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sometimes be locally infinite dimensional.
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1. Introduction

Homological invariants such as Khovanov homology [17] and Khovanov-Rozansky ho-

mology [21] are at the center of modern knot theory. These invariants were originally 

defined for links in R3. Extending them to links in arbitrary 3-manifolds is a problem that 
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garnered much attention recently, from various perspectives (categorification at roots of 

unity [20,9,28], theoretical physics [34,14,13], etc.).

One such extension was introduced in [27], based on higher category theory and using 

the concept of blob homology [26]. Given a smooth, oriented, compact four-manifold W

and a framed oriented link L in the boundary ∂W , the construction in [27] associates to 

the pair (W, L) a homology theory graded by Z3 × H2(W, L; Z) and denoted SN
∗ (W ; L). 

One of the three integer gradings is called the blob degree, and for our purposes we will 

focus on the theory in blob degree zero, SN
0 (W, L). This is called the skein lasagna module

of (W, L) and has a relatively simple definition, reminiscent of the definition of the skein 

module of a 3-manifold. The skein lasagna module is defined as the span of the lasagna 

fillings of W with boundary L, modulo an equivalence relation. The lasagna fillings are 

certain decorated surfaces connecting L to other links in the boundaries of 4-balls inside 

W , and the equivalences come from cobordism maps in Khovanov-Rozansky homology.

Skein lasagna modules are challenging to compute. It was proved in [27] that when 

W = B4, the invariant SN
0 (B4; L) coincides with the Khovanov-Rozansky homology of 

the link L. Further computational methods were developed in [25], with a focus on 2-

handlebodies (four-manifolds obtained from B4 by attaching 2-handles). This allowed 

the calculation of the skein lasagna modules (in some gradings) for four-manifolds such 

as the complex projective plane, and disk bundles over S2.

In this paper, building on the work in [27] and [25], we give a new formula for the 

skein lasagna module of a link in the boundary of an arbitrary four-manifold. We start 

by choosing a handle decomposition for the four-manifold. For simplicity, we may assume 

that we have a single 0-handle. We then study how the skein lasagna module changes 

under adding handles. Disjoint unions, 4-handles and many cases of 2-handles were 

already studied in [25], so the main thing left is to understand 1- and 3-handles.

With regard to 3-handles, we have the following:

Theorem 1.1. Suppose that we have a four-manifold W with boundary Y , and let W ′ be 

the result of attaching a 3-handle to W along a sphere S ⊂ Y . Let also L be a framed 

link in Y disjoint from S, and L′ the corresponding link in ∂W ′. The equator J of S

splits the sphere into two hemispheres, each of which induces a cobordism map from 

SN
0 (W ; L ∪ J) to SN

0 (W ; L). Then, the skein lasagna module SN
0 (W ′; L′) is isomorphic 

to the coequalizer of these two cobordism maps. (See Theorem 3.7 for a more precise 

statement.)

Next, we combine Theorem 1.1 with the treatment of 2-handles in [25] to get a general 

result, reducing the calculation of the skein lasagna module to the case of 1-handles.

Recall that in [25], the skein lasagna module of a 2-handlebody was shown to be 

isomorphic to the so-called cabled Khovanov-Rozansky of the attaching link for the 2-

handles; this is obtained from the Khovanov-Rozansky homologies of the cables of this 

attaching link, modulo certain cobordism relations. We define an analogue of the cabled 

Khovanov-Rozansky homology for two links K, L in the boundary of W1 = �m(S1 × B3)
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(and, more generally, any other four-manifold); we call this the cabled skein lasagna 

module SN
0 (W1; K, L).

Theorem 1.2. Consider four-manifolds W1 ⊆ W2 ⊆ W3 ⊆ W4 where

• W1 = �m(S1 × B3) is the union of m one-handles;

• W2 is obtained from W1 by attaching n two-handles along a framed link K;

• W3 is obtained from W2 by attaching p three-handles along spheres S1, . . . Sp;

• W4 be obtained from W3 by attaching some four-handles.

Consider also a framed link L ⊂ ∂W4, and view K ∪L as a link in ∂W1. Then, the skein 

lasagna module SN
0 (W4; L) is isomorphic to the quotient of the cabled skein lasagna mod-

ule SN
0 (W1; K, L) by coequalizing relations coming from the 3-handles as in Theorem 1.1. 

(See Theorem 3.10 for a more precise statement.)

The cabled skein lasagna module SN
0 (W1; K, L) is constructed from the invariants 

SN
0 (W1; K(a, b) ∪L) where K(a, b) ∪L is a family of framed links in ∂W1 = #m(S1 ×S2)

consisting of L and cables K(a, b) of the attaching link K for the 2-handles. Thus, 

Theorem 1.2 allows us to express SN
0 (W4; L) in terms of skein lasagna modules of links 

in ∂W1 (and maps between them).

The second half of our paper studies in more detail the skein lasagna modules for 

links in ∂W1 where W1 = �m(S1 ×B3). We work with coefficients in a field k. By cutting 

along the cocores of the 1-handles, we reduce the problem of computing SN
0 (W1; L, k)

to a problem about skein lasagna modules for the (boundary of the) 0-handle B4 with 

a family of framed links related to L. For links in B4, the invariant SN
0 is simply the 

Khovanov-Rozansky homology KhRN .

Theorem 1.3. Let W1 = �m(S1×B3) with a nullhomologous link L ⊂ ∂W1 in the boundary 

that intersects the belt spheres of the 1-handles transversely in 2pi points for 1 ≤ i ≤ m. 

Let R ⊂ S3 \ �i(Bi ∪ Bi) denote the tangle obtained from L by cutting open along the 

belt spheres. Then, the skein lasagna module SN
0 (W1; L, k) is isomorphic to the quotient

⊕

tangles Ti

|∂Ti|=2pi

KhRN (R ∪ �
i

(Ti � Ti),k){(
∑

i pi)(N − 1)}
/

∼

where {·} denotes a grading shift, and the relation ∼ is given by taking coinvariants for 

the actions of certain categories SN
0 (B3; Ppi

) associated to the configurations Ppi
of pi

positively oriented and pi negatively oriented points in S2 = ∂B3. (See Theorem 4.7 for 

a more precise statement.)

Furthermore, we will show that the isomorphisms from Theorem 1.3 are functorial 

in the following sense: They allow an expression of maps associated to cobordisms S ⊂
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∂W1 × I between links S : L → L′ in ∂W1 = #m(S1 × S2) in terms of components 

computed entirely from maps associated to link cobordisms in S3.

By combining Theorems 1.2 and 1.3 (plus the functoriality statement), we thus ob-

tain a recipe for expressing the lasagna skein modules of any four-manifold in terms of 

Khovanov–Rozansky homologies of links in S3 and maps associated to cobordisms in 

S3 × I. The invariant is a quotient of a (typically infinite) direct sum of homologies of 

links by a subspace defined in terms of link cobordism maps.

Remark 1.4. Although the invariant SN
0 (W ; L, k) for any four-manifold W can be ex-

pressed purely in terms of link homology in S3, specifically KhRN , it would be difficult 

to prove directly that these expressions yield a four-manifold invariant. A direct proof of 

invariance, without comparing to the intrinsically defined invariants SN
0 , would require 

checking handle slide and handle cancellation moves as well as higher coherence condi-

tions between their composites. Handle slides for 2-handles are studied (for N = 2) in 

[15] and instances of (2, 3)-handle cancellation are discussed in Example 3.8. Another 

interesting question concerns the behavior of our algebraic description of SN
0 (W ; L, k)

under reversing the handle decomposition of W . However, our approach uses transversal-

ity arguments to isotope skeins away from cocores of handles to yield simplified handle 

formulas; hence, we do not expect these formulas to reflect the duality between k- and 

(4 − k)-handles, because the duality does not respect cocores.

Specializing the setting of Theorem 1.3 to the case of a single 1-handle, we consider 

the link S1 × Pp ⊂ S1 × B3 consisting of 2p parallel circles, with p of them oriented 

one way and p the other way. We prove that SN
0 (S1 × B3, S1 × Pp) is isomorphic to the 

zeroth Hochschild homology of the category SN
0 (B3; Ppi

). From here we get the following 

explicit calculation for N = 2.

Theorem 1.5. The skein lasagna module S2
0 (S1 × B3; S1 × Pp, k) is

(a) one-dimensional when p = 0;

(b) four-dimensional when p = 1;

(c) infinite dimensional when p ≥ 2.

Using methods analogous to those employed in part (a), we also show that S2
0(S1 ×

S3, k) is one-dimensional; see Corollary 4.2. For part (c), we actually show that S2
0 (S1 ×

B3, S1 × Pp, k) is infinite dimensional in bidegree (0, 0). This answers in the negative 

Question 1.7 from [25], about whether skein lasagna modules are always locally finite 

dimensional, i.e., finite dimensional in each fixed bidegree and homology class.

This still leaves open the following:

Question 1.6. If W is simply connected, is SN
0 (W ; L, k) always locally finite dimensional?
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For W1 = �m(S1 ×B3), one can view the skein lasagna module S2
0 (W1; L) as a variant 

of Khovanov homology for links L in #m(S1 × S2). Another version of Khovanov ho-

mology for these links was constructed by Rozansky (for m = 1) in [31], and Willis [33]

for arbitrary m. The Rozansky–Willis homology H∗,∗
RW(L) is finitely generated in each 

bidegree and, thus, different from our theory. We expect that H∗,∗
RW(L) appears on the 

E2 page of a spectral sequence converging to S2
0 (W1; L). See Section 4.6 for a further 

discussion and Section 4.7 for a conjectural extension of the Rozansky–Willis homology 

to links in the boundary of other four-manifolds.

Organization of the paper. In Section 2 we go over a few preliminaries about skein 

lasagna modules and Kirby diagrams. In Section 3 we study the behavior of skein lasagna 

modules under attaching 2- and 3-handles, proving Theorems 1.1 and 1.2. In Section 4

we focus on 1-handles, and prove Theorems 1.3 and 1.5.

Conventions. All the manifolds considered in this paper will be smooth, compact, and 

oriented. All links and surfaces are oriented and normally framed.

Acknowledgments. This paper builds on previous joint work and many enlightening 

conversations of KW and PW with Scott Morrison, without which this paper probably 

would not exist. We would also like to thank Matthew Hogancamp and Ikshu Neithalath 

for helpful comments on a draft of this paper.

2. Preliminaries

2.1. Skein lasagna modules

We start by reviewing the construction of skein lasagna modules from [27, Section 

5.2].

Following [27] and [25], for a framed link L ⊂ R
3, we write

KhRN (L) =
⊕

i,j∈Z

KhRi,j
N (L)

for the glN version of Khovanov-Rozansky homology. Here, i denotes the homological 

grading and j denotes the quantum grading.

If we have an oriented manifold S diffeomorphic to the standard 3-sphere S3, and a 

framed link L ⊂ S, we can define a canonical invariant KhRN (S, L) as in [27, Definition 

4.12]. We sometimes drop S from the notation and simply write KhRN (L).

Given a framed cobordism Σ ⊂ S3 × [0, 1] from L0 to L1, there is an induced map

KhRN (Σ): KhRN (L0) → KhRN (L1)

which is homogeneous of bidegree (0, (1 − N)χ(Σ)).
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Let W be a four-manifold and L ⊂ ∂W a framed link. A lasagna filling F =

(Σ, {(Bi, Li, vi)}) of W with boundary L consists of

• A finite collection of disjoint 4-balls Bi (called input balls) embedded in the interior 

or W ;

• A framed oriented surface Σ properly embedded in W \ ∪iBi, meeting ∂W in L and 

meeting each ∂Bi in a link Li; and

• for each i, a homogeneous label vi ∈ KhRN (∂Bi, Li).

The bidegree of a lasagna filling F is

deg(F ) :=
∑

i

deg(vi) + (0, (1 − N)χ(Σ)).

If W is a 4-ball, we can define a cobordism map

KhRN (Σ):
⊗

i

KhRN (∂Bi, Li) → KhRN (∂W, L)

and an evaluation

KhRN (F ) := KhRN (Σ)(⊗ivi) ∈ Kh(∂W, L).

We define the skein lasagna module as the bigraded abelian group

SN
0 (W ; L) := Z{lasagna fillings F of W with boundary L}/ ∼

where ∼ is the transitive and linear closure of the following relation:

(a) Linear combinations of lasagna fillings are set to be multilinear in the labels vi;

(b) Furthermore, two lasagna fillings F1 and F2 are set to be equivalent if F1 has an 

input ball Bi with label vi, and F2 is obtained from F1 by replacing Bi with another 

lasagna filling F3 of a 4-ball such that vi = KhRN (F3), followed by an isotopy rel 

∂W (where the isotopy is allowed to move the input balls):

For future reference, here is a useful lemma.
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Lemma 2.1. Let W and L be as above, and fix balls R1, . . . , Rn, one in each connected 

component of W . Then, the equivalence relation defining SN
0 (W ; L) can be alternatively 

described as the transitive and linear closure of the following relation:

• Linear combinations of lasagna fillings are set to be multilinear in the labels vi;

• Lasagna fillings that are isotopic rel ∂W are set to be equivalent;

• Two lasagna fillings are also set to be equivalent if they differ as in (b) above, where 

the input ball Bi is one of the chosen balls R1, . . . , Rn.

Proof. If F1 and F2 are equivalent as in the lemma, let us show that they are equivalent 

as in the definition of the skein lasagna module. The only new relation is the isotopy, 

which can be thought of as a particular instance of (b), where B1 is replaced by a slightly 

smaller ball with the same decoration (and F3 is a product cobordism).

Conversely, if F1 and F2 are equivalent as in the definition of the skein lasagna module, 

we only have to consider the case when they are related by (b). We can then isotope 

Bi to turn it into the ball Rj in the same connected component, and view (b) as a 

combination of the moves in the lemma. �

Skein lasagna modules decompose according to relative homology classes, as noted in 

[25, Section 2.3]:

SN
0 (W ; L) =

⊕

α∈H2(W,L;Z)

SN
0 (W ; L, α). (1)

Observe that in the case where L is not null-homologous in W (i.e. [L] �= 0 ∈

H1(W ; Z)), then there are no lasagna fillings, so SN
0 (W ; L) = 0. When [L] = 0 ∈

H1(W ; Z), consider the boundary map in the long exact sequence of the pair (W, L):

∂ : H2(W, L; Z) → H1(L; Z).

The only classes α ∈ H2(W, L; Z) that can contribute non-trivially are those that map 

to the fundamental class [L] ∈ H1(L; Z) under ∂. Let us introduce the notation

HL
2 (W ; Z) := ∂−1([L]) ⊆ H2(W, L; Z).

Note that, using the long exact sequence of the pair, the difference of two classes in 

HL
2 (W ; Z) can be identified with an element of H2(W ; Z). Thus, HL

2 (W ; Z) is a torsor 

over H2(W ; Z); it can be identified with the latter group after choosing a base element 

in HL
2 (W ; Z).

The decomposition (1) becomes

SN
0 (W ; L) =

⊕

α∈HL
2 (W ;Z)

SN
0 (W ; L, α). (2)
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We will use the decomposition (2) in the case of a general link L; when [L] �= 0, we have 

HL
2 (W ; Z) = ∅ and SN

0 (W ; L) = 0.

2.2. Gluing and cobordisms

Let us consider two four-manifolds W and Z that have some part Y of their boundaries 

in common, as follows:

∂W = Y � Y0, ∂Z = (−Y ) � Y1,

where � denotes disjoint union. We can glue W and Z along Y to form a new four-

manifold W ∪ Z with boundary Y0 � Y1. Suppose we are also given links L0 ⊂ Y0, 

L1 ⊂ Y1 and L ⊂ Y . Let L ⊂ −Y denote the mirror reverse of L. Then, we have a map

Ψ : SN
0 (W ; L ∪ L0) ⊗ SN

0 (Z; L ∪ L1) → SN
0 (W ∪ Z; L0 ∪ L1) (3)

obtained by gluing lasagna fillings along L:

[F ] ⊗ [G] �→ [F ∪ G].

It is easy to see that if two lasagna fillings F1 and F2 are equivalent in W , and G1 and 

G2 are equivalent in Z, then F1 ∪ G1 and F2 ∪ G2 are equivalent in W ∪ Z, so (3) is 

well-defined.

Starting from here, we see that skein lasagna modules are functorial under inclusions, 

in the following sense. We consider the case when Y0 = ∅, and we fix a lasagna filling 

G of Z with boundary L ∪ L1. We can think of Z as a cobordism from Y = ∂W to Y1. 

Then, there is an induced cobordism map

ΨZ;G = Ψ(· ⊗ [G]) : SN
0 (W ; L) → SN

0 (W ∪ Z; L1). (4)

Observe that the maps (4) behave well with respect to compositions:

ΨZ′;G′ ◦ ΨZ;G = ΨZ∪Z′;G∪G′ . (5)

Furthermore, in terms of the decompositions (2), given α ∈ HL
2 (W ; Z), by attaching 

to it the class of G in HL∪L1

2 (Z; Z) we get a class α1 ∈ HL1

2 (W ∪ Z; Z). Then, ΨZ;G

maps SN
0 (W ; L, α) to SN

0 (W ∪ Z; L1, α1). We let

ΨZ;G,α : SN
0 (W ; L, α) → SN

0 (W ∪ Z; L1, α1) (6)

denote the restriction of ΨZ;G.

When the lasagna filling G consists of a surface S (an embedded cobordism S ⊂ Z

from L to L1) with no input balls, we will simply write ΨZ;S,α for ΨZ;G,α. Furthermore, 
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we could decorate S with n dots at a chosen location, for 0 ≤ n ≤ N − 1, as usual in 

glN foams; cf. [27, Example 2.3]. This corresponds to constructing a lasagna filling S(n•)

with n input balls intersecting S along unknots, each decorated with the generator

X ∈ KhRN (U) ∼= Z[X]/(XN ).

(This filling is equivalent to one where we consider a single input ball intersecting S in 

an unknot, decorated with Xn.) When the chosen location of the dot placement is clear 

from the context, then we denote the corresponding map by

ΨZ;S(n•),α : SN
0 (W ; L, α) → SN

0 (W ∪ Z; L1, α1). (7)

2.3. Kirby diagrams

Let W be a smooth, oriented, connected, compact four-manifold (possibly with bound-

ary). By standard Morse theory, W can be decomposed into k-handles for k = 0, . . . , 4, 

arranged according to their index k. Furthermore, without loss of generality, we can 

arrange so that there is a unique 0-handle, and the number of 4-handles is either 0 or 1, 

according to whether W has empty boundary or not.

Denote the numbers of 1-, 2- and 3-handles by m, n and p, respectively. After attach-

ing the 1-handles to the 0-handle we get the handlebody �m(S1 × B3), with boundary 

#m(S1 × S2). (Here, � denotes the boundary connected sum, and # the usual interior 

connected sum.) The attaching circles for the 2-handles form a link

K ⊂ #m(S1 × S2),

with components K1, . . . , Kn. The link also has a framing, which specifies how the 2-

handles are attached. Once these are attached, the boundary of the resulting manifold 

must be of the form Y #p(S1 × S2). Attaching the 3-handles gets rid of the p summands 

of S1 ×S2, so the resulting boundary is some 3-manifold Y . In the case ∂W �= ∅, we stop 

here and we have ∂W = Y . In the case where W is closed, we must have Y = S3 and 

we attach the 4-handle (a four-ball) to S3 at the last step to eliminate the boundary.

The handle decomposition allows us to represent W by a Kirby diagram. This consists 

of drawing #m(S1 × S2) as m pairs of spheres in R3, where we think of the spheres in 

each pair as identified to produce a 1-handle (and we also add the point at infinity to 

R
3). We then draw a picture of the attaching link K for the 2-handles, where the link 

can go through the 1-handles. The framing of K can be specified by drawing parallel 

copies of the components of K. (The components that don’t go through the 1-handles 

can be viewed as living in S3; for those, an alternative way to specify the framing is by 

an integer, which is the difference between the given framing and the Seifert framing.) To 

determine W , in principle we should also specify the attaching spheres for the 3-handles. 

These are usually not drawn in the Kirby diagram. In the case where ∂W = ∅, this leaves 
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no ambiguity, because there is a unique way to fill #p(S1 × S2) by 3-handles and then 

by a 4-handle.

For example, we show here a Kirby diagram of W = CP
2#CP

2 with one 1-handle 

and three 2-handles. For the attaching curve of the 2-handle that goes through the 1-

handle, we specified the framing by drawing a parallel copy by a dashed curve; for the 

other 2-handles, we used numbers:

For more details about the subject, we refer to the book [10].

3. Two- and three-handles

3.1. Two-handles

The paper [25] contains a description of the skein lasagna module for 2-handlebodies 

(four-manifolds W made of a 0-handle and some 2-handles), where the link L ⊂ ∂W

is empty, or at least local (contained in a 3-ball). The description is in terms of the 

Khovanov-Rozansky homology of cables of the attaching link K.

In this subsection we extend that description to the case where we attach 2-handles 

to any four-manifold W , to obtain a new manifold W ′. Moreover, we do not impose any 

restriction on the link L ⊂ ∂W . The formula is very similar to that in [25]. The role of 

the Khovanov-Rozansky homology KhRN will be played by the skein lasagna module 

SN
0 (W ; −), which can be thought of as a link homology for links in the boundary of W . 

(When W = B4, we have SN
0 (W ; L) = KhRN (L).)

Let K1, . . . , Kn be the components of the framed link K ⊂ ∂W along which the 

2-handles are attached. The framing gives diffeomorphisms fi between tubular neighbor-

hoods ν(Ki) of each Ki and S1 × D2. Given n-tuples of nonnegative integers

k− = (k−
1 , . . . , k−

n ), k+ = (k+
1 , . . . , k+

n ),

we let K(k−, k+) denote the framed, oriented cable of K consisting of k−
i negatively 

oriented parallel strands to Ki and k+
i positively oriented parallel strands. Here, the 

notion of parallelism for the strands is determined by the framing, that is,

K(k−, k+) =
⋃

i

f−1
i (S1 × {x−

1 , . . . , x−

k
−

i

, x+
1 , . . . , x+

k
+
i

})
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for fixed points x−
1 , . . . , x−

k
−

i

, x+
1 , . . . , x+

k
+
i

∈ D2.

After attaching 2-handles to W along K, we obtain the manifold W ′. Suppose we are 

given a framed link L ⊂ ∂W ′. Generically, we can assume that L stays away from the 

attaching regions of the 2-handles, and therefore we can represent it as a link in ∂W , 

disjoint from (but possibly linked with) K. (There are various ways of isotoping L off of 

the attaching regions; the results of the calculation will be isomorphic.) We let

K(k−, k+) ∪ L

be the union of K(k−, k+) and L, where we do the cabling on the components of K by 

choosing the tubular neighborhoods of Ki to be disjoint from L. (Note that K(k−, k+) ∪L

is not a split disjoint union.)

We seek to express the skein lasagna module SN
0 (W ′; L) in terms of SN

0 (W ; K(k−, k+) ∪

L). To do this, we need to introduce a few more notions.

For each i, let Bk
−

i ,k
+
i

be the subgroup of the braid group on k−
i + k+

i strands that 

consists of self-diffeomorphisms of D2 rel boundary (modulo isotopy rel boundary) taking 

the set {x−
1 , . . . , x−

k
−

i

} to itself and the set {x+
1 , . . . , x+

k
+
i

} to itself. By taking the product 

with the identity on S1, a braid element b ∈ Bk
−

i ,k
+
i

induces a self-diffeomorphism of 

D2 × S1, which can be pulled back (via fi) to a self-diffeomorphism of ν(Ki). This gives 

a group action

βi : Bk
−

i ,k
+
i

→ Aut(SN
0 (W ; K(k−, k+) ∪ L)).

Let ei ∈ Z
n denote the ith basis vector. Two strands parallel to Ki, if they have 

opposite orientations, co-bound a ribbon band Ri in S3. By pushing Ri into S3 × [0, 1]

so that it is properly embedded there, and taking the disjoint union with the identity 

cobordisms on the other strands, we obtain an oriented cobordism (still denoted Ri) 

from K(k−, k+) ∪ L to K(k− + ei, k
+ + ei) ∪ L. For d = 0, 1, . . . , N − 1, we can decorate 

Ri with d dots, and obtain a cobordism map

ψ
[d]
i : SN

0 (W ; K(k−, k+) ∪ L) → SN
0 (W ; K(k− + ei, k+ + ei) ∪ L),

which changes the bigrading by (0, 2d).

Next, recall that we have a decomposition (2) for the skein lasagna module SN
0 (W ′; L), 

according to homology classes in HL
2 (W ′; Z). Let us see how these homology classes are 

related to the similar ones in W . Consider the tubular neighborhood ν(K) = ∪iν(Ki), 

which is a union of solid tori. Express W ′ as the union

W ′ = W ∪ C ∪ Z,

where Z is the union of the new 2-handles, and C ∼= ν(K) × [0, 1] is a connecting cylinder 

between W and Z. Let also
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C ′ = ν(K) × {0, 1} ⊂ C.

We identify ν(K) with ν(K) ×{0} and denote ν(K) ×{1} by ∂−Z (part of the boundary 

∂Z).

The Mayer-Vietoris sequence for W ′ relative to the union of W and Z ∪ L reads

· · · → H∗(W ′, W ∩ (Z ∪ L); Z) → H∗(W ′, W ; Z) ⊕ H∗(W ′, Z ∪ L; Z)

→ H∗(W ′, W ∪ (Z ∪ L); Z) → · · ·

Observe that, by excision, H3(W ′, W ∪ (Z ∪ L); Z) ∼= H3(C, C ′; Z) = 0. From here we 

obtain an exact sequence

0 → H2(W ′, L; Z) → H2(Z, ∂−Z; Z) ⊕ H2(W, ν(K) ∪ L; Z) → H2(C, C ′; Z). (8)

Thus, an element in HL
2 (W ′; Z) ⊆ H2(W ′, L; Z) can be identified with its image in 

H2(Z, ∂−Z; Z) ⊕ H2(W, ν(K) ∪ L; Z), which we write as a pair (α, η).

Let us further identify H2(Z, ∂−Z; Z) with Zn by letting the ith handle correspond 

to the coordinate vector ei. Then, we write

α = (α1, . . . , αn) ∈ Z
n

and let α+ denote its positive part and α− its negative part; i.e., α+
i = max(αi, 0) and 

α−
i = min(αi, 0). We also let |α| =

∑

i |αi|.

Let r ∈ N
n and consider the cable K(r − α−, r + α+). The fact that (α, η) ∈ Z

n ⊕

H2(W, ν(K) ∪ L; Z) is in the kernel of the map to H2(C, C ′; Z) ∼= Z
n in (8) implies the 

existence of a (unique) class

ηr ∈ H
L∪K(r−α−,r+α+)
2 (W ; Z) ⊆ H2(W, L ∪ K(r − α−, r + α+); Z)

which is sent to η by the natural map to H2(W, L ∪ ν(K); Z).

From now on, using the deformation retraction from ν(K) to K, let us think of η as 

a class in H2(W, K ∪ L; Z).

Definition 3.1. The cabled skein lasagna module of K ⊂ ∂W at level α and in class η is

SN,α
0 (W ; K, L, η) =

(

⊕

r∈Nn

SN
0 (W ; K(r − α−, r + α+) ∪ L, ηr){(1 − N)(2|r| + |α|)}

)

/ ∼

where the equivalence ∼ is the transitive and linear closure of the relations

βi(b)v ∼ v, ψ
[d]
i (v) ∼ 0 for d < N − 1, ψ

[N−1]
i (v) ∼ v (9)

for all i = 1, . . . , n; b ∈ Bk
−

i ,k
+
i

, and v ∈ SN
0 (W ; K(r − α−, r + α+) ∪ L, ηr).
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Theorem 3.2. Let W be a four-manifold and L ⊂ ∂W be a framed link. Let W ′ be obtained 

from W by attaching 2-handles along a framed link K disjoint from L. Then, for each 

(α, η) ∈ HL
2 (W ′; Z), we have an isomorphism

Φ : SN,α
0 (W ; K, L, η)

∼=
−−−→ SN

0 (W ′; L, (α, η)).

Proof. An element v ∈ SN
0 (W ; K(r − α−, r + α+) ∪ L, ηr) is represented by a linear 

combination of lasagna fillings (Σ, {(Bi, Li, vi}) in W , where ∂Σ = K(r − α−, r + α+) ∪

L ∪ (∪iLi). We define Φ(v) to be the class of the linear combination of lasagna fillings 

with the same input data {(Bi, Li, vi} as v, but with the surfaces given by attaching 

to each Σ (along its boundary) the disjoint union of ri − α−
i negatively oriented disks

parallel to the core of ith 2-handle and ri + α+
i positively oriented such disks (union over 

all i).

We also define a map Φ−1 in the opposite direction, as follows. Let F be a lasagna 

filling in W ′ with surface Σ. We isotope the input balls of F to be inside W , and isotope 

the surface Σ such that its intersection with the 2-handles consists of several disks parallel 

to their cores. Removing these disks produces a lasagna filling of W with boundary on 

a link of the form K(r − α−, r + α+) ∪ L. We let this be Φ−1(F ).

The proofs that Φ and Φ−1 are well-defined and inverse to each other are similar 

to the proof of Theorem 1.1 in [25], which dealt with the case W = B4 and L = ∅. 

The extension to arbitrary W and L is obtained by replacing the Khovanov-Rozansky 

homologies KhRN with the skein lasagna modules in W . (In the formulation here, the 

proof of the statement is even slightly clearer since it relates lasagna skein modules 

with lasagna skein modules. In particular, we do not have to choose standard lasagna 

fillings with “slightly smaller input balls”, as these were only required when comparing 

SN
0 (B4, −) with KhRN .) �

Remark 3.3. In some cases it is known that the braid group actions on the link homology 

of cabled links factor through the symmetric group. For Khovanov homology of links in 

R
3, this was shown by Grigsby–Licata–Wehrli [12, Theorem 2]. For the glN homology of 

links in R3 (or S3) a similar argument works in the case of parallelly oriented strands [11, 

Section 6.1]. We have no reason to doubt that the same could be true for anti-parallel 

strands, i.e. in the situation relevant for SN
0 , but we do not currently know how to prove 

it.

We will primarily be using the results from this subsection in the case where the role 

of W is played by

W1 := �m(S1 × B3),

a manifold obtained from a 0-handle by attaching some 1-handles. We denote W ′ by 

W2. Then, H2(W1; Z) = 0, so HL
2 (W1; Z) = 0 for any null-homologous L, and the 

decomposition (2) for skein lasagna modules of links in W1 is trivial (consists of a single 
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summand). Moreover, in this case an element (α, η) ∈ HL
2 (W2; Z) ⊆ H2(W2, L; Z) is 

uniquely determined by its image α in H2(W2, W1; Z) ∼= Z
n. Indeed, the exact sequence

0 = H2(W1; Z) → H2(W1, L ∪ ν(K); Z) → H1(L ∪ ν(K); Z)

show that the component η is determined by its image in

H1(L ∪ ν(K); Z) = H1(L; Z) ⊕ H1(ν(K); Z).

The part in H1(L; Z) has to be the fundamental class [L], while the part in H1(ν(K); Z) ∼=

Z
n is the image of α under the isomorphisms

H2(W2, W1; Z)
∼=
−→ H2(Z, ∂−Z; Z)

∼=
−→ H1(∂−Z; Z)

∼=
−→ H1(ν(K); Z).

Therefore, in this case the class η is redundant (being determined by α), so we simply 

drop it from the notation, writing for example α instead of (α, η) for the classes in 

HL
2 (W2; Z). With this in mind, the isomorphism from Theorem 3.2 is written as

Φ : SN,α
0 (W1; K, L)

∼=
−−−→ SN

0 (W2; L, α). (10)

3.2. Three-handles

In [25, Proposition 2.1] the following result was shown:

Proposition 3.4. Let i : W → W ′ be the inclusion of a four-manifold W into W ′. Then 

we have a natural map

i∗ : SN
0 (W ; ∅) → SN

0 (W ′, ∅).

If W ′ is the result of a k-handle attachment to W , then i∗ is a surjection for k = 3 and 

an isomorphism for k = 4.

Corollary 3.5. We have SN
0 (S4) ∼= Z, concentrated in bidegree zero.

In this section we focus on the case of 3-handle attachments. We will generalize the 

statement of Proposition 3.4 to 3-handle attachments in the presence of boundary links 

and explicitly describe the kernel of the resulting maps on SN
0 .

Consider the following setting. Let W be a four-manifold with a framed link L ⊂

Y = ∂W and an embedded 2-dimensional sphere S ⊂ Y , disjoint from L. Let Z be the 

cobordism given by attaching a 3-handle to W along S, and let

W ′ = W ∪ Z.
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Let Y ′ = ∂W ′ be the outgoing boundary of Z, so that ∂Z = (−Y ) ∪ Y ′. Inside Z we 

have the two-dimensional annular cobordism A = I × L, from L = {0} × L to a new link 

L′ = {1} × L. Given α′ ∈ HL
2 (W ′; Z) ∼= HL

2 (W ; Z)/([S]), let us consider the set of all 

α ∈ HL
2 (W ; Z) whose equivalence class modulo [S] is α′:

〈α′〉 := {α ∈ HL
2 (W ; Z) | α mod [S] = α′}.

We obtain a cobordism map as in (6):

ΨZ;A,α : SN
0 (W ; L, α) → SN

0 (W ′; L′, α′).

Let

ΨZ;A,α′ :=
∑

α∈〈α′〉

ΨZ;A,α :
⊕

α∈〈α′〉

SN
0 (W ; L, α) → SN

0 (W ′; L′, α′).

Remark 3.6. When L = ∅ (and therefore A = ∅), then ΨZ;∅ is exactly the map i∗ from 

Proposition 3.4.

Let J be the equator of S (which is an unknot in Y ). Equip J with an arbitrary 

orientation. By pushing a hemisphere of S slightly from Y = {0} × Y into the cylinder 

I×Y , and taking its union with I×L, we obtain a properly embedded cobordism in I×Y , 

going from L ∪ J to L. There are two such hemispheres, which produce two cobordisms, 

denoted ∆+ and ∆− ⊂ I × Y . We orient ∆+ and ∆− so that their boundary orientation 

is the one on J . (Note that they are therefore “oppositely oriented,” in the sense that 

they do not match up to produce an orientation on S.) Let us identify W ∪ (I × Y ) with 

W itself using a standard collar neighborhood. Then, the cobordism maps associated to 

∆+ and ∆− take the form

ΨI×Y ;∆+,α : SN
0 (W ; L ∪ J, α + [∆+]) → SN

0 (W ; L, α),

ΨI×Y ;∆−,α : SN
0 (W ; L ∪ J, α + [∆−]) → SN

0 (W ; L, α).

From here we get direct sum maps

ΨI×Y ;∆+,α′ :=
⊕

α∈〈α′〉

ΨI×Y ;∆+,α

and

ΨI×Y ;∆−,α′ :=
⊕

α∈〈α′〉

ΨI×Y ;∆−,α.

Observe that these two maps have the same domain
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⊕

α∈〈α′〉

SN
0 (W ; L ∪ J, α + [∆+]) =

⊕

α∈〈α′〉

SN
0 (W ; L ∪ J, α + [∆−])

and the same range 
⊕

α∈〈α′〉 SN
0 (W ; L, α). Let

f := ΨI×Y ;∆+,α′ − ΨI×Y ;∆−,α′ .

Theorem 3.7. The map ΨZ;A,α′ associated to a 3-handle addition from W to W ′ is sur-

jective, and its kernel is exactly the image of f . Therefore, SN
0 (W ′, L′, α′) is isomorphic 

to

(

⊕

α∈〈α′〉

SN
0 (W, L, α)

)

/ im(f),

that is, to the coequalizer of the maps ΨI×Y ;∆+,α′ and ΨI×Y ;∆−,α′ .

Proof. We first show that ΨZ;A,α′ vanishes on the image of f , that is,

ΨZ;A,α′ ◦ ΨI×Y ;∆+,α′ = ΨZ;A,α′ ◦ ΨI×Y ;∆−,α′ .

Indeed, from the composition law (5) we see that the left hand side is associated to the 

surface cobordism ∆+ ∪ A and the right hand side to ∆− ∪ A. However, inside the 3-

handle Z, the sphere S gets filled with a core B3, and therefore ∆+ and ∆− are isotopic 

rel boundary. It follows that the two cobordism maps are the same.

Therefore, ΨZ;A,α factors through a map

Φ:
(

⊕

α∈〈α′〉

SN
0 (W, L, α)

)

/ im(f) → SN
0 (W ′, L′, α′).

We need to prove that Φ is bijective. For this, we construct its inverse Φ−1. Given a 

lasagna filling F ′ of W ′ with boundary L′, observe that the cocore of the 3-handle Z is 

one-dimensional, and therefore we can isotope F ′ to be disjoint from this cocore; after 

this, we can push it into W , to obtain a lasagna filling there, called F , with boundary 

L. We set

Φ−1[F ′] = [F ].

To see that Φ−1 is well-defined, we need to check that if two lasagna fillings F ′
0 and F ′

1

are equivalent in W , then the corresponding fillings F0 and F1 differ (up to equivalences 

in W ) by an element of im(f). We use Lemma 2.1, in which we fix balls Ri ⊂ W away 

from the 3-handle, and consider the equivalences listed in the lemma (with the ball 

replacements happening in Ri). Then, the equivalences in W ′ give rise to equivalences 

in W , with one exception: an isotopy of the surfaces may intersect the one-dimensional 

cocore of Z (which is an interval). Generically, this happens in a finite set of points, each 
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point at a different time during the isotopy. Every time the isotopy meets the cocore, 

the corresponding surfaces in W differ by replacing a hemisphere of S (with boundary 

some closed curve γ) with its complement in S. Up to an isotopy supported near S, we 

can assume that γ is the equator J with its chosen orientation. (For example, if γ is J

with the opposite orientation, we can rotate it by π about a transverse axis to get J with 

the original orientation.) Then, the hemispheres being interchanged are ∆+ and ∆− and 

hence the classes of F0 and F1 differ by an element in the image of f .

This shows that Φ−1 is well-defined, and its definition makes it clear that it is an 

inverse to Φ. It follows that Φ is bijective, and the conclusions follow. �

Example 3.8. Let W = S2 × D2 and S the sphere S2 × {p}, where p ∈ ∂D2. Then 

attaching the 3-handle gives W ′ = B4. Let us see what Theorem 3.7 gives in this case. 

For simplicity, we ignore the decomposition into relative homology classes.

The skein lasagna module of W has the structure of a commutative algebra over Z, 

with the multiplication given by putting lasagna fillings side-by-side, in the decomposi-

tion

(S2 × D2) ∪S2×I (S2 × D2) ∼= S2 × D2,

where I ⊂ ∂D2 is an interval. As a Z-algebra, SN
0 (W ; ∅) was computed in [25, Theorem 

1.2] to be

SN
0 (W ; ∅) ∼= Z[A1, . . . , AN−1, A0, A−1

0 ]

where Ai comes from the lasagna filling corresponding to the closed surface S2 × {0}, 

equipped with the standard orientation, and marked with N − 1 − i dots. (As mentioned 

in Section 2.2, this is equivalent to introducing one input ball intersecting S2 × {0} in 

an unknot labeled XN−1−i.)

The cobordism maps

ΨI×Y ;∆+
, ΨI×Y ;∆−

: SN
0 (W ; J) → SN

0 (W ; ∅)

are as follows. The unknot J is contained in a ball in the boundary of W (say, a neigh-

borhood of the disk ∆+). Then, according to [25, Corollary 1.5], we have

SN
0 (W ; J) ∼= SN

0 (W ) ⊗Z KhRN (J) ∼= SN
0 (W ) ⊗Z

(

Z[X]/(XN )
)

.

(Strictly speaking, Corollary 1.5 in [25] is phrased for coefficients in a field k, due to the 

fact that its proof requires choosing a basis of KhRN (J). In our case, J is the unknot, 

so KhRN (J) is free over Z, and therefore the same argument applies with coefficients in 

Z.)

Both maps ΨI×Y ;∆+
and ΨI×Y ;∆−

correspond to capping the unknot by disks. The 

first map acts only on the factor KhRN (J) and is given by
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ΨI×Y ;∆+
(v ⊗ XN−1−i) =

{

v if i = 0,

0 if i = 1, . . . , N − 1.

A useful picture to have in mind is that we can represent XN−1−i by a dotted disk (with 

the number of dots specified by the exponent of X), which is completed by ∆+ to a 

dotted sphere that bounds a ball in W , and hence can be evaluated to a scalar as shown 

above. To compute the action of ΨI×Y ;∆−
, on the other hand, note that the disk ∆−

completes the dotted disk to a homologically essential dotted sphere, corresponding to 

a generator in SN
0 (W ; ∅):

ΨI×Y ;∆−
(v ⊗ XN−1−i) = v · Ai.

Therefore, taking the coequalizer of the two maps as in Theorem 3.7 boils down to setting

A0 = 1, A1 = · · · = AN−1 = 0

in SN
0 (W ; ∅). We deduce that

SN
0 (W ′; ∅) ∼= Z[A1, . . . , AN−1, A0, A−1

0 ]/(A1, . . . , An−1, A0 − 1) ∼= Z,

which is the known answer for the skein lasagna module of B4; see [27, Example 4.6].

Remark 3.9. Example 3.8 gives an alternate formula for 3-handle attachments. Let us 

go back to the general setting in this section, with a 3-handle attached to an arbitrary 

four-manifold W along a sphere S to produce W ′, and a framed link L ⊆ ∂W away from 

S. Observe that SN
0 (W, L) is naturally a module over the algebra SN

0 (S2 × D2; ∅), with 

the module action being given by attaching fillings in a neighborhood of the sphere S. 

It follows from the definitions that

SN
0 (W ′; L′) ∼= SN

0 (W ; L) ⊗SN
0 (S2×D2;∅) SN

0 (B3 × I; ∅).

Here, the algebra SN
0 (S2 × D2; ∅) is the free polynomial ring in A1, . . . , AN−1, A0, A−1

0

and SN
0 (B3 × I; ∅) = SN

0 (B4) is Z as a module over that algebra, where A0 acts by 1

and the other Ai by 0. We conclude that

SN
0 (W ′; L′) ∼= SN

0 (W ; L)/(A0 − 1, A1, . . . , AN ).

3.3. Handle decompositions

Let us now specialize the addition of 3-handles to the case where the initial manifold 

W = W2 is a union of 0-, 1- and 2-handles. We will then have available to us the 

description of SN
0 (W2; L, α) from Section 3.1.
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If we attach a 3-handle to W2, in terms of Kirby calculus, the attaching sphere S

can be represented as a surface Σ (of genus 0, and disjoint from L) with boundary some 

copies of the Ki’s (the attaching circles for 2-handles). Then S is the union of Σ and 

(parallel copies of) cores of the 2-handles.

We draw J ⊂ S as a small unknot away from all Ki, and let ∆+ be the small disk it 

bounds. The other hemisphere ∆− is the complement of ∆+ in S, and goes over some 

of the handles. We let

Σ− = Σ \ ∆+ ⊆ ∆−.

This is a surface on ∂W1 whose boundary is the union of J and several copies of the Ki’s. 

Let s−
i be the number of copies of Ki in ∂Σ− that appear with the negative orientation, 

and s+
i the number of those with the positive orientation. We form the vectors

s− = (s−
1 , . . . , s−

n ), s+ = (s+
1 , . . . , s+

n ).

We proceed to describe the maps ΨI×Y ;∆+,α′ and ΨI×Y ;∆−,α′ in this case. By The-

orem 3.2 with notation as in (10), the range 
⊕

α∈〈α′〉 SN
0 (W2; Z, α) of these maps is 

identified with the direct sum of cabled skein lasagna modules 
⊕

α∈〈α′〉 SN,α
0 (W1; K, L). 

Similarly, their domain is identified with

⊕

α∈〈α′〉

SN,α
0 (W1; K, L ∪ J) ∼=

⊕

α∈〈α′〉

SN,α
0 (W1; K, L) ⊗ KhRN (J)

∼=
⊕

α∈〈α′〉

SN,α
0 (W1; K, L) ⊗ Z[X]/(XN ).

We used here the fact that J is split disjoint from all the attaching links for the 2-handles, 

and therefore each summand that appears in the definition of SN,α
0 (W1; K, L ∪J) splits off 

a KhRN (J) factor; moreover, the equivalence relation is compatible with this splitting.

The map ΨI×Y ;∆+,α′ is now easy to describe. It is induced by capping J with a disk, 

so it only affects the factor KhRN (J), in a standard way. Precisely, we have

ΨI×Y ;∆+,α′(v ⊗ Xn) =

{

v if n = N − 1,

0 if n = 0, 1, . . . , N − 2,
(11)

for all v ∈ SN,α
0 (W1; K, L).
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To describe the second map ΨI×Y ;∆−,α′ , consider the diagram

⊕

α∈〈α′〉

SN
0 (W1; K(k−, k+) ∪ L ∪ J, α)

⊕

α∈〈α′〉

SN
0 (W1; K(k− + s−, k+ + s+) ∪ L, α)

⊕

α∈〈α′〉

SN,α
0 (W1; K, L ∪ J)

⊕

α∈〈α′〉

SN,α
0 (W1; K, L)

⊕

α∈〈α′〉

SN
0 (W2; L ∪ J, α)

⊕

α∈〈α′〉

SN
0 (W2; L, α).

ΨI×∂W1;Σ
−

,α′

ΨI×∂W1;Σ
−

,α′

Φ ∼= Φ ∼=

ΨI×Y ;∆
−

,α′

(12)

Here, in the top row we wrote (k−, k+) for a pair (r − α−, r − α+) as in Definition 3.1. 

The vertical maps from the first to the second row are induced by the inclusion of the 

summands into the cabled skein lasagna module; cf. Definition 3.1. The vertical maps 

from the second to the third row are the isomorphisms Φ from Theorem 3.2.

Ignoring the middle dashed arrow for the moment, note that the above diagram 

commutes. Indeed, by the definition of Φ in the proof of Theorem 3.2, the vertical com-

positions (from the first to the third row) are given by attaching cores of the 2-handles to 

lasagna fillings in W1. Note that we are attaching more cores on the right; namely, those 

in the boundary of ∂Σ, counted by the vectors s− and s+. The horizontal cobordism 

maps (as defined in Section 2.2) are given by attaching the surface Σ− (in the top row) 

and ∆− (in the bottom row). Because ∆− is the union of Σ− and the extra cores of 

2-handles counted by s− and s+, the diagram (12) commutes.

Since the bottom vertical arrows in the diagram are isomorphisms, let us now add the 

middle dashed arrow, given by the map

ΨI×∂W1;Σ−,α′ := Φ−1 ◦ ΨI×Y ;∆−,α′ ◦ Φ.

Because (12) commutes, we deduce that this map is induced on the skein lasagna mod-

ules by applying the cobordism maps ΨI×∂W1;Σ−,α′ on each summand; this justifies the 

notation.

Recall that Σ− is the complement of the disk ∆+ inside Σ. Thus, we can write the 

cobordism maps ΨI×∂W1;Σ−,α′ in terms of the maps ΨI×∂W1;Σ(n•),α′ associated to the 

surface Σ with n dots, as in (7):

ΨI×∂W1;Σ−,α′(v ⊗ Xn) = ΨI×∂W1;Σ(n•),α′(v).

Fixing n, the maps ΨI×∂W1;Σ(n•),α′ on various summands in the construction of the 

skein lasagna module induce a map:

ΨI×∂W1;Σ(n•),α′ :
⊕

α∈〈α′〉

SN,α
0 (W1; K, L) →

⊕

α∈〈α′〉

SN,α
0 (W1; K, L)

such that
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ΨI×∂W1;Σ−,α′(v ⊗ Xn) = ΨI×∂W1;Σ(n•),α′(v). (13)

We are now ready to give a general formula for the skein lasagna module of a four-

manifold decomposed into handles in terms of skein lasagna modules of 1-handlebodies. 

We will phrase it for an arbitrary number of handles.

Theorem 3.10. Consider four-manifolds W1 ⊆ W2 ⊆ W3 ⊆ W4 where

• W1 = �m(S1 × B3) is the union of m 1-handles;

• W2 is obtained from W1 by attaching n two-handles along a framed link K;

• W3 is obtained from W2 by attaching p three-handles along spheres S1, . . . Sp;

• W4 is obtained from W3 by attaching some four-handles.

Consider also a framed link L ⊂ ∂W4. We represent W4 by a Kirby diagram, viewing 

K ∪ L as a link in ∂W1, and the spheres Si in terms of surfaces Σj on ∂W1 with ∂Σj

consisting of some copies of various components of K (so that Sj is the union of Σj and 

the corresponding cores of the 2-handles).

Given

α′ ∈ HL
2 (W4; Z) ∼= HL

2 (W3; Z) ∼= HL
2 (W2; Z)/([S1], . . . , [Sp]),

let 〈α′〉 be the set of all α ∈ HL
2 (W2; Z) ⊆ Z

n whose equivalence class modulo 

([S1], . . . , [Sp]) is α′.

Then, the skein lasagna module SN
0 (W4; L, α′) is isomorphic to the quotient of the 

direct sum of cabled skein lasagna modules 
⊕

α∈〈α′〉 SN,α
0 (W1; K, L) by the relations

ΨI×∂W1;Σj(n•),α′(v) = 0, n = 0, 1, . . . , N − 2, (14)

and

ΨI×∂W1;Σj((N−1)•),α′(v) = v (15)

for all v ∈
⊕

α∈〈α′〉 SN,α
0 (W1; K, L) and j = 1, . . . , p.

Proof. First, note that the addition of 4-handles does not affect the skein lasagna module, 

in view of Proposition 3.4. Thus, we can consider W3 instead of W4.

The skein lasagna module of L viewed in the boundary of ∂W is given by 

SN,α
0 (W1; K, L) according to Theorem 3.2. When we add a 3-handle, we divide by the 

relations

ΨI×Y ;∆+,α′(v ⊗ Xn) = ΨI×Y ;∆−,α′(v ⊗ Xn), (16)

as proved in Theorem 3.7. In terms of the identifications Φ from Theorem 3.2, the left 

hand side of (16) is given by Equation (11), and the right hand side by Equation (13). 
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We thus get relations of the form (14) and (15). The generalization to multiple 3-handles 

is straightforward. �

Theorem 3.10 gives a description of an arbitrary skein lasagna module in terms of 

skein lasagna modules for links in the boundary of W1 = �m(S1 × B3), and cobordism 

maps for surfaces in I × ∂W1. In the next section we will obtain a further reduction 

to links in S3 and cobordism maps between them, under the additional constraint of 

working with field coefficients; see Theorem 4.7.

4. One-handles

Consider four-manifolds W and W ′, where W ′ is the result of attaching a finite number 

of 1-handles to W . The boundary of the cocore of each 1-handle is a 2-dimensional sphere 

S2 ⊂ ∂W ′ that generically intersects links L ⊂ ∂W ′ in a finite set of points. In this section 

we aim to compute SN
0 (W ′; L) in terms of the invariants SN

0 (W ; R ∪ �i(Ti � Ti)) of the 

four-manifold W and some links R ∪ �i(Ti � Ti) ⊂ ∂W related to L.

Throughout this section we will work with coefficients in a field k. Under this assump-

tion KhRN is strictly monoidal under disjoint union (without Tor terms) and sends 

mirror links to dual link homologies (without Ext terms). As a consequence, SN
0 is 

monoidal under (boundary) connect sum; see [25, Theorem 1.4 and Corollary 7.3]. We 

leave the investigation of the behavior under more general coefficient rings to future 

work.

4.1. One-handles away from links

We first consider the case when L is disjoint from the cocores of the 1-handles. Up to 

a small isotopy, we may even assume that L is disjoint from the entire boundary of the 

added 1-handles, i.e. that L ⊂ ∂W . As in Proposition 3.4, the corresponding invariants 

are related by a canonical map and we have:

Lemma 4.1. The inclusion i : (W, L) → (W ′, L) induces an isomorphism

i∗ : SN
0 (W ; L,k)

∼=
−→ SN

0 (W ′; L,k)

Proof. The proof is a straightforward generalization of the proof of [25, Theorem 1.4], 

which deals with boundary connected sums. The map i∗ is induced by the map sending 

lasagna fillings of (W, L) to lasagna fillings of (W ′, L) along the embedding i. The inverse 

is given on lasagna fillings F in (W ′, L) by looking at their intersection with a neighbor-

hood of the cocores of all 1-handles. Up to a small isotopy, each such intersection is an 

identity cobordism on a link K ⊂ B3. The inverse map is given by replacing it by a sum 

of pairs of input balls, labeled by basis and dual basis elements of KhRN (K) respectively. 

The resulting linear combination of fillings can be isotoped into W , and is equivalent to 

the original filling according to the neck-cutting lemma (Lemma 7.2 in [25]). �
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Corollary 4.2. There are canonical isomorphisms

k
∼=
−→ SN

0 (S1 × B3; ∅,k), k
∼=
−→ SN

0 (S1 × S3,k)

each sending 1 ∈ k to the respective empty lasagna filling.

Proof. The first isomorphism is given by a 1-handle attachment to (B4, ∅) as in 

Lemma 4.1. The second isomorphism can be proved similarly: Let F be a lasagna filling 

of S1 × S3 and consider its intersection with a fiber {x} × S3. Up to a small isotopy, we 

may assume that the filling F intersects {x} × S3 transversely (in lasagna sheet, not in 

input balls) and disjointly from {x} ×{north pole}. Then for small ε > 0, the intersection 

F ∩ [x − ε, x + ε] × (S3 \ north pole) is an identity cobordism on a link K. We replace 

this by a sum over pairs of input balls labeled with basis and dual basis elements of 

KhRN (K) respectively. The resulting closed lasagna filling is supported in a single B4

and can, thus, be identified with a scalar multiple of the empty filling. �

Remark 4.3. It is instructive to evaluate the inverse to the canonical isomorphisms from 

Corollary 4.2 on surfaces of revolution generated by links. Any framed, oriented link 

K ⊂ B3 or S3 defines a vegetarian3 lasagna filling S1 × K of S1 × B3, which eval-

uates to a scalar multiple of the empty lasagna filling. It follows from the proofs of 

Lemma 4.1 and Corollary 4.2 that this scalar is the trace of the identity map on 

KhRN (K). Here it is important to take the Koszul signs in the symmetric monoidal 

structure on (homologically and quantum) bigraded vector spaces into account. The 

trace is thus tr(IdKhRN (K)) = χq=1(KhRN (K)) = ±N |π0(K)|, i.e. the glN quantum link 

polynomial of K, specialized at q = 1. More generally, any endocobordism of K defines 

a lasagna filling of S1 × B3 that is a multiple of the empty filling, with coefficient given 

by the graded trace of the induced endomorphism of KhRN (K); see e.g. [16, Section 6], 

[3, Section 10.1], [7, Theorem D] for related discussions of Lefschetz traces in the case of 

Khovanov homology.

4.2. Cutting and gluing 1-handles

Consider the process of cutting a lasagna filling F of W1 = �m(S1×B3) with boundary 

L along the cocores Ci
∼= pt × B3 of the 1-handles for 1 ≤ i ≤ m. Let us assume that 

the lasagna sheet Σ of F intersects the cocores transversely in tangles Ti := Σ ∩ Ci. In 

particular, the link L intersects the belt spheres Si := ∂Ci geometrically in 2pi points, 

the boundary points of the tangle Ti. The algebraic intersection numbers are all zero, 

since L is null-homologous, as witnessed by F . In this way, we obtain a lasagna filling 

cut(F ) of W1 \ �i n(Ci) ∼= B4 with boundary link

3 A lasagna filling consisting only of a surface, without input meat balls.
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LT := (L \ �
i

(L ∩ Si)) ∪ (Ti ∪ Ti).

The latter is obtained by cutting L open at the 2pi-tuples of boundary points and 

inserting copies of the tangles Ti and Ti, schematically:

Of course, the procedure of cutting lasagna fillings does not describe a well-defined 

map on the level of SN
0 since it does not respect the skein relations. Instead we consider 

the reverse operation.

The process of gluing a lasagna filling works as follows. Let F ′ be a lasagna filling of 

B4 with boundary link LT as above; i.e., inside S3 = ∂B4 we have m pairs of embedded 

3-balls Bi ∪ Bi, such that LT ∩ Bi = Ti and LT ∩ Bi = T i for 1 ≤ i ≤ m. Denote 

the numbers of boundary points by 2pi := |∂Ti|. Now we attach m 1-handles with core-

parallel lasagna sheets I × Ti ⊂ I × B3 along the Bi ∪ Bi
∼= S0 × B3 to obtain a lasagna 

filling of W1 with boundary L. Since the relations in SN
0 are local, this induces a map:

glueLT
: SN

0 (B4; LT ,k){(
∑

i pi)(N − 1)} → SN
0 (W1; L,k) (17)

The grading shift is there to compensate the change in Euler characteristic of the surfaces 

in lasagna fillings upon gluing.

Lemma 4.4. For every lasagna filling F of SN
0 (W1; L, k), there exists a framed LT ⊂ ∂B4, 

such that F is contained in the image of glueLT
.

Proof. By a small isotopy, we may assume that F satisfies the assumption of the cutting 

procedure described above. The statement now follows since cutting, albeit ill-defined, 

is manifestly a right-inverse to gluing. �

It follows that the gluing maps from (17) assemble to a surjective map from a direct 

sum of shifts of SN
0 (B4; LT , k) to SN

0 (W1; L, k). Here, the sum is indexed by all ways of 

writing L as a contraction of links LT obtained by drilling out pairs of tangles Ti ∪Ti and 

resealing the boundary points across the 1-handles. It remains to describe the kernel.

Definition 4.5. For p ∈ N fix a configuration Pp of 2p framed points in S2 = ∂B3, par-

titioned into two halves with opposite co-orientations. We define a category SN
0 (B3; Pp)

enriched in bigraded k-vector spaces with:

• objects: framed, oriented tangles T in (B3; Pp) inducing the given orientation on Pp
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• morphisms given by

HomSN
0 (B3;Pp,k)(T1, T2) := KhRN (T2 ∪Pp

T1,k){p(N − 1)} (18)

= SN
0 (B4; T2 ∪Pp

T1,k){p(N − 1)} (19)

with (grading-preserving) composition maps induced in the case of the right-hand side 

of (18) by the action of merging cobordisms, as described in [27, Section 6.1 (vertical 

composition of 2-morphisms)], and in the case of (19) induced by the gluing of lasagna 

fillings of balls.

Lemma 4.6. Let W be a smooth, oriented, connected, compact four-manifold. Fix B3 ⊂

∂W and consider a link L1 that intersects B3 in a tangle T1 with boundary ∂T1 = Pp, 

i.e. L1 = R ∪Pp
T1. Now let T2 be another such tangle and L2 = R ∪Pp

T2, then we have 

a grading-preserving gluing map

SN
0 (W ; L1,k) ⊗ SN

0 (B4; T2 ∪Pp
T1,k){p(N − 1)} → SN

0 (W ; L2,k).

Moreover, these gluing maps are compatible with composition in SN
0 (B3; Pp, k) in the 

sense that all diagrams of the following type commute:

SN
0 (W ; L1,k) ⊗ SN

0 (B4; T2 ∪Pp
T1,k) ⊗ SN

0 (B4; T3 ∪Pp
T2,k){2p(N − 1)}

SN
0 (W ; L2,k) ⊗ SN

0 (B4; T3 ∪Pp
T2,k){p(N − 1)} SN

0 (W ; L1,k) ⊗ SN
0 (B4; T3 ∪Pp

T1,k){p(N − 1)}

SN
0 (W ; L3,k)

Proof. Straightforward on the level of lasagna fillings. The map descends to the quotient 

since skein relations are local. �

The statement of Lemma 4.6 can be paraphrased as: the choice of a 3-ball with point 

configuration Pp in ∂W equips SN
0 (W ; −, k) :=

⊕

L SN
0 (W, L, k) with the structure of 

a bigraded module for the category SN
0 (B3; Pp). (Here the direct sum is taken over all 

links L that intersect the boundary of the chosen 3-ball in the fixed configuration Pp.)

Theorem 4.7. Let W1 = �m(S1×B3) with a nullhomologous link L ⊂ ∂W1 in the boundary 

that intersects the belt spheres of the 1-handles transversely in 2pi points for 1 ≤ i ≤ m. 

Let R ⊂ S3 \ �i(Bi ∪ Bi) denote the tangle obtained from L by cutting open along the 

belt spheres. Then we have an isomorphism:

⊕

tangles Ti

|∂Ti|=2pi

KhRN (R ∪ �
i

(Ti � Ti),k){(
∑

i pi)(N − 1)}
/

∼
∼=
−→ SN

0 (W1; L,k)

where the relation ∼ is given by taking coinvariants for the actions of SN
0 (B3; Ppi

, k), 

i.e. by identifying the images of the actions
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KhRN (R ∪ �i
(Ti � T ′

i ),k) ⊗
⊗

i
KhRN (T ′

i ∪ Ti,k){pi(N − 1)}

KhRN (R ∪ �i
(Ti � Ti),k) KhRN (R ∪ �i

(T ′
i � T ′

i ),k)

for all pairs of tangles Ti, T
′
i with boundary Ppi

. (Here we have omitted a global grading 

shift.)

Proof. The map is defined by first considering the direct sum of the gluing morphisms

KhRN (R ∪ �
i

(Ti � Ti),k){(
∑

i pi)(N − 1)} → SN
0 (W1; L,k)

from (17). The coinvariants for the actions of SN
0 (B3; Ppi

, k) clearly lie in the kernel, so 

we get an induced map from the indicated quotient to SN
0 (W1; L, k), which we again call 

the gluing map. It is surjective by Lemma 4.4, so it remains to prove injectivity.

Let F1, F2 be two equivalent linear combinations of lasagna fillings in SN
0 (W1; L, k), 

and let G1, G2 be respective preimages under the gluing map. We want to show that 

G1 and G2 are equivalent. Without loss of generality, we may assume that F1 and F2

are individual lasagna fillings (rather than linear combinations) and that they differ by 

a single move as in Lemma 2.1 with the relevant input ball fixed and disjoint from the 

cocores of the 1-handles in W1. If F1 and F2 differ by a replacement inside the fixed 

input ball or an isotopy supported away from the cocores, then G1 and G2 are equal in 

KhRN (R∪�i(Ti �Ti), k). If F1 and F2 differ by an isotopy supported in a neighborhood 

of the cocores, then G1 or G2 differ by an element of the subspace factored out. Since 

every isotopy of lasagna fillings can be factored in this way, we get that G1 and G2 are 

equivalent. �

Theorem 4.7 can also be summarized by saying that SN
0 (W1; L, k) is computed by 

the zeroth Hochschild homology of a tensor product of 3-ball categories, namely one for 

each handle, with coefficients in a bimodule associated to the tangle R that results from 

L by cutting open along the belt spheres. We will discuss the details of this perspective 

in a special case in Section 4.3.

Remark 4.8. Similarly to the 2-handle formula from Theorem 3.2, the 1-handle formula 

from Theorem 4.7 expresses the skein module of the more complicated manifold as a quo-

tient of a (countable) direct sum of invariants of simpler manifolds. A possibly relevant 

difference, however, is that the 2-handle formula features only finitely many summands 

with a given shift in quantum grading, whereas this number is infinite for the 1-handle 

formula.

The skein modules that have been computed using only the 2-handle formula, first 

and foremost in [25], are locally finite-dimensional, i.e. finite-dimensional in each bide-

gree. It is an open question whether this is true for all four-manifolds admitting handle 
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decompositions without 1-handles. In the rest of this paper we will see that local finite-

dimensionality may fail when 1-handles are present.

Finally we comment on the functoriality of the 1-handle formula from Theorem 4.7. 

We have seen that SN
0 (W1; L, k) for W1 = �m(S1 × B3) is a colimit of link homologies 

for links in S3, which result from cutting L along belt spheres and inserting pairs of 

tangles. Now consider a link cobordism S ⊂ ∂W1 × I =: Z from L ⊂ W1 to L′ ⊂ W ′
1

where W ′
1 = W1 ∪ Z. We claim that the induced map

ΨZ;S : SN
0 (W1; L,k) → SN

0 (W ′
1; L′,k)

can also be expressed in terms of cobordism maps between links in S3. Recall that the 

cobordism map ΨZ;S sends a lasagna filling F of W1 to the composite lasagna filling F ∪S

of W1 ∪ Z. In a generic situation, cutting the cocores has the following local model. Here 

we display the filling F in the inner tube and S in the outer, spherical shell.

Let Si denote the tangle in S2 × I that occurs as the intersection of S with the ith 

cocore and R′ ⊂ S3 \�i(Bi ∪ Bi) the tangle obtained from L′ by cutting open along the 

belt spheres of W ′
1. Denote by 2p′

i = |∂Si| − 2pi the number of outer boundary point of 

Si. Then the cobordism Σ obtained from S by cutting along the annuli, which are the 

intersection of Z with the cocores of 1-handles in W ′
1, induces a cobordism map:

KhRN (R ∪ �
i

(Ti � Ti),k){(
∑

i pi)(N − 1)}

→ KhRN (R′ ∪ �
i

((Si ∪ Ti) � Si ∪ Ti),k){(
∑

i p′
i)(N − 1)}

We claim that these components describe ΨZ;S in terms of the colimit formulas (left-

hand sides) from Theorem 4.7. To see this we first observe that the unequal grading 

shifts guarantee that the components have the same degree as ΨZ;S (we have χ(Σ) =

χ(S) +
∑

i(pi + p′
i) and Σ is glued to cut(F ) along pi interval segments). Next we 

observe that after composing with the projection-inclusion into the colimit formula for 

SN
0 (W ′

1; L′, k), the resulting map no longer depends on the chosen location of cocores 

to cut. Moreover, the subspace factored out in the colimit formula for SN
0 (W1; L, k) is 

annihilated by the map thus defined. Thus the components described above define a map 

SN
0 (W1; L, k) → SN

0 (W ′
1; L′, k), and by construction this agrees with ΨZ;S .
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4.3. Algebraic description of the 3-ball categories and their Hochschild homologies

Recall the following definition, from e.g. [4].

Definition 4.9. Let K be a commutative ring and C be a (small) K-linear category. Then 

the zeroth Hochschild homology of C, also called the trace of C, is defined as the K-module

HH0(C) := Tr(C) :=

⎛

¿

⊕

x∈Ob(C)

EndC(x)

À

⎠

/

Span{f ◦ g − g ◦ f}

where the spanning set for the subspace to be divided out is constructed from all pairs 

of cyclically composable morphisms, i.e. f ∈ HomC(x, y) and g ∈ HomC(y, x) for some 

x, y ∈ Ob(C).

If C as in Definition 4.9 is not just enriched in K-modules, but M -graded K-modules 

for some monoid M , then HH0(C) inherits the structure of an M -graded K-module. The 

following is now an immediate consequence of Theorem 4.7 and the Definitions 4.5 and 

4.9.

Corollary 4.10. Let W1 = S1 × B3 and consider the link S1 × Pp consisting of 2p parallel 

circles with balanced orientations (that is, with p circles oriented one way and p the other 

way). Then, we have an isomorphism of bigraded k-vector spaces:

SN
0 (S1 × B3; S1 × Pp,k) ∼= HH0(SN

0 (B3; Pp,k)) (20)

We now recall some facts about the zeroth Hochschild homology, which we will use 

to show that the 1-handle formula may compute vector spaces which are not locally 

finite-dimensional.

Fact 4.11. Any functor F : C → D of K-linear categories induces natural K-module 

homomorphism HH0(F ) : HH0(C) → HH0(D) sending [f : x → x] �→ [F (f) : F (x) →

F (x)]]. This is well-defined since f ◦ g − g ◦ f �→ F (f) ◦ F (g) − F (g) ◦ F (f). If F is an 

equivalence, then HH0(F ) is an isomorphism; see e.g. [4].

Fact 4.12. Let F : C → C⊕ and G : C → Kar(C) denote the canonical embeddings of C

into its additive and its idempotent completion, respectively. Then HH0(F ) and HH0(G)

are isomorphisms; see e.g. [4, Sections 3.4 and 3.5].

In a slight reformulation of the functoriality results from [8], the tangle invariant 

underlying the glN link homology over k can be described as a 2-functor:

�−� : Tang −→ H•(Foam
dg
N )

We now briefly explain the relevant algebraic structures here.



C. Manolescu et al. / Advances in Mathematics 425 (2023) 109071 29

• As in [27, Definition 6.1] one defines a category TD of tangle diagrams, whose objects 

are finite words in the alphabet {↑, ↓} (which encode possible sequences of oriented 

boundary points for tangles) and whose morphisms are finite words in generating 

morphisms {cupi, capi, crossingi, crossing−1
i } (where the index i specifies the strands 

participating in the generator), that are admissible in the sense that the composite 

describes a tangle diagram. The composition is concatenation of words. For details 

see [27, Definition 6.1].

• Tang is a 2-category whose objects and 1-morphisms are as in TD. The 2-morphisms 

are the framed, oriented tangle cobordisms in [0, 1]4 between standard lifts of tangle 

diagrams to actual tangles in [0, 1]3, considered up to isotopy rel boundary.

• FoamN is a (monoidal) 2-category, enriched at the level of 2-morphism spaces in 

k-vector spaces and equipped with grading shift functors on 1-morphisms. It has the 

same objects4 as Tang. The 1-morphisms are (formal direct sums of grading shifts 

of) glN webs embedded in [0, 1]2 and the 2-morphisms are (matrices with entries 

given by) k-linear combinations of glN foams embedded in [0, 1]3, modulo certain 

local relations. For details see [8].

• Foam
dg
N is the (monoidal) 2-category that is obtained from FoamN by replacing 

its k-linear Hom-categories by the corresponding dg categories. This means it has 

the same objects, but the 1-morphisms are now chain complexes formed from 1-

morphisms in FoamN , where the differentials are given by 2-morphisms in FoamN . 

The 2-morphisms spaces are chain complexes of homologically homogeneous and 

quantum grading-preserving maps, spanned by 2-morphisms from FoamN (not nec-

essarily chain maps). The differential on 2-morphisms is the usual supercommutator 

with respect to the differential on the source- and target complexes. With respect to 

this differential the zero cycles are exactly the classical chain maps. There is also an 

enriched 2-hom in Foam
dg
N , which is assembled from 2-homs between objects shifted 

in quantum grading.

• H•(Foam
dg
N ) is the cohomology category of Foam

dg
N . It has the same objects and 

1-morphisms, but the 2-morphism spaces are now graded k-modules obtained by 

taking cohomology. The zeroth cohomology H0(Foam
dg
N ) is also called the homotopy 

category; its 2-morphisms are chain maps up to homotopy.

In the following we will also consider enriched 2-homs. For objects s, t and 1-

morphisms A, B : s → t we define the bigraded k-modules:

H•(Foam
dg
N )∗(A, B) :=

⊕

k∈Z

Hom
H•(Foam

dg
N )(A{k}, B) (21)

Here one grading, the quantum grading, is given by the displayed direct sum, while 

the other grading, the homological grading, is already internal to H•(Foam
dg
N ). 

4 More generally, one can consider labeled oriented points as objects in FoamN , but we will not need 
labels other than 1.
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Using the grading shift automorphisms, these enriched 2-homs admit composi-

tion maps and thus assemble into a bigraded k-linear enriched morphism category

H•(Foam
dg
N )∗(s, t) whose objects are the 1-morphisms from s to t.

• The functor �−� is the identity on objects. On 1-morphisms it sends a tangle dia-

gram to a chain complex of webs and foams in the way that is usual for glN link 

homology, and 2-morphisms, i.e. isotopy classes of tangle cobordisms are sent to the 

corresponding homotopy classes of chain maps as specified in the functoriality proof 

in [8].

We recall from [27, Section 6] that the tangle invariant corresponding to the glN link 

homology can be organized into a braided monoidal 2-category. Here we give a similar 

construction of this category TN (which was denoted KhRN in [27]) by replacing the 

top morphism layer of Tang:

• objects are sequences of tangle endpoints, as in TD and Tang,

• 1-morphisms consist of Morse data for tangles, as in TD and Tang,

• 2-morphisms between tangles S and T with equal source and target objects are the 

bigraded k-modules computed as the enriched 2-hom H•(Foam
dg
N )∗(�S� , �T �) from 

(21) between the glN chain complexes of the tangles.

As an important special case, one gets for a framed, oriented link L:

HomTN
(∅, L) ∼= KhRN (L).

Moreover, if T and S are framed, oriented tangles with endpoints identified, so that we 

can form the link T ∪ S, then we set 2p = |∂S| = |∂T | and have:

HomTN
(S, T ) ∼= HomTN

(∅, T ∪ S){p(N − 1)} ∼= KhRN (T ∪ S){p(N − 1)}

Given a 3-ball B3 with a set Pp of 2p framed, co-oriented points in the boundary, 

together with a suitable identification of (B3, Pp) with ([0, 1]3, s ∪ t), we associate to 

it the morphism category TN (s, t), whose objects are tangles from s to t. By con-

struction, TN (s, t) is equivalent to SN
0 (B3; Pp) from Definition 4.5. Moreover, TN (s, t)

can be considered as a full subcategory of the bigraded enriched morphism category 

H•(Foam
dg
N )∗(s, t).

Remark 4.13. For N = 2 the foam 2-category Foam2 can be replaced by the 2-category 

(or canopolis) of Bar-Natan’s dotted cobordisms [3, Section 11.2]; see [6]. The morphism 

categories of the latter can also be described as categories of finitely-generated graded 

projective modules for Khovanov’s arc rings [18].
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4.4. The 3-ball category with two points

Here we consider the categories from Section 4.3 in the special case when the source 

and target objects consist of a single point s = t = {∗}. In this case, the corresponding 

morphism category in Foam
dg
N is known to be equivalent to the dg category of complexes 

of free graded RN := k[X]/(XN )-modules; see e.g. [32, Lemma 3.35] for an argument 

in an equivalent setting. We record this equivalence and its consequence on the level of 

homology:

Hom
Foam

dg
N

(∗, ∗) � Chdg(RN −modgr.fr.),

Hom
H•(Foam

dg
N )(∗, ∗) � H•(Chdg(RN −modgr.fr.))

Here RN −modgr.fr. refers to the category of finitely-generated graded free RN -modules 

and Chdg(C) refers to the dg category of bounded chain complexes over an additive 

category C. Again we will use a superscript ∗ to refer to the corresponding enriched 

morphism spaces, computed via the ordinary morphism spaces between shifts of objects 

as in (21).

Now we specialize to N = 2 and classify the indecomposable objects. Setting R :=

R2 = k[X]/(X2), the isomorphism classes of indecomposable objects (up to shifts in 

quantum and homological degrees) in H•(Chdg(R−modgr.fr.)) are of the form:

Ck := R
X
−→ R{−2}

X
−→ · · ·

X
−→ R{−2k}

for k ≥ 0; see [19, Section 3].

Next we compute the zeroth Hochschild homology of H•(Chdg(R−modgr.fr.)). In prin-

ciple, there are two possible versions: using the ordinary or the enriched hom; see [5, 

Section 2.4]. In the case of the ordinary hom, we would obtain a Z-graded (namely ho-

mologically graded) k[q±1]-module, where q records the action of the auto-equivalence 

provided by the shift in quantum grading. We will, however, use the enriched hom (indi-

cated by the superscript ∗) to consider the morphism spaces as bigraded. In doing so, one 

obtains translation isomorphisms, which identify an object with all its gradings shifts. 

More specifically, between an object and its shift, the identity now represents an isomor-

phism of degree specified by the shift. The zeroth Hochschild homology of the resulting 

category carries the structure of a bigraded k-vector space, since the endomorphism q

now acts as the identity.

Proposition 4.14. The bigraded zeroth Hochschild homology of H•(Chdg(R−modgr.fr.))∗

has a basis given by the trace classes [IdCl
] and [RXCl

] for all l ≥ 0. The identity 

morphisms on the complexes Cl for l ≥ 0 are self-explanatory and their trace classes 

have bidegree (0, 0). The endomorphism RXCl
is a special case RXCl

= RX
(l)
Cl

of a 

larger family of endomorphisms RX
(l)
Ck

for 0 ≤ l ≤ k of the following form:
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R · · · R{−2l} · · · R{−2k} · · · 0

0 · · · R{−2l − 2} · · · R{−2k − 2} · · · R{−2k − 2l − 2}

X X X X 0

X

0

0 0 X X X X

where the only non-zero component is at R{−2k} (which may coincide with R{−2l} if 

k = l). The trace class of the morphism RX
(l)
Ck

has bidegree (l, 2l + 2). (RX stands for 

shift right and apply X.)

Proof. We abbreviate C′ := H•(Chdg(R−modgr.fr.))∗. Let C denote the full subcategory 

generated by the indecomposable objects Ck. By Fact 4.11 and the discussion of the 

beginning of the section, it suffices to compute the bigraded zeroth Hochschild homology 

of C. To this end, we study closed homogeneous endomorphisms of the objects Ck and 

trace relations between them.

We note that the components of a chain map between shifts of such objects can have 

quantum degree zero or two (a scalar multiple of IdR or XR). Since the differential 

in every complex is of quantum degree two, this means that closed morphisms with 

components of quantum degree zero are homotopic if and only if they are equal.

First we investigate the chain maps between shifts of objects Cl with components of 

quantum degree zero. For positive homological shifts (right shift) there are simply no 

closed morphisms, i.e. no chain maps. In shift zero we have the identity on every Cl

(which does not factor through any Cm with m �= l) and for negative homological shifts 

we have closed maps that factor into a composite of closed maps through a shift of a Cm

with m < l (by induction, one can show that their trace classes actually vanish). Thus 

in bidegree (0, 0) we have a basis of trace classes [IdCl
] for l ≥ 0.

Second we are interested in chain maps between shifts of objects Cl with components 

of quantum degree two. In negative homological shifts (left shift) all such maps are 

nullhomotopic. In non-negative homological shift, every such map is homotopic to a 

scalar multiple of RX
(l)
Ck

. However, one easily checks that the trace class of RX
(l)
Ck

equals 

the trace class of ±RX
(l)
Cl

. Since these have bidegree (l, 2l + 2) in the enriched End of Cl, 

we see that they are linearly independent. �

Note that the bigraded zeroth Hochschild homology of H•(Chdg(R−modgr.fr.))∗ is 

not locally finite-dimensional! It is of countable dimension in bidegree (0, 0) with a basis 

given by [IdCl
] for l ≥ 0. Nevertheless, we have:

Proposition 4.15. The bigraded vector spaces

S2
0 (S1 × B3; S1 × P1,k) ∼= HH0(S2

0 (B3; P1,k)) ∼= HH0(T2(∗, ∗))

are four-dimensional, and in particular, locally finite-dimensional.

Proof. We have already explained the two isomorphisms. We now need to understand 

the essential image of T2(∗, ∗) under the full embedding into H•(Chdg(R−modgr.fr.))∗. 
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We claim that the invariant of any (1, 1)-tangle decomposes into (shifts of) the indecom-

posable summands C0 and C1, but never Cl for l ≥ 2. Provided this claim holds, we can 

compute HH0(T2(∗, ∗)) as the Hochschild homology of the full additive subcategory of 

H•(Chdg(R−modgr.fr.))∗ generated by C0 and C1, and this again is isomorphic to the 

Hochschild homology of the full subcategory on the two objects C0 and C1. Here we 

use that the zeroth Hochschild homology is preserved under proceeding to the additive 

and idempotent completion; see Fact 4.12. Following the same arguments as in Proposi-

tion 4.14, we see that it is 4-dimensional, spanned by [IdCl
] and [RXCl

] for l ∈ {0, 1}

The key idea to prove the claim is that all complexes appearing in Khovanov homology 

come from complexes over k[X] by setting X2 = 0 (though certainly not all complexes 

over k[X]/(X2) have this property). Indeed, one can use equivariant Khovanov homology, 

defined over the ring k[X, α]/(X2 − α) ∼= k[X] =: R′ to simplify the complex of a (1, 1)-

tangle into a complex of graded free k[X]-modules. These decompose, up to homotopy 

equivalence and shift, into chain complexes of the form

C0 := 0
0
−→ R′ 0

−→ 0, and Ck := 0
0
−→ R′ Xk

−−→ R′{−2k}
0
−→ 0 for k ≥ 1

Upon reducing to the ordinary Khovanov theory by tensoring with k[X]/(X2) over k[X], 

these complexes decompose into (shifts of) copies of C0 and C1. �

Remark 4.16. A strong version of the so-called knight move conjecture posited that the 

complex of any long knot decomposes (up to homotopy equivalence) into one shifted 

copy of C0 and some number of copies of C1; see [19, Conjecture 1]. The argument in 

the previous proof shows that this can fail only due to the presence of more than one

shifted copy of C0. Three copies of C0 can be detected in the counterexample to the 

knight move conjecture found by Manolescu–Marengon [24].

Remark 4.17. One can also consider analogs of the skein modules SN
0 based on equivari-

ant or deformed versions of glN homology. For example, in one common choice for N = 2

one works over R′ = k[X, α]/(X2 = α). We can also try to compute the bigraded zeroth 

Hochschild homology of the 3-ball category with two points and of its ambient category 

H•(Chdg(R′−modgr.fr.))∗ in this setting. We have already listed the indecomposable of 

the latter above: the chain complexes Ck. For k ≥ 1 the enriched isomorphism algebra 

of the complex Ck is isomorphic to R′[η]/(Xk = 0) where η is of bidegree (1, 2k). The 

trace classes of η and its multiples are zero. Moreover, the trace class of Xx is zero for 

every x > 0. This leaves the trace classes of the identities of Ck for k ≥ 0 and the trace 

class of XC0 as linearly independent — the zeroth Hochschild homology is not locally 

finite-dimensional. However, it is currently not known which Ck appear in complexes of 

(1, 1)-tangles. A copy of C3 appears in [24].

4.5. The 3-ball category with four or more points

We claim that the 3-ball categories with 2p ≥ 4 points have zeroth Hochschild ho-

mologies that are no longer locally finite-dimensional. Again we restrict to the case of 
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N = 2 and work over a perfect field k. Our strategy is to give a lower bound for the 

dimension of the zeroth Hochschild homology in terms of the split Grothendieck group. 

We briefly recall the relevant notions and results.

Definition 4.18. Let C be an additive category. The split Grothendieck group of C is 

defined as:

K0(C) :=
SpanZ{isomorphism classes [x] of objects in C}

([x ⊕ y] = [x] + [y] | x, y ∈ Ob(C))

Definition 4.19. A K-linear additive category C is called Krull–Schmidt if every object 

decomposes uniquely into a finite direct sum of indecomposable objects with local endo-

morphism rings.

The following is clear from the definition:

Proposition 4.20. For a Krull-Schmidt category, the split Grothendieck group is a free 

abelian group on the isomorphism classes of indecomposable objects in C.

Definition 4.21. For a K-linear additive category C, the Chern character is the K-linear 

map

hC : K0(C) ⊗Z K → HH0(C), [x] ⊗ 1 �→ [Idx : x → x]

Proposition 4.22 (Proposition 2.4 in [5]). If K = k is a perfect field and C is Krull-

Schmidt with a finite-dimensional endomorphism algebra for each indecomposable object, 

then the Chern character hC is injective.

Using these tools, we can now prove:

Theorem 4.23. Let p ≥ 2. Then S2
0 (S1×B3; S1×Pp, k) is infinite-dimensional in bidegree 

(0, 0).

Proof. We let s = t = p points and again have isomorphisms

S2
0 (S1 × B3; S1 × Pp,k) ∼= HH0(S2

0 (B3; Pp,k)) ∼= HH0(T2(s, t))

and we consider the category T2(s, t) as a full subcategory of the enriched morphism 

category H•(Foam
dg
2 )∗(s, t).

The k-linear, additive category H•(Foam
dg
2 )∗(s, t) is Krull-Schmidt and hence idem-

potent complete; see e.g. the discussion in [30, Sections 4.5, 4.8] based on Bar-Natan’s 

category, which is equivalent to Foam2 by [6].

Now Kar(T2(s, t))⊕ may be considered as an additive, idempotent complete full sub-

category of H•(Foam
dg
2 )∗; it is thus itself Krull–Schmidt. We have HH0(T2(s, t)) ∼=
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HH0(Kar(T2(s, t))⊕) by Fact 4.12. Therefore, it suffices to compute its zeroth Hochschild 

homology of Kar(T2(s, t))⊕.

It is straightforward to check that the objects of Kar(T2(s, t))⊕ have finite-dimensional 

endomorphism algebras, and since k is perfect, the Chern character

h : K0(Kar(T2(s, t))⊕) ⊗Z k → HH0(Kar(T2(s, t))⊕)

is injective; see Proposition 4.22. To prove that S2
0 (S1 × B3; S1 × Pp, k) is infinite-

dimensional in bidegree (0, 0), it is thus sufficient to show that K0(Kar(T2(s, t))⊕) ⊗Z k

is infinite-dimensional.

Moreover, K0(Kar(T2(s, t))⊕) is free abelian on the isomorphism classes of its inde-

composable objects; cf. Proposition 4.20. Thus, we will be done once we can exhibit 

infinitely many indecomposable and pairwise non-isomorphic complexes appearing as 

(direct summands in) tangle complexes.

We will see that such complexes can be constructed as invariants of braids. Clearly, for 

p ≥ 2 there are infinitely many braids on p strands. Moreover, the braid complexes are 

invertible under tensoring with the complex for the respective inverse braid. Since the 

complex of the trivial braid is indecomposable (its endomorphism algebra 
(

k[X]/(X2)
)⊗p

is local), so are the complexes for all other braids. It is also known that all braid complexes 

are pairwise non-isomorphic. This can e.g. be deduced from the faithfulness of the braid 

group action of Khovanov–Seidel [22]. For us, however, it is enough to consider infinitely 

many braids that are powers of a single Artin braid generator. For these complexes it is 

straightforward to check by hand that they are pairwise non-isomorphic. �

Observe that Theorem 1.5 from the introduction is a combination of Corollary 4.2, 

Proposition 4.15, and Theorem 4.23.

4.6. Comparison with the Rozansky–Willis invariant

In [31], Rozansky defined a Khovanov-type homology theory for (null-homologous) 

links in S1 × S2. His construction was generalized by Willis in [33] to null-homologous 

links in Y = #m(S1 × S2) for any m. We will denote the Rozansky-Willis homology of 

L ⊂ Y by H∗,∗
RW(L). Just like the skein lasagna module S2

0 (W1, L), the invariant H∗,∗
RW(L)

can be computed from a Kirby diagram for W1 = �m(S1 × B3) including the link L, so 

it is a natural question whether they are related.

The first observation is that the two invariants are not always isomorphic. Indeed, in 

any specific bidegree, H∗,∗
RW(L) is defined as the Khovanov homology of the link in S3

obtained from L by adding sufficiently many twists in place of the 1-handles. It follows 

that H∗,∗
RW(L) has finite rank in each bidegree, whereas this may not hold for S2

0(W1, L), 

as we have seen in Theorem 4.23. Another concrete example is for m = 1, where L =

S1 × P1 yields a 4-dimensional lasagna skein module according to Proposition 4.15, but 

H∗,∗
RW(L) ∼= HH•(k[X]/(X2)) is infinite-dimensional.
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However, H∗,∗
RW(L) and S2

0 (W1, L) are conceptually similar, as both arise as the 

Hochschild homology of a chain complex associated to a tangle T that closes to the 

link L:

• H∗,∗
RW(L) is computed as the Hochschild homology of a dg bimodule (for a tensor 

product of m of Khovanov’s arc rings) associated to the tangle T , as defined for 

m = 1 by Khovanov in [18] and extended by parabolic induction to m > 1. Here the 

homological degree of the dg bimodule gets mixed with the Hochschild degree, and 

so the resulting invariant is a bigraded vector space.

• S2
0 (W1, L) can be computed via Theorem 4.7 (and for m = 1 even more concretely in 

Corollary 4.10) as the zeroth Hochschild homology of an equivalent dg bimodule; see 

Remark 4.13 for the comparison. In fact, the higher blob homology from [27], which 

does not play a role for skein lasagna modules, corresponds to higher Hochschild 

homology. The main difference, however, is that the dg bimodule is not considered 

as an object of a dg or triangulated category, but of the linear cohomology cate-

gory. Accordingly, the full blob homology is triply-graded, with the blob/Hochschild 

grading separated from the homological grading.

Based on this comparison, one may expect S2
0(W1, L) and, more generally, the full blob 

homology SN
∗ (W1; L) to appear on the E2 page of a spectral sequence converging to 

H∗,∗
RW(L). Suppose that one can find a suitable projective resolution in terms of tangle 

complexes, which simultaneously allows the computation of blob homology as well as the 

dg version of Hochschild homology. Then, by tensoring with the dg bimodule associated 

to the tangle, one obtains a double complex of (quantum) graded vector spaces, where 

the vertical differential carries Hochschild degree and the horizontal differential carries 

homological degree. The homology of the total complex would compute H∗,∗
RW(L). To 

obtain S2
0 (W1, L), one first takes homology in the rows (thus computing the Khovanov 

homologies of links of the form Ti ∪T where Ti appears in the resolution), and only then 

the zeroth homology of the induced differential coming from the resolution. We will not 

pursue this comparison further in the present paper, but remark that there is precedent 

for interesting invariants appearing on E2 pages of spectral sequences that come from 

separating Hochschild and homological degrees, namely the triply-graded HOMFLYPT 

link homology; see [29, Section 6].

In general, one does not expect a map from the E2 page of a spectral sequence to 

its E∞ page. However, since S2
0 (W1, L) appears as the lowest row on the E2 page, the 

above discussion suggests the existence of a natural map

S2
0 (W1, L) → H∗,∗

RW(L).

In the following we propose a candidate for such a map.

In Willis’s construction of H∗,∗
RW(L), we represent ∂W1 = Y by m pairs of spheres in 

the plane, with the spheres in each pair being identified (that is, we add a handle). This 
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is the same as the usual Kirby diagram of W1. The link L may intersect each handle a 

number of times, as in this picture:

Let L(n1, . . . , nm) be the link in S3 obtained from L by inserting ni full twists in place 

of the ith handle, as shown here:

The homology H∗,∗
RW(L) can be computed as the Khovanov homology of the link 

L(n1, . . . , nm) for ni � 0, with some suitable shifts in grading. Note that L(n1, . . . , nm)

depends on the choice of a path between the attaching spheres of each 1-handle; however, 

it can be shown that H∗,∗
RW(L) is independent of these choices up to isomorphism.

Consider now the skein lasagna module S2
0 (W1, L). Let us attach an ni-framed 2-

handle through the ith 1-handle:

The 2-handles cancel the corresponding 1-handles, so the result is a Kirby diagram for 

B4, whose boundary is S3. The link L becomes L(n1, . . . , nm) ⊂ S3, as can be seen by 

doing a series of handle slides of the arcs of L over the 2-handle:
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where in the last step we canceled the handles. (Compare Figure 5.13 in [10].)

The 2-handle attachments give a cobordism Z from Y = #m(S1 × S2) to S3. There 

is also an embedded annular cobordism S ⊂ Z from L to L(n1, . . . , nm). As discussed in 

Section 2.2, these cobordisms induce a map on skein lasagna modules:

ΨZ;S : S2
0 (W1; L) → S2

0 (B4; L(n1, . . . , nm)) ∼= Kh(L(n1, . . . , nm)).

Our conjecture is that these maps stabilize as ni → ∞, giving a well-defined morphism 

from S2
0 (W1, L) to H∗,∗

RW(L).

4.7. Speculations on homotopy coherent four-manifold invariants

We expect that the above E2-page-of-spectral-sequence relationship between S2
0 and 

H∗,∗
RW for (�m(S1 ×B3), L) generalizes to (W, L) for arbitrary four-manifolds W and links 

L. We give a brief sketch of the reasoning below.

Recall that the Khovanov-Rozansky invariants, upon which SN
0 is built, assign chain 

complexes to links L and chain maps to link cobordisms, but it is not known that this 

assignment is functorial (or even well-defined) at the level of complexes. The proof that 

the homology of these complexes is functorial in the appropriate sense involves showing 

that certain chain maps are homotopic. If this result could be strengthened to show that 

certain homotopies between the chain maps are themselves 2nd-order homotopic, and 

so on for all higher orders, then one could construct a functorial assignment of chain 

complexes to links in S3 and chain maps to link cobordisms.

Let us assume that these conjectured “fully coherent” glN chain complexes for links 

exist. Then, they can be repackaged as a pivotal (∞, 4)-category (with composition maps 

defined in terms of link cobordisms, as in [27]). This (∞, 4)-category can in turn be fed 

into the machinery of Section 6.3 of [26] (which is closely related to topological chiral 

homology [23] and factorization homology [1,2]). The result is a chain-complex-valued 

invariant SN
∞(W, L). Its construction involves taking a homotopy colimit of a poset built 

out of the set of all ball decompositions of W and refinement relationships between 

these ball decompositions. Concretely, we construct a double complex, with horizontal 

differentials coming from the glN complexes of links, and vertical differentials coming 

from the combinatorics of refining ball decompositions of W . There is a spectral sequence 

associated to this double complex, which is itself an invariant of (W, L).

The E2 page of this spectral sequence involves first taking homology in the horizontal 

direction, then computing homology with respect to vertical differentials. It is easy to 

see that this E2 page is exactly the blob homology SN
∗ (W ; L) assigned to (W, L) in [27]

(i.e. by taking KhR homology early instead of working with the glN complex). (In this 

paper we have focused on blob-degree zero, corresponding to the bottom row of the E2

page of the spectral sequence.)

When W1 = �m(S1 × B3) and N = 2, we expect the total homology of SN
∞(W1, L) to 

coincide with the Rozansky–Willis invariants. The Hochschild differentials of the previous 
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subsection should be (homotopy equivalent to) special cases of the vertical differentials 

above.
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