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Signal-to-Noise Ratio Aware Minimaxity
and Higher-Order Asymptotics
Yilin Guo , Haolei Weng , and Arian Maleki , Member, IEEE

Abstract— Since its development, the minimax framework has
been one of the corner stones of theoretical statistics, and has
contributed to the popularity of many well-known estimators,
such as the regularized M-estimators for high-dimensional prob-
lems. In this paper, we will first show through the example
of sparse Gaussian sequence model, that the theoretical results
under the classical minimax framework are insufficient for
explaining empirical observations. In particular, both hard and
soft thresholding estimators are (asymptotically) minimax, how-
ever, in practice they often exhibit sub-optimal performances at
various signal-to-noise ratio (SNR) levels. The first contribution
of this paper is to demonstrate that this issue can be resolved if
the signal-to-noise ratio is taken into account in the construction
of the parameter space. We call the resulting minimax framework
the signal-to-noise ratio aware minimaxity. The second contribu-
tion of this paper is to showcase how one can use higher-order
asymptotics to obtain accurate approximations of the SNR-aware
minimax risk and discover minimax estimators. The theoretical
findings obtained from this refined minimax framework provide
new insights and practical guidance for the estimation of sparse
signals.

Index Terms— Minimaxity, signal-to-noise ratio, sparsity, soft
thresholding, hard thresholding, linear shrinkage, higher-order
asymptotics, Gaussian sequence model.

I. INTRODUCTION

A. Motivation

THE minimax framework is one of the most popular
approaches for comparing the performance of estimators

and obtaining the optimal ones. Since its development, the
minimax framework has been used for the study of optimality
and the design of optimal estimators in a broad range of
areas including, among others, classical statistical decision the-
ory [1], [2], non-parametric statistics [3], [4], high-dimensional
statistics [5], and mathematical data science [6]. Despite its
popularity, when the parameter space is set too general, since
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the minimax framework focuses on particular areas of the
parameter space, its conclusions can be misleading if translated
and used in practice. Take the high-dimensional sparse linear
regression for example. It has been proved that the best subset
selection is minimax rate-optimal over the class of k-sparse
parameters [7]. Nevertheless, recent empirical and theoretical
works demonstrate the inferior performance of best subset
selection in low signal-to-noise ratio (SNR) [8], [9], [10]. The
key issue in this problem is that the parameter space in the
minimax analysis only incorporates sparsity structure and does
not control the signal strength for non-zero components of the
sparse vector.

In this paper, we focus on the popular example of the sparse
Gaussian sequence model – a special case of the sparse linear
regression model with an orthogonal design. We first discuss
in detail the limitations of classical minimaxity in Section I-B.
The rest of the paper is then devoted to the development of
a much more informative minimax framework that alleviates
major drawbacks of the classical one. This is made possible
by controlling and monitoring the signal-to-noise ratio and
sparsity level through the parameter space. As will be dis-
cussed later, solving this new constrained minimax problem
is much more challenging than the original minimax analysis.
Hence, we resort to higher-order asymptotic analysis to obtain
approximate minimax results. The conclusions of this signal-
to-noise ratio aware minimax framework turn out to provide
new insights into the estimation of sparse signals.

B. Classical Minimaxity and Its Limitations in Sparse
Gaussian Sequence Model

We consider the Gaussian sequence model:

yi = θi + σnzi, i = 1, 2, . . . , n. (1)

Here, y = (y1, . . . , yn) is the vector of observations, θ =
(θ1, . . . , θn) is the unknown signal consisting of n unknown
parameters, zi’s are i.i.d. standard Gaussian error variables,
and σn > 0 is the noise level that may vary with sample size
n. The goal is to estimate θ from the sparse parameter space

Θ(kn) =
{

θ ∈ Rn : ∥θ∥0 ≤ kn

}
, (2)

where ∥θ∥0 denotes the number of non-zero components of
θ, and the sparsity kn is allowed to change with n. The most
popular approach for studying this estimation problem and
obtaining the optimal estimators is the minimax framework.
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Considering the squared loss, the minimax framework aims to
find the estimator that achieves the minimax risk given by

R(Θ(kn), σn) = inf
θ̂

sup
θ∈Θ(kn)

Eθ∥θ̂ − θ∥22, (3)

where Eθ(·) is the expectation taken under (1) with true
parameter value θ.

Gaussian sequence model plays a fundamental role in
non-parametric and high-dimensional statistics. There exists
extensive literature on the minimax estimation of θ or its
functionals over various structured parameter spaces such
as Sobolev ellipsoids, hyperrectangles and Besov bodies.
These parameter spaces usually characterize the smoothness
properties of functions in terms of their Fourier or wavelet
coefficients. We refer to [3], [4], and [11] and references
therein for a systematic treatment of this topic. The estimation
problem over Θ(kn) has been also well studied in statistical
decision theory (e.g., with application to wavelet signal pro-
cessing) since 1990s. Define the soft thresholding estimator
η̂S(y, λ) ∈ Rn and hard thresholding estimator η̂H(y, λ) ∈ Rn

with coordinates: for 1 ≤ i ≤ n,

[η̂S(y, λ)]i = argmin
µ∈R

(yi − µ)2 + 2λ|µ|

= sign(yi)(|yi| − λ)+, (4)

[η̂H(y, λ)]i = argmin
µ∈R

(yi − µ)2 + λ2I(µ ̸= 0)

= yiI(|yi| > λ), (5)

where sign(u), u+ represent the sign and positive part of u
respectively, I(·) denotes the indicator function, and λ ≥ 0 is
a tuning parameter. We summarize a classical asymptotic
minimax result in the following theorem.

Theorem 1 ([3], [12], [13]): Assume model (1) and
parameter space (2) with kn/n → 0 as n → ∞. Then the
minimax risk, defined in (3), satisfies

R(Θ(kn), σn) = (2 + o(1)) · σ2
nkn log(n/kn).

Moreover, both the soft and hard thresholding estimators with
tuning λn = σn

√
2 log(n/k) are asymptotically minimax, i.e.,

for θ̂ = η̂S(y, λn) or η̂H(y, λn), it holds that

sup
θ∈Θ(kn)

Eθ∥θ̂ − θ∥22 = (2 + o(1)) · σ2
nkn log(n/kn).

Theorem 1 shows that both soft and hard thresholding
estimators are minimax optimal for estimating sparse signals
(with small values of kn/n). Despite the mathematical beauty
of the above results, its practical implications seem not clear.
We demonstrate this point by a simulation in Figure 1. As is
clear from the upper panel, when the noise level is low, hard
thresholding performs the best among the three estimators; as
the noise level increases, hard thresholding starts to be out-
performed by soft thresholding, and eventually both hard and
soft thresohlding are outperformed by the linear estimator. The
same comparison holds in the lower panel as the sample size
increases from 500 to 5000. This phenomenon can be widely
observed for different types of sparse signals. We provide more
simulations in Section III.

In light of Theorem 1 and Figure 1, we would like to raise
a few critical comments:

Fig. 1. Mean squared error comparison at different noise levels. Data is
generated according to (1) with kn = ⌊n2/3⌋ and θ having kn components
equal to 1.5. “linear” denotes the simple linear estimator 1

1+λ
y. All the three

estimators are optimally tuned. MSE is averaged over 20 repetitions along with
standard error. Other details of the simulation can be found in Section III.

1) Despite their minimax optimality, both hard and soft
thresholding estimators selected by the classical mini-
maxity do not perform well compared to a simple linear
estimator when the noise is large.

2) The hard and soft thresholding estimators have distinct
performances at different noise levels, despite they are
both asymptotically minimax.

3) Figure 1 implies that the signal-to-noise ratio (SNR) has a
significant impact on the estimation. However, the effect
of SNR is not well captured in the classical minimax
results (Theorem 1).

These observations lead us to the following question: is it pos-
sible to develop a refined minimax framework which addresses
differences between hard and soft thresholding estimators and
characterizes the role of SNR in the recovery of sparse signals?
Such a framework will provide more proper insights and sound
guidance for practical purpose.

C. Our Contributions and Paper Structure
To overcome the limitations of the classical minimaxity

discussed in Section I-B, in this paper, we aim to develop a
signal-to-noise-ratio-aware minimax framework. This frame-
work imposes direct constraints on the signal strength over
the parameter space and performs the corresponding minimax
analysis that accounts for the impact of signal-to-noise ratio
(SNR). To obtain accurate minimax results in the SNR-
aware setting, we will derive higher-order asymptotics which
provides asymptotic approximations precise up to the second
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order. As will be discussed in detail in Section II, our proposed
framework reveals three regimes in which distinct estimators
achieve minimax optimality. In particular, hard-thresholding
estimator outperforms soft-thresholding estimator and remains
(asymptotically) minimax optimal in the high SNR regime; as
SNR decreases, new optimal estimators will emerge. These
new theoretical findings offer much better explanations for
what is happening in Figure 1, and are much more informa-
tive towards understanding the sparse estimation problem in
practice.

The rest of the paper is organized as follows. Section II
presents the main results from the SNR-aware minimax frame-
work. Section III includes more simulations to support our
theoretical findings. Section IV summarizes the main messages
of the paper and discusses some related works. All the proofs
are presented in Section V.

We collect the notations used throughout the paper here
for convenience. For a scalar x ∈ R, x+ and sign(x) denote
the positive part of x and its sign respectively; ⌊x⌋ is the
largest integer less than or equal to x. For an integer n, [n] =
{1, 2, . . . , n}. We use IA and I(A) to represent the indicator
function of the set A interchangeably. For a given vector
v = (v1, . . . , vp) ∈ Rp, ∥v∥0 = #{i : vi ̸= 0}, ∥v∥∞ =
maxi |vi|, and ∥v∥q =

(∑p
i=1 |vi|q

)1/q
for q ∈ (0,∞). We use

the notation δµ as the point mass at µ ∈ R. We also use
{ej}p

j=1 to denote the natural basis in Rp. For two non-zero
real sequences {an}∞n=1 and {bn}∞n=1, we use an = o(bn) to
represent |an/bn| → 0 as n → ∞, and an = ω(bn) if and
only if bn = o(an); an = O(bn) means supn |an/bn| < ∞,
and an = Ω(bn) if and only if bn = O(an); an = Θ(bn)
denotes an = O(bn) and an = Ω(bn). For a distribution π,
supp(π) denotes its support. Finally, we reserve the notations
ϕ(y) and Φ(y) =

∫ y

−∞ ϕ(s)ds for the standard normal density
and its cumulative distribution function respectively.

II. SNR-AWARE MINIMAXITY

A. SNR-Aware Minimax Framework

We focus on the above-mentioned Gaussian sequence
model (1). To develop the SNR-aware minimax framework,
we start by inserting a notion of signal-to-noise ratio in
the minimax setting. To this end, we consider the following
SNR-aware parameter space:

Θ(kn, τn) =
{

θ ∈ Rn : ∥θ∥0 ≤ kn, ∥θ∥22 ≤ knτ2
n

}
. (6)

Here, as before, kn is the parameter that controls the number of
nonzero components of the signal θ ∈ Rn. The new parameter
τn can be considered as a measure of signal strength (on
average) for each non-zero coordinate of θ. Unlike Θ(kn),
the new parameter space Θ(kn, τn) is responsive to changing
signal strength. Minimax analysis based on it may thus provide
a viable path for revealing the impact of SNR on the estimation
of sparse signals. Define the corresponding minimax risk (for
squared loss):

R(Θ(kn, τn), σn) = inf
θ̂

sup
θ∈Θ(kn,τn)

Eθ∥θ̂ − θ∥22. (7)

We aim to investigate the following problems:

1) Characterizing the minimax risk, R(Θ(kn, τn), σn), for
different choices of sparsity level and signal-to-noise
ratio. This will help us understand the intertwined roles
of SNR and sparsity on signal recovery.

2) Obtaining minimax optimal estimators in the aforemen-
tioned settings, along with evaluating the performance of
some common estimators (e.g., soft thresholding).

The solutions to the above problems will help resolve the
issues we raised before about the classical minimax results.
First, we introduce two critical quantities associated with the
target parameter space Θ(kn, τn) introduced in (6) under the
model (1). Denote

ϵn =
kn

n
, µn =

τn

σn
. (8)

It is clear that ϵn represents the sparsity level and µn is a form
of signal-to-noise ratio over the parameter space. We aim to
study R(Θ(kn, τn), σn) for different values of (ϵn, µn). Since
an explicit solution to exact minimaxity is very challenging
to derive (it is not even available for Θ(kn)), we focus on
obtaining asymptotic minimaxity, and consider the following
regimes: as n → ∞,

Regime (I) Low signal-to-noise ratio: µn → 0, ϵn → 0;
Regime (II) Moderate signal-to-noise ratio: µn → ∞,
ϵn → 0, µn = o(

√
log ϵ−1

n );
Regime (III) High signal-to-noise ratio: ϵn → 0, µn =
ω(
√
log ϵ−1

n ).
The condition ϵn → 0 is standard to model sparse signals.

The above three regimes are classified according to the order of
signal-to-noise ratio µn. As will be shown in Section II-C via
higher-order asymptotics, each regime exhibits unique mini-
maxity, and distinct minimax estimators emerge in different
regimes. But before that, we first derive similar first-order
asymptotic result as the classical one and reveal its limitations
in the SNR-aware minimax setting.

B. First Order Analysis of SNR-Aware Minimaxity and Its
Drawbacks

Our first theorem generalizes Theorem 1, to our SNR-aware
minimax framework.

Theorem 2: Assume model (1) and parameter space (6).
The following hold:

• Regime (I). When µn → 0, ϵn → 0,

R(Θ(kn, τn), σn) = (1 + o(1)) · nσ2
nϵnµ2

n,

and the zero estimator is asymptotically minimax optimal
(up to the first order).

• Regime (II). When µn → ∞, ϵn → 0, µn =
o(
√
log ϵ−1

n ),

R(Θ(kn, τn), σn) = (1 + o(1)) · nσ2
nϵnµ2

n,

and the zero estimator is asymptotically minimax optimal
(up to the first order).

• Regime (III). When ϵn → 0, µn = ω(
√

log ϵ−1
n ),

R(Θ(kn, τn), σn) = (2 + o(1)) · nσ2
nϵn log(ϵ−1

n ).

Furthermore, both soft and hard thresholding esti-
mators (4)-(5) with the tuning parameter λn =
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σn

√
2 log ϵ−1

n are asymptotically minimax optimal (up
to the first order).

This theorem is covered as a special case of Theorems 3,
4, and 6 we present in Section II-C. Hence, the proof is
skipped.

There are a few aspects of the above results that we would
like to emphasize here:

1) As is clear, first-order analysis under the new SNR-aware
minimax framework already provides more information
than in the previous framework. For instance, it implies
that below a certain signal-to-noise-ratio, i.e. when µn =
o(
√

log ϵ−1
n ), sparsity promoting estimators such as hard

or soft thresholding do not seem to have any advantage
over the zero estimator. In fact, the zero estimator is
optimal up to the first order. Later in Section II-C we
will argue that even these theorems should be interpreted
carefully, and that the current interpretation is not fully
accurate.

2) If we consider the rate of ϵn fixed and evaluate the
minimax risk as a function of µn, we will see a
phase transition happening in the first order term of
the minimax risk. As long as the first order is con-
cerned, the trivial zero estimator is minimax optimal for
any µn = o(

√
log ϵ−1

n ). Hence, it seems that unless
µn = Ω(

√
log ϵ−1

n ), even the optimal minimax estimators
will miss the signal. Once µn = ω(

√
log ϵ−1

n ), the
first order result implies the optimality of non-trivial
estimators, such as soft-thresholding. While it is chal-
lenging to provide an intuitive argument for the phase
transition occurring at

√
log ϵ−1

n =
√
log(n/kn), the

following explanation may offer some insight: Consider a
kn-sparse signal (with kn non-zero components) in Rn

with Gaussian noises. On average, there exists one
non-zero signal component among n/kn locations. The
maximum absolute value of the noises at the n/kn

locations is on the order of
√
log(n/kn). Consequently,

from an intuitive perspective, it becomes easier to detect
signals when their magnitudes exceed this threshold,
but significantly more challenging when they fall below
this threshold. It’s important to note that heuristic argu-
ments like the one above have their limitations and
should not be solely relied upon for drawing conclu-
sive results. This aspect will be further clarified in the
next section, where we will demonstrate that minimax
estimators can outperform zero estimators even when
µn = o(

√
log ϵ−1

n ).

One of the main issues in the above theorem is that the
first-order asymptotic approximation of minimax risk does not
seem to always offer accurate information. For example, as the
signal-to-noise ratio significantly increases from Regime (I) to
Regime (II), the first-order analysis falls short of capturing any
difference and continues to generate the naive zero estimator
as the optimal one. Moreover, in Regime (III), the analysis
is inadequate to explain the difference between hard and
soft thresholding estimators. In the next section, we push the
analysis one step further to develop second-order asymptotics.
This refined version of the SNR-aware minimax analysis will
provide a much more accurate approximation of the minimax

risk, and can provide more useful information and resolve
the confusing aspects of the first-order results presented
above.

C. Second Order Analysis of SNR-Aware Minimaxity

In this section, we discuss how the analysis provided in
Section II-B can be refined to resolve the issues we raised in
Section I-B.

1) Results in Regime (I): We start with Regime (I). As dis-
cussed in Theorem 2, as far as the first order of minimax risk
is concerned, the zero estimator is asymptotically optimal in
this regime, and no other estimators can outperform the zero
estimator. The reason this peculiar feature arises is that since
the exact expression for R(Θ(kn, τn), σn) is very complicated,
Theorem 2 resorts to an approximation that is asymptotically
accurate. However, this approximation is coarse when n is
not too large and/or ϵn is not too small. The conclusions that
are based on such first order analysis are hence not reliable.
Therefore, we pursue a second-order asymptotic analysis of
minimax risk to achieve better approximations. This more
delicate analysis turns out to be instructive for understanding
the three regimes of varying SNRs. We first present the result
in Regime (I). Define the simple linear estimator η̂L(y, λ) ∈
Rn with coordinates:

[η̂L(y, λ)]i=
yi

1 + λ
=argmin

µ∈R
(yi − µ)2 + λµ2, 1 ≤ i ≤ n.

(9)

Theorem 3: Consider model (1) and parameter space (6).
For Regime (I) in which ϵn → 0, µn → 0 as n → ∞, we have

R(Θ(kn, τn), σn) = nσ2
n

(
ϵnµ2

n − ϵ2nµ4
n

(
1 + o(1)

))
.

In addition, the linear estimator η̂L(y, λn) with tuning λn =(
ϵnµ2

n

)−1
is asymptotically minimax up to the second order

term, i.e.

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂L(y, λn)−θ
∥∥2
2
=nσ2

n

(
ϵnµ2

n−ϵ2nµ4
n

(
1+o(1)

))
.

The proof of this theorem can be found in Section V-B.
Compared with Theorem 2, Theorem 3 obtains the additional
second dominating term in the minimax risk. This negative
term quantifies the amount of improvement that can be possi-
bly achieved over the trivial zero estimator (whose supremum
risk exactly equals nσ2

nϵnµ2
n). Indeed, the non-trivial linear

estimator η̂L(y, λn) has supremum risk matching with the
minimax risk up to the second order. Therefore, through
the lens of second-order asymptotics, we discover a new
minimax optimal estimator that outperforms the zero estimator
recommended from the first-order analysis.

The second-order optimality of the linear estimator
η̂L(y, λn) in Regime (I) raises the following question: how do
non-linear estimators compare with η̂L(y, λn)? For instance,
the soft thresholding estimator η̂S(y, λ) in (4) with λ = ∞
recovers the zero estimator and is hence first-order optimal.
Can η̂S(y, λ) with proper tuning become second-order asymp-
totically optimal in this regime? The following theorem shows
that the answer is negative.
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Proposition 1: Consider model (1) and parameter space (6).
In Regime (I) where ϵn → 0, µn → 0 as n → ∞, the optimally
tuned soft thresholding estimator η̂S(y, λ) has supremum risk:

inf
λ

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂S(y, λ)− θ
∥∥2
2

=nσ2
n

ϵnµ2
n − exp

[
−1
2

1
µ2

n

(
log

1
ϵn

)2 (
1 + o(1)

)] .

The proof of this proposition can be found in Section V-C.
It is straightforward to confirm that

exp
[
− 1

2
1
µ2

n

(
log

1
ϵn

)2 (
1 + o(1)

) ]
/(ϵ2nµ4

n) = o(1)

under the scaling ϵn → 0, µn → 0. Hence, soft thresholding
η̂S(y, λ) is outperformed by the linear estimator η̂L(y, λn) and
is sub-optimal (up to second order). A similar result can be
proved for the hard thresholding estimator as well.

Proposition 2: Consider model (1) and parameter space (6).
In Regime (I) where ϵn → 0, µn → 0 as n → ∞, the optimally
tuned hard thresholding estimator η̂H(y, λ) has supremum
risk:

inf
λ

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂H(y, λ)− θ
∥∥2
2
= nσ2

nϵnµ2
n.

The proof of this proposition is presented in Section V-D.
The fact that η̂L(y, λn) is optimal and η̂S(y, λ) and η̂H(y, λ)

are sub-optimal in Regime (I) is intriguing. It says that the
former non-sparse estimator is better than the latter sparse
ones for recovering sparse signals. In fact, the result further
implies that any sparsity-promoting procedure cannot improve
over a simple linear shrinkage for the recovery of sparse
signals. A high-level explanation is that since Regime (I) has
low signal-to-noise ratio in which variance is the dominating
factor of mean squared error, linear shrinkage achieves a better
balance between bias and variance than those more “aggres-
sive” sparsity-inducing operations. These results demonstrate
the practical relevance of SNR-aware minimaxity as opposed
to the classical minimax approach.

2) Results in Regime (II): We now move on to discuss
Regime (II) where new minimaxity results arise as the signal-
to-noise ratio increases. Introduce an estimator η̂E(y, λ, γ) =
η̂S(y,λ)
1+γ ∈ Rn with coordinates:

[η̂E(y, λ, γ)]i =
[η̂S(y, λ)]i

1 + γ

=argmin
u∈R

(yi − u)2 + 2λ|u|+ γu2, 1 ≤ i ≤ n. (10)

The estimator η̂E(y, λ, γ) is a composition of soft thresholding
and linear shrinkage. It can be considered as an“interpolation”
between soft thresholding estimator and linear estimator.

Theorem 4: Consider model (1) and parameter space (6).
For Regime (II) in which ϵn → 0, µn → ∞, µn =
o(
√
log ϵ−1

n ) as n → ∞, we have

R(Θ(kn, τn), σn) ≥ nσ2
n

(
ϵnµ2

n − 1
2
ϵ2nµ2

neµ2
n
(
1 + o(1)

) )
.

In addition, based on the estimator η̂E(y, λn, γn) with tuning
parameters λn = 2σnµn, and γn = (2ϵnµ2

ne
3
2 µ2

n)−1 − 1,

we have

R(Θ(kn, τn), σn)

≤ sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂E(y, λn, γn)− θ
∥∥2
2

= nσ2
n

(
ϵnµ2

n − (
√
2/π + o(1))ϵ2nµneµ2

n

)
.

The proof of this theorem can be found in Section V-E.
Remark 1: Theorem 4 does not provide a tight upper or

lower bound for the minimax risk approximation. However,
the upper bound given by η̂E(y, λn, γn) only differs from
the lower bound up to an order of µn in the second order
term. Note that this difference is very small in view of the
occurrence of eµ2

n in the second order term. In this sense,
the estimator η̂E(y, λn, γn) is nearly optimal in Regime (II).
In this theorem, we believe that the upper bound is not
necessarily sharp. In fact, we anticipate that there may be other
estimators capable of outperforming η̂E(y, λn, γn). Our next
theorem (Theorem 5) gives an accurate second order term for
the minimax risk in Regime (II), under a uniform boundedness
condition on parameter coordinates in the parameter space.
However, as will be elaborated in the proof, the technique
employed to establish the upper bound on the minimax risk is
not constructive and does not identify the minimax estimator.

Theorem 5: Consider model (1) with the following param-
eter space:

ΘA(kn, τn) :=
{

θ ∈ Rn : ∥θ∥0 ≤ kn,

∥θ∥22 ≤ knτ2
n, ∥θ∥∞ ≤ Aτn

}
. (11)

For Regime (II) in which ϵn → 0, µn → ∞, µn =
o(
√
log ϵ−1

n ) as n → ∞, we have that for any constant A > 1,

R(ΘA(kn, τn), σn) = nσ2
n

(
ϵnµ2

n − 1
2
ϵ2nµ2

neµ2
n
(
1 + o(1)

))
.

The theorem is proved in Section V-F.
Now let us interpret the above results. First note that in

Regime (II), compared to Regime (I), the magnitude of the
second order term (relative to the first order term) is much
larger, so that the possible improvement over the zero estimator
is much more significant. This is expected as the SNR is
higher compared to Regime (I). Furthermore, the (near) opti-
mality of η̂E(y, λn, γn) showed in Theorem 4 indicates that
thresohlding and linear shrinkage together play an important
role in estimating sparse signals in Regime (II). To shed more
light on it, the following three propositions prove that neither
thresohlding estimators η̂S(y, λ), η̂H(y, λ) nor linear estimator
η̂L(y, λ) alone is close to optimal.

Proposition 3: Consider model (1) and parameter space (6).
In Regime (II) where ϵn → 0, µn → ∞, µn = o(

√
log ϵ−1

n ),
as n → ∞, the optimally tuned soft thresholding estimator
has supremum risk:

inf
λ

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂S(y, λ)− θ
∥∥2
2

= nσ2
n

ϵnµ2
n − exp

[
−1
2

1
µ2

n

(
log

1
ϵn

)2 (
1 + o(1)

)] .

The proof of this proposition can be found in Section V-G.
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Proposition 4: Consider model (1) and parameter space (6).
In Regime (II) where ϵn → 0, µn → ∞, µn = o(

√
log ϵ−1

n )
as n → ∞, the optimally tuned hard thresholding estimator
η̂H(y, λ) has supremum risk:

inf
λ

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂H(y, λ)− θ
∥∥2
2
= nσ2

nϵnµ2
n.

The proof of this proposition is presented in Section V-H.
Proposition 5: Consider model (1) and parameter space (6).

In Regime (II) where ϵn → 0, µn → ∞, µn = o(
√
log ϵ−1

n ),
as n → ∞, the optimally tuned linear estimator has supremum
risk:

inf
λ

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂L(y, λ)−θ
∥∥2
2
=nσ2

n

(
ϵnµ2

n−
ϵ2nµ4

n

1+ϵnµ2
n

)
.

The proof of this proposition can be easily followed by the
discussion in Section V-B1.

Comparing the second order term in Theorem 4 and Propo-
sitions 3-5 under the scaling condition ϵn → 0, µn →
∞, µn = o(

√
log ϵ−1

n ), it is straightforward to verify that
the supremum risk of η̂E(y, λn, γn) is much smaller than
that of optimally tuned soft thresholding, hard thresholding,
and linear estimator. In light of what we have discussed in
Regime (I), the results in Regime (II) deliver an interesting
message: when SNR increases from low to moderate level,
sparsity promoting operation becomes effective in estimating
sparse signals; on the other hand, since SNR is not sufficiently
high yet, a component of linear shrinkage towards zero still
boosts the performance.

3) Results in Regime (III): Finally, let us consider the high-
SNR regime, i.e., Regime (III). As shown in Theorem 2, the
first-order approximation of minimax risk claims that both
hard and soft thresholding estimators are optimal. However,
the refined second-order analysis will reveal that hard thresh-
olding remains optimal while soft thresholding is in fact
sub-optimal, up to the second order term.

Theorem 6: Consider model (1) and parameter space (6).
For Regime (III) in which ϵn → 0, µn = ω(

√
log ϵ−1

n ) as
n → ∞, we have

R(Θ(kn, τn), σn)

= nσ2
n

(
2ϵn log ϵ−1

n − 2ϵnνn

√
2 log νn

(
1 + o(1)

))
,

where νn :=
√
2 log ϵ−1

n . In addition, the hard thresholding
η̂H(y, λn) with tuning λn = σn

√
2 log ϵ−1

n is asymptotically
minimax up to the second order term, i.e.

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂H(y, λn)− θ
∥∥2
2

= nσ2
n

(
2ϵn log ϵ−1

n − 2ϵnνn

√
2 log νn

(
1 + o(1)

))
.

The proof of this theorem can be found in Section V-I.
Before we interpret this result, let us obtain the risk of the
soft thresholding estimator and linear estimator as well.

Proposition 6: Consider model (1) and parameter space (6).
In Regime (III) where ϵn → 0, µn = ω(

√
log ϵ−1

n ) as n → ∞,
the optimally tuned soft thresholding achieves the supremum
risk:

inf
λ

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂S(y, λ)− θ
∥∥2
2

= nσ2
n

(
2ϵn log ϵ−1

n − 6ϵn log νn

(
1 + o(1)

))
,

where νn =
√
2 log ϵ−1

n .
The proof of the proposition can be found in Section V-J.
Proposition 7: Consider model (1) and parameter space (6).

In Regime (III) where ϵn → 0, µn = ω(
√
log ϵ−1

n ) as n → ∞,
the optimally tuned linear estimator achieves the supremum
risk:

inf
λ

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂L(y, λ)− θ
∥∥2
2

=
nσ2

nϵnµ2
n

1 + ϵnµ2
n

= ω(nσ2
nϵn log(ϵ−1

n )).

The proof of this proposition is presented in Section V-K.
Combining the above three results, we can conclude that

overall in Regime (III) hard thresholding offers a better esti-
mate than soft thresholding and linear shrinkage. The intuition
is that Regime (III) has a high SNR where bias becomes
the dominating factor of mean squared error, therefore hard
thresholding has an edge on soft thresholding and linear
shrinkage by producing zero coordinates while not shrinking
the above-threshold coordinates. Moreover, note that the dif-
ference between the first order and second order terms in the
minimax risk is smaller than

√
log ϵ−1

n . This implies that the
second order term in our approximations can be relevant in a
wide range of sparsity levels.

III. NUMERICAL EXPERIMENTS

As discussed in Section I-B through one simulation exam-
ple, classical minimax results are inadequate for characterizing
the role of signal-to-noise ratio (SNR) in the estimation of
sparse signals. Hence, we developed the new SNR-aware
minimax framework in Section II to overcome the limita-
tions of the classical minimaxity. In this section, we provide
more empirical results to evaluate the points we discussed
above.

We generate the signal θ in the following way: for a sample
size n, θ = (θ1, . . . , θn) is generated by assigning τn to a
random choice of kn coordinates and setting the others to zero.
Then y = (y1, . . . , yn) and z = (z1, . . . , zn) are generated
according to Model (1) for a certain noise level σn.

Given the sample size n, we consider three sparsity levels
kn = ⌊n2/3⌋, ⌊n3/4⌋, ⌊n1/2⌋, so that ϵn = kn/n → 0 as
n → ∞. In addition, since SNR is decided by µn = τn/σn,
without the loss of generality, we fix the value of the signal
strength τn = 10. We demonstrate our findings in two ways:

1) Let µn change from small to large values, and plot the
mean squared error (MSE) of different estimators as a
function of µn.

2) Let σn change from small to large values, and plot the
MSE as a function of σn.

In our experiments, we consider moderate sample size
n = 500 and large sample size n = 5000. We consider
the four estimators that have been extensively discussed in
the previous sections: linear estimator η̂L defined in (9), soft
thresholding η̂S defined in (4), hard thresholding η̂H defined
in (5), and the soft-linear “interpolation” estimator η̂E defined
in (10) (since η̂E is the composition of soft thresholding and
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linear shrinkage, we refer to it as soft-linear “interpolation” for
convenience). We evaluate the performance of estimators using
the empirical MSE scaled by the total signal strength: ∥θ∥−2

2 ·∑n
i=1(θ̂i−θi)2. The MSEs shown in Figures 2-5 are averaged

over 20 repetitions, plotted with 95% confidence intervals from
t-distribution. For each estimator, tuning parameters are chosen
by grid search to obtain the minimum possible MSE.

From Figures 2-3, when σn changes from small to large
values, we observed that: (1) When σn is near zero, hard
thresholding achieves the minimum MSE among the four
estimators discussed in previous sections. This corresponds to
Regime (III) in our theory. (2) When σn is in moderate area,
the soft-linear ‘interpolation’ estimator η̂E has the minimum
empirical MSE. This corresponds to Regime (II) in our theory.
(3) When σn becomes large, the linear estimator η̂L as
well as the optimally tuned η̂E (since η̂E can achieve η̂L

when optimally tuned) have the minimum empirical MSE.
Our theory in Regime (I) states that when SNR is small,
η̂L becomes asymptotically minimax optimal. The empirical
studies align well with our current theory.

Figures 4-5 offer similar conclusions as the ones we men-
tioned above. The main difference is that instead of revealing
MSE as a function of the noise level, we view it as a function
of SNR. Due to this difference, the leftmost part of each graph
corresponds to Regime (I). As µn increases, the curves will
correspond to Regime (II) and Regime (III). In particular,
when µn is large, it corresponds with the area of σn near
zero in Figures 2-3. Here, it is shown more clearly that in
the large SNR regime, hard thresholding has the minimum
empirical MSE among all the estimators.

IV. DISCUSSIONS

A. Summary

We introduced two notions that can make the minimax
results more meaningful and appealing for practical purposes:
(i) signal-to-noise-ratio aware minimaxity, (ii) second-order
asymptotic approximation of minimax risk. We showed that
these two notions can alleviate the major drawbacks of the
classical minimax results. For instance, while the classical
results prove that the hard and soft thresholding estimators are
minimax optimal, the new results reveal that in a wide range
of low signal-to-noise ratios the two estimators are in fact
sub-optimal. Even when the signal-to-noise ratio is high, only
hard thresholding is optimal and soft thresholding remains sub-
optimal. Furthermore, our refined minimax analysis identified
three optimal (or nearly optimal) estimators in three regimes
with varying SNR: hard thresholding η̂H(y, λ) of (5) in high
SNR; η̂E(y, λ, γ) of (10) in moderate SNR; linear estimator
η̂L(y, λ) of (9) in low SNR. As is clear from the definition
of the three estimators, they are induced by ℓ0-regularization,
elastic net regularization [14] and ℓ2-regularization, respec-
tively. These regularization techniques have been widely used
in statistics and machine learning [15].

The concepts of signal-to-noise ratio aware minimaxity
and higher-order asymptotic approximations introduced in this
paper may open up new venues for investigating various esti-
mation problems. We have recently used the same framework
to revisit the sparse estimation problem in high-dimensional

Fig. 2. Mean squared error comparison at different noise levels. On each
graph, the y-axis is the scaled MSE, and the x-axis is the noise standard
deviation σn. (to be continued in Fig. 3).

linear regression and obtained new insights. That being said,
it is important to acknowledge that the additional insights
gained from this framework come with increased math-
ematical complexity when computing minimax estimators.
Therefore, one direction we plan to explore in the future is the
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Fig. 3. (Continued from Fig. 2).

Fig. 4. Mean squared error comparison at different SNR levels. On each
graph, the y-axis is the scaled MSE, and the x-axis is the SNR µn. (to be
continued in Fig. 5).

development of simpler and more general techniques for
obtaining higher-order approximations of minimax risk or the
supremum risk of well-established estimators.

Fig. 5. (Continued from Fig. 4).

B. Related Works

There are some recent works on the significance of SNR for
sparse learning. The extensive simulations conducted in the
linear regression setting by [8] demonstrated that best subset
selection (ℓ0-regularization) performs better than the lasso
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(ℓ1-regularization) in very high SNR, while the lasso out-
performs best subset selection in low SNR regimes. [9], [16]
developed new variants of subset selection that can perform
consistently well in various levels of SNR. Some authors
of the current paper (with their collaborators) established
sharp theoretical characterizations of ℓq-regularization under
varying SNR regimes in high-dimensional sparse regression
and variable selection problems [10], [17], [18]. In particular,
their results revealed that among the ℓq-regularization for q ∈
[0, 2], as SNR decreases from high to low levels, the optimal
value of q for parameter estimation and variable selection will
move from 0 towards 2. All the aforementioned works studied
the impact of SNR on several or a family of popular estimators.
Hence their comparison conclusions are only applicable to
a restricted set of estimators. In contrast, our work focused
on minimax analysis that led to stronger optimality-type
conclusions. For example, the preceding works showed that ℓ2-
regularization outperforms other ℓq-regularization when SNR
is low. We obtained a stronger result that ℓ2-regularization is in
fact (minimax) optimal among all the estimators in low SNR.

In a separate work, the first order minimax optimality is
also proved for other estimators, such as empirical Bayes
estimators [19]. However, as we discussed before, first order
minimax analysis is inherently incapable of evaluating the
impact of the SNR on the performance of different estimators.

The second-order analysis of the minimax risk of the
Gaussian sequence model under the sparsity constraint has
been discussed in [20]. To compare this paper with our work,
we have to mention the following points: (1) Such analysis
still suffers from the fact that it disregards the effect of the
signal-to-noise ratio. By restricting the signal-to-noise ratio,
our SNR-aware minimax framework provides much more
refined information about the minimax estimators. (2) In terms
of the theoretical analysis, the SNR-aware minimax analysis
requires much more delicate analysis compared to the classical
settings where there is no constraint on the SNR. In particular,
constructing and proving the least favorable distributions is
more complicated in our settings compared to the classical
setting. As a result, all the following steps of the proof become
more complicated too.

We should also emphasize that minimax analysis over
classes of ℓp balls (i.e., Θ = {θ : ∥θ∥p ≤ Cn}) for p > 0 under
Gaussian sequence model has been performed in [3], [12],
and [21]. These works revealed that a notion of SNR involving
Cn and σn plays a critical role in characterizing the asymptotic
minimax risk and the optimality of linear or thresholding
estimators. Finally, see [22] and [23] for non-asymptotic
minimax rate analysis of variable selection and functional
estimation on sparse Gaussian sequence models.

C. Future Research

Several important directions are left open for future
research:

• The paper considered estimating signals with sparsity
kn/n → 0. The other denser regime where kn/n →
c > 0 is also important to study. This will provide
complementary asymptotic insights into the estimation
of signals with varying sparsity. There exists classical

minimax analysis along this line (see Chapter 8 in [3]).
A generalization of SNR-aware minimaxity to this regime
is an interesting future work.

• The obtained minimax optimal estimators involve tuning
parameters that depend on unknown quantities such as
sparsity kn and signal strength τn from the parameter
space. It is important to develop fully data-driven esti-
mators that retain optimality for practical use. Hence,
adaptive minimaxity is the next step, and classical
adaptivity results (e.g., [3]) may be helpful for the
development.

• In this paper, we have focused on the parameter spaces
that imposed the exact sparsity on θ. Sparsity promoting
denoisers such as hard thresholding and soft thresholding
have been also used over other structured parameter
spaces such as Sobolev ellipsoids and Besov bodies.
These parameter spaces usually characterize the smooth-
ness properties of functions in terms of their Fourier
or wavelet coefficients. We refer to [3], [4], and [11]
and references therein for a systematic treatment of this
topic. An interesting future research would be to explore
the implications of the SNR-aware minimaixty and
higher-order approximation of the minimax risk for such
spaces.

• The current work focused on the classical sparse Gaussian
sequence model. It would be interesting to pursue a
generalization to high-dimensional sparse linear regres-
sions. Existing works (see [5], [24] and references there)
established minimax rate optimality (with loose con-
stants) which is not adequate to accurately capture the
impact of SNR. Instead, the goal is to derive asymptotic
approximations with sharp constants as we did for Gaus-
sian sequence models. We believe that this is generally
a very challenging problem without imposing specific
constraint on the design matrix. A good starting point is to
consider the “compressed sensing” model whose design
rows follow independent isotropic Gaussian distribution.
We have made some major progress along this line and
look forward to further development.

V. PROOFS

A. Preliminaries

1) Scale Invariance: The minimax risk defined in (7) has
the following scale invariance property

R(Θ(kn, τn), σn) = σ2
n · R(Θ(kn, µn), 1),

where we recall that µn = τn/σn. This can be easily
verified by rescaling the Gaussian sequence model to have
unit variance. Moreover, similar invariance holds for the four
estimators considered in the paper. We state it without proof
in the following: ∀σ > 0,

σ · η̂S(y, λ) = η̂S(σy, σλ), σ · η̂H(y, λ) = η̂S(σy, σλ),
σ · η̂L(y, λ) = η̂L(σy, λ), σ · η̂E(y, λ, γ) = η̂E(σy, σλ, γ).

These invariance properties will be frequently used in the proof
to reduce a problem to a simpler one under unit variance.
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2) Gaussian Tail Bound: Recall the notation that ϕ,Φ
denote the probability density function and cumulative dis-
tribution function of a standard normal random variable,
respectively. The following Gaussian tail bound will be exten-
sively used in the proof.

Lemma 1 (Exercise 8.1 in [3]): Define

Φ̃l(λ) := λ−1ϕ(λ)
l∑

k=0

(−1)k

k!
Γ(2k + 1)
2kλ2k

,

where Γ(·) is the gamma function. Then, for each k ≥ 0 and
all λ > 0:

Φ̃2k+1(λ) ≤ 1− Φ(λ) ≤ Φ̃2k(λ).

3) The Minimax Theorem: Consider the Gaussian sequence
model:

yi = θi + σzi, i = 1, 2, . . . , n, (12)

where z1, z2, . . . , zn
i.i.d.∼ N (0, 1). If π is a prior distribution

of θ ∈ Rn, the integrated risk of an estimator θ̂ (with squared
error loss) is B(θ̂, π) = EπEθ∥θ̂ − θ∥22, and the Bayes risk
of π is B(π) = inf θ̂ B(θ̂, π). We state a version of minimax
theorem suited to the Gaussian sequence model. The theorem
allows to evaluate minimax risk by calculating the maximum
Bayes risk over a class of prior distributions.

Theorem 7 (Theorem 4.12 in [3]): Consider the Gaussian
sequence model (12). Let P be a convex set of probability
measures on Rn. Then

inf
θ̂

sup
π∈P

B(θ̂, π) = sup
π∈P

inf
θ̂

B(θ̂, π) = sup
π∈P

B(π).

A maximising π is called a least favorable distribution (with
respect to P).

4) Independence Is Less Favorable: We present a useful
result that can often help find the least favorable distributions.
Let π be an arbitrary prior, so that the θj are not necessarily
independent. Denote by πj the marginal distribution of θj .
Build a new prior π̄ by making the θj independent: π̄ =

∏
j πj .

This product prior has a larger Bayes risk.
Theorem 8 (Lemma 4.15 in [3]): B(π̄) ≥ B(π).
5) A Machinery for Obtaining Lower Bounds for the Min-

imax Risk: In our results, we are often interested in finding
lower bounds for the minimax risk. The following elementary
result taken from Chapter 4.3 of [3] will be useful in those
cases.

Theorem 9: Consider the minimax risk of a risk function
r(·, ·) over a parameter set Θ:

R(Θ) = inf
θ̂

sup
θ∈Θ

r(θ̂, θ).

Recall that B(π) is the Bayes risk of prior π: B(π) =
inf θ̂

∫
r(θ̂, θ)π(dθ). Let P denote a collection of probability

measure, and suppP denote the union of all suppπ for π in
P . If

B(P) = sup
π∈P

B(π),

then

suppP ⊂ Θ ⇒ R(Θ) ≥ B(P).

B. Proof of Theorem 3

To calculate the minimax risk R(Θ(kn, τn), σn), we first
obtain an upper bound by computing the supremum risk of
the linear estimator η̂L(y, λn),

R(Θ(kn, τn), σn) ≤ sup
θ∈Θ(kn,τn)

Eθ∥η̂L(y, λn)− θ∥22.

We then derive a matching lower bound based on Theorem 9.
In particular, we construct a particular prior supported on
Θ(kn, τn) (that is the least favorable prior at the level of
approximation we require), and its corresponding Bayes risk
leads to a sharp lower bound for the minimax risk. The detailed
derivation of the upper and lower bounds is presented below.

1) Upper Bound: Thanks to the simple form of the linear
estimator η̂L(y, λn), its supremum risk under tuning λn =
(ϵnµ2

n)
−1 can be computed in a straightforward way: for all

θ ∈ Θ(kn, τn),

Eθ∥η̂L(y, λn)− θ∥22 = Eθ

n∑
i=1

(
1

1 + λn
yi − θi

)2

=
n∑

i=1

[(
λn

1 + λn

)2

θ2i +
(

1
1 + λn

)2

σ2
n

]

≤ λ2
nknτ2

n + nσ2
n

(1 + λn)2
=

nσ2
nϵnµ2

n

1 + ϵnµ2
n

= nσ2
nϵnµ2

n ·
(
1− ϵnµ2

n(1 + ϵnµ2
n)

−1
)

= nσ2
nϵnµ2

n ·
(
1− ϵnµ2

n(1 + o(1))
)
,

where we have used the assumption ϵn = kn/n → 0, µn =
τn/σn → 0, and the constraint ∥θ∥22 ≤ knτ2

n, ∀θ ∈ Θ(kn, τn).
As a result,

R(Θ(kn, τn), σn) ≤ sup
θ∈Θ(kn,τn)

Eθ∥η̂L(y, λn)− θ∥22

= nσ2
nϵnµ2

n ·
(
1− ϵnµ2

n(1 + o(1))
)
.

2) Lower Bound: First, due to the scale invariance property
R(Θ(kn, τn), σn) = σ2

n ·R(Θ(kn, µn), 1) (see Section V-A1),
it is sufficient to obtain lower bound for R(Θ(kn, µn), 1),
i.e., the minimax risk under Gaussian sequence model: yi =
θi + zi, 1 ≤ i ≤ n, with zi

i.i.d.∼ N (0, 1). A general
strategy for finding lower bounds of minimax risk in sparse
Gaussian sequence model, is to employ i.i.d. univariate spike
prior as the (asymptotically) least favorable prior. Although
such product prior served as a suitable tool to establish a
sharp lower bound for proving Theorem 1, we have since
recognized its inadequacy in providing a sufficiently sharp
lower bound for obtaining the second-order approximation of
the minimax risk. Hence, in order to use Theorem 9, we utilize
the family of independent block priors [3], [25]. The specific
independent block prior πIB(θ) on Θ(kn, µn) for our problem
is constructed in the following steps:

1) Divide θ ∈ Rn into kn disjoint blocks of dimension m =
n/kn:1

θ = (θ(1), θ(2), . . . , θ(kn)).

1For simplicity, here we assume n/kn is an integer. In the case when it is
not, we can slightly adjust the block size to obtain the same lower bound.
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2) Sample each block θ(j) ∈ Rm from the symmetric spike
prior πµ,m

S : for 1 ≤ i ≤ m,

πµ,m
S

(
θ(j) = µei

)
= πµ,m

S

(
θ(j) = −µei

)
=

1
2m

,

where µ ∈ (0, µn] is a location parameter.
3) Combine independent blocks:

πIB(θ) =
kn∏

j=1

πµ,m
S (θ(j))

.
In other words, the independent block prior πIB picks a
single spike (from 2m possible locations) in each of kn non-
overlapping blocks of θ, with the spike location within each
block being independent and uniform. As is clear from the
construction, supp(πIB) ⊆ Θ(kn, µn) so that

R(Θ(kn, µn), 1) ≥ B(πIB) = kn · B(πµ,m
S ). (13)

Here, the last equation holds because when the prior has block
independence and the loss function is additive, the Bayes risk
can be decomposed into the sum of Bayes risk of prior for
each block (see Chapter 4.5 in [3]).

As a result, the main goal of the rest of this section is
to obtain a sharp lower bound (up to the second order) for
the Bayes risk B(πµ,m

S ), i.e., the risk of the posterior mean
under the spike prior πµ,m

S . The following two lemmas are
instrumental in obtaining such a sharp lower bound.

Lemma 2: Consider the Gaussian sequence model: yi =
θi + zi, 1 ≤ i ≤ m, with zi

i.i.d.∼ N (0, 1). The Bayes risk of
πµ,m

S takes the form

B(πµ,m
S ) = Eµe1(θ̂1 − µ)2 + (m − 1)Eµe2 θ̂

2
1,

where Eµe1(·) is taken with respect to y ∼ N (µe1, I) and
Eµe2(·) for y ∼ N (µe2, I); θ̂1 is the posterior mean for the
first coordinate having the expression

θ̂1 =
µ(eµy1 − e−µy1)∑m
i=1(eµyi + e−µyi)

.

Proof: Let the posterior mean be θ̂ = E[θ|y]. Using
Bayes’ Theorem we obtain

θ̂1 = µP(θ = µe1 | y)− µP(θ = −µe1 | y)

=
µ[P(y | θ = µe1)− P(y | θ = −µe1)]∑m
i=1[P(y | θ = µei) + P(y | θ = −µei)]

=
µ(eµy1 − e−µy1)∑m
i=1(eµyi + e−µyi)

.

Moreover, since both θi’s (under the prior) and zi’s are
exchangeable, the pairs {(θ̂i, θi)}m

i=1 are exchangeable as well.
As a result,

B(πµ,m
S ) = E

m∑
i=1

(θ̂i − θi)2 = mE(θ̂1 − θ1)2

=m

[
1
2m

Eµe1(θ̂1 − µ)2 +
1
2m

E−µe1(θ̂1 + µ)2

+
1
2m

m∑
i=2

(
Eµei θ̂

2
1 + E−µei θ̂

2
1

)

=
1
2

[
Eµe1(θ̂1 − µ)2 + E−µe1(θ̂1 + µ)2

]
+

1
2

m∑
i=2

[
Eµei

θ̂21 + E−µei
θ̂21

]
=Eµe1(θ̂1 − µ)2 + (m − 1)Eµe2 θ̂

2
1,

where in the last equation we have used the facts that the
distribution of θ̂1 under θ = µe1 equals that of −θ̂1 under θ =
−µe1, and θ̂1 has the same distribution when θ = ±µei, i =
2, . . . ,m. □

Lemma 3: As µ → 0, m → ∞, The Bayes risk of πµ,m
S

has the lower bound

B(πµ,m
S ) ≥ µ2 − µ4

m
(1 + o(1)).

Proof: Denote pm = eµy1−e−µy1∑m
i=1(e

µyi+e−µyi )
. According to

Lemma 2, the Bayes risk can be lower bounded in the
following way:

B(πµ,m
S ) ≥ µ2 ·

[
1− 2Eµe1pm + (m − 1)Eµe2p

2
m

]
.

It is thus sufficient to prove that Eµe1pm ≤ µ2

m (1 + o(1)) and
(m − 1)Eµe2p

2
m ≥ µ2

m (1 + o(1)). We first prove the former
one. We have

Eµe1pm = E

[
eµ(µ+z1) − e−µ(µ+z1)∑

j ̸=1[eµzj + e−µzj ] + eµ(µ+z1) + e−µ(µ+z1)

]

= E

[
(eµ2 − 1)eµz1∑

j ̸=1[eµzj + e−µzj ] + eµ(µ+z1) + e−µ(µ+z1)

]

+ E

[
(1− e−µ2

)e−µz1∑
j ̸=1[eµzj + e−µzj ] + eµ(µ+z1) + e−µ(µ+z1)

]

+ E

[
eµz1 − e−µz1∑

j ̸=1[eµzj + e−µzj ] + eµ(µ+z1) + e−µ(µ+z1)

]
=: E1 + E2 + E3.

We study E1, E2 and E3 separately. For E1, given that the
numerator inside the expectation is positive, we apply the basic
inequality a + b ≥ 2

√
ab, ∀a, b ≥ 0 to the denominator to

obtain

E1≤
eµ2 − 1
2m

Eeµz1 =
µ2

2m
· (e

µ2 − 1)eµ2/2

µ2
=

µ2(1 + o(1))
2m

.

Similarly, for E2 we have

E2 ≤ 1− e−µ2

2m
Ee−µz1

=
µ2

2m
· (1− e−µ2

)eµ2/2

µ2
=

µ2(1 + o(1))
2m

.

To study E3, define

A :=
∑
j ̸=1

[eµzj + e−µzj ] + eµ(µ+z1) + e−µ(µ+z1),

B :=
∑
j ̸=1

[eµzj + e−µzj ] + eµ(µ−z1) + e−µ(µ−z1).

The basic inequality a+b ≥ 2
√

ab implies that A ≥ 2m, B ≥
2m. This together with the symmetry of standard normal
distribution yields
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E3 = E
eµz1

A
− E

e−µz1

A
= E

eµz1

A
− E

eµz1

B

= E

[
(eµ2 − e−µ2

)(e−µz1 − eµz1)eµz1

AB

]

≤ E

[
(eµ2 − e−µ2

)(1− e2µz1)I(z1≤0)

AB

]

≤ eµ2 − e−µ2

4m2
E
[
(1− e2µz1)1(z1≤0)

]
= O

( µ2

m2

)
It remains to prove (m−1)Eµe2p

2
m ≥ µ2

m (1+o(1)). Denote

C :=
[
eµb + e−µb + 2(m − 2)e

µ2

2 + e
3
2 µ2

+ e−
µ2

2

]2
,

where b > 0 is a scalar to be specified later. Then

Eµe2p
2
m

= E

[
(eµz1 − e−µz1)2[∑

j ̸=2(eµzj + e−µzj ) + eµ(µ+z2) + e−µ(µ+z2)
]2
]

(a)
≥ E

[
(eµz1 − e−µz1)2

[eµz1 + e−µz1 + 2(m − 2)e
µ2
2 + e

3
2 µ2 + e−

µ2
2 ]2

]

≥ E

 (eµz1 − e−µz1)2I(|z1|≤b)

[eµb + e−µb + 2(m − 2)e
µ2
2 + e

3
2 µ2 + e−

µ2
2 ]2


=

2
C

[
Ee2µz1I(|z1|≤b) − P(|z1| ≤ b)

]
=

2
C

[
e2µ2

∫ b−2µ

−b−2µ

ϕ(z)dz −
∫ b

−b

ϕ(z)dz

]

=
2
C

[
(e2µ2

− 1)
∫ b−2µ

−b−2µ

ϕ(z)dz

−
∫ b

b−2µ

ϕ(z)dz +
∫ −b

−b−2µ

ϕ(z)dz

]
(b)
=

2
C

[
2µ2(1 + o(1)) + o(µ2) + o(µ2)

]
(c)
≥ 2

4m2e2
√

µ
· 2µ2(1 + o(1)) =

µ2

m2
(1 + o(1)).

Inequality (a) is obtained by conditioning on z1 and applying
Jensen’s inequality on the convex function 1/(x+ c)2 for x >
0. Equality (b) holds by setting b = 1/

√
µ, for the purpose of

matching the asymptotic order µ2

m (1+o(1)). Finally, inequality
(c) is because C ≤ 4m2e2

√
µ when µ is sufficiently small. □

We are in the position to derive the matching lower bound
for the minimax risk. Recall that in the block prior we have
m = n/kn, µ ∈ (0, µn]. Set µ = µn. The assumption
ϵn = kn/n → 0, µn → 0 guarantees that the condition
m → ∞, µ → 0 in Lemma 3 is satisfied. We therefore
combine Lemma 3 and (13) to obtain

R(Θ(kn, τn), σn) = σ2
n · R(Θ(kn, µn), 1) ≥ knσ2

n · B(πµ,m
S )

≥ knσ2
n ·
[
µ2

n − µ4
nkn

n
(1 + o(1))

]
= nσ2

n ·
(
ϵnµ2

n − ϵ2nµ4
n(1 + o(1))

)
.

C. Proof of Proposition 1

Define the supremum risk of optimally tuned soft thresh-
olding estimator as

Rs(Θ(kn, τn), σn) = inf
λ>0

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂S(y, λ)− θ
∥∥2
2
,

where yi = θi + σnzi, with zi
i.i.d.∼ N (0, 1). It is straightfor-

ward to verify that

Rs(Θ(kn, τn), σn) = σ2
n · Rs(Θ(kn, µn), 1). (14)

Hence, without loss of generality, in the rest of the proof we
will assume that σn = 1.

Since η̂S(y, λ) is the special case of η̂E(y, λ, γ) with
γ = 0, the supremum risk result stated in Equation (42)
for η̂E(y, λ, γ) applies to η̂S(y, λ) as well. It shows that the
supremum risk of η̂S(y, λ) is attained on a particular boundary
of the parameter space:

sup
θ∈Θ(kn,µn)

E
n∑

i=1

|η̂S(yi, λ)− θi|22

= (n − kn)rS(λ, 0) + knrS(λ, µn)
= n

[
(1− ϵn)rS(λ, 0) + ϵnrS(λ, µn)

]
, (15)

with ϵn = kn/n and rS(λ, µ) defined as

rS(λ, µ) = E(η̂S(µ + z, λ)− µ)2, z ∼ N (0, 1). (16)

To prove Proposition 1, we need to find the optimal λ that
minimizes the supremum risk in (15), or equivalently, the
function

F (λ) := (1− ϵn)rS(λ, 0) + ϵnrS(λ, µn). (17)

Lemma 4: Denote the optimal tuning by λ∗ =
argminλ≥0 F (λ). It holds that

log 2ϵ−1
n +

µ2
n

2
− 2 log log

2
ϵn

< λ∗µn < log 2ϵ−1
n +

µ2
n

2
,

(18)

when n is sufficiently large.
Proof: Using integration by parts, we first obtain a more

explicit expression for F (λ):

F (λ) =(1− ϵn)Eη̂2
S(z, λ) + ϵnµ2

n

−2ϵnµnEη̂S(µn + z, λ) + ϵnEη̂2
S(µn + z, λ), (19)

where the three expectations take the form

Eη̂2
S(z, λ) =2(1 + λ2)

∫ ∞

λ

ϕ(z)dz − 2λϕ(λ) (20)

Eη̂S(µn + z, λ) =ϕ(λ − µn) + (µn − λ)
∫ ∞

λ−µn

ϕ(z)dz

−ϕ(λ + µn) + (µn + λ)
∫ ∞

λ+µn

ϕ(z)dz

(21)

Eη̂2
S(µn + z, λ) =

[(
1 + (λ − µn)2

)∫ ∞

λ−µn

ϕ(z)dz

−(λ − µn)ϕ(λ − µn)
]
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+
[(

1 + (λ + µn)2
)∫ ∞

λ+µn

ϕ(z)dz

−(λ + µn)ϕ(λ + µn)
]
. (22)

Therefore, F (λ) is a differentiable function of λ, and as long
as the infimum of F (λ) is not achieved at 0 or +∞, λ∗ will
satisfy F ′(λ∗) = 0. From Equations (19)-(22), it is direct
to compute F (0) = 1 > F (+∞) = ϵnµ2

n for large n.
Moreover, as we will show in the end of the proof, F (λ)
is increasing when λ is above a threshold. Hence, the optimal
tuning λ∗ ∈ (0,∞), and we can characterize it through the
derivative equation:

0 = F ′(λ∗) = (1− ϵn)

[
4λ∗

∫ ∞

λ∗

ϕ(z)dz − 4ϕ(λ∗)

]

+ ϵn

[
− 2ϕ(λ∗ − µn)− 2ϕ(λ∗ + µn)

+ 2λ∗

(∫ ∞

λ∗−µn

ϕ(z)dz +
∫ ∞

λ∗+µn

ϕ(z)dz

)]
. (23)

First, we show that λ∗ → ∞. Suppose this is not true.
Then λ∗ ≤ C for some constant C > 0 (take a subsequence
if necessary). From (19), we have

F (λ∗) ≥(1− ϵn)rS(C, 0)

=2(1− ϵn)
[
(1 + C2)

∫ ∞

C

ϕ(z)dz − Cϕ(C)
]

>ϵnµ2
n = F (+∞),

when n is large. This contradicts with the optimality of λ∗.
Second, we prove that λ∗µn → ∞. Otherwise, λ∗µn =

O(1) (take a subsequence if necessary). We will show that it
leads to a contradiction in (23). Using the Gaussian tail bound∫∞

t
ϕ(z)dz = ( 1t −

1+o(1)
t3 )ϕ(t) as t → ∞ from Section V-A2,

since λ∗ → ∞, µn → 0, λ∗µn = O(1), we obtain

−λ∗

∫ ∞

λ∗

ϕ(z)dz + ϕ(λ∗) = (1 + o(1)) · λ−2
∗ ϕ(λ∗),

(24)

−ϕ(λ∗ + µn) + λ∗

∫ ∞

λ∗+µn

ϕ(z)dz = O(λ−2
∗ ϕ(λ∗)), (25)

−ϕ(λ∗ − µn) + λ∗

∫ ∞

λ∗−µn

ϕ(z)dz = O(λ−2
∗ ϕ(λ∗)). (26)

Given that ϵn → 0, combining the above results with (23)
implies that 0 = F ′(λ∗) ·λ2

∗ϕ
−1(λ∗) = −4+ o(1), which is a

contradiction.
Third, we show that λ∗µn < log 2

ϵn
+ µ2

n

2 for large n. Now
that we have proved λ∗µn → ∞, results in (25)-(26) can be
strengthened:

− ϕ(λ∗ + µn) + λ∗

∫ ∞

λ∗+µn

ϕ(z)dz = o(µnλ−1
∗ ϕ(λ∗ − µn)),

(27)

− ϕ(λ∗ − µn) + λ∗

∫ ∞

λ∗−µn

ϕ(z)dz = (1 + o(1))

· µnλ−1
∗ ϕ(λ∗ − µn). (28)

Plugging (24) and (27)-(28) into (23) gives (4 + o(1)) ·
λ−2
∗ ϕ(λ∗) = (2 + o(1)) · ϵnµnλ−1

∗ ϕ(λ∗ − µn), which can be
further simplified as

2 + o(1) = ϵnµnλ∗ exp(λ∗µn − µ2
n/2). (29)

The above equation implies that λ∗µn < log 2
ϵn

+ µ2
n

2 for
large n. Otherwise, the right-hand side will be no smaller than
2µnλn → ∞ contradicting with the left-hand side term.

Fourth, we prove that λ∗µn > log 2
ϵn

+ µ2
n

2 − 2 log log 2
ϵn

when n is large. Otherwise, suppose λ∗µn ≤ log 2
ϵn

+ µ2
n

2 −
2 log log 2

ϵn
(take a subsequence if necessary). This leads to

0 ≤ ϵnµnλ∗ exp(λ∗µn − µ2
n/2) ≤ 2µnλ∗

(log 2
ϵn
)2

<
2 log 2

2ϵn
+ µ2

n

(log 2
ϵn
)2

= o(1),

where we have used the upper bound λ∗µn < log 2
ϵn

+ µ2
n

2
derived earlier. The obtained result contradicts with (29).

Finally, as mentioned earlier in the proof, we need to show
that λ∗ ̸= +∞ for large n. It is sufficient to prove that F ′(λ) >
0, ∀λ ∈ [ 2

µn
log 1

ϵn
,∞), when n is large. To this end, using the

Gaussian tail bound
∫∞

t
ϕ(z)dz ≥ ( 1t − 1

t3 )ϕ(t), ∀t > 0 and
the derivative expression (23), we have

F ′(λ) ≥ ϕ(λ)
λ2

·
[
−4+4ϵn +

µn(λ − µn)2 − λ

(λ − µn)3λ−2
2ϵneλµn−µ2

n/2

+
−µn(λ + µn)2 − λ

(λ + µn)3λ−2
2ϵne−λµn−µ2

n/2
]

≥ ϕ(λ)
λ2

·
[
−4+4ϵn + (2 + o(1)) · ϵne−µ2

n/2λµneλµn

]
,

where we used that λ ≥ 2
µn

log 1
ϵn

implies λµn = ω(1). Note
that the above asymptotic notion o(·) is uniform for all λ ≥
2

µn
log 1

ϵn
when n is large. Since λµn ≥ 2 log 1

ϵn
, we can

easily continue from the above inequality to obtain F ′(λ) >
0 for sufficiently large n. □

The next lemma turns F (λ∗) into a form that is more
amenable to asymptotic analysis.

Lemma 5: Define

A = −µn(λ∗ − µn) + 1 +
µn(λ∗ − µn)3e−2λ∗µn

(λ∗ + µn)2

+
(λ∗ − µn)3e−2λ∗µn

(λ∗ + µn)3
+ O

(µn

λ∗

)
,

B = µn(λ∗ − µn)2 − λ∗ + (3 + o(1))λ−1
∗

+
[−µnλ2

∗ − λ∗(1 + 2µ2
n(1 + o(1)))]

(λ∗ + µn)3

· (λ∗ − µn)3e−2λ∗µn .

As ϵn → 0, µn → 0, it holds that

F (λ∗) = ϵnµ2
n +

4(1− ϵn)ϕ(λ∗)
λ3
∗

·[
1− 6λ−2

∗ + O(λ−4
∗ ) +

(
λ∗ −

3 + o(1)
λ∗

)A
B

]
.

Proof: We use Gaussian tail bounds to evaluate the three
expectations (20)-(22) in the expression of F (λ∗) in (19). Note

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 05:08:01 UTC from IEEE Xplore.  Restrictions apply. 



GUO et al.: SIGNAL-TO-NOISE RATIO AWARE MINIMAXITY AND HIGHER-ORDER ASYMPTOTICS 3551

that as shown in Lemma 4, λ∗µn = Θ(log 2ϵ−1
n ). The first

expectation is

Eη̂2
S(z, λ∗) = 2ϕ(λ∗)

[
2λ−3

∗ − 12λ−5
∗ + O(λ−7

∗ )
]
. (30)

Regarding the second one, we obtain

ϕ(λ∗ − µn)− (λ∗ − µn)
∫ ∞

λ∗−µn

ϕ(z)dz

=
[
(λ∗ − µn)−2 + O

(
(λ∗ − µn)−4

)]
ϕ(λ∗ − µn),

and

ϕ(λ∗ + µn)− (λ∗ + µn)
∫ ∞

λ∗+µn

ϕ(z)dz

=
[
(λ∗ + µn)−2e−2λ∗µn + O

(
(λ∗ + µn)−4e−2λ∗µn

)]
·

ϕ(λ∗ − µn).

Therefore,

Eη̂S(µn + z, λ∗) =
[
(λ∗ − µn)−2 − (λ∗ + µn)−2e−2λ∗µn

+ O
(
(λ∗ − µn)−4

)]
ϕ(λ∗ − µn). (31)

For the third expectation, we first have(
1 + (λ∗ − µn)2

)∫ ∞

λ∗−µn

ϕ(z)dz − (λ∗ − µn)ϕ(λ∗ − µn)

=
[
2(λ∗ − µn)−3 + O

(
(λ∗ − µn)−5

)]
ϕ(λ∗ − µn),(

1 + (λ∗ + µn)2
)∫ ∞

λ∗+µn

ϕ(z)dz − (λ∗ + µn)ϕ(λ∗ + µn)

=
[
2(λ∗ + µn)−3 + O

(
(λ∗ + µn)−5

)]
ϕ(λ∗ + µn).

Thus,

Eη̂2
S(µn + z, λ∗) =

[
2(λ∗ − µn)−3 + 2(λ∗ + µn)−3e−2λ∗µn

+O
(
(λ∗ − µn)−5

) ]
ϕ(λ∗ − µn). (32)

Plugging (30)-(32) into (19), we have

F (λ∗) = 2(1− ϵn)ϕ(λ∗)
[
2λ−3

∗ − 12λ−5
∗

+ O(λ−7
∗ )
]
+ ϵnµ2

n

−2ϵnµn

[
(λ∗ − µn)−2 − (λ∗ + µn)−2e−2λ∗µn

+O
(
(λ∗ − µn)−4

) ]
ϕ(λ∗ − µn)

+ϵn

[
2(λ∗ − µn)−3 + 2(λ∗ + µn)−3e−2λ∗µn

+O
(
(λ∗ − µn)−5

) ]
ϕ(λ∗ − µn)

= ϵnµ2
n + 2(1− ϵn)ϕ(λ∗)

[
2λ−3

∗ − 12λ−5
∗ + O(λ−7

∗ )
]

+
2ϵnAϕ(λ∗ − µn)

(λ∗ − µn)3
. (33)

Next, we utilize the derivative equation (23) to further sim-
plify (33). We first list the asymptotic approximations needed:

− λ∗

∫ ∞

λ∗

ϕ(z)dz + ϕ(λ∗) =

(1− (3 + o(1))λ−2
∗ ) · λ−2

∗ ϕ(λ∗),

− ϕ(λ∗ + µn) + λ∗

∫ ∞

λ∗+µn

ϕ(z)dz =

[−µnλ2
∗ − λ∗(1 + 2µ2

n(1 + o(1)))]e−2λ∗µn

(λ∗ + µn)3
ϕ(λ∗ − µn),

− ϕ(λ∗ − µn) + λ∗

∫ ∞

λ∗−µn

ϕ(z)dz =

µn(λ∗ − µn)2 − λ∗[1− (3 + o(1))λ−2
∗ ]

(λ∗ − µn)3
ϕ(λ∗ − µn).

Plugging them into (23) yields

4(1− ϵn)
[ 1
λ2
∗
− 3 + o(1)

λ4
∗

]
ϕ(λ∗) = 2ϵn

Bϕ(λ∗ − µn)
(λ∗ − µn)3

.

Obtaining the expression for ϕ(λ∗−µn)
(λ∗−µn)3 from the above

equation and plugging it into (33) completes the proof. □
We now apply Lemmas 4 and 5 to obtain the final form of

F (λ∗). Referring to the expression of F (λ∗) in Lemma 5, the
key term to compute is 1 +

(
λ∗ − 3+o(1)

λ∗

)
A
B . Using the fact

that λ∗µn → ∞, some direct calculations enable us to obtain(
λ∗ −

3 + o(1)
λ∗

)
A+ B = (−1 + o(1))λ∗µ

2
n,

B = µnλ2
∗(1 + o(1)).

Therefore, the expression F (λ∗) in Lemma 5 can be simplified
to

F (λ∗) =ϵnµ2
n +

4(1− ϵn)ϕ(λ∗)
λ3
∗

·
[
− 6λ−2

∗ + O(λ−4
∗ )− µn

λ∗
(1 + o(1))

]
=ϵnµ2

n − (4 + o(1))µnϕ(λ∗)
λ4
∗

.

Finally, Lemma 4 implies that λ∗ = (1 + o(1)) log ϵ−1
n

µn
.

Replacing λ∗ by this rate in the above equation gives us the
result in Proposition 1.

D. Proof of Proposition 2

Define the supremum risk of optimally tuned hard thresh-
olding estimator as

RH(Θ(kn, τn), σn) = inf
λ>0

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂H(y, λ)− θ
∥∥2
2
,

where yi = θi + σnzi, with zi
i.i.d.∼ N (0, 1). It is straightfor-

ward to verify that

RH(Θ(kn, τn), σn) = σ2
n · RH(Θ(kn, µn), 1).

Without loss of generality, let σn = 1 in the model. We first
obtain the lower bound, by calculating the risk at a specific
value of θ such that θi = µn for i ∈ {1, 2, . . . , kn} and θi =
0 for i > kn:

RH(Θ(kn, µn), 1) ≥ inf
λ>0

Eθ∥η̂H(y, λ)− θ∥22. (34)

Denote the one-dimensional risk:

rH(λ, µ) := E
(
η̂H(µ + z, λ)− µ

)2
,
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z ∼ N (0, 1), ∀µ ∈ R, λ ≥ 0.

It is then direct to confirm that

Eθ∥η̂H(y, λ)− θ∥22|

= n
[
(1− ϵn)rH(λ, 0) + ϵnrH(λ, µn)

]
. (35)

Let λ∗
n be the optimal choice of λ in Eθ∥η̂H(y, λ) − θ∥2 so

that

inf
λ>0

Eθ∥η̂H(y, λ)− θ∥22 = Eθ∥η̂H(y, λ∗
n)− θ∥22.

To evaluate the lower bound in (34), we consider two scenarios
for the optimal choice λ∗

n and in each one we obtain a lower
bound for Eθ∥η̂H(y, λ∗

n)− θ∥2. But before considering these
two cases, we use the integration by part to find the following
more explicit forms for rH(λ, 0) and rH(λ, µ):

rH(λ, 0) = 2
∫ ∞

λ

z2ϕ(z)dz = 2λϕ(λ) + 2(1− Φ(λ)),

rH(λ, µ) = µ2

∫ λ−µ

−λ−µ

ϕ(z)dz +
∫ −λ−µ

−∞
z2ϕ(z)dz

+
∫ ∞

λ−µ

z2ϕ(z)dz

= (µ2 − 1)
[
Φ(λ − µ)− Φ(−λ − µ)

]
+ 1

+ (λ − µ)ϕ(λ − µ) + (λ + µ)ϕ(λ + µ), (36)

where we recall that ϕ(·) and Φ(·) denote the density and CDF
of N (0, 1) respectively. Now we consider two cases for the
optimal choice λ∗

n and in each case find a lower bound for the
risk.

• Case I λ∗
n = O(1): we have λ∗

n ≤ c for some constant
c > 0. Hence, from (35) we obtain

inf
λ>0

Eθ∥η̂H(y, λ)− θ∥22 = Eθ∥η̂H(y, λ∗
n)− θ∥22

≥ n(1− ϵn)rH(λ∗
n, 0)

= n(1− ϵn)
[
2λ∗

nϕ(λ∗
n) + 2(1− Φ(λ∗

n))
]

≥ n(1− ϵn)
[
2(1− Φ(λ∗

n))
]

≥ n(1− ϵn)
[
2(1− Φ(c))

]
≥ nϵnµ2

n.

The last inequality is because ϵnµ2
n = o(1) and (1 −

ϵn)[2(1− Φ(c))] = Θ(1).
• Case II λ∗

n = ω(1): then λ∗
n → ∞ as n → ∞. From (35)

and (36), we have

inf
λ>0

Eθ∥η̂H(y, λ)− θ∥22

= Eθ∥η̂H(y, λ∗
n)− θ∥22 ≥ knrH(λ∗

n, µn)

= kn(µ2
n − 1)

[
1−
∫ ∞

λ∗
n−µn

ϕ(z)dz−
∫ ∞

λ∗
n+µn

ϕ(z)dz

]
+kn

+ kn(λ∗
n−µn)ϕ(λ∗

n−µn)+kn(λ∗
n+µn)ϕ(λ∗

n+µn)
(a)
= knµ2

n + kn(λ∗
n − µn + o(1))ϕ(λ∗

n − µn)
+ kn(λ∗

n + µn + o(1))ϕ(λ∗
n + µn)

≥ knµ2
n = nϵnµ2

n,

where to obtain (a), we have used the Gaussian tail bound
in Lemma 1 under the scaling λ∗

n → ∞ and µn → 0.

Note that since the two cases we have discussed above cover
all the ranges of λ∗

n, we conclude that

RH(Θ(kn, µn), 1) ≥ inf
λ>0

Eθ∥η̂H(y, λ)− θ∥22 ≥ nϵnµ2
n,

for all sufficiently large n. To obtain the matching upper
bound, we have

RH(Θ(kn, µn), 1)

= inf
λ>0

sup
θ∈Θ(kn,µn)

Eθ

∥∥η̂H(y, λ)− θ
∥∥2
2

≤ lim
λ→∞

sup
θ∈Θ(kn,µn)

Eθ

∥∥η̂H(y, λ)− θ
∥∥2
2

≤ lim
λ→∞

(
sup

θ∈Θ(kn,µn)

Eθ∥η̂H(y, λ)∥22

+ sup
θ∈Θ(kn,µn)

Eθ⟨−2η̂H(y, λ), θ⟩+ sup
θ∈Θ(kn,µn)

∥θ∥22
)

≤nϵnµ2
n + lim

λ→∞

(
sup

θ∈Θ(kn,µn)

Eθ∥η̂H(y, λ)∥22

+ 2
√

nϵnµ2
n

√
sup

θ∈Θ(kn,µn)

Eθ∥η̂H(y, λ)∥22
)
. (37)

To obtain the last inequality, we have used Cauchy-Schwarz
inequality and supθ∈Θ(kn,µn) ∥θ∥22 = knµ2

n. From (37),
to show RH(Θ(kn, µn), 1) ≤ nϵnµ2

n, it is sufficient to prove

lim
λ→∞

sup
θ∈Θ(kn,µn)

Eθ∥η̂H(y, λ)∥22 = 0.

Define fλ(µ) := E|η̂H(µ+ z, λ)|2, z ∼ N (0, 1). It is not hard
to verify that fλ(µ), as a function of µ, is symmetric around
zero and increasing over [0,∞) for all λ > 0. As a result,

lim
λ→∞

sup
θ∈Θ(kn,µn)

Eθ∥η̂H(y, λ)∥22

≤ lim
λ→∞

[
(n − kn)fλ(0) + knfλ(

√
knµn)

]
=(n − kn) lim

λ→∞
fλ(0) + kn lim

λ→∞
fλ(
√

knµn)

=0 + 0 = 0.

The last line holds because limλ→∞ fλ(µ) = 0, ∀µ ∈ R from
dominated convergence theorem. The dominated convergence
theorem can be used since |η̂H(µ + z, λ)|2 ≤ |µ + z|2 and
limλ→∞ |η̂H(µ + z, λ)|2 = 0.

E. Proof of Theorem 4
Recall the scale invariance property in Section V-A1:

R(Θ(kn, τn), σn) = σ2
n ·R(Θ(kn, µn), 1), where µn = τn/σn.

Moreover, the estimator η̂E(y, λ, γ) := 1
1+γ η̂S(y, λ) defined

in Equation (10) also preserves an invariance: t · η̂E(y, λ, γ) =
η̂E(ty, tλ, γ), ∀t ≥ 0. Therefore, to prove both the upper and
lower bounds, in this section, it is sufficient to consider the
simpler unit-variance model:

yi = θi + zi, i = 1, . . . , n, (38)

where (zi)
i.i.d∼ N (0, 1). We find an upper bound for the

minimax risk by calculating the supremum risk of ηE(y, λ, γ)
with proper tuning. The lower bound is obtained by using
Theorem 9 and considering the independent block prior again.
Both steps are more challenging than the corresponding steps
in the proof of Theorem 3.
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1) Upper Bound: To analyze the supremum risk of
η̂E(y, λ, γ), it is important to understand its risk in one
dimension. Define the one-dimensional risk function as:

re(µ;λ, γ) = E
( 1
1 + γ

η̂S(µ + z, λ)− µ
)2

, z ∼ N (0, 1).

(39)

The following property of the risk function plays a pivotal
role in our analysis.

Lemma 6: For any given tuning parameters λ > 0, γ ∈
[0,+∞], it holds that

(i) re(µ;λ, γ), as a function of µ, is symmetric, and increas-
ing over µ ∈ [0,+∞).

(ii) max(x,y):x2+y2=c2 [re(x;λ, γ) + re(y;λ, γ)] =
2re(c/

√
2;λ, γ), ∀c > 0.

Proof: (i) Proving the symmetry of re(µ;λ, γ) is straight-
forward and is hence skipped. To prove the monotonicity of
re(µ;λ, γ), we will calculate its derivative and show that it
is positive for all µ > 0. To this end, we first decompose
re(µ;λ, γ) into three terms:

re(µ;λ, γ) =
1

(1 + γ)2
E(η̂S(µ + z, λ)− µ)2

+
γ2µ2

(1 + γ)2
+

2γµ

(1 + γ)2
E(µ − η̂S(µ + z, λ)).

Accordingly, the derivative of re(µ;λ, γ) takes the form:

∂re(µ;λ, γ)
∂µ

=
1

(1 + γ)2
∂E(η̂S(µ + z, λ)− µ)2

∂µ
+

2γ2µ

(1 + γ)2

− 2γ
(1 + γ)2

[
µ

∂E(η̂S(µ + z, λ)− µ)
∂µ

+E(η̂S(µ + z, λ)− µ)
]
. (40)

Using the explicit expression η̂S(µ+z, λ) = sign(µ+z)(|µ+
z| − λ)+, we can calculate

∂E(η̂S(µ + z, λ)− µ)
∂µ

=
∂

∂µ
E
[
(−µ)I(|µ+z|≤λ)

+ (z − λ)I(z+µ>λ) + (z + λ)I(z+µ<−λ)

]
=− P(|z + µ| ≤ λ)− µ[−ϕ(λ − µ) + ϕ(−λ − µ)]
−µϕ(λ − µ) + µϕ(−λ − µ) = −P(|z + µ| ≤ λ),

and
∂E(η̂S(µ + z, λ)− µ)2

µ

=
∂

∂µ
E
[
µ2I(|µ+z|≤λ)+(z−λ)2I(z+µ>λ)+(z+λ)2I(z+µ<−λ)

]
= 2µP(|µ + z| ≤ λ) + µ2[−ϕ(λ − µ) + ϕ(−λ − µ)]

+ µ2ϕ(λ − µ)− µ2ϕ(−λ − µ)
= 2µP(|µ + z| ≤ λ).

Putting the above two results into (40), we obtain, ∀µ > 0,

∂re(µ;λ, γ)
∂µ

=
2µ

(1 + γ)
P(|z + µ| ≤ λ) +

2γ2µ

(1 + γ)2

+
2γ

(1 + γ)2
E(µ − η̂S(µ + z, λ)) > 0, (41)

where the derivative is positive as all the terms on the
right-hand side are non-negative and at least one of them is
positive for all µ > 0. To verify this, all others are obvious and
only the last term E(µ− η̂S(µ+ z, λ)) needs be checked: this
term is positive because it is an odd function and has positive
derivative.

(ii) Since the case where γ = +∞ is trivial, we consider
γ ∈ [0,∞) in the rest of the proof. Let H(x) := re(x;λ, γ)+
re(

√
c2 − x2;λ, γ) and consider max0≤x≤c H(x). Since H(x)

is continuous over [0, c], we find the maximum by evaluating
the derivative of H(x) over (0, c). Using the derivative calcu-
lation (41), we have

H ′(x) = r′e(x;λ, γ)− x√
c2 − x2

r′e(
√

c2 − x2;λ, γ)

=
2x

1 + γ
f1(x) +

2γx

(1 + γ)2
f2(x),

where

f1(x) := P(|x + z| ≤ λ)− P(|
√

c2 − x2 + z| ≤ λ),

f2(x) :=
1√

c2 − x2
Eη̂S(

√
c2 − x2+z, λ)− 1

x
Eη̂S(x + z, λ).

We now show that H ′(x) > 0 for x ∈ (0, c√
2
), H ′( c√

2
) = 0,

and H ′(x) < 0 for x ∈ ( c√
2
, c). It is straightforward to confirm

that H ′( c√
2
) = 0. Hence, it is sufficient to show both f1(x)

and f2(x) are positive over (0, c√
2
) and negative over ( c√

2
, c).

This can be proved if we show that both f1(x) and f2(x)
are strictly decreasing over (0, c), given that f1(c/

√
2) =

f2(c/
√
2) = 0.

Regarding f1(x), it is direct to verify that P(|x+z| ≤ λ) is
strictly decreasing over (0, c), and accordingly P(|

√
c2 − x2+

z| ≤ λ) is strictly increasing over (0, c). Hence f1(x) is strictly
decreasing over (0, c). It remains to prove the monotonicity
of f2(x). By the structure of f2(x), it is sufficient to show
E[ 1x η̂S(x + z, λ)] is a strictly increasing function of x for
x > 0. We compute the derivative:

∂E 1
x η̂S(x + z, λ)

∂x
= − 1

x2
Eη̂S(x + z, λ) +

1
x

P(|x + z| > λ)

= − 1
x2

(
E
[
(x + z − λ)I(x+z>λ) + (x + z + λ)I(x+z<−λ)

]
− x

∫ ∞

λ−x

ϕ(z)dz − x

∫ ∞

λ+x

ϕ(z)dz

)
= − 1

x2

[
ϕ(λ−x)− λ

∫ ∞

λ−x

ϕ(z)dz + λ

∫ ∞

λ+x

ϕ(z)dz

− ϕ(λ + x)
]
:= − 1

x2
h(x).

Therefore, for x > 0, ∂E 1
x η̂S(x+z,λ)

∂x > 0 if and only if h(x) <
0. In fact,

h′(x) = (λ − x)ϕ(λ − x) + (λ + x)ϕ(λ + x)
− λϕ(λ − x)− λϕ(λ + x)
= x(ϕ(λ + x)− ϕ(λ − x)) < 0, ∀x > 0.

Also, it is straightforward to confirm that h(0) = 0. Thus
h(x) < 0 for x > 0. □
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The one-dimensional risk function properties in Lemma 6
will enable us to locate the parameter value at which the supre-
mum risk of η̂E(y, λ, γ) over the parameter space Θ(kn, µn)
is achieved. The following lemma provides the detailed supre-
mum risk calculation for a carefully-picked choice of the
tuning.

Lemma 7: Consider model (38). Suppose ϵn = kn/n → 0,
µn → ∞, and µn = o(

√
log ϵ−1

n ), as n → ∞. Then
the estimator η̂E(y, λn, γn) = 1

1+γn
η̂S(y, λn), with γn =

(2ϵnµ2
ne

3
2 µ2

n)−1 − 1 and λn = 2µn, has supremum risk:

sup
θ∈Θ(kn,µn)

Eθ∥η̂E(y, λn, γn)− θ∥22

=knµ2
n − (

√
2/π + o(1)) · k2

n

n
µneµ2

n .

Proof: Using the one-dimensional risk function in (39),
we can write:

sup
θ∈Θ(kn,µn)

Eθ∥η̂E(y, λn, γn)− θ∥22

= sup
θ∈Θ(kn,µn)

n∑
i=1

re(θi;λn, γn).

According to the properties proved in Lemma 6, it is clear that
the above supremum is attained at the parameter vector θ in
which there are kn non-zero components and they are all equal
to µn (it occurs at a particular boundary of the parameter space
Θ(kn, µn)). Therefore, the supremum risk can be simplified
to

sup
θ∈Θ(kn,µn)

Eθ∥η̂E(y, λn, γn)− θ∥22

=n
[
(1− ϵn)re(0;λn, γn) + ϵnre(µn;λn, γn)

]
=n

[
1− ϵn

(1 + γn)2
Eη̂2

S(z, λn) +
ϵn

(1 + γn)2
Eη̂2

S(µn + z, λn)

− 2ϵnµn

1 + γn
Eη̂S(µn + z, λn) + ϵnµ2

n

]
. (42)

To further calculate the supremum risk, we evaluate the three
expectations in the above expression, using the Gaussian tail
bound

∫∞
t

ϕ(z)dz =
(

1
t − 1

t3 + 3+o(1)
t5

)
ϕ(t) as t → ∞. For

the particular choice λn = 2µn → ∞, we have

Eη̂2
S(z, λn) = 2

[
(1 + λ2

n)
∫ ∞

λn

ϕ(z)dz − λnϕ(λn)
]

=
1 + o(1)
2µ3

n

ϕ(2µn). (43)

Furthermore,

Eη̂2
S(µn + z, λn)

=
[
(1+(µn − λn)2)

∫ ∞

λn−µn

ϕ(z)dz − (λn − µn)ϕ(λn − µn)
]

+
[
(1 + (µn + λn)2)

∫ ∞

λn+µn

ϕ(z)dz − (λn + µn)ϕ(λn + µn)
]

=
2 + o(1)

(λn − µn)3
ϕ(λn − µn) +

2 + o(1)
(λn + µn)3

ϕ(λn + µn)

=
2 + o(1)

µ3
n

ϕ(µn), (44)

and

Eη̂S(µn + z, λn) = ϕ(λn − µn)− (λn − µn)

·
∫ ∞

λn−µn

ϕ(z)dz − ϕ(λn + µn) + (µn + λn)
∫ ∞

λn+µn

ϕ(z)dz

=
1 + o(1)

(λn − µn)2
ϕ(λn − µn)−

1 + o(1)
(λn + µn)2

ϕ(λn + µn)

=
1 + o(1)

µ2
n

ϕ(µn). (45)

Plugging (43)-(45) into (42) with the particular choice γn =
(2ϵnµ2

ne
3
2 µ2

n)−1 − 1 considered in the lemma, we obtain

sup
θ∈Θ(kn,µn)

Eθ∥η̂E(y, λn, γn)− θ∥22

= knµ2
n + (2 + o(1)) · nϵ2nµne

3
2 µ2

nϕ(µn) + (8 + o(1))

· nϵ3nµne3µ2
nϕ(µn)− (4 + o(1)) · nϵ2nµne

3
2 µ2

nϕ(µn)

= knµ2
n − (2 + o(1)) · nϵ2nµne

3
2 µ2

nϕ(µn).

The last equation holds because µn = o(
√
log ϵ−1

n ) implies
ϵne

3
2 µ2

n = o(1), so that the third term on the right-hand side
of the first equation is negligible. □

Now we can combine the preceding results we proved to
obtain an upper bound for the minimax risk: with γn =
(2ϵnµ2

ne
3
2 µ2

n)−1 − 1 and λn = 2µn, it holds that

R(Θ(kn, τn), σn) = σ2
n · R(Θ(kn, µn), 1)

≤ σ2
n · sup

θ∈Θ(kn,µn)

Eθ∥η̂E(y, λn, γn)− θ∥22

= sup
θ∈Θ(kn,τn)

Eθ∥η̂E(y, σnλn, γn)− θ∥22

= σ2
n

(
knµ2

n − (
√
2/π + o(1)) · k2

n

n
µneµ2

n

)
= nσ2

n

(
ϵnµ2

n − (
√

2/π + o(1))ϵ2nµneµ2
n

)
.

2) Lower Bound: The derivation of the lower bound follows
the same roadmap of proof for the lower bound in Theo-
rem 3. It relies on the independent block prior constructed in
Section V-B2. According to Equation (13), the key step is to
calculate the Bayes risk B(πµ,m

S ) of the symmetric spike prior
µµ,m

S for (µ ∈ (0, µn]), in the regime m = n/kn → ∞, µn →
∞, µn = o(

√
log ϵ−1

n ). It turns out that setting µ = µn will
lead to a sharp lower bound. We summarize the result in the
next lemma.

Lemma 8: As m = n/kn → ∞, µn → ∞, µn =
o(
√
log ϵ−1

n ), the Bayes risk B(πµn,m
S ) satisfies

B(πµn,m
S ) ≥ µ2

n

[
1− eµ2

n

2m
(1 + o(1))

]
.

Proof: The result is an analog of Lemma 3 in Regime
(II). Adopt the same notation from the proof of Lemma 3:
pm = eµy1−e−µy1∑m

i=1(e
µyi+e−µyi )

. In light of Lemma 2, it is sufficient
to show that

(i) Eµne1(pm − 1)2 ≥ 1− 1
meµ2

n(1 + o(1)),
(ii) (m − 1)Eµne2p

2
m ≥ 1

2meµ2
n(1 + o(1)).

Regarding Part (i), we have

Eµne1 [pm − 1]2 ≥ 1− 2·
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E

(
eµn(µn+z1) − e−µn(µn+z1)∑

j ̸=1(eµnzj + e−µnzj ) + eµn(µn+z1) + e−µn(µn+z1)

)
≥ 1− 2·

E

(
eµn(µn+z1)∑

j ̸=1(eµnzj + e−µnzj ) + eµn(µn+z1) + e−µn(µn+z1)

)
.

Thus, (i) will be proved by showing that

E

(
eµn(µn+z1)∑

j ̸=1(eµnzj + e−µnzj ) + eµn(µn+z1) + e−µn(µn+z1)

)
≤ 1

2m
eµ2

n(1 + o(1)).

The expectation on the left-hand side of the above can be split-
ted into a summation of two truncated expectations according
to the following condition:

eµn(µn+z1) + e−µn(µn+z1) ≥ eµnz1 + e−µnz1

⇔ (eµ2
n − 1)

(
eµnz1 − e−µnz1−µ2

n

)
≥ 0

⇔ µnz1 ≥ −µnz1 − µ2
n

⇔ z1 ≥ −1
2
µn.

In the first case,

E

 eµn(µn+z1)I(z1≥− 1
2 µn)∑

j ̸=1(eµnzj + e−µnzj ) + eµn(µn+z1) + e−µn(µn+z1)


≤ E

 eµn(µn+z1)I(z1≥− 1
2 µn)∑m

j=1(eµnzj + e−µnzj )


≤ eµ2

nE

(
eµnz1∑m

j=1(eµnzj + e−µnzj )

)

=
eµ2

n

2
E

(
eµnz1 + e−µnz1∑m

j=1(eµnzj + e−µnzj )

)
=

eµ2
n

2m
,

where in the last two equations we have used the symme-
try and exchangeability of i.i.d. standard normal variables
{zi}m

j=1. In the second case,

E

 eµn(µn+z1)I(z1≤− 1
2 µn)∑

j ̸=1(eµnzj + e−µnzj ) + eµn(µn+z1) + e−µn(µn+z1)


≤ eµ2

nE

(
eµnz1I(z1≤− 1

2 µn)∑m
j=1 eµnzj

)

=
eµ2

n

m
E

(∑m
j=1 eµnzj I(zj≤− 1

2 µn)∑m
j=1 eµnzj

)
, (46)

where the last equality is again due to exchangeability of
{zj}m

j=1. Denoting

Yn :=
1

me
1
2 µ2

n

m∑
j=1

eµnzj , Zn :=
1

me
1
2 µ2

n

m∑
j=1

eµnzj I(zj≤− 1
2 µn),

then the last expectation in (46) can be written as E(Zn/Yn),
and it remains to show E(Zn/Yn) = o(1). It is straightforward
to check that EYn = 1. Furthermore, since µn = o(

√
log ϵ−1

n ),

it is direct to verify that Var(Yn) ≤ m

m2eµ2
n
e2µ2

n = o(1).
Hence, Yn → 1 in probability. In addition,

E(Zn) = E
(
eµnz1Iz1≤− 1

2 µn
· e− 1

2 µ2
n

)
=
∫ − 1

2 µn

−∞

1√
2π

e−
z2
2 +µnz− 1

2 µ2
ndz

=
∫ −µn

2

−∞

1√
2π

e−
1
2 (z−µn)2dz

=
∫ − 3

2 µn

−∞

1√
2π

e−
1
2 z2

dz = o(1).

Thus, Zn → 0 in probability. As a result, Zn/Yn → 0 in prob-
ability. Since |Zn/Yn| ≤ 1, dominated convergence theorem
guarantees that E(Zn/Yn) → 0.

To prove Part (ii), it is equivalent to prove

E
(eµnz1 − e−µnz1)2

[
∑

j ̸=2(eµnzj + e−µnzj ) + eµn(µn+z2) + e−µn(µn+z2)]2

≥ 1
2m2

eµ2
n(1 + o(1)).

Towards this goal, we have

E
(eµnz1 − e−µnz1)2

[
∑

j ̸=2(eµnzj + e−µnzj ) + eµn(µn+z2) + e−µn(µn+z2)]2

(a)
≥ E

(eµnz1 − e−µnz1)2

[2(m − 2)e
µ2

n
2 + e

3
2 µ2

n + e−
µ2

n
2 + eµnz1 + e−µnz1 ]2

(b)
≥ E

(eµnz1 − e−µnz1)2I(|z1|≤3µn)

[2(m − 2)e
µ2

n
2 + 4

√
me

µ2
n
2 ]2

(c)
=

2
eµ2

n(2m−4+4
√

m)2
·
[
Ee2µnz1I|z1|≤3µn

−P(|z1| ≤ 3µn)
]

=
2

eµ2
n(2m − 4 + 4

√
m)2

·

(
e2µ2

n

∫ µn

−5µn

ϕ(z)dz −
∫ 3µn

−3µn

ϕ(z)dz

)
=

1
2m2

eµ2
n(1 + o(1)).

Here, Inequality (a) is by applying the Jensen’s inequality
with respect to z2, . . . , zm (conditioned on z1), as 1/(x +
c)2 (c > 0) is a convex function of x > 0. Inequality

(b) holds because e
3
2 µ2

n + e−
µ2

n
2 + eµnz1 + e−µnz1 ≤ 4e3µ2

n

when |z1| ≤ 3µn, and e3µ2
n ≤

√
me

µ2
n
2 (for large n) under

the condition µn = o(
√
logm). Equality (c) is due to the

symmetry of z1 ∼ N (0, 1). □
Our goal now is to use Lemma 8 to finish the proof of the

lower bound in Theorem 4:

R(Θ(kn, τn), σn))
= σ2

n · R(Θ(kn, µn), 1) ≥ knσ2
n · B(πµn,m

S )

≥ knσ2
nµ2

n

[
1− eµ2

n

2m
(1 + o(1))

]
= nσ2

n

[
ϵnµ2

n − 1
2
ϵ2nµ2

neµ2
n(1 + o(1))

]
.
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F. Proof of Theorem 5

Like in the proof of Theorems 3 and 4, we calculate the
minimax risk by deriving matching upper and lower bounds.
However, a notable difference of the proof of Theorem 5
is that the tight upper bound is obtained not by analyzing
the supremum risk of a given estimator, but rather by a
Bayesian approach. In this approach, we establish a uniform
upper bound for the Bayes risk of an arbitrary distribution
supported on average on the parameter space, and use the
minimax theorem (i.e. Theorem 7) to connect the result to
the matching upper bound of the minimax risk. We present
the details of the upper and lower bounds in Sections V-F1
and V-F2, respectively.

1) Upper Bound: Consider the univariate Gaussian model:

Y = θ + Z, (47)

where θ ∈ R and Z ∼ N (0, 1). For a given constant A > 1,
define a class of priors for θ:

ΓA(ϵ, µ) :=
{

π ∈ P(R) : π({0}) ≥ 1− ϵ, Eπθ2 ≤ ϵµ2,

supp(π) ∈ [−Aµ, Aµ]
}

, (48)

where P(R) denotes the class of all probability measures
defined on R, and ϵ ∈ [0, 1], µ > 0. Note that π ∈ ΓA(ϵ, µ)
implies that π = (1−ϵ)δ0+ϵG, for some distribution G satis-
fying EGθ2 ≤ µ2 and supp(G) ⊆ [−Aµ, Aµ]. The worst-case
Bayes risk (i.e., the one of the least favorable distribution),
under this univariate Gaussian model with squared error loss,
is defined as

BA(ϵ, µ, 1) := sup
{

B(π) : π ∈ ΓA(ϵ, µ)
}

, (49)

where

B(π) = E(E(θ|Y )− θ)2, θ ∼ π, Y | θ ∼ N (θ, 1).

The following lemma allows us to obtain an upper bound
for R(ΘA(kn, τn), σn) in terms of BA(ϵ, µ, 1).

Lemma 9: The minimax risk satisfies the following
inequality:

R(ΘA(kn, τn), σn) ≤ nσ2
n · BA(ϵn, µn, 1).

Proof: The proof closely follows the arguments in the
proof of Theorem 8.21 of [3]. However, since the param-
eter space we consider is different, we cover a full proof
here for completeness. For notational simplicity, let Θn :=
ΘA(kn, τn). Consider the class of priors

Mn := M(kn, τn, A) =
{

π ∈ P(Rn) : Eπ ∥θ∥0 ≤ kn,

Eπ ∥θ∥22 ≤ knτ2
n, supp(π) ⊆ [−Aτn, Aτn]n

}
,

where P(Rn) denotes the set of all probability measures
on Rn. Let Me

n := Me(kn, τn, A) ⊆ M(kn, τn, A) be its
exchangeable subclass, consisting of the distributions π ∈ Mn

that are permutation invariant over the n coordinates. Using
notation B(π,M) := supπ∈M B(π), we will show that

R(Θn, σn)≤B(π,Mn)=B(π,Me
n) ≤ nσ2

n · BA(ϵn, µn, 1).
(50)

We start with equality in (50).

R(Θn, σn) = inf
θ̂

sup
θ∈Θn

E∥θ̂ − θ∥22
(a)

≤ inf
θ̂

sup
π∈Mn

Eπ∥θ̂ − θ∥22

(b)
= sup

π∈Mn

inf
θ̂

Eπ∥θ̂ − θ∥22 = B(π, Mn).

Inequality (a) is due to the fact that Mn contains all point
mass priors δθ, for every θ ∈ Θn. To obtain Equality (b)
we have used the minimax theorem, i.e. Theorem 7, as Mn

is a convex set of probability measures. To prove the second
inequality in (50), note that for any π ∈ Mn, we can construct
a corresponding prior:

πe =
1
n!

∑
σ:[n]→[n]

π ◦ σ,

where σ denotes a permutation of the coordinates of θ, and
π◦σ is the distribution after permutation. In other words, πe is
the distribution averaged over all the permutations, thus πe ∈
Me

n. Given that B(π) is a concave function (it is the infimum
of linear functions), we have B(π,Mn) ≤ B(π,Me

n) which
implies B(π,Mn) = B(π,Me

n) since Me
n ⊆ Mn.

To show the last inequality in (50), for any exchangeable
prior π ∈ Me

n, let π1 be its univariate marginal distribution.
Using the constraints on π from Mn and the fact that π is
symmetric over its n coordinates, we have

π1(θ1=0) ≥ 1−ϵn, Eπ1θ
2
1 ≤ ϵnτ2

n, suppπ1 ⊆ [−Aτn, Aτn]

Hence π1 ∈ ΓA(ϵn, τn) defined in (48). Furthermore, accord-
ing to Theorem 8, the product prior πn

1 is less favorable than
πe, namely, B(π) ≤ B(πn

1 ) = nB(π1). Rescaling the noise
level to one and maximizing over π1 ∈ ΓA(ϵn, µn) completes
the proof. □

Lemma 9 reduces the problem of obtaining the upper bound
for frequentist minimax risk (under Gaussian sequence model)
to the problem of upper bounding the worst-case Bayes risk
(under a univariate Gaussian model). Our next goal is to find
an upper bound for BA(ϵn, µn, 1). Towards this end, we first
state a useful lemma.

Lemma 10: Under model (47), consider prior π = (1 −
ϵ)δ0 + ϵG ∈ ΓA(ϵ, µ), as defined in (48). Then,

E(E(θ|Y ))2 =
∫

ϵ2(
∫

tetz− t2
2 dG(t))2

1− ϵ + ϵ
∫

etz− t2
2 dG(t)

ϕ(z)dz,

where ϕ(·) denotes the density function of standard normal
random variable.

Proof: Given the prior π = (1− ϵ)δ0+ ϵG, the posterior
mean of θ is given by

E(θ|Y = y) =
ϵ
∫

θϕ(y − θ)dG(θ)
(1− ϵ)ϕ(y) + ϵ

∫
ϕ(y − θ)dG(θ)

.

Thus,

E(E(θ|Y ))2

= (1− ϵ)
∫ [

ϵ
∫

tϕ(z − t)dG(t)
(1− ϵ)ϕ(z) + ϵ

∫
ϕ(z − t)dG(t)

]2
ϕ(z)dz

+ ϵ

∫∫ [
ϵ
∫

tϕ(θ + z̃ − t)dG(t)
(1− ϵ)ϕ(θ + z̃) + ϵ

∫
ϕ(θ + z̃ − t)dG(t)

]2
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· ϕ(z̃)dz̃dG(θ)

=
∫ [

ϵ
∫

tϕ(z − t)dG(t)
(1− ϵ)ϕ(z) + ϵ

∫
ϕ(z − t)dG(t)

]2
·
[
(1− ϵ)ϕ(z) + ϵ

∫
ϕ(z − θ)dG(θ)

]
dz

=
∫  ϵ

∫
tetz− t2

2 dG(t)

(1− ϵ) + ϵ
∫

etz− t2
2 dG(t)

2

·
[
(1− ϵ) + ϵ

∫
etz− t2

2 dG(t)
]

ϕ(z)dz

=
∫

ϵ2(
∫

tetz− t2
2 dG(t))2

1− ϵ + ϵ
∫

etz− t2
2 dG(t)

ϕ(z)dz,

where the second equality is by a simple change of variable.
□

We can now obtain a sharp upper bound for BA(ϵn, µn, 1).
Lemma 11: Consider ϵn → 0, µn → ∞, µn =

o(
√
log ϵ−1

n ). Under model (47), the worst-case Bayes risk
BA(ϵn, µn, 1) defined in (49) satisfies that for any A > 1,

BA(ϵn, µn, 1) ≤ ϵnµ2
n − 1 + o(1)

2
ϵ2nµ2

neµ2
n .

Proof: For prior π ∈ ΓA(ϵ, µ), using the law of total
expectation,

E(E(θ|Y )− θ)2 = Eθ2 − E(E(θ|Y ))2. (51)

We first obtain a lower bound for the term E(E(θ|Y ))2.
We start with the expression derived in Lemma 10 and develop
a series of lower bounds,

E(E(θ|Y ))2 =
∫

ϵ2(
∫

tetz− t2
2 dG(t))2

1− ϵ + ϵ
∫

etz− t2
2 dG(t)

ϕ(z)dz

≥
∫
|z|≤

√
log 1/ϵ

ϵ2(
∫

tetz− t2
2 dG(t))2

1− ϵ + ϵ
∫

etz− t2
2 dG(t)

ϕ(z)dz

(a)
≥ ϵ2

1− ϵ + ϵ
1
2

∫
|z|≤

√
log 1/ϵ

(∫
tetz− t2

2 dG(t)
)2

ϕ(z)dz

(b)
=

ϵ2

1− ϵ + ϵ
1
2∫∫ [

tt′ett′
∫ √

log 1/ϵ−(t+t′)

−
√

log 1/ϵ−(t+t′)

ϕ(z)dz

]
dG(t)dG(t′)

=
ϵ2

1− ϵ + ϵ
1
2∫∫

tt′≥0

[
tt′ett′

∫ √
log 1/ϵ−(t+t′)

−
√

log 1/ϵ−(t+t′)

ϕ(z)dz

]
dG(t)dG(t′)

+
ϵ2

1− ϵ + ϵ
1
2∫∫

tt′<0

[
tt′ett′

∫ √
log 1/ϵ−(t+t′)

−
√

log 1/ϵ−(t+t′)

ϕ(z)dz

]
dG(t)dG(t′)

(c)
≥ ϵ2

1− ϵ + ϵ
1
2

(∫∫
tt′≥0

[
tt′ett′

∫ √
log 1/ϵ−(t+t′)

−
√

log 1/ϵ−(t+t′)

ϕ(z)dz

]

· dG(t)dG(t′)− |Aµ|2
)

(d)
≥ ϵ2

1− ϵ + ϵ
1
2

∫ √
log 1/ϵ−2Aµ

−
√

log 1/ϵ−2Aµ

ϕ(z)dz

·
∫∫

tt′≥0

tt′ett′dG(t)dG(t′)− |Aµ|2
)

. (52)

Inequality (a) holds because for |z| ≤
√
log 1/ϵ,

ϵ

∫
etz− t2

2 dG(t) = ϵe
1
2 z2
∫

e−
1
2 (z−t)2dG(t) ≤ ϵe

1
2 z2

≤ ϵ
1
2 .

To obtain Equality (b) we do the following simple calculations:∫
|z|≤

√
log 1/ϵ

(∫
tetz− t2

2 dG(t)
)2

ϕ(z)dz

=
∫
|z|≤

√
log 1/ϵ

[∫∫
tt′ezt−t2/2ezt′−t′2/2dG(t)dG(t′)

]
ϕ(z)dz

=
∫∫ [

tt′ett′
∫
|z|≤

√
log 1/ϵ

1√
2π

e−
1
2 (z−(t+t′))2dz

]
dG(t)dG(t′)

=
∫∫ [

tt′ett′
∫ √

log 1/ϵ−(t+t′)

−
√

log 1/ϵ−(t+t′)

1√
2π

e−
1
2 z2

dz

]
dG(t)dG(t′)

Inequality (c) holds because e−|tt′| ≤ 1 and suppG ⊆
[−Aµ, Aµ]. Inequality (d) is due to the fact that suppG ⊆
[−Aµ, Aµ] and

∫√log 1/ϵ−a

−
√

log 1/ϵ−a
ϕ(z)dz (as a function of a) is

symmetric and decreasing over [0,∞). To continue from (52),
we further lower bound

∫∫
tt′≥0

tt′ett′dG(t)dG(t′). To sim-

plify notation, define two random variables t, t′
i.i.d.∼ G.

We have ∫∫
tt′≥0

tt′ett′dG(t)dG(t′) = E[tt′ett′I(tt′≥0)]

=
∞∑

k=0

E
1
k!
(tt′)k+1(I(t>0,t′>0) + I(t<0,t′<0))

=
∞∑

k=0

1
k!

(
E[tk+1I(t>0)] · E[(t′)k+1I(t′>0)]

+ E[tk+1I(t<0)] · E[(t′)k+1I(t′<0)]
)

=
∞∑

k=0

1
k!

(
(Etk+1I(t>0))2 + (Etk+1I(t<0))2

)
=

∞∑
k=0

1
k!

(
(E|t|k+1I(t>0))2 + (E|t|k+1I(t<0))2

)
(a)
≥

∞∑
k=0

1
k!

1
2

(
E|t|k+1I(t>0) + E|t|k+1I(t<0)

)2
=

1
2

∞∑
k=0

1
k!

(
E|t|k+1

)2 (b)
≥ 1

2
(E|t|)2

+
1
2

∞∑
k=1

1
k!

(
E|t|2

)k+1

≥ 1
2

(
E|t|2eE|t|2 − E|t|2

)
,

where (a) is due to the basic inequality 2(x2+y2) ≥ (x+y)2,
and (b) is by Hölder’s inequality (E|t|2)k+1 ≤ (E|t|k+1)2, k ≥
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1. Combining the above inequality with (51) and (52) gives

BA(ϵn, µn, 1) = sup
π∈ΓA(ϵn,µn)

E(E(θ|Y )− θ)2

≤ sup
E|t|2≤µ2

n

(
ϵn +

ϵ2n∆n

2(1− ϵn +
√

ϵn)

)
E|t|2

− ϵ2n∆n

2(1− ϵn +
√

ϵn)
E|t|2eE|t|2 +

ϵ2A2µ2
n

1− ϵ +
√

ϵ
, (53)

where ∆n =
∫√log 1/ϵn−2µnA

−
√

log 1/ϵn−2µnA
ϕ(z)dz. The results we

obtained so far are non-asymptotic. We now make use of the
conditions ϵn → 0, µn → ∞, µn = o(

√
log ϵ−1

n ) to derive
the final asymptotic result. Under such scaling conditions,
it is straightforward to confirm that the expression on the
right-hand side of (53) is increasing in E|t|2 when n is
sufficiently large (by calculating its derivative). As a result,

BA(ϵn, µn, 1) ≤
(
ϵn +

ϵ2n∆n

2(1− ϵn +
√

ϵn)

)
µ2

n

− ϵ2n∆n

2(1− ϵn +
√

ϵn)
µ2

neµ2
n +

ϵ2A2µ2
n

1− ϵ +
√

ϵ

= ϵnµ2
n +

1 + o(1)
2

ϵ2nµ2
n − 1 + o(1)

2
ϵ2nµ2

neµ2
n + O(ϵ2nµ2

n)

= ϵnµ2
n − 1

2
ϵ2nµ2

neµ2
n(1 + o(1)).

□
Combing Lemmas 9 and 11 provides the upper bound for

the minimax risk:

R(ΘA(kn, τn), σn) ≤ nσ2
n

(
ϵnµ2

n − 1
2
ϵ2nµ2

neµ2
n(1 + o(1))

)
.

2) Lower Bound: Recall that in the lower bound derivation
for Theorem 4, in Section V-E2, the proof is based on the inde-
pendent block prior πIB with single spike distribution πµn,m

S

which is first introduced in Section V-B2. Since the spike
locations are at ±µn, which are contained in [−Aµn, Aµn]
for any A > 1, this implies that suppπIB ⊆ ΘA(kn, µn) as
well. As a result, the proof in Section V-E2 also works for
the new parameter space ΘA(kn, µn) and it yields the same
lower bound:

R(ΘA(kn, τn), σn) ≥ nσ2
n

(
ϵnµ2

n − 1
2
ϵ2nµ2

neµ2
n(1 + o(1))

)
.

G. Proof of Proposition 3

Comparing the results in Propositions 1 and 3, we can
see that the supremum risk of optimally tuned soft thresh-
olding has the same second-order asymptotic approximation
in Regimes (I) and (II). Thus, the proof of Proposition 3
shares a lot of similarity with that of Proposition 1. For
simplicity we will not repeat every detail. Referring to the
proof of Proposition 1 in Section V-C, the key is to obtain
the accurate order of the optimal tuning λ∗ and evaluate
the function value F (λ∗), where we recall the definitions:
λ∗ = argminλ≥0 F (λ), z ∼ N (0, 1) and

F (λ) = (1− ϵn)Eη̂2
S(z, λ) + ϵnE(η̂S(µn + z, λ)− µn)2.

We first address the order of λ∗.

Lemma 12: Consider ϵn → 0, µn → ∞, µn =
o
(√

log ϵ−1
n

)
, as n → ∞. It holds that

log 2ϵ−1
n +

µ2
n

2
− 2 log log

2
ϵn

< λ∗µn < log 2ϵ−1
n +

µ2
n

2
,

(54)

for sufficiently large n.
Proof: This lemma is an analog of Lemma 4 (comparing

Equation (18) with (54)). The proof is thus similar too. We will
skip equivalent calculations and only highlight the differences.

First, we show that λ∗µ
−1
n → ∞. Otherwise, λ∗µ

−1
n ≤ C

for some constant C > 0 (take a subsequence if necessary).
Then when n is large,

F (λ∗) ≥ (1− ϵn)Eη̂2
S(z, λ∗) ≥ (1− ϵn)Eη̂2

S(z, Cµn)

= 2(1− ϵn)

[
(1 + (Cµn)2)

∫ ∞

Cµn

ϕ(z)dz − Cµnϕ(Cµn)

]
(a)
=

4 + o(1)
µ3

n

ϕ(Cµn)
(b)
> ϵnµ2

n = F (+∞),

where (a) is by the Gaussian tail bound, and (b) is due to
µn = o

(√
log ϵ−1

n

)
. The result F (λ∗) > F (+∞) contradicts

with the optimality of λ∗.
Second, we utilize the derivative equation F ′(λ∗) = 0 in

Equation (23) to obtain more accurate order information of
λ∗. The results µn → ∞, λ∗µ

−1
n → ∞ imply that λ∗ →

∞, λ∗ − µn → ∞, λ∗µn → ∞. This is all needed to
obtain Equation (24) and Equations (27)-(28). As a result,
Equation (29) holds here as well:

2 + o(1) = ϵnµnλ∗ exp(λ∗µn − µ2
n/2). (55)

To reach (54) under the scaling µn = o(
√
log ϵ−1

n ), the rest
of the argument is exactly the same as the one in the proof of
Lemma 4 . □

The next lemma characterizes F (λ∗).
Lemma 13: Consider ϵn → 0, µn → ∞, µn = (

√
log ϵ−1

n ),
as n → ∞. It holds that

F (λ∗) = ϵnµ2
n − exp

[
−1
2

1
µ2

n

(
log

1
ϵn

)2 (
1 + o(1)

)]
.

Proof: This proof deviates a bit from the one of
Lemma 5. We will more directly utilize the order information
of λ∗ proved in Lemma 12 to calculate F (λ∗). Before that,
we need a refinement of (55). This is achieved by refin-
ing Equation (24) and Equations (27)-(28) with higher-order
approximations:

− λ∗

∫ ∞

λ∗

ϕ(z)dz + ϕ(λ∗) =
1 + O(λ−2

∗ )
λ2
∗

ϕ(λ∗),

− ϕ(λ∗ − µn) + λ∗

∫ ∞

λ∗−µn

ϕ(z)dz =[
µn

λ∗ − µn
− λ∗ + O(λ−1

∗ )
(λ∗ − µn)3

]
ϕ(λ∗ − µn),

− ϕ(λ∗ + µn) + λ∗

∫ ∞

λ∗+µn

ϕ(z)dz = o

(
1
λ4
∗

)
ϕ(λ∗ − µn).
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Plugging the above into Equation (23) and arranging terms
gives

eλ∗µn−µ2
n
2

ϵnµnλ2
∗

2(λ∗ − µn)
− 1

=
(1− ϵn)(1 + O(λ−2

∗ ))µn

µn − (λ∗ − µn)−2(λ∗ + O(λ−1
∗ ))

− 1

=
λ∗(λ∗ − µn)−2 + O(λ−2

∗ µn)
µn − (λ∗ − µn)−2(λ∗ + O(λ−1

∗ ))
=

1 + o(1)
λ∗µn

, (56)

where in the second equality we have used ϵnλ2
∗ = o(1) and

λ−1
∗ µn = o(1) which are implied by the order of λ∗ from

Lemma 12.
Now we are ready to evaluate F (λ∗). We first use Gaussian

tail bound to approximate the three expectations (i.e. Equa-
tions (20)-(22)) in the expression of F (λ∗) (i.e. Equation (19)):

Eη̂2
S(z, λ∗) =

4 + O(λ−2
∗ )

λ3
∗

ϕ(λ∗),

Eη̂S(µn + z, λ∗) =
1 + O(λ−2

∗ )
(λ∗ − µn)2

ϕ(λ∗ − µn),

Eη̂2
S(µn + z, λ∗) =

2 + O(λ−2
∗ )

(λ∗ − µn)3
ϕ(λ∗ − µn).

Using these three approximations in Equation (19), we obtain

F (λ∗) = (1− ϵn)
4 + O(λ−2

∗ )
λ3
∗

ϕ(λ∗) + ϵnµ2
n

− 2ϵnµn
1 + O(λ−2

∗ )
(λ∗−µn)2

ϕ(λ∗ − µn)+ϵn
2 + O(λ−2

∗ )
(λ∗−µn)3

ϕ(λ∗−µn)

= ϵnµ2
n − ϕ(λ∗)

[
−4 + O(ϵn + λ−2

∗ )
λ3
∗

+
2ϵnµn

(λ∗ − µn)2

· eλ∗µn−µ2
n
2

(
1 + O

(
1

λ∗µn

)) .

We further replace eλ∗µn−µ2
n
2 in the above with the result

from (56) to have

F (λ∗) = ϵnµ2
n − ϕ(λ∗) ·

[
−4 + O(ϵn + λ−2

∗ )
λ3
∗

+
4

λ2
∗(λ∗ − µn)

(
1 + O

(
1

λ∗µn

))
(a)
= ϵnµ2

n − ϕ(λ∗)
4µn

λ3
∗(λ∗ − µn)

(
1 + O

(
1
µ2

n

))

= ϵnµ2
n − 4 + o(1)√

2π
e−

λ2
∗
2 · µn

λ4
∗

(b)
= ϵnµ2

n − exp

[
−1
2

1
µ2

n

(
log

1
ϵn

)2 (
1 + o(1)

)]
.

Here, to obtain (a) we have used ϵnλ2
∗ = o(1) and λ−1

∗ µn =
o(1) implied by Lemma 12; (b) is due to the order λ∗ =
µ−1

n log ϵ−1
n (1 + o(1)) again from Lemma 12. □

Lemma 13 readily leads to the supremum risk of optimally
tuned soft thresholding:

inf
λ

sup
θ∈Θ(kn,τn)

Eθ∥η̂S(y, λ)− θ∥22 = nσ2
nF (λ∗)

= nσ2
n

(
ϵnµ2

n − exp
[
− 1

2
1
µ2

n

(
log

1
ϵn

)2 (
1 + o(1)

) ])
.

H. Proof of Proposition 4
The proof of this proposition is similar to the proof of

Proposition 2 presented in Section V-D. Hence, for the sake
of brevity we adopt the same notation from Section V-D and
only discuss the differences. If RH(Θ(kn, τn), σn) denotes the
supremum risk of optimally tuned hard thresholding estimator,
then we will have

RH(Θ(kn, τn), σn) = σ2
n · RH(Θ(kn, µn), 1).

Without loss of generality, let σn = 1 in the model. As in the
proof of Proposition 2, we obtain a lower bound by calculating
the risk at the following specific value of θ such that θi = µn

for i ∈ {1, 2, . . . , kn} and θi = 0 for i > kn. We have

Eθ∥η̂H(y, λ)− θ∥22 = n
[
(1− ϵn)rH(λ, 0) + ϵnrH(λ, µn)

]
.

(57)

To evaluate infλ>0 Eθ∥η̂H(y, λ) − θ∥2, we consider three
scenarios for the optimal choice of λn, denoted by λ∗

n.
• Case I λ∗

n = O(1): In this case, λ∗
n ≤ c for some constant

c > 0. Using the same argument as the one presented for
Case I in the proof of Proposition 2, we have

inf
λ>0

Eθ∥η̂H(y, λ)− θ∥22 ≥ 2n(1− ϵn)(1− Φ(c)).

Since ϵnµ2
n → 0 and (1 − ϵn)2(1 − Φ(c)) = Θ(1),

we conclude that infλ>0 Eθ∥η̂H(y, λ)−θ∥22 = ω(nϵnµ2
n).

• Case II λ∗
n = ω(1) and λ∗

n = O(µn): Let c1 be a fixed
number larger than 1. There exists c2 such that for large
enough n, c1 < λ∗

n ≤ c2µn. We thus obtain

inf
λ>0

Eθ∥η̂H(y, λ)− θ∥22 = Eθ∥η̂H(y, λ∗
n)− θ∥22

= n
[
(1− ϵn)rH(λ∗

n, 0) + ϵnrH(λ∗
n, µn)

]
≥ n(1− ϵn)rH(λ∗

n, 0)

= n(1− ϵn)
[
2λ∗

nϕ(λ∗
n) + 2(1− Φ(λ∗

n))
]

≥ 2n(1− ϵn)λ∗
nϕ(λ∗

n)

≥ 2n(1− ϵn)
c1√
2π

e−
c22µ2

n
2 ≥ nϵnµ2

n,

where the last inequality is due to the scaling µn =
o(
√
log ϵ−1

n ) in the current regime.
• Case III λ∗

n = ω(µn): In a similar way as in the proof
of Case II of Proposition 2, we can conclude that

inf
λ>0

Eθ∥η̂H(y, λ)− θ∥22

≥ knµ2
n + kn(λ∗

n − µn + o(λ∗
n)) · ϕ(λ∗

n − µn)
+ kn(λ∗

n + µn + o(λ∗
n)) · ϕ(λ∗

n + µn)
≥ knµ2

n = nϵnµ2
n.

Note that since the three cases we have discussed above cover
all the ranges of λ∗

n, we conclude that

RH(Θ(kn, µn), 1) ≥ inf
λ>0

Eθ∥η̂H(y, λ)− θ∥22 ≥ nϵnµ2
n.

The proof of the upper bound is the same as the proof of the
upper bound for Proposition 2 and is hence skipped here.
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I. Proof of Theorem 6

Based on the scale invariance property of minimax risk
mentioned in Section V-A1, it is equivalent to prove

R(Θ(kn, µn), 1)=2nϵn log ϵ−1
n −2 nϵnνn

√
2 log νn

(
1+o(1)

)
,

where νn =
√
2 log ϵ−1

n . As in the proof of Theorems 3 and 4,
we first obtain an upper bound by analyzing the supremum
risk of hard thresholding, and then develop a matching lower
bound via the Bayesian approach. Before proceeding with the
proof, we cover a few properties of the one-dimensional risk
function of hard thresholding that becomes useful in the proof
of Theorem 6.

1) Properties of the Risk of Hard Thresholding Estimator:
Consider the one-dimensional risk of hard thresholding for
µ ∈ R and λ > 0,

rH(λ, µ) := E
(
η̂H(µ + z, λ)− µ

)2
, z ∼ N (0, 1).

The following lemma from [3] gives simple and yet accurate
bounds for rH(λ, µ). Let

r̄H(λ, µ) =

{
min{rH(λ, 0) + 1.2µ2, 1 + µ2} 0 ≤ µ ≤ λ

1 + µ2(1− Φ(µ − λ)) µ ≥ λ,

where Φ(·) is the CDF of standard normal random variable.
Lemma 14 (Lemma 8.5 in [3]):

(a) For λ > 0 and µ ∈ R,

(5/12)r̄H(λ, µ) ≤ rH(λ, µ) ≤ r̄H(λ, µ).

(b) The large µ component of r̄H has the bound

sup
µ≥λ

µ2(1− Φ(µ − λ)) ≤

{
λ2/2 if λ ≥

√
2π

λ2 if λ ≥ 1.

Our main goal in this section is to derive accurate approx-
imations for supµ≥0 rH(λ, µ). The next lemma provides an
accurate characterization of the risk for two different choices
of µ. The importance of these choices becomes clear when we
analyze supµ≥0 rH(λ, µ) later in this section.

Lemma 15: As λ → ∞, the risk of the hard thresholding,
rH(λ, µ), satisfies

rH(λ, λ) =
1 + o(1)

2
λ2,

rH(λ, λ −
√
2 log λ) = λ2 − (2

√
2 + o(1))λ

√
log λ.

Proof: First note that the risk of hard thresholding can
be written as

rH(λ, µ) =µ2
[
Φ(λ−µ)−Φ(−λ − µ)

]
+
∫
|z+µ|>λ

z2ϕ(z)dz

=(µ2 − 1)
[
Φ(λ − µ)− Φ(−λ − µ)

]
+1 + (λ − µ)ϕ(λ − µ) + (λ + µ)ϕ(λ + µ). (58)

Let µ = λ −
√
2 log λ. As λ → ∞, we analyze the order of

each term in the above expression:

rH(λ, λ −
√

2 log λ)

= [(λ −
√

2 log λ)2 − 1] ·
(
1− 1 + o(1)√

2 log λ
ϕ(
√
2 log λ)

)
+ 1 +

√
2 log λ · ϕ(

√
2 log λ)

+ (2λ −
√
2 log λ)ϕ(2λ −

√
2 log λ)

=
(
λ −

√
2 log λ

)2
+ O

(
λ√
log λ

)
= λ2 − (2

√
2 + o(1))λ

√
log λ,

where in the first equality we have applied the Gaussian tail
bound: 1− Φ(x) = (1 + o(1))x−1ϕ(x) as x → ∞. To prove
the first part of the lemma, let µ = λ. From (58) we have

rH(λ, λ) = (λ2 − 1)
(
1
2
− Φ(−2λ)

)
+ 1 + 2λϕ(2λ)

= λ2/2
(
1 + o(1)

)
.

□
We now obtain the asymptotic approximation of

supµ≥0 rH(λ, µ) in the next lemma.
Lemma 16: As λ → ∞, the supremum risk satisfies

sup
µ≥0

rH(λ, µ) = λ2 − 2
√
2λ
√
log λ + o(λ

√
log λ).

Proof: Define

µ∗ = argmax
µ≥0

rH(λ, µ).

Comparing the upper bounds from Lemma 14 and the risk
at λ −

√
2 log λ in Lemma 15, we can conclude that the

superemum risk is attained at µ = µ∗ ≤ λ (when λ is large).
To evaluate rH(λ, µ∗), it is important to derive an accurate
approximation for µ∗. We first claim that µ∗/λ → 1. Suppose
this is not true. Then µ∗ ≤ cλ for some constant c ∈ [0, 1)
(take a sequence if necessary). According to Lemma 14 (a),
for large enough values of λ, we have

rH(λ, µ∗) ≤ r̄H(λ, µ∗) ≤ 1 + (µ∗)2 ≤ c̃λ2, c̃ ∈ (0, 1).

However, the above upper bound is strictly smaller than the
risk rH(λ, λ−

√
2 log λ) calculated in Lemma 15, contradict-

ing with the definition of µ∗.
Second, we show that λ−µ∗ → ∞, while (λ−µ∗)/λ → 0.

Otherwise, it satisfies 0 ≤ λ−µ∗ ≤ c for some finite constant
c ≥ 0 (take a sequence if necessary). Then from (58) we have

rH(λ, µ∗) ≤ Φ(c)λ2
(
1 + o(1)

)
.

Comparing this with rH(λ, λ −
√
2 log λ) from Lemma 15

leads to the same contradiction.
Third, we prove that for any given c > 1, λ − µ∗ ≤

c
√
2 log λ for sufficiently large λ. Otherwise, there exists some

constant c > 1 such that λn−µ∗
n > c

√
2 log λn for a sequence

λn → ∞ as n → ∞. As a result, using Equation (58), and
the result proved earlier that λn − µ∗

n → ∞, we obtain that
for large n,

rH(λn, µ∗
n) ≤ (µ∗

n)
2 + 1 + (λn − µ∗

n)ϕ(λn − µ∗
n)

+ (λn + µ∗
n)ϕ(λn + µ∗

n)

≤
(
λn−c

√
2 log λn

)2
+ O(1)

= λ2
n − (2c + o(1))λn

√
2 log λn.

Again, comparing the above with rH(λn, λn −
√
2 log λn) =

λ2
n − (2 + o(1))λn

√
2 log λn in Lemma 15, we see that

rH(λn, µ∗
n) < rH(λn, λn−

√
2 log λn) when n is large, which

is a contradiction.
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Finally, we prove that (λ − µ∗)/
√
2 log λ → 1 as λ → ∞.

Suppose this is not true. Given the result proved in the last
paragraph, then there exists some constant c < 1 such that
λn − µ∗

n < c
√
2 log λn for a sequence λn → ∞ as n → ∞.

Using Equation (58) and Gaussian tail bound 1 − Φ(x) =
1+o(1)

x ϕ(x) as x → ∞, we have

rH(λn, µ∗
n) = (µ∗

n)
2
[
Φ(λn − µ∗

n)− Φ(−λn − µ∗
n)
]
+ O(1)

≤ (µ∗
n)

2Φ(λn − µ∗
n) + O(1)

= (µ∗
n)

2

[
1− 1 + o(1)

λn − µ∗
n

ϕ(λn − µ∗
n)
]
+ O(1).

Because ϕ(λn − µ∗
n) ≥ 1/

√
2π · exp

(
− 2c2 log λn

2

)
=

1/(
√
2πλc2

n ), we continue with

rH(λn, µ∗
n) ≤ (µ∗

n)
2 − (λn−c

√
2 log λn)2

c
√
2 log λn

1√
2πλc2

n

·
(
1 + o(1)

)
+ O(1)

≤ λ2
n − λ2−c2

n√
log λn

·
( 1
2c
√

π
+ o(1)

)
.

Note that for c < 1, λ2−c2

n /
√
log λn = ω(λn

√
log λn). Hence

rH(λn, µ∗
n) < rH(λn, λn −

√
2 log λn) when n is sufficiently

large. The same contradiction arises.
Having the precise order that µ∗ = λ− (1+ o(1))

√
2 log λ,

we can easily evaluate supµ≥0 rH(λ, µ) from (58): as λ → ∞,

rH(λ, λ −
√

2 log λ) ≤ sup
µ≥0

rH(λ, µ) = rH(λ, µ∗)

= (µ∗)2(Φ(λ − µ∗)− Φ(−λ − µ∗)) + O(1)

≤ (µ∗)2 + O(1) = (λ − (1 + o(1))
√
2 log λ)2 + O(1)

= λ2 − 2
√
2λ
√

log λ + o(λ
√
log λ).

Combining this result with Lemma 15 completes the proof.
□

2) Upper Bound: We are in the position to compute the
supremum risk of η̂H(y, λn) with λn = σn

√
2 log ϵ−1

n in
Theorem 6. First of all, due to the scale invariance of hard
thresholding, the supremum risk can be written in the form:

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂H(y, λn)− θ
∥∥2
2

= σ2
n

[
(n − kn)rH(νn, 0) + sup

∥θ̃∥2
2≤knµ2

n

kn∑
i=1

rH(νn, θ̃i)
]
,

where θ̃ ∈ Rkn and νn =
√

2 log ϵ−1
n . Given that the

one-dimensional risk function rH(νn, θ̃i) is symmetric in θ̃i,
if its maximizer satisfies argmaxθ̃i≥0 rH(νn, θ̃i) ≤ µn, then
we will have

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂H(y, λn)− θ
∥∥2
2

= σ2
n

[
(n − kn)rH(νn, 0) + kn sup

µ≥0
rH(νn, µ)

]
. (59)

This will allow us to focus on finding the supremum risk of
hard thresholding in the univariate setting that we discussed in
the last section. In the proof of Lemma 16, we already showed
that argmaxθ̃i≥0 rH(νn, θ̃i) ≤ νn when n is large. It is then

clear that in the current regime µn = ω(
√
2 log ϵ−1

n ), it holds
that argmaxθ̃i≥0 rH(νn, θ̃i) ≤ µn for large n. Therefore, the
supremum risk of hard thresholding over Θ(kn, τn) can be
simplified as in (59). We can apply Lemma 16 to continue
from (59):

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂H(y, λn)− θ
∥∥2
2

= nσ2
n

[
(1− ϵn)rH(νn, 0) + ϵn sup

µ≥0
rH(νn, µ)

]

= nσ2
n

[
(1− ϵn)rH(νn, 0) + ϵn

(
ν2

n − 2νn

√
2 log νn

+ o(νn

√
log νn)

)]
, (60)

where νn =
√
2 log ϵ−1

n . We now identify the dominating
terms in the above expression. First,

rH(νn, 0) = 2
∫ ∞

νn

z2ϕ(z)dz = 2νnϕ(νn) + 2(1− Φ(νn))

=(2 + o(1))νnϕ(νn) = O(ϵnνn), (61)

where the last two equations are due to the Gaussian tail bound
1 − Φ(x) = 1+o(1)

x ϕ(x) as x → ∞ and νn =
√
2 log ϵ−1

n .
Therefore, from (60) we obtain

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂H(y, λn)− θ
∥∥2
2

= nσ2
n

[
ϵnν2

n − 2ϵnνn

√
2 log νn + o(ϵnνn

√
log νn)

]
= nσ2

nϵn

(
2 log ϵ−1

n − (2 + o(1))νn

√
2 log νn

)
.

This completes our proof of the upper bound in Theorem 6.
The sharp upper bound we have derived is from the hard

thresholding estimator η̂H(y, λn) with tuning λn = σnνn.
To shed more light on the performance of hard thresholding,
we provide a discussion on the optimal choices of λn. The
lemma below characterizes the possible choices of λn that
leads to optimal supremum risk (up to second order).

Lemma 17: Consider model (1), and parameter space (6)
under Regime (III), in which ϵn → 0, µn → ∞, µn =
ω(
√
log ϵ−1

n ), as n → ∞. Let νn =
√

2 log ϵ−1
n . Consider the

tuning regime λnσ−1
n → ∞ and λnσ−1

n ≤ µn. If λn satisfies:

(ν2
n − c1 log log νn) ≤ λ2

nσ−2
n ≤ (ν2

n + c2νn

√
2 log νn)

when n is large, for some constant c1 < 1 and every c2 > 0,
then

inf
λ

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂H(y, λ)− θ
∥∥2
2

= sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂H(y, λn)− θ
∥∥2
2
+ o

(
nσ2

nϵnνn

√
log νn

)
.

(62)

On the other hand, if (ν2
n − c1 log log νn) ≥ λ2

nσ−2
n for a

constant c1 ≥ 1 or if λ2
nσ−2

n ≥ (ν2
n + c2νn

√
2 log νn) for

some c2 > 0, then the conclusion (62) will not hold.
Proof: Denote λ̃n = λnσ−1

n . Given that we focus on
the tuning regime λ̃n → ∞ and λ̃n ≤ µn, the result (60)
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continues to hold here:

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂H(y, λn)− θ
∥∥2
2

= nσ2
n ·
[
(1− ϵn)rH(λ̃n, 0) + ϵn

(
λ̃2

n − 2λ̃n

√
2 log λ̃n

+o(λ̃n

√
log λ̃n)

)]
.

Hence, we define

A(λ) :=(1− ϵn)rH(λ, 0) + ϵn

[
λ2

− 2λ
√
2 log λ + o

(
λ
√
log λ

) ]
, (63)

where the notation o(·) is understood as λ → ∞. We proved
before that A(νn) = ϵn(ν2

n − (2 + o(1))νn

√
2 log νn). Now

we consider four different regions for λ̃n (when n is large):
• Case λ̃2

n ≤ ν2
n − 2 c log(νn/

√
2π) for some constant

c > 1. Equation (61) implies

A(λ̃n) ≥ (1− ϵn)rH(λ̃n, 0)

≥ (1− ϵn)rH

((
ν2

n − 2 c log(νn/2π)
)1/2

, 0
)

= (2 + o(1))
(
ν2

n − 2 c log(νn/2π)
)1/2

· ϕ
((

ν2
n − 2 c log(νn/

√
2π)
)1/2

)
=

2 + o(1)√
2π

νn exp

(
−

ν2
n − 2c log νn√

2π

2

)
= Θ

(
ϵn(νn)1+c

)
.

Note that A(λ̃n) = ω(A(νn)), and hence λ̃n does not
satisfy (62).

• Case ν2
n − 2 c1 log(νn/

√
2π) ≤ λ̃2

n ≤ ν2
n − c2 log log νn

for any constant c1 ≤ 1 and some constant c2 ≥ 1. Since
λ̃2

n ≤ ν2
n − c2 log log νn, the same argument as in the

previous case gives

(1− ϵn)rH(λ̃n, 0) ≥ 2 + o(1)√
2π

(
ϵnνn

(√
log νn

)c2
)

.

(64)

Moreover, using the upper and lower bounds we set for
λ̃n, we obtain

ϵn

(
λ̃2

n − 2λ̃n

√
2 log λ̃n + o

(
λ̃n

√
log λ̃n

))

≥ ϵn

[
ν2

n − 2c1 log
νn√
2π

− 2νn

√
2 log νn

+ o
(
νn

√
log νn

)]
= ϵn

[
ν2

n − 2νn

√
2 log νn + o

(
νn

√
log νn

)]
. (65)

Combining (64)-(65) yields

A(λ̃n) ≥ ϵn

[
ν2

n + νn

√
2 log νn

(
− 2 + o(1)

+
2 + o(1)
2
√

π
(
√
log νn)c2−1

)]
.

Since c2 ≥ 1, it is clear that A(λ̃n) − A(νn) =
Ω(ϵnνn

√
log νn). Therefore, this choice of λ̃n does not

satisfy (62).
• Case ν2

n − c1 log log νn ≤ λ̃2
n ≤ ν2

n + c2νn

√
2 log νn for

some constant c1 < 1 and every c2 > 0. With the lower
bound of λ̃n, similar calculations as in the previous two
cases lead to

(1− ϵn)rH(λ̃n, 0) ≤ rH

((
ν2

n − c1 log log νn

)1/2

, 0
)

= Θ
(

ϵnνn

(√
log νn

)c1
)

.

Furthermore, the upper and lower bounds of λ̃n for some
c1 < 1 and every c2 > 0 imply that λ̃2

n − ν2
n =

o(νn

√
log νn). Thus,

ϵn

(
λ̃2

n − 2λ̃n

√
2 log λ̃n + o

(
λ̃n

√
2 log λ̃n

))

≤ ϵn

(
ν2

n − 2νn

√
2 log νn + o

(
νn

√
log νn

))
.

Putting together the above two results into (63), we have

A(λ̃n) ≤ Θ
(

ϵnνn

(√
log νn

)c1
)

+ ϵn

(
ν2

n − 2νn

√
2 log νn + o

(
νn

√
log νn

))
= ϵn

(
ν2

n − (2 + o(1))νn

√
2 log νn

)
.

Thus, A(λ̃n) ≤ A(νn) + o(ϵnνn

√
log νn), and λ̃n satis-

fies (62).
• Case λ̃2

n ≥ ν2
n + cνn

√
2 log νn for some constant c > 0.

We only need consider λ̃n = (1 + o(1))νn, because for
larger values of λn, (63) implies that A(λ̃n)/A(νn) >
1 for large n. When λ̃n = (1 + o(1))νn, we have

A(λ̃n) ≥ ϵn

(
λ̃2

n − 2λ̃n

√
2 log λ̃n

+ o

(
λ̃n

√
2 log λ̃n

))
≥ ϵn

(
ν2

n − (2− c)νn

√
2 log νn

+ o
(
νn

√
2 log νn

))
.

Since c > 0, the above implies that A(λ̃n) − A(νn) =
Ω(ϵnνn

√
log νn). Hence λ̃n does not satisfy (62).

□
3) Lower Bound: As in the proof of lower bound in Theo-

rems 3-5, we will apply Theorem 9 and utilize the independent
block prior that is first described in Section V-B2. To simplify
the calculations a bit here, we will use the block prior with
one minor modification: adopting the notation from Section V-
B2, the spike prior πµ,m

S in use is now changed to a one-sided
spike prior:

πµ,m
S (θ(j) = µei) =

1
m

, 1 ≤ i ≤ m, (66)
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where µ ∈ (0, µn]. The key is to calculate the Bayes risk
B(πµ,m

S ) and obtain a result like Lemma 3. To this end,
we first mention a lemma that will become useful later in
the proof.

Lemma 18: Let z1, . . . , zm
i.i.d∼ N (0, 1) and νm =√

2 logm. Suppose 2µ > νm and δ < Φ(νm − µ). Then

P

m−1e−
1
2 µ2

m∑
j=1

eµzj ≤ δ


≤ 1√

2πνm

+
1√
2π

1[
Φ(νm − µ)− δ

]2 1
2µ − νm

e−(µ−νm)2 .

Proof: Define the notation:

Xmj = eµzj , X̄mj = XmjI(Xmj≤eµνm ),

Sm =
m∑

j=1

Xmj , S̄m =
m∑

j=1

X̄mj ,

am = ES̄m = meµ2/2Φ(νm − µ).

Then

P
(
m−1e−

1
2 µ2

m∑
j=1

eµzj ≤ δ
)

= P
{

am − Sm ≥
[
Φ(νm − µ)− δ

]
· me

1
2 µ2
}

= P
(

am − Sm

eµνm
≥ t

)
,

where t :=
[
Φ(νm − µ)− δ

]
· me

1
2 µ2−µνm . Clearly,

P
(

am−Sm

eµνm
≥ t

)
≤P

(
Sm ̸= S̄m

)
+ P

∣∣∣∣∣ S̄m − am

eµνm

∣∣∣∣∣ > t

 .

For the following calculation, we will use Gaussian tail bound
1 − Φ(x) ≤ x−1ϕ(x) for x > 0. To obtain a proper upper
bound for the first term, we note that

P
(
Sm ̸= S̄m

)
≤ P

(
∪m

j=1{X̄mj ̸= Xmj}
)

≤
m∑

j=1

P
(
Xmj > eµνm

)
=

m∑
j=1

P (eµzj > eµνm)

= m(1− Φ(νm)) ≤ m

νm
ϕ(νm) =

1√
2πνm

.

For the second term, we use Chebyshev’s inequality and the
fact that am = ES̄m and Var(X) ≤ EX2,

P

∣∣∣∣∣ S̄m − am

eµνm

∣∣∣∣∣ > t

 ≤ t−2e−2µνmE(S̄m − am)2

≤ (teµνm)−2
m∑

j=1

EX̄2
mj

≤ 1[
Φ(νm − µ)− δ

]2 1√
2π

1
2µ − νm

e−(µ−νm)2 .

The last inequality is based on the following calculation:

EX̄2
mj = E

(
eµzj I(eµzj ≤eµνm )

)2
=
∫

z≤νm

e2µzϕ(z)dz

= e2µ2
(1− Φ(2µ − νm)) ≤ 1√

2π
1

2µ − νm
e2µ2− 1

2 (2µ−νm)2

=
1√
2π

1
2µ − νm

e−
1
2 ν2

m+2µνm ,

and

(teµνm)−2m · 1√
2π

1
2µ − νm

e−
1
2 ν2

m+2µνm

=
1[

Φ(νm − µ)− δ
]2 1

m2
e−µ2

m
1√
2π

1
2µ − νm

e−
1
2 ν2

m+2µνm

=
1[

Φ(νm − µ)− δ
]2 1√

2π
1

2µ − νm
e−(µ−νm)2 .

□
We are now ready to calculate the Bayes risk B(πµ,m

S ) in
the following lemma.

Lemma 19: Let νm =
√
2 logm and µ = νm−1 −√

2 log νm−1. As m → ∞, the Bayes risk B(πµ,m
S ) satisfies

B(πµ,m
S ) ≥ ν2

m − 2νm

√
2 log νm

(
1 + o(1)

)
.

Proof: For the one-sided spike prior πµ,m
S introduced

in (66), doing similar calculations as in the proof of Lemma
2, we can obtain the expression for the Bayes risk:

B(πµ,m
S ) = µ2Eµe1(pm − 1)2 + (m − 1)µ2Eµe2p

2
m

≥µ2 − 2µ2Eµe1pm, (67)

where pm = eµy1∑m
j=1 eµyj ; Eµe1(·) is taken with respect to y ∼

N (µe1, I) and Eµe2(·) for y ∼ N (µe2, I). Now the goal is
to upper bound Eµe1pm. We have

Eµe1pm = E
eµ(µ+z1)∑

j ̸=1 eµzj + eµ(µ+z1)
‘

= E
(m − 1)−1e

1
2 µ2+µz1

(m − 1)−1e
1
2 µ2+µz1 + (m − 1)−1e−

1
2 µ2 ∑

j ̸=1 eµzj
,

(68)

where z1, . . . , zm
i.i.d.∼ N (0, 1). Define the following two

events:

F1 =
{
(m − 1)e−

1
2 µ2−µz1 ≥ M

}
,

F2 =
{
(m − 1)−1e−

1
2 µ2 ∑

j ̸=1

eµzj ≥ δ
}

,

where δ and M are two positive constants to be determined
later. Since the ratio inside the expectation of (68) is smaller
than one, and on the event F1 ∩ F2 it is smaller than 1

Mδ ,
we can continue from (68) to obtain

Eµe1pm ≤ 1
M · δ

+ P(Fc
1) + P(Fc

2). (69)

Hence, we aim to find upper bounds for P(Fc
1) and P(Fc

2). For
the first probability, using Gaussian tail bound that 1−Φ(x) ≤
1
xϕ(x) for x > 0, and that eν2

m−1/2 = m − 1, we have

P(Fc
1) = P

(
(m − 1)e−

1
2 µ2−µz < M

)
= P

(
z > −1

2
µ − 1

µ
log

M

m − 1

)
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= 1− Φ
(
− 1

µ
logM +

1
2µ

(ν2
m−1 − µ2)

)
≤ 1

− 1
µ logM + 1

2µ (ν
2
m−1 − µ2)

1√
2π

· exp

(
− 1
2µ2

[
1
2
(ν2

m−1 − µ2)− logM

]2)
:= U1,

as long as ν2
m−1−µ2 > 2 logM . Regarding P(Fc

2), if we limit
our choice of 0 < δ < Φ(νm−1 − µ), then from Lemma 18,

P(Fc
2) ≤

1√
2π

1
νm−1

+
1√
2π

1[
Φ(νm−1 − µ)− δ

]2
· 1
2µ − νm−1

e−(µ−νm−1)
2
:= U2.

Now we set M = νm−1 and recall µ = νm−1 −√
2 log νm−1. We will show that U1 = o(ν−1

m−1) and U2 =
O(ν−1

m−1). First, for U1,

1
2µ2

[
1
2
(ν2

m−1 − µ2)− logM

]2
=

1
2µ2

[
1
2
(2νm−1

√
2 log νm−1 − 2 log νm−1)− log νm−1

]2
=

1
2µ2

[
νm−1

√
2 log νm−1 − 2 log νm−1

]2
=

ν2
m−1

µ2
log νm−1 −

2
√
2νm−1

µ2
(log νm−1)

3/2

+
2
µ2

(log νm−1)
2 ≥ log νm−1 + o(1),

where in the last inequality we used µ2 < ν2
m−1 (for large

m). Therefore,

e
− 1

2µ2 [ 12 (ν2
m−1−µ2)−log M]2 ≤ ν−1

m−1

(
1 + o(1)

)
,

and
1

− 1
µ logM + 1

2µ (ν
2
m−1 − µ2)

=
1

1
µ ·
(
νm−1

√
2 log νm−1 − 2 log νm−1

)
≤
(√

2 log νm−1 −
2 log νm−1

νm−1

)−1

= o(1).

In combination,

U1 ≤ o(1) · ν−1
m−1

(
1 + o(1)

)
= o(ν−1

m−1). (70)

For U2, we set δ to be any fixed constant between (0, 1). Since
νm−1 − µ → +∞, it holds that Φ(νm−1 − µ) − δ > δ′ for
some constant δ′ > 0, when m is large. Also, we have the
identity e−(µ−νm−1)

2
= e−2 log νm−1 = ν−2

m−1. So the second
term in U2 is of order O(ν−3

m−1). Thus,

U2 =
1 + o(1)√
2πνm−1

. (71)

Note that we have set M = νm−1. Hence, 1/(M · δ) =
O(1/νm−1). Combining (69)-(71), we have

Eµe1pm ≤ O(1/νm−1).

Finally, the above together with (67) shows that

B(πµ,m
S ) ≥ µ2 − 2µ2O

(
ν−1

m−1

)
= ν2

m−1 − 2νm−1

√
2 log νm−1

(
1 + o(1)

)
= ν2

m − 2νm

√
2 log νm

(
1 + o(1)

)
.

□
Now, we aim to apply Lemma 19 to derive the minimax

lower bound. First note that in the current regime ϵn →
0, µn = ω(

√
log ϵ−1

n ), the choice of µ with m = n/kn = ϵ−1
n

in Lemma 19 satisfies µ < µn when n is large. Thus, the
constructed block prior is supported on the parameter space
Θ(kn, µn) so that we can use Equation (13) and Lemma 19
to conclude

R(Θ(kn, τn), σn)= σ2
n · R(Θ(kn, µn), 1)≥knσ2

n ·B(πµ,m
S )

≥ knσ2
n ·
(
ν2

m − 2νm

√
2 log νm(1 + o(1)

)
= nσ2

n

(
2ϵn log ϵ−1

n − 2ϵnνm

√
2 log νm(1 + o(1)

)
,

where νm =
√
2 logm =

√
2 log ϵ−1

n .

J. Proof of Proposition 6

1) Roadmap of the Proof: Propositions 1 and 3 have derived
the supremum risk of optimally tuned soft thresholding in
Regimes (I) and (II) respectively. Proposition 6 continues to
obtain it in Regime (III). Hence, we will use some existing
results from the proof of Propositions 1 and 3 to simplify the
present proof. First of all, referring to Equations (14)-(17) in
the proof of Proposition 1, the supremum risk can be expressed
as

inf
λ

sup
θ∈Θ(kn,τn)

Eθ

∥∥η̂S(y, λ)− θ
∥∥2
2

= nσ2
n · inf

λ

[
(1−ϵn)Eη̂2

S(z, λ)+ϵnE(η̂S(z + µn, λ)−µn)2
]

︸ ︷︷ ︸
:=F (λ)

,

with z ∼ N (0, 1). Define the optimal tuning λ∗ =
argminλ≥0 F (λ). Then it is equivalent to prove

F (λ∗) = 2ϵn log ϵ−1
n − (6 + o(1))ϵn log νn,

where νn =
√
2 log ϵ−1

n . To reach the above, we will first find
the tight upper bound for F (λ∗) in Section V-J2, and then
obtain the matching lower bound in Section V-J3. Before we
do these two parts, let us prove a lemma that provides an
approximation for F (λ). This approximation will help us in
the calculation of both the upper and lower bounds.

Lemma 20: Consider ϵn → 0, µn = ω(
√
log ϵ−1

n ), as n →
∞. If λ → ∞ and µn − λ → +∞, then

F (λ) = 2(1− ϵn)
[
(1 + λ2)(1− Φ(λ))− λϕ(λ)

]
+ ϵn

[
λ2 + 1− (2 + o(1))µn

(µn − λ)2
ϕ(µn − λ)

]
.

Furthermore, when λ is large, it holds that

C(λ) ≤ F (λ) ≤ D(λ),
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where

C(λ) := 2(1− ϵn) ·
(

2
λ3

− 12
λ5

)
1√
2π

ϵn · e 1
2 (ν

2
n−λ2) (72)

+ ϵn

[
λ2 + 1− (2 + o(1))µn

(µn − λ)2
ϕ(µn − λ)

]
,

and

D(λ) := ϵn

{
(1− ϵn)

4√
2πλ3

e
1
2 (ν

2
n−λ2) + λ2 + 1

}
. (73)

Proof: Throughout the proof, we will use the Gaussian
tail bound in Lemma 1 to do calculations. With the expression
of F (λ) calculated in Equations (19)-(22), we have that as
λ → ∞, µn − λ → +∞,

F (λ) = 2(1− ϵn) ·
[
(1 + λ2)(1− Φ(λ))− λϕ(λ)

]
+ ϵn ·

{
(λ2 + 1) +

[
(µ2

n − λ2 − 1)(1− Φ(µn − λ))

− (µn + λ)ϕ(µn − λ)
]
−
[
(µ2

n − λ2 − 1)

· (1− Φ(µn + λ))− (µn − λ)ϕ(µn + λ)
]}

= 2(1− ϵn)
[
(1 + λ2)(1− Φ(λ))− λϕ(λ)

]
+ ϵn

[
λ2 + 1− (2 + o(1))µn

(µn − λ)2
ϕ(µn − λ)

]
,

where in the last equation we have used 1 − Φ(x) =(
1
x − 1+o(1)

x3

)
ϕ(x) as x → ∞.

As λ → ∞, we obtain

(1 + λ2)(1− Φ(λ))− λϕ(λ)

=

[
(1 + λ2)

(
1
λ
− 1

λ3
+

3
λ5

− 15
λ7

+
105
λ9

)
− λ

]
ϕ(λ)

+ O

(
ϕ(λ)
λ9

)
=
(

2
λ3

− 12
λ5

+
90
λ7

)
ϕ(λ) + O

(
ϕ(λ)
λ9

)
.

Thus,

F (λ) = 2(1− ϵn) ·

(
2
λ3

− 12
λ5

+
90
λ7

+ O

(
1
λ9

))
· 1√

2π
ϵn · e 1

2 (ν
2
n−λ2) + ϵn

[
λ2 + 1

− (2 + o(1))µn

(µn − λ)2
ϕ(µn − λ)

]
.

As a result, it is straightforward to verify that C(λ) and D(λ)
defined in (72)-(73) provide lower and upper bounds for F (λ).

□
2) Upper Bound: Consider λ =

√
ν2

n − 6 log νn, then λ →
∞ and µn − λ → ∞. From Lemma 20,

F (λ∗) ≤ F (λ) ≤ D(λ)

= ϵn

{
(1− ϵn)

4√
2π

e
1
2 [(ν2

n−λ2)−6 log λ] + λ2 + 1
}

= ϵn

{
4 + o(1)√

2π
+ λ2 + 1

}
=ϵnν2

n − 6ϵn log νn

(
1+o(1)

)
.

(74)

3) Lower Bound: We now derive a matching lower bound
for F (λ∗). This requires a careful analysis of the order of the
optimal tuning λ∗. We break it down in several steps:

Step 1: First, we show that λ∗ → ∞, µn − λ∗ → +∞.
We will need the following lemma.

Lemma 21 (Lemma 8.3 in [3]): Define rS(λ, µ) =
E(η̂S(µ+ z, λ)−µ)2, and r̄S(λ, µ) = min{rS(λ, 0)+µ2, 1+
λ2}. For all λ > 0 and µ ∈ R,

1
2
r̄S(λ, µ) ≤ rS(λ, µ) ≤ r̄S(λ, µ).

Suppose λ∗ → ∞ is not true. Then λ∗ ≤ c for some finite
constant c ≥ 0 (take a subsequence if necessary). Then, from
the definition of F (λ∗) we have

F (λ∗) ≥ (1− ϵn)Eη̂2
S(z, λ∗) ≥ (1− ϵn)Eη̂2

S(z, c)
= Ω(1) = ω(ϵnν2

n),

which contradicts with (74). Further suppose µn −λ∗ → +∞
is not true. Then λ∗ ≥ µn − c for some finite constant c (take
a subsequence if necessary). From Lemma 21 we obtain for
large n,

F (λ∗) ≥ ϵnrS(λ∗, µn) ≥
1
2
ϵn min(µ2

n, λ2
∗)

≥ 1
4
ϵnµ2

n = ω(ϵnν2
n),

where we used µn = ω(
√
2 log ϵ−1

n ) = ω(νn). The same
contradiction arises.

Step 2: We next claim that λ∗ = (1 + o(1))νn. Otherwise,
λ∗ = (c+o(1))νn for some constant c ̸= 1 (take a subsequence
if necessary). For c > 1, given that we have proved λ∗ →
∞, µn − λ∗ → +∞, we can apply Lemma 20 to reach

F (λ∗) ≥ ϵn

[
λ2
∗ + 1− (2 + o(1))µn

(µn − λ∗)2
ϕ(µn − λ∗)

]
= ϵnλ2

∗(1 + o(1)) = (c2 + o(1)) · ϵnν2
n.

This contradicts with (74). For c < 1, we have the same
contradiction by applying Lemma 20 again:

F (λ∗) =
4 + o(1)

λ3
∗

ϕ(λ∗) + ϵnλ2
∗(1 + o(1)) = ω(ϵnν2

n).

Here, the last inequality holds because λ∗ ≤ (1 − γ)νn for
some constant γ ∈ (0, 1) when n is large, so that

1
λ3
∗
e−

λ2
∗
2 ≥ 1

(1− γ)3ν3
n

e−
(1−γ)2

2 ν2
n

= ϵn
1

(1− γ)3ν3
n

e(γ−
γ2

2 )ν2
n = ω(ϵnν2

n).

Step 3: Finally, we prove that ν2
n − λ2

∗ = (6+ o(1)) log νn.
Suppose this is not true. Then ν2

n − λ2
∗ = (c + o(1)) log νn

for some c ̸= 6 (take a subsequence if necessary). Since we
have proved λ∗ = (1 + o(1))νn, we can use the lower bound
in Lemma 20 and simplify it to

F (λ∗) ≥ C(λ∗) =
(4 + o(1))ϵn√

2π
e

1
2 (ν

2
n−λ2

∗)

λ3
∗

+ ϵn

(
λ2
∗ + 1 + o(1)

)
. (75)
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For the case c > 6, since
1
λ3
∗
e

1
2 (ν

2
n−λ2

∗) = e
1
2 (ν

2
n−λ2

∗−6 log νn)+3 log νn
λ = ν c̃

n,

with c̃ = c−6+o(1)
2 > 0, (75) implies that

F (λ∗) ≥ Θ(ϵnν c̃
n) + ϵnν2

n − (c + o(1))ϵn log νn,

contradicting with (74). Regarding the case c < 6, (75) directly
leads to

F (λ∗) ≥ ϵnν2
n − (c + o(1))ϵn log νn + (1 + o(1))ϵn.

No mater what value c ∈ [−∞, 6) takes, the above lower
bound is larger than the upper bound in (74), resulting in the
same contradiction.

Now that we have derived the accurate order information
for λ∗: λ2

∗ = ν2
n − (6 + o(1)) log νn, we can plug it into (75)

to obtain the sharp lower bound:

F (λ∗) ≥ ϵn

(
ν2

n − (6 + o(1)) log νn

)
.

K. Proof of Proposition 7
Using the simple form of η̂L(y, λ), the calculation is

straightforward:

inf
λ

sup
θ∈Θ(kn,τn)

Eθ∥η̂L(y, λ)− θ∥22

= inf
λ

sup
θ∈Θ(kn,τn)

Eθ

n∑
i=1

(
1

1 + λ
yi − θi

)2

= inf
λ

sup
θ∈Θ(kn,τn)

n∑
i=1

[(
λ

1 + λ

)2

θ2i +
(

1
1 + λ

)2

σ2
n

]

= inf
λ

λ2knτ2
n + nσ2

n

(1 + λ)2
=

nσ2
nϵnµ2

n

1 + ϵnµ2
n

.
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