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1. Introduction

Homological invariants such as Khovanov homology [17] and Khovanov-Rozansky ho-
mology [21] are at the center of modern knot theory. These invariants were originally
defined for links in R?. Extending them to links in arbitrary 3-manifolds is a problem that
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garnered much attention recently, from various perspectives (categorification at roots of
unity [20,9,28], theoretical physics [34,14,13], etc.).

One such extension was introduced in [27], based on higher category theory and using
the concept of blob homology [26]. Given a smooth, oriented, compact four-manifold W
and a framed oriented link L in the boundary 0W, the construction in [27] associates to
the pair (W, L) a homology theory graded by Z3 x Hy(W, L; Z) and denoted SN (W; L).
One of the three integer gradings is called the blob degree, and for our purposes we will
focus on the theory in blob degree zero, S (W, L). This is called the skein lasagna module
of (W, L) and has a relatively simple definition, reminiscent of the definition of the skein
module of a 3-manifold. The skein lasagna module is defined as the span of the lasagna
fillings of W with boundary L, modulo an equivalence relation. The lasagna fillings are
certain decorated surfaces connecting L to other links in the boundaries of 4-balls inside
W, and the equivalences come from cobordism maps in Khovanov-Rozansky homology.

Skein lasagna modules are challenging to compute. It was proved in [27] that when
W = B*, the invariant S{¥(B*; L) coincides with the Khovanov-Rozansky homology of
the link L. Further computational methods were developed in [25], with a focus on 2-
handlebodies (four-manifolds obtained from B* by attaching 2-handles). This allowed
the calculation of the skein lasagna modules (in some gradings) for four-manifolds such
as the complex projective plane, and disk bundles over S2.

In this paper, building on the work in [27] and [25], we give a new formula for the
skein lasagna module of a link in the boundary of an arbitrary four-manifold. We start
by choosing a handle decomposition for the four-manifold. For simplicity, we may assume
that we have a single 0-handle. We then study how the skein lasagna module changes
under adding handles. Disjoint unions, 4-handles and many cases of 2-handles were
already studied in [25], so the main thing left is to understand 1- and 3-handles.

With regard to 3-handles, we have the following:

Theorem 1.1. Suppose that we have a four-manifold W with boundary Y, and let W' be
the result of attaching a 3-handle to W along a sphere S C Y. Let also L be a framed
link in'Y disjoint from S, and L' the corresponding link in OW'. The equator J of S
splits the sphere into two hemispheres, each of which induces a cobordism map from
SNW;LUJ) to SN(W;L). Then, the skein lasagna module SY (W'; L") is isomorphic
to the coequalizer of these two cobordism maps. (See Theorem 3.7 for a more precise
statement.)

Next, we combine Theorem 1.1 with the treatment of 2-handles in [25] to get a general
result, reducing the calculation of the skein lasagna module to the case of 1-handles.

Recall that in [25], the skein lasagna module of a 2-handlebody was shown to be
isomorphic to the so-called cabled Khovanov-Rozansky of the attaching link for the 2-
handles; this is obtained from the Khovanov-Rozansky homologies of the cables of this
attaching link, modulo certain cobordism relations. We define an analogue of the cabled
Khovanov-Rozansky homology for two links K, L in the boundary of W7 = ™ (St x B3)
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(and, more generally, any other four-manifold); we call this the cabled skein lasagna
module SY (W1; K, L).

Theorem 1.2. Consider four-manifolds W, C Wy C W3 C Wy where

o Wy =™ (St x B3) is the union of m one-handles;

o Wy is obtained from W1 by attaching n two-handles along a framed link K;

o Ws is obtained from Wy by attaching p three-handles along spheres S, ... Sp;
o Wy be obtained from W3 by attaching some four-handles.

Consider also a framed link L C OWy, and view K UL as a link in OW1. Then, the skein
lasagna module S (Wy; L) is isomorphic to the quotient of the cabled skein lasagna mod-
ule Sy (W1; K, L) by coequalizing relations coming from the 3-handles as in Theorem 1.1.
(See Theorem 3.10 for a more precise statement.)

The cabled skein lasagna module SY(Wy; K, L) is constructed from the invariants
SV (Wy; K (a,b)UL) where K (a,b)UL is a family of framed links in OW; = #™ (St x §2)
consisting of L and cables K(a,b) of the attaching link K for the 2-handles. Thus,
Theorem 1.2 allows us to express SY (Wy; L) in terms of skein lasagna modules of links
in W7 (and maps between them).

The second half of our paper studies in more detail the skein lasagna modules for
links in OW; where Wy = §™(S! x B?). We work with coefficients in a field k. By cutting
along the cocores of the 1-handles, we reduce the problem of computing S¥(Wi; L, k)
to a problem about skein lasagna modules for the (boundary of the) 0-handle B* with
a family of framed links related to L. For links in B4, the invariant Sév is simply the
Khovanov-Rozansky homology KhR .

Theorem 1.3. Let Wy = (S x B3) with a nullhomologous link L C OW; in the boundary
that intersects the belt spheres of the 1-handles transversely in 2p; points for 1 < i < m.
Let R C 83\ |J;(B; UB;) denote the tangle obtained from L by cutting open along the
belt spheres. Then, the skein lasagna module S (Wy; L, k) is isomorphic to the quotient

@ KuRy(RUJTUT), (S, p)(N = 1)}/ ~
tangles T k
0T, |=2p;

where {-} denotes a grading shift, and the relation ~ is given by taking coinvariants for
the actions of certain categories S{¥(B3; P,,) associated to the configurations P, of p;
positively oriented and p; negatively oriented points in S* = B3. (See Theorem /.7 for
a more precise statement.)

Furthermore, we will show that the isomorphisms from Theorem 1.3 are functorial
in the following sense: They allow an expression of maps associated to cobordisms S C
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OWy x I between links S: L — L' in OW; = #™(S! x §?) in terms of components
computed entirely from maps associated to link cobordisms in S3.

By combining Theorems 1.2 and 1.3 (plus the functoriality statement), we thus ob-
tain a recipe for expressing the lasagna skein modules of any four-manifold in terms of
Khovanov-Rozansky homologies of links in S and maps associated to cobordisms in
S$3 x I. The invariant is a quotient of a (typically infinite) direct sum of homologies of
links by a subspace defined in terms of link cobordism maps.

Remark 1.4. Although the invariant S (W; L, k) for any four-manifold W can be ex-
pressed purely in terms of link homology in S3, specifically KhR y, it would be difficult
to prove directly that these expressions yield a four-manifold invariant. A direct proof of
invariance, without comparing to the intrinsically defined invariants S{¥, would require
checking handle slide and handle cancellation moves as well as higher coherence condi-
tions between their composites. Handle slides for 2-handles are studied (for N = 2) in
[15] and instances of (2, 3)-handle cancellation are discussed in Example 3.8. Another
interesting question concerns the behavior of our algebraic description of S (W; L, k)
under reversing the handle decomposition of W. However, our approach uses transversal-
ity arguments to isotope skeins away from cocores of handles to yield simplified handle
formulas; hence, we do not expect these formulas to reflect the duality between k- and
(4 — k)-handles, because the duality does not respect cocores.

Specializing the setting of Theorem 1.3 to the case of a single 1-handle, we consider
the link S* x B, € S' x B3 consisting of 2p parallel circles, with p of them oriented
one way and p the other way. We prove that S¥(S! x B3, S! x P,) is isomorphic to the
zeroth Hochschild homology of the category SV (B?; P,,). From here we get the following

explicit calculation for N = 2.

Theorem 1.5. The skein lasagna module S5(S* x B3; S x P,, k) is

(a) one-dimensional when p = 0;
(b) four-dimensional when p = 1;
(¢) infinite dimensional when p > 2.

Using methods analogous to those employed in part (a), we also show that S3(St x
$3,Xk) is one-dimensional; see Corollary 4.2. For part (c), we actually show that S2(S* x
B3,S! x P, k) is infinite dimensional in bidegree (0,0). This answers in the negative
Question 1.7 from [25], about whether skein lasagna modules are always locally finite
dimensional, i.e., finite dimensional in each fixed bidegree and homology class.

This still leaves open the following:

Question 1.6. If W is simply connected, is S{¥(W; L, k) always locally finite dimensional?
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For Wy = ™ (S x B3), one can view the skein lasagna module S3(W7i; L) as a variant
of Khovanov homology for links L in #™(S! x S?). Another version of Khovanov ho-
mology for these links was constructed by Rozansky (for m = 1) in [31], and Willis [33]
for arbitrary m. The Rozansky—Willis homology H;V’;(L) is finitely generated in each
bidegree and, thus, different from our theory. We expect that H;l’\?{,(L) appears on the
E5 page of a spectral sequence converging to SZ(Wy; L). See Section 4.6 for a further
discussion and Section 4.7 for a conjectural extension of the Rozansky—Willis homology
to links in the boundary of other four-manifolds.

Organization of the paper. In Section 2 we go over a few preliminaries about skein
lasagna modules and Kirby diagrams. In Section 3 we study the behavior of skein lasagna
modules under attaching 2- and 3-handles, proving Theorems 1.1 and 1.2. In Section 4
we focus on 1-handles, and prove Theorems 1.3 and 1.5.

Conventions. All the manifolds considered in this paper will be smooth, compact, and
oriented. All links and surfaces are oriented and normally framed.

Acknowledgments. This paper builds on previous joint work and many enlightening
conversations of KW and PW with Scott Morrison, without which this paper probably
would not exist. We would also like to thank Matthew Hogancamp and Ikshu Neithalath
for helpful comments on a draft of this paper.

2. Preliminaries
2.1. Skein lasagna modules

We start by reviewing the construction of skein lasagna modules from [27, Section
5.2].
Following [27] and [25], for a framed link L C R3, we write

KhRy (L) = @D KhRy/ (L)
i,jEL

for the gly version of Khovanov-Rozansky homology. Here, ¢ denotes the homological
grading and j denotes the quantum grading.

If we have an oriented manifold S diffeomorphic to the standard 3-sphere S, and a
framed link L C S, we can define a canonical invariant KhRy (S, L) as in [27, Definition
4.12]. We sometimes drop S from the notation and simply write KhR y(L).

Given a framed cobordism X C S3 x [0, 1] from Lg to Ly, there is an induced map

KhR (%) KhRy(Lo) — KhRy (L)

which is homogeneous of bidegree (0, (1 — N)x(X)).
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Let W be a four-manifold and L C OW a framed link. A lasagna filling F' =
(3,{(Bi, Li,v;)}) of W with boundary L consists of

o A finite collection of disjoint 4-balls B; (called input balls) embedded in the interior
or W;
o A framed oriented surface ¥ properly embedded in W\ U; B;, meeting OW in L and

meeting each dB; in a link L;; and
o for each 4, a homogeneous label v; € KhRy(9B;, L;).

The bidegree of a lasagna filling F is
deg(F) := ") _ deg(v;) + (0, (1 = N)x(%)).

If W is a 4-ball, we can define a cobordism map

KhRy(%): Q) KhRy(9B;, L;) — KhRy (W, L)

and an evaluation
KhRy (F) := KhRy(Z)(®;v;) € Kh(OW, L).
We define the skein lasagna module as the bigraded abelian group
SN (W L) := Z{lasagna fillings F of W with boundary L}/ ~
where ~ is the transitive and linear closure of the following relation:

(a) Linear combinations of lasagna fillings are set to be multilinear in the labels v;;

(b) Furthermore, two lasagna fillings F; and Fy are set to be equivalent if F; has an
input ball B; with label v;, and F5 is obtained from Fj by replacing B; with another
lasagna filling F3 of a 4-ball such that v; = KhRy(F3), followed by an isotopy rel
OW (where the isotopy is allowed to move the input balls):

For future reference, here is a useful lemma.
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Lemma 2.1. Let W and L be as above, and fix balls Ry,..., Ry, one in each connected
component of W. Then, the equivalence relation defining SéV(W; L) can be alternatively
described as the transitive and linear closure of the following relation:

e Linear combinations of lasagna fillings are set to be multilinear in the labels v;;

o Lasagna fillings that are isotopic rel OW are set to be equivalent;

o Two lasagna fillings are also set to be equivalent if they differ as in (b) above, where
the input ball B; is one of the chosen balls Ry, ..., R,.

Proof. If F} and F, are equivalent as in the lemma, let us show that they are equivalent
as in the definition of the skein lasagna module. The only new relation is the isotopy,
which can be thought of as a particular instance of (b), where B is replaced by a slightly
smaller ball with the same decoration (and Fj is a product cobordism).

Conversely, if F} and F; are equivalent as in the definition of the skein lasagna module,
we only have to consider the case when they are related by (b). We can then isotope
B, to turn it into the ball R; in the same connected component, and view (b) as a
combination of the moves in the lemma. O

Skein lasagna modules decompose according to relative homology classes, as noted in
[25, Section 2.3]:

SwiL) = @ SWiL,a). (1)
a€Hy(W,L;Z)

Observe that in the case where L is not null-homologous in W (i.e. [L] # 0
Hy(W;Z)), then there are no lasagna fillings, so S (W;L) = 0. When [L] = 0
H,(W;Z), consider the boundary map in the long exact sequence of the pair (W, L):

S
S

0: Hy(W,L;Z) — H(L; Z).

The only classes o € Ho(W, L; Z) that can contribute non-trivially are those that map
to the fundamental class [L] € Hy(L;Z) under 9. Let us introduce the notation

Hy (W;Z) =0~ Y([L]) C Ha(W, L; Z).

Note that, using the long exact sequence of the pair, the difference of two classes in
HY(W;Z) can be identified with an element of Hy(W;Z). Thus, H¥(W;Z) is a torsor
over Hy(W;Z); it can be identified with the latter group after choosing a base element
in HY (W Z).

The decomposition (1) becomes

S'wiL) = @ SYWiLa). (2)
a€HE(W3Z)
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We will use the decomposition (2) in the case of a general link L; when [L] # 0, we have
HE(W;Z) = 0 and SY¥ (W L) = 0.

2.2. Gluing and cobordisms

Let us consider two four-manifolds W and Z that have some part Y of their boundaries
in common, as follows:

oW =YY, 0Z=(-Y)IYy,

where II denotes disjoint union. We can glue W and Z along Y to form a new four-
manifold W U Z with boundary Yy IT Y. Suppose we are also given links Ly C Yp,
LicYiand L CY. Let L C —Y denote the mirror reverse of L. Then, we have a map

U:SYW;LULy) @SN (Z; LULy) — Sy (WUZ; LyU Ly) (3)
obtained by gluing lasagna fillings along L:
[F]® [G] — [FUG].

It is easy to see that if two lasagna fillings I} and F; are equivalent in W, and G; and
G4 are equivalent in Z, then Fy U Gy and Fy U G4 are equivalent in W U Z, so (3) is
well-defined.

Starting from here, we see that skein lasagna modules are functorial under inclusions,
in the following sense. We consider the case when Yy = ), and we fix a lasagna filling
G of Z with boundary L U L;. We can think of Z as a cobordism from Y = W to Y;.
Then, there is an induced cobordism map

Uzc=V(®[G]): S (W;L) = SY(WUZ;Ly). (4)
Observe that the maps (4) behave well with respect to compositions:
VziceoVze=Yzuz,6uc- (5)
Furthermore, in terms of the decompositions (2), given a € H¥(W;Z), by attaching
to it the class of G in HQLULl(Z;Z) we get a class a; € H2Ll(W U Z;Z). Then, ¥z
maps SY (W3 L, ) to S (W U Z; Ly, a1). We let

Uz.6.0:S) (WiL,a) = 8 (WUZ; Ly, ) (6)

denote the restriction of ¥Vz.q.
When the lasagna filling G consists of a surface S (an embedded cobordism S C Z
from L to L) with no input balls, we will simply write ¥ 2.5 o for ¥z.¢ o. Furthermore,
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we could decorate S with n dots at a chosen location, for 0 < n < N — 1, as usual in
gl foams; cf. [27, Example 2.3]. This corresponds to constructing a lasagna filling S(ne)
with n input balls intersecting S along unknots, each decorated with the generator

X € KhRy(U) = Z[X]/(XN).

(This filling is equivalent to one where we consider a single input ball intersecting S in
an unknot, decorated with X™.) When the chosen location of the dot placement is clear
from the context, then we denote the corresponding map by

\IIZ;S(nO),a S[])V(W,L7a) %Sév(WUZ;Lhal)' (7)
2.3. Kirby diagrams

Let W be a smooth, oriented, connected, compact four-manifold (possibly with bound-
ary). By standard Morse theory, W can be decomposed into k-handles for k = 0, ..., 4,
arranged according to their index k. Furthermore, without loss of generality, we can
arrange so that there is a unique 0-handle, and the number of 4-handles is either 0 or 1,
according to whether W has empty boundary or not.

Denote the numbers of 1-, 2- and 3-handles by m, n and p, respectively. After attach-
ing the 1-handles to the 0-handle we get the handlebody §™(S! x B?), with boundary
#m (St x S?). (Here, § denotes the boundary connected sum, and # the usual interior
connected sum.) The attaching circles for the 2-handles form a link

K C #m(S* x §2),

with components K1, ..., K,. The link also has a framing, which specifies how the 2-
handles are attached. Once these are attached, the boundary of the resulting manifold
must be of the form Y#p(S! x S2). Attaching the 3-handles gets rid of the p summands
of S1 x 52, so the resulting boundary is some 3-manifold Y. In the case OW # (), we stop
here and we have OW = Y. In the case where W is closed, we must have Y = 52 and
we attach the 4-handle (a four-ball) to S? at the last step to eliminate the boundary.
The handle decomposition allows us to represent W by a Kirby diagram. This consists
of drawing #™ (S x S?) as m pairs of spheres in R?, where we think of the spheres in
each pair as identified to produce a 1-handle (and we also add the point at infinity to
R3). We then draw a picture of the attaching link K for the 2-handles, where the link
can go through the 1-handles. The framing of K can be specified by drawing parallel
copies of the components of K. (The components that don’t go through the 1-handles
can be viewed as living in S®; for those, an alternative way to specify the framing is by
an integer, which is the difference between the given framing and the Seifert framing.) To
determine W, in principle we should also specify the attaching spheres for the 3-handles.
These are usually not drawn in the Kirby diagram. In the case where OW = (), this leaves
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no ambiguity, because there is a unique way to fill #7(S* x S?) by 3-handles and then
by a 4-handle.

For example, we show here a Kirby diagram of W = C P?#CP? with one 1-handle
and three 2-handles. For the attaching curve of the 2-handle that goes through the 1-
handle, we specified the framing by drawing a parallel copy by a dashed curve; for the
other 2-handles, we used numbers:

For more details about the subject, we refer to the book [10].
3. Two- and three-handles
3.1. Two-handles

The paper [25] contains a description of the skein lasagna module for 2-handlebodies
(four-manifolds W made of a 0-handle and some 2-handles), where the link L C OW
is empty, or at least local (contained in a 3-ball). The description is in terms of the
Khovanov-Rozansky homology of cables of the attaching link K.

In this subsection we extend that description to the case where we attach 2-handles
to any four-manifold W, to obtain a new manifold W’. Moreover, we do not impose any
restriction on the link L € OW. The formula is very similar to that in [25]. The role of
the Khovanov-Rozansky homology KhRy will be played by the skein lasagna module
SV (W; —), which can be thought of as a link homology for links in the boundary of W.
(When W = B* we have S (W; L) = KhRy(L).)

Let Ki,...,K, be the components of the framed link K C 9OW along which the
2-handles are attached. The framing gives diffeomorphisms f; between tubular neighbor-
hoods v(K;) of each K; and S' x D?. Given n-tuples of nonnegative integers

k™= (ki ,.... k), kT =(k,....k}),
we let K(k™, k') denote the framed, oriented cable of K consisting of k; negatively
oriented parallel strands to K; and kj' positively oriented parallel strands. Here, the
notion of parallelism for the strands is determined by the framing, that is,

K(k™ k™) = Ufi_l(sl X {xl_,...,xl;_,:zrf,...,x;})
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for fixed points x ...,z _,z],... + € D2

Ty

After attaching 2- handleb to W along K, we obtain the manifold W’. Suppose we are
given a framed link L C OW’'. Generically, we can assume that L stays away from the
attaching regions of the 2-handles, and therefore we can represent it as a link in W,
disjoint from (but possibly linked with) K. (There are various ways of isotoping L off of

the attaching regions; the results of the calculation will be isomorphic.) We let
Kk, kTYUL

be the union of K(k~, k%) and L, where we do the cabling on the components of K by
choosing the tubular neighborhoods of K; to be disjoint from L. (Note that K (k~, kT )UL
is not a split disjoint union.)

We seek to express the skein lasagna module S3Y (W’; L) in terms of S (W ;K (k—, kT)U
L). To do this, we need to introduce a few more notions.

For each 1, let B, - .+ be the subgroup of the braid group on k; + k;© strands that
consists of Self—diffeoﬁlofphisms of D? rel boundary (modulo isotopy rel boundary) taking
the set {z,...,x } to itself and the set {z7,... k+} to itself. By taking the product

with the 1dent1ty on S1. a braid element b € B,C e induces a self-diffeomorphism of
D? x 81, which can be pulled back (via f;) to a self- dlffeomorphlsm of v(K;). This gives
a group action

Bi: By o+ — Aut(Sy' (Wi K(k™,kT)UL)).

Let e; € Z™ denote the i*" basis vector. Two strands parallel to K;, if they have
opposite orientations, co-bound a ribbon band R; in S3. By pushing R; into S3 x [0, 1]
so that it is properly embedded there, and taking the disjoint union with the identity
cobordisms on the other strands, we obtain an oriented cobordism (still denoted R;)
from K(k—,k*)UL to K(k™ +e;, k™ +e;)UL. Ford=0,1,...,N — 1, we can decorate
R; with d dots, and obtain a cobordism map

Vi SV WK (k™ k) U L) = SY (Wi K (k™ + e, kt +e;) UL),

which changes the bigrading by (0, 2d).

Next, recall that we have a decomposition (2) for the skein lasagna module S{¥ (W'; L),
according to homology classes in HZ(W’;Z). Let us see how these homology classes are
related to the similar ones in W. Consider the tubular neighborhood v(K) = U;v(Kj;),
which is a union of solid tori. Express W' as the union

W =WucCu Z,

where Z is the union of the new 2-handles, and C' = v(K) x [0, 1] is a connecting cylinder
between W and Z. Let also
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O = y(K) x {0,1}  C.

We identify v(K) with v(K) x {0} and denote v(K) x {1} by 0_Z (part of the boundary
07).
The Mayer-Vietoris sequence for W’ relative to the union of W and Z U L reads

s H (W WN(ZUL)Z) — H,(W',W:Z) ® H, (W', Z U L; Z)
S H. W' WU (ZUL)Z) — -~

Observe that, by excision, Hs(W', W U(ZUL);Z) = H3(C,C';Z) = 0. From here we
obtain an exact sequence

0— Hy(W',L;Z) — Hy(Z,0_7;7) ® Hy(W,v(K) U L; Z) — Hy(C,C";Z).  (8)

Thus, an element in HE¥(W’';Z) C Hy(W’' L;Z) can be identified with its image in
Hy(Z,0-7Z;7)® Ho(W,v(K) U L; Z), which we write as a pair (o, n).

Let us further identify Ho(Z,0-Z;7Z) with Z™ by letting the ith handle correspond
to the coordinate vector e;. Then, we write

a=(a,...,ap) €Z"

and let o™ denote its positive part and o~ its negative part; i.e., ozl-+ = max(w;, 0) and
a; = min(a;,0). We also let |a| =, |a;|.

Let » € N™ and consider the cable K(r — a~,7 + a™). The fact that («,n) € Z" &
Hy(W,v(K)U L; Z) is in the kernel of the map to Ho(C,C’;Z) =2 Z™ in (8) implies the
existence of a (unique) class

nr c HgLUK(Tfa_,rJra'*')(W;Z) C HQ(VV,LU K(’I“ —a ,r +a+);Z)

which is sent to i by the natural map to Ho(W, LU v(K);Z).
From now on, using the deformation retraction from v(K) to K, let us think of 5 as
a class in Ho(W, K U L; Z).

Definition 3.1. The cabled skein lasagna module of K C W at level o and in class 7 is

Sy Wik L) = (@D SYWiK(r—a™,r+ ) UL ){(L = N)(2lr| + [a))})/ ~

reNn
where the equivalence ~ is the transitive and linear closure of the relations

Bi(b)v ~ v, wl[d] (v) ~0ford< N —1, wz[N_l] (v) ~v (9)

foralli=1,...,n;b€ B, .+, and v € SY(W; K(r —a~,r+at)UL,n").
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Theorem 3.2. Let W be a four-manifold and L C OW be a framed link. Let W' be obtained
from W by attaching 2-handles along a framed link K disjoint from L. Then, for each
(a,n) € HX(W';Z), we have an isomorphism

@ :S) (Wi K, Ln) — SY(W'; L, (a,n)).

Proof. An element v € S (W;K(r — a~,r + at) U L,n") is represented by a linear
combination of lasagna fillings (X, {(B;, L, v;}) in W, where 0% = K(r —a~,r+at)U
LU (U;L;). We define ®(v) to be the class of the linear combination of lasagna fillings
with the same input data {(B;, L;,v;} as v, but with the surfaces given by attaching
to each ¥ (along its boundary) the disjoint union of r; — a; negatively oriented disks
parallel to the core of i*" 2-handle and r; + a;r positively oriented such disks (union over
all 7).

We also define a map ®~! in the opposite direction, as follows. Let F be a lasagna
filling in W’ with surface ¥. We isotope the input balls of F' to be inside W, and isotope
the surface ¥ such that its intersection with the 2-handles consists of several disks parallel
to their cores. Removing these disks produces a lasagna filling of W with boundary on
a link of the form K(r —a~,r + a®) U L. We let this be ®~1(F).

The proofs that ® and &' are well-defined and inverse to each other are similar
to the proof of Theorem 1.1 in [25], which dealt with the case W = B* and L = 0.
The extension to arbitrary W and L is obtained by replacing the Khovanov-Rozansky
homologies KhR with the skein lasagna modules in W. (In the formulation here, the
proof of the statement is even slightly clearer since it relates lasagna skein modules
with lasagna skein modules. In particular, we do not have to choose standard lasagna
fillings with “slightly smaller input balls”, as these were only required when comparing
SV (B* —) with KhRy.) O

Remark 3.3. In some cases it is known that the braid group actions on the link homology
of cabled links factor through the symmetric group. For Khovanov homology of links in
R3, this was shown by Grigsby—Licata—Wehrli [12, Theorem 2]. For the gl homology of
links in R? (or S$3) a similar argument works in the case of parallelly oriented strands [11,
Section 6.1]. We have no reason to doubt that the same could be true for anti-parallel
strands, i.e. in the situation relevant for S, but we do not currently know how to prove
it.

We will primarily be using the results from this subsection in the case where the role
of W is played by
Wy = hm(Sl X Bg),

a manifold obtained from a 0-handle by attaching some 1-handles. We denote W’ by
Wsy. Then, Ho(W1;Z) = 0, so H¥(Wy;Z) = 0 for any null-homologous L, and the
decomposition (2) for skein lasagna modules of links in W7 is trivial (consists of a single
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summand). Moreover, in this case an element (a,7n) € HY(Wa;Z) C Ho(Wa, L;Z) is
uniquely determined by its image « in Ho(Wo, W1;Z) =2 Z™. Indeed, the exact sequence

0=Hy(Wy;Z) = Hy(Wy,LUV(K);Z) — Hi(LUv(K);Z)
show that the component 7 is determined by its image in
H{(LUv(K);Z)=H(L;Z) ® HH(v(K); Z).

The part in Hy (L; Z) has to be the fundamental class [L], while the part in Hy (v(K); Z) &
Z" is the image of o under the isomorphisms

Hy(Wo, W13 Z) = Ho(Z,0_7;7) = H\(0_Z;7) = Hi(v(K);Z).

Therefore, in this case the class 7 is redundant (being determined by «), so we simply
drop it from the notation, writing for example « instead of (a,n) for the classes in
HL(Wa; Z). With this in mind, the isomorphism from Theorem 3.2 is written as

& SV (Wi K, L) — SY (W L, a). (10)
3.2. Three-handles

In [25, Proposition 2.1] the following result was shown:

Proposition 3.4. Let i: W — W’ be the inclusion of a four-manifold W into W'. Then
we have a natural map

i S (W30) — S (W', 0).

If W' is the result of a k-handle attachment to W, then i, is a surjection for k = 3 and
an isomorphism for k = 4.

Corollary 3.5. We have Sy (S*) = Z, concentrated in bidegree zero.

In this section we focus on the case of 3-handle attachments. We will generalize the
statement of Proposition 3.4 to 3-handle attachments in the presence of boundary links
and explicitly describe the kernel of the resulting maps on SV.

Consider the following setting. Let W be a four-manifold with a framed link L C
Y = OW and an embedded 2-dimensional sphere S C Y, disjoint from L. Let Z be the
cobordism given by attaching a 3-handle to W along .S, and let

W =WuZ.
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Let Y/ = OW’ be the outgoing boundary of Z, so that 0Z = (—=Y)UY". Inside Z we
have the two-dimensional annular cobordism A = I x L, from L = {0} x L to a new link
L' = {1} x L. Given o/ € HE(W';Z) =2 HE(W;Z)/([S]), let us consider the set of all
a € HE(W;Z) whose equivalence class modulo [S] is o'

() :={a € HE(W;Z) | a mod [S] = '}.
We obtain a cobordism map as in (6):
Uyna:SYW;La)— Sy WL, d).
Let

Uz A = Z VzAa: @ SYW;L,a) — SFYW' L', o).

ac(a’) ac(a’)

Remark 3.6. When L = ) (and therefore A = ()), then W4 is exactly the map 4, from
Proposition 3.4.

Let J be the equator of S (which is an unknot in Y). Equip J with an arbitrary
orientation. By pushing a hemisphere of S slightly from ¥ = {0} x Y into the cylinder
I xY, and taking its union with I x L, we obtain a properly embedded cobordism in I XY,
going from LU J to L. There are two such hemispheres, which produce two cobordisms,
denoted Ay and A_ C I xY. We orient Ay and A_ so that their boundary orientation
is the one on J. (Note that they are therefore “oppositely oriented,” in the sense that
they do not match up to produce an orientation on S.) Let us identify WU (I x Y') with
W itself using a standard collar neighborhood. Then, the cobordism maps associated to
A, and A_ take the form

Urxying,a: S (Wi LU J,a+ [Ay]) = S (Wi L, a),
Uiny:a_ ot SéV(W;L Ud,a+[A]) — S(I)V(W;L,a).

From here we get direct sum maps

\IIIXY;AJr,a’ = @ \IJIXY;A+,04
ac(a’)

and

\IIIXY;A,,(J/ = @ lI/I><Y;A,,a-
acla’)

Observe that these two maps have the same domain
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P sSWiLua+Ad)= P SYW;LUTa+[A)

ac(a’) ag(a’)

and the same range @, oy o' (W; L, @). Let

f = \IIIXY;A+,04’ - \I/IXY;A,,Q“

Theorem 3.7. The map ¥z .4 o associated to a 3-handle addition from W to W' is sur-
jective, and its kernel is exactly the image of f. Therefore, S (W', L', ') is isomorphic
to

(@ s¥w.L.0)/m()

ac(a’)

that is, to the coequalizer of the maps Uicyiar,ar and Yy A_ o

Proof. We first show that ¥z, 4 o vanishes on the image of f, that is,

Uz a0 o¥rixyia,a = VY740 o Vixy,A o

Indeed, from the composition law (5) we see that the left hand side is associated to the
surface cobordism Ay U A and the right hand side to A_ U A. However, inside the 3-
handle Z, the sphere S gets filled with a core B3, and therefore A and A _ are isotopic
rel boundary. It follows that the two cobordism maps are the same.

Therefore, ¥z, 4 o factors through a map

3 ( D séV(W,L,a))/im(f) S SNWL L, o).

ac(a’)

We need to prove that ® is bijective. For this, we construct its inverse ®~!. Given a
lasagna filling F’ of W’ with boundary L', observe that the cocore of the 3-handle Z is
one-dimensional, and therefore we can isotope F’ to be disjoint from this cocore; after
this, we can push it into W, to obtain a lasagna filling there, called F', with boundary
L. We set

To see that ®~! is well-defined, we need to check that if two lasagna fillings F, and F}
are equivalent in W, then the corresponding fillings Fy and F differ (up to equivalences
in W) by an element of im(f). We use Lemma 2.1, in which we fix balls R; C W away
from the 3-handle, and consider the equivalences listed in the lemma (with the ball
replacements happening in R;). Then, the equivalences in W' give rise to equivalences
in W, with one exception: an isotopy of the surfaces may intersect the one-dimensional
cocore of Z (which is an interval). Generically, this happens in a finite set of points, each
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point at a different time during the isotopy. Every time the isotopy meets the cocore,
the corresponding surfaces in W differ by replacing a hemisphere of S (with boundary
some closed curve ) with its complement in S. Up to an isotopy supported near S, we
can assume that v is the equator J with its chosen orientation. (For example, if v is J
with the opposite orientation, we can rotate it by m about a transverse axis to get J with
the original orientation.) Then, the hemispheres being interchanged are A and A_ and
hence the classes of Fyy and Fj differ by an element in the image of f.

This shows that &' is well-defined, and its definition makes it clear that it is an
inverse to ®. It follows that ® is bijective, and the conclusions follow. O

Example 3.8. Let W = S2? x D? and S the sphere S? x {p}, where p € 9D?. Then
attaching the 3-handle gives W’ = B*. Let us see what Theorem 3.7 gives in this case.
For simplicity, we ignore the decomposition into relative homology classes.

The skein lasagna module of W has the structure of a commutative algebra over Z,
with the multiplication given by putting lasagna fillings side-by-side, in the decomposi-
tion

(8% x D?)Ug2; (S? x D?) = 8% x D?,

where I C 9D? is an interval. As a Z-algebra, S{¥(W; () was computed in [25, Theorem
1.2] to be

SY(W;0) 2 Z[Ay, ..., An_1, Ao, Ay

where A; comes from the lasagna filling corresponding to the closed surface S% x {0},
equipped with the standard orientation, and marked with N —1—4 dots. (As mentioned
in Section 2.2, this is equivalent to introducing one input ball intersecting S? x {0} in
an unknot labeled XV 171

The cobordism maps
. QN . N .
Uryiay, Yixya_ : g (W3 J) = Sy (W;0)

are as follows. The unknot J is contained in a ball in the boundary of W (say, a neigh-
borhood of the disk A ). Then, according to [25, Corollary 1.5], we have

S (W3 J) = 85 (W) ®z KhRy (J) 2 85 (W) @z (2]X]/(X™)).

(Strictly speaking, Corollary 1.5 in [25] is phrased for coefficients in a field k, due to the
fact that its proof requires choosing a basis of KhRy(J). In our case, J is the unknot,
so KhR y(J) is free over Z, and therefore the same argument applies with coefficients in
Z.)

Both maps ¥r,y.a, and Wryy;a_ correspond to capping the unknot by disks. The
first map acts only on the factor KhR y(J) and is given by
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v if i =0,

\j A U®XN—1—i —
D it ) {0 fi=1,... N—1.

A useful picture to have in mind is that we can represent XV =1~ by a dotted disk (with
the number of dots specified by the exponent of X), which is completed by A, to a
dotted sphere that bounds a ball in W, and hence can be evaluated to a scalar as shown
above. To compute the action of ¥;yy.A_, on the other hand, note that the disk A_
completes the dotted disk to a homologically essential dotted sphere, corresponding to
a generator in S (W;0):

Urya (v XN =v. A
Therefore, taking the coequalizer of the two maps as in Theorem 3.7 boils down to setting

Ag=1, Ay=---=AN_1=0
in S¥(W;0). We deduce that

SéV(W,, @) = Z[Al, ey AN—la Ao,Aal]/(Ah e 7An—17A0 — 1) =~ Z,
which is the known answer for the skein lasagna module of B*; see [27, Example 4.6].
Remark 3.9. Example 3.8 gives an alternate formula for 3-handle attachments. Let us
go back to the general setting in this section, with a 3-handle attached to an arbitrary
four-manifold W along a sphere S to produce W’, and a framed link L C W away from
S. Observe that S (W, L) is naturally a module over the algebra S (S? x D?;0)), with
the module action being given by attaching fillings in a neighborhood of the sphere S.
It follows from the definitions that
SéV(W/;L/) = SéV(W§L) @SN (82 x D2;0) SéV(BS x I;0).
Here, the algebra SY¥ (5% x D?;0) is the free polynomial ring in Ay,..., Ax_1, Ag, Ag*
and S (B? x I;0) = SY¥(B*) is Z as a module over that algebra, where Ay acts by 1
and the other A; by 0. We conclude that
SY WL =S (W;L)/(Ao — 1, Aq,..., Ay).

3.3. Handle decompositions

Let us now specialize the addition of 3-handles to the case where the initial manifold
W = Wy is a union of 0-, 1- and 2-handles. We will then have available to us the
description of S¥(Ws; L, a) from Section 3.1.
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If we attach a 3-handle to Wa, in terms of Kirby calculus, the attaching sphere S
can be represented as a surface X (of genus 0, and disjoint from L) with boundary some
copies of the K;’s (the attaching circles for 2-handles). Then S is the union of ¥ and
(parallel copies of) cores of the 2-handles.

We draw J C S as a small unknot away from all K;, and let A, be the small disk it
bounds. The other hemisphere A_ is the complement of Ay in S, and goes over some
of the handles. We let

E_:E\A+QA_

This is a surface on OW; whose boundary is the union of J and several copies of the K;’s.
Let s; be the number of copies of K; in X _ that appear with the negative orientation,
and s;” the number of those with the positive orientation. We form the vectors

sT=(s7,..,8,), st =(s

ren

fresd)

yere9Sp ).

We proceed to describe the maps ¥rxy;a, o and Wixy,aA_ o in this case. By The-
orem 3.2 with notation as in (10), the range ¢ (a, SV (Wa; Z, ) of these maps is

identified with the direct sum of cabled skein lasagna modules € ) §év’a(W1; K, L).

ac(a’
Similarly, their domain is identified with

P s WK, LU= @ S (Wi K, L) ® KhRy(J)

a€(a’) ae(a’)

12

P so (Wi K, L) @ Z[X]/(XV).
)

ae(a’

We used here the fact that J is split disjoint from all the attaching links for the 2-handles,
and therefore each summand that appears in the definition of §év’a (Wy; K, LUJ) splits off
a KhR y(J) factor; moreover, the equivalence relation is compatible with this splitting.

The map ¥Uyxy A, o is now easy to describe. It is induced by capping J with a disk,
so it only affects the factor KhR(J), in a standard way. Precisely, we have

v ifn=N-1,
Urxying,o(v®@X") = . (11)
0 ifn=0,1,...,N 2

)

for all v € S)"*(Wy; K, L).
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To describe the second map ¥rxy.A_ o, consider the diagram

Ve S el
@ SNWi; Kk~ kt)ULU J,a) ——™ @ SNWi; Kk~ +s,kt +st)UL, @)
ac(a’) ac(a’) l

21><‘0w Sl
@ S (Wi K, LUJ) =mmmmmmmmmm oo > @ S (Wi K, L) (12)
ae(a’) ae(a’)
P | e =
‘I’IxY,A,.a/
@ SYWaLuJa) B SN (Wa L, o).
ac(a’) ae(a’)

Here, in the top row we wrote (k~, k™) for a pair (r —a~,r — a™t) as in Definition 3.1.
The vertical maps from the first to the second row are induced by the inclusion of the
summands into the cabled skein lasagna module; cf. Definition 3.1. The vertical maps
from the second to the third row are the isomorphisms ® from Theorem 3.2.

Ignoring the middle dashed arrow for the moment, note that the above diagram
commutes. Indeed, by the definition of ® in the proof of Theorem 3.2, the vertical com-
positions (from the first to the third row) are given by attaching cores of the 2-handles to
lasagna fillings in W;. Note that we are attaching more cores on the right; namely, those
in the boundary of 9%, counted by the vectors s~ and sT. The horizontal cobordism
maps (as defined in Section 2.2) are given by attaching the surface ¥_ (in the top row)
and A_ (in the bottom row). Because A_ is the union of ¥_ and the extra cores of
2-handles counted by s~ and sT, the diagram (12) commutes.

Since the bottom vertical arrows in the diagram are isomorphisms, let us now add the
middle dashed arrow, given by the map

-1
g[xawl;E_,a’ = o \IJIXY;A_,O/ o .

Because (12) commutes, we deduce that this map is induced on the skein lasagna mod-
ules by applying the cobordism maps Vrxaw,;x_ o o0 each summand; this justifies the
notation.

Recall that ¥_ is the complement of the disk A, inside ¥. Thus, we can write the
cobordism maps Vyyow,;s_ o in terms of the maps Vi, aw,;5(ne),or associated to the
surface ¥ with n dots, as in (7):

Urxow,m_ o/ (0® X™) = Urow,:nme),ar (V)-

Fixing n, the maps Wi, sw,;5(ne),o’ ON various summands in the construction of the
skein lasagna module induce a map:

21X6W1;Z(n0)7a’: @ §6VVQ(W1;K7L)—> @ §éV7a(W1;KaL)

a€(a’) ac(a’)

such that
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Yicowrs o (VO X™) =¥ ow, s (ne),ar (V) (13)

We are now ready to give a general formula for the skein lasagna module of a four-
manifold decomposed into handles in terms of skein lasagna modules of 1-handlebodies.
We will phrase it for an arbitrary number of handles.

Theorem 3.10. Consider four-manifolds Wy C Wy C W3 C W4 where

o Wy =pm(St x B3) is the union of m 1-handles;

o Wy is obtained from W1 by attaching n two-handles along a framed link K;

o Wj is obtained from Wy by attaching p three-handles along spheres S1,...Sp;
o Wy is obtained from W3 by attaching some four-handles.

Consider also a framed link L C OWy. We represent Wy by a Kirby diagram, viewing
K UL as a link in OW1, and the spheres S; in terms of surfaces ¥; on OW, with 0%;
consisting of some copies of various components of K (so that S; is the union of ¥; and
the corresponding cores of the 2-handles).

Given

o/ € Hy (Wi Z) = Hy (W3 Z) = Hy (W 2)/([S1],- - [Sp)),

let (o/) be the set of all « € HE(WqZ) C Z™ whose equivalence class modulo
([S1], - -+, [Sp]) s .

Then, the skein lasagna module SY (Wy; L, ') is isomorphic to the quotient of the
direct sum of cabled skein lasagna modules @ae<a,> §év’a(W1; K, L) by the relations

glxawl;ZJ(no),a’(v) :03 ’ﬂ:O,l,...,N—27 (14)

and

glanl;Zj((N—l)o),a’(v) =v (15)
forallv € @,c §(I)V’Q(W1;K, Lyandj=1,...,p.

Proof. First, note that the addition of 4-handles does not affect the skein lasagna module,
in view of Proposition 3.4. Thus, we can consider W3 instead of Wj.

The skein lasagna module of L viewed in the boundary of OW is given by
§6V’Q(W1; K, L) according to Theorem 3.2. When we add a 3-handle, we divide by the
relations

\IJIXY;AJr,a’(U@Xn) = \I’IXY;A,,O/(U@Xn)a (16)

as proved in Theorem 3.7. In terms of the identifications ® from Theorem 3.2, the left
hand side of (16) is given by Equation (11), and the right hand side by Equation (13).
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We thus get relations of the form (14) and (15). The generalization to multiple 3-handles
is straightforward. 0O

Theorem 3.10 gives a description of an arbitrary skein lasagna module in terms of
skein lasagna modules for links in the boundary of Wy = (S x B3), and cobordism
maps for surfaces in I x OW7. In the next section we will obtain a further reduction
to links in S% and cobordism maps between them, under the additional constraint of
working with field coefficients; see Theorem 4.7.

4. One-handles

Consider four-manifolds W and W', where W is the result of attaching a finite number
of 1-handles to W. The boundary of the cocore of each 1-handle is a 2-dimensional sphere
52 C OW’ that generically intersects links L C W’ in a finite set of points. In this section
we aim to compute SY¥ (W’; L) in terms of the invariants S§Y (W; RU|I;(T; UT;)) of the
four-manifold W and some links RU |_|;(T; UT;) C OW related to L.

Throughout this section we will work with coefficients in a field k. Under this assump-
tion KhRy is strictly monoidal under disjoint union (without Tor terms) and sends
mirror links to dual link homologies (without Ext terms). As a consequence, S{¥ is
monoidal under (boundary) connect sum; see [25, Theorem 1.4 and Corollary 7.3]. We
leave the investigation of the behavior under more general coefficient rings to future
work.

4.1. One-handles away from links

We first consider the case when L is disjoint from the cocores of the 1-handles. Up to
a small isotopy, we may even assume that L is disjoint from the entire boundary of the
added 1-handles, i.e. that L C O0W. As in Proposition 3.4, the corresponding invariants
are related by a canonical map and we have:

Lemma 4.1. The inclusion i: (W, L) — (W', L) induces an isomorphism
iv: SN(Wi L k) = SN (W' LK)

Proof. The proof is a straightforward generalization of the proof of [25, Theorem 1.4],
which deals with boundary connected sums. The map i, is induced by the map sending
lasagna fillings of (W, L) to lasagna fillings of (W', L) along the embedding i. The inverse
is given on lasagna fillings F' in (W', L) by looking at their intersection with a neighbor-
hood of the cocores of all 1-handles. Up to a small isotopy, each such intersection is an
identity cobordism on a link K C B?. The inverse map is given by replacing it by a sum
of pairs of input balls, labeled by basis and dual basis elements of KhR y (K) respectively.
The resulting linear combination of fillings can be isotoped into W, and is equivalent to
the original filling according to the neck-cutting lemma (Lemma 7.2 in [25]). O
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Corollary 4.2. There are canonical isomorphisms

SN(S' x B 0,k), k= SN (S x 5%, k)

L

k
each sending 1 € k to the respective empty lasagna filling.

Proof. The first isomorphism is given by a 1-handle attachment to (B%,0) as in
Lemma 4.1. The second isomorphism can be proved similarly: Let F' be a lasagna filling
of S x S and consider its intersection with a fiber {z} x S3. Up to a small isotopy, we
may assume that the filling F' intersects {z} x S? transversely (in lasagna sheet, not in
input balls) and disjointly from {x} x {north pole}. Then for small € > 0, the intersection
FNlz—ex+ ¢ x (S \ north pole) is an identity cobordism on a link K. We replace
this by a sum over pairs of input balls labeled with basis and dual basis elements of
KhR y(K) respectively. The resulting closed lasagna filling is supported in a single B*
and can, thus, be identified with a scalar multiple of the empty filling. O

Remark 4.3. It is instructive to evaluate the inverse to the canonical isomorphisms from
Corollary 4.2 on surfaces of revolution generated by links. Any framed, oriented link
K C B3 or S? defines a vegetarian® lasagna filling S' x K of S' x B3, which eval-
uates to a scalar multiple of the empty lasagna filling. It follows from the proofs of
Lemma 4.1 and Corollary 4.2 that this scalar is the trace of the identity map on
KhRy (K). Here it is important to take the Koszul signs in the symmetric monoidal
structure on (homologically and quantum) bigraded vector spaces into account. The
trace is thus tr(Idgnr () = Xg=1(KhRy (K)) = £NI™El i e the gly quantum link
polynomial of K, specialized at ¢ = 1. More generally, any endocobordism of K defines
a lasagna filling of S' x B3 that is a multiple of the empty filling, with coefficient given
by the graded trace of the induced endomorphism of KhR y (K); see e.g. [16, Section 6],
[3, Section 10.1], [7, Theorem D] for related discussions of Lefschetz traces in the case of
Khovanov homology.

4.2. Clutting and gluing 1-handles

Consider the process of cutting a lasagna filling F of Wy = §™(S! x B®) with boundary
L along the cocores C; = pt x B3 of the 1-handles for 1 < i < m. Let us assume that
the lasagna sheet ¥ of F' intersects the cocores transversely in tangles T; := 3 N C;. In
particular, the link L intersects the belt spheres S; := 0C; geometrically in 2p; points,
the boundary points of the tangle T;. The algebraic intersection numbers are all zero,
since L is null-homologous, as witnessed by F'. In this way, we obtain a lasagna filling
cut(F) of Wi\ LI; n(C;) = B* with boundary link

3 A lasagna filling consisting only of a surface, without input meat balls.
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Ly = (L\|_|(LNS))U(TiUT).
i

The latter is obtained by cutting L open at the 2p;-tuples of boundary points and
inserting copies of the tangles T; and Tj, schematically:

Of course, the procedure of cutting lasagna fillings does not describe a well-defined
map on the level of S} since it does not respect the skein relations. Instead we consider
the reverse operation.

The process of gluing a lasagna filling works as follows. Let F’ be a lasagna filling of
B* with boundary link Lt as above; i.e., inside S® = 9B* we have m pairs of embedded
3-balls B; U B;, such that Ly N B; = T; and Ly N B; = T; for 1 < i < m. Denote
the numbers of boundary points by 2p; := |0T;|. Now we attach m 1-handles with core-
parallel lasagna sheets I x T; C I x B3 along the B; U B; =2 S° x B3 to obtain a lasagna
filling of W7 with boundary L. Since the relations in S}’ are local, this induces a map:

glue, : Sg' (BY Ly, K){(XZ; pi) (N — 1)} = S (Wi L, k) (17)

The grading shift is there to compensate the change in Euler characteristic of the surfaces
in lasagna fillings upon gluing.

Lemma 4.4. For every lasagna filling F of S (Wy; L, k), there exists a framed Lt C 0B,
such that I is contained in the image of gluey,,.

Proof. By a small isotopy, we may assume that F' satisfies the assumption of the cutting
procedure described above. The statement now follows since cutting, albeit ill-defined,
is manifestly a right-inverse to gluing. 0O

It follows that the gluing maps from (17) assemble to a surjective map from a direct
sum of shifts of SI¥(B*; L1, k) to S{¥ (Wy; L, k). Here, the sum is indexed by all ways of
writing L as a contraction of links Ly obtained by drilling out pairs of tangles T; UT; and
resealing the boundary points across the 1-handles. It remains to describe the kernel.

Definition 4.5. For p € N fix a configuration P, of 2p framed points in S? = B3, par-
titioned into two halves with opposite co-orientations. We define a category Sév (B3; P,)

enriched in bigraded k-vector spaces with:

o objects: framed, oriented tangles T" in (B?; P,) inducing the given orientation on P,



C. Manolescu et al. / Advances in Mathematics 425 (2028) 109071 25

e morphisms given by

)} (18)
)} (19)

HomSéV(B3;Pp,]l<)(T17T2) = KhRN(T2 Upp Th ﬂ{){p(N -

1
=S (BY Ty Up, T1, k) {p(N — 1
with (grading-preserving) composition maps induced in the case of the right-hand side
of (18) by the action of merging cobordisms, as described in [27, Section 6.1 (vertical
composition of 2-morphisms)], and in the case of (19) induced by the gluing of lasagna
fillings of balls.

Lemma 4.6. Let W be a smooth, oriented, connected, compact four-manifold. Fix B® C
OW and consider a link Ly that intersects B> in a tangle T1 with boundary 0Ty = Pp,
i.e. L1 = RUp, T1. Now let To be another such tangle and Ly = RUp, Tz, then we have
a grading-preserving gluing map

S0 (W3 Ly, k) ® 8" (B Ty Up, T1, K){p(N — 1)} = S (W Lz, k).

Moreover, these gluing maps are compatible with composition in SéV(B?’;Pp,]k) in the
sense that all diagrams of the following type commute:

S5 (W L, k) @ S§(B Tz Up, T1, k) @ S (B Ts Up, To, K){2p(N — 1)}

S/ (W Lo, k) ® S (B Ts Up, To, K){p(N — 1)} §§/(W; L1, k) @ S¢' (B T Up, Th, K){p(N — 1)}

\ /

S (W Ls, )

Proof. Straightforward on the level of lasagna fillings. The map descends to the quotient
since skein relations are local. O

The statement of Lemma 4.6 can be paraphrased as: the choice of a 3-ball with point
configuration P, in W equips S (W; —, k) := @, S (W, L, k) with the structure of
a bigraded module for the category Sy (B3; P,). (Here the direct sum is taken over all
links L that intersect the boundary of the chosen 3-ball in the fixed configuration P,.)

Theorem 4.7. Let Wy = §™(S1x B3) with a nullhomologous link L C OW7 in the boundary
that intersects the belt spheres of the 1-handles transversely in 2p; points for 1 < i < m.
Let R C S\ |I;(B; U B;) denote the tangle obtained from L by cutting open along the
belt spheres. Then we have an isomorphism:

B KhRN(RU|(TUT), (X pi)(N = 1)}/ ~ = SN (W5 L, k)
tangles Tj; i
|0T;|=2p;

where the relation ~ is given by taking coinvariants for the actions of SéV(BS;Ppi,E(),
i.e. by identifying the images of the actions
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KhRy (RU|_J,(T; UT)), k) ® ®, KhRy (T U T, k) {pi (N — 1)}

— T

KhRy(RU||,(Ti U Ty), k) KhRy(RU ||, (T/ UT)), k)

for all pairs of tangles T;, T} with boundary P,,. (Here we have omitted a global grading
shift.)

Proof. The map is defined by first considering the direct sum of the gluing morphisms

KhRy(RU |_|(TZ UT), k) {3, pi)(N —1)} = S (Wi; L, k)

from (17). The coinvariants for the actions of S{¥(B3; P,,, k) clearly lie in the kernel, so
we get an induced map from the indicated quotient to S (W7; L, k), which we again call
the gluing map. It is surjective by Lemma 4.4, so it remains to prove injectivity.

Let Fy, Fy be two equivalent linear combinations of lasagna fillings in S (Wy; L, k),
and let G1, G2 be respective preimages under the gluing map. We want to show that
G1 and G4 are equivalent. Without loss of generality, we may assume that F; and Fj
are individual lasagna fillings (rather than linear combinations) and that they differ by
a single move as in Lemma 2.1 with the relevant input ball fixed and disjoint from the
cocores of the 1-handles in W7. If F} and F, differ by a replacement inside the fixed
input ball or an isotopy supported away from the cocores, then GG; and G are equal in
KhRy(RUL;(T;UT;), k). If Fy and F differ by an isotopy supported in a neighborhood
of the cocores, then G; or G5 differ by an element of the subspace factored out. Since
every isotopy of lasagna fillings can be factored in this way, we get that G; and G4 are
equivalent. O

Theorem 4.7 can also be summarized by saying that S{¥(W7j; L, k) is computed by
the zeroth Hochschild homology of a tensor product of 3-ball categories, namely one for
each handle, with coefficients in a bimodule associated to the tangle R that results from
L by cutting open along the belt spheres. We will discuss the details of this perspective
in a special case in Section 4.3.

Remark 4.8. Similarly to the 2-handle formula from Theorem 3.2, the 1-handle formula
from Theorem 4.7 expresses the skein module of the more complicated manifold as a quo-
tient of a (countable) direct sum of invariants of simpler manifolds. A possibly relevant
difference, however, is that the 2-handle formula features only finitely many summands
with a given shift in quantum grading, whereas this number is infinite for the 1-handle
formula.

The skein modules that have been computed using only the 2-handle formula, first
and foremost in [25], are locally finite-dimensional, i.e. finite-dimensional in each bide-
gree. It is an open question whether this is true for all four-manifolds admitting handle
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decompositions without 1-handles. In the rest of this paper we will see that local finite-
dimensionality may fail when 1-handles are present.

Finally we comment on the functoriality of the 1-handle formula from Theorem 4.7.
We have seen that S (Wy; L, k) for Wy = §™(S x B?) is a colimit of link homologies
for links in S®, which result from cutting L along belt spheres and inserting pairs of
tangles. Now consider a link cobordism S C OW; x I =: Z from L C W; to L' ¢ W]
where W{ = W1 U Z. We claim that the induced map

Vg5 SY (Wi L k) — SY (W), L, k)

can also be expressed in terms of cobordism maps between links in S3. Recall that the
cobordism map ¥z, s sends a lasagna filling F of W; to the composite lasagna filling FUS
of W1 UZ. In a generic situation, cutting the cocores has the following local model. Here
we display the filling F' in the inner tube and .S in the outer, spherical shell.

Let S; denote the tangle in S2 x I that occurs as the intersection of S with the ith
cocore and R’ C S3\ | J;(B; UB;) the tangle obtained from L’ by cutting open along the
belt spheres of W{. Denote by 2p; = |0S;| — 2p; the number of outer boundary point of
S;. Then the cobordism ¥ obtained from S by cutting along the annuli, which are the
intersection of Z with the cocores of 1-handles in W/, induces a cobordism map:

KhRy (RU |_|(Z; UT), B{(3, pi) (N — 1)}

— KhRy (R'U | ((S; T3) US;UT), W{(3, P (N — 1)}

We claim that these components describe ¥z, in terms of the colimit formulas (left-
hand sides) from Theorem 4.7. To see this we first observe that the unequal grading
shifts guarantee that the components have the same degree as ¥z.g (we have x(X) =
x(S) + >, (pi + p)) and ¥ is glued to cut(F') along p; interval segments). Next we
observe that after composing with the projection-inclusion into the colimit formula for
SV (W{; L', k), the resulting map no longer depends on the chosen location of cocores
to cut. Moreover, the subspace factored out in the colimit formula for SY¥(Wy; L, k) is
annihilated by the map thus defined. Thus the components described above define a map
S Wh; L, k) — S (W{; L, k), and by construction this agrees with ¥ z.g.
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4.8. Algebraic description of the 3-ball categories and their Hochschild homologies

Recall the following definition, from e.g. [4].

Definition 4.9. Let K be a commutative ring and C be a (small) K-linear category. Then
the zeroth Hochschild homology of C, also called the trace of C, is defined as the K-module

HHy(C) :=Tr(C) == | €D Ende(x) /Span{f og—gof}

z€0b(C)

where the spanning set for the subspace to be divided out is constructed from all pairs
of cyclically composable morphisms, i.e. f € Home(x,y) and g € Home(y, x) for some

x,y € Ob(C).

If C as in Definition 4.9 is not just enriched in K-modules, but M-graded K-modules
for some monoid M, then HH((C) inherits the structure of an M-graded K-module. The
following is now an immediate consequence of Theorem 4.7 and the Definitions 4.5 and
4.9.

Corollary 4.10. Let W, = S' x B3 and consider the link S x P, consisting of 2p parallel
circles with balanced orientations (that is, with p circles oriented one way and p the other
way). Then, we have an isomorphism of bigraded k-vector spaces:

SN(S' x B3 8! x P, k) = HHy (S} (B?; P, k)) (20)

We now recall some facts about the zeroth Hochschild homology, which we will use
to show that the 1-handle formula may compute vector spaces which are not locally
finite-dimensional.

Fact 4.11. Any functor F': C — D of K-linear categories induces natural K-module
homomorphism HHy(F): HHo(C) — HHy(D) sending [f: z — x| — [F(f): F(z) —
F(z)]]. This is well-defined since fog—go f+ F(f)o F(g) — F(g)o F(f). If Fis an
equivalence, then HHy(F') is an isomorphism; see e.g. [4].

Fact 4.12. Let F: C — C® and G: C — Kar(C) denote the canonical embeddings of C
into its additive and its idempotent completion, respectively. Then HHo(F') and HHy(G)
are isomorphisms; see e.g. [4, Sections 3.4 and 3.5].

In a slight reformulation of the functoriality results from [8], the tangle invariant
underlying the gl link homology over k can be described as a 2-functor:

[-] : Tang — H'(Foam}i\}g)

We now briefly explain the relevant algebraic structures here.
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o Asin [27, Definition 6.1] one defines a category TD of tangle diagrams, whose objects
are finite words in the alphabet {f,]} (which encode possible sequences of oriented
boundary points for tangles) and whose morphisms are finite words in generating
morphisms {cup,, cap;, crossing;, crossing;” 1} (where the index i specifies the strands
participating in the generator), that are admissible in the sense that the composite
describes a tangle diagram. The composition is concatenation of words. For details
see [27, Definition 6.1].

e Tang is a 2-category whose objects and 1-morphisms are as in TD. The 2-morphisms
are the framed, oriented tangle cobordisms in [0, 1]* between standard lifts of tangle
diagrams to actual tangles in [0, 1], considered up to isotopy rel boundary.

o Foamy is a (monoidal) 2-category, enriched at the level of 2-morphism spaces in
k-vector spaces and equipped with grading shift functors on 1-morphisms. It has the
same objects’ as Tang. The 1-morphisms are (formal direct sums of grading shifts
of) gly webs embedded in [0,1]? and the 2-morphisms are (matrices with entries
given by) k-linear combinations of gl foams embedded in [0,1]?, modulo certain
local relations. For details see [8].

. Foamji\;g is the (monoidal) 2-category that is obtained from Foampy by replacing
its k-linear Hom-categories by the corresponding dg categories. This means it has
the same objects, but the 1-morphisms are now chain complexes formed from 1-
morphisms in Foam y, where the differentials are given by 2-morphisms in Foam .
The 2-morphisms spaces are chain complexes of homologically homogeneous and
quantum grading-preserving maps, spanned by 2-morphisms from Foamy (not nec-
essarily chain maps). The differential on 2-morphisms is the usual supercommutator
with respect to the differential on the source- and target complexes. With respect to
this differential the zero cycles are exactly the classical chain maps. There is also an
enriched 2-hom in Foam?\}g, which is assembled from 2-homs between objects shifted
in quantum grading.

« H ‘(Foam‘ljvg) is the cohomology category of Foamjivg. It has the same objects and
1-morphisms, but the 2-morphism spaces are now graded k-modules obtained by
taking cohomology. The zeroth cohomology H O(Foam}i\}g’) is also called the homotopy
category; its 2-morphisms are chain maps up to homotopy.

In the following we will also consider enriched 2-homs. For objects s,t and 1-
morphisms A, B: s — t we define the bigraded k-modules:

H*(Foam(y¥)*(A, B) := €P Hom,, (Foam:s)(A{k}, B) (21)
kEZ

Here one grading, the quantum grading, is given by the displayed direct sum, while

the other grading, the homological grading, is already internal to H '(Foam(]i\,g).

4 More generally, one can consider labeled oriented points as objects in Foampy, but we will not need
labels other than 1.
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Using the grading shift automorphisms, these enriched 2-homs admit composi-
tion maps and thus assemble into a bigraded k-linear enriched morphism category
H'(Foam%g)*(s7 t) whose objects are the 1-morphisms from s to t.

o The functor [—] is the identity on objects. On l-morphisms it sends a tangle dia-
gram to a chain complex of webs and foams in the way that is usual for gl link
homology, and 2-morphisms, i.e. isotopy classes of tangle cobordisms are sent to the
corresponding homotopy classes of chain maps as specified in the functoriality proof
in [8].

We recall from [27, Section 6] that the tangle invariant corresponding to the gl link
homology can be organized into a braided monoidal 2-category. Here we give a similar
construction of this category T (which was denoted KhRy in [27]) by replacing the
top morphism layer of Tang;:

e objects are sequences of tangle endpoints, as in TD and Tang,

e l-morphisms consist of Morse data for tangles, as in TD and Tang,

e 2-morphisms between tangles S and T" with equal source and target objects are the
bigraded k-modules computed as the enriched 2-hom H '(Foam(]i\,g)*([[Sﬂ ,[T]) from
(21) between the gl chain complexes of the tangles.

As an important special case, one gets for a framed, oriented link L:

Homr,, (0, L) = KhRy(L).

Moreover, if T and S are framed, oriented tangles with endpoints identified, so that we
can form the link 7'U S, then we set 2p = |0S| = |0T| and have:

Homr, (S,T) = Homr, (0, T U S){p(N — 1)} =2 KhRx(T U S){p(N — 1)}

Given a 3-ball B® with a set P, of 2p framed, co-oriented points in the boundary,
together with a suitable identification of (B3, P,) with ([0,1]3,s U t), we associate to
it the morphism category Tx(s,t), whose objects are tangles from s to t. By con-
struction, Tx (s, ) is equivalent to S (B?; P,) from Definition 4.5. Moreover, Ty (s,t)
can be considered as a full subcategory of the bigraded enriched morphism category
H’(Foam(]{}g)*(s,t).

Remark 4.13. For N = 2 the foam 2-category Foams can be replaced by the 2-category
(or canopolis) of Bar-Natan’s dotted cobordisms [3, Section 11.2]; see [6]. The morphism
categories of the latter can also be described as categories of finitely-generated graded
projective modules for Khovanov’s arc rings [18].
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4.4. The 3-ball category with two points

Here we consider the categories from Section 4.3 in the special case when the source
and target objects consist of a single point s =t = {x}. In this case, the corresponding
morphism category in Foam(jl\,g is known to be equivalent to the dg category of complexes
of free graded Ry := k[X]/(X¥)-modules; see e.g. [32, Lemma 3.35] for an argument
in an equivalent setting. We record this equivalence and its consequence on the level of
homology:

Ho (%, %) = Chyg(Ry —mod®"™),

m dg
Foam

HomH.(Foam%;)(*, %) = H*(Chgg(Ry—mods))
Here Ry—mod® ™ refers to the category of finitely-generated graded free Rpy-modules
and Chag(C) refers to the dg category of bounded chain complexes over an additive
category C. Again we will use a superscript * to refer to the corresponding enriched
morphism spaces, computed via the ordinary morphism spaces between shifts of objects
as in (21).

Now we specialize to N = 2 and classify the indecomposable objects. Setting R :=
Ry = Kk[X]/(X?), the isomorphism classes of indecomposable objects (up to shifts in
quantum and homological degrees) in H*(Chgg(R—mod® ™)) are of the form:

Cr =R R{-2} 5 ... 5 R{—2k}

for k > 0; see [19, Section 3.

Next we compute the zeroth Hochschild homology of H*®(Chgg(R—mod®*™)). In prin-
ciple, there are two possible versions: using the ordinary or the enriched hom; see [5,
Section 2.4]. In the case of the ordinary hom, we would obtain a Z-graded (namely ho-
mologically graded) k[g*']-module, where g records the action of the auto-equivalence
provided by the shift in quantum grading. We will, however, use the enriched hom (indi-
cated by the superscript ) to consider the morphism spaces as bigraded. In doing so, one
obtains translation isomorphisms, which identify an object with all its gradings shifts.
More specifically, between an object and its shift, the identity now represents an isomor-
phism of degree specified by the shift. The zeroth Hochschild homology of the resulting
category carries the structure of a bigraded k-vector space, since the endomorphism ¢
now acts as the identity.

Proposition 4.14. The bigraded zeroth Hochschild homology of H'(Chdg(R—modgr'fr'))*
has a basis given by the trace classes [Id¢,] and [RX¢,] for all 1 > 0. The identity
morphisms on the complexes Cy for I > 0 are self-explanatory and their trace classes
have bidegree (0,0). The endomorphism RX¢, is a special case RX¢o, = RXgl) of a
larger family of endomorphisms RXgZ for 0 <1 <k of the following form:
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R ... X plray ... X p{ook —2 . 0 0
|x
040,..440>R{_2l_2}4x>...LR{_gk_Q}L..ALR{_Qk_Ql_Q}

where the only non-zero component is at R{—2k} (which may coincide with R{—21} if
k =1). The trace class of the morphism RXgZ has bidegree (1,21 4+ 2). (RX stands for
shift right and apply X .)

Proof. We abbreviate €' := H*(Chgg(R—mod®™))*. Let C denote the full subcategory
generated by the indecomposable objects Cy. By Fact 4.11 and the discussion of the
beginning of the section, it suffices to compute the bigraded zeroth Hochschild homology
of C. To this end, we study closed homogeneous endomorphisms of the objects C} and
trace relations between them.

We note that the components of a chain map between shifts of such objects can have
quantum degree zero or two (a scalar multiple of Idg or Xg). Since the differential
in every complex is of quantum degree two, this means that closed morphisms with
components of quantum degree zero are homotopic if and only if they are equal.

First we investigate the chain maps between shifts of objects C; with components of
quantum degree zero. For positive homological shifts (right shift) there are simply no
closed morphisms, i.e. no chain maps. In shift zero we have the identity on every C
(which does not factor through any C,, with m # [) and for negative homological shifts
we have closed maps that factor into a composite of closed maps through a shift of a Cp,
with m < { (by induction, one can show that their trace classes actually vanish). Thus
in bidegree (0,0) we have a basis of trace classes [Id¢,] for I > 0.

Second we are interested in chain maps between shifts of objects C; with components
of quantum degree two. In negative homological shifts (left shift) all such maps are
nullhomotopic. In non-negative homological shift, every such map is homotopic to a
scalar multiple of RX g}z However, one easily checks that the trace class of RX, gz equals

the trace class of +RX, gl) Since these have bidegree (I, 2] + 2) in the enriched End of Cj,
we see that they are linearly independent. 0O

Note that the bigraded zeroth Hochschild homology of H®(Chgg(R—mod® ))* is
not locally finite-dimensional! It is of countable dimension in bidegree (0, 0) with a basis
given by [Idg,] for I > 0. Nevertheless, we have:

Proposition 4.15. The bigraded vector spaces
S2(S* x B3 S' x Py, k) = HH(S3(B?; Py, k)) = HHo(T2(, *))

are four-dimensional, and in particular, locally finite-dimensional.

Proof. We have already explained the two isomorphisms. We now need to understand
the essential image of Ty (¥, *) under the full embedding into H*(Chgg(R—mod® ))*.



C. Manolescu et al. / Advances in Mathematics 425 (2028) 109071 33

We claim that the invariant of any (1, 1)-tangle decomposes into (shifts of) the indecom-
posable summands Cy and C, but never C; for [ > 2. Provided this claim holds, we can
compute HHo (T2 (x*, *)) as the Hochschild homology of the full additive subcategory of
H*(Chgg(R—mod®))* generated by Cy and Cj, and this again is isomorphic to the
Hochschild homology of the full subcategory on the two objects Cy and C;. Here we
use that the zeroth Hochschild homology is preserved under proceeding to the additive
and idempotent completion; see Fact 4.12. Following the same arguments as in Proposi-
tion 4.14, we see that it is 4-dimensional, spanned by [Id¢,] and [RX¢,] for [ € {0,1}

The key idea to prove the claim is that all complexes appearing in Khovanov homology
come from complexes over k[X] by setting X? = 0 (though certainly not all complexes
over k[X]/(X?) have this property). Indeed, one can use equivariant Khovanov homology,
defined over the ring k[X, a]/(X? — a) 2 k[X] =: R’ to simplify the complex of a (1,1)-
tangle into a complex of graded free k[X]-modules. These decompose, up to homotopy
equivalence and shift, into chain complexes of the form

=0%R %0, and "= 03 R XL R{2 %0 fork>1

Upon reducing to the ordinary Khovanov theory by tensoring with k[X]/(X?) over k[X],
these complexes decompose into (shifts of) copies of Cy and C;. O

Remark 4.16. A strong version of the so-called knight move conjecture posited that the
complex of any long knot decomposes (up to homotopy equivalence) into one shifted
copy of Cp and some number of copies of Cy; see [19, Conjecture 1]. The argument in
the previous proof shows that this can fail only due to the presence of more than one
shifted copy of Cy. Three copies of Cy can be detected in the counterexample to the
knight move conjecture found by Manolescu—Marengon [24].

Remark 4.17. One can also consider analogs of the skein modules S} based on equivari-
ant or deformed versions of gl homology. For example, in one common choice for N = 2
one works over R’ = k[X, a]/(X? = a). We can also try to compute the bigraded zeroth
Hochschild homology of the 3-ball category with two points and of its ambient category
H*(Chgg(R'—mod®™))* in this setting. We have already listed the indecomposable of
the latter above: the chain complexes C*. For k > 1 the enriched isomorphism algebra
of the complex C* is isomorphic to R'[]/(X* = 0) where 7 is of bidegree (1,2k). The
trace classes of 1 and its multiples are zero. Moreover, the trace class of X* is zero for
every x > 0. This leaves the trace classes of the identities of CF for k > 0 and the trace
class of Xo as linearly independent — the zeroth Hochschild homology is not locally
finite-dimensional. However, it is currently not known which C* appear in complexes of
(1,1)-tangles. A copy of C? appears in [24].

4.5. The 3-ball category with four or more points

We claim that the 3-ball categories with 2p > 4 points have zeroth Hochschild ho-
mologies that are no longer locally finite-dimensional. Again we restrict to the case of
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N = 2 and work over a perfect field k. Our strategy is to give a lower bound for the
dimension of the zeroth Hochschild homology in terms of the split Grothendieck group.
We briefly recall the relevant notions and results.

Definition 4.18. Let C be an additive category. The split Grothendieck group of C is
defined as:

Ko(C) = Spang {isomorphism classes [z] of objects in C}
o ([z@y] = [z] + [y] | 2,y € Ob(C))

Definition 4.19. A K-linear additive category C is called Krull-Schmidt if every object
decomposes uniquely into a finite direct sum of indecomposable objects with local endo-
morphism rings.

The following is clear from the definition:

Proposition 4.20. For a Krull-Schmidt category, the split Grothendieck group is a free
abelian group on the isomorphism classes of indecomposable objects in C.

Definition 4.21. For a K-linear additive category C, the Chern character is the K-linear
map

he: Ko(C) ®z K — HHo(C), [z]® 1+ [Id,: z — x]

Proposition 4.22 (Proposition 2.4 in [5]). If K = k is a perfect field and C is Krull-
Schmidt with a finite-dimensional endomorphism algebra for each indecomposable object,
then the Chern character he is injective.

Using these tools, we can now prove:

Theorem 4.23. Let p > 2. Then SZ(S' x B3; S' x P,, k) is infinite-dimensional in bidegree
(0,0).

Proof. We let s =t = p points and again have isomorphisms
S3(S* x B3; 8" x Py, k) = HHo(S3(B?; P, k)) = HHo(T2(s,t))

and we consider the category Ta(s,t) as a full subcategory of the enriched morphism
category H*®(Foam$?)* (s, ).

The k-linear, additive category H®(Foamy®)* (s, t) is Krull-Schmidt and hence idem-
potent complete; see e.g. the discussion in [30, Sections 4.5, 4.8] based on Bar-Natan’s
category, which is equivalent to Foams by [6].

Now Kar(T2(s,t))® may be considered as an additive, idempotent complete full sub-

category of H*(Foam$)*; it is thus itself Krull-Schmidt. We have HHg(Ty(s,t)) =
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HHy (Kar(T2(s,t))®) by Fact 4.12. Therefore, it suffices to compute its zeroth Hochschild
homology of Kar(Ta(s,t))®.

It is straightforward to check that the objects of Kar(Tz(s,t))® have finite-dimensional
endomorphism algebras, and since k is perfect, the Chern character

h: Ko(Kar(Ts(s,t))®) ®z k — HHo(Kar(Ta(s,t))®)

is injective; see Proposition 4.22. To prove that S3(S' x B?;S' x P, k) is infinite-
dimensional in bidegree (0,0), it is thus sufficient to show that Ky(Kar(T2(s,t))®) @z k
is infinite-dimensional.

Moreover, Ko(Kar(Tz(s,t))®) is free abelian on the isomorphism classes of its inde-
composable objects; cf. Proposition 4.20. Thus, we will be done once we can exhibit
infinitely many indecomposable and pairwise non-isomorphic complexes appearing as
(direct summands in) tangle complexes.

We will see that such complexes can be constructed as invariants of braids. Clearly, for
p > 2 there are infinitely many braids on p strands. Moreover, the braid complexes are
invertible under tensoring with the complex for the respective inverse braid. Since the
complex of the trivial braid is indecomposable (its endomorphism algebra (k[X]/(X?)) @p
is local), so are the complexes for all other braids. It is also known that all braid complexes
are pairwise non-isomorphic. This can e.g. be deduced from the faithfulness of the braid
group action of Khovanov—Seidel [22]. For us, however, it is enough to consider infinitely
many braids that are powers of a single Artin braid generator. For these complexes it is
straightforward to check by hand that they are pairwise non-isomorphic. 0O

Observe that Theorem 1.5 from the introduction is a combination of Corollary 4.2,
Proposition 4.15, and Theorem 4.23.

4.6. Comparison with the Rozansky—Willis invariant

In [31], Rozansky defined a Khovanov-type homology theory for (null-homologous)
links in S x S2. His construction was generalized by Willis in [33] to null-homologous
links in Y = #™(S! x S?) for any m. We will denote the Rozansky-Willis homology of
L CY by Hgiy(L). Just like the skein lasagna module SZ(W1, L), the invariant Hpy, (L)
can be computed from a Kirby diagram for W = §™(S! x B3) including the link L, so
it is a natural question whether they are related.

The first observation is that the two invariants are not always isomorphic. Indeed, in
any specific bidegree, Hyiy (L) is defined as the Khovanov homology of the link in 93
obtained from L by adding sufficiently many twists in place of the 1-handles. It follows
that Hyy (L) has finite rank in each bidegree, whereas this may not hold for S3 (W4, L),
as we have seen in Theorem 4.23. Another concrete example is for m = 1, where L =
S x Py yields a 4-dimensional lasagna skein module according to Proposition 4.15, but
HEy (L) =2 HH, (k[ X]/(X?)) is infinite-dimensional.
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However, Hpin (L) and SZ(Wi, L) are conceptually similar, as both arise as the
Hochschild homology of a chain complex associated to a tangle T that closes to the
link L:

o Hyw(L) is computed as the Hochschild homology of a dg bimodule (for a tensor
product of m of Khovanov’s arc rings) associated to the tangle T, as defined for
m = 1 by Khovanov in [18] and extended by parabolic induction to m > 1. Here the
homological degree of the dg bimodule gets mixed with the Hochschild degree, and
so the resulting invariant is a bigraded vector space.

o S2(W1y, L) can be computed via Theorem 4.7 (and for m = 1 even more concretely in
Corollary 4.10) as the zeroth Hochschild homology of an equivalent dg bimodule; see
Remark 4.13 for the comparison. In fact, the higher blob homology from [27], which
does not play a role for skein lasagna modules, corresponds to higher Hochschild
homology. The main difference, however, is that the dg bimodule is not considered
as an object of a dg or triangulated category, but of the linear cohomology cate-
gory. Accordingly, the full blob homology is triply-graded, with the blob/Hochschild
grading separated from the homological grading.

Based on this comparison, one may expect S2(W71, L) and, more generally, the full blob
homology SN (W7y; L) to appear on the Fy page of a spectral sequence converging to
HE’V’;(L). Suppose that one can find a suitable projective resolution in terms of tangle
complexes, which simultaneously allows the computation of blob homology as well as the
dg version of Hochschild homology. Then, by tensoring with the dg bimodule associated
to the tangle, one obtains a double complex of (quantum) graded vector spaces, where
the vertical differential carries Hochschild degree and the horizontal differential carries
homological degree. The homology of the total complex would compute Hpiy(L). To
obtain SZ(W7y, L), one first takes homology in the rows (thus computing the Khovanov
homologies of links of the form T; UT where T} appears in the resolution), and only then
the zeroth homology of the induced differential coming from the resolution. We will not
pursue this comparison further in the present paper, but remark that there is precedent
for interesting invariants appearing on FEs pages of spectral sequences that come from
separating Hochschild and homological degrees, namely the triply-graded HOMFLYPT
link homology; see [29, Section 6].

In general, one does not expect a map from the F5 page of a spectral sequence to
its E., page. However, since S2(W7, L) appears as the lowest row on the Eo page, the
above discussion suggests the existence of a natural map

S5 (Wi, L) — Hyi(L).

In the following we propose a candidate for such a map.
In Willis’s construction of Hiiy (L), we represent W7 =Y by m pairs of spheres in
the plane, with the spheres in each pair being identified (that is, we add a handle). This
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is the same as the usual Kirby diagram of W;. The link L may intersect each handle a
number of times, as in this picture:

Let L(ny,...,n,) be the link in S3 obtained from L by inserting n; full twists in place
of the " handle, as shown here:

ni

The homology Hpi (L) can be computed as the Khovanov homology of the link
L(ny,...,ny) for n; > 0, with some suitable shifts in grading. Note that L(ny,...,n,)
depends on the choice of a path between the attaching spheres of each 1-handle; however,
it can be shown that Hyiy (L) is independent of these choices up to isomorphism.

Consider now the skein lasagna module S3(W1,L). Let us attach an n;-framed 2-
handle through the 7*" 1-handle:

The 2-handles cancel the corresponding 1-handles, so the result is a Kirby diagram for
B*, whose boundary is S3. The link L becomes L(ny,...,n,,) C S3, as can be seen by
doing a series of handle slides of the arcs of L over the 2-handle:

n;

ni
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where in the last step we canceled the handles. (Compare Figure 5.13 in [10].)

The 2-handle attachments give a cobordism Z from Y = #™(S! x §?) to S3. There
is also an embedded annular cobordism S C Z from L to L(ni,...,ny). As discussed in
Section 2.2, these cobordisms induce a map on skein lasagna modules:

Uy.5:Sa(Wis L) — S3(B* L(ny,...,nm)) 2 Kh(L(ng,...,nm)).

Our conjecture is that these maps stabilize as n; — oo, giving a well-defined morphism
from S§(W1, L) to Hiy(L).

4.7. Speculations on homotopy coherent four-manifold invariants

We expect that the above Es-page-of-spectral-sequence relationship between S2 and
Hpy, for (5™(S x B3), L) generalizes to (W, L) for arbitrary four-manifolds W and links
L. We give a brief sketch of the reasoning below.

Recall that the Khovanov-Rozansky invariants, upon which S{¥ is built, assign chain
complexes to links L and chain maps to link cobordisms, but it is not known that this
assignment is functorial (or even well-defined) at the level of complexes. The proof that
the homology of these complexes is functorial in the appropriate sense involves showing
that certain chain maps are homotopic. If this result could be strengthened to show that
certain homotopies between the chain maps are themselves 2nd-order homotopic, and
so on for all higher orders, then one could construct a functorial assignment of chain
complexes to links in S? and chain maps to link cobordisms.

Let us assume that these conjectured “fully coherent” gl chain complexes for links
exist. Then, they can be repackaged as a pivotal (00, 4)-category (with composition maps
defined in terms of link cobordisms, as in [27]). This (0o, 4)-category can in turn be fed
into the machinery of Section 6.3 of [26] (which is closely related to topological chiral
homology [23] and factorization homology [1,2]). The result is a chain-complex-valued
invariant SY (W, L). Its construction involves taking a homotopy colimit of a poset built
out of the set of all ball decompositions of W and refinement relationships between
these ball decompositions. Concretely, we construct a double complex, with horizontal
differentials coming from the gl complexes of links, and vertical differentials coming
from the combinatorics of refining ball decompositions of W. There is a spectral sequence
associated to this double complex, which is itself an invariant of (W, L).

The F, page of this spectral sequence involves first taking homology in the horizontal
direction, then computing homology with respect to vertical differentials. It is easy to
see that this F page is exactly the blob homology SN (W; L) assigned to (W, L) in [27]
(i.e. by taking KhR homology early instead of working with the gl complex). (In this
paper we have focused on blob-degree zero, corresponding to the bottom row of the Fs
page of the spectral sequence.)

When Wy =™ (S* x B?) and N = 2, we expect the total homology of S (Wi, L) to
coincide with the Rozansky—Willis invariants. The Hochschild differentials of the previous
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subsection should be (homotopy equivalent to) special cases of the vertical differentials
above.
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