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Skein lasagna modules for 2-handlebodies

By Ciprian Manolescu at Stanford and Ikshu Neithalath at Odense

Abstract. Morrison, Walker, and Wedrich used the blob complex to construct a gen-

eralization of Khovanov–Rozansky homology to links in the boundary of a 4-manifold. The

degree zero part of their theory, called the skein lasagna module, admits an elementary defini-

tion in terms of certain diagrams in the 4-manifold. We give a description of the skein lasagna

module for 4-manifolds without 1- and 3-handles, and present some explicit calculations for

disk bundles over S2.

1. Introduction

Over the past twenty years, categorified knot invariants have been a central topic in

low-dimensional topology. The starting point was Khovanov’s categorification of the Jones

polynomial [15]. This was generalized by Khovanov and Rozansky in [20] to a sequence of

link homology theories KhRN for N � 1, where Khovanov homology corresponds to N D 2.

Khovanov homology has been successfully used to give new, combinatorial proofs of deep

results about smooth surfaces in 4-manifolds, such as the Milnor Conjecture [31] and the Thom

Conjecture [24], for which the original proofs involved gauge theory [22, 23]. Furthermore, by

now Khovanov homology has found its own novel topological applications, as for example

in the work of Piccirillo [28, 29]. Still, compared to the invariants derived from gauge theory

or Heegaard Floer homology, Khovanov homology has its limitations, due to the fact that its

construction is a priori just for links in R3. In particular, a major open question is whether

Khovanov or Khovanov–Rozansky homology can say something new about the classification

of smooth 4-manifolds.

In [27], Morrison, Walker, and Wedrich proposed an extension of Khovanov–Rozansky

homology to links in the boundaries of arbitrary oriented 4-manifolds. Specifically, they define

an invariant

S
N.W IL/ D

M

b2Z

S
N
b .W IL/ D

M

b2Z

�M

i;j 2Z

S
N
b;i;j .W IL/

�
;

which is a triply-graded Abelian group associated to a smooth, oriented 4-manifold W and

a framed linkL� àW . Two of the gradings (i and j ) are the usual ones in Khovanov–Rozansky
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homology, and the third, the blob grading b, is new. The construction of S
N .W IL/ starts by

defining the part in blob degree zero, S
N
0 .W IL/, in a manner reminiscent to that of the skein

modules of 3-manifolds. The group S
N
0 .W IL/, which we call the skein lasagna module, is

generated by certain objects called lasagna fillings of W with boundary L, modulo an equiva-

lence relation that captures the “local” cobordism relations in Khovanov–Rozansky homology.

Once S
N
0 .W IL/ is defined, the higher degree groups S

N
b
.W IL/ for b > 0 are obtained from

it using the machinery of blob homology from higher category theory [26].

It is shown in the paper [27] that, when W D B4, the invariant S
N
0 .W IL/ recovers the

Khovanov–Rozansky homology KhRN .L/, and S
N
b
.W IL/ D 0 for b > 0. While computing

blob homology in general is rather daunting, the skein lasagna module S
N
0 .W IL/ has a rela-

tively simple definition. Our goal here is to describe S
N
0 .W IL/ for a large class of non-trivial

4-manifolds W and links L � àW .

Precisely, we will be concerned with 2-handlebodies, that is, 4-dimensional manifoldsW

obtained from B4 by attaching n 2-handles. A Kirby diagram for such a manifold consists

of a framed, n-component link K � S3. For every homology class ˛ 2 H2.W I Z/ Š Zn,

we define the cabled Khovanov–Rozansky homology KhRN;˛.K/ as the direct sum of the

Khovanov–Rozansky homologies of an infinite collection of cables of K, modulo a certain

equivalence relation. (The exact definition is given in Section 3.)

The skein lasagna module naturally decomposes according to the relative homology

classes of lasagna fillings:

S
N
0 .W IL/ D

M

˛2H2.W;LIZ/

S
N
0 .W IL; ˛/:

Our main result is the following.

Theorem 1.1. LetW be the 4-manifold obtained from attaching 2-handles to B4 along

a framed n-component link K. For each ˛ 2 H2.W I Z/ Š Zn, we have an isomorphism

ˆ W KhRN;˛.K/
Š
�! S

N
0 .W I ;; ˛/:

In general, if we want to apply Theorem 1.1 to specific examples, we run into the diffi-

culty of calculating Khovanov–Rozansky homology for an infinite family of cables. Neverthe-

less, we can do an explicit calculation when K is the 0-framed unknot, so that W D S2 �D2.

Theorem 1.2. The skein lasagna module S
N
0 .S

2 �D2I ;/ is supported in homological

degree 0 and has the structure of a commutative ring. We have a ring isomorphism

S
N
0;0;�.S

2 �D2I ;/ Š ZŒA1; : : : ; AN �1; A0; A
�1
0 �;

where the Ak have quantum degree �2k. Under this isomorphism, the subgroup of lasagna

fillings with relative homology class ˛ 2 Z is identified with the subgroup of homogeneous

polynomials of degree ˛.

In particular, for N D 2 (which corresponds to Khovanov homology), we have

S
2
0;0;j .S

2 �D2I ;; ˛/ Š

´
Z if j D �2k; k � 0;

0 otherwise.
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When N D 2, we also get some partial information for the p-framed unknot for p ¤ 0.

Then W is the D2-bundle over S2 with Euler number p, which we denote by D.p/.

Theorem 1.3. For p > 0 andN D 2, the part of the skein lasagna module ofD.p/ that

lies in class ˛ D 0 and homological degree 0 is

S
2
0;0;�.D.p/I ;; 0/ D 0:

On the other hand, for p < 0 we have

S
2
0;0;j .D.p/I ;; 0/ D

´
Z if j D 0;

0 otherwise.

While Theorem 1.1 was formulated for the case where the linkL � àW is empty, we can

also handle the case of “local” links in àW , that is, those contained in a ball B3 � àW . Indeed,

we have the following tensor product formula for boundary connected sums. To state it, it is

convenient to work with coefficients in a field k, and write S
N .W ILI k/ for the corresponding

skein lasagna module.

Theorem 1.4. Let W1 and W2 be 4-manifolds with framed links Li � àWi and let

W1 \ W2 denote their boundary connected sum along specified copies of B3 � àWi away from

the links Li . Then

S
N
0 .W1 \ W2IL1 [ L2I k/ Š S

N
0 .W1IL1I k/˝ S

N
0 .W2IL2I k/:

Applying Theorem 1.4 to .W1IL1/ D .W I ;/ and .W2IL2/ D .B4IL/, we obtain:

Corollary 1.5. Let W be a 4-manifold and let L � B3 � àW be a framed link con-

tained within a ball in the boundary of W . Then we have

S
N
0 .W ILI k/ Š S

N
0 .W I ;I k/˝ KhRN .LI k/:

Furthermore, we can study skein lasagna modules associated to closed 4-manifolds. If

the boundary of a 2-handlebody W is S3, by attaching a ball we obtain a simply connected

smooth 4-manifold X . We can associate to X the skein lasagna module S
N
0 .X I ;/.

Proposition 1.6. If X a closed smooth 4-manifold, then

S
N
0 .X I ;/ Š S

N
0 .X n B4I ;/:

In particular, we see that S
N
0 .S

4I ;/ Š Z.

It is an open question [21, Problem 4.18] whether every closed, smooth, simply con-

nected four-manifold X admits a perfect Morse function or, equivalently, a Kirby diagram

without 1-handles or 3-handles; i.e., whether X n B4 is a 2-handlebody. In practice, many

four-manifolds are known to be of this form. The list of such manifolds include:

� CP2 and S2 � S2.

� The elliptic surfaces E.n/, including the K3 surface E.2/; see, e.g., [9, Figure8.15].

� More generally, the log transforms E.n/p; see [9, Corollary 8.3.17].
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� The Dolgachev surfaceE.1/2;3 and a few other elliptic surfaces of the formE.n/p;q; see

[1] and [35].

� Smooth hypersurfaces in CP3; see for example [2, Section 12.3].

� The cyclic k-fold branched covers Vk.d/ ! CP2 over curves of degree d , with k j d ;

cf. [2, Section 12.3].

� The Lefschetz fibrations X.m; n/ and U.m; n/ obtained as branched covers over curves

in Hirzebruch surfaces; cf. [9, Figures 8.31 and 8.32].

Theorem 1.1, combined with Proposition 1.6, is a step towards understanding the skein

lasagna modules for 4-manifolds from the above list. In particular, when X D CP2 or CP2,

we have a Kirby diagram with a single .˙1/-framed unknot, and Theorem 1.3 tells us itsN D 2

skein lasagna module in class ˛ D 0 and homological degree zero:

(1.1) S
2
0;0;�.CP2I ;; 0/ D 0; S

2
0;0;0.CP2I ;; 0/ Š Z:

For an invariant to be effective at detecting manifolds, one needs to be able to extract

finite data from it. The calculations above indicate that the skein lasagna modules can have

infinite rank overall, but may be finitely generated when we fix the bi-grading and the class ˛.

Question 1.7. Is it true that for every 4-manifold W , framed link L � W , class

˛ 2 H2.W;LI Z/, and values i; j 2 Z, the skein lasagna module S
N
0;i;j .W IL; ˛/ is finitely

generated?

Note that for the skein modules of closed 3-manifolds, a finite-dimensionality result was

recently proved by Gunningham, Jordan and Safronov [12].

A more ambitious problem is the following:

Question 1.8. Can the invariant S
N
0 .W IL/ detect exotic smooth structures on the

4-manifold W ?

One indication that the answer might be positive is the behavior under orientation rever-

sal. It is known that unitary TQFTs (which are symmetric under orientation reversal) cannot

detect exotic smooth structures on simply connected 4-manifolds; see [8]. On the other hand,

the Donaldson and Seiberg–Witten invariants (which can detect exotic smooth structures) are

highly sensitive to the orientation. The skein lasagna modules S
N
0 .W IL/ are constructed from

the cobordism maps on Khovanov–Rozansky homology, which are also sensitive to orientation.

In fact, in the case W D CP2 and N D 2, one can see explicitly from (1.1) that the invariants

of W and W are quite different.

Organization of the paper. In Section 2 we review the definition of skein lasagna

modules and establish some simple properties, including Proposition 1.6. In Section 3 we give

the definition of cabled Khovanov–Rozansky homology. In Section 4 we prove Theorem 1.1.

In Sections 5 and 6 we do our explicit calculations from Theorems 1.2 and 1.3. In Section 7 we

prove the connected sum formula, Theorem 1.4.

Acknowledgement. We are grateful to John Baldwin, Gage Martin, Sucharit Sarkar,

Paul Wedrich and Mike Willis for helpful conversations. We also thank the referees for helpful

comments on the paper.
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2. Skein lasagna modules

2.1. Conventions for Khovanov–Rozansky homology. In this paper we follow [27]

and, for a framed link L � R3, we write

KhRN .L/ D
M

i;j 2Z

KhR
i;j
N .L/

for the glN version of Khovanov–Rozansky homology. Here, i denotes the homological grad-

ing and j denotes the quantum grading. For a bi-graded group W , we will denote by W ¹lº the

result of shifting its second grading (in our case, the quantum grading) by l :

W ¹lºi;j D W i;j �l :

For example, the invariant of the 0-framed unknot is the commutative Frobenius algebra

(2.1) A WD KhRN .U; 0/ D H�.CPN �1/¹1 �N º D .ZŒX�=hXN i/¹1 �N º;

with 1 in bidegree .0; 1 �N/ and multiplication by X changing the bidegree by .0; 2/. The

comultiplication on A (which corresponds to a pair-of-pants cobordism) is given by

(2.2) �.Xm/ D

N �m�1X

kD0

XkCm ˝XN �1�k

and the counit on A is

(2.3) �.Xm/ D 0 for 0 � m � N � 2; �.XN �1/ D 1:

Note that KhRN is an invariant of framed links. We will distinguish it from the original

slN version of Khovanov–Rozansky homology from [20], which we denote by KhRN and

is independent of the framing. Further, KhRN was defined only over Q whereas KhRN has

coefficients in Z. The two theories differ by a shift in quantum grading:

KhRN .L/˝ Q Š KhRN .L/¹Nwº;

where w is the writhe of a diagram in which the given framing of L is the blackboard framing.

In the caseN D 2, we also have the ordinary Khovanov homology Kh.L/ defined in [15].

As noted in [20], we have

KhR
i;j
2 .L/ Š Khi;�j .L/˝ Q;

where L is the mirror of L. Moreover, from [15, Section 7.3], we know that the Khovanov

complexes of L and L are related by duality, and therefore the Khovanov homologies are

related by the universal coefficients theorem:

(2.4) Khi;j .L/ Š Hom.Kh�i;�j .L/;Z/˚ Ext.Kh1�i;�j .L/;Z/:

In this paper we will not use KhRN . We will mostly work with KhRN , but in Section 6

we will need to relate it to Kh because the relevant calculations in the literature are done in

terms of Kh. The relation between the two theories is given by a (non-canonical) isomorphism:

(2.5) KhR
i;j
2 .L/ Š Khi;�j �2w.L/:
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The usual Khovanov homology Kh.L/ is functorial under cobordisms in R3 � Œ0; 1�, but

only up to sign [14,19]. On the other hand, the gl2 version and, more generally, the glN homol-

ogy KhRN .L/, are functorial over Z [4, 7]. Furthermore, it is shown in [27] that KhRN .L/

is a well-defined invariant of framed links in S3, and is functorial under framed cobordisms

in S3 � Œ0; 1�. Given a framed cobordism † � S3 � Œ0; 1� from L0 to L1, the induced map

KhRN .†/ W KhRN .L0/ ! KhRN .L1/

is homogeneous of bidegree .0; .1 �N/�.†//. For N D 2, this map agrees with the usual

cobordism map

Kh.†/ W Kh.L0/ ! Kh.L1/;

up to pre- and post-composition with the isomorphisms (2.5).

If we have an oriented manifold S diffeomorphic to the standard 3-sphere S3, and

a framed link L � S , we can define a canonical invariant KhRN .S; L/ as in [27, Defini-

tion 4.12]. When S is understood from the context, we will drop it from the notation and

simply write KhRN .L/.

2.2. Definition. Let us review the construction of skein lasagna modules following

[27, Section 5.2].

Let W be a smooth oriented 4-manifold and L � àW a framed link. A lasagna filling

F D .†; ¹.Bi ; Li ; vi /º/ of W with boundary L consists of

� a finite collection of disjoint 4-ballsBi (called input balls) embedded in the interior orW ,

� a framed oriented surface † properly embedded in W n
S

i Bi , meeting àW in L and

meeting each àBi in a link Li , and

� for each i , a homogeneous label vi 2 KhRN .àBi ; Li /:

The bidegree of a lasagna filling F is

deg.F / WD
X

i

deg.vi /C .0; .1 �N/�.†//:

If W is a 4-ball, we can upgrade the functoriality of Kh to define a cobordism map

KhRN .†/ W
O

i

KhRN .àBi ; Li / ! KhRN .àW;L/

and an evaluation

KhRN .F / WD KhRN .†/
�O

i

vi

�
2 Kh.àW;L/:

We now define the skein lasagna module to be the bi-graded Abelian group

S
N
0 .W IL/ WD Z¹lasagna fillings F of W with boundary Lº=�;

where � is the transitive and linear closure of the following relation:

� Linear combinations of lasagna fillings are set to be multilinear in the labels vi .

� Furthermore, two lasagna fillings F1 and F2 are set to be equivalent if F1 has an input

ball B1 with label v1, and F2 is obtained from F1 by replacing B1 with another lasagna



Manolescu and Neithalath, Skein lasagna modules for 2-handlebodies 43

filling F3 of a 4-ball such that v1 D KhRN .F3/, followed by an isotopy rel boundary:

vi

�

B1
B2

F3

B1
B2 F2F1

v1

v2 v2vj

2.3. Homology classes of lasagna fillings. Given a lasagna filling F forL � àW spec-

ified by the data .†; ¹.Bi ; Li ; vi /º/, we denote by ŒF � its equivalence class in S
N
0 .W IL/. We

also define the homology class of F , denoted JF K 2 H2.W;LI Z/ by

JF K D
h�
†;L [

�[

i

Li

��i
2 H2

�
W;L [

�[

i

àBi

�
I Z
�

Š H2.W;LI Z/;

where Œ.†;L [ .
S

i Li //� denotes the relative fundamental class of the surface †. If F � F 0

are equivalent fillings in S
N
0 .W IL/, then F and F 0 agree up to isotopy outside of some dis-

joint balls. In particular, they are homologous relative to those balls, and thus homologous

inH2.W;LI Z/. Thus, an equivalence class ŒF � of lasagna fillings has a well-defined homology

class JF K.

Given ˛ 2 H2.W;LI Z/, let S
N
0 .W IL; ˛/ denote the subgroup of S

N
0 .W IL/ generated

by fillings with homology class ˛. Since S
N
0 .W IL/ is generated by lasagna fillings and the

fillings are partitioned according to their homology class, we obtain a decomposition

S
N
0 .W IL/ D

M

˛2H2.W;LIZ/

S
N
0 .W IL; ˛/:

2.4. Adding 3- and 4-handles. Smooth 4-manifolds admit handle decompositions,

which are represented pictorially by Kirby diagrams [9]. To compute S
N
0 .W I ;/ for W an

arbitrary smooth compact 4-manifold, we would need to understand how adding k-handles to

W affects S
N
0 .W I ;/. We will discuss 2-handles in detail in Section 4, and we cannot say much

about 1-handles. For now, we present the following result about 3- and 4-handles.

Proposition 2.1. Let i W W ! W 0 be the inclusion of a 4-manifold W into W 0. Then

we have a natural map

i� W S
N
0 .W I ;/ ! S

N
0 .W

0I ;/:

If W 0 is the result of a k-handle attachment to W , then i� is a surjection for k D 3, and an

isomorphism for k D 4.

Proof. Let ŒF � 2 S
N
0 .W I ;/ by the class of a lasagna filling F with surface†. Let i.F /

denote the filling F viewed inside of W 0. If F � eF , then clearly Œi.F /� D Œi.eF /�. Therefore,

we have a well-defined map i� W S
N
0 .W I ;/ ! S

N
0 .W

0I ;/ given by i�.ŒF �/ D Œi.F /�.

We observe that i� is surjective if every surface †0 � W 0 can be isotoped to lie in W .

Consider the case of W 0 being the result of attaching a k-handle h to W . Removing the cocore

of h from W 0 produces a manifold that deformation retracts to W . In particular, if † can be

isotoped to not intersect the cocore of h, then † can be isotoped to lie entirely in W . By
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transversality, this occurs when

dim.†/C dim.cocore.h// < 4;

2C .4 � k/ < 4;

2 < k:

When k D 3 or 4, the cocore is 1- or 0-dimensional, and hence embedded surfaces inW 0

can be isotoped off the handle. Thus, if W 0 is the result of attaching a 3-handle or 4-handle

to W , then i� is surjective.

If i W W ! W 0 is a 4-handle addition, then surfaces inW 0 can be isotoped off the handle

even in a one-parameter family. Therefore, if two lasagna fillings are equivalent in W 0, after

we isotope them to lie in W they are still equivalent in W . It follows that i� is injective, and

therefore an isomorphism.

Proof of Proposition 1.6. This is an immediate corollary of Proposition 2.1, because

a closed 4-manifold X is obtained from X n B4 by attaching a 4-handle.

3. The cabled Khovanov–Rozansky homology

3.1. The general definition. Let K � S3 be a framed oriented link with components

K1; : : : ; Kn. Fix also two n-tuples of nonnegative integers,

k� D .k�
1 ; : : : ; k

�
n / and kC D .kC

1 ; : : : ; k
C
n /:

Let K.k�; kC/ denote the framed, oriented link obtained from k�
i negatively oriented parallel

strands to Ki (where the choice of parallel strand is determined by the framing) and kC
i posi-

tively oriented parallel strands. The framing on each of the parallel strands is the same as the

framing on the corresponding knots Ki .

To be more precise, using the framing, we get a diffeomorphism fi between a tubular

neighborhood of Ki and S1 �D2. For each i , we pick distinct points

x�
1 ; : : : ; x

�
k�

i

; xC
1 ; : : : ; x

C

k
C

i

2 D2:

Then

K.k�; kC/ D
[

i

f �1
i .S1 � ¹x�

1 ; : : : ; x
�
k�

i

; xC
1 ; : : : ; x

C

k
C

i

º/:

Remark 3.1. Suppose n D 1 so thatK is a knot with some framing coefficient p. Then,

as an unoriented link, K.k�; kC/ is the .p.k� C kC/; .k� C kC// cable of K.

Let Bn be the braid group on n strands, and F W Bn ! Sn the natural homomorphism

to the symmetric group. For 0 � k � n, let Bk;n�k D F�1.Sk � Sn�k/. Thus, if we view the

braid group as the mapping class group of the punctured disk, then

Bk�
i

;k
C

i
� B

k�
i

Ck
C

i

consists of those self-diffeomorphisms that take the set of the first k�
i punctures to itself.
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A braid b 2 Bk�
i

;k
C

i
gives a cobordism inside D2 � Œ0; 1�. Taking the product of this

cobordism with S1, and using the identification between a neighborhood of Ki � S3 and

S1 �D2, we get a cobordism

†b � S1 �D2 � Œ0; 1� � S3 � Œ0; 1�

from the cableK.k�; kC/ to itself. The associated cobordism map, KhRN .†b/, gives an auto-

morphism of KhRN .K.k
�; kC//. In fact, the assignment ˇi W b ! KhRN .†b/ gives a group

action on Khovanov–Rozansky homology

ˇi W Bk�
i

;k
C

i
! Aut

�
KhRN .K.k

�; kC//
�
:

Let ei 2 Zn denote the i th basis vector. Observe that two strands parallel to Ki , if they

have opposite orientations, co-bound a ribbon band Ri in S3. By pushing Ri into S3 � Œ0; 1�

so that it is properly embedded there, removing a disk from Ri , and taking the disjoint union

with the identity cobordisms on the other strands, we obtain an oriented cobordism Zi from

K.k�; kC/ t U to K.k� C ei ; k
C C ei /. Here, U is the unknot and t denotes split disjoint

union. Observe that �.Zi / D �1, and the framing on Ki induces a framing on Zi . By the

discussion in Section 2.1, there is a well-defined cobordism map

KhRN .Zi / W KhRN .K.k
�; kC/ t U/ ! KhRN .K.k

� C ei ; k
C C ei //

which changes the bi-grading by .0;N � 1/. Note that

KhRN .K.k
�; kC/ t U/ Š KhRN .K.k

�; kC//˝ KhRN .U /:

Recall from (2.1) that A D KhRN .U / Š .ZŒX�=hXN i/¹1 �N º.

Thus, the information in the map KhRN .Zi / is encoded in N maps

 
Œm�
i W KhRN .K.k

�; kC// ! KhRN .K.k
� C ei ; k

C C ei //; m D 0; : : : ; N � 1;

given by

(3.1)  
Œm�
i .v/ D KhRN .Zi /.v ˝Xm/:

Note that  
Œm�
i changes the bi-grading by .0; 2m/.

Remark 3.2. Let bZi be the cobordism fromK.k�; kC/ toK.k�Cei ; k
CCei / obtained

from Zi by reintroducing the disk that was removed from the ribbon Ri . Since the map associ-

ated to a disk in Khovanov–Rozansky homology takes 1 7! 1, we see that  
Œ0�
i D KhRN .bZi /.

More generally,  
Œm�
i is the cobordism map associated to bZi decorated with m dots, in the

sense of [27, Example 2.1].

Remark 3.3. For conciseness, we did not include the link K and the values of k� and

kC in the notation ˇi , Ri , Zi ,  
Œm�
i .

Let W be the 2-handlebody obtained from B4 by attaching handles along the link K.

The homology H2.W I Z/ is freely generated by the cores of the handles, capped with Seifert

surfaces for eachKi . We identifyH2.W I Z/ Š Zn by letting the capped core of the i th handle

correspond to ei .

For ˛ D .˛1; : : : ; ˛n/ 2 H2.W I Z/ Š Zn, let ˛C denote its positive part and ˛� its

negative part; i.e., ˛C
i D max.˛i ; 0/ and ˛�

i D min.˛i ; 0/. We also let j˛j D
P

i j˛i j.



46 Manolescu and Neithalath, Skein lasagna modules for 2-handlebodies

Definition 3.4. The cabled Khovanov–Rozansky homology of K at level ˛ is

KhRN;˛.K/ D
�M

r2Nn

KhRN .K.r � ˛�; r C ˛C//¹.1 �N/.2r C j˛j/º
�
=�;

where the equivalence � is the transitive and linear closure of the relations

(3.2) ˇi .b/v � v;  
Œm�
i .v/ � 0 for m < N � 1;  

ŒN �1�
i .v/ � v

for all i D 1; : : : ; n; b 2 Bri �˛�;ri C˛C , and v 2 KhRN .K.r � ˛�; r C ˛C//:

Observe that the equivalence relation preserves the bi-grading, and hence there is an

induced bi-grading on KhRN;˛.K/.

Remark 3.5. In principle, there are several different maps of the form  
Œm�
i (with the

same domain and target), corresponding to different choices of the pair of oppositely oriented

strands that co-bound Ri . However, these maps differ by post-composition with some ˇi .b/.

Therefore, when we divide by relations (3.2), which already include ˇi .b/v � v, using one

choice of  
Œm�
i is the same as using any other choice.

3.2. The cabled Khovanov homology. WhenN D 2, which is the case corresponding

to Khovanov homology, Grigsby, Licata and Wehrli [10] showed that the braid group action on

the cable of a knot factors through the symmetric group. In order to explain this fact, we first

need to discuss orientations. Recall that Khovanov homology only depends on the orientation

of a link through a shift in the quantum degree. This shift depends on the number of positive and

negative crossings in the chosen orientation, which, for a cable of a knot, only depends on the

number of strands oriented each way. Symmetries of K induce maps on Khovanov homology,

even if they are not symmetries of K as an oriented link.

Now, for a framed knot K, let K.k�; kC/ be an oriented cable with at least two com-

ponents (for fewer components, the discussion of the braid group action is trivial). Number

the strands so that the first k� are negatively oriented and the last kC are positively oriented.

For 1 � i < k� C kC, choose a new orientation, if necessary, on K.k�; kC/ so that the i th

and .i C 1/st strands are oppositely oriented. Call this new oriented cable K.`�; `C/ , so that

`� C `C D k� C kC and `�; `C � 1. We have an isomorphism

Kh.K.k�; kC// Š Kh.K.`�; `C//¹wº

for some shift ¹wº. Let

bZ.i/ W K.`� � 1; `C � 1/ ! K.`�; `C/

be the previously defined cobordism where we specify that bZ introduces the i th and .i C 1/st

components. Let bZr.i/ be the reverse of bZ.i/. Then Kh.bZ.i// ı Kh.bZr.i// is an endomor-

phism of Kh.K.`�; `C//. After canceling the shifts, it can also be viewed as an endomorphism

of Kh.K.k�; kC//. Let �i be a generator of the braid group Bk�CkC that interchanges the

i th and .i C 1/st strands. Then ˇ.�i / is an automorphism of Kh.K.k�; kC//. With this under-

stood, we have:

Proposition 3.6 ([10, Proposition 9]). As endomorphisms of Kh.K.k�; kC//,

ˇ.�i / D id C Kh.bZ.i// ı Kh.bZr.i// D ˇ.��1
i /:
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In particular, the equation ˇ.�i / D ˇ.��1
i / implies that ˇ factors through the symmetric

group Sk�CkC .

Remark 3.7. Proposition 3.6 is stated in [10] for the action of the braid group on sutured

annular Khovanov homology, but the same proof works for Khovanov homology.

Thus, when K is a framed knot, we can replace the group Br�˛�;rC˛C in the definition

of the cabled Khovanov homology by the product of symmetric groups, Sr�˛� � SrC˛C .

If we work over a ring k where 2 is invertible, then we can use Proposition 3.6 to simplify

the cabled Khovanov–Rozansky homology even further. Let Kh.KI k/ denote the Khovanov

homology of K with coefficients in k. We can define KhR2;˛.KI k/, the cabled Khovanov

homology with coefficients in k, by replacing the Khovanov homologies of the cables in

Definition 3.4 with their versions with coefficients in k. With this notation, we have:

Proposition 3.8. Let k be a commutative ring where 2 is invertible. Then the cabled

Khovanov homology over k of a framed knot K at level ˛ is

KhR2;˛.KI k/ D
�M

r2N

Kh.K.r � ˛�; r C ˛C/I k/¹�2r � j˛jº
�
=�;

where the equivalence � is the transitive and linear closure of the relations

ˇ.b/v � v;  Œ1�.v/ � v

for all b 2 S2rCj˛j, and for all v 2 Kh.K.r � ˛�; r C ˛C/I k/:

Proof. The equivalence relation defining KhR2;˛.KI k/ consists of the relations

ˇ.b/v � v;  Œ0�.v/ � 0;  Œ1�.v/ � v

for all b 2 Br�˛�;rC˛C and all v 2 Kh.K.r � ˛�; r C ˛C/I k/. The group action ˇ factors

through Sr�˛� � SrC˛C . Let �i 2 S2rCj˛j denote the transposition that interchanges the i th

and .i C 1/st elements. If we number the components of K.r � ˛�; r C ˛C/ so that the first

r � ˛� are negatively oriented and the rest positively oriented, the �i for i D 1; : : : ; r�˛� �1;

r � ˛� C 1; : : : ; 2r C j˛j � 1 generate the desired subgroup Sr�˛� � SrC˛C . Thus, it suffices

to take the relations ˇ.�i /v � v for all such i .

The map  Œ0� is associated to a cobordism bZ that introduces two oppositely oriented

components. As explained in Remark 3.5, we can pick any two oppositely oriented compo-

nents. So, we choose the components numbered r � ˛� and r � ˛� C 1. Then, by Proposi-

tion 3.6, we have

(3.3) ˇ.�r�˛�/ D id C Œ0� ı Kh.bZr/:

Observe that bZr ı bZ is the union of a torus and some cylinders. By [11], we have

Kh.bZr/ ı Kh.bZ/ D 2 id:

Since we are working over a ring where 2 is a unit, this map is an isomorphism. In particular,

Kh.bZr/ is surjective. Thus, by equation (3.3), the relations  Œ0�.w/ � 0 for all w are equiv-

alent to the relations ˇ.�r�˛�/v � v for all v. But since the relations defining KhR2;˛.KI k/

already include ˇ.�i /v � v for i ¤ r � ˛�, adding the relation ˇ.�r�˛�/v � v generates the

full symmetric group S2rCj˛j.
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4. 2-handlebodies

In this section we prove our main result, about the skein lasagna modules of 2-handle-

bodies.

Proof of Theorem 1.1. We first define a map

ê W
M

r2Nn

KhRN .K.r � ˛�; r C ˛C//¹.1 �N/.2r C j˛j/º ! S
N
0 .W I ;; ˛/;

ê.v/ D ŒFv�

as follows. Let B be 4-dimensional ball slightly smaller than the 0-handle, contained in the

interior of that handle. Given an element v 2 KhRN .K.r � ˛�; r C ˛C//, we define ê.v/ to

be the class of the lasagna filling Fv with B as the only input ball, with B decorated with the

framed, oriented link K.r � ˛�; r C ˛C/ and labeled by the element v, and with the surface

given by the disjoint union of ri � ˛�
i negatively oriented disks parallel to the core of i th

2-handle and ri C ˛C
i positively oriented such disks (union over all i ). We will denote these

disks by C
i;˙

j , where 1 � j � ri ˙ ˛˙
i . Since the disks are contractible, they have unique

framings. The homology class of this surface in H2.W;BI Z/ Š H2.W I Z/ is clearly ˛ by

construction. See Figure 1.

We claim that, under the equivalence relation from Definition 3.4, ê maps equivalent

elements to the same class in S
N
0 .W I ;; ˛/. There are three types of relations to be checked.

First, consider the braid group action. Intuitively, this permutes the disks C
i;˙

j in the

2-handle. More precisely, let†b be the cobordism fromK.r � ˛�; r C ˛C/ to itself associated

to a braid b 2 Bk�
i

;k
C

i
. We can then view the filling Fv of W as obtained from Fˇi .b/v by

inserting into B a filling made of a smaller ball B 0 and the surface †b , with the input labeled

by v. Therefore, Fv and Fˇi .b/v represent the same class in S
N
0 .W I ;; ˛/.

Second, consider a slightly smaller ball B 0 contained in B , so that the region between

B 0 and B is a copy of S3 � Œ0; 1�. We put in that region the cobordism D � S3 � Œ0; 1�, from

K.r � ˛�; r C ˛C/ t U to K.r � ˛�; r C ˛C/, which is simply the split disjoint union of

the identity on K.r � ˛�; r C ˛C/ with a disk capping the unknot U . The cobordism map

C
i;˙

j

2-handle

B

0-handle

K.2; 1/

Figure 1. A generator for S
N
0 .W I ;; 0/.
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B
D

C
i;˙

j

B
0

B
Zi

C
i;˙

j

B
0

Figure 2. A schematic picture of the fillings Ew (left) and E 0
w (right). For simplicity, we drew the

components of the cable side by side, rather than nested.

associated to the cap is the counit (2.3). Therefore,

(4.1) KhRN .D/.v ˝Xm/ D 0 for m < N � 1; KhRN .D/.v ˝XN �1/ D v:

For every w 2 KhRN .K.r � ˛�; r C ˛C/ t U/, we construct a lasagna filling Ew with input

ball B 0, surface

D [
[

i;j

C
i;�

j [
[

i;j

C
i;C

j

and label w. Thus,Ew is obtained from the filling FKhRN .D/.w/ by adjoiningD. It follows that

the fillings Ew and FKhRN .D/.w/ are equivalent.

On the other hand, as in Section 3, we also have a cobordism Zi � S3 � Œ0; 1� from

K.r � ˛�; r C ˛C/ t U to K.r � ˛� C ei ; r C ˛C C ei /. For every

w 2 KhRN .K.r � ˛�; r C ˛C/ t U/;

we construct a new lasagna filling E 0
w from FKhRN .Zi /.w/ by adjoining Zi in the region

between B 0 and B . Then the fillings E 0
w and FKhRN .Zi /.w/ are equivalent.

Note that E 0
w has the same input data as Ew (namely, the ball B 0 and the label w); see

Figure 2. Moreover, the surface of E 0
w is obtained from that of Ew by taking connected sum

with the closed surface

(4.2) C
i;�
ri �˛�

i
Cei

[Ri [ C
i;C

ri C˛
C

i
Cei

Š S2;

where Ri is the ribbon between two oppositely oriented copies of Ki , as in Section 3. The

copy of S2 from (4.2) can be isotoped to lie entirely in the 2-handle. Since this sphere bounds

a 3-ball, taking a connected sum with it can be viewed simply as a surface isotopy. Therefore,

Ew and E 0
w are equivalent lasagna fillings. We conclude that

ê.KhRN .D/.w// D ŒFKhRN .D/.w/� D ŒEw � D ŒE 0
w �

D ŒFKhRN .Zi /.w/� D ê.KhRN .Zi /.w//

for every w 2 KhRN .K.r � ˛�; r C ˛C/ t U/ Š KhRN .K.r � ˛�; r C ˛C//˝ A:

Let v 2 KhRN .K.r � ˛�; r C ˛C//. If we takew D v ˝Xm, in view of equations (3.1)

and (4.1), we have

0 D ê. Œm�
i .v// for m < N � 1; ê.v/ D ê. ŒN �1�

i .v//:
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We have now verified our claim that ê takes equivalent elements to the same equivalence

class of lasagna fillings. This shows that ê descends to a map

ˆ W KhRN;˛.K/ ! S
N
0 .W I ;; ˛/:

Next, we define an inverse ˆ�1 to ˆ. Let F be a lasagna filling with surface †. By an

isotopy, we can push the input balls of F into the interior of the 0-handle and we can arrange

that † intersects the cocores Gi of the 2-handles transversely in a number of points. Since

we assume that the relative homology class of † is ˛, the signed intersection of † with Gi

must be ˛i . Thus, † intersects Gi in j˛i j C 2ri points. After another isotopy, we can assume

that † intersects the 2-handles only in core-parallel disks, one for each intersection with the

cocores. That is, all interesting topology of † is pushed into the 0-handle. Next, choose a ball

B 0 slightly smaller than the 0-handle, so that it contains all input balls and all of the interesting

topology of †. Finally, evaluate the part of F inside of B 0. These modifications show that F is

equivalent to a filling of the form ê.v/, and we let

ˆ�1.ŒF �/ WD Œv�

for v 2 KhRN .K.r � ˛�; r C ˛C//. Let us check that ˆ�1 is well-defined.

Firstly, if we change a lasagna filling F by filling in an input ball in B4, this does not

change its image under ˆ�1, because the intersection with the cocores of the 2-handles is

unchanged.

Secondly, in the definition of ˆ�1 we chose an isotopy of † that makes it transverse to

the cocores Gi of the 2-handles. If we made a different choice, the isotopy relating the two

choices is a 1-parameter family of surfaces †t ; t 2 Œ0; 1�. Let

Y D
[

t2Œ0;1�

�
¹tº �†t

�
� Œ0; 1� �W:

We can assume that Y is a smooth 3-dimensional submanifold with boundary, and that Y

intersects each Œ0; 1� �Gi transversely in a 1-manifold Pi . Let

�i W Pi ! Œ0; 1�

be the composition of the inclusion into Œ0; 1� �W with projection to the Œ0; 1� factor. After an

isotopy of Y rel boundary, we arrange so that �i are local diffeomorphisms away from finitely

many critical points (caps and cups). The critical values t1 < � � � < tn of �i , together with the

endpoints t0 D 0 and tnC1 D 1, split Œ0; 1� into finitely many intervals of the form Œtk; tkC1�.

After another isotopy of Y , we can assume that for some small � > 0, the collections of points

��1
i .tk C �/ and ��1

i .tkC1 � �/ coincide, as oriented submanifolds of the cocore Gi . Thus,

on the interval Œtk C �; tkC1 � ��, the surfaces †t stay transverse to the cocores, and the only

effect of varying the lasagna filling is to replace the element v with ˇi .b/.v/ for some braid

b 2 Bri � ˛�
i

;ri C ˛
C

i
: However, we have ˇi .b/.v/ � v, so the value ofˆ�1.ŒF �/ is unchanged.

At the critical values of �i , the surfaces †t are no longer transverse to the cocores of

the 2-handles. Rather, what happens is that we introduce or remove two intersections of oppo-

site signs. Introducing such points corresponds to “pushing a disk” from one lasagna filling

into the cocore; that is, replacing a lasagna filling of the form Ew with one of the form E 0
w ,

for some w 2 KhRN .K.r � ˛�; r C ˛C/ t U/. The corresponding values of ˆ�1 for these

fillings are FKhRN .D/.w/ and FKhRN .Zi /.w/. When w D v ˝Xm for m < N � 1, these give
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0 and  
Œm�
i .v/, and when w D v ˝XN �1, they give v and  

ŒN �1�
i .v/. Since the equivalence

that gives the cabled Khovanov–Rozansky homology includes the relations

 
Œm�
i .v/ � 0 for m < N � 1;  

ŒN �1�
i .v/ � v;

we see that the value of ˆ�1.ŒF �/ is the same for isotopic lasagna fillings.

This completes the proof that ˆ�1 is well-defined. It is straightforward to check that ˆ

and ˆ�1, as defined above, are inverse to each other.

Remark 4.1. Theorem 1.1 implies that KhRN;˛.K/ is invariant under handleslides

among the components of the link K. One can also give a more direct proof of this fact, using

just the functoriality of Khovanov–Rozansky homology, and without reference to the skein

algebra. We leave this as an exercise for the reader.

5. The 0-framed unknot

The ring structure on S
N
0 .S

2 �D2I ;/ is given by taking the union of lasagna fillings.

More precisely, let I � àD2 be an interval in the boundary of the disk. Then we have a gluing

.S2 �D2/ [S2�I .S
2 �D2/ Š S2 �D2:

This decomposition allows us to define a map

m W S
N
0 .S

2 �D2I ;/˝Z S
N
0 .S

2 �D2I ;/ ! S
N
0 .S

2 �D2I ;/

by the formula m.F1 ˝ F2/ D F1 [ F2. The fact that isotopic lasagna fillings are equivalent

shows that this map endows S
N
0 .S

2 �D2I ;/with the structure of an associative, commutative

algebra. It has unit given by the empty filling. Before proving Theorem 1.2, we identify the

braid group action on the Khovanov–Rozansky homology of the unlink.

Lemma 5.1. The braid group action on the Khovanov–Rozansky homology of the unlink

factors through the symmetric group.

Proof. Let �i 2 Bn be a generator of the braid group Bn and †�i
D �i � S1 the asso-

ciated cobordism from the n-component unlink U.n/ to itself. By definition, the action of �i

on KhRN .U.n// is given by

ˇ.�i / D KhRN .†�i
/:

To show that ˇ factors through the symmetric group, it suffices to check that ˇ.�2
i / is the

identity. Note that there is an action of A
˝n on KhRN .U.n// induced by the identity cobordism

on U.n/ decorated with dots on each component, as in [27, Example 2.1]. The cobordism map

ˇ.�2
i / is an isomorphism of A

˝n-modules and KhRN .U.n// is a rank one A
˝n-module, so to

compute ˇ.�2
i / it suffices to determine the image of 1 2 KhRN .U.n//. But 1 must be sent to

either ˙1, so ˇ.�2
i / D ˙ id. To determine the sign, since KhRN .U.n// has no 2-torsion, we

just need to evaluate ˇ.�2
i / on any non-zero element.

Let ci be the .n � 2; n/-tangle with a cup between the i th and .i C 1/st endpoints.

Then �2
i ı ci is isotopic to ci . Let Ci D ci � S1 be the associated cobordism from U.n � 2/

to U.n/. Then KhRN .Ci /.1/ D 1˝Xi CXiC1 ˝ 1, where Xi is the generator of the i th

tensor factor of A
˝n. In particular, KhRN .Ci / is not the zero map. Since �2

i ı ci � ci , we
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have †�2
i

ı Ci � Ci , so ˇ.�2
i / is the identity on the image of KhRN .Ci /. By the previous

discussion, it must be the identity map.

Proof of Theorem 1.2. As S2�D2 is the result of attaching a 2-handle along a 0-framed

unknot, we can apply Theorem 1.1 to obtain a group isomorphism

S
N
0 .S

2 �D2I ;/ Š
M

˛2Z

KhRN;˛.U; 0/;

and from Definition 3.4 we have

KhRN;˛.U; 0/ D
�M

r2N

KhRN .U.r � ˛�; r C ˛C//¹.1 �N/.2r C j˛j/º
�
=�;

where U.r � ˛�; r C ˛C/ is the .2r C j˛j/-component unlink. The Khovanov homology of

the n-component unlink is A
˝n, where A D .ZŒX�=hXN i/¹1 �N º. Letting V D A¹1 �N º

in order to absorb the shifts in the definition of KhRN;˛, we have

KhRN .U; 0/ D
M

˛2Z

�M

r2N

V
˝.r�˛�/ ˝ V

˝.rC˛C/
�
=�

The proof of the isomorphism in Theorem 1.1 shows that the disjoint union of lasagna fillings

corresponds to the tensor product of elements in KhRN .U; 0/. That is, the algebra structure on

KhRN .U; 0/ is defined as follows: for vi 2 V
˝.ri �˛�

i
/ andwi 2 V

˝.ri C˛
C

i
/, i D 1; 2, we have

.v1 ˝w1/ � .v2 ˝w2/ D .v1 ˝ v2/˝ .w1 ˝w2/ 2 V
˝.r1Cr2�˛�

1
�˛�

2
/ ˝ V

˝.r1Cr2C˛
C

1
C˛

C

2
/:

The group KhRN;˛.U; 0/ is supported in homological degree 0 because V is in homo-

logical degree 0. By Lemma 5.1, the braid group action factors through the symmetric group.

This action by Sr�˛� � SrC˛C simply permutes the tensor factors of V
˝.r�˛�/ ˝ V

˝.rC˛C/.

Reducing modulo this action, we are left with

KhRN;˛.U; 0/ D
�M

r2N

Symr�˛�

.V/˝ SymrC˛C

.V/
�
=�;

where Symr.V/ is the r th symmetric power of V . We write basis elements of V with indices

lowered to avoid confusion between the algebra structure on Sym.V/ and the algebra structure

on A (the latter plays no role in this discussion). For convenience, we also re-index the basis

and write xk 2 V for XN �1�k 2 A. Note that xk has quantum degree �2k.

We now consider the maps  Œm� in the equivalence relation �. For the 0-framed unknot,

the maps  Œm� are given by multiplication by �.Xm/, which is defined in equation (2.2). In

our preferred basis for V , we have

�.xm/ D

mX

kD0

xk ˝ xm�k :

We can use the multiplicative structure on KhRN .U; 0/ to write  ŒN �1�m�.v/ D �.xm/ � v.

So, if we define I to be the ideal of KhRN .U; 0/ generated by �.x0/ � 1 and the �.xm/ for

0 < m � N � 1, then we have a ring isomorphism

KhRN .U; 0/ Š
M

˛2Z

�M

r2N

Symr�˛�

.V/˝ SymrC˛C

.V/
�
=I

Š .Sym�.V/˝ Sym�.V//=I:
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To conclude, we must show that the above ring is isomorphic to ZŒA1; : : : ; AN �1; A0; A
�1
0 �.

Observe that Sym�.V/˝ Sym�.V/ is freely generated as a commutative algebra by the ele-

ments

Ai D 1˝ xi and Bi D xi ˝ 1 for 0 � i � N � 1:

In terms of these ring generators, the generators of the ideal I are

�.x0/ � 1 D A0B0 � 1;

�.xm/ D

mX

kD0

AkBm�k for 0 < m � N � 1:

Therefore,

KhRN .U; 0/

Š ZŒA0; : : : ; AN �1; B0; : : : ; BN �1�=

 
A0B0 � 1;

mX

kD0

AkBm�k for 0 < m � N � 1

!
:

The relation A0B0 � 1 lets us write B0 D A�1
0 . Then, since A0 is invertible, we can replace

the generator
Pm

kD0AkBm�k by

A�1
0

 
mX

kD0

AkBm�k

!
D Bm C A�1

0

 
mX

kD1

AkBm�k

!
:

This relation allows us to write the generatorBm in terms of theAi and theBj with 0 < j < m.

That is, the reducing modulo�.xN �1/ is equivalent to getting rid of the generatorBN �1. Then,

reducing modulo �.xN �2/ is equivalent to removing the generator BN �2, and so on until we

have used all of the�.xm/ relations and removed all of the Bm generators. This leaves us with

KhRN .U; 0/ Š ZŒA1; : : : ; AN �1; A0; A
�1
0 �

as advertised.

Since the relatively homology class of the lasagna filling associated to some element

p ˝ q 2 Symd1.V/˝ Symd2.V/ is given by d2 � d1, we see that the Ai have homology class

˛ D 1. Also, the homology class is additive under multiplication in the ring. So, the elements

with homology class ˛ are precisely the homogeneous polynomials of degree ˛.

6. The unknot with non-zero framing

The goal of this section is to prove Theorem 1.3. This will be a direct consequence of

Theorem 1.1 and the following:

Proposition 6.1. Let .U; p/ be the unknot with framing p.

(a) For N D 2 and p > 0, the cabled Khovanov–Rozansky homology of .U; p/ in homolog-

ical degree 0 and at level 0 2 Z is given by

KhR
0;j
2;0.U; p/ D 0 for all j 2 Z:
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(b) On the other hand, for N D 2 and p < 0 we have

KhR
0;j
2;0.U; p/ D

´
Z if j D 0;

0 otherwise.

An outline of the proof of Proposition 6.1 is as follows. The group KhR
0;�
2;0.U; p/ is built

from the Khovanov homologies of cables on the p-framed unknot. These cables are the T2n;2np

torus links. The Khovanov homology of these links in homological degree 0 has been com-

puted and, when p < 0, shown to be isomorphic to the center of Khovanov’s arc algebra Hn

(see [33]). For p > 0, it is isomorphic to the dual of the center of the arc algebra. To explain

these results, we introduce the arc algebra in Section 6.1 and describe explicit presentations

of its center and the dual of its center in Sections 6.2 and 6.3. In Section 6.4, we explain the

connection between the center of the arc algebra and the Khovanov homology of torus links.

In order to compute the cabled Khovanov homology, we also need to identify the cobordism

maps and braid group actions appearing in Definition 3.4. In Section 6.5, we compute these

maps under the identification of the Khovanov homology of the torus links with the center of

the arc algebra. We combine these ingredients in Section 6.6 to prove Proposition 6.1.

6.1. The ring H
n and tangle invariants. In [16], Khovanov extended his theory Kh

to tangles. We briefly sketch his construction here.

Throughout this section N D 2, and the invariant of the unknot is

A D .ZŒX�=hX2i/¹1º D Span¹1;Xº:

Let Cn be the set of crossingless matchings between 2n points on a line. For example, the

following is an element of C3:

For a 2 Cn, we let Na denote its reflection in the dashed line. Then, for every a; b 2 Cn, the

composition Nba is a collection of k circles in the plane:

a

b

a

Nb

To Nba we associate the tensor product of copies of A, one for each circle:

F . Nba/ D A
˝k :

Khovanov constructs a finite-dimensional graded ring

Hn WD
M

a;b2Cn

a.H
n/b;

where

a.H
n/b D F . Nba/¹nº:

The multiplication on Hn is

a.H
n/b ˝ d .H

n/c ! 0 if b ¤ d
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and

a.H
n/b ˝ b.H

n/c ! a.H
n/c

is given by a sequence of saddle maps taking Nbb into the identity tangle, using the multiplication

and comultiplication maps on the Frobenius algebra A:

a

Nb

a

Nc

b

Nc

Consider now a tangle T represented by a diagram inside a rectangle, connecting 2n

points at the bottom to 2m points at the top. This is called an .m; n/-tangle in the terminology

of [16]. To T Khovanov associates a complex of .Hn;Hm/-bimodules

(6.1) F .T / D
M

a2Cn

M

b2Cm

a.F .T //b;

where a.F .T //b is the usual Khovanov complex associated to the link obtained from the com-

position NbTa. Different diagrams for the same tangle produce homotopy equivalent complexes.

Finally, let us discuss a module action on the ringsHn. This is the analogue of the action

of

R D ZŒX�=hX2i D A¹�1º

on the Khovanov homology of a link L, which was constructed in [17]. The action of r 2 R

is given by introducing a small unknot near a basepoint on the knot, marking it with r , and

applying the multiplication map induced by the saddle cobordism from L t U to L:

L

U

L

More generally, if L has m components, there is an action of R˝m by using unknots near

basepoints on each component; cf. [13, Section 2] and [3, Section 2.2].

In our case, we view the ring Hn as an algebra over

(6.2) R˝2n D ZŒX1; : : : ; X2n�=hX
2
1 ; : : : ; X

2
2ni

by using unknots near each of the 2n points on the line. We set Xi to be .�1/i times the X

action from the unknot near the i th point.

If T is an .m; n/-tangle, then the complex of bimodules F .T / gets induced actions

of R˝2n (from the points at the bottom) and of R˝2m (from the points at the top).

Remark 6.2. The analogues of the Hn rings for the gl2 theory KhR2 were constructed

by Ehrig, Stroppel and Tubbenhauer in [5, 6]. It would be more natural to work with them,
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because the skein lasagna algebras are defined in terms of KhR2. However, we chose to use the

original Hn in order to be able to use various results from the literature that were proved in

that context.

6.2. The center of H
n. We will be interested in the center of the ring Hn, which was

computed in [18].

Theorem 6.3 (Khovanov [18]). The centerZ.Hn/ is isomorphic to the polynomial ring

ZŒX1; : : : ; X2n� modulo the ideal generated by the elements

X2
i ; i D 1; : : : ; 2n;

and X

jI jDk

XI ; k D 1; : : : ; 2n;

where XI D Xi1
: : : Xik

for I D ¹i1; : : : ; ikº, and the sum is over all the cardinality k subsets

of ¹1; : : : ; 2nº.

We grade Z.Hn/ so that each Xi is in degree 2. This corresponds to the convention for

KhR2, and is opposite the convention for Kh; see Section 2.1.

One can read off from [18] an explicit description of the elements Xi . Let p1; : : : ; p2n

be the 2n points on the line (in this order) that we connect by crossingless matchings. Then we

have

Xi D
X

a2Cn

a.Xi /a; a.Xi /a 2 a.H
n/a Š A

˝k¹nº;

where a.Xi /a is the tensor product of 1 2 A for each circle not going through pi , and of

.�1/iX 2 A for the circle going through pi . In other words, Xi exactly correspond to the

variables in the ringR˝2n from (6.2), applied to the identity element 1 2 Z.Hn/ � Hn. Thus,

we can improve Theorem 6.3 to a statement about R˝2n-algebras:

Proposition 6.4. As a R˝2n-algebra, the center Z.Hn/ is isomorphic to

R˝2n=
D X

jI jDk

XI ; k D 1; : : : ; 2n
E
;

where the sum is over all the cardinality k subsets of ¹1; : : : ; 2nº.

Lemma 6.5. The degree 2k part of Z.Hn/, denoted Z.Hn/2k , is generated (as an

Abelian group) by the XI over all cardinality k subsets I � ¹1; : : : ; 2nº, subject to the linear

relations:

(6.3)
X

jI jDk

I�J

XI D 0

for every subset J � ¹1; : : : ; 2nº of cardinality jJ j < k.

Proof. Starting from the description in Theorem 6.3, we see that Z.Hn/2k is generated

by all monomials of degree k modulo the homogeneous relations of polynomial degree k. Such
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relations are of the form

(6.4) XJ

X

jI jDk�`

XI

for all 0 � ` < k and all J with jJ j D `. Using that X2
i D 0, we can rewrite (6.4) as

(6.5) XJ

X

jI jDk�`

I\J D;

XI :

Replacing I by I [ J in (6.5), we get the desired conclusion.

Stošić [33, Proposition 1] showed that

(6.6) Z.Hn/j Š

´
Z.

2n
k /�.

2n
k�1/ if j D 2k; k D 0; : : : ; n;

0 otherwise.

The total rank of Z.Hn/ is
�
2n
n

�
. We can give a concrete basis for Z.Hn/ as follows.

Definition 6.6. A subset I � ¹1; 2; : : : ; 2nº is called admissible if

(6.7) jI \ ¹1; 2; : : : ; mºj �
m

2

for all m D 1; : : : ; 2k. We let

An
k D ¹I � ¹1; 2; : : : ; 2nº j I is admissible, jI j D kº:

Proposition 6.7 ([18, Lemma 8]). A basis for Z.Hn/2k consists of the elements XI

for I 2 An
k

.

Example 6.8. When n D 2, the ranks of Z.H 2/ in degrees 0; 2 and 4 are 1, 3 and 2,

respectively. A basis is given by 1, X2, X3, X4, X2X4 and X3X4.

6.3. The dual of the center. For a free Abelian group V , we will denote by

V _ D Hom.V;Z/

its dual. For example,Z.Hn/_
2k

is the dual ofZ.Hn/2k . In view of (6.6), this is a free Abelian

group of rank
�
2n
k

�
�
�

2n
k�1

�
. We will describe a set of interesting elements in Z.Hn/2k .

Let Zn
k

be the Abelian group freely generated by elements XI for I � ¹1; : : : ; 2nº with

jI j D k. The dual .Zn
k
/_ has a dual basis given by X_

I , where X_
I .XJ / is Kronecker’s ıIJ .

We introduce a multiplication on
L

k.Z
n
k
/_ by setting

X_
I �X_

J D

´
X_

I[J if I \ J D ;;

0 otherwise.

We can define a contraction operation .Zn
`
/_ �Zn

k
! Zn

k�`
by

X_
I .XJ / D

´
XJ nI if I � J;

0 otherwise.
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When k D `, this agrees with the action of the dual group. Furthermore, we have the associa-

tivity relation

(6.8) .X_
I �X_

J /.XK/ D X_
I .X

_
J ..XK//

Recall that Z.Hn/2k is the quotient of Zn
k

by relations (6.3). It follows that Z.Hn/_
2k

is a

subgroup of .Zn
k
/_ consisting of those functions f W Zn

k
! Z such that

(6.9) f
� X

jI jDk

I�J

XI

�
D 0;

for every subset J � ¹1; : : : ; 2nº with jJ j < k.

Definition 6.9. A partial matching of ¹1; 2; : : : ; 2nº is a set

m D ¹p1; : : : ; pkº

consisting of k disjoint pairs of elements from ¹1; 2; : : : ; 2nº, for some k �m. A pair pD .i; j /

is called balanced if it consists of an odd number and an even number, and a partial matching

m is called balanced if all the pairs pi in m are balanced.

Example 6.10. The following is a balanced partial matching of ¹1; : : : ; 8º:

¹.2; 5/; .3; 8/; .6; 7/º:

Given a partial matching m D ¹.i1; j1/; : : : ; .ik; jk/º, we define an element fm 2 .Zn
k
/_

by

fm D

kY

sD1

.X_
is

�X_
js
/:

Lemma 6.11. For every partial matching m, the element fm satisfies relations (6.9),

and therefore can be viewed as an element of Z.Hn/_
2k

.

Proof. We show that the expression

(6.10)

 
kY

sD1

.X_
is

�X_
js
/

!� X

jI jDk

I�J

XI

�

vanishes. First, we observe that all terms in (6.10) are zero if J contains elements that do not

appear in m. Indeed, each term in the sum is of the form

˙

 
kY

sD1

X_
�s

!
XI ;

where the symbol � is either � D i or � D j . By the definition of the product structure on the

dual group, this term is only non-zero if I D ¹�1; : : : ; �kº. However, since I � J , we must

have that J is contained in the set of elements in m.



Manolescu and Neithalath, Skein lasagna modules for 2-handlebodies 59

We now assume that all elements of J appear in m. Since jJ j < k, there is at least one

pair in m, say .i1; j1/, that does not contain elements of J . We split up the sum (6.10) according

to whether I contains i1; j1; or both. If I contains neither i1 nor j1, then it contributes zero

after applying the dual element X_
i1

�X_
j1

. Applying (6.8) to contract by X_
i1

�X_
j1

, (6.10)

becomes

 
kY

sD2

.X_
is

�X_
js
/

!
.X_

i1
�X_

j1
/
� X

jI jDk

I�J [¹i1º

j1 62I

XI C
X

jI jDk

I�J [¹j1º

i1 62I

XI C
X

jI jDk

I�J [¹i1;j1º

XI

�

D

 
kY

sD2

.X_
is

�X_
js
/

!� X

jI jDk�1

I�J

i1;j1 62I

XI �
X

jI jDk�1

I�J

j1;i1 62I

XI C
X

jI jDk�1

I�J [¹j1º

i1 62I

XI �
X

jI jDk�1

I�J [¹i1º

j1 62I

XI

�
:

The first two sums inside the last parentheses manifestly cancel. We can form a bijection

between the terms in the third and fourth sums as follows: if I is a subset contributing to the

third term, then I 0 D ¹j1º [ I n ¹i1º is a subset contributing to the fourth sum. Since neither

i1 nor j1 appear among the is; js for s > 1, we see that

 
kY

sD2

.X_
is

�X_
js
/

!
XI D

 
kY

sD2

.X_
is

�X_
js
/

!
XI 0

for such an I . Therefore, the terms in the third and fourth sums cancel as well.

We now exhibit a set of generators forZ.Hn/_
2k

. (Note that it will usually not be a basis.)

Proposition 6.12. The elements fm, over all balanced partial matchings m of cardinal-

ity k, generate the group Z.Hn/_
2k

.

Proof. Let us first show that fm, over all (not necessarily balanced) partial matchings

m of cardinality k, generate Z.Hn/_
2k

. Let V be the Abelian group freely generated by partial

matchings of cardinality k. We need to show that the linear homomorphism

V ! Z.Hn/_2k; m 7! fm

is surjective. This is equivalent to showing that its dual Z.Hn/2k ! V _ is injective. Proposi-

tion 6.7 tells us that a basis of Z.Hn/2k is given by XI with I 2 An
k

. Therefore, what we need

to check is that, if we have numbers aI 2 Z such that

(6.11) fm

� X

I2An
k

aIXI

�
D 0

for all partial matchings m of cardinality k, then aI D 0 for all I 2 An
k

.

We will prove this claim by induction on n. The base case n D 0 is clear, because f; D 1.

For the inductive step, assume the corresponding statement is true for n � 1 and all pos-

sible k. Suppose we have numbers aI satisfying (6.11). Consider first the partial matchings m

that consist only of pairs not involving the last two elements 2n � 1 and 2n. For such m,
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we have fm.XI / D 0 when I \ ¹2n � 1; 2nº ¤ ;. If I 2 An
k

has I \ ¹2n � 1; 2nº D ;, then

I is an admissible subset of ¹1; : : : ; 2n � 2º, and we can also view m as a partial matching

of ¹1; : : : ; 2n � 2º. Applying the inductive hypothesis for n � 1 and k, we deduce that

(6.12) aI D 0 for all I 2 An
k with I \ ¹2n � 1; 2nº D ;:

Next, consider an arbitrary partial matching m of ¹1; : : : ; 2n � 2º of cardinality k � 1.

If k < n, there exists some i 2 ¹1; : : : ; 2n � 2º that does not appear in any of the pairs in m.

Define the matching

m0 D m [ ¹.2n � 1; i/º

so that

fm0 D .X_
2n�1 �X_

i / � fm:

Applying (6.11) for m0, and using (6.12), we get

0 D fm0

� X

I2An
k

aIXI

�
D fm

� X

IDJ [¹2n�1º

J 2An�1
k�1

aIXJ

�
:

Since this is true for all possible m, from the inductive hypothesis for n � 1 and k � 1, we

deduce that

(6.13) aI D 0 for all I 2 An
k with I \ ¹2n � 1; 2nº D ¹2n � 1º:

Observe that if I \ ¹2n � 1; 2nº D ¹2n � 1º, the admissibility condition (6.7) for I applied to

m D 2n � 1 shows that our hypothesis k < n must be satisfied.

Let m still be a partial matching of ¹1; : : : ; 2n � 2º of cardinality k � 1, and set

m00 D m [ ¹.2n; 2n � 1/º

so that

fm00 D .X_
2n �X_

2n�1/ � fm:

Applying (6.11) for m0, and using (6.12) and (6.13), we find that

0 D fm00

� X

I2An
k

aIXI

�
D fm

� X

IDJ [¹2nº

J 2An�1
k�1

aIXJ

�
:

Applying the inductive hypothesis for n � 1 and k � 1, we deduce that

(6.14) aI D 0 for all I 2 An
k with I \ ¹2n � 1; 2nº D ¹2nº:

Finally, consider an arbitrary partial matching m of ¹1; : : : ; 2n � 2º of cardinality k � 2.

Since k � n, we can find i; j 2 ¹1; : : : ; 2n � 2º that are not in any pair in m. Let

m0 D m [ ¹.2n � 1; i/; .2n; j /º

so that

fm0 D .X_
2n�1 �X_

i /.X
_
2n �X_

j / � fm:

Applying (6.11) for m0, and using (6.12), (6.13) and (6.14), we get

0 D fm0

� X

I2An
k

aIXI

�
D fm

� X

IDJ [¹2n�1;2nº

J 2An�1
k�2

aIXJ

�
:



Manolescu and Neithalath, Skein lasagna modules for 2-handlebodies 61

From the inductive hypothesis for n � 1 and k � 2, we conclude that

aI D 0 for all I 2 An
k with ¹2n � 1; 2nº � I:

This shows that all aI vanish, and therefore fm generate Z.Hn/_
2k

.

To see that fm for balanced m also suffice to generate Z.Hn/_
2k

, we will prove that

every fm is a linear combination of the balanced ones. We will do this inductively: If m is not

balanced, we will express fm as a linear combination of elements corresponding to matchings

that have fewer unbalanced pairs than m.

An unbalanced partial matching m must contain a pair of odd elements, or a pair of even

elements. Suppose it contains both: a pair .a; b/ of odd elements, and a pair .c; d/ of even

elements. Using the relation

.X_
a �X_

b /.X
_
c �X_

d / D .X_
a �X_

c /.X
_
b �X_

d /C .X_
a �X_

d /.X
_
c �X_

b /;

we can turn fm into a sum fm0 C fm00 , where m0 and m00 have two fewer unbalanced pairs

than m.

If m does not contain both types of unbalanced pairs, without loss of generality let us

suppose it only contains pairs made of even elements, in addition to possibly some balanced

pairs. In total, there are more even than odd elements in the pairs in m, so there must be an odd

number a 2 ¹1; : : : ; 2nº that is not contained in any pair in m. Let .b; c/ be a pair in m with b

and c both even. Using the relation

X_
b �X_

c D .X_
b �X_

a /C .X_
a �X_

c /;

we can express fm as fm0 C fm00 , where m0 and m00 have one fewer unbalanced pair compared

to m. This completes the proof.

6.4. Hochschild homology and cohomology. For the study of the cabled Khovanov–

Rozansky homology of the p-framed unknot, we need to first understand the homologies of the

cables of .U; p/. Since we restrict ourselves to level ˛ D 0, these cables are the .2n; 2np/-torus

links T 0
2n;2np, with n strands positively oriented and n strands negatively oriented, going

through p full twists. The Khovanov homology of these links was studied by Stošić in [33].

There, for p > 0, he showed that

Khi;j .T 0
2n;2np/ D 0 if i > 0 or j > 0

and, furthermore, in the maximal homological degree 0 we have

Kh0;j .T 0
2n;2np/ D

´
Z.

2n
n�k/�.

2n
n�k�1/ if j D �2k; k D 0; : : : ; n;

0 otherwise.

See [33, Corollaries 2 and 4]. For p < 0, the formula (2.4) for the Khovanov homology of the

mirror gives

Kh0;j .T 0
2n;2np/ D

´
Z.

2n
n�k/�.

2n
n�k�1/ if j D 2k; k D 0; : : : ; n;

0 otherwise.

Note the similarity between these answers and (6.6). (When n D 1, this was first observed

by Przytycki in [30].) In fact, a more direct relation between Kh0;j .T 0
2n;2np/ andZ.Hn/ comes

from [32]. There, Rozansky constructs a Khovanov homology for framed links in S1 � S2. We
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will only need the case of null-homologous links in S1 � S2, in which case the framing depen-

dence can be cancelled by a suitable shift in gradings, as shown by Willis in [34]. The Khovanov

homology of a null-homologous link L � S1 � S2 is a well-defined bi-graded group, defined

as follows.

Suppose that L is given as the circular closure of a tangle T from 2n to 2n points. In the

standard picture of S1 � S2 as 0-surgery on the unknot, this corresponds to connecting the 2n

pairs of points by arcs going through the unknot:

T

0

Recall from equation (6.1) that to the tangle T , Khovanov associated a complex of

.Hn;Hn/-bimodules F .T /. Rozansky’s extension of Khovanov homology to links in S2 � S1

sets the invariant of L to be the Hochschild homology of F .T /:

Khi;�.S2 � S1IL/ WD HHi .F .T //:

Moreover, in [32, Theorem 6.8], Rozansky shows that there is a canonical isomorphism

(6.15) Khi;�.S2 � S1IL/ Š Khi;�.L.p// for i � nC � 2p C 2;

where nC is the number of positive crossings in a diagram for T , and L.p/ � S3 is the link

obtained by inserting p full twists in the corresponding diagram for L at the place where the

2n arcs went through the 0-framed unknot:

p full twists

T

0

T

This isomorphism is canonical in the sense that it arises from a natural isomorphism of certain

functors. Let FT2n be the full twist tangle on 2n strands, so that L.p/ is the circular closure

of .FT2n/
p ı T . According to [32, Theorem 6.7], the complex F ..FT2n/

p/ is a projective

resolution of the identity bimodule Hn in a prescribed range of degrees. Let P .�/ be any

functorial projective resolution. Then, when i � nC � 2p C 2, the functors

T ! HHi .F .T // WD Hi

�
F .T /

O

H n˝.H n/op

P .Hn/
�
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and

T ! Khi;�.L.p// D Hi

�
F .T /

O

H n˝.H n/op

F ..FT2n/
p/
�

compute the same Tor group. In particular, the canonical isomorphism in equation (6.15) is

natural with respect to maps induced from cobordisms between tangles.

Let us specialize to the case when i D 0 and T is the identity tangle Idn;n on 2n alter-

nately oriented strands. As in [25], we denote the corresponding link L � S1 � S2 by Fn;n.

We have

Fn;n.p/ D T 0
2n;2np:

We find that, for every p > 0,

Kh0;�.T 0
2n;2np/ Š HH0.H

n/:

Using (2.4), we get a description of Kh0;�.T 0
2n;2np/ for p < 0. By the chain of isomorphisms

following [32, equation (6.13)] with Hn replaced by F .T /, we have a duality isomorphism

(6.16) HHi .F .T // Š HHi .F .T //
_¹2nº

for an .n; n/-tangle T with mirror T . In particular, taking T to be the identity tangle gives an

isomorphism (up to a degree shift) between the Hochschild homology and cohomology ofHn.

Applying this isomorphism for i D 0,

Kh0;�.T 0
2n;2np/ Š Kh0;�.T 0

2n;�2np/
_ Š HH0.H

n/_ Š HH0.Hn/¹�2nº for p < 0:

See [32, Theorem 6.9]. (Some care has to be taken with respect to grading conventions: Rozan-

sky puts X in degree 2, so its quantum grading is the negative of the usual quantum grading

in Kh.)

The zeroth Hochschild cohomology of a ring equals its center. Therefore, we have canon-

ical isomorphisms

(6.17) Kh0;j .T 0
2n;2np/ Š Z.Hn/_2nCj for p > 0

and

(6.18) Kh0;j .T 0
2n;2np/ Š Z.Hn/2n�j for p < 0:

Let us re-write (6.17) and (6.18) in terms of the Khovanov–Rozansky homology KhR2,

which is related to Kh by the formula (2.5). We are interested in T 0
2n;2np as a framed link, in

which every component has framing p. A diagram for this framed link is obtained from the

standard diagram of the torus link T 0
2n;2np (which has writhe �2np) by adding p kinks in each

component. The writhe of the resulting diagram is then w D 0. Therefore, in view of (2.5),

we obtain

(6.19) KhR
0;j
2 .T 0

2n;2np/ Š Z.Hn/2nCj for p > 0

and

(6.20) KhR
0;j
2 .T 0

2n;2np/ Š Z.Hn/_2n�j for p < 0:

Note that Theorem 6.3 gives an explicit description of the center Z.Hn/.
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6.5. Cobordism maps and the braid action. Note that in the definition of the cabled

Khovanov–Rozansky homology we had the cobordism maps  
Œm�
i . In our case, there is a single

knot component, so we will drop the subscript i D 1 from the notation. Further, since N D 2,

the values of m can be 0 or 1. We will simply write  for  Œ0� and � for  Œ1�:

Thus, we are interested in the maps

(6.21)  D KhR2.Z/.� ˝ 1/ W KhR
0;j
2 .T 0

2n;2np/ ! KhR
0;j
2 .T 0

2nC2;.2nC2/p/

and

(6.22) � D KhR2.Z/.� ˝X/ W KhR
0;j
2 .T 0

2n;2np/ ! KhR
0;iC2
2 .T 0

2nC2;.2nC2/p/;

whereZ D Z1 is the saddle cobordism from T 0
2n;2np t U to T 0

2nC2;.2nC2/p
, which introduces

two new strands in the cable; cf. Section 3. We are interested in computing  and � as maps

relating Z.Hn/ and Z.HnC1/, under the identifications (6.19) and (6.20).

For this, we introduce the .nC 1; nC 1/-tangle

J WD � � �

2n

We denote by M D F .J / the .HnC1;HnC1/-bimodule associated to J .

Observe that the circular closure of J in S1 � S2 is the following link:

......

0

This is the split disjoint unionFn;n t U , which can also be represented as the circular closure of

the .n; n/-tangle Idn;n t U . Therefore, we have two different ways of expressing the Khovanov

homology of Fn;n t U in terms of Hochschild homology:

HHi .M/ Š Khi;�.S2 � S1IFn;n/ Š Khi;�.S2 � S1IFn;n/˝ A(6.23)

Š HHi .H
n/˝ A:

To be in line with the conventions in this paper, we will work with KhR2 instead of Kh;

compare (2.5). Thus, from equation (6.23) for i D 0, we have

HH0.H
n/_ ˝ A

_ Š HH0.M/_;

HH0.Hn/¹�2nº ˝ A¹�2º Š HH0.M/¹�2n � 2º;

where we use equation (6.16) to get the second line. We thereby obtain an isomorphism

(6.24) HH0.Hn/˝ A
Š
�! HH0.M/:
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We have HH0.Hn/ D Z.Hn/, whereas HH0.M/ is given by

(6.25) HH0.M/ D ¹m 2 M j mh D hm for all h 2 HnC1º:

Proposition 6.13 below will give an explicit formula for the isomorphism in (6.24), up to

sign. Before stating it, let us introduce some notation for certain elements of the bimodule M .

Recall that

M D
M

a;b2CnC1

aMb;

where aMb is the complex associated to the link NbJa.

Suppose we have a crossingless matching a 2 Cn. From a we can construct crossingless

matchings in CnC1 in two ways. First, we get a matching za 2 CnC1 by connecting the last

two endpoints p2nC1 and p2nC2. Then the link zaJ za is the split disjoint union of Naa and two

unknots:

J

a

Na

Qa

Qa

Given an element x 2 a.H
n/a and w 2 KhR2.U t U/ Š A ˝ A, we get an element

x ˝ w 2 zaMza � M:

Second, given a 2 Cn, let Out.a/ denote the set of “outer” arcs in a, that is, those con-

necting points pi and pj (for i < j ) such that no points pk and pl with k < i < j < l are

matched in a. For example, when a is the matching

p6p1 p2 p3 p4 p5

the outer arcs are those from p1 to p4, and from p5 to p6. For e 2 Out.a/ connecting pi to

pj with i < j , we define a crossingless matching ae
! 2 CnC1 by connecting pi to p2nC2 and

pj to p2nC1. Notice that the link ae
!Ja

e
! is diffeomorphic to aa:

a
e

!

a

Na

e

J

ae

!

Under this diffeomorphism, an element x 2 a.H
n/a produces a corresponding element

xe
! 2 ae

!
Mae

!
� M:

We let

x! WD
X

e2Out.a/

xe
! 2 M:
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The assignment x 7! x! extends linearly to a map
M

a2Cn

a.H
n/a !

M

a2CnC1

aMa; x 7! x!:

Furthermore, given v 2 A, we will denote by x! � v the result of acting by v using the mul-

tiplication coming from a small unknot near p2n. In other words, in terms of the module

action described at the end of Section 6.1, we identify the variable X 2 A with X2n and act

accordingly.

Let us define a map

‚ W Z.Hn/˝ A ! M; ‚.x ˝ v/ D x ˝�.v/C x! � v:

Observe that the map ‚ is injective (because so is �).

Proposition 6.13. The image of the map ‚ is HH0.M/ � M , and the isomorphism

from (6.24) is given by ˙‚.

Proof. We will determine the structure of elements of HH0.M/ in order to identify it as

the image of ‚. Given m 2 HH0.M/, let us write

m D
X

a;b2CnC1

amb ; amb 2 aMb:

The defining property of elements m 2 HH0.M/ is that they commute with all elements

of HnC1; cf. (6.25). In particular, they commute with the idempotents a1a corresponding to

each a 2 CnC1. It follows that

amb D 0 if a ¤ b:

Note that every crossingless matching b 2 CnC1 is either of the form za or ae
!, for some

a 2 Cn and e 2 Out.a/. Let us write

(6.26) m D m0 Cm00;

where

(6.27) m0 D
X

a2Cn

zamza and m00 D
X

a2Cn

X

e2Out.a/

ae
!
mae

!
:

Let us analyze the commutation relations between m and elements

h 2
M

a2Cn

za.H
nC1/za Š

M

a2Cn

a.H
n/a ˝ A Š Hn ˝ A:

We have m00h D hm00 D 0, and therefore m0h D hm0: Notice that

m0 2
M

a2Cn

zaMza Š
M

a2Cn

a.H
n/a ˝ A

˝2 Š Hn ˝ A
˝2:

Letting m0 D
P

0�i;j �1wi;j ˝X i ˝Xj and h D v ˝Xk for wi;j;; v 2 Hn and k D 0; 1,

the relation m0h D hm0 implies that

(6.28)
X

i;j

.wi;j v/˝X i ˝Xj Ck D
X

i;j

.vwi;j /˝X iCk ˝Xj :
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Taking k D 0, we find that wi;j v D vwi;j for each i; j . Since this holds for all v, we have

wi;j 2 Z.Hn/. Taking v D 1 and k D 1, (6.28) gives that w00 D 0 and w01 D w10. Thus,

m0 D w ˝ .1˝X CX ˝ 1/C w0 ˝X ˝X

with w;w0 2 Z.Hn/. Note that the span of 1˝X CX ˝ 1 andX ˝X is precisely the image

of the comultiplication �. Therefore,

(6.29) m0 2 Z.Hn/˝�.A/:

Next, let a 2 Cn and e 2 Out.a/. Consider the element h 2 za.H
n/ae

!
obtained by mark-

ing with 1 all the circles in the tangle ae
!za. The commutationmh D hm reduces to the relation:

(6.30) .zamza/ � h D h � .ae
!
mae

!
/:

Observe that the left-hand side of (6.30) is given by multiplying the values from two circles in

ae
!J za (the one containing the arc e and the one at the top through p2nC1 and p2nC2), while

keeping the values on the other circles of ae
!J za the same, as in the following example:

z1

J

Qa

Qa

Qa

1

1
x

xy
h

QamQa

ae
!

1

y

z2 z3z2 z3

z1

On the other hand, the right-hand side of (6.30) is given by the comultiplication� applied

to the copy of A coming from the circle going through the last two points p2nC1 and p2nC2:

z2

�.v/

a
e

!
ma

e

!

h

J

ae

!

ae
!

ae
!

Qa

1

1 1

v

z1 z1

z2

Therefore, if we write

zamza D
X

i

xi ˝�.vi / 2 a.H
n/a ˝�.A/;
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from (6.30) we deduce that

(6.31) ae
!
mae

!
D
X

i

.xi /
e
! � vi :

It follows from (6.26), (6.27), (6.29) and (6.31) that m is in the image of ‚. Conversely, it can

be checked that all the elements in the image of ‚ commute with every h 2 HnC1. Therefore,

HH0.M/ D Im.‚/ � M:

To pin down isomorphism (6.24), we use the module action by R˝.2nC1/. Recall from

Proposition 6.4 the description of HH0.Hn/ D Z.Hn/ as an R˝2n-algebra. It follows that

Z.Hn/˝ A Š R˝.2nC1/=
D X

jI jDk

XI ; k D 1; : : : ; 2n
E
:

On the other hand, as noted at the end of Section 6.1, an HnC1-module such as M admits an

action of R2nC2 (say, from the points at the bottom of the tangle). Since the last two points are

connected in the tangle J , it follows that X2nC2 acts on M by �X2nC1. We can thus focus

on the action of R˝.2nC1/ on M , using the first 2nC 1 variables. This descends to an action

of R˝.2nC1/ on HH0.M/ � M . The constructions in [32] preserve the R˝.2nC1/ actions, and

therefore the isomorphism (6.24) is one of (graded) R˝.2nC1/-modules.

Observe also that the map ‚ preserves the module actions. A graded automorphism of

(6.32) R˝.2nC1/=
D X

jI jDk

XI ; k D 1; : : : ; 2n
E

as an R˝.2nC1/-module is determined by the image of 1˝.2nC1/. The only elements in

R˝.2nC1/ with the same grading as 1˝.2nC1/ are elements of the form m1 ˝ � � � ˝m2nC1

for mi 2 Z � R. In order for this to be an automorphism, we must have that all of the mi are

˙1. That is, the only graded automorphisms of (6.32) are ˙ Id. It follows that given two mod-

ules isomorphic to (6.32), the isomorphism between them is uniquely determined up to sign.

Therefore, (6.24) must be given by ˙‚. (We conjecture that it is ‚.)

We can now compute the maps from (6.21) and (6.22).

Proposition 6.14. Let p > 0. Under the identification (6.19), and using the description

of Z.Hn/ from Theorem 6.3, the maps  and � from (6.21), (6.22) are given by

(6.33)  W Z.Hn/2nCj ! Z.HnC1/2nC2Cj ;  .XI / D ˙XI � .X2nC2 �X2nC1/

and

(6.34) � W Z.Hn/2nCj ! Z.HnC1/2nC4Cj ; �.XI / D ˙XI � .�X2nC1X2nC2/:

Proof. Consider the saddle cobordism S from the .nC 1; nC 1/-tangle J to the iden-

tity IdnC1;nC1:

� � �� � �

S



Manolescu and Neithalath, Skein lasagna modules for 2-handlebodies 69

This induces a cobordism map between the associated .HnC1;HnC1/-bimodules:

M D F .J /
F .S/
���! F .IdnC1;nC1/ D HnC1:

By restriction, we get a map on Hochschild cohomology

F .S/ W HH0.M/ ! HH0.HnC1/:

By taking circular closures in the set S1 � S2, the cobordism S produces a cobordism

in Œ0; 1� � S1 � S2 between the links Fn;n t U and FnC1;nC1. Furthermore, by introducing p

full twists in place of the 0-framed unknot, we get the saddle cobordism Z from T 0
2n;2np t U

to T 0
2nC2;.2nC2/p

which produces the maps  and �.

Equation (6.15) relates the Khovanov homology of a link L � S1 � S2 to its counterpart

L.p/ � S3 obtained by introducing p > 0 full twists. We get an isomorphism in homological

degree i D 0 provided that L has no positive crossings. By the naturality of this isomorphism,

there is a commutative diagram

KhR
0;�
2 .T 0

2n;2np t U/

��

KhR
0;�

2
.Z/

// KhR
0;�
2 .T 0

2nC2;.2nC2/p
/

��

Z.Hn/˝ A
Š

// HH0.M/
F .S/

// HH0.HnC1/.

The first isomorphism in the bottom row is (6.24), which is ˙‚ according to Proposition 6.13.

Therefore,

 .x/ D ˙F .S/.‚.x ˝ 1//; �.x/ D ˙F .S/.‚.x ˝X/:

The maps  and � preserve theR˝2n-module action, so to describe them it suffices to evaluate

them on 1. We have

 .1/ D ˙F .S/.‚.1˝ 1//

D ˙F .S/.1˝�.1/C 1!/

D ˙F .S/
� X

a2Cn

.za1za/˝ .1˝X CX ˝ 1/C
X

a2Cn

X

e2Out.a/

1e
!

�

D ˙
� X

a2Cn

2.za.X2nC2/za/C
X

a2Cn

X

e2Out.a/

�
ae

!
.X2nC2/ae

!
� ae

!
.X2nC1/ae

!

��

D ˙.X2nC2 �X2nC1/;

where in the last equation we used the fact that X2nC1 D �X2nC2 on summands of HnC1 of

the form za.H
nC1/za: This proves (6.33).

Moreover,

�.1/ D ˙F .S/.‚.1˝X//

D ˙F .S/.1˝�.X/C 1! �X/

D ˙F .S/
� X

a2Cn

.za1za/˝X ˝X C
X

a2Cn

X

e2Out.a/

1e
! �X2nC2

�

D ˙
�
0C

X

a2Cn

X

e2Out.a/

�
ae

!
.�X2nC1X2nC2/ae

!

��

D �.X2nC1X2nC2/:

This proves (6.34).
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Proposition 6.15. Let p < 0. Under the identification (6.20), and using the description

of Z.Hn/ from Theorem 6.3, the maps  and � from (6.21)–(6.22) are

 W Z.Hn/_2n�j ! Z.HnC1/_2nC2�j

given by

(6.35)  .f /.XI / D ˙

8
<̂

:̂

f .XJ / if I D J [ ¹2nC 2º; J � ¹1; : : : ; 2nº;

�f .XJ / if I D J [ ¹2nC 1º; J � ¹1; : : : ; 2nº;

0 otherwise,

and

� W Z.Hn/_2n�j ! Z.HnC1/_2n�j

given by

(6.36) �.f /.XI / D ˙

´
f .XI / if I � ¹1; : : : ; 2nº;

0 otherwise.

Proof. This is similar to Proposition 6.14, except we should consider the reverse sad-

dle cobordism Sr from the identity tangle IdnC1;nC1 to J . This gives a map on Hochschild

cohomology

F .Sr/ W HH0.HnC1/ ! HH0.M/:

We get a commutative diagram

�
KhR

0;�
2 .T 0

2nC2;.2nC2/p
/
�_

��

.KhR
0;�

2
.Z//_

//

�
KhR

0;�
2 .T 0

2n;2np t U/
�_

��

HH0.HnC1/
F .Sr /

// HH0.M/
Š

// Z.Hn/˝ A,

where the isomorphism in the last arrow at the bottom is ˙‚�1. To compute ‚�1 ı F .Sr/,

observe that this preserves the R˝2n-module structure, and therefore it suffices to evaluate it

on 1, X2nC1, X2nC2 and X2nC1X2nC2. A straightforward calculation gives

.‚�1 ı F .Sr//.1/ D 1˝ 1;

.‚�1 ı F .Sr//.X2nC2/ D .‚�1 ı F .Sr//.�X2nC1/ D 1˝X;

.‚�1 ı F .Sr//.X2nC1X2nC2/ D 0:

This describes (up to sign) the dual of the map KhR
0;�
2 .Z/. By taking duals, we obtain the

desired description of the maps  and �.

Remark 6.16. In Propositions 6.14 and 6.15 we only specified the maps � and  up to

a sign. We conjecture that all symbols ˙ should be C, and � should be �.

One last ingredient in the definition of cabled Khovanov–Rozansky homology is the braid

group action. In [18, Section 5], Khovanov proves that the braid group action onHn induces an

action of the symmetric group S2n on the center Z.Hn/, which permutes the variables Xi . In

our case, we are interested in the subgroupBn;n, which acts onZ.Hn/ via the product Sn � Sn.

The first factor permutes the odd variables X2iC1, and the second the even variables X2i .
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6.6. Proof of Proposition 6.1. From the definition of the cabled Khovanov–Rozansky

homology, we have

KhR
0;j
2;0.U; p/ D

�M

n2N

KhR
0;2nCj
2 .T 0

2n;2np/
�
=�;

where we divide by the linear and transitive closure of the relations of the form

ˇi .b/v � v;  .v/ � 0; �.v/ � v:

In the case p > 0, using (6.19) we get

KhR
0;j
2;0.U; p/ Š

�M

n2N

Z.Hn/4nCj

�
=�:

Since we divide by the relations  .v/ � 0, and  is given in (6.33) by multiplication with

˙.X2nC2 �X2nC1/, we find that the variables X2nC1 and X2nC2 are identified in the quo-

tient. Using (6.34), we get that, up to a sign, � is given by multiplication with

X2nC1X2nC2 D X2
2nC1 D 0:

Therefore, after dividing by the relations �.v/ � v, everything collapses to zero:

KhR
0;j
2;0.U; p/ D 0:

Let us now consider the case p < 0. Using (6.20), we get

KhR
0;j
2;0.U; p/ D

�M

n2N

Z.Hn/_�j

�
=�:

It follows that KhR
0;�
2;0.U; p/ is supported in quantum gradings of the form j D �2k for k � 0.

We start by looking at the quantum grading j D 0. From Theorem 6.3 we see that each

Z.Hn/0 is a copy of Z (generated by 1), and hence the same is true for Z.Hn/_0 . In the

equivalence relation all relations of the form  .v/ � 0 are trivial because the targets of the

maps  are in degrees j < 0. The braid group action is the identity, and from (6.36) we see

that the maps � W Z.Hn/_0 ! Z.HnC1/_0 are isomorphisms. Hence, the relations �.v/ � v

identify together all the different Z.Hn/0 Š Z, and we have

KhR
0;0
2;0.U; p/ Š Z:

Next, we look at quantum gradings j D �2k with k > 0. By using the notationX_
I from

Section 6.3, formula (6.35) for the map  can be re-written as

 .f / D ˙f � .X_
2nC2 �X_

2nC1/:

Consider the elements fm 2 Z.Hn/_
2k

, where m is a partial matching of ¹1; : : : ; 2nº; cf.

Lemma 6.11. We have

 .fm/ D ˙fm [¹.2nC2;2nC1/º:

Therefore, after dividing by the relations  .v/ � 0, all elements of the form fm0 are set to zero,

where m0 is a partial matching of ¹1; : : : ; 2nC 2º that contains the last pair .2nC 2; 2nC 1/.

If m is a nonempty balanced partial matching of ¹1; 2; : : : ; 2nC 2º, the action of a suit-

able element in the braid group BnC1;nC1 (factoring through SnC1 � SnC1) will take fm
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to ˙fm0 , where m0 is a balanced matching containing the pair .2nC 2; 2nC 1/. It follows

that all fm are set to zero, for nonempty balanced partial matchings m. Proposition 6.12 says

that these elements fm generate Z.HnC1/_
2k

, and therefore the whole group collapses to zero

after we divide by the equivalence relation.

This concludes the proof of Proposition 6.1 and hence of Theorem 1.3.

7. Connected sums

In this section, we prove Theorem 1.4. We will work with coefficients in a field k. We

write KhRN .LI k/ for the glN Khovanov–Rozansky homology of the framed linkLwith coef-

ficients in k. We write S
N
0 .W ILI k/ for the skein lasagna module obtained using KhRN .LI k/

instead of KhRN .L/.

Remark 7.1. If char.k/ D 0, then

KhRN .LI k/ Š KhRN .L/˝Z k and S
N
0 .W ILI k/ Š S

N
0 .W IL/˝Z k:

In general, this is not true, because of the presence of Tor terms in the universal coefficients

theorem.

Let us recall that, over a field, we have the following tensor product formula for the

Khovanov–Rozansky homology of a split union:

KhRN .L1 t L2I k/ Š KhRN .L1I k/˝k KhRN .L2I k/:

We will be interested in the case when the two links are mirror to each other. In that case, the

cylinderL � I is a cobordism from the empty link toL t L. This provides a canonical element

B WD KhRN .C /.1/ 2 KhRN .L t LI k// Š KhRN .LI k/˝k KhRN .LI k/:

In order to decompose B into a sum of simple tensors, we pick a basis ¹uiº for KhRN .LI k/

and write

B D
X

i

ui ˝ wi 2 KhRN .LI k/˝k KhRN .LI k/

for some wi 2 KhRN .LI k/. In particular, the right-hand side of the above is independent of

the choice of basis ¹uiº.

We will need a lemma for cutting necks of surfaces in lasagna fillings.

Lemma 7.2. Let F be a lasagna filling ofW with boundary L and surface †. Let B be

a 4-ball in the interior ofW disjoint from the input balls and intersecting†. Suppose the inter-

section is of the form † \ B D † \ .B3 � I / D K � I for some link K � B3. Then we can

decompose† D †ı [ .K � I /. Let ¹uiº be a basis of KhRN .KI k/ so that B D
P

i ui ˝ wi .

Define eF .ui / to be the lasagna filling specified by the same data as F , except we replace the

neck K � I with two input balls: one decorated with the link K and labelled by ui and the

other decorated with K and labelled by wi (see Figure 3). Then

ŒF � D
X

i

ŒeF .ui /� 2 S
N
0 .W IKI k/:

In particular, the right-hand side of this equation is independent of the choice of basis ¹uiº.
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L � I

LL

Figure 3. The neck-cutting lemma.

L � I

1 2 KhRN .;/

B 2 KhRN .L t L/

The neck L � I
inside of the surface †

Add a new input ball
decorated with ;

and labelled by 1.

Evaluate the cobordism
in the enclosed region
to obtain an
equivalent diagram.

Figure 4. Proof of the neck-cutting lemma.

Proof. First observe that we can always add an input ball decorated by the empty set and

labelled by 1 2 KhRN .;/ to any filling without affecting its class in S
N
0 . Add such an input

ball near the neck K � I . Enclose this new input ball together with the neck inside of a larger

ball, as in Figure 4. We can thereby view the cylindrical neck K � I as a cobordism from the

empty set to K tK. The image of 1 2 KhRN .;/ under this cobordism map is B. Evaluating

this cobordism gives a sum of fillings with the new ball decorated with K tK and labelled by

the ui ˝ wi . The claim follows by splitting this input ball into two balls, one with K and the

other with K.

We now provide the proof of the tensor product formula for boundary connected sums.

Proof of Theorem 1.4. We define the isomorphism

‰ W S
N
0 .W1IL1I k/˝ S

N
0 .W2IL2/ ! S

N
0 .W1 \ W2IL1 [ L2I k/

on simple tensors by setting ‰.ŒF1�˝ ŒF2�/ to be the lasagna filling represented by F1 [ F2.

We define an inverse to ‰ as follows. The boundary connected sum is obtained from W1

andW2 by identifying 3-dimensional ballsB1 � àW1 andB2 � àW2; we writeB forB1 D B2

as a subset of W1 \ W2. Let F be a lasagna filling of W1 \ W2 with boundary L1 [ L2 and

surface †. After an isotopy, we can arrange that:

(a) The input balls for F are disjoint from B .

(b) The surface † intersects B transversely in a link K.

Decompose † D †1 [K †2, where †i � Wi . We can apply Lemma 7.2 to cut along K and

obtain

ŒF � D
X

i

ŒeF .ui /� 2 S
N
0 .W1 \ W2IL1 [ L2I k/;

where each eF .ui / is of the form F 1
i [ F 2

i , with fillings F
j
i ofWj with boundary Lj , j D 1; 2.
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Then ‰.
P

i ŒF
1
i �˝ ŒF 2

i �/ D ŒF �, and we set

‰�1.ŒF �/ D
X

i

ŒF 1
i �˝ ŒF 2

i �:

We need to make sure that ‰�1 is well-defined. Filling in one of the input balls of F

(in either W1 or W2) with another lasagna filling does not change the equivalence classes ŒF 1
i �

and ŒF 2
i �, so the value of ‰�1 is unchanged.

What is left to show is that ‰�1.ŒF �/ does not depend on the choice of isotopy used

to ensure conditions (a) and (b) above. Consider an isotopy that moves the lasagna filling

F D F.0/ in a family F.t/; t 2 Œ0; 1�, such that the final filling F.1/ also satisfies (a) and (b).

With regard to (a), we can imagine the input balls of the fillings to be small (i.e., neigh-

borhoods of points). Generically, in a one-parameter family such as F.t/, there can be finitely

many times t where an input ball passes from one side of B to the other. Moving the input

ball to the other side is equivalent to replacing B with an isotopic ball B 0, such that the region

between B and B 0 is a cylinder B3 � Œ0; 1�:

W2

B B 0

L1 L2

W1

We obtain ‰�1.ŒF �/ in one case by cutting the filling F along B , and in the other case by

cutting it along B 0. By Lemma 7.2, both of these are equivalent to cutting along both B and B 0,

and therefore equivalent to each other.

To deal with (b), without loss of generality, we can now assume that the input balls do

not intersect B throughout the isotopy. Let †.t/ be the surfaces for F.t/. The intersections

J.t/ WD †.t/ \ B

may fail to be transverse at various points in .0; 1/, but generically we can assume that the

union

J D
[

t2Œ0;1�

.¹tº � J.t// � Œ0; 1� � B

is a smooth link cobordism between the links J.0/ and J.1/. Schematically, we draw this as:

W1

F.0/

F.t/

F.1/

J

W2

We use the cobordism J to construct a surface with corners as follows. First, thicken the attach-

ing region B of W1 \ W2 to a neck Œ0; 1� � B . Then insert a copy of J into this neck. Finally,

take the union of J with †.0/ in the W1 factor and †.1/ in the W2 to obtain

.†.0/jW1
/ [ J [ .†.1/jW2

/:
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By smoothing the corners of this surface, we obtain a new lasagna filling FJ . This is isotopic

to F.0/ by an isotopy supported in W2 and is isotopic to F.1/ by an isotopy supported in W1:

F.1/

W2W1

FJ

F.0/

For example, the isotopy between F.0/ and FJ is given at time t by smoothing the corners of

.†.0/jW1
/ [

[

s2Œ0;t�

.¹sº � J.s// [ .†.t/jW2
/:

Applying ‰�1 to F.0/ consists in cutting its neck at ¹0º � B , which is equivalent to

cutting the neck of FJ at ¹0º � B (because they are related by an isotopy supported in W2).

Similarly, applying ‰�1 to F.1/ is equivalent to cutting the neck of FJ at ¹1º � B . From

Lemma 7.2 we see that the results of cutting FJ at ¹0º � B and ¹1º � B are equivalent, because

they are each equivalent to cutting the neck in both places.

This completes the proof of well-definedness for ‰�1. The fact that ‰ and ‰�1 are

inverse to each other is immediate from the construction.

We can also deduce the same result for interior connected sums.

Corollary 7.3. Let .W1IL1/ and .W2IL2/ be a pair of 4-manifolds with links in the

boundaries. Let W1#W2 denote their interior connected sum. Then

S
N
0 .W1#W2IL1 [ L2I k/ Š S

N
0 .W1IL1I k/˝ S

N
0 .W2IL2I k/:

Proof. By Proposition 2.1, we can add and remove small 4-balls without affecting S
N
0 .

We remove a small 4-ball from each of the Wi , then perform the boundary connect sum along

3-balls in the new 3-sphere boundary components. The two boundaries glue together to give

a 3-sphere boundary component in the connected sum, which we then fill in with a 4-ball to

obtain W1#W2. Applications of Theorem 1.4 and Proposition 2.1 give the result.

References

[1] S. Akbulut, The Dolgachev surface. Disproving the Harer–Kas–Kirby conjecture, Comment. Math. Helv. 87

(2012), no. 1, 187–241.

[2] S. Akbulut, 4-manifolds, Oxf. Grad. Texts Math. 25, Oxford University, Oxford 2016.

[3] J. A. Baldwin, A. S. Levine and S. Sarkar, Khovanov homology and knot Floer homology for pointed links,

J. Knot Theory Ramifications 26 (2017), no. 2, Article ID 1740004.

[4] C. Blanchet, An oriented model for Khovanov homology, J. Knot Theory Ramifications 19 (2010), no. 2,

291–312.

[5] M. Ehrig, C. Stroppel and D. Tubbenhauer, Generic gl2-foams, web and arc algebras, preprint 2016, https:

//arxiv.org/abs/1601.08010v2.

[6] M. Ehrig, C. Stroppel and D. Tubbenhauer, The Blanchet–Khovanov algebras, in: Categorification and higher

representation theory, Contemp. Math. 683, American Mathematical Society, Providence (2017), 183–226.

[7] M. Ehrig, D. Tubbenhauer and P. Wedrich, Functoriality of colored link homologies, Proc. Lond. Math.

Soc. (3) 117 (2018), no. 5, 996–1040.

[8] M. H. Freedman, A. Kitaev, C. Nayak, J. K. Slingerland, K. Walker and Z. Wang, Universal manifold pairings

and positivity, Geom. Topol. 9 (2005), 2303–2317.



76 Manolescu and Neithalath, Skein lasagna modules for 2-handlebodies

[9] R. E. Gompf and A. I. Stipsicz, 4-manifolds and Kirby calculus, Grad. Stud. Math. 20, American Mathematical

Society, Providence 1999.

[10] J. E. Grigsby, A. M. Licata and S. M. Wehrli, Annular Khovanov homology and knotted Schur–Weyl repre-

sentations, Compos. Math. 154 (2018), no. 3, 459–502.

[11] O. S. Gujral and A. Levine, Khovanov homology and cobordisms between split links, preprint 2020, https://

arxiv.org/abs/2009.03406v1.

[12] S. Gunningham, D. Jordan and P. Safronov, The finiteness conjecture for skein modules, preprint 2019,

https://arxiv.org/abs/1908.05233v2.

[13] M. Hedden and Y. Ni, Khovanov module and the detection of unlinks, Geom. Topol. 17 (2013), no. 5, 3027–

3076.

[14] M. Jacobsson, An invariant of link cobordisms from Khovanov homology, Algebr. Geom. Topol. 4 (2004),

1211–1251.

[15] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426.

[16] M. Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002), 665–741.

[17] M. Khovanov, Patterns in knot cohomology. I, Exp. Math. 12 (2003), no. 3, 365–374.

[18] M. Khovanov, Crossingless matchings and the cohomology of .n; n/ Springer varieties, Commun. Contemp.

Math. 6 (2004), no. 4, 561–577.

[19] M. Khovanov, An invariant of tangle cobordisms, Trans. Amer. Math. Soc. 358 (2006), no. 1, 315–327.

[20] M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008), no. 1, 1–91.

[21] R. Kirby, Problems in low-dimensional topology, in: Geometric topology (Athens 1993), AMS/IP Stud. Adv.

Math. 2, American Mathematical Society, Providence (1997), 35–473.

[22] P. B. Kronheimer and T. S. Mrowka, Gauge theory for embedded surfaces. I, Topology 32 (1993), no. 4,

773–826.

[23] P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1

(1994), no. 6, 797–808.

[24] P. Lambert-Cole, Bridge trisections in CP
2 and the Thom conjecture, Geom. Topol. 24 (2020), no. 3,

1571–1614.

[25] C. Manolescu, M. Marengon, S. Sarkar and M. Willis, A generalization of Rasmussen’s invariant, with

applications to surfaces in some four-manifolds, preprint 2019, https://arxiv.org/abs/1910.08195v1.

[26] S. Morrison and K. Walker, Blob homology, Geom. Topol. 16 (2012), no. 3, 1481–1607.

[27] S. Morrison, K. Walker and P. Wedrich, Invariants of 4-manifolds from Khovanov–Rozansky link homology,

preprint 2020, https://arxiv.org/abs/1907.12194v3.

[28] L. Piccirillo, Shake genus and slice genus, Geom. Topol. 23 (2019), no. 5, 2665–2684.

[29] L. Piccirillo, The Conway knot is not slice, Ann. of Math. (2) 191 (2020), no. 2, 581–591.

[30] J. H. Przytycki, When the theories meet: Khovanov homology as Hochschild homology of links, Quantum

Topol. 1 (2010), no. 2, 93–109.

[31] J. Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010), no. 2, 419–447.

[32] L. Rozansky, A categorification of the stable SU.2/Witten–Reshetikhin–Turaev invariant of links in S2 � S1,

preprint 2010, https://arxiv.org/abs/1011.1958v1.
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