
SSRD: Shapes and Summaries for Race Detection in
Concurrent Data Structures

Xiaofan Sun
University of California at Riverside

Riverside, USA

xsun042@ucr.edu

Rajiv Gupta
University of California at Riverside

Riverside, USA

rajivg@ucr.edu

Abstract

Concolic testing combines concrete execution with symbolic

execution to automatically generate test inputs that exer-

cise di�erent program paths and deliver high code coverage.

This approach has been extended to multithreaded programs

for exposing data races. Multithreaded programs frequently

rely upon concurrent dynamic data structures whose imple-

mentations may contain data races that manifest only when

certain dynamic data structure shapes, program paths, and

thread interleavings are exercised. The lack of support for

exploring di�erent data structure shapes compromises the de-

tection of races. This paper presents a summarization-guided

approach for concolic testing capable of e�ciently exploring

di�erent dynamic data structure shapes to expose data races.

Via unit testing of key functions, function summaries are

generated that capture data structure shapes that cause vari-

ous function paths to be exercised. The shapes are captured

in the form of pointer-pointee relations among symbolic

pointers. By reusing function summaries during concolic

testing, much of the overhead of handling symbolic pointers

and dynamic objects in summarized functions is avoided.

The summary also contains symbolic memory accesses and

synchronization events that guide application-level concolic

testing �rst to identify and then con�rm potential data races.

We demonstrate the e�ciency and e�cacy of our approach

via experiments with multithreaded programs performing

concurrent operations on four widely used dynamic data

structures - Skip List, Unrolled Linked List, Priority�eue,

and AVL Tree. It increases the number of races detected from

34 to 74 in total in comparison to Cloud9, and reduces both

constraints solving time and number of constraints needed

to be solved via summarization.

CCS Concepts: • Software and its engineering→ Soft-

ware maintenance tools.

ISMM ’24, June 25, 2024, Copenhagen, Denmark

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0615-8/24/06.

h�ps://doi.org/10.1145/3652024.3665505

Keywords: concolic testing, dynamic data structures, sum-

marization, data race detection

ACM Reference Format:

Xiaofan Sun and Rajiv Gupta. 2024. SSRD: Shapes and Summaries

for Race Detection in Concurrent Data Structures. In Proceedings

of the 2024 ACM SIGPLAN International Symposium on Memory

Management (ISMM ’24), June 25, 2024, Copenhagen, Denmark.

ACM,NewYork, NY, USA, 14 pages. h�ps://doi.org/10.1145/3652024.

3665505

1 Introduction

The ubiquity of multicore hardware has led to widespread

use of multithreading in application software. Multithreaded

programs typically employ data structures for maintaining

shared state and threads must coordinate accesses to the

shared state for correctness. The concurrent nature of shared

data structures allows multiple operations to proceed in par-

allel; thus, mitigating performance bottlenecks. However,

concurrency often leads to bugs in form of data races. A

number of static analyses have been developed for automati-

cally detecting data races including both �ow-insensitive [8,

13, 15, 28]; and �ow-sensitive [12, 22, 29, 37, 39, 60, 65] meth-

ods. Though static methods can be sound, users still have

to manually con�rm the detected data races. Without dy-

namic information, static methods are hard to automatically

create a test input to reproduce the bug. Dynamic testing

approaches include fuzzing [16, 35, 36, 55, 63] and concolic

testing [14, 18, 38]. Fuzzing approaches, unsupported by a

symbolic execution engine, cannot derive and solve con-

ditions that cause execution to exercise branch outcomes

necessary for reaching the race point. On the other hand, con-

colic testing is a powerful technique that has been extended

to multithreaded programs for race detection [18, 23]. How-

ever, existing works for concolic testing of multithreaded

C/C++ progarams to uncover data races have limitations

when the program makes use of concurrent dynamic data

structures [9, 10, 52] (e.g., a concurrent Skip List).

To expose a data race, it is typically essential to employ a

data structure with a speci�c shape, together with a thread

interleaving, that cause racing threads to follow paths with

racing reads and writes of the data structure. Thus, con-

colic testing must be enhanced with the ability of e�ciently

explore dynamic data structure shapes and thread interleav-

ings. Cloud9 [18] extends KLEE [14], an engine designed for

single thread programs, with the POSIX thread model thus

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

68

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6131-7325
https://orcid.org/0000-0002-9348-3974
https://doi.org/10.1145/3652024.3665505
https://doi.org/10.1145/3652024.3665505
https://doi.org/10.1145/3652024.3665505
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652024.3665505&domain=pdf&date_stamp=2024-06-20

ISMM ’24, June 25, 2024, Copenhagen, Denmark Xiaofan Sun and Rajiv Gupta

allowing development of tools for detection of concurrency

bugs in C/C++ programs. However, it lacks the capability

for uncovering data races in the presence of concurrent data

structures [9, 10, 52] that are dynamic in nature (e.g., Skip

List) because it cannot systematically explore data structure

shapes. Although Con2colic [23] can explore values for data

�elds within a data structure of a given shape and size, it can-

not explore di�erent data structure shapes. While CUTE [56]

can explore data structure shapes, it does not support multi-

threaded programs and su�ers from performance issues for

large programs. Note that to uncover a data race we require

coordinated exercising of paths by a pair of threads. Also,

exploring dynamic data structure shapes and thread inter-

leavings requires making all linking pointers symbolic. This

causes the cost of path and thread interleaving exploration of

concolic testing to further increase. Thus, e�ectively explor-

ing data shapes and thread interleavings for a multithreaded

program is still an open problem for detecting data races.

In this paper, to address the above limitations of capability

and cost, we develop an approach that is both general and

e�cient (i.e., it can e�ciently explore concurrent dynamic

data structure shapes to uncover data races in C/C++ pro-

grams). Our approach is based upon the idea of function

summarization where concolic unit testing of a function is

used to generate a summary consisting of:

• Path Conditions & Dynamic Data Structure Shapes that

represent symbolic constraints that must be satis�ed

to exercise a path in a summarized function; and

• Lock/Unlock Sets and Read/Write Memory Accesses that

are used to identify pairs of paths with potential data

races and guide concolic testing of the full application

to, if possible, con�rm the presence of a data races.

The summaries play an important role in improving the

e�ciency and e�ectiveness of concolic testing in the presence

of dynamic data structures in two signi�cant ways:

• Reusing Paths Summaries. When exploring a program

path containing a call to a summarized function, say 5 ,

the overhead of concolic execution of 5 is reduced by

reusing the symbolic structure shapes and expression

representations generated for 5 during summarization.

That is, the overhead associated with symbolic point-

ers is reduced because all actions performed during

summarization need not be repeated during concolic

testing; and

• Coordinated Exploration of Data Structure Shapes. A

data race is exposed by simultaneous execution of a

pair of paths by two threads. Using the summariza-

tion produced data structure shapes for two paths, we

explore integrated single non-con�icting shapes that

enable simultaneous exercising of the two paths of

interest.

We have extended Cloud9 to support symbolic pointers

and shape generation for concurrent dynamic data structures.

1 #define MAXLEVEL 2

2 typedef struct Node {

3 key_t key;

4 val_t value;

5 struct Node* next[MAXLEVEL];

6 } Node;

7

8 void foo(Node* node, key_t k, value_t v) {

9 // M paths before calling 'bar'

10 bar(node, k, v);

11 }

12

13 void bar(Node* node, key_t k, value_t v) {

14 // N paths before the following 'if' statement

15 if (node->key == k)

16 if (node->next[0] == node->next[1])

17 node->value = v;

18 }

Listing 1. An example illustrating the bene�ts of our

approach.

By incorporating summarization, summary guided shape ex-

ploration, and summary reuse we have built a powerful and

e�cient concolic testing system for detection of data races

in multithreaded programs. Our prototype also bene�ts from

Cloud9 supported optimizations such as parallelization [18]

and state merging [38]. We have evaluated this system by

uncovering data races during execution of concurrent oper-

ations on multiple dynamic data structures. Our system is

both e�ective and e�cient.

The key contributions of this paper are:

• Function Summary. We propose a novel represen-

tation of function summaries that capture data struc-

ture shapes, branch conditions, memory accesses, and

lock/unlock operations. By reusing the summaries we

enable e�cient and e�ective concolic testing.

• Summary-guidedTesting. Function summaries help

identify potential data races and e�ciently guide the

coordinated exploration of non-con�icting data struc-

ture shapes, derived from data shapes available in sum-

maries, to con�rm realizable data races.

• Prototyping and Evaluation: We implemented our

system as an extension of Cloud9. Our experiments

show that our system can detect races that Cloud9

cannot and when both systems can detect a data race,

our system is more e�cient than Cloud9. Moreover,

via use of summaries, number of calls to the constraint

solver are dramatically reduced.

Remainder of the paper is organized as follows. Section 2

gives an overview of our approach using an example show-

ing summarization construction and invocation. Section 3

presents the details of key algorithms used in invocation

and guided search. Section 4, 5 and 6 present experimental

results, related work and conclusion.

69

SSRD: Shapes and Summaries for Race Detection in Concurrent Data Structures ISMM ’24, June 25, 2024, Copenhagen, Denmark

2 Overview
We begin by providing an overview of our approach to con-

colic testing of multithreaded C/C++ programs that is ef-

fective in �nding data races in the presence of concurrent

dynamic data structures and is also e�cient.

Data races may arise due to execution of code that re-

quires certain conditional branch outcomes that can only be

achieved when certain data value conditions, data shapes,

and thread interleavings are exercised.

Data value conditions usually can be solved by the SMT

solver during symbolic execution. For example, in Listing 1

function bar line 15, assuming the expression node->key is

a symbolic value, for the branch outcome to be false, the

condition node->key!=k can be solved. However, due to the

lack of ability to set up symbolic pointers, and the heavy cost

of exploring data shapes, the existing concolic/symbolic exe-

cution approach cannot e�ectively explore the data shapes.

If a data race requires speci�c data shapes, the existing

approach may miss this data race as a required branch may

not be taken. The line 16 shows a condition related to two

pointers node->next[0] and node->next[1], which is an

invariant value based on the input data shape of node. Fig-

ure 1 shows two cases: the left one can expose the data race

since the condition on line 16 will evaluate true - the input

shape contains pointers that next[0] equals to next[1];

thus, the line of code that cause the race will be executed.

For the other case on the right, the branch with race can-

not be executed. Even though manually changing the input

shape can avoid the problem in this example, but if there

are more data races, one single input data shape will not

be enough to expose all the data races. Thus, we require the

ability to explore the data shapes to detect all races.

The thread interleavings also in�uence the branches

taken, and thus must be explored if data races under a rarely

taken branch is to be exposed. Figure 2 shows an example

where only a speci�c thread interleaving exposes the data

N0 New

next

0

1

N0 N1

next

New

Figure 1. A data shape that can expose (left)

and cannot expose (right) the race.

Thread1: Thread2:

Lock(Mutex);

x = 0;

Unlock(Mutex);

if (x!=0)

data = 0;

Lock(Mutex);

x = 1;

Unlock(Mutex);

data = 1;

Lock(Mutex);

x = 0;

Unlock(Mutex);

if (x!=0)

data = 0;

Lock(Mutex);

x = 1;

Unlock(Mutex);

Thread1: Thread2:

data = 1;

Figure 2. A thread interleaving that can expose (left)

and cannot expose (right) the race.

race. Consider a variable x which controls the branch to

call function foo. Only if the statement x = 1; is between

statements x = 0; and if (x!=0) so that the latter con-

dition would become true and cause the both threads are

calling function foo which �nally cause the data race. Thus,

e�ectively �nding the suitable thread interleaving to detect the

races is also important.

Exploration of data shapes and thread interleavings in-

volves performance challenges due to large number of

choices. Consider the two functions in listing 1: foo with

" paths, bar with # paths, and the foo will call bar at the

end of each of the " paths. So, there are # × " paths to

explore during program testing. We observe that there may

be some parameter-irrelevant work if the parameter ? is

same or similar in di�erent paths (e.g., symbolic expressions

only have name changed). Thus, the repeated exploration of

data shape and solving the constraints to exercise the path is

redundant. However, if we can summarize bar and reuse the

summary of bar during concolic testing of the full program,

we can reduce the workload of testing bar from # ×" paths

to only # paths via the unit testing of function bar. The

exploration of thread interleavings also has a similar issue.

If there are pairs of lock and unlock actions in)1, then

at each of these thread)2 may scheduled or not leading to

2
 total interleavings. However, it may be the case that only

when)2 is not scheduled at any of them causes the data

race. If there is a directed search instead of random search for

ordering the exploration of thread interleavings, desirable

interleaving may be found faster.

Thus, our testing process consists of two steps, a concolic

unit testing step followed by the full program concolic testing

step. In the �rst step, using unit concolic testing summa-

rization of individual functions that implement concurrent

dynamic data structures is carried out. The generated sum-

maries are also used to identify pairs of paths that contain

potential data races for using directed search in the following

step. In the second step - full program concolic testing, we

start from themain function and test the whole programwith

the aim of generating inputs which con�rm potential data

races one by one. During this process, the data structure

shapes contained in function summaries are reused to di-

rect the exploration of non-con�icting data structure shapes

for various paths in multiple threads. This directed search

prunes the exploration of paths that cannot realize the po-

tential data race. The reuse of data structure shapes and the

potential data races information in summaries improves the

e�ciency with which summarized functions are repeatedly

executed in testing.

Summarization via Concolic Unit Testing. Next, we

will give the de�nition of function summaries. For a given

function 5 , concolic unit testing of 5 is performed to build a

decision tree model X (5) which is the summary of 5 . The

constructed decision tree corresponds to the tested paths in

70

ISMM ’24, June 25, 2024, Copenhagen, Denmark Xiaofan Sun and Rajiv Gupta

the function such that each leaf node corresponds to a tested

path from the start of the function to a return point.

In the decision tree X (5), a node = ∈ X (5) may represent

a branch condition, a call to a function, a synchronization

operation, or a return statement from the function. All nodes

are annotated with summaries of shape ((=) and memory

access" (=), de�ned as follows:

• ((=) – the set of pointer-pointee relations among sym-

bolic pointers representing the data structure shape

that must be satis�ed to enable the execution of = ∈

X (5);

• " (=) – the set of symbolic names (globals and param-

eters) and concrete addresses (locals) that correspond

to the read/write memory accesses performed by =;

Also, branch nodes, call nodes, synchronization nodes, and

return nodes are annotated with additional information �(=),

�5 (=), !(=), + (=) respectively as described below.

• �(=) – is the branch condition if = is a branch node;

• �5 ′ (=) – contains name of function 5 ′ and the param-

eters for the call if = is a call node;

• !(=) – contains lock/unlock action associated with =;

and

• + (=) – is the return value if = is a return node (it is

empty if there is no return value).

Next, we brie�y describe some key points about the unit

testing that computes X (5). First, all global variables as well

as the parameters of 5 are treated as symbolic variables.

Second, if 5 contains a function call, the return value of

the callee function is treated as a symbolic variable and

the testing of paths following the call are explored using

the symbolic return value. In addition, since the callee may

not be pure function (i.e., it can have side e�ects), the local

variables that are passed as parameters to the callee are also

treated as symbolic variables starting from the call point.

Finally, the loops are handled by limiting the number of

iterations and hence the number of paths they can generate.

The code for loops in a function is augmented to limit the

number of iterations.
Concolic Testing of Full Program For concolic testing

of the full program that makes use of functions of the concur-

rent dynamic data structure, we �rst identify potential data

races that may arise when multiple threads execute summa-

rized functions that implement the concurrent dynamic data

structure. Given a function 5 , and its summary X (5), a set of

potential data races ' is computed. Each data race in ' is of

the form A (d8 , d 9) where d8 and d 9 are paths whose simulta-

neous execution by di�erent threads may cause a data race

according to X (5). Symbolic variable set � represents all user

de�ned symbolic variables for program % . The concolic tester,

provided with � and ', explores executions in an attempt to

con�rm the data races in '.

Figure 3 shows the concolic testing performed to identify

realizable data races in ' via search guided by X (5). The set of

states maintained by the testing engine is shown as Φ. State

set Φ contains all feasible execution states of the program %

that concolic executor could reached. A state q ∈ Φ contains

the current status of all threads and the complete address

space for all memory objects.

Let us brie�y consider how the search is carried out. Start-

ing from the initial state q0 of the program, such as the

entry point, the concolic executor explores paths, shapes,

and thread interleavings when handling symbolic branch

conditions and synchronization actions. For e�cient path

exploration using given input values � , di�erent branch out-

comes are forced and at the same time the corresponding

states are pushed into the state queue. The thread interleav-

ing exploration is guided by ' as follows. A thread is made

to execute a path d8 involved in a potential data race and

another thread is made to explore all paths d 9 ∈ ' such

that A (d8 , d 9) belongs to '. The data races con�rmed during

exploration are reported.

Our approach improves the e�ciency of full program con-

colic testing by taking advantage of summaries. When a

thread encounters a call to a function 5 for which summary

X (5) is available, summary reuse is invoked instead of calling

5 . This approach eliminates overhead of constructing sym-

bolic expressions, gathering and checking constraints, and

building data structure shapes that satisfy constraints. That

is, some of work performed during unit testing of a function

is reused instead of being repeated during each execution of

the function during concolic testing.

Given the current program state q just before node = in a

summarized function, q is updated by a�ecting it using the

summary associated with = as follows:

1. Shape Formation: Given state q , the shape summary

((=) transforms the shape of the data structure giving

state q ′.

q ==⇒
(

=
q ′

2. Memory Accesses: A memory access summary includes

reads from locations and writes to locations that copy

symbolic or concrete values and changing state to q ′′.

q ′ ==⇒
"

=
q ′′

3. Updates based upon the type of node =:

• Branch- The expression 4E0; (�(=) = CAD4, q) evalu-

ates branch condition �(=) and checks if it is true

on q . By evaluating both branches (4E0; (�(=) =

CAD4, q ′′) and 4E0; (�(=) = 5 0;B4, q ′′)), and adding

appropriate path constraints, new states are repre-

sented as:

q ′′==⇒
�=CAD4

=
q ′′C >A/0=3 q ′′==⇒

�=5 0;B4

=
q ′′5

• Call to 5 ′- Update state by invoking callee 5 ′, using

callee’s summary if available, q ′′ ==⇒
�5 ′

=
q ′′′;

71

SSRD: Shapes and Summaries for Race Detection in Concurrent Data Structures ISMM ’24, June 25, 2024, Copenhagen, Denmark

1 Node* search_node(Node* h, key_t k,

2 int i, Node** pre) {

3 klee_assume(i >= 0 && i < MAXLEVEL);

4 Node* next = NULL;

5 if (h->next[i]!=NULL && h->next[i]->key<k)

6 next = h->next[i];

7 if (next != NULL)

8 return search_node(next, k, i, pre);

9 pre[i] = h;

10 if (i == 0) return h->next[i];

11 return search_node(h, k, i-1, pre);

12 }

13

14 bool insert(Node* h, key_t k, val_t v){

15 Node* prev[MAXLEVEL];

16 Node* curr = search_node(h, k, 1, prev);

17 if (curr != NULL && curr->key == k) {

18 if (curr == prev[1]->next[0])

19 curr->value = v;

20 return false;

21 }

22 Node* node = create(k, v);

23 int level = rand_level();

24 pthread_mutex_lock(&(prev[0]->mutex));

25 node->next[0] = prev[0]->next[0];

26 prev[0]->next[0] = node;

27 if (level == 1) {

28 node->next[1] = prev[1]->next[1];

29 prev[1]->next[1] = node;

30 }

31 pthread_mutex_unlock(&(prev[0]->mutex));

32 return true;

33 }

Listing 2. A Concurrent Skip List Example.

• Return node- Update state by mapping the return

value to the caller q ′′ ==⇒
+

=
q ′′′; or

• Synchronization- Applying !(=) to state q ′′ leads to

state q ′′′, q ′′ ==⇒
!

=
q ′′′, where executing threads state

changes based upon the synchronization operation.

Finally, updating state q due to a sequence of statements

=8 − = 9 along a path is performed as follows.

q==⇒
X8− 9

=8−= 9

q ′ = q ==⇒
X8

=8
q8 ==⇒

X8+1

=8+1
q8+1 · · ·q 9−1 ==⇒

X 9

= 9

q ′

Updating state via use of summary is more e�cient than

the normal function call due to two reasons: a) The checking

of constraints, creation of data shape, and construction of

symbolic expressions that is carried out during concolic unit

testing of a function is reused during concolic testing of the

full program. b) Once symbolic expressions are simpli�ed,

some memory accesses are eliminated – if multiple writes

are directed to same address, only the last write is needed.

The computation of local variables may also be eliminated.
Illustration – Concurrent Skip List. Consider the code

in Listing 2 which presents two operations for a skip list -

insert (named 58) and search (named 5B) for inserting in a

ordered list and searching for a node corresponding to a key

value. The function search_node (named 5B=) is a common

Potential Race

Detector

concolic executor
Race Report

Initial State

I Symbolic Executor

Path+Shape

Exploration

Thread Interleaving

Exploration

other sync

new states

Figure 3. Exploring Path, Shape and Thread Interleaving.

function used by above functions to �nd the node which

contains key : . Let us assume that two POSIX threads are

processing those two functions correspondingly.

– Example data race. To allow illustration of our method,

our implementation includes the following errors. During the

insertion of a new node in the skip list, 58 �nds the suitable

position for insertion and collects all nodes that need to be

modi�ed into the list prev (line 15), and then enforces the

change (line 25-30). In 58 , since the mutex lock only protects

the write on next[0] �eld of prev[0] at line 26, the line

18 and 26 have a data race when 26: prev[0]->next[0]

is being written and 18: prev[1]->next[0] is being read

at the same time since prev[0] and prev[1] may represent

the same node in some cases. However, the race condition for

prev[0] and prev[1] pointing to the same node requires

a more complex condition in 5B= , for which it is extremely

hard to manually construct a suitable data structure shape.

So that an approach can e�ciently explore the data shapes

to �nd a suitable one to pass to 5B= is required to detect this

race. There are more data races in 58 and 5B= functions in

di�erent access patterns, but in our discussion we will only

consider this race for illustration purposes.

– Summary Representation. Figure 5 shows the generated

summary representation of functions 58 and 5B= . Note that

trees include call nodes, branch conditions, synchronization

operations, and return nodes. For the highlighted path T F

T in this decision tree, the data shape generated is captured

via pointer-pointee relations in Table 1 and the memory

accesses summary is given in Table 2. In all cases pointer

dereferencing implies a non null pointer and thus pointers

point to other nodes in Table 1.

– Summary construction. Next, we present the construc-

tion of summaries – highlighted path T F T in the decision

tree model for the function 58 in Figure 5 and the data shape

and memory accesses information attached with each node

shown in Table 1 and 2 correspondingly. This construction

phase happens during the concolic unit testing of the func-

tion 58 . Before starting, we pass symbolic values to all its

72

ISMM ’24, June 25, 2024, Copenhagen, Denmark Xiaofan Sun and Rajiv Gupta

curr = search_node(H, K, 1, prev)

curr != NULL is true

curr.key == k is false

node = create(K, V)

level = rand_level()

lock(prev[0].mutex)

node.next[0] = prev[0].next[0]

prev[0].next[0] = node

level == 1 is true

node.next[1] = prev[1].next[1]

prev[1].next[1] = node

unlock(prev[0].mutex)

return true

insert(R0,1,v0)

search_node(h, k, i, p)

T

F

F

search_node(h2, k2, i2, p2)

T

F

T

insert(H, K, V)

T

F

T

return

R0 R1

ph

i=1

k=1

R2

node R1R0 R2

R0 node

prevH K=1

V=v0

curr

R1 R2

R0 R1

p2h2

i2=0

k2=1

R2

R0 R1

p2
h2

i2=0

k2=1

R2R0

prevH K=1

V=v0

R1

symbolic

R0 R1

ph

i=1

k=1

symbolic

call
R0 R1

symbolic

next[0]

next[1]

h.next[i] != NULL is true

h.next[i].key < k is false

next != NULL is false

p[i] = h

i == 0 is false

t = search_node(h, k, i-1, p)

return t is R1

h.next[i] != NULL is true

h.next[i].key < k is false

next != NULL is false

p[i] = h

i == 0 is true

return h.next[i] is R1

Figure 4. Data Structure Shapes at entry and return points of function invocations. Gray statements are excluded from decision

tree as their e�ect is captured by shape/memory access summaries or they are fully evaluated during unit testing.

L24: call..
L25: curr != 0

L25: curr->key == k

L31: call..

L26:

curr==prev[1].next[0]

L32: call..
L33: lock

L36: level == 1

L40: unlock L40: unlock

L41: return L41: return

L31: call..
L32: call..
L33: lock

L36: level == 1

L40: unlock L40: unlock

L41: return L41: return

T

F

T

F

T F T F

L29: returnL29: return

T F

prev
curr

prev
curr

prev

curr

prev prev
curr

prev

insert Decision Tree

S
u

m
m

a
ry

S
u

m
m

a
ry

L5:h.next[i] != NULL

L5: h.next[i].key<k

L11: t =call..

L10: i == 0

L11: t=call..L10: return

h.next[i] L11: return t

T

F

T

F

T F

L8: return t

search_node Decision Tree

L10: i == 0

L11: t=call..L10: return

h.next[i] L11: return t

T F

h
next

h
pre

next

NULL

pre

next

NULL

h
pre

h next

NULL

pre
h

next

NULL

Figure 5. Summary Representations of 58 and 5B= .

non-pointer parameters, e.g. k and v, and adjustable sym-

bolic pointer to its pointer parameters, e.g. h. Then, the ex-

ecutor will explore di�erent paths and shapes to construct

the decision tree. To make it easy to follow, since there are

9 nodes in the highlighted path (each orange box is a node;

omit non-branch arrows), we name them =1 - =9.

When line 16 is reached, the call to 5B= is blocked since

it is unrelated to the current decision tree. Instead, a new

symbolic pointer is created as the estimated return value

curr, and then continues to execute the current function. At

the same time, we constructed a call node =1 as the root node

and annotated the information about this call in �5B= (=1).

When line 17 is reached, it constructs the branch node =2,

and the branch condition curr!=0 is annotated with �(=2).

Similarly, the branch node =2 is constructed and annotated

with curr->key==k in �(=3). Note that in Table 1, a new

pointee node N0 is created during dereferencing, and the

shape information is annotated in ((=3). The memory load

action of symbolic address curr->key is recorded in" (=3),

shown in Table 2. With the execution continuing, nodes

=4,=5,=6,=7, and =8 are constructed and generated with their

corresponding annotations. Finally, we constructed=9 during

function 58 returning and recorded the returned value in

+ (=9). Now, the construction of the current highlighted path

in decision tree X (58) is �nished. The executor will explore

other paths and construct the complete summary X (58) for

the function 58 .

– Summary invocation.We illustrate the use of summaries

in Figure 4 where a thread creates an initial data structure

and invokes function 58 which in turn invokes summarized

recursive function 5B= . All three function invocations use

corresponding function summaries. The data structures at

function call and return boundaries are shown. The changes

involvemapping of symbolic names and alsomaking changes

to data structure to re�ect the e�ect of the function via use

73

SSRD: Shapes and Summaries for Race Detection in Concurrent Data Structures ISMM ’24, June 25, 2024, Copenhagen, Denmark

of summaries of data structure shapes and write memory

operations. The statements along the path followed are also

shown with statements that are not present in the decision

tree are shown in gray such that the e�ect of these state-

ments on the program state is achieved via use of shape and

memory access summaries. The statements marked italics -

prev[0].next[0] = node and prev[1].next[1] = node

present changes to the already known pointers.

The function 58 is invoked with arguments R0,1,v0 where

R0 and v0 are set to symbolic by the user. R0 points to a sym-

bolic object R0.next[1] and a concrete object R0.next[0]

(also R1). The invocations of 58 and 5B= start with evaluation

of their decision trees and lead to actions that a�ect state as if

functions are executed. Upon invocation of each function, the

arguments are mapped to symbolic names used during unit

testing. For 58 , the symbolic names H, K, V used in unit testing

of 58 are mapped to real arguments R0, 1, v0. The evaluation

of �rst decision tree node invokes 5B= . The arguments H, K,

1 and local prev are passed to 5B= . Before invocation, local

memory object prev is allocated and used as output bu�er

for 5B= . Concolic unit testing names h, k, i,p are mapped to

reals, concrete or symbolic, in the caller (i.e., H=R0, K=1, 1 and

prev). The recursive call search_node(h, k, i-1, p) maps

h2, k2, i2, p2 to R0, 1, 0, prev.

In the �rst invocation of 5B= , the evaluation of branch

conditions in the decision tree uses symbolic arguments (e.g.,

h.next[i] != NULL becomes R0.next[1] != NULL) that

can be true or false, but we choose to explore the true branch

�rst. After evaluating branch conditions, the appropriate

data shape is processed to a�ect the current data structure.

Memory object R2 is created to satisfy the pointer-pointee

relationship in the path. Finally, the memory operations are

processed: the write p[i] = h is converted to prev[1] = R0

and prev[0] = R0 in the �rst and second invocations.

Table 1. Pointer-pointee relations and the visualized skip

list shape generated along path T F T in insert.

line# pointer pointee

17 curr N0

24 prev[0] N1

25 node N2

26 prev[0]->next[0] N2

28 prev[1] N3

29 prev[1]->next[1] N2

curr

N0

prev

N1N3 N2

Table 2. Memory accesses along path T F T in insert.

line# address value type

17 curr->key Load

25 prev[0]->next[0] Load

25 node->next[0] prev[0]->next[0] Store

26 prev[0]->next[0] node Store

28 prev[1]->next[1] Load

28 node->next[1] prev[1]->next[1] Store

29 prev[1]->next[1] node Store

In the function 58 , the branch nodes are evaluated using the

return value curr from 5B= . Since in the second invocation

of 5B= returns h.next[i], which is R1, the return value curr

refers to R1. The branch conditions become R1 != NULL

and R1.key == k. After calling of create and rand_level,

the local variable node and level become concrete values.

During the evaluation of the subsequent decision tree nodes

in Figure 5, lock/unlock events are processed, and memory

accesses that write to nodes prev[0] and prev[1] (which

both refer to R0) are processed. After the invocation of 58 is

complete, all the local variables and names disappear upon

the pop action of the current stack frame.

Note that all of the above actions were performed using

function summaries which optimizes the work performed.

3 Detailed Algorithms

Next we present some key details of our algorithms: sum-

mary invocation algorithm during full program concolic

testing (Section 3.1); and summary guided search for races

while exploring data shapes and thread interleavings (Sec-

tion 3.2). We assume that the summary of each function is

already available.

3.1 Summary Invocation Algorithm

During the concolic testing of the full program, a call to a

summarized function 5 is replaced by invocation of its sum-

mary - which is the decision tree model X (5). The invocation

algorithm maps the symbolic and concrete values, including

pointers, obtained via concolic unit testing to the values in

the current state. The decision tree X (5) of function 5 is used

to determine which path is followed and the program state

impacted by execution of the path is updated by storing sym-

bolic addresses in memory. The invocation algorithm only

handles the summarized functions. Unsummarized functions,

or paths whose summaries are unavailable, are executed as

they are by standard concolic testing.

The invocation process, presented in Algorithm 1, begins

with an execution state q which has been set up the list

of input parameters (symbolic or concrete values) as local

variables, and the root node = of the decision tree X (5). The

InvokeSummary function presents the actions for di�erent

node types. For all node types, at line 2, �rst q ==⇒
(

=
qB applies

data shapes to the current state q . Then for a branch node,

we evaluate the branch condition 4E0; (�(=) = CAD4, q) (line

4-6) and 4E0; (�(=) = 5 0;B4, q) (line 7-9) to decide whether

branch condition is true, false, or either. Then, we apply the

branch condition to the path constraints in the new state(s).

We continue to process the child branches based on the

evaluation results using new state(s) (at line 6 and 9). For

call, synchronization, and return node types, we process

memory accesses qB==⇒
"

=?−=
from the last non-branch node

(line 11-12) since their side e�ects must be re�ected in the

74

ISMM ’24, June 25, 2024, Copenhagen, Denmark Xiaofan Sun and Rajiv Gupta

Algorithm 1: Summary Invocation

1 Procedure InvokeSummary(q , =):

2 q ==⇒
(

=
qB

3 if = is branch then

4 if eval �(=) can be true in q then

5 qB==⇒
�=CAD4

=
qC

6 InvokeSummary(qC , =.true_branch)

7 if eval �(=) can be false in q then

8 qB==⇒
�=5 0;B4

=
q 5

9 InvokeSummary(q 5 , =.false_branch)

10 else

11 =? ← the last non-branch node

12 qB==⇒
"

=?−=
q<==⇒

�/!/+

=
q ′ based on the type of =

13 if = is return then

14 Φ.push(q ′)

15 else

16 InvokeSummary(q ′, =.child_node)

17 Procedure mapObjectInit(0A6B):

18 obj_map, value_map← {}, {}

19 foreach unit_arg, real_arg in args do

20 if isPointer(real_arg) then

21 [1, >] ← getAddr(unit_arg)

22 obj_map[1]← getAddr(A40;_0A6)

23 else

24 value_map[D=8C_0A6]← A40;_0A6

25 return obj_map, value_map

26 Procedure mapObject(obj_map, value_map, ():

27 foreach ?>8=C4A , ?>8=C44 in (do

28 A40; ,_= convert(obj_map, value_map, ?>8=C4A , _)

29 30C0 = read(A40;)

30 [1, >] = getAddr(?>8=C44)

31 obj_map[1]← getAddr(30C0) - [0, >]

32 value_map[?>8=C44]← A40;

33 Procedure convert(obj_map, value_map, 0, E):

34 [1, >] = getAddr(0)

35 [1′, >′] = obj_map[1] + [0, exprReplace(value_map, >)]

36 return 1′ + >′, exprReplace(value_map, E)

new state q< . The new state will serve as the start state

for a new call, return, or a thread context switch. The state

q ′ represents the state after applying �′
5
(=), !(=), or + (=)

based on the node type (line 12). Eventually, the �nal state

q ′ will be pushed into state queue Φ as the �nal result. To

implement q ==⇒
X (5)

=
qB , the key actions when invoking a

summary are de�ned as follows:

(1) Create object mapping. Each memory object in the con-

colic unit test summary is mapped to real memory corre-

sponding to the executing program. This mapping is used

to convert the memory objects from concolic unit testing to

the real memory objects in the current execution state.

(2) Create value mapping. The value mapping is used to

convert symbolic values used in concolic unit testing to the

values in the current execution state.

(3) Converting objects. As the decision tree path taken is

identi�ed, the memory accesses to the objects in unit testing

are converted to real objects by looking up the object mapping

and calculating the o�set if the pointer is not pointing to the

beginning of the objects. Observe that multiple pointers in

unit testing can map to the same object. Symbolic values in

memory are mapped into symbolic or concrete values in the

current state using value mapping.

For describing the details, some utility functions need to

be de�ned �rst: [1, >] ← getAddr(x) computes the base ad-

dress and o�set of memory object x; isPointer determines

if the current expression represents a pointer; and �nally

read(?) can dereference a pointer ? and read its content.

In Algorithm 1, q ==⇒
(

=
qB can be implemented using two

basic operations - mapObject and mapObjectInit functions.

First, we initialize the object mapping and value mapping

by calling mapObjectInit with the input parameter pairs,

which are the parameters in current state and parameters

from the unit testing. Each pair of parameters is processed

and added to the object mapping and value mapping as ini-

tial information for which objects from unit testing and cur-

rent state map to each other. Each time during processing

q ==⇒
(

=
qB , mapObject is called by passing the same object

mapping, value mapping containers and the shape summary

((=) which is a list of pointer-pointee relations (PPRs). First,

the pointer is converted into the real memory address A40;

and loaded with the value 30C0 that A40; points to. If 30C0 is

concrete value, which points to a memory object, this object

should be mapped to the object that pointee referenced to

in the unit testing (line 28-31). For handling address being

writen and stored in the memory access, the value mapping

is updated (line 32).

The convert function converts a memory access with

address 0 and value expression E (for write access) to a real

memory object by looking up the object mapping and value

mapping. The memory access q ==⇒
"

=
q< is implemented by

converting the memory reads and writes in " from unit

testing into real memory object reads and writes. Only the

�rst read and last write for accesses to an address are needed.

3.2 Summary-Guided Race Detection

Next we provide a summary guided race detection algorithm

based upon the lockset algorithm [54], hybrid race detection

[44], and the Cloud9 thread scheduling algorithm [18]. Our

race detection method has two phases. In the �rst phase,

before program testing, we iterate over all the possible pairs

of paths in a given summary to �nd potential data races in

the function. We use the lockset algorithm [54] to expose

potential data races from summaries for each pair of paths.

75

SSRD: Shapes and Summaries for Race Detection in Concurrent Data Structures ISMM ’24, June 25, 2024, Copenhagen, Denmark

When traversing a pair of di�erent memory accesses along

two paths, if the accesses refer to the same address and do

not hold the same lock, then we record a potential data race

involving the accesses. During program testing, in the second

phase, the thread scheduler postpones the thread when it

reaches one of potential racing statements. This thread’s

reactivation is prevented until another thread reaches the

corresponding racing statement con�rming a race.

If two paths dereference pointers, the data race will only

occur when both accesses refer to the same memory object.

Therefore, integration of data structures for the two paths

into a non-con�icting consistent shape is required for poten-

tial data race detection. Our integration algorithm accepts a

pair of paths as the input and generates an integrated data

shape for the paths as the output. The integration is achieved

by modifying the pointer-pointee relations for the two paths.

If we have two di�erent paths of the same function, we can

�rst start from the root pointer of all the parameters and

local/global variables which has been marked as symbolic

variables, and combining the pointer-pointee relationship

for two paths. We illustrate this process using an example.

Next, we show the integration of data shapes generated

for thread 0 path T F T and thread 1 path T T T of 58 . The

line number (LN), collected path constraints (PCs), pointer-

pointee relations (PPRs) of thread 0, 1, the corresponding

data shape and their integrated result are shown in Fig-

ure 6, respectively. The integrated shape is created using

the following steps: 1) Since both threads contain prev and

curr, the pointer prev[0] is �rst integrated. However, a

con�ict of prev[0] pointing to N1 in thread 0 and N4 in

thread 1 respectively is detected. The con�ict is resolved

by setting the pointer prev[0] is pointing to N1 in thread 1

LN PCs: Thread 0 LN PCs: Thread 1

25 curr ≠ NULL 25 curr ≠ NULL

25 curr->key ≠ k 25 curr->key = k

36 level = 1 26 curr = prev[1]->next[0]

PPRs: Thread 0 PPRs: Thread 1

LN Pointer Pointee LN Pointer Pointee

25 curr N0 25 curr N4

33 prev[0] N1 26 prev[1] N5

34 node N2 26 N5.next[0] N4

35 N1.next[0] N2 27 prev[0] N4

37 prev[1] N3

38 N3.next[1] N2

N0

curr

N3 N1 N2

prev prev

N5

curr

N4

curr

N3 N1 N2

prev

Figure 6. An example of data structure integration in thread

0 (left) and 1 (middle), with the integrated shape (right).

due to its pointee being modi�able. Observe there are multi-

ple ways to resolve the con�ict but we try to preserve the

�rst shape as much as possible. All the pointers pointing to

N4 (N5.next[0] and curr) are modi�ed to N1; 2) Then, the

pointer prev[1] is transferred from N5 to N3 and the pointer

N5.next[0] is also transferred so the PPR N3.next[0] point-

ing to N1 is created; and 3) Because pointer curr in thread 1

points to N1 is not modi�able, the curr pointer in integrated

result uses the PPR curr pointing to N1.

In the second phase of testing, the scheduler explores inter-

leaving of threads to con�rm a potential data race. A postpone

operation is used to exercise thread interleavings. Once the

current thread satis�es the conditions for a potential data

race, the scheduler postpones the thread to allow another

thread to be scheduled and progress to a point that realizes

the data race. If a schedule is found that realizes the data

race, the race is reported and thread is no longer postponed

and allowed to be scheduled to search for another data race.

Algorithm 2: An algorithm for data race detection

Input: The initial state q0 and a set of potential race set '

Output: An optimized scheduling of summary invocations.

1 Procedure SchedulingGen(q0, '):

2 & = q0

3 q = & .pop()

4 while Active(q) ≠ ∅ do

5 for C ∈ Active(q) do

6 while C ∉ ?>BC?>=43 (q) do

7 C = nextThread(C, q)

8 if all threads are in ?>BC?>=43 (q) then

9 ?>BC?>=43 (q) = ?>BC?>=43 (q) - C

10 q ′ = forkThread(q)

11 �DAA4=C (q ′) = C

12 runThreadUntilSync(q ′)

13 & .push(q ′)

Algorithm 2 shows how the thread scheduler explores

interleavings to con�rm potential data races. It continues

exploring all paths and thread interleavings combinations

till testing time is exhausted. �2C8E4 (q) maintains a set of

running threads. postponed is a set of threads which are cur-

rently postponed and cannot be scheduled yet. The algorithm

checks when there are threads are running (�2C8E4 (q) ≠ ∅).

For each running thread C , if C is in %>BC?>=43 (q), we post-

pone the thread to schedule the next one using the function

nextThread(t) to get the next thread. If all threads are post-

poned, we remove the current thread from the %>BC?>=43 (q)

set to make sure there is no dead lock. Then, we fork a new

state to explore the thread scheduling for C and execute the

thread C using runThreadUntilSync until it meets a thread

synchronization event (for example lock, unlock, etc). Finally,

we push state q ′ in the state queue & to schedule the next

synchronization event.

76

ISMM ’24, June 25, 2024, Copenhagen, Denmark Xiaofan Sun and Rajiv Gupta

Table 3. Data Race Detection E�ectiveness of: AFL++ based Fuzzing; Cloud9 and SSRD based Concolic Execution.

Test Function # of Paths Covered # of Data Races Detected

Program Name AFL++ Cloud9 SSRD AFL++ Cloud9 SSRD

SL
insert 3 52 3779 2 2 8

search 6 13 1479 0 0 2

ULL

insert 3 10 321 7 10 15

delete 16 13 78 2 1 4

search 16 16 93 0 0 3

PQ
insert 2 22 31 0 5 5

remove 2 16 1479 0 11 19

AVL
insert 1 7942 16329 0 4 6

delete 1 285 1322 0 1 12

Table 4. SSRD Execution Time: Without Using (WO-Sum) and With Using (W-Sum) Function Summaries + Summaries

Construction Time. Negative percentages indicate reductions, and reduction in parentheses means the reduction if we do not

consider summaries construction time. Analysis of Execution Time: Reduction of Constraint Solving Time Using (W-Sum)

Function Summaries. # of Solved represents the number of constraints solved during execution.

Test Function Execution Time (s) Constraints Solving Time # Solved

Program Name WO-Sum W-Sum Reduction % of W-Sum WO-Sum W-Sum

(+cons. time) (% w/o cons. time) Total Time (% Reduction) (% Reduction)

SL
insert 326.56 172.3 + 0.81 -47.0% (-47.2%) 45.27% -72.69% 100,466 42,336 (-57.9%)

search 116.19 98.29 + 0.75 -14.8% (-15.4%) 22.54% -35.15% 45,948 28,728 (-37.5%)

ULL

insert 1092.27 87.84 + 0.39 -91.9% (-92.0%) 85.20% -96.95% 485,212 46,655(-90.4%)

delete 76.26 21.47 + 0.44 -71.3% (-71.8%) 64.55% -94.38% 75,548 3,333 (-95.6%)

search 268.32 66.31 + 0.53 -75.1% (-75.3%) 73.56% -92.32% 164,220 7,140 (-95.7%)

PQ
insert 15.45 23.77 + 0.88 +59.5% (+53.9%) 95.64% +55.72% 5,704 6,764 (+18.6%)

remove 111.26 8.58 + 31.39 -64.1% (-92.3%) 87.20% -92.27% 9,486 527 (-94.4%)

AVL
insert 41.47 18.42 + 0.76 -53.7% (-55.6%) 48.66% -97.92% 19,625 333 (-98.3%)

delete 212.06 122.61 + 0.98 -41.7% (-42.2%) 53.39% -96.40% 49,887 3,856 (-92.3%)

Table 5. Summarization Bene�ts: The total number of

memory Reads and Writes during execution in experiments;

and % Reduction in memory Reads/Writes due to enabling

the summarization approach.

Test

Program

Function

Name

of Memory Access W-Sum

Read (Reduction) Write (Reduction)

SL
insert 4,460,946 (-8.3%) 2,122,027 (-5.3%)

search 2,606,982 (-1.9%) 1,204,355 (-1.4%)

ULL

insert 84,180 (-88.0%) 158,774 (-46.9%)

delete 14,564 (-86.1%) 14,564 (-66.5%)

search 38,201 (-81.1%) 38,201 (-52.9%)

PQ
insert 993 (-24.6%) 1,352 (-2.6%)

remove 6,108 (-36.7%) 7,419 (-3.2%)

AVL
insert 28,934 (-48.0%) 34,985 (-74.4%)

delete 1357135 (-2.5%) 703537 (-23.0%)

4 Experiments

4.1 Experimental Setup

To study the e�ectiveness and e�ciency of SSRD, we �rst

use a solution based on the popular general-purpose fuzzing

engine AFL++ [24] combined with the Thread Sanitizer [58]

to evaluate the complexity of the benchmarks. Then we

compare SSRD with a representative lock-set based data race

detector using Cloud9 (concolic execution+lockset) [18]. In

our experiments, we tested and compared our SSRD system

with Cloud9 using the same lock-based implementations

of the following concurrent dynamic data structures: Skip

List(SL), Unrolled Linked-List(ULL), Priority Queue(PQ), and

AVL-Tree(AVL).

The codes are modi�ed from open-source projects and

augmented with statements to trigger read-write and write-

write data races. When running AFL++ based and the Cloud9

data race detector, we provide additional code to create an

initial shape for each kind of data structures, and further

77

SSRD: Shapes and Summaries for Race Detection in Concurrent Data Structures ISMM ’24, June 25, 2024, Copenhagen, Denmark

testing of insertion, deletion, and searching is based on the

initial shapes. For SSRD, we use a symbolic pointer as the

handle for the automatically generated data shape for test-

ing. To control the size of generated shapes, we limit the

length of the pointer chain allowed. To exploit thread inter-

leaving, we use POSIX thread model in Cloud9 and create a

pair of threads using the pthread APIs to execute functions

concurrently for testing.

4.2 Race Detection E�ectiveness

We evaluated the e�ectiveness of our system by comparing

it with the traditional Cloud9 system with a lockset-based

race-detecting algorithm. Table 3 shows the path covered

and the number of data races detected using each approach.

The AFL++ results show that it cannot e�ectively �nd data

races. From all known races, it detects only 2 out of 10 in

SL, 9 out of 22 races in ULL, 0 out of 24 in PQ, and 0 out of

18 in AVL. We then note that Cloud9 can detect more data

races than AFL++ but these are a subset of data races that

are detected by SSRD - 2 out of 10 in SL, 11 out of 22 in ULL,

16 out of 24 in PQ, and 5 out of 18 in AVL. Note that there

is no data race detected by Cloud9 but not by SSRD. The

only race in ULL found via fuzzing but not in SSRD due to

constraint solving problem. We observe that the number of

paths explored by SSRD 1.4×(31 vs 22) to 113.7×(1479 vs 13)

is greater than Cloud9. This greater exploration of search

space by SSRD is responsible for uncovering many data races

that are missed by Cloud9.

4.3 Exploration E�ciency

The summaries play an important role in improving the

exploration e�ciency of SSRD. Table 4 compares the perfor-

mance di�erence with/without summarization. We observe

that with summaries (W-Summ), the execution time is re-

duced by 26% to 94% across the benchmarks over without

summaries (WO-Summ). The overall e�ciency of SSRD is

better than Cloud9. However, there are two exceptions - the

insert action for priority-queue and the delete action for AVL-

tree experience slow down when using summaries. The rea-

son is the paths contained in summaries are not encountered

during testing, and thus the cost incurred for generating

summaries does not yield any bene�ts.

Table 4 also analyzes the reduction in constraints solving

time and number of solved constraints due to summarization.

Note that constraints solving time represents a signi�cant

portion of the total time from 2.54% to 95.64% across the

benchmarks. We observe that with summaries constraints

solving time is reduced by 35% to 97% across the bench-

marks, while the number of constraints solved is reduced

by 37.5% to 98.3%. The constraints solving time re�ects the

time spent on solving the branch condition and symbolic

pointers. This is reduced using summaries since there are

solved branch conditions and generated data shapes in the

saved path summaries.

Table 5 analyzes the performance improvements of SSRD

due to reductions in memory access. The number of read and

write operations is reduced via summaries by 1.4% to 88.0%

since there are temporary memory read and write operations

that are performed during concolic unit testing that are not

repeated during full testing. At the same time, since the

memory access also requires solving address constraints for

symbolic addresses, the reduction in memory access also

reduces the number of constraints solved.

5 Related Work

Data race detection methods, static or dynamic, have been

widely studied [12, 29, 37, 39, 44, 53, 55, 65]. Both static and

dynamic methods have advantages and limitations.

Static data race detection methods. Type-/Language-

based �ow-insensitive race detection methods [8, 13, 15, 25,

28] are static data race detection methods incorporated in

compilers. However, typically these methods require adding

annotations, modi�cation of programs, or rewriting the algo-

rithm in another language. In contrast, our approach works

directly on existing C/C++ concurrent programs. Though

some methods can automatically annotate the program [3],

it is hard to know what exception leads to a data race with-

out runtime information. Lockset based �ow-sensitive static

approaches [12, 22, 29, 37, 39, 51, 60, 65] are another major

kind of data race detection methods. These approaches are

sound, i.e. the system �nds all potential races. The primary

limitation is high rates of false positives. RacerX [22] uses

several heuristics to �lter false warnings. RacerD [12] and

RacerDX [29] are static methods with few false positives.

Even then, they require the user to manually con�rm the

data races and ascertain race conditions as well as thread

interleavings. Our approach aims to automatically generate

input data and possible thread interleavings to detect the

data races with its race conditions.

Dynamic data race detection methods. Happens-before

analysis [1, 19, 26, 40] and Lockset analysis [2, 17, 21, 42, 54,

64] are two kinds of methods for dynamic data race detection.

Happens-before analysis produces no false positives but is in-

e�cient. Lockset analysis relies on collecting memory access

information and lock/unlock event tracing for race detection.

However, it can lead to false positives. Therefore, a combi-

nation of those two algorithms [20, 31, 44, 50, 71] can give

a more e�cient and accurate result. Some hardward-based

approaches has been proposed. Kard [4] is a lightweight race

detector using per-thread memory protection, Intel Mem-

ory Protection Keys. However, all these data race detection

methods require other techniques to test multiple paths and

thread interleavings to expose races.

Path explosion and thread interleaving explosion

problems in multithreaded programs testing. Fuzzing

[16, 35, 47, 55, 63, 67], Symbolic/Concolic Execution [11, 14,

78

ISMM ’24, June 25, 2024, Copenhagen, Denmark Xiaofan Sun and Rajiv Gupta

18, 23, 38], and ModelChecking [43] are three primary test-

ing methods for systematically exploring multiple paths and

thread interleavings. Fuzzing is commonly used in test gen-

eration for large programs. However, it does not guarantee

exploration of all paths and thread interleavings leaving data

races hidden in a rare branch condition unexposed. Sym-

bolic/Concolic Execution is the state-of-the-art technology

to explore all paths and to generate the test input but also

faces path explosion and thread interleaving explosion prob-

lems. Klee [14] is a symbolic execution engine for LLVM

IR. Cloud9 [18] extends klee to POSIX environment and

pthreads. State merging method [38] has been proposed to

handle the path explosion problem during symbolic execu-

tion. Con2colic [23] explores the content of data structure

and thread interleavings in multithreaded programs. How-

ever, it is based on random search rather than targeted search

which limits scalability. Moreover, it cannot explore data

shapes for pointer-based data structures. SymCC [48] and

SymQemu [49] use compilation-based rather than interpreter-

based technique which greatly improves performance, but

do not reduce computation complexity.

Summarization is a well known method for dealing with

path explosion. [27] proposes compositional automatic test

generation that can scale to large programs with many fea-

sible paths. [5] extends it by minimizing intraprocedural

paths symbolically executed when forming an interproce-

dural path. These methods can improve symbolic execution

in a compositional way but they do not contribute to data

shape exploration. Incremental symbolic execution has been

studied in [30, 33, 46, 66, 68, 69], and using summarization

is one of the main approaches. Interpolation-based function

summaries [59] reuse summaries during incremental veri�-

cation. E�cient summary reuse [32] is another approach for

regression veri�cation for reusing intermediate results from

the previous veri�cation runs. FENSE [69] summarizes pre-

viously explored paths by recording the variables that may

induce di�erent incremental behaviors. However, those sum-

maries can only reuse results between di�erent versions and

are not suitable for a single run during exploration of data

shapes. State merging [38] solves path explosion problem by

combining similar states during execution. Path Subsump-

tion [70] uses an annotation algorithm for branches and

statements labels, which are implied by the current state.

Chopped symbolic execution [62] can jump over unrelated

functions during symbolic execution, which can reduce the

chance of forking new states. The above methods only focus

on the path explosion problem but do not deal with data

shape exploration and data race detection e�ciency. Our

approach uses summarization to help quickly explore data

shapes and guide the thread scheduler and speed up race

detection in exploring thread interleavings.

Model Checking is the primary method to explore thread

interleavings. However, its cost is too high to cover all in-

terleaving cases. SPL language [57] provides an extended to

simpli�ed form of sequential Java to support multithreaded

program model checking using the counterexample-guided

abstraction-re�nement framework. Bounded Model Checking

via lazy sequentialization [34] proposes a systematic way

to check sequentially consistent C programs using POSIX

threads. However, model checking requires signi�cant e�ort

to modify current multithreaded program and rarely sup-

ports concurrent data structures. In contrast, our approach

is based on symbolic execution and requires minimal code

changes. Thus, no method handles path and thread inter-

leaving explosion for exposing data races in concurrent data

structures.

Related methods for checking concurrent data struc-

tures.Handling concurrent data structures is one of the most

di�cult tasks in dynamic data race detection due to in�nite

states and di�erent shape requirements for di�erent paths.

CDSChecker [43] provides a model-checking algorithm for

modeling concurrent code under the C++ memory model.

However, CDSChecker is not aimed for lock-based synchro-

nization, and both path explosion problem and thread inter-

leaving explosion problem is not solved by it. CDSSPEC [45]

is a speci�cation checker for the C++11memorymodel. How-

ever, it requires use of a speci�cation language to describe

the data structure and still has high overhead. Shoal [6] is a

system that extended SharC, by grouping objects and pro-

viding sharing rules on each group. It can avoid data races

for concurrent data structures by turning data race detection

problem into a sharing-rule violation detection problem. DS-

GEN [61] uses a data shape generation method for detecting

data races in concurrent data structures of the CUDA plat-

form. However, as the memory model and synchronization

methods are di�erent for a multicore system, it cannot be

used. [41] uses a template approach in the Veri�ed Software

Toolchain [7] to prove the correctness of concurrent search

structure. However, this approach requires manually written

templates to verify the program which is not an automatic

solution for generating test cases to detect the faults.

6 Conclusions

We presented an new approach for concolic testing of mul-

tithreaded programs that employ concurrent dynamic data

structures to uncover data races. The key contributions of

this work include summary computation and exploitation

for e�ciency, and non-con�icting shape determination and

thread scheduling to guide concolic testing for exposing data

races. Our evaluation shows that our approach is signi�-

cantly more e�ective in uncovering data races than Cloud9

and reuse of summaries leads lightweight creation of objects

and removal of elimination of memory accesses.

Acknowledgments

This work is supported in part by National Science Founda-

tions grants CCF-2226448, CCF-2002554, and CCF-2028714

to University of California Riverside.

79

SSRD: Shapes and Summaries for Race Detection in Concurrent Data Structures ISMM ’24, June 25, 2024, Copenhagen, Denmark

References
[1] Sarita V. Adve, Mark D. Hill, Barton P. Miller, and Robert H. B. Netzer.

1991. Detecting Data Races on Weak Memory Systems. SIGARCH

Comput. Archit. News 19, 3 (apr 1991), 234–243. h�ps://doi.org/10.

1145/115953.115976

[2] Rahul Agarwal, Amit Sasturkar, Liqiang Wang, and Scott D Stoller.

2005. Optimized run-time race detection and atomicity checking

using partial discovered types. In Proceedings of the 20th IEEE/ACM

International Conference on Automated Software Engineering. 233–242.

[3] Rahul Agarwal and Scott D Stoller. 2004. Type inference for parame-

terized race-free Java. In International Workshop on Veri�cation, Model

Checking, and Abstract Interpretation. Springer, 149–160.

[4] Adil Ahmad, Sangho Lee, Pedro Fonseca, and Byoungyoung Lee. 2021.

Kard: Lightweight data race detection with per-thread memory pro-

tection. In Proceedings of the 26th ACM International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems. 647–660.

[5] Saswat Anand, Patrice Godefroid, andNikolai Tillmann. 2008. Demand-

driven compositional symbolic execution. In International Conference

on Tools and Algorithms for the Construction and Analysis of Systems.

Springer, 367–381.

[6] Zachary R Anderson, David Gay, and Mayur Naik. 2009. Lightweight

annotations for controlling sharing in concurrent data structures. ACM

Sigplan Notices 44, 6 (2009), 98–109.

[7] Andrew W Appel. 2011. Veri�ed Software Toolchain: (Invited Talk).

In European Symposium on Programming. Springer, 1–17.

[8] David F Bacon, Robert E Strom, and Ashis Tarafdar. 2000. Guava: A

dialect of Java without data races. ACM SIGPLAN Notices 35, 10 (2000),

382–400.

[9] Phil Bagwell. 2001. Ideal hash trees. EPFL. Technical Report.

[10] Philip Bagwell and Tiark Rompf. 2011. RRB-Trees: E�cient Immutable

Vectors. EPFL. Technical Report.

[11] Tom Bergan, Dan Grossman, and Luis Ceze. 2014. Symbolic execution

of multithreaded programs from arbitrary program contexts. ACM

SIGPLAN Notices 49, 10 (2014), 491–506.

[12] Sam Blackshear, Nikos Gorogiannis, Peter W O’Hearn, and Ilya Sergey.

2018. RacerD: compositional static race detection. Proceedings of the

ACM on Programming Languages 2, OOPSLA (2018), 1–28.

[13] Chandrasekhar Boyapati and Martin Rinard. 2001. A parameterized

type system for race-free Java programs. In Proceedings of the 16th

ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications. 56–69.

[14] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. 2008. KLEE:

Unassisted and Automatic Generation of High-Coverage Tests for

Complex Systems Programs.. In Proceedings of the USENIX Symposium

on Operating Systems Design and Implementation (OSDI ’08). 209–224.

[15] Elias Castegren and Tobias Wrigstad. 2016. Reference Capabilities for

Concurrency Control. In 30th European Conference on Object-Oriented

Programming (ECOOP 2016) (Leibniz International Proceedings in Infor-

matics (LIPIcs), Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner

(Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 5:1–5:26. h�ps://doi.org/10.4230/LIPIcs.ECOOP.2016.5

[16] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang,

Yuekang Li, Haijun Wang, and Yang Liu. 2020. MUZZ: Thread-aware

grey-box fuzzing for e�ective bug hunting in multithreaded programs.

In 29th USENIX Security Symposium (USENIX Security 20). 2325–2342.

[17] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan,

Vivek Sarkar, and Manu Sridharan. 2002. E�cient and precise datarace

detection for multithreaded object-oriented programs. In Proceedings

of the ACM SIGPLAN 2002 Conference on Programming language design

and implementation. 258–269.

[18] Liviu Ciortea, Cristian Zam�r, Stefan Bucur, Vitaly Chipounov, and

George Candea. 2010. Cloud9: A software testing service. ACM SIGOPS

Operating Systems Review 43, 4 (2010), 5–10.

[19] Anne Dinning and Edith Schonberg. 1991. Detecting access anomalies

in programs with critical sections. In Proceedings of the 1991 ACM/ONR

workshop on Parallel and distributed debugging. 85–96.

[20] Anne Dinning and Edith Schonberg. 1991. Detecting access anomalies

in programs with critical sections. In PADD ’91.

[21] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks: a

race and transaction-aware java runtime. ACM SIGPLAN Notices 42, 6

(2007), 245–255.

[22] Dawson Engler and Ken Ashcraft. 2003. RacerX: E�ective, static detec-

tion of race conditions and deadlocks. ACM SIGOPS operating systems

review 37, 5 (2003), 237–252.

[23] Azadeh Farzan, Andreas Holzer, Niloofar Razavi, and Helmut Veith.

2013. Con2colic testing. In Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering. 37–47.

[24] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.

2020. AFL++: Combining Incremental Steps of Fuzzing Research. In

14th USENIX Workshop on O�ensive Technologies (WOOT 20). USENIX

Association.

[25] Cormac Flanagan and Stephen N Freund. 2001. Detecting race con-

ditions in large programs. In Proceedings of the 2001 ACM SIGPLAN-

SIGSOFT workshop on Program analysis for software tools and engineer-

ing. 90–96.

[26] Cormac Flanagan and Stephen N Freund. 2009. FastTrack: e�cient

and precise dynamic race detection. ACM Sigplan Notices 44, 6 (2009),

121–133.

[27] Patrice Godefroid. 2007. Compositional dynamic test generation. In

Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on

Principles of programming languages. 47–54.

[28] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Brom-

�eld, and Joe Du�y. 2012. Uniqueness and Reference Immutability for

Safe Parallelism. In Proceedings of the ACM International Conference

on Object Oriented Programming Systems Languages and Applications

(Tucson, Arizona, USA) (OOPSLA ’12). Association for Computing Ma-

chinery, New York, NY, USA, 21–40. h�ps://doi.org/10.1145/2384616.

2384619

[29] Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2019. A True

Positives Theorem for a Static Race Detector. 3, POPL, Article 57 (jan

2019), 29 pages. h�ps://doi.org/10.1145/3290370

[30] Shengjian Guo, Markus Kusano, and Chao Wang. 2016. Conc-iSE:

Incremental symbolic execution of concurrent software. In Proceedings

of the 31st IEEE/ACM International Conference on Automated Software

Engineering. 531–542.

[31] Jerry J. Harrow. 2000. Runtime Checking of Multithreaded Appli-

cations with Visual Threads. In SPIN Model Checking and Software

Veri�cation, Klaus Havelund, John Penix, and Willem Visser (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 331–342.

[32] Fei He, Qianshan Yu, and Liming Cai. 2020. E�cient summary reuse

for software regression veri�cation. IEEE Transactions on Software

Engineering 48, 4 (2020), 1417–1431.

[33] Joran J Honig. 2020. Incremental symbolic execution. Master’s thesis.

University of Twente.

[34] Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore

La Torre, and Gennaro Parlato. 2014. Bounded model checking of

multi-threaded C programs via lazy sequentialization. In International

Conference on Computer Aided Veri�cation. Springer, 585–602.

[35] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee,

and Insik Shin. 2019. Razzer: Finding kernel race bugs through fuzzing.

In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 754–768.

[36] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu. 2022. Context-

sensitive and directional concurrency fuzzing for data-race detection.

In Network and Distributed Systems Security (NDSS) Symposium 2022.

[37] Vineet Kahlon, Yu Yang, Sriram Sankaranarayanan, and Aarti Gupta.

2007. Fast and accurate static data-race detection for concurrent

programs. In International Conference on Computer Aided Veri�cation.

Springer, 226–239.

80

https://doi.org/10.1145/115953.115976
https://doi.org/10.1145/115953.115976
https://doi.org/10.4230/LIPIcs.ECOOP.2016.5
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/3290370

ISMM ’24, June 25, 2024, Copenhagen, Denmark Xiaofan Sun and Rajiv Gupta

[38] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George

Candea. 2012. E�cient state merging in symbolic execution. Acm

Sigplan Notices 47, 6 (2012), 193–204.

[39] Mayur Naik, Alex Aiken, and John Whaley. 2006. E�ective static race

detection for Java. In Proceedings of the 27th ACM SIGPLAN Conference

on Programming Language Design and Implementation. 308–319.

[40] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Ed-

wards, and Brad Calder. 2007. Automatically Classifying Benign and

Harmful Data Races Using Replay Analysis. SIGPLAN Not. 42, 6 (jun

2007), 22–31. h�ps://doi.org/10.1145/1273442.1250738

[41] Duc-Than Nguyen, Lennart Beringer, William Mansky, and Shengyi

Wang. 2024. Compositional Veri�cation of Concurrent C Programs

with Search Structure Templates. In Proceedings of the 13th ACM SIG-

PLAN International Conference on Certi�ed Programs and Proofs. 60–74.

[42] Hiroyasu Nishiyama. 2004. Detecting Data Races Using Dynamic

Escape Analysis Based on Read Barrier.. In Virtual Machine Research

and Technology Symposium. 127–138.

[43] Brian Norris and Brian Demsky. 2013. CDSchecker: Checking Concur-

rent Data Structures Written with C/C++ Atomics. SIGPLAN Not. 48,

10 (oct 2013), 131–150. h�ps://doi.org/10.1145/2544173.2509514

[44] Robert O’callahan and Jong-Deok Choi. 2003. Hybrid dynamic data

race detection. In Proceedings of the ninth ACM SIGPLAN symposium

on Principles and practice of parallel programming. 167–178.

[45] Peizhao Ou and Brian Demsky. 2017. Checking concurrent data struc-

tures under the C/C++ 11 memory model. In Proceedings of the 22nd

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming. 45–59.

[46] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid.

2011. Directed incremental symbolic execution. Acm Sigplan Notices

46, 6 (2011), 504–515.

[47] Theo�los Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana.

2017. Slowfuzz: Automated domain-independent detection of algo-

rithmic complexity vulnerabilities. In Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security (CCS ’17). 2155–

2168.

[48] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution

with {SymCC}: Don’t interpret, compile!. In 29th USENIX Security

Symposium (USENIX Security 20). 181–198.

[49] Sebastian Poeplau and Aurélien Francillon. 2021. SymQEMU:

Compilation-based symbolic execution for binaries. In NDSS 2021,

Network and Distributed System Security Symposium. Internet Society.

[50] Eli Pozniansky and Assaf Schuster. 2007. MultiRace: e�cient on-the-

�y data race detection in multithreaded C++ programs. Concurrency

and Computation: Practice and Experience 19, 3 (2007), 327–340.

[51] Polyvios Pratikakis, Je�rey S Foster, and Michael Hicks. 2011. LOCK-

SMITH: Practical static race detection for C. ACM Transactions on

Programming Languages and Systems (TOPLAS) 33, 1 (2011), 1–55.

[52] William Pugh. 1990. Skip lists: a probabilistic alternative to balanced

trees. Commun. ACM 33, 6 (1990), 668–676.

[53] Jake Roemer, Kaan Genç, and Michael D Bond. 2020. SmartTrack: e�-

cient predictive race detection. In Proceedings of the 41st ACM SIGPLAN

Conference on Programming Language Design and Implementation. 747–

762.

[54] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,

and Thomas Anderson. 1997. Eraser: A dynamic data race detector

for multithreaded programs. ACM Transactions on Computer Systems

(TOCS) 15, 4 (1997), 391–411.

[55] Koushik Sen. 2008. Race directed random testing of concurrent pro-

grams. In Proceedings of the 29th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation. 11–21.

[56] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic

Unit Testing Engine for C. In Proceedings of the 10th European Software

Engineering Conference Held Jointly with 13th ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering (ESEC/FSE
’05). 263–272.

[57] Koushik Sen and Mahesh Viswanathan. 2006. Model checking mul-

tithreaded programs with asynchronous atomic methods. In Interna-

tional Conference on Computer Aided Veri�cation. Springer, 300–314.

[58] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSani-

tizer: data race detection in practice. In Proceedings of the workshop on

binary instrumentation and applications. 62–71.

[59] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. 2012. In-

cremental upgrade checking by means of interpolation-based function

summaries. In 2012 Formal Methods in Computer-Aided Design (FM-

CAD). IEEE, 114–121.

[60] Nicholas Sterling. 1993. {WARLOCK}-A Static Data Race Analysis

Tool. In {USENIX} Winter 1993 Conference ({USENIX} Winter 1993

Conference).

[61] Xiaofan Sun and Rajiv Gupta. 2021. DSGEN: Concolic Testing GPU

Implementations of Concurrent Dynamic Data Structures. In Proceed-

ings of the ACM International Conference on Supercomputing (Virtual

Event, USA) (ICS ’21). Association for Computing Machinery, New

York, NY, USA, 75–87. h�ps://doi.org/10.1145/3447818.3460962

[62] David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar.

2018. Chopped symbolic execution. In Proceedings of the 40th Interna-

tional Conference on Software Engineering. 350–360.

[63] Nischai Vinesh and M Sethumadhavan. 2020. Confuzz—a concurrency

fuzzer. In First International Conference on Sustainable Technologies for

Computational Intelligence. Springer, 667–691.

[64] Christoph Von Praun and Thomas R Gross. 2001. Object race detection.

Acm Sigplan Notices 36, 11 (2001), 70–82.

[65] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: static

race detection on millions of lines of code. In Proceedings of the the 6th

joint meeting of the European software engineering conference and the

ACM SIGSOFT symposium on The foundations of software engineering.

205–214.

[66] Rong Wang, Shaoying Liu, and Yuji Sato. 2021. SIT-SE: a speci�cation-

based incremental testing method with symbolic execution. IEEE

Transactions on Reliability 70, 3 (2021), 1053–1070.

[67] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. 2020.

Krace: Data race fuzzing for kernel �le systems. In 2020 IEEE Sympo-

sium on Security and Privacy (SP). IEEE, 1643–1660.

[68] Guowei Yang, Suzette Person, Neha Rungta, and Sarfraz Khurshid.

2014. Directed incremental symbolic execution. ACM Transactions on

Software Engineering and Methodology (TOSEM) 24, 1 (2014), 1–42.

[69] Qiuping Yi and Guowei Yang. 2022. Feedback-driven incremental

symbolic execution. In 2022 IEEE 33rd International Symposium on

Software Reliability Engineering (ISSRE). IEEE, 505–516.

[70] Qiuping Yi, Zijiang Yang, Shengjian Guo, Chao Wang, Jian Liu, and

Chen Zhao. 2015. Postconditioned symbolic execution. In 2015 IEEE 8th

International Conference on Software Testing, Veri�cation and Validation

(ICST). IEEE, 1–10.

[71] Yuan Yu, Tom Rodehe�er, and Wei Chen. 2005. Racetrack: e�cient

detection of data race conditions via adaptive tracking. In Proceedings

of the twentieth ACM symposium on Operating systems principles. 221–

234.

Received 2024-03-22; accepted 2024-05-10

81

https://doi.org/10.1145/1273442.1250738
https://doi.org/10.1145/2544173.2509514
https://doi.org/10.1145/3447818.3460962

	Abstract
	1 Introduction
	2 Overview
	3 Detailed Algorithms
	3.1 Summary Invocation Algorithm
	3.2 Summary-Guided Race Detection

	4 Experiments
	4.1 Experimental Setup
	4.2 Race Detection Effectiveness
	4.3 Exploration Efficiency

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

