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Skein lasagna modules for 2-handlebodies

By Ciprian Manolescu at Stanford and Ikshu Neithalath at Odense

Abstract. Morrison, Walker, and Wedrich used the blob complex to construct a gen-
eralization of Khovanov—Rozansky homology to links in the boundary of a 4-manifold. The
degree zero part of their theory, called the skein lasagna module, admits an elementary defini-
tion in terms of certain diagrams in the 4-manifold. We give a description of the skein lasagna
module for 4-manifolds without 1- and 3-handles, and present some explicit calculations for
disk bundles over S2.

1. Introduction

Over the past twenty years, categorified knot invariants have been a central topic in
low-dimensional topology. The starting point was Khovanov’s categorification of the Jones
polynomial [15]. This was generalized by Khovanov and Rozansky in [20] to a sequence of
link homology theories KhRy for N > 1, where Khovanov homology corresponds to N = 2.
Khovanov homology has been successfully used to give new, combinatorial proofs of deep
results about smooth surfaces in 4-manifolds, such as the Milnor Conjecture [31] and the Thom
Conjecture [24], for which the original proofs involved gauge theory [22,23]. Furthermore, by
now Khovanov homology has found its own novel topological applications, as for example
in the work of Piccirillo [28, 29]. Still, compared to the invariants derived from gauge theory
or Heegaard Floer homology, Khovanov homology has its limitations, due to the fact that its
construction is a priori just for links in R3. In particular, a major open question is whether
Khovanov or Khovanov—Rozansky homology can say something new about the classification
of smooth 4-manifolds.

In [27], Morrison, Walker, and Wedrich proposed an extension of Khovanov—Rozansky
homology to links in the boundaries of arbitrary oriented 4-manifolds. Specifically, they define

an invariant
sNw:L) = P s =P(P sf, i),

beZ beZ i,j€Z

which is a triply-graded Abelian group associated to a smooth, oriented 4-manifold W and
aframed link L C oW . Two of the gradings (i and ;) are the usual ones in Khovanov—Rozansky
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homology, and the third, the blob grading b, is new. The construction of $V (W'; L) starts by
defining the part in blob degree zero, Sév (W; L), in a manner reminiscent to that of the skein
modules of 3-manifolds. The group é’é\’ (W; L), which we call the skein lasagna module, is
generated by certain objects called lasagna fillings of W with boundary L, modulo an equiva-
lence relation that captures the “local” cobordism relations in Khovanov—Rozansky homology.
Once 8(1)\7 (W; L) is defined, the higher degree groups & é\f (W; L) for b > 0 are obtained from
it using the machinery of blob homology from higher category theory [26].

It is shown in the paper [27] that, when W = B*, the invariant Sév (W; L) recovers the
Khovanov—Rozansky homology KhRy (L), and § év (W; L) =0 for b > 0. While computing
blob homology in general is rather daunting, the skein lasagna module 8(1)\] (W; L) has a rela-
tively simple definition. Our goal here is to describe Sév (W L) for alarge class of non-trivial
4-manifolds W and links L C oW.

Precisely, we will be concerned with 2-handlebodies, that is, 4-dimensional manifolds W
obtained from B* by attaching n 2-handles. A Kirby diagram for such a manifold consists
of a framed, n-component link K C S3. For every homology class o € Hy(W;Z) = 7",
we define the cabled Khovanov—Rozansky homology KhRy ,(K) as the direct sum of the
Khovanov—Rozansky homologies of an infinite collection of cables of K, modulo a certain
equivalence relation. (The exact definition is given in Section 3.)

The skein lasagna module naturally decomposes according to the relative homology
classes of lasagna fillings:

sYw:Ly= @ 8 W:iL.a).
a€H>(W,L;Z)
Our main result is the following.

Theorem 1.1. Let W be the 4-manifold obtained from attaching 2-handles to B* along
a framed n-component link K. For each @ € Hy(W;Z) = 7", we have an isomorphism

@ : KhRy o (K) = 88 (W:0,0).

In general, if we want to apply Theorem 1.1 to specific examples, we run into the diffi-
culty of calculating Khovanov—Rozansky homology for an infinite family of cables. Neverthe-
less, we can do an explicit calculation when K is the O-framed unknot, so that W = §2 x D2,

Theorem 1.2. The skein lasagna module Sév (S? x D?;0) is supported in homological
degree 0 and has the structure of a commutative ring. We have a ring isomorphism

880.+(S? x D:0) = Z[A1,..., AN—1. Ao, Ay,

where the Ay have quantum degree —2k. Under this isomorphism, the subgroup of lasagna
fillings with relative homology class a € 7, is identified with the subgroup of homogeneous
polynomials of degree .

In particular, for N = 2 (which corresponds to Khovanov homology), we have

Z ifj =2k k>0,

82, (S*x D% 0,a) =
0,0,J( ) 0 otherwise.
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When N = 2, we also get some partial information for the p-framed unknot for p # 0.
Then W is the D2-bundle over S? with Euler number p, which we denote by D(p).

Theorem 1.3. For p > 0 and N = 2, the part of the skein lasagna module of D(p) that
lies in class « = 0 and homological degree O is

83 0..(D(p):0.0) = 0.
On the other hand, for p < 0 we have

Z ifj =0,
82, (D(p):98,0) =
O’O’J( 2 ) {O otherwise.

While Theorem 1.1 was formulated for the case where the link L. C oW is empty, we can
also handle the case of “local” links in OW, that is, those contained in a ball B> C oW . Indeed,
we have the following tensor product formula for boundary connected sums. To state it, it is
convenient to work with coefficients in a field k, and write §%V (W ; L; k) for the corresponding
skein lasagna module.

Theorem 1.4. Let Wi and W, be 4-manifolds with framed links L; C OW; and let
W1 I Wy, denote their boundary connected sum along specified copies of B3> C 0W; away from
the links L;. Then

S5 (Wi Wai Ly U Laik) = 85’ (Wi Lizk) ® §5' (Wai La:k).
Applying Theorem 1.4 to (Wy: L1) = (W:0) and (W,; L,) = (B*; L), we obtain:

Corollary 1.5. Let W be a 4-manifold and let L C B®> C OW be a framed link con-
tained within a ball in the boundary of W. Then we have

SV (Wi L:k) = 8 (W:0:k) ® KhRy (L: k).

Furthermore, we can study skein lasagna modules associated to closed 4-manifolds. If
the boundary of a 2-handlebody W is S3, by attaching a ball we obtain a simply connected
smooth 4-manifold X. We can associate to X the skein lasagna module Sév (X;0).

Proposition 1.6. If X a closed smooth 4-manifold, then
SN (x:0) = 8Y (x \ B*; 0).

In particular, we see that 8(1)\/ (S*:0) = Z.

It is an open question [21, Problem 4.18] whether every closed, smooth, simply con-
nected four-manifold X admits a perfect Morse function or, equivalently, a Kirby diagram
without 1-handles or 3-handles; i.e., whether X \ B# is a 2-handlebody. In practice, many
four-manifolds are known to be of this form. The list of such manifolds include:

« CP?and S% x S2.
 The elliptic surfaces E(n), including the K3 surface E(2); see, e.g., [9, Figure8.15].
* More generally, the log transforms E(n),; see [9, Corollary 8.3.17].
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 The Dolgachev surface E(1)2 3 and a few other elliptic surfaces of the form E(n), 4; see
[1] and [35].
« Smooth hypersurfaces in CP3; see for example [2, Section 12.3].

« The cyclic k-fold branched covers Vi (d) — CP? over curves of degree d, with k | d;
cf. [2, Section 12.3].

e The Lefschetz fibrations X (m,n) and U(m, n) obtained as branched covers over curves
in Hirzebruch surfaces; cf. [9, Figures 8.31 and 8.32].

Theorem 1.1, combined with Proposition 1.6, is a step towards understanding the skein
lasagna modules for 4-manifolds from the above list. In particular, when X = CP? or CP?,
we have a Kirby diagram with a single (£ 1)-framed unknot, and Theorem 1.3 tellsusits N = 2
skein lasagna module in class ¢ = 0 and homological degree zero:

(1.1) 8504 (CP?:0,0) =0, 85,(CP*0,0) = Z.

For an invariant to be effective at detecting manifolds, one needs to be able to extract
finite data from it. The calculations above indicate that the skein lasagna modules can have
infinite rank overall, but may be finitely generated when we fix the bi-grading and the class «.

Question 1.7. Is it true that for every 4-manifold W, framed link L C W, class
o € Hy(W, L;Z), and values i, j € Z, the skein lasagna module S(Z)Vi j(W; L, ) is finitely
generated?

Note that for the skein modules of closed 3-manifolds, a finite-dimensionality result was
recently proved by Gunningham, Jordan and Safronov [12].
A more ambitious problem is the following:

Question 1.8. Can the invariant 86\' (W; L) detect exotic smooth structures on the
4-manifold W?

One indication that the answer might be positive is the behavior under orientation rever-
sal. It is known that unitary TQFTs (which are symmetric under orientation reversal) cannot
detect exotic smooth structures on simply connected 4-manifolds; see [8]. On the other hand,
the Donaldson and Seiberg—Witten invariants (which can detect exotic smooth structures) are
highly sensitive to the orientation. The skein lasagna modules /Sév (W; L) are constructed from
the cobordism maps on Khovanov—Rozansky homology, which are also sensitive to orientation.
In fact, in the case W = CP? and N = 2, one can see explicitly from (1.1) that the invariants
of W and W are quite different.

Organization of the paper. In Section 2 we review the definition of skein lasagna
modules and establish some simple properties, including Proposition 1.6. In Section 3 we give
the definition of cabled Khovanov—Rozansky homology. In Section 4 we prove Theorem 1.1.
In Sections 5 and 6 we do our explicit calculations from Theorems 1.2 and 1.3. In Section 7 we
prove the connected sum formula, Theorem 1.4.

Acknowledgement. We are grateful to John Baldwin, Gage Martin, Sucharit Sarkar,
Paul Wedrich and Mike Willis for helpful conversations. We also thank the referees for helpful
comments on the paper.
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2. Skein lasagna modules

2.1. Conventions for Khovanov—Rozansky homology. In this paper we follow [27]
and, for a framed link L C R3, we write

KhRy (L) = @D KhRY/ (L)
i,j€Z

for the gl 5y version of Khovanov—Rozansky homology. Here, i denotes the homological grad-
ing and j denotes the quantum grading. For a bi-graded group W, we will denote by W {[} the
result of shifting its second grading (in our case, the quantum grading) by /:

Wil = wiil
For example, the invariant of the 0-framed unknot is the commutative Frobenius algebra
@.1)  A=KhRy(U.0) = H*(CPY {1 - N} = (Z[X]/(XV){1 - N},

with 1 in bidegree (0, 1 — N) and multiplication by X changing the bidegree by (0, 2). The
comultiplication on # (which corresponds to a pair-of-pants cobordism) is given by

N—m—1
(2.2) AX™)y = Y xktme xyN-17k
k=0
and the counit on 4 is
(2.3) e(X™) =0for0<m<N-2, XV H=1.

Note that KhR y is an invariant of framed links. We will distinguish it from the original
sly version of Khovanov—Rozansky homology from [20], which we denote by KhRy and
is independent of the framing. Further, KhRy was defined only over Q whereas KhR y has
coefficients in Z. The two theories differ by a shift in quantum grading:

KhRy (L) ® Q =~ KhRy (L){Nw},

where w is the writhe of a diagram in which the given framing of L is the blackboard framing.
In the case N = 2, we also have the ordinary Khovanov homology Kh(L) defined in [15].
As noted in [20], we have o o
KhR}/ (L) ~ Kh"""/(L) ® Q,

where L is the mirror of L. Moreover, from [15, Section 7.3], we know that the Khovanov
complexes of L and L are related by duality, and therefore the Khovanov homologies are
related by the universal coefficients theorem:

(2.4) Kh*/ (L) = Hom(Kh™"/ (L), Z) & Ext(Kh! ™7/ (L), Z).

In this paper we will not use KhR . We will mostly work with KhR », but in Section 6
we will need to relate it to Kh because the relevant calculations in the literature are done in
terms of Kh. The relation between the two theories is given by a (non-canonical) isomorphism:

(2.5) KhRS/ (L) = Khi"™/=2% (L),
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The usual Khovanov homology Kh(L) is functorial under cobordisms in R3 x [0, 1], but
only up to sign [14,19]. On the other hand, the g, version and, more generally, the gl 5 homol-
ogy KhRy (L), are functorial over Z [4,7]. Furthermore, it is shown in [27] that KhRy (L)
is a well-defined invariant of framed links in S3, and is functorial under framed cobordisms
in §3 x [0, 1]. Given a framed cobordism ¥ C §3 x [0, 1] from Lg to L1, the induced map

KhRy (X) : KhRy (Lg) — KhRy (L1)

is homogeneous of bidegree (0, (1 — N)x(X)). For N = 2, this map agrees with the usual
cobordism map
Kh(Z) : Kh(Lg) — Kh(L),

up to pre- and post-composition with the isomorphisms (2.5).

If we have an oriented manifold S diffeomorphic to the standard 3-sphere S3, and
a framed link L C S, we can define a canonical invariant KhRy (S, L) as in [27, Defini-
tion 4.12]. When S is understood from the context, we will drop it from the notation and
simply write KhR (L).

2.2. Definition. Let us review the construction of skein lasagna modules following
[27, Section 5.2].

Let W be a smooth oriented 4-manifold and L C OW a framed link. A lasagna filling
F = (Z,{(Bj, Li,v;)}) of W with boundary L consists of

* afinite collection of disjoint 4-balls B; (called input balls) embedded in the interior or W,

* a framed oriented surface ¥ properly embedded in W \ (J; B;, meeting OW in L and
meeting each dB; in a link L;, and

« for each i, a homogeneous label v; € KhRy (0B;, L;).
The bidegree of a lasagna filling F is
deg(F) := Y deg(v;) + (0. (1 — N)x(%)).
i
If W is a 4-ball, we can upgrade the functoriality of Kh to define a cobordism map
KhRy (2) : (X KhRy (3B;. L;) — KhRy (@W, L)
i

and an evaluation

KhRy (F) := KhRN(E)(® vi) e Kh(dW, L).

1

We now define the skein lasagna module to be the bi-graded Abelian group
SéV(W; L) := Z{lasagna fillings F' of W with boundary L}/~,

where ~ is the transitive and linear closure of the following relation:
¢ Linear combinations of lasagna fillings are set to be multilinear in the labels v;.

e Furthermore, two lasagna fillings F; and F, are set to be equivalent if F; has an input
ball By with label v, and F5 is obtained from F; by replacing B with another lasagna
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filling F5 of a 4-ball such that v; = KhR y (F3), followed by an isotopy rel boundary:

2.3. Homology classes of lasagna fillings. Given a lasagna filling F' for L C oW spec-
ified by the data (X, {(B;, L;, vi)}), we denote by [F] its equivalence class in SéV(W; L). We
also define the homology class of F, denoted [F] € Ha(W, L;Z) by

[F] = [(E,L U (LIJ Ll-)>] e HZ(W,L U (LlJaBl-);Z) ~ Hy(W, L:7),

where [(X, L U (|J; Li))] denotes the relative fundamental class of the surface X. If F ~ F’
are equivalent fillings in é’é\’ (W L), then F and F’ agree up to isotopy outside of some dis-
joint balls. In particular, they are homologous relative to those balls, and thus homologous
in Hy(W, L; Z). Thus, an equivalence class [ F'] of lasagna fillings has a well-defined homology
class [F].

Given o € Hy(W, L; Z), let SéV(W; L, «) denote the subgroup of SéV(W; L) generated
by fillings with homology class «. Since 8(1)\' (W; L) is generated by lasagna fillings and the
fillings are partitioned according to their homology class, we obtain a decomposition

sfwiny= @ 8 WiLa).
ac€H>(W,L;Z)

2.4. Adding 3- and 4-handles. Smooth 4-manifolds admit handle decompositions,
which are represented pictorially by Kirby diagrams [9]. To compute Sév (W; @) for W an
arbitrary smooth compact 4-manifold, we would need to understand how adding k-handles to
W affects Sév (W @). We will discuss 2-handles in detail in Section 4, and we cannot say much
about 1-handles. For now, we present the following result about 3- and 4-handles.

Proposition 2.1. Leti : W — W' be the inclusion of a 4-manifold W into W'. Then
we have a natural map
iv: SN W.0) - SV W 0).

If W' is the result of a k-handle attachment to W, then iy is a surjection for k = 3, and an
isomorphism for k = 4.

Proof. Let[F] € &, N (W 0) by the class of a alasagna filling F with surface 3. Let / (F)
denote the filling F Vlewed inside of W'.If F ~ F, then clearly [i (F)] = [z(F )]. Therefore,
we have a well-defined map i : 8éV(W, @) — /SéV(W/, @) given by i« ([F]) = [i (F)].

We observe that i, is surjective if every surface X’ C W’ can be isotoped to lie in W.
Consider the case of W’ being the result of attaching a k-handle & to W. Removing the cocore
of h from W’ produces a manifold that deformation retracts to W. In particular, if ¥ can be
isotoped to not intersect the cocore of /, then ¥ can be isotoped to lie entirely in W. By
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transversality, this occurs when

dim(X) + dim(cocore(h)) < 4,
2+ (4 —k) <4,
2<k.

When k = 3 or 4, the cocore is 1- or O-dimensional, and hence embedded surfaces in W’
can be isotoped off the handle. Thus, if W' is the result of attaching a 3-handle or 4-handle
to W, then i is surjective.

If i : W — W'is a4-handle addition, then surfaces in W’ can be isotoped off the handle
even in a one-parameter family. Therefore, if two lasagna fillings are equivalent in W', after
we isotope them to lie in W they are still equivalent in W. It follows that i, is injective, and
therefore an isomorphism. m)

Proof of Proposition 1.6. This is an immediate corollary of Proposition 2.1, because
a closed 4-manifold X is obtained from X \ B* by attaching a 4-handle. m]

3. The cabled Khovanov—Rozansky homology

3.1. The general definition. Let K C S3 be a framed oriented link with components
K, ..., K,. Fix also two n-tuples of nonnegative integers,

k™= (k{.....k;) and kT = (k... k).

Let K(k—, k™) denote the framed, oriented link obtained from k;” negatively oriented parallel
strands to K; (where the choice of parallel strand is determined by the framing) and kl.'" posi-
tively oriented parallel strands. The framing on each of the parallel strands is the same as the
framing on the corresponding knots K;.

To be more precise, using the framing, we get a diffeomorphism f; between a tubular
neighborhood of K; and S! x D?2. For each i, we pick distinct points

- - .+ + 2
Xpseees X X ,...,xk+eD .
l

Then
K(k™ k™) = Ufi_l(Sl X {xl_,...,x,:lf,xf',...,x:*}).
l. 1

Remark 3.1. Suppose n = 1 so that K is a knot with some framing coefficient p. Then,
as an unoriented link, K(k~, k™) is the (p(k~ + k™), (k— + k™)) cable of K.

Let B, be the braid group on n strands, and F : B, — S, the natural homomorphism
to the symmetric group. For 0 < k < n, let By, = F~Y(Sk x S,_x). Thus, if we view the
braid group as the mapping class group of the punctured disk, then

— 7+
Bki k; < Bki_—l—ki‘"

consists of those self-diffeomorphisms that take the set of the first k;~ punctures to itself.
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A braid b € Bi ki gives a cobordism inside D? x [0, 1]. Taking the product of this
cobordism with S!, and using the identification between a neighborhood of K; C S3 and
S1 x D?, we get a cobordism

Y, C S'x D?x[0,1] c S x]0,1]

from the cable K(k~, k™) to itself. The associated cobordism map, KhR y (), gives an auto-
morphism of KhRy (K(k~,k™)). In fact, the assignment B; : b — KhRy (X}) gives a group
action on Khovanov—-Rozansky homology

Bi : Bi- ki — Aut(KhRy (K (k™. kT))).

Let e; € Z" denote the ith basis vector. Observe that two strands parallel to K;, if they
have opposite orientations, co-bound a ribbon band R; in S3. By pushing R; into S3 x [0, 1]
so that it is properly embedded there, removing a disk from R;, and taking the disjoint union
with the identity cobordisms on the other strands, we obtain an oriented cobordism Z; from
Kk~ kt)uU to K(k~ + e;, k™ + ¢;). Here, U is the unknot and LI denotes split disjoint
union. Observe that y(Z;) = —1, and the framing on K; induces a framing on Z;. By the
discussion in Section 2.1, there is a well-defined cobordism map

KhRy (Z;) : KhRy (K(k—, kT)LUU) - KhRy (K (k™ + ¢; kt + ¢;))
which changes the bi-grading by (0, N — 1). Note that
KhRy (K(k™,kT) L U) = KhRy (K(k™, k1)) ® KhRy (U).

Recall from (2.1) that A = KhRy (U) = (Z[X]/(XV){1 — N}.

Thus, the information in the map KhRy (Z;) is encoded in N maps

Y™ KnRy (K (k™ k+)) — KhRy (K(k™ + ¢, kT +¢;)), m=0,...,N -1,
given by

3.1) v () = KnRy (Z)(v ® X™).
Note that wi[m] changes the bi-grading by (0, 2m).

Remark 3.2. Let Z; be the cobordism from K (k™. kT)to K(k~+e;, k™t +e;) obtained
from Z; by reintroducing the disk that was removed from the ribbon R;. Since the map associ-
ated to a disk in Khovanov—Rozansky homology takes 1 — 1, we see that 1//1.[0] = KhRy (2 i)
More generally, wi[m] is the cobordism map associated to 4 ; decorated with m dots, in the
sense of [27, Example 2.1].

Remark 3.3. For conciseness, we did not include the link K and the values of K~ and
k™ in the notation B;, R;, Z;, Wi[m]-

Let W be the 2-handlebody obtained from B* by attaching handles along the link K.
The homology H,(W; Z) is freely generated by the cores of the handles, capped with Seifert
surfaces for each K;. We identify H,(W; Z) = Z" by letting the capped core of the i th handle
correspond to e; .

For a = (ay,...,a,) € Hy(W;Z) = Z", let a™ denote its positive part and o~ its

negative part; i.e., oel.+ = max(e;,0) and ;" = min(o;,0). We also let |a| =} ; |o;].
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Definition 3.4. The cabled Khovanov—Rozansky homology of K at level « is

KBR o (K) = (@D KhRy (K(r =™, +a){(1 = N)@r +[aD} ) /~,

reN”

where the equivalence ~ is the transitive and linear closure of the relations
(3.2) Biyw ~v, yM@)y~o0form <N -1, yN Hw)~v
foralli =1,....n;b € B, _4— ;. 4o+ and v € KhRy (K(r —a™,r +a™)).

Observe that the equivalence relation preserves the bi-grading, and hence there is an
induced bi-grading on KhR y , (K).

Remark 3.5. In principle, there are several different maps of the form wi[m] (with the
same domain and target), corresponding to different choices of the pair of oppositely oriented
strands that co-bound R;. However, these maps differ by post-composition with some S; (b).
Therefore, when we divide by relations (3.2), which already include B;(b)v ~ v, using one
choice of wi[m] is the same as using any other choice.

3.2. The cabled Khovanov homology. When N = 2, which is the case corresponding
to Khovanov homology, Grigsby, Licata and Wehrli [10] showed that the braid group action on
the cable of a knot factors through the symmetric group. In order to explain this fact, we first
need to discuss orientations. Recall that Khovanov homology only depends on the orientation
of a link through a shift in the quantum degree. This shift depends on the number of positive and
negative crossings in the chosen orientation, which, for a cable of a knot, only depends on the
number of strands oriented each way. Symmetries of K induce maps on Khovanov homology,
even if they are not symmetries of K as an oriented link.

Now, for a framed knot K, let K(k—, k™) be an oriented cable with at least two com-
ponents (for fewer components, the discussion of the braid group action is trivial). Number
the strands so that the first k™~ are negatively oriented and the last kT are positively oriented.
For 1 <i <k~ + k™, choose a new orientation, if necessary, on K(k—, k™) so that the ith
and (i + 1)st strands are oppositely oriented. Call this new oriented cable K({™,£T) , so that
0~ 44T =k~ 4kt and £~, £ > 1. We have an isomorphism

Kh(K(k™, k™)) = Kh(K(¢™, £1)){w}
for some shift {w}. Let
ZG@): KW =167 —1) > K@~ ¢

be the previously defined cobordism where we specify that Z introduces the ith and (i + D)st
components. Let zr (i) be the reverse of 2(1’). Then Kh(? @@))o Kh(? "(i)) is an endomor-
phism of Kh(K (£~ £1)). After canceling the shifts, it can also be viewed as an endomorphism
of Kh(K(k™,k™)). Let 0; be a generator of the braid group Bj— -+ that interchanges the
ithand (i + 1)st strands. Then B(0;) is an automorphism of Kh(K (k~, kT)). With this under-
stood, we have:

Proposition 3.6 ([10, Proposition 9]). As endomorphisms of Kh(K (k—, k™)),
B(o;) = id+ Kh(Z (i) o Kh(Z" (i) = B(o; ).
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In particular, the equation B(c;) = ﬂ(ai_l) implies that B factors through the symmetric
group Sp— 4 j+-

Remark 3.7. Proposition 3.6 is stated in [10] for the action of the braid group on sutured
annular Khovanov homology, but the same proof works for Khovanov homology.

Thus, when K is a framed knot, we can replace the group B,_,— .4+ in the definition
of the cabled Khovanov homology by the product of symmetric groups, Sy—g— X S, 4 o+-

If we work over a ring k where 2 is invertible, then we can use Proposition 3.6 to simplify
the cabled Khovanov—Rozansky homology even further. Let Kh(K; k) denote the Khovanov
homology of K with coefficients in k. We can define KhR, ,(K:k), the cabled Khovanov
homology with coefficients in k, by replacing the Khovanov homologies of the cables in
Definition 3.4 with their versions with coefficients in k. With this notation, we have:

Proposition 3.8. Let k be a commutative ring where 2 is invertible. Then the cabled
Khovanov homology over k of a framed knot K at level « is

KBR, o(K: k) = (D Kn(K(r —a™r +a®):k){=2r — [al})/~,
reN

where the equivalence ~ is the transitive and linear closure of the relations

BB ~ v,y @) ~ v
forallb € Sy, 4 |q|, and for allv € Kh(K(r —a™,r + at): k).

Proof.  The equivalence relation defining KhR, , (K; k) consists of the relations

By ~v, YOy ~0, yMEw)~v

forall b € B,_y— , 44+ and all v € Kh(K(r —a™,r + a™); k). The group action B factors
through Sy_g— X S, {4+. Let 0; € 85,4 |«| denote the transposition that interchanges the ith
and (i + 1)st elements. If we number the components of K(r —a ™, r 4+ a™) so that the first
r — o~ are negatively oriented and the rest positively oriented, the o; fori = 1,...,r—a™ —1,
r—a~ +1,...,2r + |a| — 1 generate the desired subgroup S;_o— x S, 1 o+. Thus, it suffices
to take the relations B(o;)v ~ v for all such i.

The map ¥[% is associated to a cobordism Z that introduces two oppositely oriented
components. As explained in Remark 3.5, we can pick any two oppositely oriented compo-
nents. So, we choose the components numbered r —«™ and r — o~ + 1. Then, by Proposi-
tion 3.6, we have

(3.3) B(or—a-) = id +y D o Kn(Z").
Observe that Z" o Z is the union of a torus and some cylinders. By [11], we have
Kh(Z") o Kh(Z) = 2id.

Since we are working over a ring where 2 is a unit, this map is an isomorphism. In particular,
Kh(? ") is surjective. Thus, by equation (3.3), the relations ¥[%(w) ~ 0 for all w are equiv-
alent to the relations f(0,—q~)v ~ v for all v. But since the relations defining KhR, ,(K:k)
already include B(o;)v ~ v fori # r — ™, adding the relation B(0,—q—)v ~ v generates the
full symmetric group S», 4 |q|- o
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4. 2-handlebodies

In this section we prove our main result, about the skein lasagna modules of 2-handle-
bodies.

Proof of Theorem 1.1. 'We first define a map

®: P KhRy(K(r —a™.r +at){(1 = N)@r + |a)} — 8 (W:0, ),
reN”

O(v) = [Fy]

as follows. Let B be 4-dimensional ball slightly smaller than the 0-handle, contained in the
interior of that handle. Given an element v € KhRy (K(r — o™, r + a™)), we define 5(1}) to
be the class of the lasagna filling F;, with B as the only input ball, with B decorated with the
framed, oriented link K(r —a ™, 7 4+ ™) and labeled by the element v, and with the surface
given by the disjoint union of r; — ;" negatively oriented disks parallel to the core of ith
2-handle and r; + oz;r positively oriented such disks (union over all 7). We will denote these
disks by C j’ % where 1 < j<ri+£ ozii. Since the disks are contractible, they have unique
framings. The homology class of this surface in Hy(W, B; Z) = Hy(W;Z) is clearly o by
construction. See Figure 1.

We claim that, under the equivalence relation from Definition 3.4, [ maps equivalent
elements to the same class in § (J)V (W0, a). There are three types of relations to be checked.

First, consider the braid group action. Intuitively, this permutes the disks C £ in the
2-handle. More precisely, let £, be the cobordism from K (r —a~, 7 4+ ™) to itself associated
to a braid b € Bkl.—,kl*- We can then view the filling Fy of W as obtained from Fpg, ), by
inserting into B a filling made of a smaller ball B’ and the surface Xj, with the input labeled
by v. Therefore, Fy and Fpg; (5), represent the same class in SéV(W; @, a).

Second, consider a slightly smaller ball B’ contained in B, so that the region between
B’ and B is a copy of §3 x [0, 1]. We put in that region the cobordism D C S3 x [0, 1], from
K(r—a ,r+a™)UU to K(r —a~,r +a™), which is simply the split disjoint union of
the identity on K(r —a~,r + a™) with a disk capping the unknot U. The cobordism map

2-handle

0-handle

Figure 1. A generator for S(J)V(W; @,0).
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Figure 2. A schematic picture of the fillings Ey, (left) and Ej, (right). For simplicity, we drew the
components of the cable side by side, rather than nested.

associated to the cap is the counit (2.3). Therefore,
4.1) KhRy (D)(v ® X™) =0form <N —1, KhRy(D)(v ® XN_I) = .
For every w € KhRy (K(r —a~,r +a™) U U), we construct a lasagna filling E, with input

ball B’, surface
i,— i,+
DU U C/mu U C;
l’.] l’.]

and label w. Thus, Ey, is obtained from the filling Fgyr 5 (p)(w) by adjoining D. It follows that
the fillings £y, and Fgpr (D) (w) are equivalent.

On the other hand, as in Section 3, we also have a cobordism Z; C S3 x [0, 1] from
Kr—a ,r+af)uUtoK(r —a~ +e;,r +at + e;). Forevery

w e KhRy(K(r —a™,r +a™)UU),

we construct a new lasagna filling E;, from Fgur, (z,)w) by adjoining Z; in the region
between B and B. Then the fillings £}, and Fgpg, (z,)(w) are equivalent.

Note that E], has the same input data as E,, (namely, the ball B” and the label w); see
Figure 2. Moreover, the surface of E;, is obtained from that of E,, by taking connected sum
with the closed surface

i— i+ ~ Q2

(4.2) Cri_ai—Jrel_ UR; U Cri+a,-++el~ ~ 5,
where R; is the ribbon between two oppositely oriented copies of K;, as in Section 3. The
copy of S? from (4.2) can be isotoped to lie entirely in the 2-handle. Since this sphere bounds

a 3-ball, taking a connected sum with it can be viewed simply as a surface isotopy. Therefore,
Ey and E], are equivalent lasagna fillings. We conclude that

BKhR N (D)(w)) = [Finmy (D)) = [Bwl = [E}]
= [Fknry (z1)(w)] = @(KhRy (Z;)(w))

forevery w € KhRy(K(r —a~,r +at)UU) = KhRy (K(r —a™,r +a™)) ® A.
Letv € KhRy(K(r —a~,r +a™)). If wetake w = v ® X", in view of equations (3.1)
and (4.1), we have

0=dW™Mw) form<N—1, @) = 3N Hw).
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We have now verified our claim that ® takes equivalent elements to the same equivalence
class of lasagna fillings. This shows that ® descends to a map

@ : KhRy o (K) — 88 (W: 0. ).

Next, we define an inverse ®~! to ®. Let F be a lasagna filling with surface . By an
isotopy, we can push the input balls of F into the interior of the 0-handle and we can arrange
that X intersects the cocores G; of the 2-handles transversely in a number of points. Since
we assume that the relative homology class of X is «, the signed intersection of ¥ with G;
must be «;. Thus, ¥ intersects G; in |o; | + 2r; points. After another isotopy, we can assume
that ¥ intersects the 2-handles only in core-parallel disks, one for each intersection with the
cocores. That is, all interesting topology of X is pushed into the 0-handle. Next, choose a ball
B’ slightly smaller than the 0-handle, so that it contains all input balls and all of the interesting
topology of X. Finally, evaluate the part of F inside of B’. These modifications show that F is
equivalent to a filling of the form 5(1}), and we let

®~([F]) := [v]

for v € KhRy (K(r —a~, 7 + a™T)). Let us check that ®~! is well-defined.

Firstly, if we change a lasagna filling F by filling in an input ball in B*, this does not
change its image under ®~!, because the intersection with the cocores of the 2-handles is
unchanged.

Secondly, in the definition of ®~1 we chose an isotopy of ¥ that makes it transverse to
the cocores G; of the 2-handles. If we made a different choice, the isotopy relating the two
choices is a 1-parameter family of surfaces ¥,,7 € [0, 1]. Let

Y= J (13 x=)clo.1]xw.
t€l0,1]

We can assume that Y is a smooth 3-dimensional submanifold with boundary, and that Y
intersects each [0, 1] x G; transversely in a 1-manifold P;. Let

7w Pp — [0, 1]

be the composition of the inclusion into [0, 1] x W with projection to the [0, 1] factor. After an
isotopy of Y rel boundary, we arrange so that mr; are local diffeomorphisms away from finitely
many critical points (caps and cups). The critical values ¢; < --- < t, of 7;, together with the
endpoints 7o = 0 and #,+1 = 1, split [0, 1] into finitely many intervals of the form [tz t541].
After another isotopy of Y, we can assume that for some small € > 0, the collections of points
T Y(tx + €) and T L(tx 41 — €) coincide, as oriented submanifolds of the cocore G;. Thus,
on the interval [fx + €, ;41 — €], the surfaces X, stay transverse to the cocores, and the only
effect of varying the lasagna filling is to replace the element v with B;(b)(v) for some braid
b € By, —a; r; +«;t - However, we have f; (b)(v) ~ v, so the value of ®~!([F]) is unchanged.

At the critical values of 7;, the surfaces 3; are no longer transverse to the cocores of
the 2-handles. Rather, what happens is that we introduce or remove two intersections of oppo-
site signs. Introducing such points corresponds to “pushing a disk” from one lasagna filling
into the cocore; that is, replacing a lasagna filling of the form E,, with one of the form E;,
for some w € KhRy (K(r —a~,r + ™) U U). The corresponding values of ®~! for these
fillings are Fgnry (D)(w) and Fxnry (Z,)(w)- When w = v ® X™ for m < N — 1, these give
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0 and wi[m](v), and when w = v @ XV ~1, they give v and wi[N_l](v). Since the equivalence
that gives the cabled Khovanov—Rozansky homology includes the relations

[m] [N—1]
Y™ (v) ~0form < N —1, (v) ~ v,

we see that the value of ®~1([F]) is the same for isotopic lasagna fillings.
This completes the proof that ®~! is well-defined. It is straightforward to check that ®
and ®1, as defined above, are inverse to each other. O

Remark 4.1. Theorem 1.1 implies that KhRy ,(K) is invariant under handleslides
among the components of the link K. One can also give a more direct proof of this fact, using
just the functoriality of Khovanov—Rozansky homology, and without reference to the skein
algebra. We leave this as an exercise for the reader.

5. The 0-framed unknot

The ring structure on Sév (S? x D?; ) is given by taking the union of lasagna fillings.
More precisely, let I C 9D? be an interval in the boundary of the disk. Then we have a gluing

(82 x D?) Ugay; (S? x D?) = §% x D2,
This decomposition allows us to define a map
m: 8 (S? x D% 0) ®z 8 (S? x D%, 0) — 8L (S? x D%, 0)

by the formula m(F; ® F») = F1 U F5. The fact that isotopic lasagna fillings are equivalent
shows that this map endows /Sév (S? x D?; ¥) with the structure of an associative, commutative
algebra. It has unit given by the empty filling. Before proving Theorem 1.2, we identify the
braid group action on the Khovanov—Rozansky homology of the unlink.

Lemma 5.1. The braid group action on the Khovanov—Rozansky homology of the unlink
factors through the symmetric group.

Proof. Let o; € By be a generator of the braid group B, and X5, = 0; X § ! the asso-
ciated cobordism from the n-component unlink U(n) to itself. By definition, the action of o;
on KhRy (U(n)) is given by

B(oi) = KhRy (Z;).

To show that § factors through the symmetric group, it suffices to check that (O'l-z) is the
identity. Note that there is an action of A®” on KhR y (U(n)) induced by the identity cobordism
on U(n) decorated with dots on each component, as in [27, Example 2.1]. The cobordism map
,3(01.2) is an isomorphism of A%®”-modules and KhR y (U(n)) is a rank one #4®”-module, so to
compute f (oiz) it suffices to determine the image of 1 € KhRy (U(n)). But 1 must be sent to
either 1, so B (01.2) = 4 1id. To determine the sign, since KhR y (U(n)) has no 2-torsion, we
just need to evaluate ;3(01.2) on any non-zero element.

Let ¢; be the (n — 2,n)-tangle with a cup between the ith and (i 4+ 1)st endpoints.
Then oiz o ¢; is isotopic to ¢;. Let C; = ¢; x S! be the associated cobordism from U(n — 2)

to U(n). Then KhRy(C;)(1) = 1 ® X; + X;+1 ® 1, where X; is the generator of the ith

tensor factor of A®”. In particular, KhRx (C;) is not the zero map. Since O'l-z oci ~ Ci, We
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have X 02 © Ci ~Cj, so ,3(02) is the identity on the image of KhRy (C;). By the previous
dlscussmn it must be the identity map. O

Proof of Theorem 1.2.  As §? x D? is the result of attaching a 2-handle along a O-framed
unknot, we can apply Theorem 1.1 to obtain a group isomorphism

85 (8% x D*:0) = P KhR (U, 0),
aeZ
and from Definition 3.4 we have
KhR (U, 0) = (@D KhRy (U(r — ™7 + «O){(1 = N)@r + [a])} ) /~,
reN

where U(r —a ™, r + a™) is the (2r + |a|)-component unlink. The Khovanov homology of
the n-component unlink is 4%”, where A = (Z[X]/(XV)){l — N}. Letting V = A{1 — N}
in order to absorb the shifts in the definition of KhRy ,, we have

KhRy (U, 0) = EB(@ VYOr—a) & 'V®(r+“+))/~

a€Z reN

The proof of the isomorphism in Theorem 1.1 shows that the disjoint union of lasagna fillings
corresponds to the tensor product of elements in KhR 5 (U, 0). That is, the algebra structure on
KhR y (U, 0) is defined as follows: for v; € VOUi—e) and w; € VOUite ) ,i = 1,2, we have

(vl X wl) . (v2 Q w2) — (vl ® v2) ® (wl ® w2) c v®(r1+r2—011 _052) ® 'V®(7‘1+r2+0£1 +Ot;_)'

The group KhR y (U, 0) is supported in homological degree 0 because V is in homo-
logical degree 0. By Lemma 5.1, the braid group action factors through the symmetric group.
This action by S,_g— X S, 4+ simply permutes the tensor factors of V& —¢7) g & +at),
Reducing modulo this action, we are left with

KhR y . (U.0) = (€D Sym™" (V) @ Sym™*" (V) /~.
reN
where Sym” (V) is the rth symmetric power of V. We write basis elements of 'V with indices
lowered to avoid confusion between the algebra structure on Sym(V) and the algebra structure
on + (the latter plays no role in this discussion). For convenience, we also re-index the basis
and write x; € V for XV =17k ¢ 4. Note that x; has quantum degree —2k.
We now consider the maps ! in the equivalence relation ~. For the 0-framed unknot,
the maps w[’"] are given by multiplication by A(X"), which is defined in equation (2.2). In
our preferred basis for 'V, we have

m
A(xpm) = Z Xk @ Xpp—k-

We can use the multiplicative structure on KhR (U, 0) to write yIN=1=ml(y) = A(xm) - v.
So, if we define J to be the ideal of KhR (U, 0) generated by A(xg) — 1 and the A(xy,) for
0 <m < N — 1, then we have a ring isomorphism

KhR (U, 0) = @(@ Sym™ (V) @ Symr+°‘+("V)) /d

a€Z reN
= (Sym*(V) ® Sym*(V))/J.
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To conclude, we must show that the above ring is isomorphic to Z[A1,..., Ay—1, Ao, AO_I].
Observe that Sym* (V) ® Sym* (V) is freely generated as a commutative algebra by the ele-
ments

Ai=1®x; and B, =x; ®1 for0<i <N —1.

In terms of these ring generators, the generators of the ideal J are
A(xg) =1 = AgBo — 1,
m
A(xy) = Z A Bp_r forO<m <N —1.
k=0
Therefore,
KhRy (U,0)
m
~ Z[Ao, ..., An—1. Bo, ...,BN_I]/<AOBO — 1) AgBp_g for0O<m < N — 1).
k=0

The relation AgBg — 1 lets us write By = Ao_l. Then, since Ay is invertible, we can replace
the generator Yz A Bim—k by

m m
Ao_l ( Z AkBm—k) = By + AO_I ( Z AkBm—k)-
k=1

k=0

This relation allows us to write the generator By, in terms of the A; and the B; with0 < j < m.
That is, the reducing modulo A(xy—1) is equivalent to getting rid of the generator By _1. Then,
reducing modulo A(xy—5) is equivalent to removing the generator By _5, and so on until we
have used all of the A(x,,) relations and removed all of the B, generators. This leaves us with

KhR y (U,0) = Z[Ay, ..., AN—1, Ao, Ay ']

as advertised.

Since the relatively homology class of the lasagna filling associated to some element
pRqE Symd1 V) ® Symd2 (V) is given by d» — d1, we see that the A; have homology class
o = 1. Also, the homology class is additive under multiplication in the ring. So, the elements
with homology class « are precisely the homogeneous polynomials of degree «. |

6. The unknot with non-zero framing

The goal of this section is to prove Theorem 1.3. This will be a direct consequence of
Theorem 1.1 and the following:
Proposition 6.1. Let (U, p) be the unknot with framing p.

(a) For N =2 and p > 0, the cabled Khovanov—Rozansky homology of (U, p) in homolog-
ical degree O and at level 0 € 7 is given by

@g:é(u p)=0 forall j €Z.
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(b) On the other hand, for N = 2 and p < 0 we have

0, _jz ifj =0,
KhRy o (U-p) = {0 otherwise.

An outline of the proof of Proposition 6.1 is as follows. The group @g:;(U , p) is built
from the Khovanov homologies of cables on the p-framed unknot. These cables are the 72, 25p
torus links. The Khovanov homology of these links in homological degree 0 has been com-
puted and, when p < 0, shown to be isomorphic to the center of Khovanov’s arc algebra H"
(see [33]). For p > 0, it is isomorphic to the dual of the center of the arc algebra. To explain
these results, we introduce the arc algebra in Section 6.1 and describe explicit presentations
of its center and the dual of its center in Sections 6.2 and 6.3. In Section 6.4, we explain the
connection between the center of the arc algebra and the Khovanov homology of torus links.
In order to compute the cabled Khovanov homology, we also need to identify the cobordism
maps and braid group actions appearing in Definition 3.4. In Section 6.5, we compute these
maps under the identification of the Khovanov homology of the torus links with the center of
the arc algebra. We combine these ingredients in Section 6.6 to prove Proposition 6.1.

6.1. The ring H" and tangle invariants. In [16], Khovanov extended his theory Kh
to tangles. We briefly sketch his construction here.
Throughout this section N = 2, and the invariant of the unknot is

A = (Z[X]/(X*)){1} = Span{l, X}.

Let €, be the set of crossingless matchings between 2n points on a line. For example, the
following is an element of €3:

Fora € §,, we let @ denote its reflection in the dashed line. Then, for every a,b € €,, the
composition ba is a collection of k circles in the plane:

AN g

a

To ba we associate the tensor product of copies of +4, one for each circle:
F (ba) = A®K.
Khovanov constructs a finite-dimensional graded ring
H" := @ a(Hn)b,
a,be€,

where B
a(H")p = F (ba){n}.

The multiplication on H" is

a(H")p ® g(H")e —> 0 ifb#d
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and
a(Hn)b ® b(Hn)c - a(Hn)c

is given by a sequence of saddle maps taking bb into the identity tangle, using the multiplication
and comultiplication maps on the Frobenius algebra +:

c

AN 5
Y t

a \_/ N

Consider now a tangle T represented by a diagram inside a rectangle, connecting 2n
points at the bottom to 2m points at the top. This is called an (m, n)-tangle in the terminology
of [16]. To T Khovanov associates a complex of (H", H™)-bimodules

6.1) FT) =P P «F T,

acC, be@,,

S

where 4, (¥ (T'))p is the usual Khovanov complex associated to the link obtained from the com-
position bTa. Different diagrams for the same tangle produce homotopy equivalent complexes.
Finally, let us discuss a module action on the rings H". This is the analogue of the action
of
R =Z[X]/(X?) = A1}

on the Khovanov homology of a link L, which was constructed in [17]. The action of r € R
is given by introducing a small unknot near a basepoint on the knot, marking it with r, and
applying the multiplication map induced by the saddle cobordism from L L U to L:

L L
O

More generally, if L has m components, there is an action of R®” by using unknots near
basepoints on each component; cf. [13, Section 2] and [3, Section 2.2].
In our case, we view the ring H" as an algebra over

(6.2) R®* = 7[Xy,..., Xonl/(X?,.... X2,)

by using unknots near each of the 27 points on the line. We set X; to be (—1) times the X
action from the unknot near the ith point.

If T is an (m,n)-tangle, then the complex of bimodules ¥ (7') gets induced actions
of R®2" (from the points at the bottom) and of R®2™ (from the points at the top).

Remark 6.2. The analogues of the H” rings for the gl, theory KhR, were constructed
by Ehrig, Stroppel and Tubbenhauer in [5, 6]. It would be more natural to work with them,
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because the skein lasagna algebras are defined in terms of KhR5. However, we chose to use the
original H" in order to be able to use various results from the literature that were proved in
that context.

6.2. The center of H”. We will be interested in the center of the ring H”, which was
computed in [18].

Theorem 6.3 (Khovanov [18]). The center Z(H™") is isomorphic to the polynomial ring
Z[X1, ..., Xon]| modulo the ideal generated by the elements

X? i=1,....2n,

and

DX k=1...2n,

|11=k
where X1 = X, ... X, for I = {i1,... i}, and the sum is over all the cardinality k subsets
of {1,...,2n}.

We grade Z(H") so that each X; is in degree 2. This corresponds to the convention for
KhR,, and is opposite the convention for Kh; see Section 2.1.

One can read off from [18] an explicit description of the elements X;. Let p1,..., pan
be the 2n points on the line (in this order) that we connect by crossingless matchings. Then we
have

Xi= > a(XDa. a(Xi)a € a(H")q = A®*{n},
acC,
where 4(X;), is the tensor product of 1 € 4 for each circle not going through p;, and of
(=1)' X € s for the circle going through p;. In other words, X; exactly correspond to the
variables in the ring R®2" from (6.2), applied to the identity element 1 € Z(H") C H". Thus,
we can improve Theorem 6.3 to a statement about R®2"-algebras:

Proposition 6.4. As a R®?"-algebra, the center Z(H™) is isomorphic to

R®2"/< 3 Xp k= 1,...,2n>,
|I|=k

where the sum is over all the cardinality k subsets of {1,...,2n}.

Lemma 6.5. The degree 2k part of Z(H™), denoted Z(H"),y, is generated (as an

Abelian group) by the Xy over all cardinality k subsets I C {1,...,2n}, subject to the linear
relations:
(6.3) > X;=0
| |=k
12J

for every subset J C {1,...,2n} of cardinality |J | < k.

Proof. Starting from the description in Theorem 6.3, we see that Z(H"), is generated
by all monomials of degree k£ modulo the homogeneous relations of polynomial degree k. Such
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relations are of the form

6.4) X5 ) X
[I|=k—¢

forall 0 < £ < k and all J with |J| = £. Using that Xl.2 = 0, we can rewrite (6.4) as

(6.5) Xy Y Xr.
[I|=k—¢L
INJ=0
Replacing 7 by I U J in (6.5), we get the desired conclusion. |

Stosié [33, Proposition 1] showed that

Z(zkn)_(kz—nl) ifj =2k, k=0,...,n,
(6.6) Z(H"); %{ /

otherwise.

The total rank of Z(H") is (*"). We can give a concrete basis for Z(H™) as follows.

Definition 6.6. A subset I/ C {1,2,...,2n} is called admissible if

6.7) 110{1,2,....m) 5%

forallm =1,...,2k. We let

Ay ={1 €{1,2,....2n} | I is admissible, | /| = k}.

Proposition 6.7 ([18, Lemma 8]). A basis for Z(H"),j consists of the elements Xy
forl € A}.

Example 6.8. When n = 2, the ranks of Z(H?) in degrees 0,2 and 4 are 1, 3 and 2,
respectively. A basis is given by 1, X5, X3, X4, X2 X4 and X3 X4.

6.3. The dual of the center. For a free Abelian group V', we will denote by
VY = Hom(V, Z)

its dual. For example, Z(H ");’k is the dual of Z(H"),. In view of (6.6), this is a free Abelian
group of rank (an) - (kz_"l). We will describe a set of interesting elements in Z(H"),.
Let Z}/ be the Abelian group freely generated by elements X7 for I C {1,...,2n} with
|I| = k. The dual (Z}})" has a dual basis given by X/, where X;"(X) is Kronecker’s &7;.
We introduce a multiplication on B (Z Z)V by setting
XY XY = {X,VUJ if1nJ =0,
0 otherwise.

We can define a contraction operation (Z ?)v x Zyp — Z}_, by

Xpng 1S,

XY (Xy) =
1 (X7) {0 otherwise.
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When k = £, this agrees with the action of the dual group. Furthermore, we have the associa-
tivity relation

(6.8) (X; - X)) (Xk) = X; (Xj (Xk))

Recall that Z(H")y is the quotient of Z; by relations (6.3). It follows that Z(H ”);’k is a
subgroup of (Z ,’c’)v consisting of those functions f : Z}! — Z such that

(6.9) (X x)=o

|I=k
127

for every subset J C {1,...,2n} with |J| < k.

Definition 6.9. A partial matching of {1,2,...,2n} is a set

m = {py,..., Pk}

consisting of k disjoint pairs of elements from {1,2,...,2n}, forsome k <m. A pair p = (i, )
is called balanced if it consists of an odd number and an even number, and a partial matching
m is called balanced if all the pairs p; in m are balanced.

Example 6.10. The following is a balanced partial matching of {1, ..., 8}:
{(2,5).(3.8).(6.7);.

Given a partial matching m = {(i1, j1),..., (ix, jx)}, we define an element f, € (Z]’c‘)v
by

k
fn = [T = X5
s=1

Lemma 6.11. For every partial matching m, the element fy, satisfies relations (6.9),
and therefore can be viewed as an element of Z(H ”);’k.

Proof. 'We show that the expression

(6.10) (]ﬁ[(xij - X};))( > xi)
s=1

1=k
12J

vanishes. First, we observe that all terms in (6.10) are zero if J contains elements that do not
appear in m. Indeed, each term in the sum is of the form

k
:I:(l_[ XVVS)X,,
s=1

where the symbol v is either v = i or v = j. By the definition of the product structure on the
dual group, this term is only non-zero if I = {vq,...,v;}. However, since I 2 J, we must
have that J is contained in the set of elements in m.
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We now assume that all elements of J appear in m. Since |J| < k, there is at least one
pairinm, say (i1, j1), that does not contain elements of J . We split up the sum (6.10) according
to whether / contains i1, ji, or both. If I contains neither i; nor ji, then it contributes zero
after applying the dual element X/ — X }{. Applying (6.8) to contract by X' — X }{, (6.10)
becomes

k
(Mo -xn)osz-xn( X wme ¥ we ¥ )
s=2

|I|=k 1=k [|=k
I12JU{i1} I12JU{j1} I2JU{i1,/1}
Nél i1¢1
k
(Mo} - ¥ we ¥ x- ¥ )
s=2 [I|l=k—1 |[I|=k—1 |[I|l=k—1 |I|l=k—1
) =¥ =¥ I2JU{j1} I2JU{i1}
i, 1¢1 Jisiné€1 iVl €1

The first two sums inside the last parentheses manifestly cancel. We can form a bijection
between the terms in the third and fourth sums as follows: if 7 is a subset contributing to the
third term, then I’ = {j1} U I \ {i1} is a subset contributing to the fourth sum. Since neither
i1 nor jj appear among the iy, js for s > 1, we see that

k k
(Tt =0 = (TToxy -0 o
s=2

s=2

for such an /. Therefore, the terms in the third and fourth sums cancel as well. O
We now exhibit a set of generators for Z(H ");’ - (Note that it will usually not be a basis.)

Proposition 6.12. The elements fn, over all balanced partial matchings m of cardinal-
ity k, generate the group Z(H");/k.

Proof.  Let us first show that fi,, over all (not necessarily balanced) partial matchings
m of cardinality k, generate Z(H ”);’ - Let V be the Abelian group freely generated by partial
matchings of cardinality k. We need to show that the linear homomorphism

V — Z(H")),, me fy

is surjective. This is equivalent to showing that its dual Z(H"™),; — V'V is injective. Proposi-
tion 6.7 tells us that a basis of Z(H")yy is given by Xy with I € A}. Therefore, what we need
to check is that, if we have numbers a; € Z such that

6.11) fm(z a,X,) -0

IeA}

for all partial matchings m of cardinality k, then ay = O forall I € A}.
We will prove this claim by induction on 7. The base case n = 0 is clear, because fg = 1.
For the inductive step, assume the corresponding statement is true for n — 1 and all pos-
sible k. Suppose we have numbers aj satisfying (6.11). Consider first the partial matchings m
that consist only of pairs not involving the last two elements 2n — 1 and 2n. For such m,
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we have fm(X7) =0 when I N{2n —1,2n} # @0.1f I € A} has [ N {2n —1,2n} = @, then
I is an admissible subset of {1,...,2n — 2}, and we can also view m as a partial matching
of {1,...,2n — 2}. Applying the inductive hypothesis for n — 1 and k, we deduce that

(6.12) ar =0 forall I € A} with I N{2n —1,2n} = 0.

Next, consider an arbitrary partial matching m of {1,...,2n — 2} of cardinality k — 1.
If k < n, there exists some i € {1,...,2n — 2} that does not appear in any of the pairs in m.
Define the matching
m =mU{Q2n—1,i)}

so that
fm’ = (Xg/n—1 - Xiv) ’ fm-
Applying (6.11) for m’, and using (6.12), we get

0= fm/(z aIXI) = fm( Z a1X1>.

IeA? I=JU{2n—1}
JeAl~!

Since this is true for all possible m, from the inductive hypothesis for n — 1 and k — 1, we
deduce that

(6.13) ar =0 forall] € A with I N{2n —1,2n} = {2n —1}.

Observe thatif I N {2n — 1,2n} = {2n — 1}, the admissibility condition (6.7) for I applied to
m = 2n — 1 shows that our hypothesis k& < n must be satisfied.
Let m still be a partial matching of {1, ...,2n — 2} of cardinality kK — 1, and set

m’ =muU {(2n,2n —1)}
so that
S = (Xgln - X2Vn—1) * fm.
Applying (6.11) for m’, and using (6.12) and (6.13), we find that

0= fm//( > azXz) = fm( > aIXJ)-

IeA} I=JU{2n}
JeAr~l

Applying the inductive hypothesis for n — 1 and k — 1, we deduce that

(6.14) ar =0 forall ] € A} with I N {2n —1,2n} = {2n}.
Finally, consider an arbitrary partial matching m of {1, ..., 2n — 2} of cardinality k — 2.
Since k < n,wecanfindi,j € {l,...,2n — 2} that are not in any pair in m. Let

m’' =mU {(2n - 1,i),(2n, j)}
so that
ot = Xy = X)Xy = X))+ fon:
Applying (6.11) for m’, and using (6.12), (6.13) and (6.14), we get
0=fm/(z aIXI> =fm( > aIXJ)-

IeA} I=JU{2n—1,2n}
JeArZ)
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From the inductive hypothesis for n — 1 and k — 2, we conclude that
a; =0 forall ] € A} with {2n —1,2n} C I.

This shows that all @7 vanish, and therefore fy, generate Z(H ”);’k.

To see that fy, for balanced m also suffice to generate Z(H");,, we will prove that
every fm is a linear combination of the balanced ones. We will do this inductively: If m is not
balanced, we will express fi as a linear combination of elements corresponding to matchings
that have fewer unbalanced pairs than m.

An unbalanced partial matching m must contain a pair of odd elements, or a pair of even
elements. Suppose it contains both: a pair (a, b) of odd elements, and a pair (c,d) of even
elements. Using the relation

(Xg = X)X = X7) = (X) = X)X — X)) + (X7 = X)X = X)),

we can turn fp into a sum fyy + fu7, where m’ and m” have two fewer unbalanced pairs
than m.

If m does not contain both types of unbalanced pairs, without loss of generality let us
suppose it only contains pairs made of even elements, in addition to possibly some balanced
pairs. In total, there are more even than odd elements in the pairs in m, so there must be an odd
number a € {1,...,2n} that is not contained in any pair in m. Let (b, ¢) be a pair in m with b
and ¢ both even. Using the relation

Xy =X =) = X))+ (X, = X)),

we can express fm as fm + fm~, where m’ and m” have one fewer unbalanced pair compared
to m. This completes the proof. |

6.4. Hochschild homology and cohomology. For the study of the cabled Khovanov—
Rozansky homology of the p-framed unknot, we need to first understand the homologies of the
cables of (U, p). Since we restrict ourselves to level o« = 0, these cables are the (272, 2np)-torus
links T2/n72np, with n strands positively oriented and n strands negatively oriented, going
through p full twists. The Khovanov homology of these links was studied by StoSi¢ in [33].

There, for p > 0, he showed that
Kh'/ (T3, 5,,) =0 ifi >0orj >0

and, furthermore, in the maximal homological degree 0 we have

2n

Z(n—k)_(n—zlf—l) lfJ = —2k’ k = 0, Lo, Ny

0,/ —
Kh®/ (Tzln,an) - {0 otherwise

See [33, Corollaries 2 and 4]. For p < 0, the formula (2.4) for the Khovanov homology of the
mirror gives
KROT (1 )~ 2GI=GA) e j =2k, k=0,....n,
“n,2np 0 otherwise.

Note the similarity between these answers and (6.6). (When.n = 1, this was first observed
by Przytycki in [30].) In fact, a more direct relation between Kh%/ (T2/n,2n p)and Z(H ) comes
from [32]. There, Rozansky constructs a Khovanov homology for framed links in S x §2. We
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will only need the case of null-homologous links in S! x S?2, in which case the framing depen-
dence can be cancelled by a suitable shift in gradings, as shown by Willis in [34]. The Khovanov
homology of a null-homologous link L. C S! x S? is a well-defined bi-graded group, defined
as follows.

Suppose that L is given as the circular closure of a tangle 7" from 2n to 2n points. In the
standard picture of S! x §2 as O-surgery on the unknot, this corresponds to connecting the 27
pairs of points by arcs going through the unknot:

Recall from equation (6.1) that to the tangle 7', Khovanov associated a complex of
(H™, H™)-bimodules ¥ (T'). Rozansky’s extension of Khovanov homology to links in $? x S
sets the invariant of L to be the Hochschild homology of ¥ (T'):

Khi"*(82 x S1; L) := HH; (¥ (T)).
Moreover, in [32, Theorem 6.8], Rozansky shows that there is a canonical isomorphism
(6.15) Khi*(S? x S1; L) = Kh"*(L(p)) fori >ny —2p+2,

where 1 is the number of positive crossings in a diagram for 7', and L(p) C S3 is the link
obtained by inserting p full twists in the corresponding diagram for L at the place where the
2n arcs went through the O-framed unknot:

T

p full twists

This isomorphism is canonical in the sense that it arises from a natural isomorphism of certain
functors. Let FT5, be the full twist tangle on 2n strands, so that L(p) is the circular closure
of (FT2,)? o T. According to [32, Theorem 6.7], the complex ¥ ((FT»,)?) is a projective
resolution of the identity bimodule H” in a prescribed range of degrees. Let #(—) be any
functorial projective resolution. Then, wheni > n — 2p + 2, the functors

T — HH; (¥ (T)) := H; (?(T) ® JP(H”))
H"@(H")o
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and
T — Kb (L(p) = Hi(F(T) @  F((FT20)"))
Hn@(H")

compute the same Tor group. In particular, the canonical isomorphism in equation (6.15) is
natural with respect to maps induced from cobordisms between tangles.

Let us specialize to the case when i = 0 and T is the identity tangle 1d, , on 2n alter-
nately oriented strands. As in [25], we denote the corresponding link L C S! x S2 by Fon.
We have

Fn,n (p) = T2,n,2np'
We find that, for every p > 0,
Kh** (T3, 5,,) = HHo(H").

Using (2.4), we get a description of Kho’*(Tzln,Zn p) for p < 0. By the chain of isomorphisms
following [32, equation (6.13)] with H" replaced by % (T'), we have a duality isomorphism

(6.16) HH! (F (T)) =~ HH; (¥ (T))V{2n}

for an (1, n)-tangle T with mirror T. In particular, taking 7 to be the identity tangle gives an
isomorphism (up to a degree shift) between the Hochschild homology and cohomology of H".
Applying this isomorphism for i = 0,

Kh®* (T3, 5,,) = Kh*(T3, 5,,)Y = HHo(H")" = HH*(H"){-2n} for p <0.

See [32, Theorem 6.9]. (Some care has to be taken with respect to grading conventions: Rozan-
sky puts X in degree 2, so its quantum grading is the negative of the usual quantum grading
in Kh.)

The zeroth Hochschild cohomology of a ring equals its center. Therefore, we have canon-
ical isomorphisms

(6.17) Kh/ (T3, 5,,) = Z(H")Y,,; forp >0
and
(6.18) Kh®/ (T3, 2pp) = Z(H")2n—; for p <O.

Let us re-write (6.17) and (6.18) in terms of the Khovanov—Rozansky homology KhR5,
which is related to Kh by the formula (2.5). We are interested in Tzln,zn pasa framed link, in
which every component has framing p. A diagram for this framed link is obtained from the
standard diagram of the torus link T2/n,2n p (Which has writhe —2np) by adding p kinks in each
component. The writhe of the resulting diagram is then w = 0. Therefore, in view of (2.5),
we obtain

(6.19) KhRY/ (T3, 5np) = Z(H")2n4j for p >0
and
(6.20) KhRS (T3, 2np) = Z(H™)Y,_; for p <O0.

Note that Theorem 6.3 gives an explicit description of the center Z(H").
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6.5. Cobordism maps and the braid action. Note that in the definition of the cabled
Khovanov—Rozansky homology we had the cobordism maps wi[m]. In our case, there is a single
knot component, so we will drop the subscript i = 1 from the notation. Further, since N = 2,
the values of m can be 0 or 1. We will simply write i for Vf[o] and ¢ for w[l].

Thus, we are interested in the maps

0,/ 0,/
(6.21) ¥ =KhRa(Z)(-® 1) : KhR)/ (T3, 5,p) = KORY (T3, 5 (2n12)p)

and

(622) ¢ =KhRy(Z)(-® X) : KhRY/ (T3, 5,,) — KhRS F2(T), ) 0 h ),

where Z = Z; is the saddle cobordism from Tzln,zn » U U to Tzln +2.2n42)p’ which introduces
two new strands in the cable; cf. Section 3. We are interested in computing ¥ and ¢ as maps
relating Z(H") and Z(H" 1), under the identifications (6.19) and (6.20).

For this, we introduce the (n 4+ 1,n + 1)-tangle

Rf_/
2n

We denote by M = F(J) the (H"+!, H"*1)-bimodule associated to J.
Observe that the circular closure of J in S x S? is the following link:

This is the split disjoint union F;, , U U, which can also be represented as the circular closure of
the (n, n)-tangle Id, ,, U U. Therefore, we have two different ways of expressing the Khovanov
homology of Fy, , U U in terms of Hochschild homology:

(6.23) HH; (M) = Kh'"*(S2 x S1; F, ) = Kh'*(S2 x SY Fyp) @ A
>~ HH; (H") ® A.

To be in line with the conventions in this paper, we will work with KhR; instead of Kh;
compare (2.5). Thus, from equation (6.23) for i = 0, we have

HHo(H")Y ® 4" = HHo(M)",
HHY(H™){-2n} ® A{—2} = HH®(M){-2n — 2},

where we use equation (6.16) to get the second line. We thereby obtain an isomorphism

(6.24) HHO(H") ® 4 — HHY(M).
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We have HH?(H") = Z(H™), whereas HH® (M) is given by
(6.25) HH(M) = {m € M | mh = hm forall h € H"T1}.

Proposition 6.13 below will give an explicit formula for the isomorphism in (6.24), up to
sign. Before stating it, let us introduce some notation for certain elements of the bimodule M.

Recall that
M= D M.
a,bE(S,;_H

where , M}, is the complex associated to the link bJa.

Suppose we have a crossingless matching a € €,,. From a we can construct crossingless
matchings in €,41 in two ways. First, we get a matching @ € €,41 by connecting the last
two endpoints pr,+1 and pan+2. Then the link aJais the split disjoint union of aa and two

unknots:
(AN A~

Qe

a

LN
a \/

J

~ _/ _/
a\_—

Given an element x € ;,(H"), and w € KhRy(U U U) = A ® +A, we get an element

XQwegMz C M.

Second, given a € €,, let Out(a) denote the set of “outer” arcs in a, that is, those con-
necting points p; and p; (for i < j) such that no points px and p; with k <i < j <[ are
matched in a. For example, when a is the matching

N

P1 P2 P3 Pa Ps De

the outer arcs are those from p; to p4, and from ps to pg. For e € Out(a) connecting p; to
pj withi < j, we define a crossingless matching a®, € €, by connecting p; to p2,42 and
pj to pan+1. Notice that the link a%, Ja?, is diffeomorphic to aa:

. a [
a [ J

“\J
a_,

Under this diffeomorphism, an element x € ,(H"), produces a corresponding element

X, € ge. Mye, C M.
We let
X 1= Z x¢ e M.

e€Out(a)
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The assignment x +— x_, extends linearly to a map

@ a(Hn)a g @ aMg, X+ x.

acC, aGG,H_]

Furthermore, given v € 4, we will denote by x_, - v the result of acting by v using the mul-
tiplication coming from a small unknot near p,,. In other words, in terms of the module
action described at the end of Section 6.1, we identify the variable X € A with X5, and act
accordingly.

Let us define a map

O:Z(HHY®A > M, Ox®v)=x®AW)+ x> -v.

Observe that the map © is injective (because so is A).

Proposition 6.13. The image of the map ® is HH*(M) C M, and the isomorphism
Jfrom (6.24) is given by +0.

Proof. We will determine the structure of elements of HH? (M) in order to identify it as
the image of ®. Given m € HH?(M), let us write

m = Z amb N amb € aMb.
a,be€,

The defining property of elements m € HH?(M) is that they commute with all elements
of H"T1; cf. (6.25). In particular, they commute with the idempotents 41, corresponding to
eacha € €, 41. It follows that

amp =0 ifa #b.

Note that every crossingless matching b € €, 41 is either of the form @ or a®,, for some
a € €, and e € Out(a). Let us write

(6.26) m=m'+m",
where
(6.27) m' = Z amz and m” = Z Z at, Mge .
acC, ac@,;, e€Out(a)

Let us analyze the commutation relations between m and elements
he @ aH" Ma= @ o(HNa® A= H" @ A,
acC, aeC,
We have m”h = hm” = 0, and therefore m’h = hm’. Notice that
me P aMa = P o(H"a ® A = H" @ A®>,
ac€, ac€,
Letting m’" = 3 o; j<1 Wi,j ® X' ® X/ and h = v ® Xk for w; j,ve H" and k = 0, 1,

the relation m’h = hm’ implies that

(6.28) > (i v) @ X' @ X =3 (vw; ;) ® X' @ X7,
iaj l’]
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Taking k = 0, we find that w; ;v = vw; ; for each i, j. Since this holds for all v, we have
w;,j € Z(H"). Taking v = 1 and k = 1, (6.28) gives that woo = 0 and wo; = wio. Thus,

mM=w(IX+XN+uw XX

with w, w’ € Z(H"™). Note that the spanof 1 ® X + X ® 1 and X ® X is precisely the image
of the comultiplication A. Therefore,

(6.29) m' € Z(H") @ A(A).

Next, leta € €, and e € Out(a). Consider the element & € 7(H") e obtained by mark-
ing with 1 all the circles in the tangle a®, a. The commutation mh = hm reduces to the relation:

(6.30) (Gmz) -h =h-(ge mge ).

Observe that the left-hand side of (6.30) is given by multiplying the values from two circles in
a®, Ja (the one containing the arc e and th_e one at the top through p»,4+1 and paj,+2), while
keeping the values on the other circles of a®, Ja the same, as in the following example:

1
h ac, 1 m /\ Xy
/R /R
a 1
= /\x D
a ~ ~ Y
/
MG J
ala - 7
~ N N / /
a 2 Z3 Z2  Z3

On the other hand, the right-hand side of (6.30) is given by the comultiplication A applied
to the copy of # coming from the circle going through the last two points pa,+1 and pan42:

v
A(v)
e Z1 Z1 m
as [ A m ~ ~
J Z Z
ag,Mat, ~

Therefore, if we write

ama =YX ® Avi) € o(H")a ® A(A),

1
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from (6.30) we deduce that
(6.31) at.Mae, = D ()%, - vi.
i

It follows from (6.26), (6.27), (6.29) and (6.31) that m is in the image of ®. Conversely, it can
be checked that all the elements in the image of ® commute with every 4 € H"*!. Therefore,

HH®(M) = Im(®) C M.

To pin down isomorphism (6.24), we use the module action by R®Cn+1D) Recall from
Proposition 6.4 the description of HH?(H™) = Z(H™) as an R®?"-algebra. It follows that

Z(H") @ A = R®(2"+1)/< 3 X k= 1,...,2n>.
l11=k
On the other hand, as noted at the end of Section 6.1, an H"”!-module such as M admits an
action of R?"*2 (say, from the points at the bottom of the tangle). Since the last two points are
connected in the tangle J, it follows that X,,47, acts on M by —X5, 1. We can thus focus
on the action of R®27+1 on M, using the first 2n 4 1 variables. This descends to an action
of R®@n+1) on HHO(M) C M. The constructions in [32] preserve the R®2?*1) actions, and
therefore the isomorphism (6.24) is one of (graded) R®@7+1D_modules.
Observe also that the map ® preserves the module actions. A graded automorphism of

(6.32) R®(2"+1)/< 3 Xp k= 1,...,2n>
|I|=k

as an R®2"+1D_module is determined by the image of 189G+ The only elements in
R®Cn+1) with the same grading as 19271 are elements of the form m; ® -+ ® man41
for m; € Z C R. In order for this to be an automorphism, we must have that all of the m; are
+1. That is, the only graded automorphisms of (6.32) are + Id. It follows that given two mod-
ules isomorphic to (6.32), the isomorphism between them is uniquely determined up to sign.
Therefore, (6.24) must be given by £®. (We conjecture that it is ©.) O

We can now compute the maps from (6.21) and (6.22).

Proposition 6.14. Let p > 0. Under the identification (6.19), and using the description
of Z(H™) from Theorem 6.3, the maps r and ¢ from (6.21), (6.22) are given by

(6.33) ¥ : Z(H"antj — Z(H" Vontoyj, v(Xr) = £X1 - (Xant2 — Xan+1)
and

(634) ¢ : Z(H")ontj — Z(H" Vopgasrj.  ¢(X1) = £X1 - (= Xont1Xon42).

Proof. Consider the saddle cobordism S from the (n + 1,n 4 1)-tangle J to the iden-
tity Idp+1,n+1:
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This induces a cobordism map between the associated (H” !, H"T1)-bimodules:

F (S
M =70 T F(1dysr ) = HTF
By restriction, we get a map on Hochschild cohomology
F(S):HH°(M) — HH°(H" ).

By taking circular closures in the set S! x S?2, the cobordism S produces a cobordism
in [0, 1] x ST x S2 between the links Fy_, U U and Fy41 4+1. Furthermore, by introducing p
full twists in place of the 0-framed unknot, we get the saddle cobordism Z from T, uU
to Tz’n +2.2n42)p which produces the maps ¥ and ¢.

Equation (6.15) relates the Khovanov homology of a link L C S x §? to its counterpart
L(p) C S3 obtained by introducing p > 0 full twists. We get an isomorphism in homological
degree i = 0 provided that L has no positive crossings. By the naturality of this isomorphism,

there is a commutative diagram

n,2np

0.% KhR)™*(Z) 0.%
KhRy" (75, 5,, UU) KhRy ™ (T3, 42 2n+2)p)

| |

Z(H") ® A — = HHO(M) — 25, HHO(Hn+1),

The first isomorphism in the bottom row is (6.24), which is £® according to Proposition 6.13.
Therefore,

Y(x)=F(S)OKXx 1)), ¢x)=xF(S)OKx®X).
The maps v and ¢ preserve the R®2”-module action, so to describe them it suffices to evaluate
them on 1. We have

y(l) =xF(S)O(1®1))
= £F(S)(1® A1) + 1)

=i$(S)(Z(ala)®(l®X+X®1)+ 2 2 li)

acC, aeC, ecOut(a)
= i( > 2G(Xani2)D) + Y. Y. (ae, (Xant2)ae, — ag(X2n+1)ag))
ac@, acC, ecOut(a)
= £(Xont2 — Xont1),
where in the last equation we used the fact that X»,4+1 = —X2,42 on summands of H ntl of
the form z(H"*1)z. This proves (6.33).

Moreover,
¢(1) = £F(S)(O(1 ® X))
=12FS) 1 RQAX)+ 1, -X)
= j:?(S)( Z Gla) ®X X + Z Z le_>'X2n+2)

acC, acC€,, ecOut(a)

::l:(0+ Z Z (ae_>(_X2n+1X2n+2)ae—>))

acC€,, ecOut(a)
= F(X2n+1X2n+2)-
This proves (6.34). O
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Proposition 6.15. Let p < 0. Under the identification (6.20), and using the description
of Z(H™) from Theorem 6.3, the maps v and ¢ from (6.21)—(6.22) are

Y Z(H"), = Z(H"™ Y
given by

f(X;) ifI=JU{2n+2}, JC{l,....2n)
635 Y(NHXD==x{—f(Xy) fI=JUu{2n+1) JC{l,....2n),

0 otherwise,
and
¢:Z(H")y, ; — Z(H"™Y,
given by
f(Xy) iflI C{1,...,2n},
6.36 X7) ==+
( ) $(/)&D) {O otherwise.

Proof. This is similar to Proposition 6.14, except we should consider the reverse sad-
dle cobordism S” from the identity tangle Id, +1,,+1 to J. This gives a map on Hochschild
cohomology

F(S") : HH°(H"™1) — HH(M).

We get a commutative diagram

(KhRY*(Z))Y

(KhRO™ (7 L))

\Y 0,*
n+2,2n +2)p)) (Kth (T2,n,2np

l |

HHO(Hm ) — D RO (M) — = Z(H) @ A,

where the isomorphism in the last arrow at the bottom is £®~!. To compute ®~1 o F(S"),
observe that this preserves the R®2”-module structure, and therefore it suffices to evaluate it
on 1, Xon+1, Xon+2 and Xop4+1X2n+2. A straightforward calculation gives

O ToF (SN =1®1,
(O o F(S")(Xant2) = (O 0o F(S")(—X2nt1) = 1 ® X,
(O 1o F(S)(X2nt1X2n+2) = 0.

This describes (up to sign) the dual of the map KhRg’*(Z ). By taking duals, we obtain the
desired description of the maps v and ¢. O

Remark 6.16. In Propositions 6.14 and 6.15 we only specified the maps ¢ and i up to
a sign. We conjecture that all symbols & should be +, and F should be —.

One last ingredient in the definition of cabled Khovanov—Rozansky homology is the braid
group action. In [18, Section 5], Khovanov proves that the braid group action on H” induces an
action of the symmetric group S5, on the center Z(H"), which permutes the variables X;. In
our case, we are interested in the subgroup By, ,, which acts on Z(H") via the product S, x S,.
The first factor permutes the odd variables X5; 41, and the second the even variables X»;.
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6.6. Proof of Proposition 6.1. From the definition of the cabled Khovanov—Rozansky
homology, we have

KR, p) = (@D KORY™ (T3, 5,,)) )~
neN

where we divide by the linear and transitive closure of the relations of the form

Bi(b)yv ~v, Y()~0, @)~ v.

In the case p > 0, using (6.19) we get

0,/
KBRS (U, p) 2= (D Z(H" ) an+7 )/~
neN
Since we divide by the relations ¥ (v) ~ 0, and ¥ is given in (6.33) by multiplication with
+(X2n+2 — Xon+1), we find that the variables X5, 1 and X»,4> are identified in the quo-
tient. Using (6.34), we get that, up to a sign, ¢ is given by multiplication with

Xon+1Xon+2 = X22n+1 =0.
Therefore, after dividing by the relations ¢ (v) ~ v, everything collapses to zero:
0,/
KhRy*4(U, p) = 0.
Let us now consider the case p < 0. Using (6.20), we get

KRS (U, p) = (€D Z(H™Y, ) /~.
neN

It follows that K_hRg:z(U , p) is supported in quantum gradings of the form j = —2k for k > 0.

We start by looking at the quantum grading j = 0. From Theorem 6.3 we see that each
Z(H™)g is a copy of Z (generated by 1), and hence the same is true for Z(H")y. In the
equivalence relation all relations of the form ¥ (v) ~ O are trivial because the targets of the
maps V¥ are in degrees j < 0. The braid group action is the identity, and from (6.36) we see
that the maps ¢ : Z(H")y — Z(H”H)z)/ are isomorphisms. Hence, the relations ¢ (v) ~ v
identify together all the different Z(H")¢ = Z, and we have

KhR'o(U. p) = Z.

Next, we look at quantum gradings j = —2k with k > 0. By using the notation X, from
Section 6.3, formula (6.35) for the map i can be re-written as

V() ==%f Xopia— Xopi1)-

Consider the elements f, € Z(H ”);’k, where m is a partial matching of {1,...,2n}; cf.
Lemma 6.11. We have
VY (fm) = £ fm v{@n+2,2n41)})
Therefore, after dividing by the relations 1 (v) ~ 0, all elements of the form fyy are set to zero,
where m’ is a partial matching of {1, ...,2n + 2} that contains the last pair 2n + 2,2n + 1).
If m is a nonempty balanced partial matching of {1, 2,...,2n + 2}, the action of a suit-
able element in the braid group Bp41,,+1 (factoring through S, 41 % Sp41) will take fi
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to =+ fm, where m’ is a balanced matching containing the pair (2n + 2,2n + 1). It follows
that all fy, are set to zero, for nonempty balanced partial matchings m. Proposition 6.12 says
that these elements fp, generate Z(H ”+1);’ &> and therefore the whole group collapses to zero
after we divide by the equivalence relation.

This concludes the proof of Proposition 6.1 and hence of Theorem 1.3.

7. Connected sums

In this section, we prove Theorem 1.4. We will work with coefficients in a field k. We
write KhR y (L; k) for the gl y Khovanov—Rozansky homology of the framed link L with coef-
ficients in k. We write 8(],\’ (W L; k) for the skein lasagna module obtained using KhR y (L k)
instead of KhRy (L).

Remark 7.1. If char(k) = 0, then
KhRy (L:k) = KhRy (L) ®z k and S8 (W:L:k) = 8 (W:L) ®z k.

In general, this is not true, because of the presence of Tor terms in the universal coefficients
theorem.

Let us recall that, over a field, we have the following tensor product formula for the
Khovanov—-Rozansky homology of a split union:

KhRy (L1 U Lz k) = KhRy (L1;k) ®k KhRy (L2: k).

We will be interested in the case when the two links are mirror to each other. In that case, the
cylinder L x I is a cobordism from the empty link to L LI L. This provides a canonical element

B := KhRy(C)(1) € KhRy (L U L:k)) = KhRy (L; k) ® KhRy (L; k).

In order to decompose ‘B into a sum of simple tensors, we pick a basis {u; } for KhRy (L; k)
and write
B =) u ®w €KhRy(L:k) ®x KhRy (L:k)
1
for some w; € KhRy (L; k). In particular, the right-hand side of the above is independent of
the choice of basis {u; }.
We will need a lemma for cutting necks of surfaces in lasagna fillings.

Lemma 7.2. Let F be a lasagna filling of W with boundary L and surface X. Let B be
a 4-ball in the interior of W disjoint from the input balls and intersecting X. Suppose the inter-
section is of the form X N B = X N (B3 x I) = K x I for some link K C B3. Then we can
decompose ¥ = X° U (K x I). Let {u;} be a basis of KhRy (K k) so that B = )", u; ® w;.
Define F(u i) to be the lasagna filling specified by the same data as F, except we replace the
neck K x I with two input balls: one decorated with the link K and labelled by u; and the
other decorated with K and labelled by w; (see Figure 3). Then

[F1 =Y [F(u)] € 8 (W: K:k).

1

In particular, the right-hand side of this equation is independent of the choice of basis {u;}.
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T

L x1

Figure 3. The neck-cutting lemma.

B e KhRy (L UL)

Lx1T
N (9)
The neck L x [ Add a new input ball Evaluate the cobordism
inside of the surface & decorated with ¢ in the enclosed region

and labelled by 1. to obtain an
equivalent diagram.

Figure 4. Proof of the neck-cutting lemma.

Proof.  First observe that we can always add an input ball decorated by the empty set and
labelled by 1 € KhRy (@) to any filling without affecting its class in 86\’ . Add such an input
ball near the neck K x I. Enclose this new input ball together with the neck inside of a larger
ball, as in Figure 4. We can thereby view the cylindrical neck K x I as a cobordism from the
empty set to K L K. The image of 1 € KhR y (&) under this cobordism map is . Evaluating
this cobordism gives a sum of fillings with the new ball decorated with K LI K and labelled by
the #; ® w;. The claim follows by splitting this input ball into two balls, one with K and the
other with K. i

We now provide the proof of the tensor product formula for boundary connected sums.

Proof of Theorem 1.4. We define the isomorphism
W SN (Wi Lisk) @ 88 (Was Lo) — 88 (Wi § Was Ly U Lo k)

on simple tensors by setting W([F;] ® [F2]) to be the lasagna filling represented by F; U F5.

We define an inverse to W as follows. The boundary connected sum is obtained from W
and W, by identifying 3-dimensional balls By C 0W; and B, C 0W5; we write B for By = B,
as a subset of Wy f] W,. Let F be a lasagna filling of Wj fj W, with boundary L; U L, and
surface . After an isotopy, we can arrange that:

(a) The input balls for F are disjoint from B.
(b) The surface X intersects B transversely in a link K.

Decompose ¥ = X1 Uk X, where ¥; C W;. We can apply Lemma 7.2 to cut along K and
obtain
[F1 =) [F(ui)] € 8' (Wi § Wai L1 U La:K),
i

where each f(ui) is of the form Fl.1 U Fl.z, with fillings Fl.j of W; withboundary L;, j =1, 2.
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Then U}, [F'] ® [F?]) = [F], and we set

vH([F]) =) [F1 & [F].

1

We need to make sure that U~ is well-defined. Filling in one of the input balls of F
(in either Wy or W5) with another lasagna filling does not change the equivalence classes [ F’ l-l]
and [Fl.z], so the value of ¥~! is unchanged.

What is left to show is that W~!([F]) does not depend on the choice of isotopy used
to ensure conditions (a) and (b) above. Consider an isotopy that moves the lasagna filling
F = F(g) in afamily F;), € [0, 1], such that the final filling F{;) also satisfies (a) and (b).

With regard to (a), we can imagine the input balls of the fillings to be small (i.e., neigh-
borhoods of points). Generically, in a one-parameter family such as F{;), there can be finitely
many times ¢ where an input ball passes from one side of B to the other. Moving the input
ball to the other side is equivalent to replacing B with an isotopic ball B’, such that the region
between B and B’ is a cylinder B3 x [0, 1]:

L,

We obtain W~!([F]) in one case by cutting the filling F along B, and in the other case by
cutting it along B’. By Lemma 7.2, both of these are equivalent to cutting along both B and B’,
and therefore equivalent to each other.

To deal with (b), without loss of generality, we can now assume that the input balls do
not intersect B throughout the isotopy. Let X ;) be the surfaces for F(;). The intersections

J(t) = Z(t) NnB

may fail to be transverse at various points in (0, 1), but generically we can assume that the
union

J= | WyxJe) clo.1]xB
t€lo0,1]

is a smooth link cobordism between the links J(gy and J(1). Schematically, we draw this as:

J

W1 W2

We use the cobordism J to construct a surface with corners as follows. First, thicken the attach-
ing region B of Wy ] W5 to a neck [0, 1] x B. Then insert a copy of J into this neck. Finally,
take the union of J with Xy in the W factor and X1 in the W, to obtain

Elw) UJ UEm w)-
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By smoothing the corners of this surface, we obtain a new lasagna filling Fy. This is isotopic
to F(o) by an isotopy supported in W, and is isotopic to F{) by an isotopy supported in Wi:

——

241 W,

For example, the isotopy between F(q) and Fy is given at time ¢ by smoothing the corners of

Colw) U | (s} x J6) U Selw)-
s€[0,¢]

Fy
Fa

Applying W1 to F(o) consists in cutting its neck at {0} x B, which is equivalent to
cutting the neck of Fy at {0} x B (because they are related by an isotopy supported in W5).
Similarly, applying ¥~! to F(1) is equivalent to cutting the neck of Fy at {1} x B. From
Lemma 7.2 we see that the results of cutting Fy at {0} x B and {1} x B are equivalent, because
they are each equivalent to cutting the neck in both places.

This completes the proof of well-definedness for W™!. The fact that ¥ and W~ are
inverse to each other is immediate from the construction. |

We can also deduce the same result for interior connected sums.

Corollary 7.3. Let (Wy; Ly) and (Way; L) be a pair of 4-manifolds with links in the
boundaries. Let W1#W5 denote their interior connected sum. Then

SN (Wi#Wa: L1 U La: k) = 8N (Wi L1:k) @ 8Y (Wa: Ly k).

Proof. By Proposition 2.1, we can add and remove small 4-balls without affecting /S(])V .
We remove a small 4-ball from each of the W;, then perform the boundary connect sum along
3-balls in the new 3-sphere boundary components. The two boundaries glue together to give
a 3-sphere boundary component in the connected sum, which we then fill in with a 4-ball to
obtain W1#W,. Applications of Theorem 1.4 and Proposition 2.1 give the result. O
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