a parallel plat-
form employing only OpenMP compiler directives involves a lot
of synchronization limiting its performance. This also points to
potential gain by using rigorous parallelization using pthread like
low-level library.

4.7 Hybrid CPU-GPU Performance

& Foster's GPU
& Hybrid

Datasets

Figure 13: Performance of the hybrid CPU-GPU algorithm
over against Foster’s GPU polygon clipping algorithm (ex-
cluding I/O times).

To investigate the limits of OpenACC compiler directives for
this tree-based algorithm, we offloaded the parallel kernels of the
segment tree based polygon clipping algorithm in a CPU-GPU
hybrid environment to compare against the state-of-the-art CUDA
based Foster’s GPU implementation. Fig 13 depicts hybrid run times
vs Foster’s GPU implementation. The hybrid performance is limited
but on par with or better than Foster’s. Implementing this method
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in parallel environments is challenging since a tree is involved. In
the next section, we discuss the limitations of our hybrid algorithm
using a profiling study.

4.8 Hybrid CPU-GPU Algorithm Run Time
Profile

Time (ms)

OpenACC overhead
Segment tree skeleton construction: computation

Segment tree skeleton construction: memory transfer

End list construction: computation
End list construction: memory transfer 101
Cover list construction: computation 69
Intersection find and save: computation 47
Intersection find and save: memory transfer ~ 0.03

Labeling and stitching results 10

Figure 14: Hybrid execution time breakdown for Dataset 5.

Fig 14 depicts a snapshot of the runtime profiling over Dataset 5
in the hybrid environment. 22% of the total parallel time is spent
initializing the OpenACC run time environment. Tree skeleton
construction computation spends 5% and another 7% in memory
transfers to copy input data. The end list construction spends 5%
and 27% of the total run time in memory transfers. The end list
building from the leaf level to the root level only using a GPU
degraded the performance and we moved that computation to the
CPU. This leads to an increase in the memory transfer time since
the intermediate results need to be copied between the CPU and the
GPU. However, this approach is 2X faster overall compared to the
GPU only approach. 19% of the total run time is spent constructing
the cover list and 13% of the run time is spent discovering the
intersections. The OpenACC overhead and memory transfers at
tree skeleton and end list constructions thus severely limit the
overall performance of the hybrid algorithm.

5 CONCLUSION

In this work, we demonstrate a practical segment tree based poly-
gon clipping. With our augmentation, segment trees can perform
efficient polygon clipping in addition to the standard operations
like stabbing query. We presented a multi-core segment tree-based
polygon clipping algorithm employing OpenMP directives that uti-
lizes Chaselle’s observation and Foster’s polygon clipping labeling.
In our experiments using real-world datasets, the segment tree
eliminates 99% of non-intersecting edge pairs on average compared
to all-to-all edge pair tests resulting in up to 7.8 fold speedup ad-
vancing the state-of-the-art Foster’s CUDA based implementation.
To achieve this performance, we parallelized intersection discovery,
tree skeleton, cover-list, and end-list constructions.

Evaluations using real-world datasets indicate that our algorithm
performs reasonably well with a large number of input edges with
OpenMP based directives and shows potential for better accelera-
tion on multi-core and many-core platforms employing rigorous
low-level libraries such as PThread and CUDA. Our approach lays a
foundation for implementing an efficient practical sweep-line-based
parallel polygon clipping algorithm in the future.
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