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Supervised discretization for decluttering
classification models†
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Presented here is the first demonstration of supervised discretization to ‘declutter’ multivariate classifi-

cation data in chemical sensor applications. The performance of multivariate classification models is often

limited by the non-informative chemical variance within each target class; decluttering methods seek to

reduce within-class variance while retaining between-class variance. Supervised discretization is shown

to declutter classes in a manner that is superior to the state-of-the-art External Parameter

Orthogonalization (EPO) by constructing a more parsimonious model with fewer parameters to optimize

and is, consequently, less susceptible to overfitting and information loss. The comparison of supervised

discretization and EPO is performed on three classification applications: X-ray fluorescence spectra of

pine ash where the pine was grown in three distinct soil types, laser induced breakdown spectroscopy of

colored artisanal glasses, and laser induced breakdown spectroscopy of exotic hardwood species.

1. Introduction

Discretization is a set of techniques for conversion of continu-
ous (or near continuous) variables into discrete variables while
minimizing information loss.1,2 In machine learning, discreti-
zation offers several advantages. Methods such as
Classification and Regression Trees (CART) and Naïve Bayes
(NB) classifiers only work with discrete value data.2–4

Discretization reduces the dimensionality of data and
increases the speed of learning.5 Additionally, decision trees
constructed from discretized data tend to be more compact
and accurate than rule structures developed from continuous
data.2,5,6

Discretization methods can be characterized based on their
algorithmic implementation; discretization methods are either
supervised or unsupervised and are either univariate or multi-
variate. An unsupervised discretization method may set all
observations within a fixed range to have a single nominal
value whereas a supervised discretization would use class
information to more optimally adjust the ranges prior to
setting all observations within each range to a single nominal

value. Univariate discretization methods operate on one vari-
able at a time and do not consider information content from
the other variables, whereas multivariate discretization
methods consider relations among multiple variables during
discretization. Additionally, parametric discretization methods
require input from the user such as setting the number or fre-
quency of bins, whereas nonparametric methods only use
information from the data. A more complete taxonomy further
contrasts discretization algorithms based on the relationships
among the observed variables or between the variables and the
classification model during the discretization process.1

The goal of a discretization algorithm is to optimize the
number of discrete intervals, defined by their boundaries,
across the range of each continuous variable. Many supervised
discretization algorithms exist that take into account the
relationship between class identity and the measurement vari-
ables, the so-called class-attribute interdependence. These
algorithms optimize the discretization intervals based on
information theory,5,7,8 statistics,9,10 or empirical heuristics
about the class attribute-interdependence.11,12 Class-attribute
interdependence maximization (CAIM) is a supervised, uni-
variate, nonparametric discretization algorithm.13,14 CAIM is
heuristic-based and strives to simultaneously maximize the
interdependency between the class labels and the continuous
value attribute (variable) while minimizing the number of dis-
crete intervals.

A powerful strategy that improves classification models is
using multivariate filtering methods to identify and remove
unwanted covariance structures that limit model performance.
Popular strategies for multivariate filtering include various
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algorithms for Orthogonal Signal Correction (OSC),15–17

Tikhonov regularization,18 and External Parameter
Orthogonalization (EPO).19,20 OSC seeks to successively ident-
ify and remove the largest direction of variance in the variable
space that is orthogonal to the property of interest in the
sample space. OSC was designed for calibration applications
but can be appropriated for classification models. By contrast,
EPO was designed for classification applications. EPO envi-
sions the ideal class to be a collection of identical points in
the variable space; any deviation from the class mean is
viewed as ‘clutter’ to be removed. Consequently, EPO performs
Principal Component Analyses (PCA) on the within class var-
iance to determine which variance to remove from the variable
space. For both EPO and OSC, the number of components
removed is determined by the analyst. If all possible com-
ponents worth of variance are removed to declutter the
classes, EPO reduces to an Extended Mixture Model filter.21

Tikhonov regularization augments the data collection with a
small number of ‘clutter’ spectra that span the interferent
space to create a model that is desensitized to those sources of
variance.

This work presents the first demonstration of supervised
discretization to ‘declutter’ multivariate classification data in
chemical sensor applications. Although supervised discretiza-
tion has been successfully used to denoise data prior to ana-
lyses, the ability of discretization to mitigate the deleterious
effects of uncontrolled chemical and instrumental effects (e.g.,
moisture, temperature, or sample matrix composition) has not
been explored to date. Through three examples of classifi-
cation by spectra collected on real-world samples with field
portable instrumentation, supervised discretization ‘declut-
ters’ classes are shown to be superior to the state-of-the-art
EPO. Supervised discretization presents a more parsimonious
model with fewer parameters to optimize and is, consequently,
less susceptible to overfitting and information loss. The com-
parison of supervised discretization and EPO is performed of
three classification applications: X-ray fluorescence spectra of
pine ash where the pine was grown in three distinct soil types,
laser induced breakdown spectroscopy of colored artisanal
glasses, and laser induced breakdown spectroscopy of exotic
hardwood species.

2. Class attribute interdependence
maximization (CAIM)

Input data for the CAIM algorithm takes the form of a data
matrix and the class vector. When discretization is initiated,
the algorithm iteratively cycles through each variable, Fi, of the
data matrix, sorting it in descending order, then calculates the
minimum value (d0), the maximum value (dn), and midpoints
(B) between each pair of successive observed values. This
parsing provides the data needed to establish a single interval
discretization scheme (D) for the variable that covers the full
range of the data (i.e., Dinitial, which is the mathematical set
spanned by [d0,dn]). Successive iterations of D will parse the

span of the variable into contiguous segments (e.g., D3 refers
to the set of intervals {[d0,d1],[d1,d2],[d2,d3]}). After these para-
meters are established, the continuous variable Fi is trans-
formed into a quanta matrix (Table 1). Features of a quanta
matrix include rows that correspond to the S unique classes in
the input dataset (C), columns that correspond to the n inter-
vals in the discretization scheme, the final row that is the sum
of each column or the number of objects that belong to each
discretized interval, the final column that is the sum of each
row or the number of objects that belong to each class, and
the bottom right corner of the quanta matrix that is the total
number of objects or samples in the original dataset.

A score is calculated from the quanta matrix to assess the
value of the discretization. The quanta matrix can be used to
determine many different scoring metrics: Shannon’s entropy,
Class-Attribute Information (INFO),22 Class-Attribute Mutual
Information,14 Class-Attribute Interdependence Redundancy
(CAIR),23,24 and Class-Attribute Interdependence Uncertainty
(CAIU).14 Many of these metrics are related; for example, CAIR
is the ratio of Class-Attribute Mutual Information and
Shannon’s entropy whereas CAIU is the ratio of INFO and
Shannon’s entropy.

In this study, the CAIM heuristic,13,14

CAIM C;DjFð Þ ¼
Pn

r¼1

qirð Þmax
2

Mþr

n
ð1Þ

is used. In eqn (1), the algorithm iterates through all n inter-
vals in the quantum matrix where r = 1, 2, … n. The term
(qir)max

2 is the square of the maximum qir value in the rth inter-
val. The term M+r is the total number of samples that fall
within the interval r for a particular variable. In this manner,
CAIM seeks to make each interval as pure as possible with
respect to the assigned classes. The squaring of (qir)max serves
to reward the algorithm for having fewer well-populated inter-
vals over smaller sparsely populated intervals. The CAIM score
is initially determined for Dinitial. For each successive iteration,
provisional CAIM scores are determined from iteratively creat-
ing provisional boundaries between sequential continuous
observations for a particular variable. The largest CAIM score
from all the tested provisional boundaries is compared to the
CAIM score from the previous iteration. If the new CAIM score
is greater than the old CAIM score, the iterative process con-

Table 1 The quanta matrix is the basis for visualizing multiple different
supervised discretization schemes including CAIM

Class

Interval

Class total[d0,d1] … [dr−1,dr] … [dn−1,dn]

C1 q11 … q1r q1n M1+
… … … … … … …
Ci qi1 … qir qin Mi+
… … … … … … …
Cs qs1 … qsr qSn MS+
Interval total M+1 … M+r … M+n M
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tinues with D updated, unless the set maximum number of
boundaries has been reached. Generally, the maximum
number of inner boundaries is set to be the number of classes.
If the new CAIM score is not greater than the old CAIM score,
the algorithm terminates for this variable and the previous D
is retained. This process is then repeated for each variable of
the original dataset until all variables are discretized with their
respective discretization schemes.

The CAIM heuristic (eqn (1)) normalizes the maximum
value in a given interval (column) relative to the total instances
that occur in that interval, then sums this metric across all
intervals of a given quanta matrix before normalizing by the
number of intervals in the given discretization scheme. In this
way, the CAIM heuristic prioritizes information that dis-
tinguishes classes across intervals, or in other words, the
CAIM heuristic is increased when one interval, or a subset of
the intervals, exclusively describe information from a single
class. Furthermore, the CAIM heuristic then prioritizes discre-
tization schemes with fewer intervals by penalizing the CAIM
heuristic through normalization of the class attribute interde-
pendency metric (numerator) by the total number of intervals
in a given scheme, that is, as the number of intervals
increases, the CAIM heuristic decreases.

CAIM discretization, as opposed to other supervised discre-
tization strategies, was chosen because CAIM tended to
provide better performance metrics (e.g., accuracy with
minimum number of rules) than other methods for parsing
individual variables based on provided classes. Of note, the
intended use of discretization here is conceptually different
than previously published applications where CAIM was com-
pared to other methods. First, here discretization is used as a
preprocessing step for a partial least squares – discriminant
analyses (PLS-DA) model, not as the final step in analyses.
Second, discretization in this application is generally limited
to two-way classifications in service to a PLS-DA decision tree
or binary classification models. In traditional discretization lit-
erature, test applications would have three or more target
classes. Consequently, the open question of which discretiza-
tion criteria performs best with PLS-DA, support vector
machine – discriminant analyses (SVM-DA), or other algor-
ithms is not addressed in this study.

3. Experimental
3.1. Data analyses

All data were imported and analyzed in the Matlab (Matlab,
Natick, Massachussetts, USA) operating environment. The
CAIM discretization algorithm was written by Booksh at the
University of Delaware based on the papers by Kurgan and
Cios.13,14 Classification by PLS-DA and SVM-DA were per-
formed in the PLS Toolbox (Eigenvector Inc., Chelan,
Washington, USA). Additionally, the automatic asymmetric
least-squares (Whittaker) filter,25 Savitzky-Golay,26 and external
parameter orthogonalization (EPO)19,20 methods were all used
within the PLS toolbox.

3.2. X-Ray fluorescence (XRF) spectra of pine ash

Live pine needles were collected from Pinus ponderosa in
public open spaces across a narrow geographic region of the
Colorado Plateau near Flagstaff, Arizona, USA. Trees were
identified as growing in soil atop one of three well-defined
parent rock archetypes: recent basalt/andesite volcanic rock,
Kaibab Limestone, and Moenkopi Formation. The needles
were cut into ∼1 cm lengths and dry ashed over a hydrogen
flame at 600 °C.

The pine needle ash was consequently pressed into a pellet
for better handling while collecting XRF spectra. A base layer
of 2.6 grams of confectioners’ sugar was added to the cavity of
a 13 mm stainless steel die press assembly on top of the
polished face of a pressing disc and compacted. Approximately
0.5 g of ash was placed on top of the binder followed by the
second pressing disc. The die assembly was placed into the
VivTEK® (COL-INT TECH, USA) 12-ton, 2-pole hydraulic press
and subjected to 10 tons of force for 30 s. Additionally, sucrose
blanks were also prepared to account for any potential back-
ground caused by the inclusion of trace contamination.
However, analysis of the blanks indicated that sucrose binding
does not impart any additive noise to the background and
thus it was deemed unnecessary to continue accumulating
data to provide for the subtraction of the backing matrix. XRF
measurements were performed using an Olympus X-ray fluo-
rescence analyzer Vanta C series running in the three beam
GeoChem mode (50 kV). Acquisition method timings were
adjusted to perform measurements using each of the 10 kV, 40
kV, and 50 kV beams for 60 s each and processing by funda-
mental parameters. The instrument’s calibration was routinely
checked using manufacturer supplied calibration materials to
ensure that the instrument’s calibration was within the stated
values included with the NIST certificate of calibration.
Example raw spectra are presented in ESI SI1.†

Data were pretreated by application of a Savitzky–Golay
algorithm (7 point smooth, quadratic, first derivative) to mini-
mize the effect of the XRF baseline on the subsequent analyses.
A rough variable selection was performed by visually selecting
ranges of energies spanning each of the 17 XRF peaks from the
ensemble spectra; only the regions with an XRF signal were
used. This reduced the length of each XRF spectrum from 2049
unique channels to 441 channels. Each reduced spectrum was
normalized to unit area to account for variability in ash loading
and sample placement across all collected spectra.

All replicate spectra from approximately 1/4th of the
samples from each class were randomly selected and removed
to form a validation set. The 129 spectra in the training set
were composed of triplicate XRF spectra from ashes of 8 trees
grown in soil derived from the Kaibab Limestone (hereafter
Kaibab samples), 16 trees grown in soil derived from the
Moenkopi Formation (hereafter Moenkopi samples), and 19
trees grown in basalt/andesite soil. The 39 validation set
spectra were collected in triplicate from ashes of 2 trees grown
in Kaibab soil, 5 trees grown in Moenkopi soils, and 6 trees
grown in basalt/andesite soil.
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3.3. Laser induced breakdown spectroscopy (LIBS) spectra of
colored glasses

Soft glass (coefficient of expansion 104) samples were pur-
chased from Devardi Glass (Sheridan, Oregon, USA) of the type
appropriate for lampworking projects. The glasses were a “set
of mixed reds” of various hues, both opaque and transparent,
each approximately 25 cm long and 6–10 mm in diameter.
Inspection of the 21 rods received and comparison to the
Devardi catalog color chart indicates that the set contains 2
duplicate- and 1 triplicate-colored rods. Although other rods
might be duplicate colors, they were not readily identified by
visual inspection. Prior to analyses, the rods were designated
‘A’ through ‘U’. It was determined by visual inspection and
knowledge of sample provenance prior to analyses that ‘I’/‘G’
and ‘K’/‘S’ were duplicate pairs and ‘E’/‘J’/‘R’ was a triplicate
pair. Consequently, the set of 21 rods spans as many as 17
unique colors.

LIBS spectra were collected with a SciAps Z300 hand-held
LIBS analyzer. Samples were aligned by manually holding each
glass rod in the v-shaped alignment groove on the Z300 face-
plate. Twelve spectra were collected from random locations on
each glass rod. Three spectra of each rod were collected in one
sitting. Nine spectra on rods ‘A’ through ‘R’ were subsequently
collected at a later date. The remaining 9 spectra of rods ‘S’
through ‘U’ were collected in a single sitting at a different
date. Consequently, each set of 12 spectra spans at least 2 col-
lection periods. In total, 252 spectra were obtained for this
data set. Example raw spectra are presented in ESI SI2.†

The LIBS baseline contribution was minimized by a
Savitzky–Golay algorithm (7-point window, quadratic fit, and
first derivative). The derivatized signal at every wavelength was
transformed by applying the square root of its absolute value;
this normalized the error distribution across peaks of vastly
different scale. Each spectrum was then normalized to unit
area to account for efficiencies in placing the sample on the
LIBS analyzer. Based on the mean spectra of the entire data
collection, a threshold value of 0.004 units was determined to
separate ‘baseline’ from ‘LIBS’ channels. In this manner the
number of channels employed in each spectrum was reduced
from 23 431 to 8169.

3.4. LIBS spectra of Dalbergia

Collection and preprocessing of the Dalbergia spectra have
been previously discussed.27 LIBS spectra from 90 Dalbergia
samples were collected and provided by the U.S. Forest Service.
Samples consisted of seven classes of Dalbergia hardwoods
and two classes of non-Dalbergia hardwoods. For each of the
nine classes, one LIBS spectrum from approximately 10 dis-
tinct exemplars were recorded with a SciAps Z-200C LIBS
analyzer.

The spectral baseline was removed by an asymmetric least
squares (Whitaker) filter (λ = 100; P = 0.001) followed by a first
derivative Savitzky–Golay (2nd order, 15 points) smoothing to
help remove any residual baseline and better eliminate high-
frequency noise. Each variable was normalized by taking the

square root of the absolute signal intensity following baseline
removal. Variables were down selected from 17 431 to 489 by
removing all variables with an average intensity less than 0.5
units. All remaining variables were then autoscaled (μ = 0, σ =
1) prior to analyses. The 90 spectra were organized into three
different training and validation set combinations of 72 train-
ing samples and 18 validation samples by bootstrapped Latin
partitions.28 Each combination consisted of two samples from
each class in the validation set.

4. Results and discussion
4.1. Classification of pine ash

The challenge for determining original soil type from tree ash
lies in the large variability of the XRF signal within each soil
class. Comparing the mean ash spectrum from the 30
‘Kaibab’, 63 ‘Moenkopi Formation’, and 75 ‘basalt/andesite’
samples indicates a unique XRF signature from each soil of
origin (Fig. 1a). Overlaying the 95% confidence interval for a
sample from each class as determined by the standard devi-
ation of all spectra in a class demonstrates how the natural
spread of the data within a class overlaps the mean spectra of
other classes (Fig. 1b–d). Concurrently, calculation of variance
between the means of the three classes, the mean variance
within each of the three classes, and the mean variance of the
triplicate spectra from each ash pellet shows that the largest
source of variance is attributed to the natural spread of the
spectra within a class (Table 2, column 2).

EPO was conceived to reduce the ‘clutter’ within each class,
shifting the distribution of variance from ‘within classes’ to
‘between classes’ and hence improving both the precision and
accuracy of classification models. For the XRF ash data, EPO
generally accomplishes the desired effect of minimizing the
‘within classes’ variance relative to the ‘between classes’ var-
iance. Increasing the number of factors in EPO pretreatment
increases the percent of variance ‘between classes’ from 32.7%
with no EPO, to 48.8% with a 1-factor EPO decluttering, to
58.4% with a full EPO decluttering (Table 2, row 1). However,
the decrease to 35.0% when using a 6-factor EPO treatment
presages a limitation of EPO-based decluttering. EPO removes
all variance that is colinear with the data clouds of each class.
The removal of variance is apparent in the decrease of variance
in all three categories (Table 2, rows 1–3). However, a success-
ful EPO application assumes that the sub-space of ‘between
class’ variance is largely orthogonal to the sub-space of the
removed ‘within classes’ variance. When this assumption fails
to hold, a significant portion of the discrimination ‘between
class’ variance is removed and the proportion of ‘between
class’ variance may decrease. Note in this example, after a
large portion of the ‘between class’ variance is removed, the
principal component (PC) space of the data decreases from 7
or 8 PCs to only 3 PCs (Table 2, row 4) and K-Nearest
Neighbors (K-NN) can no longer reliably classify samples in
the training set. The number of training set misclassifications
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increases from 0, to 13 with a 6-factor EPO, to 62 with a full-
factor EPO decluttering (Table 2, row 5).

Using PLS-DA for classification of pine ash by original soil
type highlights the potential benefit of decluttering with EPO
and the concern for overfitting when decluttering with EPO. In
this application, PLS-DA models for three one class versus all
other classes were observed to perform better than a single flat
PLS2-DA classifier with either no decluttering or with EPO
decluttering. The number of factors in each model was based
on the cross-validated class error for the training set by remov-
ing 10% of the spectra at each split. Comparing the validation
set predictions across multiple levels of decluttering (Table 3)
shows that either no decluttering by EPO or decluttering by a
1-factor EPO model yields the best results. No decluttering was
needed to correctly classify all 6 Kaibab samples, each with

greater than 90% probability. However, when a 1-factor EPO
treatment was applied, 3 Moenkopi samples were incorrectly
identified as Kaibab with 80% to 90% probability. Further
increasing the number of EPO factors results in 3 Kaibab
samples not identified as being classified in the Kaibab set.
No decluttering and 1-factor EPO models perform comparably
for the Moenkopi samples; the models only slightly differ in
their probabilities of classification. Similarly, the un-declut-
tered, 1-factor EPO and 6-factor EPO all correctly classify the
basalt/andesite samples with EPO yielding classification
results at higher probabilities.

Principal Component Analyses (PCA) plots illuminate how
the application of EPO for decluttering can succeed or fail,
dependent on the degree of decluttering. From the perspective
of fit to the training set, increasing the degree of EPO declut-

Fig. 1 Comparison of the average mean-centered XRF spectra for ash from pine trees grown in soil derived from Kaibab Limestone (green),
Moenkopi Formation (red), and basalt/andesite (blue) shows that the spectral profiles for these three classes are highly overlapped, yet each class
has a distinct spectral signature (A). Including the ±2 standard deviation (sd) error bars at each kEV demonstrated that the within class variability is
greater than the between class variability; in each case the confidence limits extend beyond the average spectrum for the other classes (B–D).

Table 2 Effect of external parameter orthogonalization (EPO) decluttering on distribution of variance across the pine ash data set and performance
of principal component analyses (PCA) and K-nearest neighbors (K-NN) modeling

Treatment Un-decluttered EPO (1 factor) EPO (6 factors) EPO (full rank)

Variance of class means 2.48 × 10−4 (32.7%) 2.11 × 10−4 (48.8%) 9.66 × 10−6 (35.0%) 1.33 × 10−6 (58.4%)
Mean variance within a class 5.08 × 10−4 (67.3%) 2.21 × 10−4 (51.1%) 1.78 × 10−5 (64.5%) 4.33 × 10−7 (19.0%)
Mean variance of replicates 1.02 × 10−6 (0.013%) 6.56 × 10−7 (0.15%) 1.37 × 10−7 (0.50%) 5.15 × 10−7 (22.6%)
PCA # PC: 8 # PC: 7 # PC: 3 # PC: 3

Cum Var: 95.2% Cum Var: 90.9% Cum Var: 44.4% Cum Var: 15.0%
K-NN(1) misclassified (129 : 39 split) 0 Cal; 11 Pred 0 Cal; 13 Pred 13 Cal; 10 Pred 62 Cal; 12 Pred
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tering condenses samples from each of the classes nearer to
the class mean (Fig. 2At, Bt, and Ct). However, EPO can elimin-
ate systematic variance that is useful for differentiating
between classes, leaving only spurious correlations to define
the classes. This process can be seen in the class locations of
the validation sets (Fig. 2Av, Bv, and Cv) relative to the classes
in the training sets. A 1-factor EPO sharpens the classes rela-
tive to the not decluttered data while maintaining colocaliza-
tion of the validation set. However, the full-rank EPO largely
leaves random correlations to define classes; consequently, the
validation set exhibits greater spread across the PC space. As
expected, the 6-factor EPO and full-rank EPO models perform
much worse than the models with weaker decluttering.

CAIM discretization of the pine ash XRF data results in
better model performance than EPO decluttering (Table 3,
column 8 v. Table 3, columns 4–7). By design, the CAIM algor-
ithm strives to discretize each variable to be aligned with the
known training set classification. Although CAIM was con-
ceived to help normalize the variance within each class, the
method has the added benefit of simultaneously reducing
clutter within each of the classes. Three modeling strategies
were investigated with CAIM discretization. It is observed that
CAIM works best when discretizing for a binary classifier; in
this case, the model seeks to distinguish one target class from
all other classes combined as a group. As set of binary classi-
fiers, CAIM outperforms both undecluttered PLS-DA and EPO
(1) filtered PLS-DA, returning half the number of false positives
and more samples classified with greater than 90% probability
(Table 3, column 8 versus Table 3, columns 4–5).

CAIM filtering also performs better than no decluttering
and EPO(1) filtering when the data are modeled as a hierarchi-
cal tree of binary classifiers (Table 3, last row). All methods
can distinguish basalt/andesite from the other soils with 100%

selectivity and sensitivity. However, when distinguishing
between Kaibab and Moenkopi, CAIM had only 2 misclassifi-
cations out of 24 samples while the other two methods each
had 6 misclassifications.

CAIM discretization avoids the issue of losing systematic
variance needed for classification, unlike EPO decluttering
(Fig. 2Dt and Dv). With CAIM discretization the distributions
of the classes, in both the training and validation sets, are
sharper and better resolved than no decluttering or EPO fil-
tered classes. Comparing the EPO results (Fig. 2C) to CAIM
results (Fig. 2D), it is clear that samples in the validation set
lie outside of the boundaries of the training set in the PC
space for EPO, but not for CAIM. This is especially evident in
the training and validation set locations for the Kaibab
Limestone (red) samples and basalt/andesite (blue) samples.
The disparity in training vs. validation set locations in the PC
space is evidence of overfitting during EPO decluttering.

One caveat to the use of CAIM is that CAIM often performs
worse when more than two functional classes are in the
model. Applying CAIM here to resolve all three classes in a
single flat model resulted in twice the number of misclassified
samples than with a set of binary classifiers (Table 3, column
9). With binary classifier models, a unique set of discretization
intervals is found to maximize eqn (1) for each model. With
three or more classes, CAIM is less likely to derive a discretiza-
tion scheme that is optimal for every class.

4.2. Classification of colored glasses

Preliminary analysis of the variance sources within this data
set indicates a high probability for successful classification.
Treating each rod as a unique class prior to elimination of
uninformative variables, the average variance within the 12
replicates from each glass rod is only 22.1% of the variance

Table 3 PLS-DA classification of XRF ash data with no decluttering (base), external parameter orthogonalization (EPO) decluttering, and CAIM dis-
cretization decluttering for 6 validation samples derived from the Kaibab Limestone, 15 validation samples derived from the Moenkopi Formation,
and 18 basalt/andesite validation samples. Every model was constructed as a target class versus all other classes as a single group except for the
final column which is a flat CAIM discretization decluttered classifier

Sample Model Confidence Base EPO(1) EPO(6)
EPO
(all)

CAIM
(1 group
versus
2 groups)

CAIM
(3 groups)

‘Kaibab’ K vs. (M-K & B/A) Correct 6 6 3 2 6 6
Incorrect 0 0 3 4 0 0
False positive 0 3 3 0 0 1
Not classified 0 0 0 0 0 0

‘Moen-Kopi’ M-K vs. (K & B/A) Correct 12 12 9 7 12 9
Incorrect 3 3 6 8 3 6
False positive 6 6 6 3 3 3
Not classified 0 0 0 0 0 0

‘Basalt/Andesite’ B/A vs. (K & M-K) Correct 18 18 18 16 18 18
Incorrect 0 0 0 2 0 0
False positive 0 0 0 1 0 0
Not classified 0 0 0 5 0 0

‘Kaibab’ and ‘Moen-Kopi’ Hierarchical - remove B/A then
classify K vs. M

Correct 15 15 16 13 19
Incorrect 6 6 5 2 2
False positive 0 0 0 0 0
Not classified 0 0 0 6 0
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among the observed class means. Eliminating the 15 262 unin-
formative variables eliminates only 0.0012 units of variance
observed both from within and between classes. This reduces
the mean interclass variance to 20.7% of the total variance

with 79.3% of the total variance being between the classes
(Table 4, column 2). Use of Principal Components Analyses
(PCA) and Hierarchical Cluster Analyses (HCA) presents a
visual snapshot of the observed class overlap for the 21 glass

Fig. 2 PCA scores plots of four XRF ash training sets (_t) and validation sets projected into the training set space (_v) for the untreated data (A_),
data following 1-factor EPO (B_), data following full-factor EPO (C_), and data following CAIM discretization (D_). Samples were from three classes:
soil derived from Kaibab Limestone (red diamonds), soil derived from Moenkopi Formation (green squares), and basalt/andesite soil (blue triangles).
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rods (Fig. 3a and b). Despite of this overlap, a 2 PC model
describes ∼80% of the total variance and a K-Nearest
Neighbors with K = 1 (K-NN-1) model (removing 1/4th of each
class to form a test set) accurately classifies all but 1 sample in
each of the training and test sets (Table 4, rows 3 and 4).

Construction and application of one class versus all other
classes models for each of the three classes with test-set
samples shows that this is, in truth, an easy classification
problem for PLS-DA (Table 6). The models perform with 100%
success using four factors without the need for EPO. Similarly,
the models perform well after application of EPO with a small
basis set of principal components (<6 PC) to declutter the
data. However, when full-rank EPO is applied to declutter,
most of the test-set samples are far enough from the mean of
the training set samples that validation-set samples are
deemed ‘indeterminate’ in assignment. By comparison, discre-
tization of the data leads to a more parsimonious PLS-DA
model with 100% accuracy. PLS-DA with discretization reduces
the required complexity of the model from four factors to only
one factor.

The failure of PLS-DA to successfully classify the training
set glasses with full-rank EPO highlights the problems associ-
ated with EPO. EPO is designed to reduce the intra-class var-
iance, and Tables 2 and 5 show EPO performs well at this task.
However, a reduction in inter-class variance may be an unin-
tended consequence. In the ash data, the intra-class variance
is reduced by three orders of magnitude while the inter-class
variance is reduced by two orders of magnitude when progres-

sing from un-decluttered data to full-rank EPO. By way of com-
parison, applying full-rank EPO to the glass data also reduces
the intra-class variance by three orders of magnitude, but the

Table 4 Effect of external parameter orthogonalization (EPO) decluttering on distribution of variance across the red glass data set and performance
of PCA and K-NN modeling

Treatment Undecluttered EPO(1) EPO(6) EPO(full rank)

Variance of class means 0.0775 (79.3%) 0.0670 (95.7%) 0.0544 (98.7%) 0.0127 (99.9%)
Mean variance of replicates 0.0161 (20.7%) 0.00285 (4.3%) 0.000724 (1.3%) 0.0000229 (0.2%)
PCA # PC: 7 # PC: 6 # PC: 5 # PC: 5

Cum Var: 82.2% Cum Var: 80.6% Cum Var: 81.6% Cum Var: 79.8%
KNN misclassified (9 : 3 split) 1NN: 1 Cal; 1 Pred 1NN: 2 Cal; 1 Pred 1NN: 1 Cal; 1 Pred 1NN: 0 Cal; 0 Pred

3NN: 5 Cal; 1 Pred 3NN: 7 Cal; 1 Pred 3NN: 5 Cal; 1 Pred 3NN: 0 Cal; 0 Pred

Table 5 PLS-DA results for classification of four red glass samples with
different external parameter orthogonalization (EPO) and CAIM discreti-
zation strategies for spectral pretreatment

Sample Undecluttered
EPO
(1PC)

EPO
(6PC)

EPO
(full
rank) CAIM

‘G’ Factors: 4 4 4 4 1
Correct 12 12 12 0 12
Incorrect 0 0 0 0 0
Not
classified

0 0 0 12 0

False
positives

0 0 0 0 0

‘J’
and
‘R’

Factors: 5 4 4 3 1
Correct 24 24 24 1 24
Incorrect 0 0 0 0 0
Not
classified

0 0 0 23 0

False
positives

1 1 0 0 0

‘S’ Factors: 4 4 4 4 1
Correct 12 12 11 2 12
Incorrect 0 0 1 0 0
Not
classified

0 0 0 10 0

False
positives

0 0 0 0 0

Fig. 3 Score plot of the red glass training set (A) and test set (B) set in the two principal component (PC) space defined by the training set. The test
set is comprised of 4 glass rods that are duplicated colors to glass rods in the training set (e.g., rods ‘I’ and ‘G’ are purported to be the same color by
the manufacturer). Arrows are set to the exact same location in each plot and serve as a reference to visualize the slightly different locations of the
training and test classes following application of full-rank External Parameter Orthogonalization (EPO).
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inter-class variance is only reduced by a factor of 5. Much less
inter-class variance is lost with EPO on the glass data than
with EPO applied to the ash data. This would explain why EPO
on the ash failed with fewer EPO factors than when EPO even-
tually fails on the glass. Given that full-rank EPO does fail
when decluttering the glass data, a migration of the test set
within the PC space of the decluttered training set space is
evident in the glass data (Fig. 3) as it is in the ash data
(Fig. 2C).

Discretization both avoids the concern of optimizing the
number of EPO factors and potentially offers a more parsimo-
nious PLS-DA model. Parsimonious models generally perform
better than more complicated models because the higher
factors generally have a worse signal-to-noise ratio than the
initial factors. PLS-DA, with or without EPO, required four
factors to successfully classify any one of the glass colors.
However, with discretization, only a 1-factor PLS-DA model is
required (Table 6). Score plots of the discretized data illumi-
nate how discretization enhances the ability of PLS-DA to
differentiate among classes (Fig. 4). For each model, a set of
discretization rules, D, is adopted to more optimally dis-
tinguish between the target class and all other classes for every
variable. Discretization inherently declutters the data while

separating the target class from most of the other obser-
vations. In the case for the glasses, a 7-PC model is still
needed to describe all the variance within the training set fol-
lowing discretization, regardless of the target class. However,
within the 7-PC space are clear planes of demarcation between
the target class and other aggregated classes. For example, for
the determination of class ‘K’/‘S’, the one-dimensional
demarking is best seen in a score plot of PC 5 versus PC 6
(Fig. 4A). However, the separation is evident in other PCs also.
Similar plots show the same effect for the other target classes.
Recall that a unique set of discretization rules is determined
for each target class based on the training set and then apply
these same rules to future samples; hence, the discretization
scheme inherently enhances the development of classification
models. PLS-DA can exploit these differences with a simple
1-factor model.

Discretization can also be applied to enhance PLS-DA
models in decision trees. For example, a classification problem
may be better approached by a series of two-way classifications
in a hierarchical decision tree as opposed to a set of one class
versus all other classes models. In these situations, each
nominal class would be assigned to one of two separate super
groups based on their proximities in a higher dimension

Table 6 Performance of PLS-DA with CAIM discretization on the classification of Dalbergia samples analyzed by LIBS

Class Model PCs
Validation Validation Validation

Sensitivity SelectivitySet 1 Set 2 Set 3

1 1 vs. (2 & 4)a 2 1,1 1,1 1,1 1.00 1.00
2 2 vs. (1 & 4)a 4 2,2 2,2 2,2,4 1.00 0.98
3 3 vs. 5b 2 3,3 3,3,5 3,3 1.00 0.98
4 4 vs. (1 & 2)a 3 1,4,4 4,4 1,4,4 1.00 0.96
5 3 vs. 5b 2 5,5 5 5.5 0.83 1.00
6 6 vs. 9 vs. 1–5c 3 6,6 6,6 1,6,6 1.00 0.98
7 7 vs. 8 vs. allc 3 7,7 7,7 7,7 1.00 1.00
8 7 vs. 8 vs. allc 3 8,8 8,8 8,8 1.00 1.00
9 6 vs. 9 vs. 1–5c 3 9,9 2,9,9 1,9,9 1.00 0.96

TOTAL: 0.98 0.98

a Flat classification. b Binary classification. cOne-versus-all others classification.

Fig. 4 Score plots for the red glass training set following discretization in preparation for one class versus all other classes PLS-DA model for train-
ing set glasses ‘K’ (A), ‘E’ (B), and ‘I’ (C). These models correspond to test glasses ‘S’, ‘J’ and ‘R’, and ‘G’, respectively. The target training glass is green
while the other aggregated classes are red. While a 7 PC model is needed two describe all the systematic variance in the discretized, the 2-PC score
plot that best shows separation is presented here.
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space. Discretization rules would be optimized to differentiate
among the super groups for each variable. In the case of the
glass data, there is a natural break splitting the 17 classes into
a 7-class super group and a 10-class super group. These two
groups of classes are significantly better resolved following dis-
cretization (Fig. 5). In fact, the potential for a second binary
split, differentiating among each group in the upper and lower
halves of the plot, is evident. This would further divide the
10-class super group (red) into a 6-class and a 4-class super
group, respectively. Similarly, the 7-class super group could be
further split into a 4-class and 3-class group.

4.3. Classification of Dalbergia

Analysis of the Dalbergia data set by PLS DA following super-
vised discretization yielded a sensitivity of 0.98 and a selecti-
vity of 0.98 (Table 6). This performance is comparable to that
observed from PLS-DA using external parameter orthogonaliza-
tion where the sensitivity was also 0.98 but the selectivity was
0.99. Each of these strategies resulted in one sample from the
three prediction sets that was misclassified. With discretiza-
tion, one sample from Class 5 was miss-assigned to Class 3,
whereas with EPO one sample from Class 3 was assigned to
Class 7. However, with discretization, samples were ambigu-
ously assigned in six separate incidences. For example, in the
validation set, three samples from Class 1 were both accurately
assigned to Class 1, but also ambiguously identified as
members of Class 4, Class 6, and Class 9.

A four-level hierarchical decision tree was constructed to
best classify the nine species of exotic hardwoods (Fig. 6A).
This tree was constructed to perform as many classifications
as possible at each level. For example, at the first level the
decision is made between classifying a sample as belonging
to Class 7, Class 8, or the set of all other classes. Because
overall sensitivity of a particular classification is the multipli-
cative factor of sensitivities at every prior decision node,
classification is generally viewed to be more reliable at the

top of the tree than at the bottom, and that the net sensitivity
decreases as the decisions move down the tree. Consequently,
a flat classifier was used at each node provided that it per-
formed as well or better than a series of two-way classifiers.
This was the case at first two levels of the decision tree.
However, at the third level a flat classifier could not dis-
tinguish between classes one, two, and four or between
classes three and five; the best model could only differentiate
between these two groups of classes. Differentiation among
each of these groups was then performed on lowest, final
level of the decision tree.

The analysis of LIBS spectra from wood samples proved to
be a particularly challenging application for discretization.
The LIBS spectra have two sources of variance that together
serve to frustrate the discretization algorithm. First, the overall
efficiency of collecting a LIBS spectrum varies greatly from
location to location due to differences sample density and
moisture content. Thus, the LIBS signal of two different
classes at a particular wavelength that may be well separated in
intensity under ideal circumstances, may become confounded
as the overall LIBS intensity varies. Such a problem could be
corrected by normalizing each spectrum to unity. Spectral nor-
malization was attempted and not proven beneficial for this
application. There appears to be a second source of non-proba-
tive variance in the LIBS spectra that originates from either
surface contamination or the history of the wood samples.
This is the type of variance that is appropriately removed by
external parameter orthogonalization and would justify why
EPO worked better for this data set, in general, than did
discretization.

Comparing the hierarchical decision tree optimized from
the discretized data (Fig. 6A) to the hierarchical decision tree
optimized for EPO-based clutter removal in the previous

Fig. 6 Hierarchical decision trees used for speciation of nine Dalbergia
classes using PLS-DA with (A) discretization to remove the effect of
clutter and (B) external parameter orthogonalization (EPO) to remove
the effects of sample clutter. The numbers inside each circle indicate
the number of factors in the PLS-DA model at each decision node.

Fig. 5 Score plot following discretization to split the 17-class problem
into a 7-class group (green) and a 10-class group (red) as the first step of
a potential hierarchical decision tree approach.

Paper Analyst

6106 | Analyst, 2023, 148, 6097–6108 This journal is © The Royal Society of Chemistry 2023

Pu
bl

is
he

d 
on

 2
3 

O
ct

ob
er

 2
02

3.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f D
el

aw
ar

e 
on

 7
/3

/2
02

4 
5:

17
:3

3 
A

M
. 

View Article Online

https://doi.org/10.1039/d3an00770g


study27 (Fig. 6B) provides valuable insight into the roles that
both discretization and EPO can play in developing the ‘best’
hierarchical model for any given application; a truly optimized
method would rely on discretization, EPO, or other methods as
appropriate to construct compact decision tree possible. For
example, discretization and EPO each worked relatively better
than the other for separation of different classes from the bulk
of the data. Discretization rapidly resolved Class 7 and Class 8
but struggled with resolving Class 3 from Class 5. On the other
hand, EPO was able to resolve Class 3 from Class 5 with better
success higher up the decision tree than with discretization,
whereas Class 7 and Class 8 were better resolved farther down
the decision tree than with discretization.

The ability to rely on the different strengths of each strategy
to reduce clutter and improve classification is particularly ben-
eficial to the ultimate goal of the Dalbergia classification
project. Dalbergia is an endangered exotic hardwood that is
subject to the Convention on International Trade in
Endangered Species of Wild Fauna and Flora (CITES)29 that
restricts logging, export, and import of different rosewood
species. Consequently, multiple federal and international law
enforcement agencies are interested in building a database
and model for rapid determination of CITES compliance.
Handheld LIBS is one of the methods under consideration for
this role. To assess compliance, a model does not need to
unambiguously determine the identity of a suspected
Dalbergia log or sample. Instead, all that is needed is to deter-
mine whether the actual species of the exotic wood agrees with
this species specified on the manifest. To best accomplish
this, a separate model for each species in the library could be
optimized for sensitivity and selectivity using the available
tools as needed.

5. Conclusions

Supervised discretization, such as performed by CAIM, pro-
vides a reliable alternative to External Parameter
Orthogonalization (EPO) for decluttering multivariate chemi-
cal sensor data. With EPO the number of factors in the model
warrant careful consideration; too many can lead to prediction
biases from overfitting the decluttering step. Because super-
vised discretization by the CAIM algorithm has no user adjus-
table parameters, CAIM is less prone to overfitting than EPO
and more amenable to automated implementation. The one
caveat to implementing CAIM is the method seems to work
best with simple models where there are only two or three
classes to be discerned. For more complicated multiclass
models, this leads to better performance of hierarchical
decision trees than with flat classifiers.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

The authors thank NSF CHE 2003839 and NSF CHE-2003867
for support of this project. Any use of trade, firm, or product
names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

References

1 Y. Yang, G. I. Webb and X. Wu, Discretization Methods, in
Data Mining and Knowledge Discovery Handbook, Springer
US, 2009, pp. 101–116. DOI: 10.1007/978-0-387-09823-4_6.

2 H. Liu, F. Hussain, C. L. Tan and M. Dash, Discretization:
An Enabling Technique, Data Min. Knowl. Discov., 2002,
6(4), 393–423, DOI: 10.1023/A:1016304305535.

3 M. J. Mizianty, L. A. Kurgan and M. R. Ogiela,
Discretization as the Enabling Technique for the Nave
Bayes and Semi-Nave Bayes-Based Classification, Knowl.
Eng. Rev., 2010, 25(4), 421–449, DOI: 10.1017/
S0269888910000329.

4 R. Thaiphan and T. Phetkaew, Comparative Analysis of
Discretization Algorithms on Decision Tree, in Proceedings -
17th IEEE/ACIS International Conference on Computer and
Information Science, ICIS 2018, 2018. DOI: 10.1109/
ICIS.2018.8466449.

5 J. Dougherty, R. Kohavi and M. Sahami, Supervised and
Unsupervised Discretization of Continuous Features, in
Machine Learning Proceedings 1995, 1995. DOI: 10.1016/
b978-1-55860-377-6.50032-3.

6 K. Lavangnananda and S. Chattanachot, Study of
Discretization Methods in Classification, in 2017 9th
International Conference on Knowledge and Smart
Technology: Crunching Information of Everything, KST 2017,
2017. DOI: 10.1109/KST.2017.7886082.

7 X. Wu, A Bayesian Discretizer for Real-Valued Attributes,
Comput. J., 1996, 39(8), 688–691, DOI: 10.1093/comjnl/
39.8.688.

8 A. Kumar and D. Zhang, Biometric Recognition Using
Entropy-Based Discretization, in ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing –
Proceedings, 2007, vol. 2. DOI: 10.1109/ICASSP.2007.366188.

9 R. Kerber, Chimerge: Discretization of Numeric Attributes,
in Proceedings Tenth National Conference on Artificial
Intelligence, 1992.

10 F. E. H. Tay and L. Shen, A Modified Chi2 Algorithm for
Discretization, IEEE Trans. Knowl. Data Eng., 2002, 14(3),
666–670, DOI: 10.1109/TKDE.2002.1000349.

11 K. Sriwanna, K. Puntumapon and K. Waiyamai, An
Enhanced Class-Attribute Interdependence Maximization
Discretization Algorithm, in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2012, vol.
7713 LNAI. DOI: 10.1007/978-3-642-35527-1_39.

12 M. Li, S. Deng, S. Feng and J. Fan, An Effective
Discretization Based on Class-Attribute Coherence

Analyst Paper

This journal is © The Royal Society of Chemistry 2023 Analyst, 2023, 148, 6097–6108 | 6107

Pu
bl

is
he

d 
on

 2
3 

O
ct

ob
er

 2
02

3.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f D
el

aw
ar

e 
on

 7
/3

/2
02

4 
5:

17
:3

3 
A

M
. 

View Article Online

https://doi.org/10.1007/978-0-387-09823-4_6
https://doi.org/10.1023/A:1016304305535
https://doi.org/10.1017/S0269888910000329
https://doi.org/10.1017/S0269888910000329
https://doi.org/10.1109/ICIS.2018.8466449
https://doi.org/10.1109/ICIS.2018.8466449
https://doi.org/10.1016/b978-1-55860-377-6.50032-3
https://doi.org/10.1016/b978-1-55860-377-6.50032-3
https://doi.org/10.1109/KST.2017.7886082
https://doi.org/10.1093/comjnl/39.8.688
https://doi.org/10.1093/comjnl/39.8.688
https://doi.org/10.1109/ICASSP.2007.366188
https://doi.org/10.1109/TKDE.2002.1000349
https://doi.org/10.1007/978-3-642-35527-1_39
https://doi.org/10.1039/d3an00770g


Maximization, Pattern Recognit. Lett., 2011, 32(15), 1962–
1973, DOI: 10.1016/j.patrec.2011.08.008.

13 L. Kurgan and K. J. Cios, Discretization Algorithm That
Uses Class-Attribute Interdependence Maximization, in
Proc. of the, 2001 International Conference on Artificial
Intelligence (ICAI-2001), 2001.

14 L. A. Kurgan and K. J. Cios, CAIM Discretization Algorithm,
IEEE Trans. Knowl. Data Eng., 2004, 16(2), 145–153, DOI:
10.1109/TKDE.2004.1269594.

15 S. Wold, H. Antti, F. Lindgren and J. Ohman, Orthogonal
Signal Correction of Near-infrared Spectra, Chemom. Intell.
Lab. Syst., 1998, 44, 175–185.

16 J. A. Westerhuis, S. de Jong and A. K. Smilde, Direct
Orthogonal Signal Correction, Chemom. Intell. Lab. Syst.,
2001, 56, 13–25.

17 O. Svensson, T. Kourti and J. F. MacGregor, An
Investigation of Orthogonal Signal Correction Algorithms
and Their Characteristics, J. Chemom., 2002, 16(4), 176–
188, DOI: 10.1002/cem.700.

18 E. Andries and J. H. Kalivas, Interrelationships between
Generalized Tikhonov Regularization, Generalized Net
Analyte Signal, and Generalized Least Squares for
Desensitizing a Multivariate Calibration to Interferences,
J. Chemom., 2013, 27(5), 126–140, DOI: 10.1002/cem.2501.

19 J.-M. Roger, F. Chauchard and V. Bellon-Maurel, EPO–PLS
External Parameter Orthogonalisation of PLS Application
to Temperature-Independent Measurement of Sugar
Content of Intact Fruits, Chemom. Intell. Lab. Syst., 2003,
66(2), 191–204, DOI: 10.1016/S0169-7439(03)00051-0.

20 A. Amirvaresi and H. Parastar, External Parameter
Orthogonalization-Support Vector Machine for Processing

of Attenuated Total Reflectance-Mid-Infrared Spectra: A
Solution for Saffron Authenticity Problem, Anal. Chim. Acta,
2021, 1154, 338308, DOI: 10.1016/j.aca.2021.338308.

21 H. Martins and T. Naes, Multivariate Calibration, Wiley,
1989.

22 U. M. Fayyad and K. B. Irani, On the Handling of
Continuous-Valued Attributes in Decision Tree Generation,
Mach. Learn., 1992, 8(1), 87–102, DOI: 10.1007/BF00994007.

23 K. J. Cios, W. Pedrycz and R. W. Swiniarski, Data Mining
Methods for Knowledge Discovery, Springer, 1998.

24 A. K. C. Wong and T. S. Liu, Typicality, Diversity, and
Feature Pattern of an Ensemble, IEEE Trans. Comput., 1975,
C-24(2), 158–181, DOI: 10.1109/T-C.1975.224183.

25 P. H. C. Eilers and H. F. M. Boelens, Baseline Correction
with Asymmetric Least Squares Smoothing, 2005.

26 A. Savitzky and M. J. E. Golay, Smoothing and
Differentiation of Data by Simplified Least Squares
Procedures, Anal. Chem., 1964, 36(8), 1627–1639, DOI:
10.1021/ac60214a047.

27 C. P. Celani, C. A. Lancaster, J. A. Jordan, E. O. Espinoza
and K. S. Booksh, Assessing Utility of Handheld Laser
Induced Breakdown Spectroscopy as a Means of Dalbergia
Speciation, Analyst, 2019, 144(17), 5117–5126, DOI:
10.1039/C9AN00984A.

28 P. de Boves Harrington, Statistical Validation of
Classification and Calibration Models Using Bootstrapped
Latin Partitions, TrAC, Trends Anal. Chem., 2006, 25(11),
1112–1124, DOI: 10.1016/j.trac.2006.10.010.

29 Convention on International Trade in Endangered Species
of Wild Fauna and Flora. The CITES Appendices. https://
www.cites.org/eng/app/index.php.

Paper Analyst

6108 | Analyst, 2023, 148, 6097–6108 This journal is © The Royal Society of Chemistry 2023

Pu
bl

is
he

d 
on

 2
3 

O
ct

ob
er

 2
02

3.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f D
el

aw
ar

e 
on

 7
/3

/2
02

4 
5:

17
:3

3 
A

M
. 

View Article Online

https://doi.org/10.1016/j.patrec.2011.08.008
https://doi.org/10.1109/TKDE.2004.1269594
https://doi.org/10.1002/cem.700
https://doi.org/10.1002/cem.2501
https://doi.org/10.1016/S0169-7439(03)00051-0
https://doi.org/10.1016/j.aca.2021.338308
https://doi.org/10.1007/BF00994007
https://doi.org/10.1109/T-C.1975.224183
https://doi.org/10.1109/T-C.1975.224183
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1039/C9AN00984A
https://doi.org/10.1016/j.trac.2006.10.010
https://www.cites.org/eng/app/index.php
https://www.cites.org/eng/app/index.php
https://www.cites.org/eng/app/index.php
https://doi.org/10.1039/d3an00770g

	Button 1: 


