Check for
Updates

SSRD: Shapes and Summaries for Race Detection in
Concurrent Data Structures

Xiaofan Sun
University of California at Riverside
Riverside, USA
xsun042@ucr.edu

Abstract

Concolic testing combines concrete execution with symbolic
execution to automatically generate test inputs that exer-
cise different program paths and deliver high code coverage.
This approach has been extended to multithreaded programs
for exposing data races. Multithreaded programs frequently
rely upon concurrent dynamic data structures whose imple-
mentations may contain data races that manifest only when
certain dynamic data structure shapes, program paths, and
thread interleavings are exercised. The lack of support for
exploring different data structure shapes compromises the de-
tection of races. This paper presents a summarization-guided
approach for concolic testing capable of efficiently exploring
different dynamic data structure shapes to expose data races.
Via unit testing of key functions, function summaries are
generated that capture data structure shapes that cause vari-
ous function paths to be exercised. The shapes are captured
in the form of pointer-pointee relations among symbolic
pointers. By reusing function summaries during concolic
testing, much of the overhead of handling symbolic pointers
and dynamic objects in summarized functions is avoided.
The summary also contains symbolic memory accesses and
synchronization events that guide application-level concolic
testing first to identify and then confirm potential data races.
We demonstrate the efficiency and efficacy of our approach
via experiments with multithreaded programs performing
concurrent operations on four widely used dynamic data
structures - Skip List, Unrolled Linked List, Priority Queue,
and AVL Tree. It increases the number of races detected from
34 to 74 in total in comparison to Cloud9, and reduces both
constraints solving time and number of constraints needed
to be solved via summarization.

CCS Concepts: » Software and its engineering — Soft-
ware maintenance tools.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISMM °24, June 25, 2024, Copenhagen, Denmark
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0615-8/24/06.
https://doi.org/10.1145/3652024.3665505

68

Rajiv Gupta
University of California at Riverside
Riverside, USA
rajivg@ucr.edu

Keywords: concolic testing, dynamic data structures, sum-
marization, data race detection

ACM Reference Format:

Xiaofan Sun and Rajiv Gupta. 2024. SSRD: Shapes and Summaries
for Race Detection in Concurrent Data Structures. In Proceedings
of the 2024 ACM SIGPLAN International Symposium on Memory
Management (ISMM °24), June 25, 2024, Copenhagen, Denmark.
ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3652024.
3665505

1 Introduction

The ubiquity of multicore hardware has led to widespread
use of multithreading in application software. Multithreaded
programs typically employ data structures for maintaining
shared state and threads must coordinate accesses to the
shared state for correctness. The concurrent nature of shared
data structures allows multiple operations to proceed in par-
allel; thus, mitigating performance bottlenecks. However,
concurrency often leads to bugs in form of data races. A
number of static analyses have been developed for automati-
cally detecting data races including both flow-insensitive [8,
13, 15, 28]; and flow-sensitive [12, 22, 29, 37, 39, 60, 65] meth-
ods. Though static methods can be sound, users still have
to manually confirm the detected data races. Without dy-
namic information, static methods are hard to automatically
create a test input to reproduce the bug. Dynamic testing
approaches include fuzzing [16, 35, 36, 55, 63] and concolic
testing [14, 18, 38]. Fuzzing approaches, unsupported by a
symbolic execution engine, cannot derive and solve con-
ditions that cause execution to exercise branch outcomes
necessary for reaching the race point. On the other hand, con-
colic testing is a powerful technique that has been extended
to multithreaded programs for race detection [18, 23]. How-
ever, existing works for concolic testing of multithreaded
C/C++ progarams to uncover data races have limitations
when the program makes use of concurrent dynamic data
structures [9, 10, 52] (e.g., a concurrent Skip List).

To expose a data race, it is typically essential to employ a
data structure with a specific shape, together with a thread
interleaving, that cause racing threads to follow paths with
racing reads and writes of the data structure. Thus, con-
colic testing must be enhanced with the ability of efficiently
explore dynamic data structure shapes and thread interleav-
ings. Cloud9 [18] extends KLEE [14], an engine designed for
single thread programs, with the POSIX thread model thus

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6131-7325
https://orcid.org/0000-0002-9348-3974
https://doi.org/10.1145/3652024.3665505
https://doi.org/10.1145/3652024.3665505
https://doi.org/10.1145/3652024.3665505
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652024.3665505&domain=pdf&date_stamp=2024-06-20

ISMM °24, June 25, 2024, Copenhagen, Denmark

allowing development of tools for detection of concurrency
bugs in C/C++ programs. However, it lacks the capability
for uncovering data races in the presence of concurrent data
structures [9, 10, 52] that are dynamic in nature (e.g., Skip
List) because it cannot systematically explore data structure
shapes. Although Con2colic [23] can explore values for data
fields within a data structure of a given shape and size, it can-
not explore different data structure shapes. While CUTE [56]
can explore data structure shapes, it does not support multi-
threaded programs and suffers from performance issues for
large programs. Note that to uncover a data race we require
coordinated exercising of paths by a pair of threads. Also,
exploring dynamic data structure shapes and thread inter-
leavings requires making all linking pointers symbolic. This
causes the cost of path and thread interleaving exploration of
concolic testing to further increase. Thus, effectively explor-
ing data shapes and thread interleavings for a multithreaded
program is still an open problem for detecting data races.

In this paper, to address the above limitations of capability
and cost, we develop an approach that is both general and
efficient (i.e., it can efficiently explore concurrent dynamic
data structure shapes to uncover data races in C/C++ pro-
grams). Our approach is based upon the idea of function
summarization where concolic unit testing of a function is
used to generate a summary consisting of:

e Path Conditions & Dynamic Data Structure Shapes that
represent symbolic constraints that must be satisfied
to exercise a path in a summarized function; and

o Lock/Unlock Sets and Read/Write Memory Accesses that
are used to identify pairs of paths with potential data
races and guide concolic testing of the full application
to, if possible, confirm the presence of a data races.

The summaries play an important role in improving the
efficiency and effectiveness of concolic testing in the presence
of dynamic data structures in two significant ways:

o Reusing Paths Summaries. When exploring a program
path containing a call to a summarized function, say f,
the overhead of concolic execution of f is reduced by
reusing the symbolic structure shapes and expression
representations generated for f during summarization.
That is, the overhead associated with symbolic point-
ers is reduced because all actions performed during
summarization need not be repeated during concolic
testing; and

e Coordinated Exploration of Data Structure Shapes. A
data race is exposed by simultaneous execution of a
pair of paths by two threads. Using the summariza-
tion produced data structure shapes for two paths, we
explore integrated single non-conflicting shapes that
enable simultaneous exercising of the two paths of
interest.

We have extended Cloud9 to support symbolic pointers
and shape generation for concurrent dynamic data structures.

69

Xiaofan Sun and Rajiv Gupta

1 #define MAXLEVEL 2
2 typedef struct Node {
3 key_t key;
4 val_t value;
5 struct Node* next[MAXLEVEL];
6 } Node;
7
s void foo(Node* node, key_t k, value_t v) {
9 // M paths before calling 'bar’
10 bar(node, k, v);
11 }
12
13 void bar(Node* node, key_t k, value_t v) {
14 // N paths before the following 'if' statement
15 if (node->key == k)
16 if (node->next[0] == node->next[1])
17 node->value = v;
18}
Listing 1. An example illustrating the benefits of our
approach.

By incorporating summarization, summary guided shape ex-
ploration, and summary reuse we have built a powerful and
efficient concolic testing system for detection of data races
in multithreaded programs. Our prototype also benefits from
Cloud9 supported optimizations such as parallelization [18]
and state merging [38]. We have evaluated this system by
uncovering data races during execution of concurrent oper-
ations on multiple dynamic data structures. Our system is
both effective and efficient.

The key contributions of this paper are:

¢ Function Summary. We propose a novel represen-
tation of function summaries that capture data struc-
ture shapes, branch conditions, memory accesses, and
lock/unlock operations. By reusing the summaries we
enable efficient and effective concolic testing.

e Summary-guided Testing. Function summaries help
identify potential data races and efficiently guide the
coordinated exploration of non-conflicting data struc-
ture shapes, derived from data shapes available in sum-
maries, to confirm realizable data races.

¢ Prototyping and Evaluation: We implemented our
system as an extension of Cloud9. Our experiments
show that our system can detect races that Cloud9
cannot and when both systems can detect a data race,
our system is more efficient than Cloud9. Moreover,
via use of summaries, number of calls to the constraint
solver are dramatically reduced.

Remainder of the paper is organized as follows. Section 2
gives an overview of our approach using an example show-
ing summarization construction and invocation. Section 3
presents the details of key algorithms used in invocation
and guided search. Section 4, 5 and 6 present experimental
results, related work and conclusion.

SSRD: Shapes and Summaries for Race Detection in Concurrent Data Structures

2 Overview

We begin by providing an overview of our approach to con-
colic testing of multithreaded C/C++ programs that is ef-
fective in finding data races in the presence of concurrent
dynamic data structures and is also efficient.

Data races may arise due to execution of code that re-
quires certain conditional branch outcomes that can only be
achieved when certain data value conditions, data shapes,
and thread interleavings are exercised.

Data value conditions usually can be solved by the SMT
solver during symbolic execution. For example, in Listing 1
function bar line 15, assuming the expression node->key is
a symbolic value, for the branch outcome to be false, the
condition node->key!=k can be solved. However, due to the
lack of ability to set up symbolic pointers, and the heavy cost
of exploring data shapes, the existing concolic/symbolic exe-
cution approach cannot effectively explore the data shapes.

If a data race requires specific data shapes, the existing
approach may miss this data race as a required branch may
not be taken. The line 16 shows a condition related to two
pointers node->next[@] and node->next[1], which is an
invariant value based on the input data shape of node. Fig-
ure 1 shows two cases: the left one can expose the data race
since the condition on line 16 will evaluate true - the input
shape contains pointers that next[0] equals to next[1];
thus, the line of code that cause the race will be executed.
For the other case on the right, the branch with race can-
not be executed. Even though manually changing the input
shape can avoid the problem in this example, but if there
are more data races, one single input data shape will not
be enough to expose all the data races. Thus, we require the
ability to explore the data shapes to detect all races.

The thread interleavings also influence the branches
taken, and thus must be explored if data races under a rarely
taken branch is to be exposed. Figure 2 shows an example
where only a specific thread interleaving exposes the data

next
T [-
0| - R
NO New New

Figure 1. A data shape that can expose (left)
and cannot expose (right) the race.

Thread1: Thread2: Thread1: Thread2:
Lock(Mutex); Lock(Mutex);
x=0; ' x=1;
| . . . Unlock(Mutex);
Unlock(Mutex); . Lock(Mutex): I;OEkéMUtEX)'
x=1; -
¢ . Unlock(Mutex);
if (x1=0) Unlock(Mutex); if (x1=0)
data = 0; data = 0;

* data =1; “ data=1;

Figure 2. A thread interleaving that can expose (left)
and cannot expose (right) the race.

70

ISMM 24, June 25, 2024, Copenhagen, Denmark

race. Consider a variable x which controls the branch to
call function foo. Only if the statement x = 1; is between
statements x = @; and if (x!=0) so that the latter con-
dition would become true and cause the both threads are
calling function foo which finally cause the data race. Thus,
effectively finding the suitable thread interleaving to detect the
races is also important.

Exploration of data shapes and thread interleavings in-
volves performance challenges due to large number of
choices. Consider the two functions in listing 1: foo with
M paths, bar with N paths, and the foo will call bar at the
end of each of the M paths. So, there are N X M paths to
explore during program testing. We observe that there may
be some parameter-irrelevant work if the parameter p is
same or similar in different paths (e.g., symbolic expressions
only have name changed). Thus, the repeated exploration of
data shape and solving the constraints to exercise the path is
redundant. However, if we can summarize bar and reuse the
summary of bar during concolic testing of the full program,
we can reduce the workload of testing bar from N X M paths
to only N paths via the unit testing of function bar. The
exploration of thread interleavings also has a similar issue.
If there are K pairs of lock and unlock actions in T1, then
at each of these thread T2 may scheduled or not leading to
2K total interleavings. However, it may be the case that only
when T2 is not scheduled at any of them causes the data
race. If there is a directed search instead of random search for
ordering the exploration of thread interleavings, desirable
interleaving may be found faster.

Thus, our testing process consists of two steps, a concolic
unit testing step followed by the full program concolic testing
step. In the first step, using unit concolic testing summa-
rization of individual functions that implement concurrent
dynamic data structures is carried out. The generated sum-
maries are also used to identify pairs of paths that contain
potential data races for using directed search in the following
step. In the second step - full program concolic testing, we
start from the main function and test the whole program with
the aim of generating inputs which confirm potential data
races one by one. During this process, the data structure
shapes contained in function summaries are reused to di-
rect the exploration of non-conflicting data structure shapes
for various paths in multiple threads. This directed search
prunes the exploration of paths that cannot realize the po-
tential data race. The reuse of data structure shapes and the
potential data races information in summaries improves the
efficiency with which summarized functions are repeatedly
executed in testing.

Summarization via Concolic Unit Testing. Next, we
will give the definition of function summaries. For a given
function f, concolic unit testing of f is performed to build a
decision tree model §(f) which is the summary of f. The
constructed decision tree corresponds to the tested paths in

ISMM °24, June 25, 2024, Copenhagen, Denmark

the function such that each leaf node corresponds to a tested
path from the start of the function to a return point.

In the decision tree 5(f), a node n € §(f) may represent
a branch condition, a call to a function, a synchronization
operation, or a return statement from the function. All nodes
are annotated with summaries of shape S(n) and memory
access M(n), defined as follows:

e S(n) - the set of pointer-pointee relations among sym-
bolic pointers representing the data structure shape
that must be satisfied to enable the execution of n €
5(f):

e M(n) - the set of symbolic names (globals and param-
eters) and concrete addresses (locals) that correspond
to the read/write memory accesses performed by n;

Also, branch nodes, call nodes, synchronization nodes, and
return nodes are annotated with additional information B(n),
Cr(n), L(n), V(n) respectively as described below.

e B(n) - is the branch condition if n is a branch node;

e Cs/(n) - contains name of function f” and the param-
eters for the call if n is a call node;

e L(n) — contains lock/unlock action associated with n;
and

e V(n) — is the return value if n is a return node (it is
empty if there is no return value).

Next, we briefly describe some key points about the unit
testing that computes (f). First, all global variables as well
as the parameters of f are treated as symbolic variables.
Second, if f contains a function call, the return value of
the callee function is treated as a symbolic variable and
the testing of paths following the call are explored using
the symbolic return value. In addition, since the callee may
not be pure function (i.e., it can have side effects), the local
variables that are passed as parameters to the callee are also
treated as symbolic variables starting from the call point.
Finally, the loops are handled by limiting the number of
iterations and hence the number of paths they can generate.
The code for loops in a function is augmented to limit the
number of iterations.

Concolic Testing of Full Program For concolic testing
of the full program that makes use of functions of the concur-
rent dynamic data structure, we first identify potential data
races that may arise when multiple threads execute summa-
rized functions that implement the concurrent dynamic data
structure. Given a function f, and its summary §(f), a set of
potential data races R is computed. Each data race in R is of
the form r(p;, pj) where p; and p; are paths whose simulta-
neous execution by different threads may cause a data race
according to §(f). Symbolic variable set I represents all user
defined symbolic variables for program P. The concolic tester,
provided with I and R, explores executions in an attempt to
confirm the data races in R.

Figure 3 shows the concolic testing performed to identify
realizable data races in R via search guided by §(f). The set of

71

Xiaofan Sun and Rajiv Gupta

states maintained by the testing engine is shown as ®. State
set ® contains all feasible execution states of the program P
that concolic executor could reached. A state ¢ € ® contains
the current status of all threads and the complete address
space for all memory objects.

Let us briefly consider how the search is carried out. Start-
ing from the initial state @y of the program, such as the
entry point, the concolic executor explores paths, shapes,
and thread interleavings when handling symbolic branch
conditions and synchronization actions. For efficient path
exploration using given input values I, different branch out-
comes are forced and at the same time the corresponding
states are pushed into the state queue. The thread interleav-
ing exploration is guided by R as follows. A thread is made
to execute a path p; involved in a potential data race and
another thread is made to explore all paths p; € R such
that r(p;, pj) belongs to R. The data races confirmed during
exploration are reported.

Our approach improves the efficiency of full program con-
colic testing by taking advantage of summaries. When a
thread encounters a call to a function f for which summary
O(f) is available, summary reuse is invoked instead of calling
f. This approach eliminates overhead of constructing sym-
bolic expressions, gathering and checking constraints, and
building data structure shapes that satisfy constraints. That
is, some of work performed during unit testing of a function
is reused instead of being repeated during each execution of
the function during concolic testing.

Given the current program state ¢ just before node n in a
summarized function, ¢ is updated by affecting it using the
summary associated with n as follows:

1. Shape Formation: Given state ¢, the shape summary
S(n) transforms the shape of the data structure giving
state ¢’.

S ’
g ¢
n
2. Memory Accesses: A memory access summary includes

reads from locations and writes to locations that copy
symbolic or concrete values and changing state to ¢”.

M
¢I ;?} ¢/I
3. Updates based upon the type of node n:

e Branch- The expression eval(B(n) = true, ¢) evalu-
ates branch condition B(n) and checks if it is true
on ¢. By evaluating both branches (eval(B(n) =
true,¢’’) and eval(B(n) = false,¢"")), and adding
appropriate path constraints, new states are repre-
sented as:

B=true B=false
B = g orfand ¢ —s ¢
e Call to f’- Update state by invoking callee f’, using
Cpr

callee’s summary if available, " == ¢""’;
n

SSRD: Shapes and Summaries for Race Detection in Concurrent Data Structures

1 Node* search_node(Node* h, key_t k,
2 int i, Node** pre) {
3 klee_assume(i >= 0 &% i < MAXLEVEL);
4 Node* next = NULL;
if (h->next[i] !=NULL && h->next[i]->key<k)

6 next = h->next[i];

7 if (next !'= NULL)

8 return search_node(next, k, i, pre);
9 preli]l = h;

10 if (i == 0) return h->next[i];

11 return search_node(h, k, i-1, pre);

12 ¥

13

14 bool insert(Node* h, key_t k, val_t v){

15 Node* prev[MAXLEVEL];

16 Node* curr = search_node(h, k, 1, prev);
17 if (curr != NULL && curr->key == k) {

18 if (curr == prev[1]->next[0])

19 curr->value = v;

20 return false;

21 }

22 Node* node = create(k, v);

23 int level = rand_level();

24 pthread_mutex_lock(&(prev[0]->mutex)) ;

25 node->next[0] = prev[0]->next[0];

26 prev[0]->next[0] = node;

27 if (level == 1) {

28 node->next[1] = prev[1]->next[1];

29 prev[1]->next[1] = node;

30 }

31 pthread_mutex_unlock(&(prev[0]->mutex));
32 return true;

33 }

Listing 2. A Concurrent Skip List Example.

® Return node- Update state by mapping the return
value to the caller ¢” % ¢’ or

o Synchronization- Applying L(n) to state ¢’* leads to
state ¢””’, §”’ %» ¢’", where executing threads state
changes based upon the synchronization operation.

Finally, updating state ¢ due to a sequence of statements
n; — n; along a path is performed as follows.

51’*] , S; Siv1 5] ,
p=—=9¢" = =i i1 Pi1F=¢
ni—nj n; Nivy1 nj

Updating state via use of summary is more efficient than
the normal function call due to two reasons: a) The checking
of constraints, creation of data shape, and construction of
symbolic expressions that is carried out during concolic unit
testing of a function is reused during concolic testing of the
full program. b) Once symbolic expressions are simplified,
some memory accesses are eliminated - if multiple writes
are directed to same address, only the last write is needed.
The computation of local variables may also be eliminated.

Illustration — Concurrent Skip List. Consider the code
in Listing 2 which presents two operations for a skip list -
insert (named f;) and search (named f;) for inserting in a
ordered list and searching for a node corresponding to a key
value. The function search_node (named f;,) is a common

72

ISMM 24, June 25, 2024, Copenhagen, Denmark

foen
v

v

Potential Race
Initial State Detector

Exploration Exploration

new states ¢, ¢ ...

v
Race Report
concolic executor

Path+Shape Thread Interleaving |

Figure 3. Exploring Path, Shape and Thread Interleaving.

function used by above functions to find the node which
contains key k. Let us assume that two POSIX threads are
processing those two functions correspondingly.

— Example data race. To allow illustration of our method,
our implementation includes the following errors. During the
insertion of a new node in the skip list, f; finds the suitable
position for insertion and collects all nodes that need to be
modified into the list prev (line 15), and then enforces the
change (line 25-30). In f;, since the mutex lock only protects
the write on next[@] field of prev[@] at line 26, the line
18 and 26 have a data race when 26: prev[0]->next[@]
is being written and 18: prev[1]->next[@] is being read
at the same time since prev[@] and prev[1] may represent
the same node in some cases. However, the race condition for
prev[@] and prev[1] pointing to the same node requires
a more complex condition in f;,, for which it is extremely
hard to manually construct a suitable data structure shape.
So that an approach can efficiently explore the data shapes
to find a suitable one to pass to f;, is required to detect this
race. There are more data races in f; and f;, functions in
different access patterns, but in our discussion we will only
consider this race for illustration purposes.

- Summary Representation. Figure 5 shows the generated
summary representation of functions f; and f;,. Note that
trees include call nodes, branch conditions, synchronization
operations, and return nodes. For the highlighted path T F
T in this decision tree, the data shape generated is captured
via pointer-pointee relations in Table 1 and the memory
accesses summary is given in Table 2. In all cases pointer
dereferencing implies a non null pointer and thus pointers
point to other nodes in Table 1.

— Summary construction. Next, we present the construc-
tion of summaries — highlighted path T F T in the decision
tree model for the function f; in Figure 5 and the data shape
and memory accesses information attached with each node
shown in Table 1 and 2 correspondingly. This construction
phase happens during the concolic unit testing of the func-
tion f;. Before starting, we pass symbolic values to all its

ISMM °24, June 25, 2024, Copenhagen, Denmark

K=1
V=v0

E%symbo\ic
RO R1

next([1]
next[0]

insert(H, K, V)

curr = search_node(H, K, 1, prev)

T curr!=NULL is true

F curr.key== is false \
node = create(K, V) \

call

E—> symbolic
R1

RO

insert(RO,1,v0)

lock(prev[0].mutex)

T level== is true

nn
LA

E—E’H *\return

unlock(prev[0].mutex)
-y
= return true
R2

&

node

RO node R1
K=1

V=v0

aNs

H prev curr

N

RO

level = rand_level() \

p search_node(h, k, i, p)

Xiaofan Sun and Rajiv Gupta

i=1
——»symbolic
-]

RO R1

RL R2
search_node(h,, ky, i5, p5)

RO

T h.next[i] I=NULL is true T h.next[i] !=NULL istrue
h.next[i].key <k is false F h.next[il.key <k isfalse
plil =h plil=h
j== is false T i== is true
t = search_node(h, k, i-1, p) «-— return h.next[i] isR1
return t is R1 o

ool] ke
k=1 3 i,=0

i=1

o O

Figure 4. Data Structure Shapes at entry and return points of function invocations. Gray statements are excluded from decision
tree as their effect is captured by shape/memory access summaries or they are fully evaluated during unit testing.

insert Decision Tree
L24: call..
L25: curr I=0
L25: curr->key == k
F
T L31: call. L31: call
6 L32: call. 132: call
‘) ‘ L33: lock 133: [ock
curr==prev[1].next[0] L36: level == L36: level ==

/\F N /[\F

L40: unlock |[L40: unlock][L40: unlock][L40: unlock |
L41: return |[L41: return J[L41: return J[L41: return]
rev rev rev prev

o e
Heo BoHoBHe8H Baf ol

L5:h.next[i] != NULL

‘ L29: return H L29: return

N prev prev -
¢ [L
£ curr

2 LA

search_node Decision Tree

L5: h.next[i].key<k

L10:i==0 L10:i==0

T T, \F T, \F
L11:t=call.. L10: return L11: t=call.. L10: return L11: t=call..
L8: return t h.next[i] L11: returnt h.next[i] L11: return t

re re re re
h next hﬁj next hﬁj next h ﬁjnext h ﬁ] -
B] E 1 nuLL H H NULL H NULL E NULL

Figure 5. Summary Representations of f; and f;,.

Summary

non-pointer parameters, e.g. k and v, and adjustable sym-
bolic pointer to its pointer parameters, e.g. h. Then, the ex-
ecutor will explore different paths and shapes to construct
the decision tree. To make it easy to follow, since there are
9 nodes in the highlighted path (each orange box is a node;
omit non-branch arrows), we name them n; - no.

73

When line 16 is reached, the call to f;, is blocked since
it is unrelated to the current decision tree. Instead, a new
symbolic pointer is created as the estimated return value
curr, and then continues to execute the current function. At
the same time, we constructed a call node n; as the root node
and annotated the information about this call in C¢,, (n;).
When line 17 is reached, it constructs the branch node nj,
and the branch condition curr!=0 is annotated with B(n,).
Similarly, the branch node n; is constructed and annotated
with curr->key==k in B(n3). Note that in Table 1, a new
pointee node N@ is created during dereferencing, and the
shape information is annotated in S(n3). The memory load
action of symbolic address curr->key is recorded in M(ns),
shown in Table 2. With the execution continuing, nodes
N4,Ns,n6,N7, and ng are constructed and generated with their
corresponding annotations. Finally, we constructed ng during
function f; returning and recorded the returned value in
V(no). Now, the construction of the current highlighted path
in decision tree §(f;) is finished. The executor will explore
other paths and construct the complete summary §(f;) for
the function f;.

- Summary invocation. We illustrate the use of summaries
in Figure 4 where a thread creates an initial data structure
and invokes function f; which in turn invokes summarized
recursive function f5,. All three function invocations use
corresponding function summaries. The data structures at
function call and return boundaries are shown. The changes
involve mapping of symbolic names and also making changes
to data structure to reflect the effect of the function via use

SSRD: Shapes and Summaries for Race Detection in Concurrent Data Structures

of summaries of data structure shapes and write memory
operations. The statements along the path followed are also
shown with statements that are not present in the decision
tree are shown in gray such that the effect of these state-
ments on the program state is achieved via use of shape and
memory access summaries. The statements marked italics -
prev[@].next[@] = node and prev[1].next[1] = node
present changes to the already known pointers.

The function f; is invoked with arguments R0,1,v0 where
RO and v@ are set to symbolic by the user. R@ points to a sym-
bolic object R@.next[1] and a concrete object R@.next[@]
(also R1). The invocations of f; and f;, start with evaluation
of their decision trees and lead to actions that affect state as if
functions are executed. Upon invocation of each function, the
arguments are mapped to symbolic names used during unit
testing. For f;, the symbolic names H, K, V used in unit testing
of f; are mapped to real arguments R0, 1, v0. The evaluation
of first decision tree node invokes f;,. The arguments H, K,
1 and local prev are passed to f;,. Before invocation, local
memory object prev is allocated and used as output buffer
for f,. Concolic unit testing names h, k, i,p are mapped to
reals, concrete or symbolic, in the caller (i.e., H=R@,K=1, 1 and
prev). The recursive call search_node(h, k, i-1, p) maps
h2, kz, iz, p2 to RO, 1, @, prev.

In the first invocation of f;,, the evaluation of branch
conditions in the decision tree uses symbolic arguments (e.g.,
h.next[i] != NULL becomes R@.next[1] != NULL) that
can be true or false, but we choose to explore the true branch
first. After evaluating branch conditions, the appropriate
data shape is processed to affect the current data structure.
Memory object R2 is created to satisfy the pointer-pointee
relationship in the path. Finally, the memory operations are
processed: the write p[i] = his converted to prev[1] = R0
and prev[@] = R@ in the first and second invocations.

Table 1. Pointer-pointee relations and the visualized skip
list shape generated along path T F T in insert.

l line# [pointer [pointee ‘ prev
17 curr No
24 | prev[0] N1
25 node N2
26 | prev[0]->next[0] | N2
28 | prev[1] N3
29 | prev[1]->next[1] | N2 N3 N1 N2 NO

Table 2. Memory accesses along path T F Tin insert.

l line# ‘ address ‘ value ‘ type ‘
17 | curr->key Load
25 prev[0]->next[0] Load
25 node->next[0] prev[0]->next[0] | Store
26 | prev[0]->next[0] | node Store
28 prev[1]->next[1] Load
28 node->next[1] prev[1]->next[1] | Store
29 | prev[1]->next[1] | node Store

74

ISMM 24, June 25, 2024, Copenhagen, Denmark

In the function f;, the branch nodes are evaluated using the
return value curr from f;,. Since in the second invocation
of fin returns h.next[i], which is R1, the return value curr
refers to R1. The branch conditions become R1 NULL
and R1.key == k. After calling of create and rand_level,
the local variable node and level become concrete values.
During the evaluation of the subsequent decision tree nodes
in Figure 5, lock/unlock events are processed, and memory
accesses that write to nodes prev[0] and prev[1] (which
both refer to R@) are processed. After the invocation of f; is
complete, all the local variables and names disappear upon
the pop action of the current stack frame.

Note that all of the above actions were performed using
function summaries which optimizes the work performed.

3 Detailed Algorithms

Next we present some key details of our algorithms: sum-
mary invocation algorithm during full program concolic
testing (Section 3.1); and summary guided search for races
while exploring data shapes and thread interleavings (Sec-
tion 3.2). We assume that the summary of each function is
already available.

3.1 Summary Invocation Algorithm

During the concolic testing of the full program, a call to a
summarized function f is replaced by invocation of its sum-
mary - which is the decision tree model §(f). The invocation
algorithm maps the symbolic and concrete values, including
pointers, obtained via concolic unit testing to the values in
the current state. The decision tree 5(f) of function f is used
to determine which path is followed and the program state
impacted by execution of the path is updated by storing sym-
bolic addresses in memory. The invocation algorithm only
handles the summarized functions. Unsummarized functions,
or paths whose summaries are unavailable, are executed as
they are by standard concolic testing.

The invocation process, presented in Algorithm 1, begins
with an execution state ¢ which has been set up the list
of input parameters (symbolic or concrete values) as local
variables, and the root node n of the decision tree §(f). The
InvokeSummary function presents the actions for different

s
node types. For all node types, at line 2, first = ¢ applies

data shapes to the current state ¢. Then for a branch node,
we evaluate the branch condition eval (B(n) = true, ¢) (line
4-6) and eval(B(n) = false, ¢) (line 7-9) to decide whether
branch condition is true, false, or either. Then, we apply the
branch condition to the path constraints in the new state(s).
We continue to process the child branches based on the
evaluation results using new state(s) (at line 6 and 9). For
call, synchronization, and return node types, we process

M
memory accesses ¢s === from the last non-branch node
hp—n

(line 11-12) since their side effects must be reflected in the

ISMM °24, June 25, 2024, Copenhagen, Denmark

Algorithm 1: Summary Invocation

1 Procedure InvokeSummary (¢, n):

S

2 ¢ = bs

3 if n is branch then

4 if eval B(n) can be true in ¢ then

B=true

5 Ps 4—T_> o

6 InvokeSummary(¢;, n.true_branch)

7 if eval B(n) can be false in ¢ then

B=false

8 Ps 4?” ér

9 InvokeSummary(¢ ¢, n.false_branch)
10 else

11 np « the last non-branch node

M C/LIV

12 Ps —_— bm — ¢’ based on the type of n
13 if n ?s return then

14 | @.push(¢’)

15 else

16 | InvokeSummary(¢’, n.child_node)
17 Procedure mapObjectInit(args):

18 obj_map, value_map « {}, {}

19 foreach unit_arg, real_arg in args do

20 if isPointer(real_arg) then

21 [0, 0] < getAddr(unit_arg)

22 obj_map[b] « getAddr(real_arg)
23 else

24 ‘ value_map(unit_arg] « real_arg
25 return obj_map, value_map
26 Procedure mapObject(obj_map, value_map, S):
27 foreach pointer, pointee in S do

28 real,_= convert(obj_map, value_map, pointer, _)
29 data = read(real)

30 [0, 0] = getAddr(pointee)

31 obj_map[b] « getAddr(data) - [0, 0]

32 value_map[pointee] « real

33 Procedure convert(obj_map, value_map, a, v):
34 [0, 0] = getAddr(a)
35 [67,0"] = obj_map[b] + [0, exprReplace(value_map, 0)]

36 return b’ + o’, exprReplace(value_map, v)

new state ¢,,. The new state will serve as the start state
for a new call, return, or a thread context switch. The state
¢’ represents the state after applying C}(n), L(n), or V(n)
based on the node type (line 12). Eventually, the final state
¢’ will be pushed into state queue ® as the final result. To
S

implement ¢ 3% ¢s, the key actions when invoking a
summary are defined as follows:

(1) Create object mapping. Each memory object in the con-
colic unit test summary is mapped to real memory corre-
sponding to the executing program. This mapping is used
to convert the memory objects from concolic unit testing to
the real memory objects in the current execution state.

75

Xiaofan Sun and Rajiv Gupta

(2) Create value mapping. The value mapping is used to
convert symbolic values used in concolic unit testing to the
values in the current execution state.

(3) Converting objects. As the decision tree path taken is
identified, the memory accesses to the objects in unit testing
are converted to real objects by looking up the object mapping
and calculating the offset if the pointer is not pointing to the
beginning of the objects. Observe that multiple pointers in
unit testing can map to the same object. Symbolic values in
memory are mapped into symbolic or concrete values in the
current state using value mapping.

For describing the details, some utility functions need to
be defined first: [b, 0] < getAddr(x) computes the base ad-
dress and offset of memory object x; isPointer determines
if the current expression represents a pointer; and finally
read(p) can dereference a pointer p and read its content.

s

In Algorithm 1, ¢ = ¢s can be implemented using two
basic operations - mapObject and mapObjectInit functions.
First, we initialize the object mapping and value mapping
by calling mapObjectInit with the input parameter pairs,
which are the parameters in current state and parameters
from the unit testing. Each pair of parameters is processed
and added to the object mapping and value mapping as ini-
tial information for which objects from unit testing and cur-
rent state map to each other. Each time during processing

0] %) ¢s, mapObject is called by passing the same object
mapping, value mapping containers and the shape summary
S(n) which is a list of pointer-pointee relations (PPRs). First,
the pointer is converted into the real memory address real
and loaded with the value data that real points to. If data is
concrete value, which points to a memory object, this object
should be mapped to the object that pointee referenced to
in the unit testing (line 28-31). For handling address being
writen and stored in the memory access, the value mapping
is updated (line 32).

The convert function converts a memory access with
address a and value expression v (for write access) to a real
memory object by looking up the object mapping and value

M

mapping. The memory access ¢ = ®m is implemented by
converting the memory reads and writes in M from unit
testing into real memory object reads and writes. Only the
first read and last write for accesses to an address are needed.

3.2 Summary-Guided Race Detection

Next we provide a summary guided race detection algorithm
based upon the lockset algorithm [54], hybrid race detection
[44], and the Cloud9 thread scheduling algorithm [18]. Our
race detection method has two phases. In the first phase,
before program testing, we iterate over all the possible pairs
of paths in a given summary to find potential data races in
the function. We use the lockset algorithm [54] to expose
potential data races from summaries for each pair of paths.

SSRD: Shapes and Summaries for Race Detection in Concurrent Data Structures

When traversing a pair of different memory accesses along
two paths, if the accesses refer to the same address and do
not hold the same lock, then we record a potential data race
involving the accesses. During program testing, in the second
phase, the thread scheduler postpones the thread when it
reaches one of potential racing statements. This thread’s
reactivation is prevented until another thread reaches the
corresponding racing statement confirming a race.

If two paths dereference pointers, the data race will only
occur when both accesses refer to the same memory object.
Therefore, integration of data structures for the two paths
into a non-conflicting consistent shape is required for poten-
tial data race detection. Our integration algorithm accepts a
pair of paths as the input and generates an integrated data
shape for the paths as the output. The integration is achieved
by modifying the pointer-pointee relations for the two paths.
If we have two different paths of the same function, we can
first start from the root pointer of all the parameters and
local/global variables which has been marked as symbolic
variables, and combining the pointer-pointee relationship
for two paths. We illustrate this process using an example.

Next, we show the integration of data shapes generated
for thread a path T F T and thread b path T T T of f;. The
line number (LN), collected path constraints (PCs), pointer-
pointee relations (PPRs) of thread a, b, the corresponding
data shape and their integrated result are shown in Fig-
ure 6, respectively. The integrated shape is created using
the following steps: 1) Since both threads contain prev and
curr, the pointer prev[@] is first integrated. However, a
conflict of prev[@] pointing to N1 in thread a and N4 in
thread b respectively is detected. The conflict is resolved
by setting the pointer prev[@] is pointing to N1 in thread b

LN PCs: Thread a LN PCs: Thread b
25 curr # NULL 25 curr # NULL
25 curr->key # k 25 curr->key =k
36 level = 1 26 | curr = prev[1]->next[0]
PPRs: Thread a PPRs: Thread b
LN Pointer Pointee | LN Pointer Pointee
25 curr NO 25 curr N4
33 prev[0] N1 26 prev[1] N5
34 node N2 26 | N5.next[0] N4
35 | Nl.next[0] N2 27 prev[0] N4
37 prev[1] N3
38 | N3.next[1] N2
prev
curr
I 50
N3 N1 N2 NO

Figure 6. An example of data structure integration in thread

a (left) and b (middle), with the integrated shape (right).

76

ISMM 24, June 25, 2024, Copenhagen, Denmark

due to its pointee being modifiable. Observe there are multi-
ple ways to resolve the conflict but we try to preserve the
first shape as much as possible. All the pointers pointing to
N4 (N5.next[@] and curr) are modified to N1; 2) Then, the
pointer prev[1] is transferred from N5 to N3 and the pointer
N5.next[@]isalso transferred so the PPRN3.next[@] point-
ing to N1 is created; and 3) Because pointer curr in thread b
points to N1 is not modifiable, the curr pointer in integrated
result uses the PPR curr pointing to N1.

In the second phase of testing, the scheduler explores inter-
leaving of threads to confirm a potential data race. A postpone
operation is used to exercise thread interleavings. Once the
current thread satisfies the conditions for a potential data
race, the scheduler postpones the thread to allow another
thread to be scheduled and progress to a point that realizes
the data race. If a schedule is found that realizes the data
race, the race is reported and thread is no longer postponed
and allowed to be scheduled to search for another data race.

Algorithm 2: An algorithm for data race detection

Input: The initial state ¢o and a set of potential race set R
Output: An optimized scheduling of summary invocations.
1 Procedure SchedulingGen (¢o, R):

2 | Q=do

3| ¢=Qpop()

4 while Active(¢p) # 0 do

5 for t € Active($) do

6 while t ¢ postponed(¢) do

7 t = nextThread(t, ¢)

8 if all threads are in postponed(¢) then

‘ postponed(P) = postponed(p) - t

10 ¢’ = forkThread(¢)
1 Current(¢’) =t
12 runThreadUntilSync(¢’)
13 Q.push(¢’)

Algorithm 2 shows how the thread scheduler explores
interleavings to confirm potential data races. It continues
exploring all paths and thread interleavings combinations
till testing time is exhausted. Active(¢) maintains a set of
running threads. postponed is a set of threads which are cur-
rently postponed and cannot be scheduled yet. The algorithm
checks when there are threads are running (Active(¢) # 0).
For each running thread ¢, if t is in Postponed(¢), we post-
pone the thread to schedule the next one using the function
nextThread(t) to get the next thread. If all threads are post-
poned, we remove the current thread from the Postponed(¢)
set to make sure there is no dead lock. Then, we fork a new
state to explore the thread scheduling for ¢ and execute the
thread t using runThreadUntilSync until it meets a thread
synchronization event (for example lock, unlock, etc). Finally,
we push state ¢’ in the state queue Q to schedule the next
synchronization event.

ISMM °24, June 25, 2024, Copenhagen, Denmark

Xiaofan Sun and Rajiv Gupta

Table 3. Data Race Detection Effectiveness of: AFL++ based Fuzzing; Cloud9 and SSRD based Concolic Execution.

Test Function # of Paths Covered # of Data Races Detected
Program Name AFL++ Cloud9 SSRD AFL++ Cloud9 SSRD
sL insert 3 52 3779 2 2 8

search 6 13 1479 0 0 2

insert 3 10 321 7 10 15
ULL delete 16 13 78 2 1 4

search 16 16 93 0 0

insert 2 22 31 0 5
PQ

remove 2 16 1479 0 11 19

i t 1 7942 16329 0 4 6
AVL inser

delete 1 285 1322 0 1 12

Table 4. SSRD Execution Time: Without Using (WO-Sum) and With Using (W-Sum) Function Summaries + Summaries
Construction Time. Negative percentages indicate reductions, and reduction in parentheses means the reduction if we do not
consider summaries construction time. Analysis of Execution Time: Reduction of Constraint Solving Time Using (W-Sum)
Function Summaries. # of Solved represents the number of constraints solved during execution.

Test Function Execution Time (s) Constraints Solving Time # Solved

Program | Name WO-Sum W-Sum Reduction % of W-Sum WO-Sum W-Sum
(+cons. time) | (% w/o cons. time) || Total Time |(% Reduction) (% Reduction)
sL insert 326.56 172.3 + 0.81 -47.0% (-47.2%) 45.27% -72.69% 100,466 | 42,336 (-57.9%)
search 116.19 98.29 + 0.75 -14.8% (-15.4%) 22.54% -35.15% 45,948 | 28,728 (-37.5%)
insert 1092.27 87.84 + 0.39 -91.9% (-92.0%) 85.20% -96.95% 485,212 | 46,655(-90.4%)
ULL delete 76.26 21.47 + 0.44 -71.3% (-71.8%) 64.55% -94.38% 75,548 3,333 (-95.6%)
search 268.32 66.31 + 0.53 -75.1% (-75.3%) 73.56% -92.32% 164,220 7,140 (-95.7%)
PQ insert 15.45 23.77 + 0.88 +59.5% (+53.9%) 95.64% +55.72% 5,704 | 6,764 (+18.6%)
remove 111.26 8.58 + 31.39 -64.1% (-92.3%) 87.20% -92.27% 9,486 527 (-94.4%)
AVL insert 41.47 18.42 + 0.76 -53.7% (-55.6%) 48.66% -97.92% 19,625 333 (-98.3%)
delete 212.06 | 122.61 + 0.98 -41.7% (-42.2%) 53.39% -96.40% 49,887 3,856 (-92.3%)

Table 5. Summarization Benefits: The total number of
memory Reads and Writes during execution in experiments;
and % Reduction in memory Reads/Writes due to enabling

the summarization approach.

Test Function # of Memory Access W-Sum
Program | Name Read (Reduction) [Write (Reduction)
oL insert 4,460,946 (-8.3%) | 2,122,027 (-5.3%)

search 2,606,982 (-1.9%) | 1,204,355 (-1.4%)
insert 84,180 (-88.0%) | 158,774 (-46.9%)
ULL delete 14,564 (-86.1%) 14,564 (-66.5%)
search 38,201 (-81.1%) 38,201 (-52.9%)
PO insert 993 (-24.6%) 1,352 (-2.6%)
remove 6,108 (-36.7%) 7,419 (-3.2%)
AVL insert 28,934 (-48.0%) 34,985 (-74.4%)
delete 1357135 (-2.5%) | 703537 (-23.0%)

77

4 Experiments
4.1 Experimental Setup

To study the effectiveness and efficiency of SSRD, we first
use a solution based on the popular general-purpose fuzzing
engine AFL++ [24] combined with the Thread Sanitizer [58]
to evaluate the complexity of the benchmarks. Then we
compare SSRD with a representative lock-set based data race
detector using Cloud9 (concolic execution+lockset) [18]. In
our experiments, we tested and compared our SSRD system
with Cloud9 using the same lock-based implementations
of the following concurrent dynamic data structures: Skip
List(SL), Unrolled Linked-List(ULL), Priority Queue(PQ), and
AVL-Tree(AVL).

The codes are modified from open-source projects and
augmented with statements to trigger read-write and write-
write data races. When running AFL++ based and the Cloud9
data race detector, we provide additional code to create an
initial shape for each kind of data structures, and further

SSRD: Shapes and Summaries for Race Detection in Concurrent Data Structures

testing of insertion, deletion, and searching is based on the
initial shapes. For SSRD, we use a symbolic pointer as the
handle for the automatically generated data shape for test-
ing. To control the size of generated shapes, we limit the
length of the pointer chain allowed. To exploit thread inter-
leaving, we use POSIX thread model in Cloud9 and create a
pair of threads using the pthread APIs to execute functions
concurrently for testing.

4.2 Race Detection Effectiveness

We evaluated the effectiveness of our system by comparing
it with the traditional Cloud9 system with a lockset-based
race-detecting algorithm. Table 3 shows the path covered
and the number of data races detected using each approach.
The AFL++ results show that it cannot effectively find data
races. From all known races, it detects only 2 out of 10 in
SL, 9 out of 22 races in ULL, 0 out of 24 in PQ, and 0 out of
18 in AVL. We then note that Cloud9 can detect more data
races than AFL++ but these are a subset of data races that
are detected by SSRD - 2 out of 10 in SL, 11 out of 22 in ULL,
16 out of 24 in PQ, and 5 out of 18 in AVL. Note that there
is no data race detected by Cloud9 but not by SSRD. The
only race in ULL found via fuzzing but not in SSRD due to
constraint solving problem. We observe that the number of
paths explored by SSRD 1.4X(31 vs 22) to 113.7Xx(1479 vs 13)
is greater than Cloud9. This greater exploration of search
space by SSRD is responsible for uncovering many data races
that are missed by Cloud9.

4.3 Exploration Efficiency

The summaries play an important role in improving the
exploration efficiency of SSRD. Table 4 compares the perfor-
mance difference with/without summarization. We observe
that with summaries (W-Summ), the execution time is re-
duced by 26% to 94% across the benchmarks over without
summaries (WO-Summ). The overall efficiency of SSRD is
better than Cloud9. However, there are two exceptions - the
insert action for priority-queue and the delete action for AVL-
tree experience slow down when using summaries. The rea-
son is the paths contained in summaries are not encountered
during testing, and thus the cost incurred for generating
summaries does not yield any benefits.

Table 4 also analyzes the reduction in constraints solving
time and number of solved constraints due to summarization.
Note that constraints solving time represents a significant
portion of the total time from 2.54% to 95.64% across the
benchmarks. We observe that with summaries constraints
solving time is reduced by 35% to 97% across the bench-
marks, while the number of constraints solved is reduced
by 37.5% to 98.3%. The constraints solving time reflects the
time spent on solving the branch condition and symbolic
pointers. This is reduced using summaries since there are
solved branch conditions and generated data shapes in the
saved path summaries.

78

ISMM 24, June 25, 2024, Copenhagen, Denmark

Table 5 analyzes the performance improvements of SSRD
due to reductions in memory access. The number of read and
write operations is reduced via summaries by 1.4% to 88.0%
since there are temporary memory read and write operations
that are performed during concolic unit testing that are not
repeated during full testing. At the same time, since the
memory access also requires solving address constraints for
symbolic addresses, the reduction in memory access also
reduces the number of constraints solved.

5 Related Work

Data race detection methods, static or dynamic, have been
widely studied [12, 29, 37, 39, 44, 53, 55, 65]. Both static and
dynamic methods have advantages and limitations.

Static data race detection methods. Type-/Language-
based flow-insensitive race detection methods [8, 13, 15, 25,
28] are static data race detection methods incorporated in
compilers. However, typically these methods require adding
annotations, modification of programs, or rewriting the algo-
rithm in another language. In contrast, our approach works
directly on existing C/C++ concurrent programs. Though
some methods can automatically annotate the program [3],
it is hard to know what exception leads to a data race with-
out runtime information. Lockset based flow-sensitive static
approaches [12, 22, 29, 37, 39, 51, 60, 65] are another major
kind of data race detection methods. These approaches are
sound, i.e. the system finds all potential races. The primary
limitation is high rates of false positives. RacerX [22] uses
several heuristics to filter false warnings. RacerD [12] and
RacerDX [29] are static methods with few false positives.
Even then, they require the user to manually confirm the
data races and ascertain race conditions as well as thread
interleavings. Our approach aims to automatically generate
input data and possible thread interleavings to detect the
data races with its race conditions.

Dynamic data race detection methods. Happens-before
analysis [1, 19, 26, 40] and Lockset analysis [2, 17, 21, 42, 54,
64] are two kinds of methods for dynamic data race detection.
Happens-before analysis produces no false positives but is in-
efficient. Lockset analysis relies on collecting memory access
information and lock/unlock event tracing for race detection.
However, it can lead to false positives. Therefore, a combi-
nation of those two algorithms [20, 31, 44, 50, 71] can give
a more efficient and accurate result. Some hardward-based
approaches has been proposed. Kard [4] is a lightweight race
detector using per-thread memory protection, Intel Mem-
ory Protection Keys. However, all these data race detection
methods require other techniques to test multiple paths and
thread interleavings to expose races.

Path explosion and thread interleaving explosion
problems in multithreaded programs testing. Fuzzing
[16, 35, 47, 55, 63, 67], Symbolic/Concolic Execution [11, 14,

ISMM °24, June 25, 2024, Copenhagen, Denmark

18, 23, 38], and ModelChecking [43] are three primary test-
ing methods for systematically exploring multiple paths and

thread interleavings. Fuzzing is commonly used in test gen-
eration for large programs. However, it does not guarantee

exploration of all paths and thread interleavings leaving data

races hidden in a rare branch condition unexposed. Sym-
bolic/Concolic Execution is the state-of-the-art technology

to explore all paths and to generate the test input but also

faces path explosion and thread interleaving explosion prob-
lems. Klee [14] is a symbolic execution engine for LLVM

IR. Cloud9 [18] extends klee to POSIX environment and

pthreads. State merging method [38] has been proposed to

handle the path explosion problem during symbolic execu-
tion. Con2colic [23] explores the content of data structure

and thread interleavings in multithreaded programs. How-
ever, it is based on random search rather than targeted search

which limits scalability. Moreover, it cannot explore data

shapes for pointer-based data structures. SymCC [48] and

SymQemu [49] use compilation-based rather than interpreter-
based technique which greatly improves performance, but

do not reduce computation complexity.

Summarization is a well known method for dealing with
path explosion. [27] proposes compositional automatic test
generation that can scale to large programs with many fea-
sible paths. [5] extends it by minimizing intraprocedural
paths symbolically executed when forming an interproce-
dural path. These methods can improve symbolic execution
in a compositional way but they do not contribute to data
shape exploration. Incremental symbolic execution has been
studied in [30, 33, 46, 66, 68, 69], and using summarization
is one of the main approaches. Interpolation-based function
summaries [59] reuse summaries during incremental verifi-
cation. Efficient summary reuse [32] is another approach for
regression verification for reusing intermediate results from
the previous verification runs. FENSE [69] summarizes pre-
viously explored paths by recording the variables that may
induce different incremental behaviors. However, those sum-
maries can only reuse results between different versions and
are not suitable for a single run during exploration of data
shapes. State merging [38] solves path explosion problem by
combining similar states during execution. Path Subsump-
tion [70] uses an annotation algorithm for branches and
statements labels, which are implied by the current state.
Chopped symbolic execution [62] can jump over unrelated
functions during symbolic execution, which can reduce the
chance of forking new states. The above methods only focus
on the path explosion problem but do not deal with data
shape exploration and data race detection efficiency. Our
approach uses summarization to help quickly explore data
shapes and guide the thread scheduler and speed up race
detection in exploring thread interleavings.

Model Checking is the primary method to explore thread
interleavings. However, its cost is too high to cover all in-
terleaving cases. SPL language [57] provides an extended to

79

Xiaofan Sun and Rajiv Gupta

simplified form of sequential Java to support multithreaded
program model checking using the counterexample-guided
abstraction-refinement framework. Bounded Model Checking
via lazy sequentialization [34] proposes a systematic way
to check sequentially consistent C programs using POSIX
threads. However, model checking requires significant effort
to modify current multithreaded program and rarely sup-
ports concurrent data structures. In contrast, our approach
is based on symbolic execution and requires minimal code
changes. Thus, no method handles path and thread inter-
leaving explosion for exposing data races in concurrent data
structures.

Related methods for checking concurrent data struc-
tures. Handling concurrent data structures is one of the most
difficult tasks in dynamic data race detection due to infinite
states and different shape requirements for different paths.
CDSChecker [43] provides a model-checking algorithm for
modeling concurrent code under the C++ memory model.
However, CDSChecker is not aimed for lock-based synchro-
nization, and both path explosion problem and thread inter-
leaving explosion problem is not solved by it. CDSSPEC [45]
is a specification checker for the C++11 memory model. How-
ever, it requires use of a specification language to describe
the data structure and still has high overhead. Shoal [6] is a
system that extended SharC, by grouping objects and pro-
viding sharing rules on each group. It can avoid data races
for concurrent data structures by turning data race detection
problem into a sharing-rule violation detection problem. DS-
GEN [61] uses a data shape generation method for detecting
data races in concurrent data structures of the CUDA plat-
form. However, as the memory model and synchronization
methods are different for a multicore system, it cannot be
used. [41] uses a template approach in the Verified Software
Toolchain [7] to prove the correctness of concurrent search
structure. However, this approach requires manually written
templates to verify the program which is not an automatic
solution for generating test cases to detect the faults.

6 Conclusions

We presented an new approach for concolic testing of mul-
tithreaded programs that employ concurrent dynamic data
structures to uncover data races. The key contributions of
this work include summary computation and exploitation
for efficiency, and non-conflicting shape determination and
thread scheduling to guide concolic testing for exposing data
races. Our evaluation shows that our approach is signifi-
cantly more effective in uncovering data races than Cloud9
and reuse of summaries leads lightweight creation of objects
and removal of elimination of memory accesses.

Acknowledgments

This work is supported in part by National Science Founda-
tions grants CCF-2226448, CCF-2002554, and CCF-2028714
to University of California Riverside.

SSRD: Shapes and Summaries for Race Detection in Concurrent Data Structures

References

(1]

—
S
fla?

(14

=

[15

=

(16]

(17]

(18]

Sarita V. Adve, Mark D. Hill, Barton P. Miller, and Robert H. B. Netzer.
1991. Detecting Data Races on Weak Memory Systems. SIGARCH
Comput. Archit. News 19, 3 (apr 1991), 234-243. https://doi.org/10.
1145/115953.115976

Rahul Agarwal, Amit Sasturkar, Ligiang Wang, and Scott D Stoller.
2005. Optimized run-time race detection and atomicity checking
using partial discovered types. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering. 233-242.
Rahul Agarwal and Scott D Stoller. 2004. Type inference for parame-
terized race-free Java. In International Workshop on Verification, Model
Checking, and Abstract Interpretation. Springer, 149-160.

Adil Ahmad, Sangho Lee, Pedro Fonseca, and Byoungyoung Lee. 2021.
Kard: Lightweight data race detection with per-thread memory pro-
tection. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems. 647-660.

Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-
driven compositional symbolic execution. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 367-381.

Zachary R Anderson, David Gay, and Mayur Naik. 2009. Lightweight
annotations for controlling sharing in concurrent data structures. ACM
Sigplan Notices 44, 6 (2009), 98-109.

Andrew W Appel. 2011. Verified Software Toolchain: (Invited Talk).
In European Symposium on Programming. Springer, 1-17.

David F Bacon, Robert E Strom, and Ashis Tarafdar. 2000. Guava: A
dialect of Java without data races. ACM SIGPLAN Notices 35, 10 (2000),
382-400.

Phil Bagwell. 2001. Ideal hash trees. EPFL. Technical Report.

Philip Bagwell and Tiark Rompf. 2011. RRB-Trees: Efficient Inmutable
Vectors. EPFL. Technical Report.

Tom Bergan, Dan Grossman, and Luis Ceze. 2014. Symbolic execution
of multithreaded programs from arbitrary program contexts. ACM
SIGPLAN Notices 49, 10 (2014), 491-506.

Sam Blackshear, Nikos Gorogiannis, Peter W O’Hearn, and Ilya Sergey.
2018. RacerD: compositional static race detection. Proceedings of the
ACM on Programming Languages 2, OOPSLA (2018), 1-28.
Chandrasekhar Boyapati and Martin Rinard. 2001. A parameterized
type system for race-free Java programs. In Proceedings of the 16th
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications. 56—69.

Cristian Cadar, Daniel Dunbar, and Dawson R Engler. 2008. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs.. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI 08). 209-224.
Elias Castegren and Tobias Wrigstad. 2016. Reference Capabilities for
Concurrency Control. In 30th European Conference on Object-Oriented
Programming (ECOOP 2016) (Leibniz International Proceedings in Infor-
matics (LIPIcs), Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner
(Eds.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 5:1-5:26. https://doi.org/10.4230/LIPlcs. ECOOP.2016.5
Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang,
Yuekang Li, Haijun Wang, and Yang Liu. 2020. MUZZ: Thread-aware
grey-box fuzzing for effective bug hunting in multithreaded programs.
In 29th USENIX Security Symposium (USENIX Security 20). 2325-2342.
Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan,
Vivek Sarkar, and Manu Sridharan. 2002. Efficient and precise datarace
detection for multithreaded object-oriented programs. In Proceedings
of the ACM SIGPLAN 2002 Conference on Programming language design
and implementation. 258-269.

Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and
George Candea. 2010. Cloud9: A software testing service. ACM SIGOPS
Operating Systems Review 43, 4 (2010), 5-10.

80

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

ISMM 24, June 25, 2024, Copenhagen, Denmark

Anne Dinning and Edith Schonberg. 1991. Detecting access anomalies
in programs with critical sections. In Proceedings of the 1991 ACM/ONR
workshop on Parallel and distributed debugging. 85-96.

Anne Dinning and Edith Schonberg. 1991. Detecting access anomalies
in programs with critical sections. In PADD ’91.

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks: a
race and transaction-aware java runtime. ACM SIGPLAN Notices 42, 6
(2007), 245-255.

Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, static detec-
tion of race conditions and deadlocks. ACM SIGOPS operating systems
review 37, 5 (2003), 237-252.

Azadeh Farzan, Andreas Holzer, Niloofar Razavi, and Helmut Veith.
2013. Con2colic testing. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering. 37-47.

Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc Heuse.
2020. AFL++: Combining Incremental Steps of Fuzzing Research. In
14th USENIX Workshop on Offensive Technologies (WOOT 20). USENIX
Association.

Cormac Flanagan and Stephen N Freund. 2001. Detecting race con-
ditions in large programs. In Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineer-
ing. 90-96.

Cormac Flanagan and Stephen N Freund. 2009. FastTrack: efficient
and precise dynamic race detection. ACM Sigplan Notices 44, 6 (2009),
121-133.

Patrice Godefroid. 2007. Compositional dynamic test generation. In
Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. 47-54.

Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Brom-
field, and Joe Dufty. 2012. Uniqueness and Reference Immutability for
Safe Parallelism. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications
(Tucson, Arizona, USA) (OOPSLA °12). Association for Computing Ma-
chinery, New York, NY, USA, 21-40. https://doi.org/10.1145/2384616.
2384619

Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2019. A True
Positives Theorem for a Static Race Detector. 3, POPL, Article 57 (jan
2019), 29 pages. https://doi.org/10.1145/3290370

Shengjian Guo, Markus Kusano, and Chao Wang. 2016. Conc-iSE:
Incremental symbolic execution of concurrent software. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering. 531-542.

Jerry J. Harrow. 2000. Runtime Checking of Multithreaded Appli-
cations with Visual Threads. In SPIN Model Checking and Software
Verification, Klaus Havelund, John Penix, and Willem Visser (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 331-342.

Fei He, Qianshan Yu, and Liming Cai. 2020. Efficient summary reuse
for software regression verification. IEEE Transactions on Software
Engineering 48, 4 (2020), 1417-1431.

Joran J Honig. 2020. Incremental symbolic execution. Master’s thesis.
University of Twente.

Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore
La Torre, and Gennaro Parlato. 2014. Bounded model checking of
multi-threaded C programs via lazy sequentialization. In International
Conference on Computer Aided Verification. Springer, 585-602.

Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee,
and Insik Shin. 2019. Razzer: Finding kernel race bugs through fuzzing.
In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 754-768.
Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu. 2022. Context-
sensitive and directional concurrency fuzzing for data-race detection.
In Network and Distributed Systems Security (NDSS) Symposium 2022.
Vineet Kahlon, Yu Yang, Sriram Sankaranarayanan, and Aarti Gupta.
2007. Fast and accurate static data-race detection for concurrent
programs. In International Conference on Computer Aided Verification.
Springer, 226-239.

https://doi.org/10.1145/115953.115976
https://doi.org/10.1145/115953.115976
https://doi.org/10.4230/LIPIcs.ECOOP.2016.5
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/3290370

ISMM °24, June 25, 2024, Copenhagen, Denmark

(38]

(39]

(40]

[41]

(42]

(43]

[44]

(45]

[46]

(47]

(48]

[49]

(50]

[51]

(52]

Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George
Candea. 2012. Efficient state merging in symbolic execution. Acm
Sigplan Notices 47, 6 (2012), 193-204.

Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race
detection for Java. In Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation. 308-319.
Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Ed-
wards, and Brad Calder. 2007. Automatically Classifying Benign and
Harmful Data Races Using Replay Analysis. SIGPLAN Not. 42, 6 (jun
2007), 22-31. https://doi.org/10.1145/1273442.1250738

Duc-Than Nguyen, Lennart Beringer, William Mansky, and Shengyi
Wang. 2024. Compositional Verification of Concurrent C Programs
with Search Structure Templates. In Proceedings of the 13th ACM SIG-
PLAN International Conference on Certified Programs and Proofs. 60-74.
Hiroyasu Nishiyama. 2004. Detecting Data Races Using Dynamic
Escape Analysis Based on Read Barrier.. In Virtual Machine Research
and Technology Symposium. 127-138.

Brian Norris and Brian Demsky. 2013. CDSchecker: Checking Concur-
rent Data Structures Written with C/C++ Atomics. SIGPLAN Not. 48,
10 (oct 2013), 131-150. https://doi.org/10.1145/2544173.2509514
Robert O’callahan and Jong-Deok Choi. 2003. Hybrid dynamic data
race detection. In Proceedings of the ninth ACM SIGPLAN symposium
on Principles and practice of parallel programming. 167-178.

Peizhao Ou and Brian Demsky. 2017. Checking concurrent data struc-
tures under the C/C++ 11 memory model. In Proceedings of the 22nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming. 45-59.

Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid.
2011. Directed incremental symbolic execution. Acm Sigplan Notices
46, 6 (2011), 504-515.

Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana.
2017. Slowfuzz: Automated domain-independent detection of algo-
rithmic complexity vulnerabilities. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS °17). 2155—
2168.

Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution
with {SymCC}: Don’t interpret, compile!. In 29th USENIX Security
Symposium (USENIX Security 20). 181-198.

Sebastian Poeplau and Aurélien Francillon. 2021. SymQEMU:
Compilation-based symbolic execution for binaries. In NDSS 2021,
Network and Distributed System Security Symposium. Internet Society.
Eli Pozniansky and Assaf Schuster. 2007. MultiRace: efficient on-the-
fly data race detection in multithreaded C++ programs. Concurrency
and Computation: Practice and Experience 19, 3 (2007), 327-340.
Polyvios Pratikakis, Jeffrey S Foster, and Michael Hicks. 2011. LOCK-
SMITH: Practical static race detection for C. ACM Transactions on
Programming Languages and Systems (TOPLAS) 33, 1 (2011), 1-55.
William Pugh. 1990. Skip lists: a probabilistic alternative to balanced
trees. Commun. ACM 33, 6 (1990), 668-676.

[53] Jake Roemer, Kaan Geng, and Michael D Bond. 2020. SmartTrack: effi-

(54]

(55]

cient predictive race detection. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation. 747
762.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. 1997. Eraser: A dynamic data race detector
for multithreaded programs. ACM Transactions on Computer Systems
(TOCS) 15, 4 (1997), 391-411.

Koushik Sen. 2008. Race directed random testing of concurrent pro-
grams. In Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. 11-21.

81

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Xiaofan Sun and Rajiv Gupta

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic
Unit Testing Engine for C. In Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering (ESEC/FSE
’05). 263-272.

Koushik Sen and Mahesh Viswanathan. 2006. Model checking mul-
tithreaded programs with asynchronous atomic methods. In Interna-
tional Conference on Computer Aided Verification. Springer, 300-314.
Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSani-
tizer: data race detection in practice. In Proceedings of the workshop on
binary instrumentation and applications. 62-71.

Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. 2012. In-
cremental upgrade checking by means of interpolation-based function
summaries. In 2012 Formal Methods in Computer-Aided Design (FM-
CAD). IEEE, 114-121.

Nicholas Sterling. 1993. {WARLOCK}-A Static Data Race Analysis
Tool. In { USENIX} Winter 1993 Conference ({USENIX} Winter 1993
Conference).

Xiaofan Sun and Rajiv Gupta. 2021. DSGEN: Concolic Testing GPU
Implementations of Concurrent Dynamic Data Structures. In Proceed-
ings of the ACM International Conference on Supercomputing (Virtual
Event, USA) (ICS °21). Association for Computing Machinery, New
York, NY, USA, 75-87. https://doi.org/10.1145/3447818.3460962
David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar.
2018. Chopped symbolic execution. In Proceedings of the 40th Interna-
tional Conference on Software Engineering. 350-360.

Nischai Vinesh and M Sethumadhavan. 2020. Confuzz—a concurrency
fuzzer. In First International Conference on Sustainable Technologies for
Computational Intelligence. Springer, 667-691.

Christoph Von Praun and Thomas R Gross. 2001. Object race detection.
Acm Sigplan Notices 36, 11 (2001), 70-82.

Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: static
race detection on millions of lines of code. In Proceedings of the the 6th
Jjoint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering.
205-214.

Rong Wang, Shaoying Liu, and Yuji Sato. 2021. SIT-SE: a specification-
based incremental testing method with symbolic execution. IEEE
Transactions on Reliability 70, 3 (2021), 1053-1070.

Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. 2020.
Krace: Data race fuzzing for kernel file systems. In 2020 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 1643-1660.

Guowei Yang, Suzette Person, Neha Rungta, and Sarfraz Khurshid.
2014. Directed incremental symbolic execution. ACM Transactions on
Software Engineering and Methodology (TOSEM) 24, 1 (2014), 1-42.
Qiuping Yi and Guowei Yang. 2022. Feedback-driven incremental
symbolic execution. In 2022 IEEE 33rd International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 505-516.

Qiuping Yi, Zijiang Yang, Shengjian Guo, Chao Wang, Jian Liu, and
Chen Zhao. 2015. Postconditioned symbolic execution. In 2015 IEEE 8th
International Conference on Software Testing, Verification and Validation
(ICST). IEEE, 1-10.

Yuan Yu, Tom Rodeheffer, and Wei Chen. 2005. Racetrack: efficient
detection of data race conditions via adaptive tracking. In Proceedings
of the twentieth ACM symposium on Operating systems principles. 221-
234.

Received 2024-03-22; accepted 2024-05-10

https://doi.org/10.1145/1273442.1250738
https://doi.org/10.1145/2544173.2509514
https://doi.org/10.1145/3447818.3460962

	Abstract
	1 Introduction
	2 Overview
	3 Detailed Algorithms
	3.1 Summary Invocation Algorithm
	3.2 Summary-Guided Race Detection

	4 Experiments
	4.1 Experimental Setup
	4.2 Race Detection Effectiveness
	4.3 Exploration Efficiency

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

