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ABSTRACT

A segment tree is a versatile tree-based data structure over inter-

vals or line segments efficiently supporting several computational

operations such as stabbing query, segment arrangement, and pla-

nar point location, both theoretically and practically. Polygon clip-

ping is a basic operation in domains such as Computer Graphics,

Computer-aided Design, and Geographic Information Science (GIS).

Given two polygons with 𝑛 vertices, polygon clipping algorithms

find the geometric intersection or union in O(𝑛2) time using Fos-

ter’s all-to-all edge intersection testing and O((𝑛 + 𝑘) log𝑛) time

using Vatti’s sweep line-based method, where 𝑘 is the number of

intersections. No known segment tree implementation, including

the CGAL library, supports intersection finding or polygon clipping.

We extended the segment tree leveraging Chaselle’s PRAM-model

augmentation, parallelized the construction of our augmented seg-

ment tree, and employed it to find line segment intersections for

polygon clipping while handling degenerate cases. Augmented seg-

ment tree eliminates 99% of non-intersecting edge pairs compared

to 63% by the state-of-the-art filtering based on common mini-

mum bounding rectangle method employed in Foster’s GPU-based

implementation. This, coupled with Ω(𝑛 log𝑛) work on a single

CPU core, beats Foster’s GPU performance with O(𝑛2) work. Our

OpenMP directive based multi-core implementation achieves up to

4X relative speedup for clipping two polygons with 182K vertices

and 5X speedup for five polygons with 398K vertices. We also of-

floaded the parallel kernels to a GPU using OpenACC achieving

performance competitive with Foster’s GPU implementation. Our

profiling indicates limitations of the compiler directives and poten-

tial for superior performance by employing pthread/cuda libraries.
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1 INTRODUCTION

A segment tree is a static binary tree data structure used to store

intervals or segments efficiently [5, 19]. In literature, the segment

tree is used as a data structure for many computational geometry

algorithms such as stabbing query, line arrangement, and planar

point location [14, 16, 23]. A stabbing query takes a point as an input

and returns the set of intervals that contain the given point. Line

arrangement is the subdivision of the plane formed by a collection

of lines. In planar point location, given a partition of the space into

disjoint regions, we have to determine the region where a query

point lies [19]. A polygon is a collection of line segments and in

this work, these line segments of the polygons are used to build

a segment tree. In Fig. 1a, two example polygons are shown. A

segment tree constructed from the segments of these two polygons

is shown in Fig. 1b. For 𝑛 line segments, a segment tree can be built

in O(𝑛 log𝑛) time and space [8].

Figure 1: (a) The base polygon is denoted in blue and the clip-

ping polygon is denoted in red. There are seven edges in both

polygons. 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, and 𝐼7 are the line segment inter-

section points. The grey region is the result of the polygon

clipping. (b) The corresponding segment tree constructed

using the base and clipping polygons.

Polygons are used to represent boundaries of regions (shapes)

in Geographic Information Science (GIS) and Computer Graphics

domains. Geometric set operations such as intersection, union, and

set difference on very large polygonal datasets are common and

important in these domains. Polygon clipping is the calculation

of 𝐵 ∩𝐶 between two polygons 𝐵 and 𝐶 producing the common

region(s) between the input polygons (Fig. 1a). General polygon

clipping algorithms can handle all types of polygons. They can be
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easily modified to compute other geometric set operations such as

union and set difference [11].

Greiner-Hormann (GH) algorithm and Vatti’s algorithm are two

well-known algorithms for arbitrary polygon clipping [15, 31]. Both

algorithms first discover line segment intersections, then label them,

and finally trace the results with the help of the labels. The domi-

nating computational phase in these algorithms is the line segment

intersection discovery. GH algorithm uses a brute force approach

to report the intersections in O(𝑛2) time, where 𝑛 is the total num-

ber of vertices in the input polygons. Vatti’s algorithm uses scan

beams to decompose the line segments and finds intersections in

O((𝑛 + 𝑘) log𝑛) time, where 𝑘 is the number of line segment in-

tersections. Foster’s polygon clipping algorithm is an extension of

the GH algorithm with proper degenerate case handling which is

limited in the GH algorithm [3, 11].

The objective of this work is to extend the segment trees to han-

dle geometric intersection of polylines and polygons and explore

portable parallelization on multi-core CPUs via OpenMP compiler

directives. With our practical extension, now segment trees can be

used to compute geometric intersections while handling degenerate

cases in addition to stabbing queries, window queries, etc [6, 23].

Parallel pair-wise line segment intersection is a core component

in the polygon clipping algorithms. Goodrich presented an output-

sensitive CREW PRAM algorithm leveraging an extension of the

segment tree to discover line segment intersections in O(log𝑛)

time using O(𝑛 log𝑛 + 𝑘) number of processors where 𝑘 is the

number of intersections [14]. In the worst-case scenario 𝑘 = Θ(𝑛2).

It leverages Chaselle’s rule for finding line segment intersections

in the segment tree [8]. Goodrich’s PRAM algorithm is not suitable

for an efficient multi-core implementation for real-world polygon

clipping. The real-world polygons involved in clipping have at

most a few hundred thousand edges, therefore segment tree nodes

are comparatively small in terms of the number of line segments

contained in them and parallel overheads dominate.

In this work, we leverage Goodrich’s theoretical work in a practi-

cal setting utilizing it to discover intersections in polygon clipping

efficiently. First, we build an augmented segment tree by inserting

the segments of the input polygons into the tree nodes, with spe-

cial handling for vertical segments. The nodes of the tree maintain

cover lists as well as end lists containing suitable subsets of the line

segments of the input polygons. Next, the output line segment in-

tersection points are computed using the cover-list and the end-list

of the nodes of the tree using Chaselle’s rule. It should be noted

that the cover lists are part of the standard segment tree and end lists

are additionally needed to find the line segment intersections for

polygon clipping. Finally, Foster’s labeling and result tracing steps

are employed to calculate the resulting intersecting polygon(s).

The main contributions of this work are as follows.

• The first work to extend segment tree data structure for

polygon clipping based on Chaselle’s rule and evaluate the

augmented segment trees experimentally.

• Parallelized augmented segment tree construction and line

segment intersection finding on multicore CPUs to handle

polygon clipping using OpenMP directives.

• Effective edge pair filtering employing the segment tree re-

sulting in the elimination of 99% of the non-intersecting edge

pairs on an average as compared to 63% with common mini-

mum bounding rectangle (CMBR) based filtering employed

in the state-of-the-art Foster GPU implementation [3]. This

yields a single core CPU performance of segment-tree based

polygon clipping with Ω(𝑛 log𝑛) work beating the state-of-

the-art many-core GPU performance of Foster’s clipping

with O(𝑛2) work.

• C++ OpenMP based multi-core implementation yields up to

4X speedup over real-world datasets, processing two poly-

gons with a total of 182K vertices on a Xeon Silver 4210R

CPU, compared to the sequential segment tree-based poly-

gon clipping algorithm running on a single CPU core.

• One-to-many polygon clipping utilizing a single segment

tree to discover intersections among multiple polygon pairs

enables 5X relative speedup.

The rest of the paper is organized as follows. Section II intro-

duces the background on polygon clipping algorithms, segment

tree and its augmentation, and segment tree-based line segment

intersection. Section III presents our practical polygon clipping

algorithm based on a parallel augmented segment tree and imple-

mentation details. Section IV contains an experimental evaluation

of the parallel polygon clipping algorithm. Section V presents our

conclusions and future work.

2 LITERATURE AND CONCEPTS

2.1 Polygon Clipping

A polygon is a collection of at least three points in the 2-dimensional

space connecting to construct a closed region. The points are re-

ferred to as vertices. Each adjacent pair of vertices connects using

a straight line segment referred to as an edge.

There are different types of polygons. 1) 𝑠𝑖𝑚𝑝𝑙𝑒 polygon where

its edges do not self-intersect, 2) 𝑠𝑒𝑙 𝑓 -𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 polygon where

at least one edge intersects another edge, 3) 𝑐𝑜𝑛𝑣𝑒𝑥 polygon where

all interior angles are no more than 180◦, and 4) 𝑐𝑜𝑛𝑐𝑎𝑣𝑒 polygon

where some interior angles are greater than 180◦.

Polygon clipping involves the computation of line segment inter-

sections. An intersection point is generated when a segment/edge

from a polygon overlaps or crosses a segment from another poly-

gon. There are well-known sequential and parallel polygon clipping

algorithms in Computer Graphics and GIS domains. Maillot’s algo-

rithm only clips using a rectangle, but not against polygons [18].

Sutherland-Hodgman, Weiler-Atherton, Liang-Barsky, Vatti’s, and

GH algorithms can clip a concave polygon against another concave

polygon [15, 17, 30ś32]. Vatti’s and GH algorithms can also clip

arbitrary polygons [15, 31].

In addition to Vatti’s algorithm, plane-sweep based sequential

polygon clipping algorithms are also discussed in [20, 22, 28]. The

GH algorithm has a simpler way to represent polygons than Vatti’s

and its time complexity is not output sensitive. Foster et al. present

an extension to the GH algorithm with the ability to handle degen-

erate cases properly [11].

There are parallel clipping algorithms based on [17, 30] imple-

mented on classic parallel architectures [26]. Naïve O(𝑛2) algo-

rithms and grid partitioning have been used in practical GPU over-

lay algorithms discussed in [4, 12]. There is a multi-core Vatti’s

algorithm implementation presented in [24]. Parallel many-core
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and multicore implementations of the GH algorithm are presented

in [25]. Both GPU clipping algorithms discussed in [4, 25] are unable

to handle degenerate cases (see Fig 6). Parallel many-core imple-

mentation of Foster’s algorithm is presented in [3] uses common

minimum bounding rectangle (CMBR) based filtering and line seg-

ment minimum bounding rectangle (MBR) based filtering. CMBR

filter only focuses on the line segments that are within or intersect

the common intersection area between the two polygonal MBRs [3]

(see Fig. 2a). Hence, those line segments that are not part of the

common MBR are filtered out from further processing. In the re-

finement phase, before performing the line segment intersection

test for a pair of line segments, those pairs are further weeded out

whose MBRs do not overlap [3] (see Fig. 2b and 2c). This is referred

to as the line segment MBR (LSMBR) filter in [3].

Figure 2: (a) Common minimum bounding rectangle (CMBR)

filter:𝑀𝐵𝑅𝑃=[𝑃1, 𝑃2, 𝑃3, 𝑃4],𝑀𝐵𝑅𝑄=[𝑃5, 𝑃6, 𝑃7, 𝑃8]. 𝐶𝑀𝐵𝑅=[𝑃9,

𝑃2, 𝑃3, 𝑃10]. Only those edges of 𝑃 and 𝑄 that intersect CMBR

are used for further processing, LSMBR filter: (b) Possible

intersection, (c) no intersection possible [2, 3].

2.2 Segment Tree

A segment tree is a static full and complete binary tree data struc-

ture used to store intervals or segments efficiently [5, 19]. Segment

tree construction runs in O(𝑛 log𝑛) time using O(𝑛 log𝑛) storage,

where 𝑛 is the number of intervals. Given a collection of line seg-

ments, a segment tree is built in two stages. In the first stage, the

skeleton of the tree is built by sorting the x-coordinates of the

endpoints of the line segments in order to generate the leaf nodes

where each node represents an elementary interval. The interior

nodes are then built using a bottom-up approach by the union of

the interval of their child nodes. In the second stage, all the input

line segments are inserted into the tree.

Assume a set𝐸 of𝑛 intervals. Let𝑝1, 𝑝2, ..., 𝑝𝑛 be the x-coordinates

of the segments’ endpoints sorted in non-decreasing order. These

endpoints define the elementary intervals corresponding to leaf

nodes of a segment tree. The elementary intervals for this set of

x-coordinates are as follows: (−∞, 𝑝1), [𝑝1, 𝑝1], (𝑝1, 𝑝2), [𝑝2, 𝑝2],

(𝑝2, 𝑝3), ..., (𝑝𝑛−1, 𝑝𝑛), [𝑝𝑛, 𝑝𝑛], (𝑝𝑛, +∞) [19]. Let 𝑇 denote a seg-

ment tree and let 𝑣 denote a node in 𝑇 . Let Πv denote the interval

of node 𝑣 . For an internal node 𝑣 ∈ 𝑇 , Π𝑣 denotes the union of all

the intervals of its child nodes. For a node interval representing

a vertical segment with starting and ending points with the same

x-coordinates, Π𝑣 = [𝑝𝑖 , 𝑝𝑖 ], where 1 ≤ 𝑖 < 𝑛. These point intervals

are always at the leaf level of the segment tree and do not become

internal/parent nodes.

Parallel and distributed segment tree algorithms are presented

in [7, 9, 13, 16, 23, 27, 29, 33]. Dehne and Chaplin presented a

segment tree implementation on a hypercube [9]. Su presented

theoretical and practical segment tree construction algorithms that

run in polylogarithmic time [29]. Chan et al. presented a distributed

implementation of the segment tree [7]. Gerbessiotis presented a

bulk-synchronous parallel (BSP) segment tree construction algo-

rithm [13]. Zheng et al. presented a distributed segment tree for

efficient query processing [33]. Shen et al. presented a distributed

segment tree supporting both range query and cover query [27].

Jaja discusses a PRAM segment tree construction algorithm [16].

2.3 Chaselle’s Observation

Chaselle observed that a segment tree can be used for line seg-

ment intersection by augmenting its nodes with an end-list at each

node [8]. This work is further improved by Goodrich [14].

Chaselle’s observation involves a cover-list and an end-list at

each segment tree node. A segment 𝑒𝑖 with endpoints (𝑥𝑖 , 𝑦𝑖 ) and

(𝑥 ′𝑖 , 𝑦
′
𝑖 ) spans the interval Π𝑣 of node 𝑣 if the interval (𝑥𝑖 , 𝑥

′
𝑖 ) is a

superset of the interval Π𝑣 . A segment 𝑒𝑖 covers a node 𝑣 ∈ 𝑇 if 𝑒𝑖
spans Π𝑣 but not Π𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣) , that is, 𝑣 is the highest such node that

𝑒𝑖 spans [14]. All such segments are in the cover-list of node 𝑣 .

𝒄𝒐𝒗𝒆𝒓-𝒍 𝒊𝒔𝒕 (𝒗) = {𝑒 ∈ 𝐸 | 𝑒 𝑐𝑜𝑣𝑒𝑟𝑠 𝑣} (1)

An edge can be assigned to no more than 2 nodes at any level of

the tree per this definition of cover list [19].

A segment 𝑒𝑖 belong to the end-list of a node 𝑣 ∈ 𝑇 if 𝑒𝑖 does not

span Π𝑣 but Π𝑣 contains an endpoint 𝑥𝑖 or 𝑥
′
𝑖 of 𝑒𝑖 [8], that is one

of the end points of 𝑒𝑖 lies within Π𝑣 .

𝒆𝒏𝒅-𝒍 𝒊𝒔𝒕 (𝒗) = {𝑒 ∈ 𝐸 | 𝑒𝑖 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑠𝑝𝑎𝑛 Π𝑣

𝑏𝑢𝑡 Π𝑣 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑛 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑜 𝑓 𝑒𝑖 }
(2)

Figure 3: (a) Line segments s, t, and their related segment tree.

(b) A polygon with edges 𝑠1, 𝑠2, 𝑠3, and 𝑠4 and its segment tree.

Node x represents vertical edge 𝑠2, which is a point interval.

Nodes a and b are empty nodes added to complete the tree.

Fig. 3a depicts segment 𝑠 and a segment tree. We illustrate related

concepts for clarity. The segment tree is only sensitive to a single

dimension of values. But a line segment’s endpoints have both x and

y coordinates. Hence, the segment tree uses only the x coordinates

of the endpoints to define the aforementioned cover-lists and end-

lists. The tree node intervals are represented in dotted lines. Nodes

a and b are empty nodes added to complete the tree. Segment 𝑠 does

not span nodes 𝑥 ,𝑢,𝑤 , or 𝑣 , but their intervals contain endpoints of

𝑠 . Segment 𝑠 covers node 𝑦. Segment 𝑠 gets added to End(𝑥 ), End(𝑢),

End(𝑤 ), End(𝑣), and Cover(𝑦).

Fig. 3b depicts a polygon with edges 𝑠1, 𝑠2, 𝑠3, and 𝑠4 and the

corresponding segment tree. Node 𝑥 has a point interval since it

represents vertical segment 𝑠2. Segment 𝑠1 covers root node 𝑣 since
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it does not have any parents. Since this segment covers root node,

it does not belong to any end-list. Segment 𝑠2 covers node 𝑥 since it

cannot span node 𝑢 interval (parent(𝑥 )). It is in the end-list of node

𝑦 since its endpoints are at the border of that node interval and it

does not span node 𝑦. Segment 𝑠3 covers node 𝑢 since it does not

cover the parent node of 𝑢. Segment 𝑠3 is in the end-list of𝑤 since

it is on the border of that node’s interval and does not span the

interval. Segment 𝑠4 covers node𝑤 and it is in the node 𝑦’s end-list.

The end-list of point interval nodes are always empty since a point

is sufficient to cover its interval and by doing so, it violates the

end-list definition (see equation 2).

In our implementation of the augmented segment tree to utilize

Chaselle’s observation described next, we used closed intervals

at the leaf level nodes of the tree avoiding point interval nodes

unless they represent a vertical segment. Hence our version of

elementary intervals is as follows: [𝑝1, 𝑝2], [𝑝2, 𝑝3], ..., [𝑝𝑛−1, 𝑝𝑛],

resulting in some duplicate edges at neighboring end lists, but not

missing any. This approach helps to handle vertical edges properly

and, in post-processing phase, duplicates are eliminated if there are

any.

Chaselle observed that there is a unique node 𝑣 ∈ 𝑇 that

discovers any segment pair 𝑒1 and 𝑒2 intersection, making one of

the following rules true, where the intersection point is within Π𝑣 .

• 𝑒1, 𝑒2 ∈ 𝑐𝑜𝑣𝑒𝑟 -𝑙𝑖𝑠𝑡 (𝑣)

• 𝑒1 ∈ 𝑒𝑛𝑑-𝑙𝑖𝑠𝑡 (𝑣) 𝑎𝑛𝑑 𝑒2 ∈ 𝑐𝑜𝑣𝑒𝑟 -𝑙𝑖𝑠𝑡 (𝑣)

• 𝑒2 ∈ 𝑒𝑛𝑑-𝑙𝑖𝑠𝑡 (𝑣) 𝑎𝑛𝑑 𝑒1 ∈ 𝑐𝑜𝑣𝑒𝑟 -𝑙𝑖𝑠𝑡 (𝑣)

Thus, finding intersections can be limited to pairwise searches

within the cover-list and cross-pairs searches between the cover-list

and the end-list, and these can be independently performed for each

node.

3 METHODOLOGY

A general polygon clipping algorithm consists of line segment

intersection discovery, intersection labeling, and result tracing,

where the dominating step is line segment intersection discovery [3,

11, 15, 25]. Our alternative approach has three major steps: Segment

tree construction, intersection discovery, and labeling and tracing

results. We employ our augmented segment tree to decompose

the polygon edges to find the intersections faster, replacing the

trivial brute-force all-to-all quadratic-time edge test. We introduce

additional post-processing to save the intersections in the correct

edges of the original polygons in the order they appear. Afterward,

Foster’s labeling and result tracing steps are employed to calculate

the resulting intersecting polygon(s), handling degenerate inputs.

3.1 Augmented Segment Tree Construction

Terminology: We use the following terminology to explain poly-

gon clipping. Let the input base polygon 𝐵 and the clipping polygon

𝐶 consist of edge sets 𝐸𝐵 and 𝐸,𝐶word respectively. Let the ver-

tex sets of the input polygons be 𝑉 𝐵 and 𝑉𝐶 , respectively. Let the

resultant polygon after clipping be 𝑃 . Let the set of 𝑥 coordinates

in sorted order are 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑖 , ..., 𝑥𝑙 }, where 𝑋 = 𝑉 𝐵 ∪𝑉𝐶

and 𝑙 = |𝐸𝐵 | + |𝐸𝐶 |. These define the set of intervals of the input

polygons with 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 = [𝑥𝑖 , 𝑥𝑖+1]. The segment tree is a full and

complete binary tree represented in a heap-like array of 2𝑙−1 nodes.

Logically, each node in this tree has a structure as depicted in Fig. 4.

s t ruc t {

r e a l i n t e r v a l S t a r t

r e a l i n t e r v a l E n d

in t c o v e r L i s t [ ]

in t e ndL i s t [ ]

} Node

s t ruc t {

Node node [ ]

} segmentTree

Figure 4: Segment tree data structure.

However, for implementation efficiency, we use three 2-D arrays:

𝑆𝑇 -𝑁𝑜𝑑𝑒𝐼𝑛𝑡𝑣𝑙 ,𝐶𝑜𝑣𝑒𝑟 -𝑙𝑖𝑠𝑡 , and 𝐸𝑛𝑑-𝑙𝑖𝑠𝑡 to save node interval, cover-

list, and end-list of each tree node, respectively. Each row of these

arrays represents a node and its columns store the relevant node

intervals, edge IDs of the cover-list, and edge IDs of the end-list,

respectively.

Algorithm 1 - Parallel Augmented Segment Tree Construction

Input: Edge lists from input polygons 𝐵 and 𝐶 (𝐸,𝐵 𝐸𝐶 )

Output: 𝑆𝑇 -𝑁𝑜𝑑𝑒𝐼𝑛𝑡𝑣𝑙 , 𝐶𝑜𝑣𝑒𝑟 -𝑙𝑖𝑠𝑡 , 𝐸𝑛𝑑-𝑙𝑖𝑠𝑡

1: Read 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 from the x-coordinates of 𝐸𝐵 and 𝐸𝐶 .

2: Construct 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 and the leaf level

𝑆𝑇 -𝑁𝑜𝑑𝑒𝐼𝑛𝑡𝑣𝑙 .

a. Sort 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 .

b. Remove duplicates from 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 . Add both start and

endpoints when an 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is a point.

3: Construct the 𝑆𝑇 -𝑁𝑜𝑑𝑒𝐼𝑛𝑡𝑣𝑙 (internal node intervals) by

union of children yielding parent’s interval, starting with

leaf level intervals.

4: Construct 𝐶𝑜𝑣𝑒𝑟 -𝑙𝑖𝑠𝑡 by finding covered nodes for each

edge traversing from the root downward.

5: Construct 𝐸𝑛𝑑-𝑙𝑖𝑠𝑡 by populating the end lists of leaves and

merging level by level weeding out duplicates.

Algorithm 1 outlines the steps involved in the parallel segment

tree construction. Step 1 identifies intervals from the input polygons.

An interval is computed using the x-coordinates of two consecutive

vertices. Step 2 computes the elementary intervals using the intervals

calculated before. The elementary intervals is the list of unique

endpoints of the intervals. However, when a particular interval is a

point (when start == end), both start and end points are inserted in

this list. First, the intervals are sorted (Step 2a). Next, the duplicates

are removed unless the points belong to a point interval (Step

2b). The elementary intervals are used to construct the leaf level

intervals of the segment tree. Algorithm 2 sketches the bottom-up

approach used to build the intervals of the segment tree. The levels

are visited from leaf to root level. In Step 3, the intervals of the

internal nodes of the segment tree are constructed using the leaf-

level node intervals. Steps 1 - 3 are also referred to as segment tree

skeleton construction in our run time evaluations. In Algorithm 2,

at a given level, the node intervals can be calculated in parallel.

However, parent-level nodes depend on their child-level nodes in

order to calculate their own intervals. Hence, we only parallelized

the inner for loop and at the end of that loop, we used a barrier

directive to synchronize all threads.
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Algorithm 2 - Build Tree Intervals

Input: 𝑆𝑇 -𝑁𝑜𝑑𝑒𝐼𝑛𝑡𝑣𝑙 : Indexed array of leaf level intervals

Output: 𝑆𝑇 -𝑁𝑜𝑑𝑒𝐼𝑛𝑡𝑣𝑙 : Node intervals for internal nodes of the

tree

1: for each 𝑙𝑒𝑣𝑒𝑙 in Tree do

2: for each 𝑛𝑜𝑑𝑒 in 𝑙𝑒𝑣𝑒𝑙 do in parallel

3: 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 = 2 ∗ 𝑛𝑜𝑑𝑒

4: 𝑙𝑒 𝑓 𝑡𝐶ℎ𝑖𝑙𝑑 = 2 ∗ 𝑛𝑜𝑑𝑒 + 1

5: 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 .𝑠𝑡𝑎𝑟𝑡 = 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑.𝑠𝑡𝑎𝑟𝑡

6: 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 .𝑒𝑛𝑑 = 𝑙𝑒 𝑓 𝑡𝐶ℎ𝑖𝑙𝑑.𝑒𝑛𝑑

7: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑇𝑟𝑒𝑒𝑁𝑜𝑑𝑒𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 [𝑛𝑜𝑑𝑒] = 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

Steps 4 and 5 of Algorithm 1 construct a cover-list and an end-

list at each node respectively. These data structures are independent

of each other and can be built simultaneously.Algorithm 3 lays out

the steps in the parallel𝐶𝑜𝑣𝑒𝑟 -𝑙𝑖𝑠𝑡 construction using input polygon

edges (𝐸) and tree node intervals (𝑆𝑇 -𝑁𝑜𝑑𝑒𝐼𝑛𝑡𝑣𝑙). 𝐶𝑜𝑣𝑒𝑟 -𝑙𝑖𝑠𝑡 is a

2-D array used to store the cover-list of each node. For each edge

insertion, a recursive search is used to find the grandparent(s). The

race condition when storing an edge is handled using section locks.

We employ a lock per node to maximize concurrent insertions.

This recursive approach is unsuitable for the GPU. Instead, we

built cover lists at each node scanning a candidate edge set. For any

left child, we only scan the edges whose max points lie between

the node and its parent’s max interval boundaries. For any right

child, we only scan the edges whose min points lie between the

node and its parent’s min interval boundaries. This enabled simul-

taneous construction of all nodes, albeit with more overheads, for

an OpenACC implementation.

Algorithm 3 - Build Cover-lists

Input: 𝐸 = {𝐸𝐵 ∪ 𝐸𝐶 }, 𝑆𝑇 -𝑁𝑜𝑑𝑒𝐼𝑛𝑡𝑣𝑙

Output: All 𝐶𝑜𝑣𝑒𝑟 -𝑙𝑖𝑠𝑡

1: for each 𝑒 in 𝐸 do in parallel start from root node 𝑣

2: if interval of node 𝑣 is contained in 𝑒 then

3: store 𝑒 at 𝑣 atomically

4: exit

5: else

6: if 𝑒 ∩ Π𝐿𝑒𝑓 𝑡−𝐶ℎ𝑖𝑙𝑑 (𝑣) then

7: insert e in that subtree recursively

8: if 𝑒 ∩ Π𝑅𝑖𝑔ℎ𝑡−𝐶ℎ𝑖𝑙𝑑 (𝑣) then

9: insert e in that subtree recursively

Step 5 of Algorithm 1 constructs an end-list at each node unless

the node is a point interval. We use 2-D array 𝐸𝑛𝑑-𝑙𝑖𝑠𝑡 to save the

end-lists of the nodes of the entire segment tree. The end-lists at

point interval nodes are always empty since the end-list definition

does not allow any segment that spans a node interval.Algorithm4

sketches the bottom-up approach used to construct 𝐸𝑛𝑑-𝑙𝑖𝑠𝑡 array.

For each elementary point, their left and right neighboring node IDs

are saved in arrays. In leaf level end-list construction, these arrays

are used to access the left and right neighbors of a given interval

point in O(1) time. All polygon edges (𝐸) are inserted in the right

node of the start vertex of an edge and in the left node of the end

vertex unless the nodes are point intervals. The end-list of a parent

Algorithm 4 - Build End-lists

Input: 𝐸 = {𝐸𝐵 ∪ 𝐸𝐶 }, 𝑆𝑇 -𝑁𝑜𝑑𝑒𝐼𝑛𝑡𝑣𝑙

Output: 𝐸𝑛𝑑-𝑙𝑖𝑠𝑡

1: for each 𝑒𝑝 in 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦𝑃𝑜𝑖𝑛𝑡𝑠 do in parallel

2: 𝑟𝑖𝑔ℎ𝑡𝑃𝑜𝑖𝑛𝑡𝑀𝑎𝑝 ← right node of 𝑒𝑝

3: 𝑙𝑒 𝑓 𝑡𝑃𝑜𝑖𝑛𝑡𝑀𝑎𝑝 ← left node of 𝑒𝑝

4: for each 𝑒 in 𝐸 do in parallel

5: insert 𝑒 in 𝐸𝑛𝑑-𝑙𝑖𝑠𝑡 at 𝑟𝑖𝑔ℎ𝑡𝑃𝑜𝑖𝑛𝑡𝑀𝑎𝑝 [𝑒.𝑒𝑛𝑑]

6: insert 𝑒 in 𝐸𝑛𝑑-𝑙𝑖𝑠𝑡 at 𝑙𝑒 𝑓 𝑡𝑃𝑜𝑖𝑛𝑡𝑀𝑎𝑝 [𝑒.𝑠𝑡𝑎𝑟𝑡]

7: for each level in tree (leaf to root) do

8: for each 𝑣 in level do in parallel

9: 𝑝 = index of 𝑣

10: 𝑙𝑒 𝑓 𝑡𝐶ℎ𝑖𝑙𝑑 = 2𝑝

11: 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 = 2𝑝 + 1

12:
𝐸𝑛𝑑-𝑙𝑖𝑠𝑡 [𝑝] = 𝐸𝑛𝑑-𝑙𝑖𝑠𝑡 [𝑙𝑒 𝑓 𝑡𝐶ℎ𝑖𝑙𝑑]∩

𝐸𝑛𝑑-𝑙𝑖𝑠𝑡 [𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑]

node is calculated by performing a union operation on the child

end-lists. Hence, the total end-list size at each level is no more than

the total end-list size at the leaf level of the tree. This allows us to

allocate enough memory in the 𝐸𝑛𝑑-𝑙𝑖𝑠𝑡 array to save end-lists of

the internal nodes avoiding the need for memory copying of leaf

level end-lists.

The union operation is performed in parallel at each level of the

tree. But each level needs to finish its end-list construction in order

to move to the next level due to the dependency between the parent

and child nodes. The point interval nodes are always assigned at

the leaf level of the tree, thus this operation does not need to handle

them explicitly.

Our experiments showed that the nested loop at Step 9 of Algo-

rithm 4 degrades performance when offloaded in the GPU due to

the complex computation including branching and loops. Hence

we performed this computation over the multi-core environment

employing OpenMP.

Fig. 5 illustrates an example of a segment tree built for a pair of

polygons. The segment tree has 13 elementary intervals and 3 empty

intervals are added to complete the tree. Each node has a cover-list

and an end-list that are shown in green and purple respectively.

The intersections are 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7, and 𝐼8 (see Fig. 5). They

are displayed pointing at the nodes where each is uniquely found.

Edges 3 and d intersect at node 2 producing 𝐼2 which is also found

at node 12. But 𝐼2 is only contained at node 2. Therefore, node 12

does not report it as an intersection to avoid duplicates. Similarly,

intersections 𝐼1 - 𝐼8 are reported at unique nodes.

3.2 Intersection Finding

Algorithm 5 sketches the steps in intersection calculation. Step 1

discovers intersections utilizing Chaselle’s observation using local

cover-list and end-list data, performing intersection tests between

the edges from the cover-list itself and against the edges from the

end-list. For efficient intersection finding in parallel, we employed

dynamic scheduling in the Step 1 outer loop with a chunk size

of 100. We also leverage the LSMBR filtering presented in [3] to
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Figure 5: Polygon clipping using an augmented segment tree.

The base polygon is denoted in blue and the clipping polygon

is denoted in red. There are 7 edges, each in the base and

clipping polygons. Leaf level node intervals are labeled xvi -

xxxi and the internal node intervals are labeled i - xv. The

cover-list elements at each node are in green letters and the

end-list elements are in purple letters. Intersections are shown

pointing at the nodes where they are found. 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6,

𝐼7, and 𝐼8 are intersections.

Algorithm 5 - Parallel Intersection Finding

Input: 𝑆𝑇 -𝑁𝑜𝑑𝑒𝐼𝑛𝑡𝑣𝑙 , 𝐶𝑜𝑣𝑒𝑟 -𝑙𝑖𝑠𝑡 , 𝐸𝑛𝑑-𝑙𝑖𝑠𝑡

Output: 𝐸,′𝐵 𝐸,′𝐶 𝛼,𝐵 𝛽,𝐶 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠,𝐵 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐶 arrays

1: for each node 𝑣 in Tree do in parallel

2: for each edge pair within 𝑐𝑜𝑣𝑒𝑟 -𝑙𝑖𝑠𝑡 do

3: Find intersections.

4: Save intersection types and edge IDs of the input

polygons.

5: for each edge pair across 𝑐𝑜𝑣𝑒𝑟 -𝑙𝑖𝑠𝑡 and 𝑒𝑛𝑑-𝑙𝑖𝑠𝑡 do

6: Find intersections.

7: Save intersection types and edge IDs of the input

polygons.

8: Sort intersecting edge IDs of the base polygon.

9: Sort intersecting edge IDs of the clipping polygon.

10: Save intersections and their 𝛼 , 𝛽 values.

11: Sort intersections by 𝛼 , 𝛽 values separately.

12: Copy the non-degenerate intersections in the base and clip

polygons at the correct locations (𝐸′𝐵 and 𝐸′𝐶 ). Mark

degenerate intersections in the source vertex list.

13: Copy 𝛼 , 𝛽 values to 𝛼,𝐵 𝛽𝐶 . Save clipping polygon edge id in

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐵 and base polygon edge id in 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐶

identify the edge pairs whoseMBRs intersect with each other before

employing much more expensive intersection finding. In this step,

the intersection type, base polygon edge id, and clipping polygon

edge id are stored in three arrays.

Step 11 constructs an index array in the sorted order of the inter-

sections by the base polygon edge IDs. Step 12 produces a similar

index array, but sorted by the clipping polygon edge IDs. The sorted

index arrays help to insert the intersections in the source polygons’

edges efficiently. Step 13 saves the intersection coordinates, 𝛼 , and

𝛽 values in three arrays. The 𝜶 value is the distance ratio from

the parent vertex of the contributing edge of the base polygon to

an intersection. 𝜷 value is defined similarly, but uses the clipping

polygon’s contributing edge [11].

Figure 6: Degenerate intersection types [3, 11]. (a) and (b) T-

intersections. (c) V-intersection. Degenerate overlap types [3,

11]. (d) X-overlap. (e) and (f) T-overlap. (g) V-overlap.

Step 14 produces two sorted index arrays by 𝛼 and 𝛽 values.

Using these sorted index arrays, Step 15 copies the intersections,

𝛼 , and 𝛽 values in 𝐸,′𝐵 𝐸′𝐶 arrays marking degenerate cases. Fig 6

shows a summary of all degenerate cases. Step 16 copies the non-

degenerate intersections into source polygons along with 𝛼 and

𝛽 arrays. The degenerate intersections update the corresponding

vertices in the input polygons [11]. This step also builds𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐵

and𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐶 arrays. These are used to find the contributing edge

id of an intersection from the other polygon.

3.3 Intersection Labeling and Tracing the
Results

Algorithm 6 - Labeling and Tracing Results

Input: 𝐸,′𝐵 𝐸,′𝐶 𝛼,𝐵 𝛽,𝐶 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠,𝐵 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠,𝐶 arrays

Output: contour of output polygon(s)

1: Initial labeling in parallel.

2: Copy initial labels and intersection arrays into linked lists.

Perform other labeling on the linked lists.

3: Trace results.

Algorithm 6 outlines the steps in intersection labeling and

tracing to construct the contour of the resulting polygon(s) using the

intersections, their 𝛼 , 𝛽 , and neighbor values that were calculated in

Algorithm 5. The initial labels are calculated in parallel since the

𝛼 , 𝛽 , and neighbor values are locally available at each intersection

vertex. The rest of the intersection labeling uses serial Foster’s

algorithm labeling and result tracing steps.
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Foster’s algorithm uses 𝑒𝑛𝑡𝑟𝑦/𝑒𝑥𝑖𝑡 label based on the inside/out-

side status of polygonal edges with respect to another polygon.

There are multiple stages of labeling. In the initial labeling, the

non-overlapping intersections are labeled 𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 or 𝐵𝑜𝑢𝑛𝑐𝑖𝑛𝑔

considering the relative location of the contributing edge from the

clipping polygon. Data for initial labeling are locally available at

each edge and can be done in parallel.

The second stage labels the intersection chains starting with a

turn label. Turn labels handle chains of degenerate intersections

properly since they all have the same 𝑒𝑛𝑡𝑟𝑦/𝑒𝑥𝑖𝑡 label. In the third

stage, final 𝑒𝑛𝑡𝑟𝑦/𝑒𝑥𝑖𝑡 labels are given using second stage labels.

Step 2 then copies the labels in the source polygons and traverses

them to construct the resulting polygon (s). These steps consume a

very small percentage of the total run time thus parallelization is

not practical.

3.4 One-to-Many Polygon Clipping

There are two observations of the one-to-one polygon clipping

approach: (1) segment tree construction which consists of tree

skeleton, cover-list, and end-list constructions is the most expensive

phase (see Fig. 11). (2) this method is inefficient when using smaller

inputs. To mitigate these issues, we investigated one-to-many (1-to-

M) polygon clipping leveraging a segment tree. 1-to-M clipping is

defined as follows. Assume a base polygon 𝐵 and a set of clipping

polygons 𝐶𝐿 = {𝐶1,𝐶2, ...,𝐶𝑙 } where 𝑙 > 1. 1-to-M clipping calcu-

lates 𝐵 ∩𝐶𝐿. Algorithm 7 sketches the steps in 1-to-M clipping

leveraging a segment tree to handle multiple polygon pairs.

Algorithm 7 - One-to-Many Polygon Clipping

Input: Edge lists from input polygons 𝐵 and 𝐶𝐿

Output: contour of output polygons

1: Construct a segment tree 𝑆 using segments from 𝐵 and 𝐶𝐿.

2: for each 𝐶 in 𝐶𝐿

3: Find intersection of 𝐵 ∩𝐶 using 𝐶𝑜𝑣𝑒𝑟 -𝑙𝑖𝑠𝑡 and 𝐸𝑛𝑑-𝑙𝑖𝑠𝑡 of

𝑆 in parallel.

4: Create 𝐸,′𝐵 𝐸,′𝐶 𝛼,𝐵 𝛽,𝐶 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠,𝐵 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐶 arrays.

5: Label and trace results using 𝐸,′𝐵 𝐸,′𝐶 𝛼,𝐵 𝛽,𝐶 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠,𝐵

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐶 arrays.
6: Create output polygons.

7: end for

In Step 1, a segment tree is constructed in parallel leveraging

Algorithm 1 using all edges of the input polygons. The base poly-

gon is common for all clipping calculations. Instead of constructing

multiple segment trees for each clipping polygon pair, this approach

uses a single segment tree, where the edges of the base polygon are

shared among multiple clipping polygons to calculate the clipping

results, amortizing the cost of segment tree construction. In Step

2, each clipping layer polygon is clipped against the base polygon

utilizing Algorithms 5 and 6. The resulting clipping polygons of

each pair are reported as the 1-to-M output.

4 EXPERIMENTAL RESULTS

4.1 Testbed

Our workstation is equipped with an Intel Xeon Silver 4210R CPU

running on 2.40GHz with 10 cores with 64 GB of memory, and an

Nvidia Quadro RTX 5000 GPU card with 16 GB of VRAM, 48 SMs,

and 3072 CUDA cores. We used OpenMP and OpenACC compiler

directives and C++ for our implementation. We used C++ CUDA

implementation of Foster’s GPU polygon clipping algorithm, down-

loadable from theGithub repository at https://github.com/buddhi1/GH-

CUDA.

4.2 Datasets

Table 1: Real-world datasets and polygon clipping character-

istics [1, 10, 21].

# Datasets |Base| |Clipping| |Result|
Intersect

count

1
lakes_174690,

parks_321571
102,721 79,686 21,501 228

2
lakes_174690,

parks_169840
102,721 81,897 54,214 320

3
lakes_174690,

parks_140315
102,721 79,602 44,004 106

4
lakes_174690,

parks_34622
102,721 54,992 27,401 212

5 Classic S, C 101,242 72,997 50,312 47

6
ne_10m_ocean(0),

continents(521)
100,612 16,205 37,608 10,082

7
ne_10m_ocean(0),

continents(1661)
100,612 12,613 16,895 1,427

We used two real-world polygon datasets for performance evalu-

ation. The dataset consists of selected large polygons extracted from

real-world geospatial datasets: lakes, parks [10], Classic polygon

pair [21], ocean (ne_10m_ocean), and Continents [1]. (see Table 1).

Table 1 reports the polygon IDs, their sizes, resulting clipped

polygon sizes, and the intersection count for each dataset. Datasets

1-4 consist of a large polygon from the lakes dataset and 4 large

polygons from the parks dataset. The four polygons from the parks

dataset were translated in the 2-D space to discover a reasonable

number of segment intersections against the large polygon from

the lakes dataset. On average, the segment tree size is 2.4 times

compared to the number of input edges. On average, 70% of the

segment tree nodes contribute to intersection finding and the rest

30% are there to make the tree binary complete.

Table 2: One-to-many datasets and Polygon Clipping Char-

acteristics [1, 10].

# Datasets |Base| |Clipping| |Result|
Intersect

count

8 lp1 102,721 296,177 147,120 866

9 lp2 196,726 296,791 46,984 290

10 lp3 206,429 236,095 28,641 114

11 oc1 100,612 28,818 54,503 11,509

The second real-world dataset is used to evaluate the perfor-

mance of the one-to-many approach (see Table 2). The base poly-

gons of Datasets 8 to 10 are chosen from the lakes dataset. Multiple
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clipping polygons are selected from the parks dataset. The polygons

from the parks dataset were translated to discover an ample amount

of segment intersections against the base polygon from the lakes

dataset in 2-D space. Datasets 1-4 in Table 1 are merged into dataset

8 in Table 2. Datasets 6 and 7 in Table 1 are merged into dataset

11 in Table 2. All datasets have multiple clipping polygons to clip

against the base polygon. These datasets will be publicly shared for

reproducibility.

4.3 Augmented Segment Tree Edge Filtering

Table 3: The segment tree edge pair filtering performance

against CMBR filter of Foster’s GPU clipping algorithm.

#

Total

candidate

edge

pairs

CMBR

filter

Using

segment

tree

%

eliminated

with

CMBR

filter

%

eliminated

with

segment

tree

1 8,185M 3,072M 21,177K 62.47% 99.74%

2 8,413M 1,078M 18,584K 87.19% 99.78%

3 8,177M 788M 18,079K 90.36% 99.78%

4 5,649M 1,679M 17,533K 70.28% 99.69%

5 7,390M 6,074M 4,118K 17.82% 99.94%

6 1,630M 1,142M 6,026K 29.97% 99.63%

7 1,269M 186M 5,539K 85.34% 99.56%

For a given real-world pair of polygons, the intersecting edge

pair percentage is small [3]. Eliminating non-intersecting edge pairs

using fast filters helps to optimize the overall clipping efficiency.

The GPU-based parallelization of Foster’s algorithm uses a CMBR

filter to eliminate non-intersecting edge pairs by eliminating the

edges that do not fall inside the CMBR of the input polygons. In

the segment tree based polygon clipping, the candidate edge set

for intersection finding is limited to the edge pairs that satisfy

Chaselle’s rules. To further optimize, we employed the LSMBR

filter from Foster’s GPU implementation to prune non-intersecting

edge pairs. This filter is an inexpensive operation based on MBR

intersection to eliminate non-intersecting edge pairs further. In this

section, we compare the performance of the CMBR filter vs the

segment tree based edge filter. We do not consider the LSMBR filter

since both algorithms use it to further refine the filtered results.

Figure 7: Performance of the multi-core algorithm over real-

world dataset (with 10 OpenMP threads, excluding I/O times).

The segment tree-based clipping eliminates most of the non-

intersecting edge pairs at the tree nodes. Table 3 reveals the actual

edge comparisons using the segment tree compared to the trivial

brute force approach. We observe that the segment tree can elim-

inate 99% of the non-intersecting edge pairs. On average, CMBR

filtering in Foster’s GPU implementation eliminates 63% of the edge

pairs ranging from 18% to 90%. The superior filtering of the seg-

ment tree achieves a sequential execution time on par with or better

compared to Foster’s GPU polygon clipping (see Fig 7 and 13). For

example, for Dataset 1, sequential and Foster’s execution times are

around 700 ms and for Dataset 5, sequential time is below 400 ms

while Foster’s is more than 800ms.

4.4 Multi-core/OpenMP Performance

We compare the execution times of our C++ sequential segment

tree-based clipping against the C++ OpenMP multi-core directive

based implementation over the real-world dataset using 10 threads

as shown in Fig 7 (excluding I/O times). The multi-core execution

attains an average of 3.6X speedup over all cases compared to the

sequential version over the real-world dataset with a maximum

speedup of up to 4X. These indicate that the overhead of building a

segment tree can be practically offset by its filtering performance

and OpenMP based parallelization.

Figure 8: Execution times for different numbers of cores.

Fig. 8 shows run times of ourmulti-core algorithm usingOpenMP

for increasing numbers of cores over real-world datasets. However,

our multi-core implementation achieves an average 3.7X speedup

against the state-of-the-art Foster’s GPU algorithm over the real-

world dataset with a maximum speedup of 7.8X on Dataset 5. This

shows the superior non-intersecting edge pair filtering capability

of the segment tree approach practically, beating a GPU algorithm

by a CPU algorithm only using compiler directives (see Fig 13).

Figure 9: Multi-core performance of 1-to-M polygon clipping

(excluding I/O times) employing 10 threads.
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In our experiments, we do not compare our approach against

the Clipper library which is designed solely for polygon clipping

with little overhead and performs better for clipping polygons as

opposed to our implementation that extends general segment tree

to handle polygon clipping in addition to its other existing use

cases.

4.5 Multi-core One-to-Many Polygon Clipping

We compare the serial 1-to-M polygon clipping approach against

the multi-core 1-to-M polygon clipping approach as shown in Fig 9.

Since our 1-to-M approach does not build segment trees for each

polygon pair, the total run time in this dataset is reduced by 25%.

The multi-core 1-to-M approach achieves up to 5X speedup against

its serial counterpart. Fig 10 depicts run times of our multi-core

algorithm using OpenMP directives for increasing numbers of core

counts over the one-to-many dataset.

Figure 10: 1-to-M clipping times over for different number

of cores.

4.6 Multi-core Run Time Profile

Figure 11: Execution time breakdown for Dataset 5 using 10

OpenMP threads.

We investigated the limits of OpenMP directives for parallelizing

this tree-based workload as our experiments did not achieve more

than 4-fold relative speedup. Our algorithm has five major phases:

Segment tree construction comprising the construction of the tree

skeleton, cover list, and end list, line segment intersection discovery,

and result tracing. Fig. 11 displays the run time breakdown of the

serial and multi-core versions over Dataset 5. The serial algorithm

spends 73% - 83% of its run time in segment tree construction

constituting major overhead. On average, 6% of the run time is

spent on tree skeleton construction, 31% on cover-list construction,

and 38% on end-list building. Another 23% of the run time is spent

at intersection finding and saving. We focused our parallelization

effort on the dominating tree skeleton construction, cover-list and

end-list constructions, and the output sensitive intersection finding

phases. On average, it is 98% of the total run time.

Figure 12: Multi-core execution time profile for Dataset 5

employing ten threads.

Fig 12 is a snapshot of the runtime profiling over Dataset 5 us-

ing Intel VTune profiler. The algorithm spends 16% of its run time

acquiring and destroying locks used in the cover list construction

phase. Another 44% of the run time is spent in thread synchroniza-

tion indicating the imbalanced nature of the tree traversal and aug-

mented data structure construction. This also leads the algorithm to

spend 9% of its run time spinning. The algorithm only spends 29%

of its run time on the computations. This shows why the relative

speedup of the algorithm is limited to 3X-4X. The augmented data

structures help to eliminate a massive amount of non-intersecting

edge pairs, but constructing them practically over a parallel plat-

form employing only OpenMP compiler directives involves a lot

of synchronization limiting its performance. This also points to

potential gain by using rigorous parallelization using pthread like

low-level library.

4.7 Hybrid CPU-GPU Performance

Figure 13: Performance of the hybrid CPU-GPU algorithm

over against Foster’s GPU polygon clipping algorithm (ex-

cluding I/O times).

To investigate the limits of OpenACC compiler directives for

this tree-based algorithm, we offloaded the parallel kernels of the

segment tree based polygon clipping algorithm in a CPU-GPU

hybrid environment to compare against the state-of-the-art CUDA

based Foster’s GPU implementation. Fig 13 depicts hybrid run times

vs Foster’s GPU implementation. The hybrid performance is limited

but on par with or better than Foster’s. Implementing this method
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in parallel environments is challenging since a tree is involved. In

the next section, we discuss the limitations of our hybrid algorithm

using a profiling study.

4.8 Hybrid CPU-GPU Algorithm Run Time
Profile

Figure 14: Hybrid execution time breakdown for Dataset 5.

Fig 14 depicts a snapshot of the runtime profiling over Dataset 5

in the hybrid environment. 22% of the total parallel time is spent

initializing the OpenACC run time environment. Tree skeleton

construction computation spends 5% and another 7% in memory

transfers to copy input data. The end list construction spends 5%

and 27% of the total run time in memory transfers. The end list

building from the leaf level to the root level only using a GPU

degraded the performance and we moved that computation to the

CPU. This leads to an increase in the memory transfer time since

the intermediate results need to be copied between the CPU and the

GPU. However, this approach is 2X faster overall compared to the

GPU only approach. 19% of the total run time is spent constructing

the cover list and 13% of the run time is spent discovering the

intersections. The OpenACC overhead and memory transfers at

tree skeleton and end list constructions thus severely limit the

overall performance of the hybrid algorithm.

5 CONCLUSION

In this work, we demonstrate a practical segment tree based poly-

gon clipping. With our augmentation, segment trees can perform

efficient polygon clipping in addition to the standard operations

like stabbing query. We presented a multi-core segment tree-based

polygon clipping algorithm employing OpenMP directives that uti-

lizes Chaselle’s observation and Foster’s polygon clipping labeling.

In our experiments using real-world datasets, the segment tree

eliminates 99% of non-intersecting edge pairs on average compared

to all-to-all edge pair tests resulting in up to 7.8 fold speedup ad-

vancing the state-of-the-art Foster’s CUDA based implementation.

To achieve this performance, we parallelized intersection discovery,

tree skeleton, cover-list, and end-list constructions.

Evaluations using real-world datasets indicate that our algorithm

performs reasonably well with a large number of input edges with

OpenMP based directives and shows potential for better accelera-

tion on multi-core and many-core platforms employing rigorous

low-level libraries such as PThread and CUDA. Our approach lays a

foundation for implementing an efficient practical sweep-line-based

parallel polygon clipping algorithm in the future.
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