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R
ecently, bilevel optimization (BLO) has taken center stage 

in some very exciting developments in the area of signal 

processing (SP) and machine learning (ML). Roughly 

speaking, BLO is a classical optimization problem that in-

volves two levels of hierarchy (i.e., upper and lower levels), where-

in obtaining the solution to the upper-level problem requires 

solving the lower-level one. BLO has become popular largely 

because it is powerful in modeling problems in SP and ML, 

among others, that involve optimizing nested objective func-

tions. Prominent applications of BLO range from resource allo-

cation for wireless systems to adversarial ML. In this work, we 

focus on a class of tractable BLO problems that often appear in 

SP and ML applications. We provide an overview of some basic 

concepts of this class of BLO problems, such as their optimality 

conditions, standard algorithms (including their optimization 

principles and practical implementations) as well as how they 

can be leveraged to obtain state-of-the-art results for several 

key SP and ML applications. Further, we discuss some recent 

advances in BLO theory and its implications for applications, 

and we point out some limitations of the state of the art that 

require significant future research efforts. We hope that this ar-

ticle, together with the associated open source BLO toolbox we 

developed for algorithm benchmarking, can serve to accelerate 

the adoption of BLO as a generic tool to model, analyze, and 

innovate on a wide array of emerging SP and ML applications.

Introduction
BLO is a class of optimization problems involving two nest-

ed levels (upper and lower levels), where the objective and 

variables of the upper-level problem depend on the opti-

mizer of the lower-level one. The canonical formulation 

of the BLO is given by 
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(BLO)

where for analytical tractability we assume that f, g, and 

h are bivariate smooth functions; we note that in some set-

tings f and/or g may be nonsmooth, and such settings can be 

handled by specialized algorithms based on their particular 

settings [1]; R
m!i  denotes the upper-level variable subject 

to the upper-level constraint set ;U  R
n!z  is the lower-level 

variable subject to the constraint ( , )h 0#i z  that couples 

both i  and ;z  and ( )z i)  is one lower-level optimal  solution. 
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It is evident that the lower-level problem is an auxiliary prob-

lem since its solution supports the upper-level problem in 

finding a better solution.

The study of BLO can be traced to that of Stackelberg 

games [2], where the upper (respectively, lower) problem opti-

mizes the action taken by a leader (respectively, the follower). 

Early works in optimization formulate BLO to solve resource 

allocation problems; see [3] for a comprehensive survey of 

BLO algorithms in the late 1990s and early 

2000s and also some more recent surveys 

on discrete BLO [4], BLO under uncer-

tainty [5], and nonlinear and nonconvex 

aspects of BLO [6]. In recent years, BLO 

has regained popularity because a sub-

class of BLO has been used to formulate 

and solve various challenging problems in 

SP, ML, and artificial intelligence. Notable 

applications in SP include resource man-

agement [7], signal demodulation [8], and image denoising 

and reconstruction [9]. In addition, BLO has been used to 

make ML models, especially deep neural networks (DNNs), 

robust [10], [11], [12], [13], generalizable [14], [15], [16], effi-

cient [17], [18], [19], easier to train [20], [21], [22], [23], [24], 

and scalable [25].

As can be easily imagined, the popularity of BLO in the 

aforementioned applications is largely attributed to its ability 

to handle (often implicit) hierarchical structures. To better 

illustrate the challenges brought by the hierarchical architec-

ture, see the example application of coreset selection for model 

training [7], [17] in “Motivating Application: Coreset Selection 

for Model Training.” 

Clearly, the coreset selection is a typical BLO problem, 

where the upper-level and lower-level tasks are intertwined: 

without knowing the training result, it is hard to gauge how 

representative the selected dataset is effectively, while without 

having the coreset, one cannot perform model training to eval-

uate the utility of the learned model further. More importantly, 

these two tasks form a hierarchy, with the model training prob-

lem being the main optimization problem, while the data selec-

tion problem is an auxiliary problem that supports the training.

Given the growing interest in BLO, in this work we present 

an overview of a class of tractable (BLO) problems that hold 

significant importance in SP and ML. Roughly speaking, the 

class of BLO problems we consider has some desirable prop-

erties (to be discussed shortly) that allow 

the development of efficient and practical 

algorithms. We will discuss the basic con-

cepts for this class of BLO problems, along 

with their optimality conditions and stan-

dard algorithms (including their theoretical 

properties and practical implementations), 

and also how they can be used to obtain 

state-of-the-art results for a number of key 

SP and ML applications.

In the existing literature, several recent surveys have been 

conducted on general BLO problems [1], [5], [6]. However, 

these surveys primarily focus on the mathematical foundations 

of BLO through a classical optimization lens. Other works 

[19], [26] aim to provide comprehensive reviews of BLO algo-

rithms, but they lack an in-depth discussion on “when” and 

“how” to apply them in practical applications. The most rel-

evant work to ours is [26], which examines complex learning 

and vision problems from the BLO perspective. However, the 

theoretical component of BLO is missing, and it overlooks a 

significant portion of emerging SP and ML applications (e.g., 

those discussed in the sections “BLO for Wireless Resource 

Allocation,” “BLO for Wireless Signal Demodulation,” “BLO 

for Adversarially Robust Training,” “BLO for Model Pruning,” 

and “BLO for Invariant Representation Learning”).

Unlike the existing surveys on BLO [5], [6], [19], [26], most 

of which provide a broad overview of BLO in its most generic 

form, we focus on the tractable and data-driven problems that 

Many contemporary signal processing and machine learn-
ing applications are facing significant challenges in data 
storage, transportation, and computation because they 
have to deal with excessive amounts of data. Consequently, 
the task of identifying the most informative subset of data 
from a larger pool becomes crucial [7], [17]. This leads to 
the problem of coreset selection, which consists of two 
tasks: (T1), selecting the most representative data samples 
to form the coreset, and (T2), validating the performance of 
the selected coreset in model training. More specifically, 
the problem can be formulated as follows:

 ( ( ))minimize wval
w U

, i)
!

 (T1)

 ( ) ( ; , )argmin N w y
1

subject to ·w xi

i

N

i i

1

,i i=
)

i =

|  (T2)

where w represents the weight vector for data selec-
tion over N  training data points, with w 0i =  indicating 
that the ith data sample ( , )yx i i  is not selected, and 
,  denotes the loss function for individual training 
samples. These weights are subject to the sparsity 
constraint U , such as k#1w< < , with k  being the 
selection budget. The model parameters trained on the 
selected data points are denoted by .i  The training 
loss for the model i  with the data selection scheme w is 
given by ( , ) : / ·w N w1 i

N
i1tr, i R= =  ( ; , ),yx i i, i  while the val-

idation loss measuring the performance of the learned 
model ( )wi)  over the coreset is denoted by .val,  The 
previous BLO formulation is also related to the data 
reweighting problem [20] and hyperparameter optimi-
zation [22].

Motivating application: Coreset selection for model training

BLO has become popular 

largely because it is 

powerful in modeling 

problems in SP and 

ML, among others, that 

involve optimizing nested 

objective functions.
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are relevant to SP and ML applications. A few highlights of 

this article are listed next.

First, we distill the common structures and properties of 

BLO that emerge across applications related to developing 

robust, parsimonious, and generalizable data-driven models in 

SP and ML. Our goal is to provide insights 

about when, where, and how BLO formu-

lations and algorithms can be best used 

to yield a significant performance boost, 

as compared with traditional, or heuristic 

algorithms. In this process, we present some 

recent theoretical results about BLO and the 

associated algorithms to give a flavor of the current advances 

in the research area, while discussing their practical and scal-

able implementations.

Second, we dive deep to understand the performance of a 

selected subset of state-of-the-art gradient-based BLO algo-

rithms on a number of representative applications. Instead 

of relying on results reported in existing works, which may 

not always be directly comparable because of implementa-

tion differences, we designed an experiment plan and imple-

mented all benchmarking algorithms. The goal is not only 

to showcase the effectiveness of the BLO-based algorithms 

but also to analyze the pros (e.g., modeling flexibility and 

accuracy performance) and the cons (e.g., runtime efficien-

cy) of different subclasses of BLO methods. This effort has 

led to the development of an open source project repository 

containing all of the codes for the experiments presented in 

the article.

Overall, we hope that our balanced treatment of the 

subject, together with the open source package developed 

to benchmark modern BLO algorithms, will serve as the 

cornerstone for the accelerated adoption of BLO in diverse 

application areas, including, but not limited to, SP and ML. 

Figure 1 provides an overview of the topics to be covered 

in this article.

Notation
We use lowercase letters (e.g., a), lowercase boldface let-

ters (e.g., a), and uppercase boldface letters (e.g., A) to de-

note scalars, vectors, and matrices, respectively. For a vector 

a, we use a p  to denote its -normp,  with the typical choice 

{ , , }.p 1 2 3!  For a matrix A, we use the superscript < (or –1) 

to denote the transpose (or inverse) operation. We use I to 

represent the identity matrix. For a function ( , )f x y  (with 

x R
m!  and ),y R

n!  we use ( , )f x y R
m

xd !  (or ( / ))f x2 2  and 

( , )f x y R
n

yd !  (or ( / ))f y2 2  to denote the partial derivatives of 

f with respect to the partial input argument x and y, respective-

ly. By contrast, we use ( )F xd  (or / ) )(dF dx R
m!  to represent 

the full derivative of a possible implicit function (IF) (·)F  with 

respect to x, namely, ( ) ( , ) ( , )( / )F f d d fx x y y x x yx yd d d= +
<  

following the chain rule, where ( /d d )y x R
m n! #<  denotes the 

Jacobian matrix of y with respect to x. For ease of notation, the 

transpose in / )(d dy x R
m n! #<  will be omitted if its definition 

is clear from the context. We use fx yd d  or f R,
m n2

x yd ! #  to 

denote the second-order partial derivative of f.

Warm-up: Introducing the basic concepts of BLO

A class of tractable BLO problems 
We start by discussing the challenges associated with the 

generic form of (BLO). Even under the assumption that all 

involved functions are well behaved, such 

as the convexity or concavity of (·, ·)f  and 

(·, ·)g , and the linearity of (·, ·)h , solving 

the problem can still be highly challenging 

(i.e., NP-hard). To see this, let us consider 

the following simple example.

Example 1: Nonconvex BLO
Consider the following BLO, where ( , ) ( , )f gi z i z=- =  

:·i z z- -
2 2i

( ) ( ) ;

( ) ( ) .

min

argmin

imize ·

subject to ·

[ , ]

[ , ],

1 1

2 2

1 1 0

2 2

i i z i z i

z i i i z z

- -

= - - -

) )

)

!

!

i

z i z

-

- - =

Notice that the objective ( , )f i z  (respectively, ( , )g i z ) is 

strongly convex (respectively, strongly concave) in i  and 

strongly concave in z  (respectively, strongly convex), and 

the previous BLO problem is subject to linear constraints 

in both the upper and lower levels. In other words, both 

the upper- and lower-level problems are “easy” problems 

with respect to their respective parameters. Nonetheless, it 

can be shown that solving the previous BLO requires tack-

ling a nonconvex problem, which in general is NP-hard. 

Indeed, it is not hard to see that ( ) .z i i=)  As a result, the 

outer function can be expressed as ,2i-  which is a non-

convex function.

We remark that the source of difficulty of the previous 

problem is the coupling constraint .0i z- =  If this con-

straint is removed, the problem will become a classical saddle-

point problem, expressed next, whose global optimal solution 

can be easily obtained:

 .minimize maximize
[ , ] [ , ]1 1 1 1

2 2
$i i z z- -

! !i z- -

 (1)

The aforementioned examples, along with numerous others 

in existing survey papers like [1], [19], and [26], strongly 

motivate us to proceed with a focused discussion for the 

subset of tractable (BLO) problems. This subset often 

serves as a basis for developing practical BLO algorithms. 

By focusing on this subset, we can address the specific 

needs of modeling SP and ML problems, which frequently 

demand the development of efficient, and sometimes real-

time, algorithms.

To this end, we consider some special classes of (BLO), 

with the following simplifications: 1) The lower-level con-

straint set, if present, is linear and is only related to ;z  that is, 

( , )h A bi z z= -  for some matrix A and vector b of appro-

priate sizes; and 2) the solution of the lower-level problem is a 

We focus on a class of 

tractable BLO problems 

that often appear in SP and 

ML applications.
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(IF)

BLO

Two-Timescale Stochastic

Approximation (TTSA) [31]

Forward Gradient Unrolling
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Backward Gradient Unrolling

(BGU) [21], [22], [23]

Truncated Gradient Unrolling

(TGU) [12], [21]

Bi-Level Descent Aggregation

(BDA) [20]

K-Step Truncated

Backpropagation (K-RMD) [21]

Bilevel Value-Function-Based

Interior-Point Method (BVFIM) [35]

Bilevel Optimization Made Easy

(BOME!) [36]

Primal-Dual Bilevel

Optimization (PDBO) [33]

Penalty-Based Bilevel Gradient Descent

(PBGD) [34]

Fully First-Order Stochastic

Approximation (F2SA) [48]

Single-Timescale Double-Momentum

Stochastic Approximation

(SUSTAIN) [41]

Alternating Implicit Projected

Stochastic Gradient Descent (AiPOD) [37]
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Image

Reconstruction
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Robust
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[9], [10], [11], [12]

Efficient
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[16], [17], [18], [55]

Generalizable

ML
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Automated

ML
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FIGURE 1. A taxonomy of the solvers and application tasks for BLO. 
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singleton, and in most cases we assume an even stronger con-

dition that the objective function (·, ·)g  is strongly convex in 

the second argument. With these simplifications, it is possible 

to show some nice properties; for example, the gradient of the 

upper-level objective function may exist, making algorithm 

design and analysis tractable. Note that there have been recent 

works that extend these conditions and are still able to develop 

efficient algorithms. We will discuss these works in the section 

“Theoretical Results of BLO.”

In summary, depending on whether the lower-level problem 

has a constraint or not, we consider the following two classes 

of problems, referred to as the lower unconstrained (LU) and 

lower constrained (LC) BLO, respectively:

 

:  ( ) ( , ( )),   

  ( ) ( , ).argmin

F f

g

minimize

subject to
R

U

n

i i z i

z i i z

=

=

)
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!

!

i

z

 
(LU-BLO)
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(LC-BLO)

where the set : { }.A b 0C ; #z z= -  As will be evident in 

the section “Algorithmic Foundations of BLO,” the presence 

of lower-level constraints, even in the form 

of linear and uncoupled constraints, can 

make (LU-BLO) much harder to deal with 

than (LC-BLO).

Connections of BLO with game theory
It is important to note that BLO problems 

have strong ties with Stackelberg or lead-

er–follower games [2], including Stackel-

berg congestion and security games. These 

are sequential games involving two players: the leader and 

the follower. The leader acts first, aiming to maximize its 

utility by leveraging its knowledge of the follower’s antici-

pated response. The follower, acting second, maximizes its 

utility based on the leader’s action. The connection between 

BLO and Stackelberg games can be summarized as follows. 

First, in certain Stackelberg games, the process of identifying 

a solution (i.e., a Stackelberg equilibrium) can be framed as 

a BLO. Second, BLO allows a (Stackelberg) game-theoretic 

interpretation, where the upper- and lower-level problems 

correspond to the tasks of identifying the optimal actions for 

the leader and the follower (i.e., the upper-/lower-level vari-

ables), respectively. A special case of Stackelberg game is 

min-max optimization (MMO) also referred to as the saddle 

point problem. MMO follows a bilevel structure, wherein the 

lower-level objective g in (BLO) is exactly opposite of the 

upper-level objective function f (i.e., ),g f=-  resulting in the 

following special case of BLO:

  ( , ).fminimize maximize
U C

i z
! !i z

 (MMO)

In fact, MMO is much simpler to deal with than BLO, and it 

has been heavily studied in the SP and ML communities. In 

addition to MMO, it is also worth noting that the algorithms 

reviewed in this article are generally applicable to Stackel-

berg games, provided that the game’s BLO formulation ad-

heres to the assumptions of the respective algorithms.

Implicit gradient
As alluded to previously, one important reason to consider 

problems (LU-BLO) and (LC-BLO) is that the objective 

functions of these problems are potentially differentiable 

with respect to .i  Indeed, by applying the chain rule and 

supposing for now that the Jacobian matrix ( ) /d dz i i)  ex-

ists, we have

 ( ) ( , ( ))
( )

( , ( ))F f
d

d
f

IG

d d di i z i
i

i
i i

z
z= +

)

)

)

<

i z

1 2 344 44

 (2)

where we recall from our notational convention that 

( , )fd i zi  and ( , )fd i zz  represent the partial derivatives 

of f with respect to the partial input arguments i  and ,z  re-

spectively, and ( )Fd i  denotes the full derivative of the IF, 

F, with respect to .i  For ease of notation, the transpose op-

eration <  might be omitted in the rest of the article. We refer 

to the Jacobian matrix ( ) /d d R
n m!z i i #)  

as the implicit gradient (IG). This term is 

introduced to characterize the gradient 

of the argmin-based lower-level objec-

tive function with respect to the upper-

level variable .i  However, the IG does 

not always exist for generic BLO prob-

lems. Even for (LU-BLO) and (LC-BLO), 

relatively strong assumptions have to be 

imposed. For example, (·, ·)g  needs to be 

strongly convex in its second argument. Further, even when 

the IG exists, computing it could be quite different for the 

two classes of problems (LU-BLO) and (LC-BLO). For the 

former, we will show in the section “Algorithmic Founda-

tions of BLO” that the IG can be expressed in closed form 

using the implicit function theorem [27] based on the first-

order stationary condition of the lower-level problem, i.e., 

( , ( )) .g 0d i z i =
)

z  For this reason, it is referred to as an 

implicit gradient. Yet, in (LC-BLO), the stationary condi-

tion cannot be used since a stationary point might violate 

the constraint .C!z  Therefore, the IG generally does not 

admit any closed form. Additionally, for a more restricted 

subset of MMO problems, the influence of the IG-involved 

term ( , ( )))( fIG $ d i z i)z  in (2) can be neglected. To see 

this, assume that the inner problem is unconstrained, i.e., 

;RC n/  then ( , ( ))f 0d i z i =
)

z  based on the fact that 

( , ( ))g 0d i iz =
)

z  and g f=-  for MMO.

BLO with nonsingleton lower-level solutions
As we have mentioned in the section “A Class of Tractable 

BLO Problems,” throughout this article, we will mostly focus 

on the case where the lower-level solution ( )iz)  is unique, 

i.e., a singleton. Yet, if the lower-level problem involves a 

It is important to note that 

BLO problems have strong 

ties with Stackelberg or 

leader–follower games, 

including Stackelberg 

congestion and security 

games.
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nonsingleton (NS) solution, the resulting BLO problem is 

typically cast as

 :( , )     ( ) ( , )argminf gminimize subject to S
, ( ) CS

i i i zz =

!!i zz i
l

l

  

 (NS-BLO)

where ( )S i  denotes a solution set. The previous formulation, 

also referred to as the optimistic BLO with NS lower-level 

solutions, has been discussed in the literature, for example, 

in [1] and [4]. Note that problem (NS-BLO) presents signifi-

cantly greater challenges from both practical and theoretical 

perspectives compared to problem (BLO). The reason is that 

optimization over z  is coupled across both upper- and lower-

level objectives. While our work primarily focuses on BLO 

with a singleton lower-level solution, we will also explore in 

the section “Algorithmic Foundations of BLO” the applicabil-

ity of BLO algorithms, derived from (BLO), to solve problem 

(NS-BLO).

Theory and algorithms for tractable BLO
In the next two sections, we will delve into the essential 

optimization principles employed in 

BLO, explore several popular classes of 

BLO algorithms, and examine their the-

oretical properties.

Algorithmic foundations of BLO
This section presents an overview of 

three key optimization frameworks used 

to solve the tractable BLO problems 

(LU-BLO) and (LC-BLO). The first two classes both le-

verage (some approximated version of) the IG as defined 

in (2). The key difference is in how the approximation of 

the IG is conducted: one directly assumes that there is some 

given procedure that can provide a high-quality solution of 

the lower-level problem, while the other approximates the 

lower-level solution by unrolling a given algorithm for a 

fixed number of steps. The third class is referred to as the 

value function (VF)-based approach, which reformulates 

BLO as a single-level regularized optimization problem. It 

is worth mentioning that this approach offers flexibility in 

handling lower-level constraints and solving NS lower-level 

problems (NS-BLO).

The IF-based approach

The IF for lower-level unconstrained BLO
Let us examine the problem setup (LU-BLO) with a single-

ton lower-level solution. For ease of theoretical analysis in 

the section “Theoretical Results of BLO,” we further assume 

that (·)g  is strongly convex in .z  In certain applications, 

one can explicitly add a strongly convex regularization func-

tion, such as 2
2

$ zc  (with large enough ),c  to satisfy such 

an assumption.

The reason that we call this approach IF based is that we 

will explicitly utilize the implicit function theorem [27] to cal-

culate the IG as expressed in (2). Recall from (LU-BLO) that 

( )z i)  is a lower-level solution; thus, it satisfies

 ( , ( )) .g 0d i z i =
)

z  (3)

Following the implicit function theorem, we can take the 

first-order derivative of (3) with respect to ,i  yielding 

/ [ ( , ( ))] .( )d d g 0d zi i i =
)

z  Further assume that the lower-

level objective (·)g  is second-order differentiable; we can then 

obtain the IG in (2) with the following:

 ( , ( )) ( , ( )) .
( )

d

d
g g, ,

2 2 1
d d i i

i

z i
i z i z= -

)

) )
i z z z

-  (4)

As observed previously, the computation of the IG involves 

the mixed (second-order) partial derivative g,
2
di z  and the in-

verse of the Hessian .g,
2
dz z  Yet, computing these quantities 

can be challenging in practice. Therefore, the class using the 

IF approach utilizes different kinds of approximation tech-

niques to approximately compute the IG as expressed in (4). 

We summarize the IF approach in Algorithm 1.

Practical considerations of IF
In Algorithm 1, the main computational over-

head arises from the inverse Hessian gradient 

product ,H g1-  where : ( , ( ))gH , t t
2
d i z i= z z
u u  

and : ( , ( )).fv t td i z i= z
u  Yet, in many con-

temporary applications, directly computing 

and storing the Hessian is computation-

ally prohibitive. To address the scalability 

challenge in the IF method, we introduce four approaches 

to approximate the inverse Hessian gradient product (or the 

inverse Hessian) :H g1-  the conjugate gradient (CG) method 

[28], the WoodFisher approximation [29], the Neumann-se-

ries method to directly estimate the inverse Hessian [30], [31], 

and a Hessian-free simplification [10], [18]. These methods 

offer different tradeoffs between computational costs, with 

the CG method being the most computationally expensive 

and the Hessian-free simplification being the least expensive.

First, the CG approach maps the product H g1-  to the solu-

tion of a quadratic program defined as /min 2 .x Hx g xx -
<<  

By utilizing the first-order GD algorithm, we can  numerically 

Algorithm 1: IF-based approach for solving (LU-BLO).

Given initialization ,0i  learning rate ,02a  and iteration number T,  
iteration t 0$  yields the following: 
•  Lower-level optimization: Given ,ti  obtain an approximate solution of 

the lower-level problem, denoted as ( ) .tz iu

•  Approximation: Based on ( ),tz iu  compute approximated versions of 
two second-order matrices in (4), denoted as ( , ( ))g, t

2
d i z ii z
u u  and 

( , ( )) ;g, t
2 1
d i z ii z

-u u  compute an approximated IG following (2):

( ): ( , ( )) ( , ( )) ( , ( ))

( , ( )) .

F f g g

f

, ,t t

t

t t t t t

t

2 2 1
d d d d

d

i i z i i z i i z i

i z i

= -i i z z z

z

-u u u u u u

u
 
(5)

•  Upper-level optimization: Utilize ( )F td iu  in (5) to update ti  through, 
e.g., gradient descent (GD): ( ) .Ft t t1 ! di i ia-+

u

In comparison to IF- and 

GU-based methods, the 

VF-based approach has 

broader applicability 

in solving complex BLO 

problems.
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approximate .H g1-  However, the convergence speed of the 

CG method depends on the smallest eigenvalue of the posi-

tive definite matrix H. Therefore, if the lower-level problem 

is not well conditioned, the CG method can be slow. This 

approach has also been employed in the context of model-

agnostic metalearning (MAML) [16] and adversarially 

robust training [10].

Second, the WoodFisher approximation [29] expresses the 

Hessian as a recurrence of a rank-one modified Hessian estimate 

and calls the Woodbury matrix identity to compute the inverse 

of a rank-one modification to the given Hessian matrix. The one-

shot WoodFisher approximation is equiva-

lent to the quasi-Newton approximation, 

,H vv IT. c+  where 02c  is the damping 

term to render the invertibility of H . We can 

then readily obtain the inverse Hessian vec-

tor product by the Woodbury matrix identity 

/1 .( )H v v vv v v v1 1 2 1c c c= + +
<<- - - -  

Further, an  iterative WoodFisher approxima-

tion for the Hessian inverse proposed in [29] 

enhances the estimation accuracy.

Third, one may use a Neumann-series approximation to 

estimate the inverse Hessian directly by the approximation 

[ ] .H I Hi
K i1

0. R -
-

=  (assuming H is normalized to ensure 

).1H #  Note that as K " 3  the approximation becomes 

increasingly more accurate. This technique is popular for 

approximating the inverse Hessian in a stochastic setting 

wherein the upper- and lower-level objectives are accessed 

via a stochastic oracle [30], [31]. Here, we briefly describe the 

procedure to approximate the inverse Hessian stochastically 

using the Neumann-series method. Let us choose k uniformly 

randomly from the set { , , , },K0 1 1f -  access batch samples 

of ( , )g i z  denoted by { ( , ; )} ,g k k
k

1i z g =  and compute

 
L
k

H
( , ; )

g
L

I g

i

k
1

1

,

g

i
2

.
d i z g- -

=

z z` j%  (6)

where Lg  is the Lipschitz smoothness constant of ( , ; ).g ki z g  

This procedure requires the computation of k stochastic Hes-

sians and their products. Importantly, this estimator is a biased 

estimator of the inverse Hessian with the bias decreasing expo-

nentially with K [30, Lemma 3.2].

Finally, to ensure the local convexity, some quadratic regu-

larization term is usually added to the lower-level problem in 

BLO [10], [18]. This modifies (LU-BLO) to

 

:( ) ( , ( )),   

( ) ( , )argmin

F f

g
2

minimize

subject to  

( , )g

2
2

R

U

n

i i z i

z i i z z
m

=

= +

)

)

!

!

i

z

i zl
1 2 3444444 444444

 (7)

where we recall that 02m  is a regularization parameter. In 

this context, the Hessian-free simplification is usually adopted, 

which assumes ( , ( ))g 0., t t
2
d i z i =z z
u u  This assumption can be 

reasonable when the lower-level objective function g involves 

deep model training. For instance, in the case of a neural net-

work with rectified linear unit activation, the decision bound-

ary is piecewise linear in a tropical hypersurface, leading to an 

approximate Hessian of zeros. This Hessian-free simplifica-

tion has been used for pruning DNNs [18]. Thus, the Hessian 

matrix of ( , )g i zl  in (7) will be simplified to .H I. m

Extension to lower-level constrained BLO
Unlike in the previous section, it turns out that when including 

constraints to the lower-level problem, the IG no longer has the 

closed-form expression because the stationary condition in (3) 

does not hold anymore. To see the impact of having constraints 

(even linear ones) on the lower-level problem, 

we present the following example, where the 

gradient /df di is not rigorously defined.

Example 2: (LC-BLO) can still be 
nondifferentiable [32]
Consider the following special case of (LC-

BLO), where the lower-level objective is 

strongly convex in both scalar variables i  

and ,z  the upper level is linear, and both 

levels are subject to linear constraints:

( ) ( ) ( ) .min argminimize subject to
[ , ] /0 1 1 2 1

2!i z i z i i z+ -
) )

! # #i z

It follows that ( ) / ,1 2z i =)  for / ,1 2#i  and ( ) ,z i i=)  for 

/ .1 22i  We notice that at the point /1 2i=  the mapping ( )z i)  

is continuous, but not differentiable. As a result, the outer func-

tion ( )i z i+
)  is nondifferentiable.

An immediate question is: Can we still leverage the IF-

based approach for this subclass of problems? It turns out 

that if we make some additional assumptions on the matrix 

C in the constraint set of (LC-BLO), one can still apply 

the implicit function theorem to the Karush–Kuhn–Tucker 

(KKT) condition of the lower-level problem to calculate 

the IG [10], [32]. It is also important to note that IF-based 

approaches are typically not suitable for handling gen-

eral nonlinear constraints in the lower-level problem. For 

problems with complex constraints, VF- or penalty-based 

approaches are often employed [33], [34].

The gradient unrolling-based approach
The gradient unrolling (GU)-based approach is another class of 

popular algorithms for solving BLO problems in practice [13], 

[22], [23], [24]. Unlike the IF-based framework, it employs an 

unrolled lower-level optimizer as an intermediary step to con-

nect the lower-level solution with the upper-level optimization 

process. An automatic differentiation (AD) technique is then 

used to compute gradients with respect to the upper-level opti-

mization variable .i  Consequently, the computation of the IG 

in GU is dependent on the choice of the lower-level optimizer, 

and it no longer uses the IF-based expressions (3) and (4).

GU-based approach for unconstrained BLO
In particular, the GU-based approach approximates ( )z i)  by 

running a given algorithm for a fixed number of iterations and 

MAML, as an optimization-

based meta-learning 

approach, has gained 

significant popularity in 

various fields, especially 

in scenarios with limited 

resources.
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then inserting the entire trajectory into the upper-level objec-

tive. See Algorithm 2 for an illustration of the idea.

To see the difference between the AD- and IF-based 

approaches, let us consider the simple case where (·)h  is the 

gradient mapping, ( , ) ( , )q gt k k t k1 1 1# di z iz zb= - z- - -  

(for some constant step-size ),02b  and K 1=  (i.e., a single-step 

GD step is performed for lower-level optimization). Further 

assume that 0z  is independent of ;i  then the closed-form 

expression of the IG can be written as

 
( ) [ ( , )]

( , ).
d

d

d

d g
g,

t t
t

0 0 2
0

# d
d

i

i

i

z i z
i z

z b
b=

-
= -

z
i z

u
 (9)

In some sense, the preceding computation is simpler than 

the computation of the IG (4) in the IF-based approach since 

the Hessian inverse is no longer needed. However, things 

can get much more complicated very quickly as the total 

number of inner iterations K increases. Suppose that K = 2; 

then we obtain

 

( ) [ ( , )]

( , ) ( , ).

d

d

d

d g

g gI , ,

t t

t t

1 1

2
1

2
0#

d

d d

i z i z

i z i z

i

z

i

b

b b

=
-

= - +

z

z z i z

u

6 @
 

(10)

Clearly, the Hessian inverse is still not needed, but as the num-

ber of unrolling steps increases, much higher computational 

and memory requirements will be involved.

Practical considerations
When the unrolling step K becomes too large or the problem 

scale itself is computationally expensive for GU, manual un-

rolling becomes necessary to save memory costs and reduce 

the computational overhead. Various GU approaches have 

been proposed to achieve this goal efficiently. Notable tech-

niques include forward gradient unrolling (FGU) [24], back-

ward gradient unrolling (BGU) [22], [23], [24], and truncated 

gradient unrolling (TGU) [13], [22]. FGU performs unrolling 

iteratively, and in the final step K, the Jacobian of Kz  with 

respect to i  yields
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d

d
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We also assume that 0z  is independent of ,i  which implies 

/ .d d 00z i =  Consequently, expression (11) can be rewritten 

as the following iterative form:

 ,  , , , .k K1 2Z A Z Bk k k k1 f= + =-  (FGU)

Both Ak  and Bk  will be calculated along with the kth lower-

level step ( , )qk t k 1z i z= -  and will be discarded immedi-

ately after Zk  is obtained. Such an iterative nature of (FGU) 

makes it particularly suitable for scenarios that involve a 

large number of unrolling steps K as the memory cost of 

calculating Ak  and Bk  only involves any gradient flow gen-

erated within the kth step. However, (FGU) requires keep-

ing track of the matrices , ,A Bk k  and .Zk 1-  Hence, it may 

not be suitable for problems with high-dimensional vari-

ables i  and .z

To achieve more efficient computations when i  and z  are 

of large scale, BGU is introduced, which eliminates the need 

for storing any intermediate matrices [22], [23], [24]. BGU 

explores the calculation of the IG following (2):

 

( , ( , ) ( , )

( )

( )

.

)

d

df f

d

d f

c Z A B d

c B d Z A d c
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( )
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K

K
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1
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(12)

Instead of calculating IG explicitly like (FGU) does, (12) di-

rectly obtains the gradient of the upper-level variable, which 

can be further simplified with the following recursive formulas:

,  , , , ,
( ,

,  , , , ,
( , )

.

)
k K

f

k K
f

0 1

0 1

with

with

c c B d c

d A d d

R

R

k k k k K
K m

k t k K
K

K n

1

1

f
2

2

f
2

2

!

!

i

i z

z

i z

= + = =

= = =
<

<
-

- 

(BGU)

It can be observed that (BGU) only requires storing vectors (ck  

and )dk  throughout the recursion by utilizing the Jacobian– 

vector product trick. As a result, BGU is particularly advan-

tageous for problems with large-scale variables compared 

to FGU. Yet, because of its recursive nature, BGU can be 

conducted only after all of the K lower-level steps are fin-

ished. Thus, (BGU) needs to store all of the unrolling steps 

{ } ,Rk
n

k
K

1!z =  compared with (FGU). Consequently, it may 

not be efficient for handling BLO as the number of unrolling 

steps K grows.

It should also be noted that GU differs from the IF as its 

computation relies on the choice of the lower-level optimizer. 

For instance, employing sign-based GD (signGD) as the lower-

level optimizer leads to a computationally efficient GU variant 

Algorithm 2: GU-based approach for solving (LU-BLO).

Given initializations 0z  and 0i  and iteration numbers K and T,  
let ( ) :q U C C"$ #  denote one step of a given algorithm, which takes 
both i  and z  as input and outputs an updated .z  At iteration ,t 0$
•  Lower-level optimization by K-step optimization:

 ( ), , .,q K1t 1 fz i z l= =l l-  (8)

Define ( ) ( , ( , , ( , )));q q qt K t t t 0fz i z i i i z= =:u

•  Upper-level optimization: Leverage AD to compute the approximated 

gradient ( )
( , ( , ( , , ( , ))))

F
d

df q q q
t

t t t t 0

d
f

i i
i i i i z

=: ,u  and use this 

gradient to update .ti
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referred to as signGD-based GU [15]. Specifically, the modi-

fied lower-level update rule (8) becomes

 
( ) ;   , ,

, , , ,

g

k K1 2

signt K k k t k1 1d

f

z i z z z i zb= = -

=

z- -
u ^ ^ hh

  

 
(signGD)

where ( )sign $  denotes the element-wise sign operation, and 

02b  is a certain learning rate. Given the approximation 

( ) /d d 0sign x x =  (holding almost everywhere), the IG can be 

simplified to

 
( )

.
d

d

d

d

d

d

d

dt K K 1 0
g

i

i

i i i

z z z z
= = = =

-
u

 (13)

In the case that 0z  is independent of ,i  we can achieve the 

IG-free variant of the GU approach.

VF-based approach
VF-based methods [33], [34], [35], [36] can also avoid the com-

putation of the inverse of the Hessian required in the IF method. 

The key technique is to reformulate a standard BLO problem 

into a constrained single-level optimization problem. This re-

formulation involves transforming the lower-level problem into 

an upper-level inequality constraint. The resulting VF-based 

variants can then be solved using algorithms for constrained 

optimization. Furthermore, in comparison to IF- and GU-based 

methods, the VF-based approach has broader applicability in 

solving complex BLO problems. Not only can it handle lower-

level objectives with NS solutions (including both convex and 

nonconvex objectives), but more importantly, it can accom-

modate lower-level constraints as well. However, the VF-based 

approach has not yet been popular in practical SP and ML ap-

plications, partly because this approach has not been able to 

deal with large-scale stochastic problems. This point will be 

illustrated shortly in the section “Theoretical Results of BLO.”

To understand the VF-based approach, consider the follow-

ing equivalent reformulation of (LC-BLO):

 ( , ), ( , ) ( )f g gminimize subject to 
, C

#i z i z i)
!i z

 (14)

where :( ) ( , )ming gCi i z=
)

!z  is referred to as the VF of the 

lower-level problem. However, solving (14) is highly nontrivial, 

partly because ( )g i)  is not necessarily smooth, and it can be 

nonconvex. To address these challenges, a relaxed version of 

problem (14) is typically considered by replacing ( )g i)  with a 

smooth surrogate [33], [35]

 ( ) ( , )g g
2

minimize
1

2
2

2
C

i i z z
n

n= + +
)

!z
n  (15)

where : ( , )1 2n n n=  is a pair of positive coefficients that are in-

troduced to guarantee the smoothness of ( )g i)n  and to ensure 

the feasibility of the inequality constraint ( , ) ( ).g g#i z i)n

Given the relaxed VF formulation, one can adopt standard 

nonlinear optimization algorithms, such as a penalty-based 

algorithm, to solve the constrained optimization problem (14). 

For example, a log-barrier interior-point method, called the 

bilevel value-function-based interior-point method (BVFIM), 

is leveraged in [35] to solve a sequence of smooth approximat-

ed single-level problems of (14). Other related methods to solve 

(14) include primal–dual bilevel optimization (PDBO) [33], 

bilevel optimization made easy (BOME!) [36], and V-penalty-

based bilevel GD (PBGD) [34] methods.

Theoretical results of BLO
In this section, we examine the theoretical guarantees of various 

BLO methods. The section is divided into two parts. In the first 

part, we discuss the convergence results of popular algorithms 

for solving the (LU-BLO) problem, while the second part will 

focus on the more general formulations, such as (LC-BLO) and 

(NS-BLO). We list specific algorithms that can handle both sto-

chastic and deterministic BLO problems. Given the differences 

in theoretical analysis between stochastic and deterministic op-

timization, we also consider a generalized stochastic version of 

BLO, whose upper- and lower-level objectives are

 

:

:( , ,

( , ) ( , ; )

( )) ( ( ); ),f
N

f

g
N

g
1

1

i

N

i

i

N

i

1

1

i z i z i

i z i z

i

g

p

=

=
) )

=

=

/
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(16)

where Di f+p  (respectively, )Di g+g  represents the data 

sample of the upper-level (respectively, lower-level) objective 

from the distribution D f  (respectively, ),Dg  and N is the total 

number of data samples.

Convergence measures of BLO
In what follows, we introduce the convergence measures uti-

lized for evaluating the performance of BLO algorithms. 

These measures serve to assess the quality of solutions 

obtained by these algorithms. Note that in general the IF 

:( ) ( , ( ))F fi i z i=
)  may be nonconvex; therefore, we define 

the concept of an stationary-e  point for (LU-BLO), which 

plays a crucial role in characterizing the convergence proper-

ties of BLO when the upper-level problem is unconstrained, 

i.e., .RU m
=  In the deterministic setting of (LU-BLO), a 

point R
m!ir  is considered an -stationarye  point if it satis-

fies ( ) .F 2

2
d #i er  In the stochastic setting (16), where the 

algorithm incorporates randomness, the expectation is taken 

over the stochasticity of the algorithm. Thus, an -stationarye  

point is defined as ( ) .FE 2

2
d #i er  It is important to note that 

when the upper-level problem in (LU-BLO) is constrained, 

i.e., RU m1 , then the upper-level objective ( )F ir  may not be 

differentiable over ir  in general. When solving (LC-BLO) us-

ing the IF-based approach, if the IF is differentiable, similar 

measures of stationarity as in standard optimization can be 

utilized. However, if the IF is nondifferentiable, alternative 

stationarity measures are commonly employed. These include 

subgradient optimality [32], proximal gradient methods [34], 

[37], and Moreau envelope techniques [31], [32], [38]. Further-

more, when employing VF-based approaches to solve (LC-

BLO), a widely used measure of stationarity is to evaluate the 

convergence of the algorithms toward the KKT points of the 

constrained reformulation of the BLO problem [33].
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In addition, the concept of oracle complexity is employed to 

quantify the number of gradient evaluations needed to obtain 

an -stationarye  solution, as defined earlier. We denote ( , )fG e  

(respectively, ( , ))gG e  as the total number of (stochastic) gra-

dients of f (respectively, g) evaluated to achieve an -stationarye  

solution. This measure provides insights into the computation-

al requirements of BLO algorithms and their scalability with 

respect to the problem size and desired solution accuracy.

Convergence guarantees for LU-BLO
As discussed in the section “Algorithmic Foundations of BLO,” 

solving (LU-BLO) requires computing the Hessian or its in-

verse. However, the stochastic formulation (16) leads to some 

challenges, especially for convergence analysis. For example, 

in the case of solving the stochastic BLO problem using Algo-

rithm 1 (IF), the gradient estimates would be replaced with ap-

propriate stochastic gradient estimates for both the upper- and 

lower-level updates. However, obtaining an unbiased estimator 

for the Hessian inverse term in the IG [as 

defined in (4)] is challenging. To overcome 

this challenge, a biased stochastic gradi-

ent estimator based on Neumann-series 

approximation, as discussed in the section 

“Practical Considerations of IF,” has been 

used in [30] and [31]. We note that the bias 

of the estimator can be easily controlled by 

choosing a larger batch to compute the Hes-

sian of the lower-level objective [30, Lemma 3.2]. Moreover, 

we point out that the stochastic CG (discussed in the section 

“Practical Considerations of IF”) can also be utilized to obtain 

the inverse Hessian gradient vector product to approximate the 

IG [39], [40].

In addition, a key design choice for BLO algorithms is 

whether the inner problem is solved accurately or not. In a 

single-loop algorithm, one only performs a fixed number of 

steps for the lower-level updates before every upper-level 

update [31], [41], [42], while in a double loop, many lower-level 

updates are carried out to obtain a very accurate approxima-

tion of ( )z i)  [30], [39], [40]. Typically, the former is simpler 

to implement in practice, while the latter is easier to analyze 

since the error caused by approximating ( )z i)  can be well 

controlled. In addition, the stochastic descent direction to 

solve both (or either) upper- and lower-level problems can be 

constructed using either vanilla stochastic GD (SGD) [43] 

or variance-reduced (VR) algorithms [44]. Specifically, it is 

well known that VR-based algorithms can lead to improved 

theoretical convergence of stochastic algorithms compared to 

vanilla SGD-based algorithms to solve standard optimization 

problems. The VR-based algorithms accomplish this improved 

convergence by computing additional stochastic gradients on 

optimization variables computed in consecutive iterations [44]. 

Similar behavior is observed in solving BLO algorithms using 

VR-based gradient constructions, as discussed next.

In Algorithm 3, we provide a generic stochastic algorithm 

to solve BLO problems using the IF-based approach. As point-

ed out earlier, for double-loop algorithms, ( )tz iu  will approxi-

mate ( )tz i)  closely, while for a single-loop algorithm, ( )tz iu  

could be given by a crude approximation of ( ).tz i)  Table 1 

provides a summary of the oracle complexities of existing 

BLO algorithms for achieving an -stationarye  point in solv-

ing problem (LU-BLO). The theoretical results are categorized 

based on three algorithmic families: stochastic BLO (16), VR-

based BLO, and deterministic BLO. The convergence perfor-

mance is evaluated in terms of the oracle complexities ( , )fG e  

and ( , ),gG e  as introduced in the section “Convergence Mea-

sures of BLO.” In Table 1, we also illustrate the BLO solver 

employed by different optimization principles (i.e., IF, GU, or 

VF) and the algorithmic design choices, such as double versus 

single loop.

Stochastic BLO
This set of algorithms updates the lower- and upper-level 

variables using SGD, following the IF or GU optimization 

principle. The stochastic gradient estimates are evaluated as 

discussed in Algorithm 3, while for the 

deterministic setting, the gradients are ap-

proximated using the techniques discussed 

in the section “Algorithmic Foundations 

of BLO.” Bilevel stochastic approximation 

(BSA) [30] was the first algorithm that of-

fered finite-time convergence guarantees 

for solving unconstrained stochastic BLO 

problems. It employed a double-loop algo-

rithm where the lower-level variable is iteratively estimated 

with multiple SGD updates, resulting in a larger oracle 

complexity of ( / )1O 3e  for the inner-level optimization 

compared to ( / )1O 2e  for the upper-level optimization. 

Two-timescale stochastic approximation (TTSA) [31], a 

fully single-loop algorithm (with projected SGD update for 

upper-level constrained optimization) improved the lower-

level oracle complexity to ( / );1O /5 2e  however, at the cost of 

worsening the upper-level oracle complexity to ( / ).1O /5 2e  

More recently, the stochastic bilevel optimizer (stocBiO) 

[40], the stochastic bilevel algorithm (SOBA) [46], and the 

alternating stochastic GD (ALSET) [42] algorithm have 

been developed to achieve ( / )1O 2e  complexity for both the 

Algorithm 3: (S)GD and VR for solving stochastic  
(LU-BLO) and (LC-BLO). 

Given the initialization 0i  and iteration number T, iteration t 0$  
yields:
•  Lower-level optimization: Given ,ti  call SGD (or VR based on both 

ti  and )t 1i -  to obtain a lower-level solution ( ) .tz iu

•  Approximation: Given ( ),tz iu  compute a stochastic gradient estimate 
of (5) as follows:
–  Estimate stochastic versions of ( , ( )),f t td i z ii

u  
( , ( )), ( , ( )) .f g,t t t t

2
d di z i i z iz i z

u u

–  Approximate Hessian inverse, ( , ( )) ,g, t t
2 1
d i z iz z

-u u  following (6) 
in the section “Practical Considerations of IF.”

–  Obtain stochastic estimate of (5) and construct a descent direction 
( ; )F td i pu u  for .ti

•  Upper-level optimization: Call SGD (or VR) to update ti  using 
( ; )F td i pu u  (or ( ; )F td i pu u  and ( ; ) .F t 1d i p-

u u

The problem of model 

pruning arises, aiming to 

reduce the sizes of an ML 

model by identifying and 

removing redundant model 

weights.
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upper- and the lower-level optimization. Note that stocBiO 

[40] requires a batch size of ( / )1O e  to achieve this complex-

ity, while ALSET [42] and SOBA [46] rely on only ( )1O  

batches to achieve the same performance. In [48], the au-

thors developed fully first-order stochastic approximation 

(F2SA), a VF-based algorithm to solve (LU-BLO). The al-

gorithm achieved an oracle complexity of ( / )1O /7 2e  for both 

upper- and lower-level objectives while circumventing the 

need to compute Hessians (or Hessian vector products) dur-

ing the execution of the algorithm.

VR stochastic BLO
Several VR algorithms have been proposed to improve the per-

formance of vanilla stochastic algorithms by computing addi-

tional stochastic gradients in each iteration (see Algorithm 3).  

Examples including single-timescale stochastic bilevel op-

timization (STABLE) [38] and momentum-assisted single-

timescale stochastic approximation (MSTSA) [41] utilized 

momentum-based variance reduction techniques [44] for 

upper-level optimization, improving the performance of 

TTSA [31] and BSA [30] and achieving an oracle complex-

ity of ( / )1O 2e  for both upper- and lower-level objectives. 

Single-timescale double-momentum stochastic approxima-

tion (SUSTAIN) [41], the momentum-based recursive bilevel 

optimizer [45], and the stochastic VR bilevel method [50] fur-

ther improved the performance by applying variance reduc-

tion to both upper- and lower-level optimization, achieving 

an oracle complexity of ( / ).1O /3 2e  The VR bilevel optimizer 

(VRBO) [45] employed the stochastic path-integrated differ-

ential estimator [51], a double-loop VR gradient estimator, 

to achieve the same complexity. More recently, a stochastic 

average bilevel algorithm (SABA) [46] was developed, apply-

ing SAGA (an incremental gradient estimator) [52] to achieve 

an oracle complexity of ( / ),NO /3 2 e  where N is the number of 

empirical data points. In addition to F2SA, the authors of [48] 

also proposed the faster fully first-order stochastic approxi-

mation (F3SA), which improved on the oracle complexity of 

F2SA. F3SA utilized momentum-based variance reduction to 

achieve an oracle complexity of ( / )1O /5 2e  for both upper- and  

lower-level objectives.

Deterministic BLO
Popular approaches for solving deterministic BLO prob-

lems include iterative differentiation (ITD) and approxi-

mate implicit differentiation (AID) methods. ITD-based 

approaches, proposed in [23] and [24], established asymp-

totic convergence guarantees and were extended to TGU in 

[22], achieving oracle complexities of ( / ).1O 2e  Improved 

guarantees were later shown in [40], achieving oracle com-

plexities of ( / ),1O e  comparable to solving a deterministic 

single-level optimization problem. AID-based approaches 

for solving deterministic BLO problems include bilevel 

approximation (BA) [30], the AID bilevel optimizer (AID-

BiO) [40], and MSTSA [41]. BA, a double-loop algorithm, 

was the first to establish convergence guarantees for deter-

ministic BLO using AID. BA achieved an oracle complexity Ta
bl
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of ( / )1O e  for the upper-level optimi-

zation and ( / )1O /5 4e  for the lower-

level optimization. The performance 

of BA was improved in AID-BiO [40] 

and MSTSA [41], which achieved an 

oracle complexity of ( / )1O e  for both 

upper- and lower-level objectives. 

Please refer to Table 1 for a summary 

of the discussed approaches.

Convergence guarantees for 
(LC-BLO) and (NS-BLO)
Obtaining convergence guarantees for 

BLO algorithms becomes more chal-

lenging when solving more complex 

problems, such as those involving 

lower-level constraints in (LC-BLO) or NS lower-level solu-

tions in (NS-BLO). In the previous section, the majority of 

the algorithms discussed employed an IF-based approach to 

solve the BLO problem. However, in this section, only the 

algorithms designed to solve (LC-BLO) utilize IF-based ap-

proaches. It is also worth mentioning that IF-based approaches 

are not applicable for solving (NS-BLO) [or (LC-BLO) with 

general constraints] because of the inapplicability of the im-

plicit function theorem in this context. Instead, standard ap-

proaches to solve these more complex problems include inte-

rior-point methods [35], primal–dual methods [33], dynamic 

barrier GD [36], and penalty-based GD [34]. As pointed out 

earlier, a major drawback of these algorithms is that they are 

exclusively developed for deterministic problems and lack  

efficient implementations for stochastic formulations (16). 

Consequently, they are not well suited for large-scale SP and 

ML applications, which often involve learning over large 

volumes of data.

In the following, we present a summary of recent theoreti-

cal advancements for solving highly complex BLO problems, 

such as (LC-BLO) and (NS-BLO) (see Table 2). We list the ora-

cle complexities of representative methods, design principles, 

and the type of constraints present in the lower-level objective 

function. Note that in Table 2, we list the oracle complexity for 

only the upper-level objective with the notion of stationarity 

defined according to either the squared norm of the projected 

gradient [10], [32], [34] or KKT conditions [33], [36].

Theoretical results for (LC-BLO)
BLO problems of the form (LC-BLO) involving lin-

ear constraints of the form : { ( , ) }h 0C ; #z i z=  with 

:( , )h A bi z z= -  in the lower level have gained popularity 

in both theory and practice [10], [32], [37]. Under some regu-

larity assumptions on upper- and lower-level objectives and the 

constraint set of the lower-level problem, IF-based methods 

can be developed for solving such problems. These algorithms 

(see, e.g., Algorithm 4) follow the same structure as the one 

presented in Algorithm 1; the key difference is that the con-

struction of the (stochastic) gradient estimate depends on the 

lower-level constraints.

In [32], the SIGD approach was developed to handle (LC-

BLO) with linear inequality constraints in the lower level. 

SIGD is an implicit GD algorithm that ensures the differ-

entiability of the IF through perturbation-based smoothing. 

The SIGD algorithm and the expression for IG used in [32] 

are stated in (17). SIGD guarantees asymptotic convergence 

to a stationary point. A similar IF-based approach was also 

utilized in [10], termed Fast Bilevel Adversarial Training 

(Fast-BAT). Fast-BAT aims to enhance the robustness of 

deep learning models against adversarial attacks using BLO. 

It achieves an oracle complexity of ( / )1O e  under certain 

smoothness assumptions. In [37], the stochastic BLO prob-

lem with linear equality constraints in both the upper- and 

lower-level problems is considered. The authors proposed an 

IF-based approach by constructing an approximate stochas-

tic implicit gradient for linearly constrained BLO. They also 

proposed the alternating implicit projected SGD (AiPOD) 

algorithm, an alternating projection method that achieves 

an oracle complexity of ( / )1O 2e  for both upper- and lower-

level objectives. The work [33] considered BLO with general 

constraints in both upper- and lower-level objectives and 

NS lower-level solutions. It utilized the VF-based approach 

developed in BVFIM [35] for solving (NS-BLO) and pro-

posed PDBO, a primal–dual algorithm for solving (14) when 

Table 2. Convergence results of representative algorithms for solving (LC-BLO)  
and (NS-BLO) problems. 

Objective Functions

Algorithm Principle Upper Level Lower Level Constraints Oracle Complexity

BDA [21] GU Strongly convex Convex No Asymptotic 
BVFIM [35] VF Smooth Nonconvex No Asymptotic 
BOME! [36] VF Smooth PL No ( / )1O 4e
SIGD [32] IF Smooth Strongly convex Linear inequality Asymptotic 
AiPOD [37] IF Smooth Strongly convex Linear equality ( / )1O 2e
PDBO [33] VF Smooth Convex Nonlinear ( / )1O /3 2e
PBGD [34] VF Smooth PL Nonlinear ( / )1O /3 2e

Similar to Table 1, convergence is measured by oracle complexity. Other algorithmic details include optimization princi-
ples (IF, GU, and VF), problem setups [(LC-BLO) and (NS-BLO)], objective function types, and lower-level constraint types. 
BDA: bilevel descent aggregation; SIGD: smoothed implicit gradient; AiPOD: alternating implicit projected SGD.

Algorithm 4: Smoothed implicit gradient (SIGD), an IF-based  
approach for (LC-BLO).

Given the initialization 0i  and iteration number ,T  iteration t 0$  
yields the following:
• Call Algorithm 1 and use the following procedure to compute the IG.
•  Notation: Let ( )A zr  be the matrix that contains the rows of A that 

correspond to the active constraints of inequality 0A b#z- , and 
( )im)r  is the Lagrange multipliers vector that corresponds to the active 

constraints at ( );z i)  compute:
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the VF is approximated using (15). Under the assumptions 

of convex and compact constraint sets and convex lower-

level objectives, PDBO achieves an oracle complexity of 

( / ).1O /3 2e  Recently, the authors of [34] proposed PBGD for 

BLO with general constraints and NS lower-level solutions. 

The authors established the  equivalence of BLO and its pen-

alty-based reformulations based on VF and KKT conditions. 

PBGD achieved an oracle complexity of ( / )1O /3 2e  for solv-

ing constrained BLO with lower-level objectives satisfying 

the Polyak-Łojasiewicz (PL) inequality. Note that the algo-

rithms PDBO [33] and PBGD [34] can be utilized to solve 

both (LC-BLO) and (NS-BLO) problems. Next, we discuss 

specific algorithms for solving (NS-BLO).

Theoretical results for (NS-BLO)
An attempt to relax the lower-level singleton assumption for 

the lower-level problem was made in [21] with the introduction 

of bilevel descent aggregation (BDA), a bilevel descent frame-

work for solving (NS-BLO). BDA assumes convexity of the 

lower-level objective and strong convexity of the upper-level 

objective with respect to .z  The framework updates the lower-

level variable, ,z  using a convex combination of the upper- and 

lower-level partial gradients and then updates the upper-level 

variable, ,i  using standard FGU/BGU techniques. The au-

thors established the asymptotic convergence of BDA in [21]. 

In [35], the authors relaxed the convexity assumptions on the 

lower- and upper-level objectives in (NS-BLO) and proposed 

BVFIM, a VF-based approach to solving the problem. BVFIM 

solves a sequence of penalty-based reformulations of the VF  

problem using the interior-point method with asymptotic 

 convergence. In [36], the authors introduced BOME!, an al-

ternative approach to directly solve the VF problem using a 

dynamic barrier GD algorithm. Under the assumption of PL 

inequality for the lower-level objective, BOME! achieves a 

finite-time sample complexity of ( / )1O 4e  in the worst case.

BLO-enabled SP and ML applications
In the following sections, we will showcase how BLO can be 

leveraged to obtain state-of-the-art results for a number of key 

SP and ML applications, such as wireless resource allocation 

(see the section “BLO for Wireless Resource Allocation”), 

signal demodulation (see the section “BLO for Wireless Sig-

nal Demodulation”), adversarial training for robustifying ML 

models (see the section “BLO for Adversarially Robust Train-

ing”), weight pruning for enhancing model efficiency (see the 

section “BLO for Model Pruning”), and invariant representa-

tion learning for improving domain generalization (see the 

section “BLO for Invariant Representation Learning”). Table 3 

summarizes a number of emerging BLO application areas, to-

gether with some representative references.

BLO for wireless resource allocation
In this section, we explore the application of BLO in wireless 

communications, specifically in the context of wireless optimal 

resource allocation (power control) [7]. The goal is to allocate 

power efficiently among multiple transmitter–receiver pairs to 

maximize some system-level performance. We consider a dy-

namic environment where wireless channel statistics change 

episodically, where the environment statistics change in “epi-

sodes,” and in each episode the environment is stationary. To 

solve this problem, we employ a neural network trained to pre-

dict the optimal power allocation for users based on channel 

information. However, neural networks often struggle when 

evaluated on data that deviate from the training  distribution. 

Table 3. An overview of emerging applications of BLO in SP and ML (  image indicates applications we studied).

Representative Applications Application Areas Problem Description Selected References

Wireless resource allocation  SP To allocate wireless resources optimally and maximize  
their utilities 

[7] 

Signal demodulation  To accurately estimate transmitted symbols from  
received  baseband signals 

[53] 

Channel prediction To predict the states of a communication channel by  leveraging 
previous observations 

[54] 

Image reconstruction To recover images from their sparse measurements [9] 

Adversarial training   Robust ML To train an ML model with adversarial robustness against 
adversarial attacks 

[10], [11] 

Poisoning attack generation To generate malicious data into the training set, creating 
 vulnerabilities/backdoors in ML models

[12], [13] 

Model pruning   Efficient ML To find sparse subnetworks from a dense DNN without 
 generalization loss 

[18], [55] 

Dataset condensation To select a subset or distill a condensed version of the training 
set without generalization loss 

[17], [19] 

MAML  Generalized ML To train an ML model that can quickly adapt to new tasks  
using limited data 

[14], [15], [16] 

IRM   To train an ML model with invariant features against 
 distribution shift 

[56], [57], [58] 

Neural architecture search Automated ML To automatically optimize the architecture of DNNs for 
improved performance 

[25] 

Hyperparameter optimization To optimize the hyperparameters and model selection  
schemes in an ML pipeline 

[21], [22], [23], [24] 

IRM: invariant risk minimization.
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To address this challenge, we adopt a continual learning frame-

work [59] and maintain a memory set, containing a representa-

tive subset of samples encountered so far, to facilitate adapta-

tion to new episodes while preserving performance on previous 

ones. The model is trained not only on the current data batch 

but also on the memory set, and the dual requirement of con-

tinuously updating the memory set while optimizing the system 

performance leads to the bilevel formulation. In what follows, 

we provide a detailed problem formulation [7].

Formulation
Consider a dynamic wireless environment with T episodes, 

where the channel state information (CSI) statistics re-

main stationary within each episode. Consider a supervised 

learning setting, where the ith data pair ,h p( ) ( )i i^ h consists 

of the CSI vector h( )i  (the feature vector) 

capturing the channel characteristics and 

the corresponding optimal power alloca-

tion p( )i  across the users (the label). We 

train a neural network ; h( )iir^ h on these 

data pairs, where i  represents the model 

parameters and h( )i  serves as the network 

input, with the output being the power al-

location prediction. Assuming the data 

arrive sequentially in multiple batches, 

let Dt  denote the batch we receive at time t. Assume that 

there is a fixed-size memory set Mt  available, which stores 

representative historical data to be combined with Dt  for 

training, and it is updated when a new batch arrives. The 

 performance of a power allocation scheme p  (for a given 

CSI h) is measured by the weighted sum–rate loss function 

( ; )R p h  [7, equation (1)].

At each time t, our problem involves two tasks. The first 

task is to train the neural network on a (weighted) set of train-

ing samples, aiming to find the optimal model parameter i .  

The second task is to select the most representative subset 

from the available training data, which includes the samples 

in memory Mt  and the current data batch Dt  (denoted as 

M Dt t, ). This selected subset will be then used for training 

as well as to form the new memory to be used in the next time 

t + 1. Toward this end, we introduce the variable ,m  which 

represents the weights associated with each sample. Higher 

weights are assigned to samples that are more representative or 

challenging, as determined by the system performance metric 

( ; ).R p h  These weighted samples (with nonzero weights) are 

then selected to form the updated memory set, and they will 

contribute to the next round of training. The idea is that by 

focusing on training the model on these challenging samples, 

we can expect better performance on the remaining easier 

samples. This problem can be naturally formulated as the fol-

lowing BLO problem:
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where ( ; , ) ( ; )h p p h( ) ( ) ( ) ( )i i i i
2

2
, i ir= -  is the mean-square-

error loss over the ith sample, and M Dt t,  are the available 

training samples at time t. At the upper level, supervised train-

ing is performed by using the weighted loss, while at the lower 

level, the weights are optimized based on their achieved rates, 

where higher weights are assigned to samples achieving lower 

rates. Based on solutions obtained by solving (18) [denoted 

as , ,t ti m^ h@  in iteration t + 1 a new memory set is formed by 

: .M i 0
( )

t t
i

1 2m=+ " ,
Methods
Problem (18) is a constrained BLO problem with linear equali-

ty constraints with respect to the lower-level variable .m  Based 

on the problem structure and the optimization principles and 

algorithms introduced in the sections “Algorithmic Founda-

tions of BLO” and “Convergence Guaran-

tees for (LC-BLO) and (NS-BLO),” we uti-

lize the IF-based SIGD method [32] to solve 

(18). However, it should be noted that the 

SIGD method assumes a strongly convex 

lower-level problem (see Table 2). To ensure 

this property, we introduce a regularization 

term / ,2 2
2

mc^ h  where c  is the regulariza-

tion parameter, as described in the section 

“Extension to Lower-Level Constrained 

BLO.” As a classical baseline approach, we also consider trans-

fer learning (TL). In TL, when a new data batch Dt  arrives, 

the current model trained on data up to time t – 1 is fine-tuned 

using only .Dt  This approach is motivated by the expectation 

that previous knowledge can be transferred to the new environ-

ment, enabling quick adaptation of the model. However, updat-

ing the model may result in a loss of prior knowledge, leading 

to performance degradation on the prior episodes.

Experiment results
We consider an experiment setting with T 4=  episodes 

and 10 users and with three different types of communica-

tion channels: Rayleigh fading, Rician fading, and Geometry 

channels; see [7, p. 13] for more details. The neural network 

trained for power allocation consists of three hidden layers 

with sizes 200, 80, 80, respectively. Figure 2 illustrates the 

performance of power allocation, measured by the sum rate; 

in the horizontal axis we have the total number of samples 

used for model training as these arrive sequentially in batch-

es. Here the power allocation schemes are obtained using the 

BLO-based SIGD method and the baseline approach (TL), re-

spectively. As we can see, the SIGD method exhibits smoother 

adaptation to each episode (note that the boundaries between  

episodes locate at x=2,4,6,8). It also experiences less deteri-

oration in performance compared to the baseline approach. 

These results demonstrate the advantage of using BLO for 

power allocation.

BLO for wireless signal demodulation
In this section, we explore the application of BLO in wire-

less signal demodulation by associating it with another BLO 

Note that all IRM variants 

outperform ERM, which 

justifies the importance 

of IRM training to improve 

model generalization 

across diverse 

environments.
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 application, MAML [14]. Thus, we begin by introducing the 

fundamental concepts of MAML within the framework of 

BLO and then establish the connection between MAML and 

signal demodulation.

Fundamentals of BLO in MAML
MAML, as an optimization-based metalearning approach, 

has gained significant popularity in various fields, especially 

in scenarios with limited resources [14], [15], [16]. Specifical-

ly, MAML learns a metainitialization of optimized variables 

(e.g., model weights ih to enable fast adaptation to new tasks 

when fine-tuning the model from the learned initialization 

with only a few new data points [14]. With N learning tasks 

,Ti i
N

1=" ,  1) a fine-tuning set Di
tr  is used in Ti  for the task-

specific lower-level optimization over the task-agnostic model 

initialization ,i  and 2) a validation set Di
val  is used in the 

upper-level optimization for evaluating the fine-tuned model 

ii
)  from i . Thus, MAML can be formulated as the following 

BLO problem:

( );

( ) ( ; , ),argmin

N
1

minimize

subject  to

E D

D
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i

i
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(MAML-BLO)

where *
ii i^ h signifies the fine-tuned model weights using the 

initialization i  under the task ,Ti  and i,  denotes the model 

training (or validation) loss over Di
tr  (or Di

val ) with initializa-

tion i  (or fine-tuned model .*
ii i^ hh

The MAML-BLO problem falls into the category of uncon-

strained BLO. Thereby, existing works, such as [14], [15], and 

[16], commonly employ the IF- or GU-based approaches to 

solve it. The vanilla MAML algorithm [14] utilizes a GU-

based BLO solver, which carries out the upper- and lower-level 

updates using the following steps:
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 (MAML)

where ,a  02b  represent the learning rates for the SGD up-

dates in the upper and the lower level, respectively. As men-

tioned in the section “GU-Based Approach for Unconstrained 

BLO”), the choice of the lower-level optimizer will greatly in-

fluence the GU-based BLO solvers.

As described in the section “Practical Considerations,” the 

usage of the sign-based SGD in the lower level can lead the 

vanilla MAML to a first-order BLO solver, known as Sign-

MAML [15]. In contrast to the GU-based MAML methods 

discussed previously, the implicit MAML (iMAML) [16] 

utilizes an IF-based approach, where the CG method is used 

to compute the inverse Hessian gradient product. Compared 

to the vanilla MAML, iMAML shares the same lower-level 

updating rule, while adopting the IF-based upper-level itera-

tion, similar to (5). Unlike IF and GU, the first-order MAML 

(FO-MAML) operates by alternating between SGD-based 

lower-level optimization and SGD-based upper-level optimi-

zation, without explicitly considering the implicit gradient. 

We refer to this optimization procedure as alternating opti-

mization (AO).

We next demonstrate the effectiveness of BLO in MAML 

by applying it to benchmark few-shot learning tasks on the 

Omniglot and Mini-ImageNet datasets, where the generaliza-

tion of the learned metainitialization is evaluated on the new 
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FIGURE 2. The average sum rate achieved on the combined test set 

(across all four episodes) is plotted as a function of the total number of 

samples used for model training, which arrive sequentially in batches. 

Three experiments are conducted with different types of channel statistics 

across the four episodes. (a) The channel sequence is Rayleigh-Rician-

Geometry10-Geometry50. (b) The channel sequence is Rician-Geome-

try10-Rayleigh-Geometry50. (c) The channel sequence is Geometry10-

Geometry20-Geometry50-Rayleigh. The numbers after the Geometry 

channel indicate the spatial arrangement of the nodes, such as a 20 m × 

20 m area for Geometry20.
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tasks, each with only a few examples. We follow the standard 

experimental setting [14], [15], [16], considering 20-way-

1-shot and 20-way-5-shot learning on Omniglot and 5-way-

1-shot and 5-way-5-shot learning on Mini-ImageNet. Here 

P-way-Q-shot refers to training a model using a small set of 

data points sampled from P classes, with each class contain-

ing Q examples. Table 4 provides an overview of the accuracy 

and runtime efficiency of different methods 

for solving MAML-BLO, including AO-

based FO-MAML [14], GU-based Sign-

MAML [15], GU-based vanilla MAML 

[14], and IF-based iMAML [16]. As we can 

see, the vanilla MAML and iMAML gen-

erally achieve higher testing accuracy than 

other MAML variants, but they require more 

computation time. This is expected for their 

fewer implementation assumptions, resulting in more precise 

metainitialization states. In the FO optimization category, we 

observe that Sign-MAML outperforms FO-MAML, demon-

strating the advantage of using GU to solve BLO problems.

BLO for wireless signal demodulation

Background and connection to MAML 
We next examine the application of BLO in the context of wire-

less signal demodulation through the lens of MAML. Wireless 

signal demodulation aims to recover the transmitted symbols 

s from the received signals y . Our investigation aligns with 

prior research [8] and focuses on a scenario where wireless de-

vices frequently transmit short packets with a few pilot symbols 

through a varying channel. Notably, only a limited number of pi-

lot symbols is available to optimize the demodulator when work-

ing with any new wireless transmitter device in the field. Mean-

while, the historical data pairs for previous devices and channel 

conditions can hardly transfer to new ones. Thus, demodulation 

modeling can be viewed as a few-shot metalearning problem, 

aiming to obtain a metainitialization that is able to quickly adapt 

to future devices. Similar to MAML, a metademodulator char-

acterized by a learnable parameter i  is trained to quickly adjust 

to new devices with only a few new pilot symbols.

Formulation
Specifically, N supervised datasets are collected to train the 

metademodulator, each associated with a specific device, 

which can be treated as N tasks. The ith dataset with K 

samples is given by , ,s yD
( ) ( )

i i
k

i
k

k

K

1=
=

^ h" ,  where y
( )
i
k

 rep-

resents the kth received signal, and s
( )
i
k

 is its corresponding 

ground-truth transmitted symbol. The demodulation task 

for each single device can be formulated as a classification 

problem as each symbol s
( )
i
k

 can only be one of the several 

binary encodings, e.g., ranging from 0000 to 1111 following 

the 16-quadrature amplitude modulation 

(16-QAM) [8]. Thus, the cross-entropy 

loss between the predicted transmitted 

symbol ( , )s y it  and the true symbol s  

is used to train the demodulator model: 

( ; ) ,( , ),D s y sE L, ~
( ) ( )

i i i
k

i
k

CEs y D
( ) ( )
i
k

i
k

i, i i= t^^ hh  

where we use a multilayer neural network 

as the demodulation model i  following [8] 

to predict the transmitted symbol st  using 

the received signal y. Given N devices (datasets) within the 

metatraining dataset, each contains K data samples, which 

are divided into Ktr  for fine-tuning i  and Kval  for validat-

ing the performance of the fine-tuned model. In line with the 

notions used in (MAML-BLO), the demodulation of the ith 

device can be regarded as learning task ,Ti  which consists 

of a fine-tuning dataset Di
tr  and a validation dataset .Di

val  

To this end, we can apply the previously introduced MAML 

methods [14], [15], [16] to address the problem of wireless 

signal demodulation.

Experiment results
During the metatraining phase, we consider N = 1,000 dif-

ferent devices, each of which has { , , , }K 1 5 10 20tr !  training 

samples designated as the fine-tuning set. For the metatesting 

phase, we use another set of 100 devices, each of which has 

Ktr  pairs for the few-shot demodulator fine-tuning and an ad-

ditional 10,000 pilot symbol pairs for symbol classification 

accuracy evaluation. Table 5 shows the average classification 

accuracy and running time for different MAML methods, pro-

viding insights into how the choice of Ktr  affects the perfor-

mance of these methods. As we can see, MAML and iMAML 

achieved the highest symbol classification accuracy, although 

they required more computational time, consistent with the 

findings in Table 4. Sign-MAML outperformed FO-MAML in 

the one-shot scenario, benefiting from the effectiveness of the 

GU solver. However, in scenarios with more shots, FO-MAML 

can achieve a performance on par with that of MAML.

Table 4. Performance comparison of various MAML methods on the commonly used datasets for few-shot learning tasks Omniglot and  Mini-ImageNet.

Test Accuracy 
(%)

Time 
(min)

Test Accuracy 
(%)

Time 
(min)

Test Accuracy 
(%) Time (min)

Test Accuracy 
(%) Time (min)

Method BLO (Solver) Omniglot 20-way-1-shot Omniglot 20-way-5-shot Mini-ImageNet 5-way-1-shot Mini-ImageNet 5-way-5-shot 

FO-MAML [14] AO 90.62 ± 0.29 2.71 96.44 ± 0.23 2.99 46.39 ± 0.44 4.32 54.45 ± 0.29 4.93 
Sign-MAML [15] GU 91.75 ± 0.26 2.85 97.79 ± 0.18 2.91 47.73 ± 0.55 4.51 55.12 ± 0.33 4.72 
Vanilla MAML [14] GU 95.65 ± 0.25 4.71 98.42 ± 0.23 4.94 48.77 ± 0.65 15.5 55.72 ± 0.36 15.9 
iMAML [16] IF 95.99 ± 0.19 3.64 98.63 ± 0.14 3.85 49.31 ± 0.41 11.6 54.71 ± 0.27 13.3 

The best performance in each setting is marked in boldface. The standard deviations are reported based on five random trials. Rows marked in gray indicate BLO-enabled  algorithms.

Developing efficient 

algorithms that can handle 

NS lower-level solutions 

and provide convergence 

guarantees is a key 

research direction.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore.  Restrictions apply. 



54 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2024   |

BLO for adversarially robust training
The lack of adversarial robustness in ML models has prompted 

extensive research on adversarial defense mechanisms [10], [11], 

[60]. While most of the existing defenses rely on MMO to mini-

mize worst-case training loss by incorporating a synthesized ad-

versary, this approach requires completely opposing objectives 

for the defender and attacker. This limits its applicability to sce-

narios where differing objectives are desired. Recent works [10], 

[11] have demonstrated the use of BLO with customizable attack 

objectives to improve the efficiency and robustness of robust 

model training across a wide range of adversarial attack strengths.

Formulation
We formulate the BLO-based robust training for defending 

against adversarial attacks. Using variables i  for model pa-

rameters and d  for input perturbation, and loss functions tr,  

for training and atk,  for attacks, we define the task of robust 

training as a BLO problem (RT-BLO). The upper-level prob-

lem involves training the model ,i  while the lower-level problem 

optimizes d  for adversarial attack generation to produce worst-

case input in model training. This yields the following:
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(RT-BLO)

where ( , )yx  is a data pair with feature x  and label y drawn from 

the training dataset , ( )xD d+  is an adversarial example with 

respect to ,x  and C!d  denotes a perturbation constraint, e.g., 

, [ , ]0 1xC # !d d de= +3" , for an tolerated-e  ,3 -norm 

constrained attack with normalized input in [ ]0,1 .

If we choose atk tr, ,=- , then problem (RT-BLO) reduces to 

the MMO-based adversarial training [60]. However, the flex-

ibility of independently choosing the lower-level attack objec-

tive allows for a broader range of robust training scenarios. In 

particular, it enables the development of a fast robust train-

ing variant called Fast-BAT [10]. The Fast-BAT formulation, 

given next, specifies the lower-level attack generation problem 

of (RT-BLO) as a constrained convex quadratic program:
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(Fast-BAT)

where ( , , )x yCE, i  is the cross-entropy loss for training model 

weights i  evaluated at the data point ( , )yx , and the lower-

level attack objective is given by a first-order Taylor expan-

sion of CE,-  (at the linearization point 0d h plus a quadratic 

residual with the regularization parameter .02c  Since the 

lower-level problem becomes a convex quadratic program, 

it leads to the closed-form projected GD (PGD) solution 

( ) ( / ) ( , )1P*
0 CEC 0d ,d i d i dc= - d d d=^ h .

Methods
As problem (Fast-BAT) falls into the category of (LC-BLO), we 

can solve it using optimization methods introduced in the sec-

tion “Convergence Guarantees for (LC-BLO) and (NS-BLO).” 

Specifically, we consider the KKT-oriented IF approach (see 

the section “Extension to Lower-Level Constrained BLO”) as 

our BLO solver (see Algorithm 4). In our experiments, we refer 

to this method as Fast-BAT-IF. Furthermore, we compare Fast-

BAT-IF with non-BLO representative robust training base-

lines, such as Fast-AT [61] and Fast-AT-GA [62].

Experiment results
In Table 6, we empirically show the performance of differ-

ent robust training methods to robustify PreActResNet-18 

on the CIFAR-10 and Tiny-ImageNet datasets. The evalu-

ation metrics include 1) the test-time robust accuracy (RA) 

of the learned model against 50-step PGD attacks [60] 

with 10 restarts (RA-PGD) using the perturbation budgets 

/8 255e =  and 16/255; 2) RA against AutoAttack (RA-AA) 

[47] in a setup similar to RA-PGD; 3) the standard accu-

racy of the learned model on natural examples; and 4) the 

time consumption required for robust training. As observed, 

Fast-BAT-IF exhibits higher robustness compared to non-

BLO baselines, highlighting the effectiveness of BLO in 

robust training.

BLO for model pruning
While overparameterized structures are key to the improved 

generalization of DNNs, they create new challenges—the huge 

number of parameters not only increases computational costs 

during inference, but it also poses serious deployment chal-

lenges on resource-limited devices. Thus, the problem of mod-

el pruning arises, aiming to reduce the sizes of an ML model 

by identifying and removing redundant model weights. In this 

section, we investigate the application of BLO in the context of 

model pruning [18], [55].

Table 5. Performance comparison of different MAML methods for few-shot demodulation of 16-QAM modulated wireless signals.

Test Accuracy 
(%)

Time 
(min)

Test Accuracy 
(%)

Time 
(min)

Test Accuracy 
(%) Time (min)

Test Accuracy 
(%) Time (min)

Method BLO (Solver) 16-way-1-shot 16-way-5-shot 16-way-10-shot 16-way-20-shot 

FO-MAML [14] AO 94.46 ± 0.35 8.59 97.93 ± 0.11 8.73 99.13 ± 0.13 8.87 99.17 ± 0.04 9.01 
Sign-MAML [15] GU 96.91 ± 0.1 8.1 97.35 ± 0.28 8.14 97.42 ± 0.3 8.23 97.46 ± 0.24 8.32 
Vanilla MAML [14] GU 98.84 ± 0.1 13.04 99.49 ± 0.03 13.27 99.63 ± 0.01 13.29 99.66 ± 0.02 13.35 
iMAML [16] IF 97.66 ± 0.07 14.14 98.58 ± 0.04 14.52 99.35 ± 0.04 14.81 99.43 ± 0.02 14.88 

The best performance in each setting is indicated in boldface. Standard deviations are reported based on five random trials. Rows marked in gray indicate BLO-enabled  algorithms.
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Formulation
The study of model pruning through the lens of BLO was 

first explored in [18]. Specifically, there exist two main 

tasks in model pruning: pruning and retraining. Pruning 

involves determining the sparse pattern of model weights, 

while retraining focuses on recovering model accuracy us-

ing the remaining nonzero weights [55]. To facilitate these 

tasks, one can introduce the binary pruning mask variable 

{ , }0 1m m!  and the model weight variable ,Rm!z  where 

m represents the total number of model parameters. Ac-

cordingly, the pruned model is given by ( ),m9 z  where 

9  denotes element-wise multiplication. To achieve a prun-

ing ratio of %p , we impose a sparsity constraint on m, 

where m ! X  and { , | , { , } , },k0 1 1m m mn T! #X =  with 

( %) .k p n1= -  Our goal is to prune the original dense 

model to the targeted pruning ratio of %p  and obtain the 

optimal sparse model ( ).m9 z  To achieve this, we view 

the pruning task (①) and the model retraining task (②) as 

two optimization levels, leading to the formulation of bi-

level pruning (BiP):

 

( ;   

  ( ) ( ) ,

( ))

argmin
2

minimize

subject to

m

m m

m

: 

:

2
2

2

1

tr

tr

Sparsity-fixed model retraining

m

R
n

9

9

,

,

z

z z z
c

= +
)

)

!

!z

X

Pruning task

u

1 2 34444 4444

1 2 3444444444 444444444

 
(BiP)

where tr,  and tr,u  denote the training losses under different data 

batches, m and z  are the upper-level and lower-level optimiza-

tion variables, respectively, and ( )mz)  signifies the retrained 

model weights given the pruning mask m. In (BiP), the lower-

level training objective was regularized using a strongly con-

vex regularizer /2 2
2

zc  like (Fast-BAT).

Methods
Since BiP is an unconstrained BLO problem, it can be solved 

using BLO algorithms, e.g., IF and GU, introduced in the sec-

tions “IF for Lower-Level Unconstrained BLO” and “GU-Based 

Approach for Unconstrained BLO.” Moreover, since the Hes-

sian of the lower-level objective function with respect to model 

parameters is of high dimension, we impose the Hessian-free  

assumption 0, trd , =z z  to make the BLO implementation com-

putationally feasible. Following (4), one can then obtain the closed 

form of the IG [18]: / ( ),( ) ( / )d d 1m mm ,
2

trm 9d , zz c= -
))

z  

where z)  signifies a lower-level solution. Furthermore, the bi-

linearity of the pruning mask m and the model weights z allows 

us to further simplify the IG to

 ( )
( )

d

d 1
diag

m
z

m
trz z md ,

z

c
= - 9

)

z=
)^ h (19)

where the Hessian-free assumption is adopted and ( )diag a  de-

notes the diagonal matrix with a being the main diagonal vec-

tor. A detailed proof can be found in [18, Section 3].

Experiment results
To implement BiP, we adopt two BLO methods: the IF (see 

the section “IF for Lower-Level Unconstrained BLO”) and 

GU (see the section “GU-Based Approach for Unconstrained 

BLO”). We term the resulting BLO-inspired model prun-

ing approaches BiP-IF and BiP-GU. For comparison, we 

also consider two commonly used non-BLO-based pruning 

methods, the state-of-the-art iterative magnitude pruning 

(IMP) [55] and the most efficient one-shot magnitude prun-

ing (OMP) [55]. We remark that the notable lottery ticket hy-

pothesis [55] stated that IMP is able to identify a trainable 

sparse subnetwork (known as a “winning ticket”) with a test 

accuracy surprisingly on par with or even better than that of 

the original model.

Figure 3 illustrates the pruning accuracy and the run-

time efficiency of BLO-based pruning methods versus non-

BLO approaches across diverse image classification datasets 

(including CIFAR-10, CIFAR-100, and Tiny-ImageNet) under 

ResNet-18. As we can see, BiP-IF yields the best performance 

in all of the dataset settings shown in Figure 3(a)–(c). This is 

also the pruning recipe used in [18]. Thanks to the closed-form 

expression of the IG in (19), the computation of BiP-IF is also 

more efficient than that of BiP-GU, as shown in Figure 3(d). 

In addition, BiP-GU can also provide competitive pruning 

accuracy to IMP and takes less computation time than IMP. 

Furthermore, we observe that OMP yields the least computa-

tion time but the worst pruning accuracy. This is not surprising 

Table 6. Performance comparison of different robust training methods using PreActResNet-18 on CIFAR-10 and Tiny-ImageNet datasets.

Method 
BLO 
(Solver)

Standard  
Accuracy (%)  

( / )8 255=e  
RA-PGD (%)  

( / )8 255=e  
RA-AA (%)  

( / )8 255=e  

Standard  
Accuracy (%)  

( / )16 255e =  
RA-PGD (%)  

( / )16 255e =  
RA-AA (%)  

( / )16 255e =

Time  
(s/epoch)

CIFAR-10, PreActResNet-18

Fast-AT [61] N/A 82.39 ± 0.14 45.49 ± 0.21 41.87 ± 0.15 44.15 ± 7.27 21.83 ± 1.32 12.49 ± 0.33 23.1 
Fast-AT-GA [62] 79.71 ± 0.24 47.27 ± 0.22 43.24 ± 0.27 58.29 ± 1.32 26.01 ± 0.16 17.97 ± 0.33 75.3 
Fast-BAT-IF [10] IF 79.97 ± 0.12 48.83 ± 0.17 45.19 ± 0.12 68.16 ± 0.25 27.69 ± 0.16 18.79 ± 0.24 61.4 

Tiny-ImageNet, PreActResNet-18
Fast-AT [61] N/A 41.37 ± 3.08 17.05 ± 3.25 12.31 ± 2.73 31.38 ± 0.19 5.42 ± 2.17 3.13 ± 0.24 284.6 
Fast-AT-GA [62] 45.52 ± 0.24 20.39 ± 0.19 16.25 ± 0.17 29.17 ± 0.32 6.79 ± 0.27 4.27 ± 0.15 592.7 
Fast-BAT-IF [10] IF 45.80 ± 0.22 21.97 ± 0.21 17.64 ± 0.15 33.78 ± 0.23 8.83 ± 0.22 5.52 ± 0.14 572.4 

The training phase includes adversarial perturbations with two budgets: /8 255e =  and 16/255 over 20 epochs. Results are presented as mean ± standard deviation over 
10 random trials. Rows marked in gray indicate BLO-enabled algorithms. RA: robust accuracy; RA-AA: RA against AutoAttack.
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since OMP adopts a noniterative pruning scheme to find the 

model’s sparse pattern.

BLO for invariant representation learning
In this section, we explore the application of BLO in improving 

the generalization of ML models. Specifically, we investigate 

the use of BLO for acquiring training environment-agnostic 

data representations through invariant risk minimization 

(IRM) [56].

Formulation
IRM [56] is proposed to acquire invariant data representa-

tions and to enforce invariant predictions against distribution 

shifts. Unlike the conventional environment risk minimization 

(ERM)-based training, IRM yields a BLO-like formulation: 

the upper-level optimization task of IRM is to train a network 

backbone to capture environment-agnostic data representa-

tions, and the lower-level optimization task is to find an in-

variant prediction head (on top of the learned representation 

network) to produce a global optimum to all of the training 

environments. Formally, IRM can be cast as follows:

 
( ( ) )  

( ) ( ), [ ]

min

argmin i E

imize

subject to  

i

i

E

i

1

%

% 6

,

,! !

z i i

z i iz

)

)

i

z

=

/

 (IRM)

where %z i denotes the representation–acquisition model ,i  

the predictor , i,z  is the training loss associated with the ith 

training environment, and E is the total number of training envi-

ronments. The rationale behind (IRM) is that, given the invari-

ant representation extractor ,i  there exists an invariant predictor 

( )z i)  that is optimal across all of the training environments.

Methods
Solving problem (IRM) is highly nontrivial since the lower-

level solution ( )z i  should be universal and applied to all E 

training environments. To circumvent this difficulty, IRM 
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FIGURE 3. Experiment results of model pruning on different datasets under ResNet-18. (a)–(c) Pruning trajectory is given by test accuracy (%) versus 

sparsity (%) under different datasets. (a) CIFAR-10, (b) CIFAR-100, and (c) Tiny-ImageNet. (d) Efficiency comparison: the entire time consumption 

versus the pruning ratio. 
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is typically relaxed to a single-level optimization problem, 

known as IRMv1 [56]:

 ( ) ( )min wimize | .i w w i

i

E

1 0 2

2

1

%, d ,i ic+
i

=

=

8 B/  (20)

where 02c  is a regularization parameter and | .w w 1 0d =   

( )wi 9, i  denotes the gradient of i,  with respect to w, comput-

ed at w = 1. In the preceding formulation, the identity mapping 

w = 1 is adopted, symbolizing a basic “imaginary” classifica-

tion head. Meanwhile, i  corresponds to the combination of 

the representation extractor and the actual invariant predictor. 

However, the preceding formulation is restricted to linear in-

variant prediction and penalizes the deviation of individual en-

vironment losses from stationarity to approach the lower-level 

optimality in IRM.

Beyond IRMv1, a consensus-constrained BLO method is 

developed in [58] to solve problem (IRM). The key idea is to 

introduce E auxiliary predictors { }iz  and explicitly enforce pre-

diction invariance by infusing a consensus prediction constraint 

{{ } }C fi Ef;z z z= = =  to the lower-level problem of (IRM) 

and promote the per-environment stationarity in its upper-level 

problem. This modifies (IRM) to an ordinary BLO problem:
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(IRM-BLO)

where 02c  is a regularization parameter, and [ ]E  denotes the 

integer set { , , , } .E1 2 f  The advantage of converting (IRM) 

into the consensus-constrained (IRM-BLO) is that projec-

tion onto the consensus constraint yields a closed-form solu-

tion, i.e., ( ) argaP { } i
E

i i i i1
2

C Ci= !z = 2 ,/min E1a a< <zR R- =  

where ( )aPC  denotes the projection operation to project the 

point a  onto the constraint C . It has been shown in [58] that 

problem (IRM-BLO) can be effectively solved using the GU 

approach, which approximates each individual lower-level 

solution using K-step GD unrolling together with the consen-

sus projection. Thus, the lower-level solution becomes

, ( ), %d ,z z z ib= -( ) .z i z,
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where 02b  is the lower-level learning 

rate. Based on this expression, AD can 

be called to compute the implicit gradi-

ent from ( )
( )
i
K

z i  to the variable i  in 

the GU process.

Experiment results
We evaluate the performance of IRM-

BLO with two commonly used image 

classification datasets, Colored-MNIST 

[56] and Colored-FashionMNIST [57], where spurious cor-

relation between the image label and the background color is 

manually imposed in the datasets, which makes the conven-

tional ERM training ineffective. To capture both the accuracy 

and the variance of invariant predictions across multiple test-

ing environments, the average accuracy and the accuracy gap 

(the difference between the best-case and worst-case accuracy) 

are measured for IRM methods. Table 7 presents the resulting 

performance of IRM-BLO and compares it with those of ERM 

and two IRM baselines, IRMv1 [56] and IRM-Game [57]. 

Note that all IRM variants outperform ERM, which justifies 

the importance of IRM training to improve model generaliza-

tion across diverse environments. Within the IRM training 

family, IRM-BLO outperforms others by achieving the high-

est average accuracy and the smallest accuracy gap across both 

datasets. This superior performance underscores the value of 

BLO compared to the suboptimal design IRMv1.

Discussion
BLO is a challenging but rapidly developing subject. Despite 

the recent progress discussed in this article, significant work is 

yet to be done to address various challenges, ranging from de-

veloping scalable algorithms to extending the applicability of 

BLO to a wider range of problems. Here we highlight several 

worthwhile future directions.

 ■ BLO algorithms: First, the development and analysis of 

BLO algorithms for more general BLO problems, includ-

ing those with complex lower-level constraints (e.g., non-

linear constraints), require additional exploration. The 

current focus has predominantly been on problems with 

linear constraints, and extending the BLO framework to 

handle nonlinear constraints is an important and challeng-

ing task. Additionally, exploring scenarios with coupled 

constraints between lower and upper levels, such as 

resource sharing among adversarial and normal agents, 

presents a complex area that is underexplored. Second, 

BLO formulations with NS lower-level solutions, such as 

(NS-BLO), lack theoretically grounded, scalable, and 

easy-to-implement algorithms. This aspect of BLO has 

received less attention from the community, making it an 

open topic for future investigation. Developing efficient 

algorithms that can handle NS lower-level solutions and 

provide convergence guarantees is a key research direc-

tion. Third, beyond the scope of BLO, exploring problems 

involving more than two levels, such as dataset pruning 

Table 7. Performance of different IRM training methods.

Colored-MNIST Colored-FashionMNIST

Method BLO (Solver) Average Accuracy Accuracy Gap Average Accuracy Accuracy Gap

ERM N/A 49.19 ± 1.89 90.72 ± 2.08 49.77 ± 1.71 88.62 ± 2.49
IRMv1 [56] N/A 68.33 ± 0.31 2.04 ± 0.05 68.76 ± 0.31 1.45 ± 0.09 
IRM-Game [57] N/A 67.73 ± 0.24 1.67 ± 0.14 67.49 ± 0.32 1.82 ± 0.13 
IRM-BLO [58] GU 69.47 ± 0.24 1.04 ± 0.07 69.43 ± 0.21 1.14 ± 0.11 

The best performance per evaluation metric is highlighted in boldface, and the performance of the BLO-enabled 
 method is marked in gray.
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for TL, represents an exciting frontier. These multilevel 

problems introduce additional complexity and challenges, 

requiring the design of novel algorithms to tackle the 

inherent hierarchical structure effectively. Finally, the 

large scale and distributed availability of data demand the 

development of decentralized and federated algorithms to 

solve these complex BLO problems, which also presents a 

compelling research direction for future exploration.

 ■ BLO theories: First, while significant progress has been 

made in establishing theoretical guarantees for solving the 

basic BLO problem (LU-BLO), more attention is needed 

on exploring practical settings, including (coupled) lower-

level constraints, nonconvex lower-level problems, and/or 

black-box settings, where one may not have access to 

upper-/lower-level parameters. These scenarios present 

unique challenges and complexities, making it difficult to 

analyze the problem and derive theoretical guarantees. 

Investigating the convergence properties and establishing 

theoretical foundations for solving BLO problems under 

these practical settings is an important avenue for future 

research. Second, when datasets become massive, it is cru-

cial to develop theoretically grounded BLO algorithms that 

can adhere to practical requirements. Therefore, develop-

ing theoretical frameworks and analyzing the convergence 

properties of algorithms for solving large-scale BLO prob-

lems under realistic assumptions is also an important 

research topic. Finally, with the discovery of the phenome-

non of double descent, theoretical analysis of standard ML 

algorithms on overparameterized neural networks has 

received significant attention from the research community. 

Theoretical investigation of BLO algorithms for such over-

parameterized problems is certainly an interesting research 

direction.

 ■ BLO applications: First, in the context of mixture-of-

experts (MoE) training, there is a complex interplay 

between the training of the gating network that selects 

experts and the training of the expert-oriented pathways 

used for final predictions. Exploring BLO techniques to 

effectively optimize the coupling between these two pro-

cesses in MoE training can lead to improved performance 

and better utilization of emerging ML models like MoE. 

Second, prompt learning, a key technique used in today’s 

foundation models, involves a crucial coupling between 

prompt pattern learning and label/feature mapping optimi-

zation. Leveraging BLO methods to model and optimize 

the interactions between prompt pattern learning and 

label/feature mapping can enhance the learning process 

and enable accurate and robust prompt generations. Third, 

BLO is highly applicable in (inverse) reinforcement learn-

ing. For instance, the actor/critic algorithm can be formu-

lated as a BLO problem, with separate agents evaluating 

and optimizing the policy. In inverse reinforcement learn-

ing, the tasks involve inferring the agents’ reward function 

and finding the optimal policy based on it. Applying BLO 

frameworks to these scenarios offers potential for novel 

insights and improved efficiency.

In summary, the interplay between the theoretical under-

pinnings of BLO and its practical applications promises a 

fertile ground for future exploration and innovation, pushing 

the boundaries of optimization theory and applications in SP 

and ML.
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