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Excitons are prevalent in semiconductors and insulators, and their binding energies are critical for optoelec-
tronic applications. The state-of-the-art method for first-principles calculations of excitons in extended systems is
the ab initio GW -Bethe-Salpeter equation (BSE) approach, which can require a fine sampling of reciprocal space
to accurately resolve solid-state exciton properties. Here we show, for a range of semiconductors and insulators,
that the commonly employed approach of uniformly sampling the Brillouin zone can lead to underconverged
exciton binding energies, as impractical grid sizes are required to achieve adequate convergence. We further
show that nonuniform sampling of the Brillouin zone, focused on the region of reciprocal space where the
exciton wave function resides, enables efficient rapid numerical convergence of exciton binding energies at a
given level of theory. We propose a well-defined convergence procedure, which can be carried out at relatively
low computational cost and which in some cases leads to a correction of previous best theoretical estimates by
almost a factor of 2, qualitatively changing the predicted exciton physics. These results call for the adoption of
nonuniform sampling methods for ab initio GW -BSE calculations and for revisiting previously computed values
for exciton binding energies of many systems.

DOI: 10.1103/PhysRevB.108.235117

I. INTRODUCTION

Excitons are correlated two-particle electron-hole states
that predominantly form in semiconductors and insulators.
The binding energy of excitons is a critical quantity that
determines photocurrent generation in solar cells [1,2], the
possibility of a material forming long-lived excited states for
quantum information [3,4], or the extent to which phonons
can screen the attractive Coulomb interaction between the
electron and hole [5,6]. Therefore, the accurate prediction of
exciton binding energies from first principles is imperative in
the quest for novel semiconductors for diverse optoelectronic
applications.

The state-of-the-art method to describe excited state prop-
erties in extended systems from first principles is based on
many-body perturbation theory within the GW approxima-
tion [7,8] and the Bethe-Salpeter equation approach [9–12]
(GW -BSE), where G is the one-particle Green’s function and
W is the screened Coulomb interaction. Exciton binding en-
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ergies computed within the ab initio GW -BSE framework
with current approximations and implementations can be ex-
tremely challenging to converge numerically, for two main
reasons. First, a very fine sampling of the Brillouin zone (BZ)
can be required to resolve essential features of the screened
interaction W accurately. This has been identified as an issue
in low-dimensional systems and has been addressed elsewhere
[13–15]. We therefore focus here on a second convergence
challenge, which is that the BSE needs to be solved on ultra-
dense k-point grids [12,16,17] due to the fact that excitons are
highly localized in reciprocal space in many known bulk semi-
conductors of interest. To make such calculations on dense
grids possible, so-called dual-grid interpolation schemes have
been developed, which allow for interpolation between two
different uniform k-grids across the BZ, a coarse and a fine
one [18]. We will refer to these methods as uniform dual grid
interpolation (UDGI).

The localized nature of excitons in reciprocal space is con-
sistent with the Wannier-Mott model [19,20], which describes
excitons composed of holes and electrons, with parabolic va-
lence and conduction bands and with effective mass mh and
me, respectively, as visualized in Fig. 1. Within this limit,
the reciprocal space wave function of the 1s exciton can be
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FIG. 1. 1s exciton wave function in reciprocal space for GaN
in the wurtzite phase, from the Wannier-Mott model [Eq. (1)]. We
indicate in blue and red the regions with a cutoff around � that cor-
responds to approximately 2% and 6%, respectively, of the distance
to the edge of the first Brillouin zone (BZ). Inset: Schematic band
dispersion for a two-band model, including a parabolic valence and
conduction band with effective masses mh and me, respectively, with
a gap of Eg separating the two bands. The GaN material parameters
used to compute |�|2 are given in Appendix C, along with the
relevant computational details.

written as

�1s(k) = (2ao)3/2

π
× 1

(1 + a2
ok

2)2
, (1)

where ao = 1/
√

2EBμ is the exciton Bohr radius, EB the ex-
citon binding energy, and 1

μ
= 1

me
+ 1

mh
the exciton effective

mass. As seen in Fig. 1, when using parameters for GaN, the
exciton wave function decays rapidly around the zone center.
When performing ab initio GW -BSE calculations using a
uniform sampling of the entire BZ, millions of k points are
required to sufficiently sample the critical region |k| � 2π

ao
,

with most of the computational effort spent on regions that
are not relevant to the exciton physics. Such a strong local-
ization of the exciton wave function in reciprocal space is not
unique to excitons that are Wannier-Mott-like, and is present
in a wide range of bulk systems and beyond, including low-
dimensional systems such as transition metal dichalcogenides
with excitons localized around the K and K’ valleys [13]. For
most materials, the ultradense sampling of critical BZ regions
required to converge exciton properties is not feasible even
when utilizing UDGI. This has resulted in poor numerical
convergence of values for the exciton binding energy in some
cases, as has been discussed in previous work [17]. Moreover,
it has been proposed that convergence of exciton binding ener-
gies may be accelerated with UDGI by considering an average
screeningW in the region near the origin of the BZ [18,21,22];
but while this scheme indeed improves the convergence of
excitation energies, it has no effect on the exciton binding
energies, since it results in a rigid shift of the onset of the
exciton continuum [14].

To achieve true numerical convergence with respect to
k grids, dual grids may be used to interpolate between a coarse
uniform grid and a fine nonuniform grid that is designed to in-
clude exclusively a patch of the entire BZ, which encompasses

the relevant region where the exciton resides. Such nonuni-
form dual-grid interpolation (NUDGI) approaches allow the
BSE to be solved with greatly reduced computational effort,
and yields fast and systematic convergence for exciton binding
energies [12,14], as one can afford to effectively increase
the k-grid density in the critical region without having to
sample the entire BZ. Reference [16] proposed an alternative
scheme that does not rely on interpolation between different
grids, but instead uses a hybrid k-grid across the BZ which is
dense in the region of interest and coarse outside it, making
it necessary to assign varying weights to the points in the
two regions. In Ref. [16], this scheme was used to demon-
strate convergence in the exciton binding energies of MgO
and InN.

The examples of NUDGI and related strategies when com-
puting exciton binding energies remain rare in the literature,
and are mostly focused on systems with very small exciton
binding energies, which are known to be challenging to con-
verge, such as GaAs [11], InN [16], and halide perovskites
[5,23]. It is therefore currently unclear to what extent solving
the BSE employing NUDGI or alternative sampling schemes
is necessary to obtain numerically converged exciton bind-
ing energies, in general, semiconductors of interest, or even
whether it is generally possible to obtain accurate values for
most systems with the widely used UDGI techniques. Addi-
tionally, while convergence with traditional UDGI methods is
a matter of increasing the density of the grid used to sample re-
ciprocal space within GW -BSE, when using NUDGI methods
the size of the patch of the BZ is also a convergence parameter,
and there is currently no well-defined procedure for choosing
this parameter.

Here we demonstrate that in most semiconductors with
Wannier-Mott-like excitons, employing nonuniform sampling
when computing exciton binding energies is imperative to
obtain numerically converged values. We show that uniformly
sampling the BZ when solving the BSE with computationally
feasible grids yields exciton binding energies that are often
greatly overestimated relative to their converged values, which
can lead to qualitatively incorrect predictions of the physics
of the exciton, as we discuss for GaN in Sec. IV. We pro-
pose a well-defined procedure for numerical convergence of
the GW -BSE exciton binding energies at low computational
cost, and we show that even when employing NUDGI, errors
can arise that, in some cases, lead to fortuitous agreement to
experiment. We find that, even for standard semiconductors
such as Si and GaN, the lack of convergence of the BZ
sampling is the main cause for the discrepancies between
reported values of GW -BSE exciton binding energies, often
leading to differences by more than a factor of 3 [17,24].
Our results demonstrate the need for use of nonuniform sam-
pling methods when computing exciton binding energies,
and for revisiting reported values in the literature given the
underconvergence of binding energies obtained with UDGI.
Intriguingly, we find the changes to previously reported val-
ues of exciton binding energies through rigorous convergence
obtained here can be as significant as corrections associ-
ated with dynamical screening of the Coulomb interaction by
carrier plasmons [25] and phonons [6], underscoring the need
for nonuniform sampling methods for prediction of exciton
binding energies.
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The structure of this paper is as follows. Section II reviews
the theoretical background of our work. Specifically, Sec. II A
provides an overview of the first-principles description of
excitons in solids within the ab initio GW -BSE formalism,
while Sec. II B describes how one can define a patch of the
BZ in which to sample the exciton properties. In Sec. III,
we present our computational results for the exciton binding
energy of a range of semiconductors. First, we perform a
systematic convergence study of the exciton binding energy of
the prototypical semiconductors Si and GaN and demonstrate
the importance of employing a nonuniform BZ sampling
strategy. Following that, we present our results for a several
semiconductors, comparing to previously reported literature
values and addressing discrepancies with these prior results
due to lack of convergence. Finally, in Sec. IV we discuss
our overall results and their implications for the prediction of
exciton properties within the ab initio GW -BSE framework.

II. THEORETICAL BACKGROUND

A. First-principles description of excitons in solids

The BSE within the Tamm-Dancoff approximation for
zero-momentum excitons in reciprocal space with clamped
nuclei is written as [11,12](
EQP
ck − EQP

vk

)
AS
cvk +

∑
c′v′k′

〈cvk|Keh|c′v′k′〉AS
c′v′k′ = �SAS

cvk,

(2)

where Eck and Evk are the quasiparticle energies of conduc-
tion and valence band states, respectively (generally obtained
at the GW level). The coefficients AS

cvk describe the cor-
responding excited state S with excitation energy �S as
a linear combination of free electron-hole pair wave func-
tions, typically obtained from a density functional theory
(DFT) calculation. The excited state wave function can be
written as

|S〉 =
∑
cvk

AS
cvk|cvk〉. (3)

The kernel Keh in Eq. (2) describes the interaction be-
tween electrons and holes and consists of direct (d ) and
exchange (x) contributions, Keh = Kd + Kx. Ignoring the
frequency-dependence of the direct term, which is a reason-
able approximation if the exciton binding energy is much
smaller than the plasma frequency, one may write [12]

〈vck|Kd |v′c′k′〉

= −
∫

drdr′ψ∗
c (r)ψc′ (r)W (r, r′, ω = 0)ψ∗

v′ (r′)ψv (r′)

(4)

and

〈vck|Kx|v′c′k′〉

=
∫

drdr′ψ∗
c (r)ψv (r)v(r, r′)ψ∗

v′ (r′)ψc′ (r′), (5)

with v the bare Coulomb interaction, and

W (r, r′, ω) =
∫

dr′′ε−1(r, r′′, ω)v(r′′, r′) (6)

the screened Coulomb interaction. Here ε(r, r′′, ω) is the
frequency-dependent, nonlocal dielectric function. In most
applications, and within this paper, ε is computed within the
random-phase approximation [26]. Upon solving the BSE
[Eq. (2)], the exciton binding energy for low-lying resonant
exciton S is obtained as

Eb = min
k

[
EQP
ck − EQP

vk

] − �S, (7)

i.e., as the difference of the minimum direct quasiparticle gap
across the BZ and the exciton energy.

In standard ab initio BSE calculations of solids, the above
kernel matrices are constructed on a coarse grid of k points,
usually the same as that used in a preceding GW calculation.
However, it is well-known that observable quantities such
as absorption spectra and exciton binding energies obtained
through the solution of the BSE require a very fine grid to
achieve convergence. Since the calculation of kernel matrix
elements on very fine grids can often be computationally
prohibitive, dual-grid schemes have been proposed, which
generally involve the calculation of DFT wave functions
on a coarse and a fine k-grid, but only require comput-
ing the kernel matrix elements on the coarse grid; the BSE
Hamiltonian is subsequently interpolated onto the fine grid
[18,21,27]. Such an interpolation approach has been proposed
and implemented in, for example, the BERKELEYGW software
package [18], which we employ in this paper. The basis for
this scheme is a BSE kernel interpolation through a simple
expansion of the fine-grid wave function in terms of the near-
est coarse grid wave function as

unk f i =
∑
n′

ckco
n,n′un′kco, (8)

where unk is the cell periodic part of the Kohn-Sham wave
function, kco the closest coarse-grid point to the fine-grid
point k f i, and n the band index. The coefficients ckco

n,n′ are
obtained as the overlap between coarse- and fine-grid wave
functions as

ckcon,n′ =
∫

drunk f i (r)u∗
n′kco(r). (9)

Using these overlap coefficients, one can interpolate the kernel
matrix as

〈vck f i|K|v′c′k′
f i〉

=
∑

n1,n2,n3,n4

ckcoc,n1
c∗kco
v,n2

c∗k′
co

c′,n3
ck

′
co

v′,n4
〈n2n1kco|K|n4n3k′

co〉. (10)

The interpolated quantity K can be the exchange kernel, or
modified versions of the direct kernel that analytically handle
the sharp variations of the matrix elements with respect to the
transfer wave vector q = k − k′.

In a similar fashion, the conduction and valence GW quasi-
particle energies appearing in Eq. (2) are interpolated onto the
fine grid as

EQP
nk f i

= EMF
nk f i

+
〈∑

n′

∣∣ckcon,n′
∣∣2(

EQP
n′kco − EMF

n′kco

)〉
kco

, (11)

where the brackets indicate linear interpolation performed us-
ing the tetrahedron method, and EMF

n is the mean-field energy
of band n, a Kohn-Sham eigenstate from a DFT calculation.
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Overall, by interpolating the quasiparticle energies and
kernel matrix elements on a fine grid, we may solve the
BSE [Eq. (2)] on this same fine grid, greatly accelerating the
convergence of exciton energies �S and exciton coefficients
AS
cvk. Importantly, it is not a requirement for the interpolation

of the quasiparticle energies and kernel that the fine grid
k f i be uniform or have any specific characteristics. The fine
k-grid may be any general nonuniform grid, such as a patch
of the BZ, which, as we demonstrate in the following Sec. III
for a set of representative materials, is particularly important
for converging the exciton binding energy. In the following
Sec. II B, we discuss different ways of defining patches within
the relevant regions of the BZ when computing properties of
excitons.

B. Reciprocal space patches

There are several ways in which one could extract a patch
of k points in the region of the BZ relevant to the exciton
under study when starting from a N1×N2×N3 grid that spans
the entire BZ. However, the philosophy behind the choice of
a patch is always the same: First one must identify the point
ko of reciprocal space around which the exciton is centered,
and then one must decide on the size of the patch, discarding
any points outside that region. In this manner, we are left
with a truncated fine k-grid of a single density N1×N2×N3,
making this approach distinct to methods employing hybrid
grids across the entire BZ [16] and removing any need to
assign different weights to points within our grid.

For example, for bulk systems with 1s Wannier-Mott-like
excitons [Eq. (1)], ko = �, since the exciton coefficients peak
at k = 0. For transition metal dichalcogenides it has been
found that ko = K/K’ [13]. Generally, if one has no prior
knowledge of the system under study, the point ko may be de-
termined by identifying where the minimum direct gap occurs
in the electronic band structure or performing an initial BSE
calculation on a coarse grid across the entire BZ to identify
the relevant region of reciprocal space.

Having determined the exciton center ko, one may proceed
to defining a patch centered around this point. It is also pos-
sible to define multiple patches around more than one point
of interest in the BZ. One way of capturing the region around
a center ko, is to define a spherical patch of radius rkc around
that point. The k points within such a spherical patch satisfy
the condition

|k − ko| � rkc , (12)

and the value of rkc functions as a convergence parameter. An
example of a two-dimensional circular patch is visualized in
Fig. 2, where a radius of rkc = 0.3 Å−1 has been chosen for a
MoS2 monolayer.

An alternative way of generating patches is the following.
Let us consider k points in crystal coordinates (k1, k2, k3), that
is, fractions of the primitive reciprocal lattice vectors b1, b2,
and b3 as follows:

k = k1b1 + k2b2 + k3b3. (13)

Here the crystal coordinates (k1, k2, k3) assume values in the
range [−0.5, 0.5], and we only retain those points that satisfy

FIG. 2. Schematic of the sampling of the Brillouin zone for
monolayer MoS2, with the k points in a patch of radius rkc =
0.30 Å−1around the K/K’ (ko = K/K’) valleys highlighted in red.

the condition

−dk
c � ki − ko,i � dk

c i = 1, 2, 3, (14)

where dk
c a cutoff coordinate. Such a choice of points in

reciprocal space is visualized for a two-dimensional example
in Fig. 3. While generating a patch based on crystal coordi-
nates has the disadvantage of not allowing one to define a
single cutoff radius in units of inverse length, it more readily
clarifies the percentage of the BZ that is included in the patch
along each spatial direction. For example, defining a cutoff
coordinate dk

c = 0.02 in crystal coordinates in Eq. (14) would
suggest that we include 4% of the BZ [−0.5, 0.5] around
ko. Moreover, patches defined in this way are immediately
transferable between different systems, as they do not depend
on specific material parameters.

Regardless of the method that one chooses to generate
a patch in the BZ, the exciton properties will converge to
the same answer as long as the relevant region has been
adequately sampled by the chosen method. In this paper, we
generate patches in crystal coordinates following Eq. (14),
with the exception of MoS2, for which we employ circular
patches [Eq. (12)] following previous work [14], and we
provide a detailed discussion of its exciton binding energy
convergence properties in Appendix A. Moreover, all systems
studied in Sec. III have excitons that are � centered (i.e.,
ko = 0), with monolayer MoS2 in Appendix A providing an
example of a case with ko �= 0, reinforcing the relevance of
nonuniform sampling methods for non �-centered excitons.

III. RESULTS

We start by presenting the convergence properties
of the exciton binding energy for two widely studied
semiconductors, Si and GaN, in Sec. III A. The results empha-
size the necessity of using NUDGI or a different nonuniform
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δk1

δk2

ko

FIG. 3. Schematic of the sampling of the Brillouin zone around
a point of interest ko, using the scheme of Eq. (14) based on crystal
coordinates. If, for example, one starts from a 100×100×100 regular
grid and hence δk1 = δk2 = 0.01 in crystal coordinates, the region in
red here corresponds to a patch with cutoff coordinate dk

c = 0.01, the
region in blue to dk

c = 0.02, and so on.

sampling method when solving the Bethe-Salpeter equa-
tion in reciprocal space. In Sec. III B, we present numerically
converged exciton binding energies with respect to the BZ
sampling for a wider range of prototypical semiconductors
and we compare our results, obtained with NUDGI, to lit-
erature values as well as to our own calculations employing
UDGI. We analyze the convergence behavior of the exciton
binding energy with respect to the BZ sampling methods and
establish systematic trends. We explain discrepancies between
calculated values that have been reported previously in some
cases, and we show that these can be attributed to lack of con-
vergence in BZ sampling. More details on all the parameters
employed in our DFT and ab initio GW -BSE calculations are
given in Appendix C.

A. Numerical convergence of exciton binding energies

1. Si

The first step in converging the exciton binding energy
of a material using NUDGI on a patch is to understand the
localization behavior of the exciton coefficients AS

cvk in re-
ciprocal space. This could be achieved, for example, through
an initial solution of the BSE using UDGI to gain a better
understanding of the decay of the magnitude of the exciton
wave function relative to its maximum value. For most bulk
semiconductors with an exciton binding energy of the order
of 10 meV, a few percent of the BZ in each spatial direction
is a reasonable guess for the region within which the exciton
localizes, as suggested from the Wannier-Mott model, see
Fig. 1. Indeed, in Fig. 4 we visualize the behavior of the Si
exciton coefficients around � as a function of the fractional

|A
S
=

1 |
2

cv
k

Σ cv

0
0

0.01

0.02

0.04-0.04-0.08 0.08

0.03

0.04

0.05

k1 (crystal coordinates)

FIG. 4. Exciton coefficients of Si from the solution of the BSE
on a patch drawn from a 100×100×100 regular grid. The decay
around � of the exciton coefficients is plotted along k1, however, it is
identical to the decay along k2, k3 given the isotropy of this system.
The values of k1, which are along the high-symmetry X direction in
reciprocal space, are given in crystal coordinates [Eq. (13)] and the
black dashed line serves as a guide to the eye.

coordinate k1, as defined in Eq. (13). Given the isotropic
character of the Si crystal, the behavior is the same along any
of the three spatial directions. We see that the exciton wave
function decays rapidly around �.

From Fig. 4, it is reasonable to assume that a patch cutoff
coordinate of dk

c = 0.09 is a good first estimate for capturing
the relevant part of the BZ when solving the BSE for Si. We
now proceed to solve the BSE on patches of this size, which
are drawn from grids of varying densities. Figure 5 shows the
convergence of the exciton binding energy with respect to the
starting k-grid for the patch. We see that the converged value
of 24 meV is only reached for extremely dense grids of size
of at least 50×50×50. Attempting to use UDGI to solve the
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FIG. 5. Convergence of the exciton binding energy of Si with
respect to the number of k points, Nk , used to solve the BSE, cor-
responding to grids of N3 = N×N×N . Here a patch with a cutoff
of dk

c = 0.09 (crystal coordinates) around � is employed. The black
dashed line serves as a guide to the eye.
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BSE on such dense grids would be unfeasible for practical
applications, for which grids of 20×20×20 are commonly
considered sufficiently fine. Yet, we see that a 20×20×20
grid for Si leads to a significant overestimation of the exciton
binding energy relative to the numerically converged value
at this level of theory by almost a factor of 2. Moreover, it
is common in the literature to extrapolate plots of the exci-
ton binding energy obtained within UDGI as a function of
1/Nk to the limit Nk → ∞ to obtain converged Eb values. In
Fig. 12 of Appendix B, we show for Si that while indeed such
an extrapolation results in exciton binding energies that are
substantially more converged, one needs grid densities of at
least 403 to obtain exciton binding energies that are within
1 meV of the converged value. For Si, performing UDGI
on 20×20×20 and 30×30×30 grids would allow one to
obtain an extrapolated Nk → ∞ value of 26 meV for the exci-
ton binding energy, compared to the numerically converged
value of approximately 23 meV as shown in Fig. 5. How-
ever, our most expensive calculation in Fig. 5 using a patch
of cutoff coordinate dk

c = 0.09 drawn from a 100×100×100
grid, includes only 6859 k points, which is less than the
8000 included in a full uniform 20×20×20 grid. Thus, our
converged calculation on a patch drawn from a 100×100×100
grid has 14% fewer k points, resulting in a factor of 1.6 reduc-
tion in computational cost for the diagonalization of the BSE
Hamiltonian when compared to the severely underconverged
uniform 20×20×20 calculation. Considering the cost of the
50×50×50 calculation on a patch, which is converged within
1 meV, we find that it requires only 1% of the computational
resources of a full 20×20×20 calculation. Therefore, sam-
pling a patch of the BZ through NUDGI not only allows us
to achieve convergence of the exciton binding energy within
1 meV, which is computationally impractical using UDGI, but
it also greatly reduces the computational cost of BSE calcula-
tions. Notably, extrapolating to Nk → ∞ with UDGI not only
leads to less converged results than NUDGI, but comes at a
much higher computational cost.

Having established that a grid of at least 50×50×50 k
points is required to converge the Si exciton binding energy
within 1 meV, we return to the issue of choosing a patch cutoff
dk
c that is sufficiently large to capture the relevant part of the

BZ. In Fig. 6, we show that increasing the cutoff of a patch
drawn from a 50×50×50 grid around � generally increases
the exciton binding energy, leading to a converged value of
26 meV for Si. It is therefore not sufficient to converge the
density of the grid from which a patch is drawn, but also the
patch size.

The convergence procedure developed here is general. One
starts from a reasonable first guess of the region of the BZ that
has to be included in a BSE calculation, either through the
solution of BSE using UDGI, from the physical expectations
drawn from the Wannier-Mott model, from the electronic band
structure, prior knowledge of the studied system, or other
information. Once this initial patch cutoff coordinate has been
decided, the grid density is varied within that region until
convergence. Then, a separate convergence test is performed
for the patch cutoff dk

c , while keeping the density of the grid
equal to the one determined in the previous step. Since this
procedure is specific to individual exciton states, it cannot be
naively transferred to other excited states. To obtain converged

E b
 (

m
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)

10
12
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16
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20
22

24
26

0 0.04 0.08 0.12 0.16 0.20
patch cutoff dk (crystal coordinates)c

FIG. 6. Convergence of the exciton binding energy of Si with
respect to the cutoff coordinate dk

c of a �-centered patch drawn from
a 50×50×50 grid of k points, which is used for interpolation of the
BSE kernel. The black dashed line serves as a guide to the eye.

spectra involving multiple excitons one would have to ensure
that the most localized exciton appearing in the spectrum is
converged, and that the patch size is sufficient to include the
relevant region of every excited state considered. Excitons
beyond the 1s state considered here will be even more local-
ized in reciprocal space. While this suggests that the patch
size that converges the 1s exciton will be sufficient to study
higher-lying excited states, it is likely that denser grids will
be necessary for these states, making the use of NUDGI even
more imperative for their study.

2. GaN

Similar to the case of Si, we start the convergence proce-
dure for the exciton binding energy of GaN with an initial
guess for a patch that captures the relevant region in the BZ. In
Fig. 7, we visualize the decay of the exciton coefficients of this
material within a region of dk

c = 0.09 centered at �; unlike
Si, GaN exhibits different behavior along the b3 reciprocal
lattice vector compared to that along b1 and b2 due to its
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FIG. 7. Exciton coefficients of GaN from the solution of the BSE
on a patch drawn from a 100×100×100 regular grid. The decay
around � of the exciton coefficients is plotted along k1, k2 (k3) in
red (black) crosses, with the values of ki given in crystal coordinates
[Eq. (13)]. The dashed lines serve as a guide to the eye.
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up to N = 100. Here a patch with a cutoff of dk

c = 0.09 (crystal
coordinates) around � is employed. The black dashed line serves as
a guide to the eye.

hexagonal symmetry. We see that the exciton wave function
decays rapidly within this region, making a patch cutoff of
0.09 a reasonable starting point for our calculations.

We proceed in Fig. 8 to vary the density of the initial grid
with a patch of cutoff dk

c = 0.09, and examine the conver-
gence of the exciton binding energy. Here we find that to reach
the converged value of 65 meV, a grid of 60×60×60 or denser
is required, which is currently computationally intractable for
UDGI BSE calculations. Even if it were possible, the vast
majority of the computational workload would be spent on
sampling parts of the BZ that are irrelevant to the exciton.
Increasing the patch cutoff for a grid of converged density in
Fig. 9 shows that a cutoff of 0.09 is sufficient to converge
the exciton binding energy of GaN within 1 meV. Finally,
we show in Appendix B that for GaN (as with Si), Nk → ∞
extrapolation schemes result in an exciton binding energy
within only 3 meV of the converged value once one solves
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FIG. 9. Convergence of the exciton binding energy of GaN with
respect to the cutoff coordinate dk

c of a �-centered patch drawn from
60×60×60 and 100×100×100 grid of k points, which is used for
interpolation of the BSE kernel. The black dashed line serves as a
guide to the eye.

the BSE on grids at least as dense as 40×40×40. Therefore,
converging the exciton binding energy using UDGI and an
extrapolation is far more computationally demanding than the
procedure described above.

B. Comparison to literature values and BSE on a regular
reciprocal-space grid

We now present numerically converged results with respect
to the BZ sampling for exciton binding energies for a range
of semiconductors and insulators of interest using a standard
ab initio GW -BSE approach (see Appendix C for details). The
studied systems are given in Table I, along with their rele-
vant structural parameters obtained from the Materials Project
database [28]. Table II summarizes the converged results for
the exciton binding energies EB,patch of these systems when
employing a patch drawn from a 100×100×100 grid, with
a cutoff of 0.12 in crystal coordinates, which is sufficient to
converge all values within 1 meV. We compare to the exciton
binding energy obtained from a BSE calculation on a regular
grid across the entire BZ, EB,regular, with the grid size for each
case given in the table in parentheses. Naturally, the latter
grids are necessarily much coarser than 100×100×100 due
to the large number of k points to be considered in the region
outside the critical region which is included in the patched
sampling strategy. We also compare our results to exciton
binding energies reported in the literature and obtained from
a BSE calculation using a regular grid across the entire BZ, as
well as to experimental values.

From Table II, using NUDGI and solving the BSE on a
patch results in dramatically reduced values for the exciton
binding energy in every studied system. In some cases, such

BSE - regular grid
BSE - patch
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GaN

CdS

SnO2
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SrTiO3
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FIG. 10. Exciton binding energies computed with the ab initio
Bethe-Salpeter equation (BSE) approach (see Sec. II) on a regular
grid (red circles) or a patch (black crosses), and compared to experi-
mental values. Perfect agreement is indicated by the y = x line (black
dashed line). For SrTiO3, there is no reported experimental value to
the best of our knowledge, and we have set the value to zero, pending
future measurements. The regular grid BSE values are the literature
values summarized in Table II. For ZnO, we could not find literature
reports of its exciton binding energy within GW -BSE, we therefore
include our own value on a 24×24×12 grid across the entire BZ.
For experimental values, we pick the largest of the reported values
for each system as summarized in Table II. See Appendix C for
computational details.
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TABLE I. Studied materials, their structure, lattice parameters, space group, and identifier in the Materials Project database [28]. We
performed geometry optimization for the atomic positions of these systems using DFT with the PBE exchange-correlation functional, keeping
their lattice parameters fixed, with the exception of SrTiO3, for which we use the local density approximation (LDA) and optimize both the
atomic positions and its lattice parameter (the LDA has been discussed in the literature to yield more accurate results for structural properties
of SrTiO3 compared to PBE [29]).

Material Structure a ( Å) c/a Space group Identifier

AlN Wurtzite 3.128 1.604 P63mc mp-661
CdS Zinc blende 4.200 1 F43m mp-2469
GaN Wurtzite 3.215 1.630 P63mc mp-804
MgO Halite, rock salt 3.010 1 Fm3m mp-1265
Si Diamond 3.849 1 Fd3m mp-149

SnO2 Rutile 4.765 0.673 P42/mnm mp-856
SrTiO3 Cubic perovskite 3.852 1 Pm3m mp-5229
ZnO Wurtzite 3.237 1.614 P63mc mp-2133

as Si, the reduction is almost by a factor of 2. This level of
numerical convergence is only reachable with the finer grids
obtainable with NUDGI, which shows a tendency to substan-
tially reduce the exciton binding energies, as seen in Figs. 5
and 8. We note in passing that the underconverged exciton
binding energies computed in this work with UDGI are in
fairly good agreement with literature results when using simi-
lar grid sizes, which further validates our approach. Moreover,
while computed exciton binding energies in all cases over-
estimate the experimental values, agreement to experiment is
substantially improved once rigorous convergence through the
nonuniform sampling of the BZ is ensured. This is shown in
Fig. 10 for all materials studied. We have excluded MgO from
Fig. 10 to improve visibility of the data points, due to the large
exciton binding energy of this system.

We note that for some of the systems studied here, BSE
calculations have previously been computed on a patch within
the BZ. In Table III, we compare our converged exciton bind-
ing energies for AlN, GaN, Si, and ZnO to the values reported
in Ref. [24], which employed a NUDGI strategy. The values of
Ref. [24] are much lower than our computed values and fortu-
itously, in much closer agreement to experiment, since the BZ
is undersampled, and the studied region too small to yield con-
vergence. As shown in Figs. 6 and 9, using a small patch cutoff
can lead to significant underestimation of the exciton binding
energy. Indeed, we expect, after rigorously converging the
exciton binding energies, to find an overestimation compared

to experimental values. This is, in fact, consistent with screen-
ing effects coming from different sources which have not
been considered here, such as, for example, the screening
of excitons by phonons [5,6] and free charge carriers [25].
These effects tend to reduce the exciton binding energy and
thus result in closer agreement to experimental values. We
therefore conclude that fortuitous agreement with experiment
in past work for the exciton binding energies can result from
the cancellation of two errors: lack of convergence of the
BSE exciton binding energy obtained within NUDGI with
respect to the patch cutoff, and not accounting for additional
physics such as temperature-dependent dynamical screening
of excitons.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we demonstrate that the calculation of exciton
binding energies within the ab initio GW -BSE framework
may only realistically be converged through a nonuniform BZ
sampling strategy, employing a patch around the region where
the exciton localizes. Converging BSE calculations with re-
spect to the sampling of reciprocal space using traditional
uniform BZ sampling is inefficient, requires extremely fine
grids, and leads to prohibitive computational cost even for
simple materials. We demonstrate this conclusion by studying
the convergence behavior of the BSE exciton binding energy
over a wide range of commonly studied semiconductors and

TABLE II. Exciton binding energies computed within nonuniform dual-grid interpolation (NUDGI) for GW -BSE using a patch of cutoff
dk
c = 0.12 (in crystal coordinates) drawn from a 100×100×100 regular grid (EB,patch), uniform dual-grid interpolation (UDGI, EB,uniform),

computed within this paper and also reported in the literature, with the associated grid given in parentheses in every case, and reported
experimental values (EB,exp.). All values are given in meV. See Appendix C for computational details.

Material EB,patch EB,uniform (this paper) EB,uniform (literature) EB,exp.

AlN 147 184 (24×24×12) 181 [17] (24×24×12) 48 [30], 80 [31]
CdS 39 65 (28×28×28) 59 [17] (24×24×24) 28 [32], 30 [33]
GaN 65 111 (24×24×12) 110 [17] (24×24×12) 20 [34], 28 [35]
MgO 323 360 (24×24×24) 370 [5] (24×24×24) 80 [36], 145 [37]
Si 25 44 (20×20×20) 42 [17] (28×28×28) 15 [38]
SnO2 107 124 (18×18×27) 157 [39] (4×4×6) 33 [40], 35 [41]
SrTiO3 122 148 (18×18×18) 170 [42] (20×20×20) —
ZnO 78 125 (24×24×12) — 60 [43], 63 [44]
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TABLE III. Exciton binding energies computed within GW -BSE employing nonuniform dual-grid interpolation (NUDGI), using a patch
of cutoff dk

c = 0.12 (in crystal coordinates) drawn from a 100×100×100 regular grid (EB,patch), values reported in Ref. [24], and reported
experimental values (EB,exp.). All values are given in meV. Values without citations are computed within this work.

Material EB,patch—this paper EB,patch—Ref. [24] EB,exp.

AlN 147 70 48 [30], 80 [31]
GaN 65 30 20 [34], 28 [35]
Si 25 15 15 [38]
ZnO 78 60 60 [43], 63 [44]

insulators. As a result, most values reported in the litera-
ture for bulk systems, which rely on sampling the entire BZ
using a uniform grid, are underconverged with respect to
the employed k grid, leading in some cases to a significant
overestimation of exciton binding energies compared to their
converged values by up to 40%. This calls for revisiting cer-
tain GW -BSE predictions of exciton binding energies reported
in the literature and, more generally, the use of methods that
rely on sampling reciprocal space to obtain exciton properties.

We have presented the convergence behavior of exciton
binding energies when nonuniformly sampling the BZ, estab-
lishing a scheme for converging this quantity systematically,
with the density of the k grid from which we draw patches,
and the size of these patches, as the main convergence pa-
rameters. Compared to previously underconverged results,
nonuniform sampling of the BZ corrects previously reported
exciton binding energies by an amount that is at least as
significant as corrections associated with additional physics,
such as temperature-dependent dynamical screening through
phonons [5,6] and free charge carriers [25]. Rigorous conver-
gence of the exciton binding energy with respect to the k grid
through nonuniform sampling methods is therefore a critical
prerequisite for any calculation that describes such effects.

Rigorous convergence of exciton binding energies can
lead to large quantitative changes to their values, and it can
also lead to qualitative differences in the predicted physics
of an exciton. For example, GaN has a longitudinal optical
(LO) phonon of frequency ωLO = 87 meV [5]. The converged
exciton binding energy of this system is Eb = 65 meV, as
we found in Sec. III, which means that ωLO > Eb. A direct
consequence of this is that absorption of a single LO phonon
by the exciton can lead to its dissociation into a free electron-
hole pair, which has been predicted to occur on ultrafast
timescales [6]. On the other hand, as we see in Table II,
employing a regular grid that spans the entire BZ for this
system yields an exciton binding energy of roughly 110 meV,
which would suggest ωLO < Eb, suggesting that absorbing a
single phonon is not sufficient to dissociate the exciton.

In contrast to the semiconducting compounds studied in
the present paper, we note that there are also examples of
systems where excitons are delocalized in reciprocal space.
In those cases, there is little benefit to using NUDGI, and
UDGI can already provide accurate values for exciton binding
energies. Molecular crystals, for example, host Frenkel-like
excitons that are relatively localized in real space, and hence
highly delocalized in reciprocal space [45,46]. Halide double
perovskites are another class of systems that can host excitons
that are delocalized in reciprocal space [47].

We also emphasize that our conclusions on the importance
of nonuniform sampling towards obtaining converged exciton
properties are not limited to excitons that are � centered.
In Sec. II B, we describe the generation of patches centered
around arbitrary points in the BZ, which we illustrate in
Appendix A for the two-dimensional MoS2 system with ex-
citons centered around the K and K ′ valleys of the BZ.
The methodology described in this paper is distinct from
the clustered sampling interpolation (CSI) technique, which
improves the kernel interpolation procedure and allows us to
converge the exciton properties of two-dimensional materials
with respect to the coarse k grid [15], as also elaborated on in
Appendix A.

Overall, our results suggest that a nonuniform sam-
pling of the BZ is critical to obtain numerically converged
exciton binding energies within ab initio GW -BSE and related
frameworks used to compute exciton properties in reciprocal
space. Additionally, such calculations typically come at a
much lower computational cost compared to traditional uni-
form sampling methods that sample the entire BZ. NUDGI
for GW -BSE calculations has been implemented and is freely
available within the BERKELEYGW software package [18].
We hope that our paper will raise visibility for the need to
carefully converge exciton binding energies and contribute
towards the wide adoption of nonuniform sampling methods
of the exciton properties of materials, leading to a more com-
prehensive understanding of the optoelectronic properties of
complex materials.
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APPENDIX A: EXCITON BINDING ENERGY OF MoS2

AND COMPARISON TO THE CLUSTERED SAMPLING
INTERPOLATION METHOD

As discussed above for a set of semiconductors and in-
sulators, achieving converged exciton binding energies and
wave functions often requires revisiting the UDGI method
implemented in BERKELEYGW [11,12,18], such that the fine
k grid is no longer a uniform grid across the entire BZ, but
rather a dense patch around the � point. This interpolation
method is effective for 3D systems as it involves an explicit
calculation of the direct and exchange matrix elements in
the BSE kernel on a relatively coarse k grid. In contrast, for
quasi-2D systems, the sharp features in the inverse dielectric
matrix as q → 0, where q = k − k′, the k point difference
or momentum transfer, lead to strong variations with q in the
kernel matrix elements, hence requiring explicit calculation
of the interaction matrix elements for several small q [15].
The CSI method was proposed to address the challenges in
capturing small-q features, where the BSE matrix elements
are calculated explicitly on a coarse k-grid and a cluster of
nearby k points for each k point on the coarse grid [13–15],
with the k points in the clusters drawn from a fine grid.

Here, we investigate the performance of a nonuniform sam-
pling of the BZ both through the NUDGI (patched sampling)
strategy employed in the main text, and the CSI method, when
converging the exciton binding energy for the quasi-2D MoS2

system. Starting from a DFT calculation using the PBE func-
tional [48] with a wave-function cutoff energy of 140 Ry, we
compute the self-energy correction using the Godby-Needs
plasmon pole model [49], the semiconductor screening for
the treatment of the q → 0 limit, and the slab truncation. We
consider a dielectric cutoff of 20 Ry, and include 2000 bands
in the Coulomb-hole summation. This gives a QP band gap of
2.81 eV, in good agreement with previous reports [14]. We do
not include spin-orbit coupling effects, which are known to
split the VBM and CBM at the K/K’ valleys. For the BSE
calculation, we compute the interaction matrix elements of
the kernel on a coarse 24×24×1 k-grid for four conduction
and four valence bands, then interpolate on fine k-grids with
various densities, including 1 valence and two conduction
bands.

For NUDGI, we generate two circular patches [Eq. (12)]
and center them around the K/K’ k-points (see Fig. 2), con-
sistent with the direct gap at K/K’. For the convergence
with respect to the patch radius, we find that a radius of
0.3 (0.2) Å−1 for each patch enables convergence of the
binding energy of the first exciton within 5 (20) meV of the
value obtained on a uniform fine grid of the same density.
For a constant patch radius of 0.3 Å−1, we consider various
densities for the fine k-grid; the computed exciton binding
energy is shown in Fig. 11(a) as a function of the density
of the fine grid. An exciton binding energy of 712 meV is
obtained with a grid of 288×288×1 k-points. Using a grid
of 192×192×1 provides a binding energy converged within
5 meV with respect to that value. As mentioned above, the
coarse 24×24×1 k-grid used in the UDGI scheme (with
or without the patch) might not be sufficient to capture the
sharp features for q → 0. We verified this by using the CSI
method and show the computed exciton binding energies in

FIG. 11. For a monolayer MoS2: (a) exciton binding energies
computed within BSE using the UDGI scheme with a coarse
24×24×1 grid and a uniform fine grid (red circles) or a 0.3 Å−1

patch around K/K’ (black crosses), and compared to the CSI method
(blue triangles); and (b) associated GPU time in seconds.

Fig. 11(a) for two fine grids. An exciton binding energy of
695 meV is obtained with a 288×288×1 fine grid. This value
is ∼17 meV smaller than the exciton binding energy obtained
with the UDGI method on a fine grid of the same density.
Our converged value here somewhat overestimates previously
reported exciton binding energies for MoS2 [14,15], due to
differences in the computational approach. Specifically, we
use a PBE starting point instead of LDA; we do not account
for spin-orbit coupling effects, and we use the one-shot GoWo

approach instead of self-consistent GW . Moreover, here we
employ the Godby-Needs plasmon pole model for the fre-
quency dependence of the dielectric function and a dielectric
cutoff energy of 20 Ry instead of 35 Ry. These factors lead to
minor variations in the quasiparticle gap, the band curvature,
and ultimately the exciton binding energies. Nevertheless, it
is clear from Fig. 11(b) that the use of a patch to sample the
BZ greatly reduces the computational load (GPU time and
memory—not shown), while still obtaining exciton binding
energies in reasonable agreement to those computed with
the CSI method. We emphasize that for two-dimensional
materials, the CSI method ensures rigorous convergence of
exciton properties with respect to the coarse k-grid, accurately
resolving features of the BSE matrix elements for small q.
The accuracy of exciton binding energies based on dual-grid
interpolation for 2D materials can sensitively depend on the
coarse k-grid that we interpolate from Ref. [15], and for
underconverged cases, the interpretation of the binding energy
can be sensitive to the sampling of the dielectric function
around q = 0. Here, we define the binding energy as the
difference between the quasiparticle band gap and the exciton
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FIG. 12. Convergence of the exciton binding energy of Si as a
function of the inverse number of k points included in the sampling
of the BZ. The dashed lines extrapolate pairs of points on grids
N3 to the Nk → ∞ limit. For example, the line noted as 203 − 303

extrapolates to Nk → ∞ by using the Eb values obtained through
calculations on 203 and 303 grids.

energy, Eq. (7). However, the screened Coulomb interaction is
averaged in the region of q = 0 [18,21,22], leading to a shift
in the onset of the continuum in the spectrum of exciton en-
ergies. This means that for underconverged cases, the exciton
continuum does not correspond to the quasiparticle band gap,
leading to a potential overestimation of the exciton binding
energy [14]. Nevertheless, it is clear that even for quasi-2D
systems, NUDGI provides a significant speedup compared to
performing UDGI across the entire BZ, consistent with our
conclusions for bulk semiconductors.

APPENDIX B: EXTRAPOLATION OF THE EXCITON
BINDING ENERGY TO THE Nk → ∞ LIMIT

Figures 12 and 13 visualize the exciton binding energy of
Si and GaN, respectively, as a function of the inverse number
of k points included in the fine grid for the BSE calculations.
Such plots allow us to extrapolate the exciton binding energy
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FIG. 13. Convergence of the exciton binding energy of GaN as a
function of the inverse number of k points included in the sampling
of the BZ. The dashed lines extrapolate pairs of points on grids
N3 to the Nk → ∞ limit. For example, the line noted as 203 − 303

extrapolates to Nk → ∞ by using the Eb values obtained through
calculations on 203 and 303 grids.

to the Nk → ∞ limit, which provides a slightly accelerated
rate of convergence compared to performing calculations on
denser grids, as discussed in the main text. In both cases here,
a patch cutoff coordinate of dk

c = 0.09 (crystal coordinates)
has been used to accelerate calculations.

APPENDIX C: COMPUTATIONAL DETAILS FOR DFT
AND GW -BSE CALCULATIONS

For all studied materials with the exception of SrTiO3,
we first optimize the atomic positions starting from
structures drawn from the Materials Project database [28],
leaving the lattice parameters fixed. Structural parameters are
summarized in Table I. For this, we employ DFT within
the QUANTUM ESPRESSO software package [50], and we use
the generalized gradient approximation of Perdew, Burke and
Ernzerhof (PBE) level [48]. For SrTiO3 we use the local den-
sity approximation (LDA) [51] and optimize both the atomic
positions and lattice parameters of this system.

Using the DFT-PBE Kohn-Sham wave functions (LDA
for SrTiO3) as a starting point, we perform single-shot GW
calculations within the BERKELEYGW code [18], choosing
calculation parameters in a way as to converge the quasipar-
ticle band gaps within 0.1 eV, following Refs. [5,6,42] and
using the Hybertsen-Louie generalized plasmon pole model
[8] to compute the dielectric function at finite frequencies in
most cases, with the exceptions of MgO, ZnO, and SnO2,
for which we employ the Godby-Needs model [49,52]. We
find that the following parameters lead to converged GW
calculations: AlN (400 bands, 32 Ry polarizability cutoff,
6×6×6 half-shifted k-grid), CdS (500 bands, 40 Ry polariz-
ability cutoff, 6×6×6 half-shifted k-grid), GaN (400 bands,
40 Ry polarizability cutoff, 4×4×4 half-shifted k-grid), MgO
(600 bands, 50 Ry polarizability cutoff, 6×6×6 �-centered
k-grid), Si (400 bands, 30 Ry polarizability cutoff, 6×6×6
half-shifted k-grid), SrTiO3 (1000 bands, 14 Ry polarizabil-
ity cutoff, 6×6×6 half-shifted k-grid), SnO2 (1024 bands,
48 Ry polarizability cutoff, 6×6×9 half-shifted k-grid), ZnO
(1026 bands, 50 Ry polarizability cutoff, 8×8×5 half-shifted
k-grid), where a shifted grid is used in most cases to achieve
better convergence of the dielectric function that is used in the
self-energy part of the GW calculation [53,54], which we find
to be critical for obtaining converged exciton binding ener-
gies. The GW self-energy is always computed on a �-centered
k-grid.

The electronic BSE kernel is computed on the same
k grid as the GW eigenvalues. We computed the kernel for
the following number of bands: AlN (four valence and four
conduction bands), CdS (four valence and four conduction
bands), GaN (four valence and four conduction bands), MgO
(eight valence and eight conduction band), Si (4 valence
and ten conduction bands), SrTiO3 (nine valence and three
conduction bands), SnO2 (four valence and four conduction
bands), ZnO (four valence and four conduction bands). For
all cases, we use NUDGI to interpolate the kernel onto a patch
drawn from a range of fine grids (as outlined in detail in the
main text) and typically on three valence and one conduction
band, with the exceptions of SrTiO3 where the interpolated
kernel is computed on nine valence and three conduction
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bands, and Si where the interpolated kernel is computed on
four valence and three conduction bands.

For GaN, we compute the exciton coefficients within the
Wannier-Mott model, Eq. (1). To compute Ak, we use the con-
verged exciton binding energy of 65 meV from our GW -BSE
calculations. Moreover, we compute the effective masses for
the top/bottom valence and conduction bands, respectively,

using the finite difference formula 1
m∗ = E (δk)+E (−δk)−2E (�)

δk2 ,
taking δk to be equal to 0.01 (in crystal coordinates) along
each spatial direction, and the energies E are computed at the
GW level, using DFT-PBE wave functions as a starting point.
Finally, we average over the three spatial directions and for
the hole and electron effective masses we obtain mh = 1.013
and me = 0.152, respectively.
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