
38 IEEE SIGNAL PROCESSING MAGAZINE | January 2024 | 1053-5888/24©2024IEEE

R
ecently, bilevel optimization (BLO) has taken center stage

in some very exciting developments in the area of signal

processing (SP) and machine learning (ML). Roughly

speaking, BLO is a classical optimization problem that in-

volves two levels of hierarchy (i.e., upper and lower levels), where-

in obtaining the solution to the upper-level problem requires

solving the lower-level one. BLO has become popular largely

because it is powerful in modeling problems in SP and ML,

among others, that involve optimizing nested objective func-

tions. Prominent applications of BLO range from resource allo-

cation for wireless systems to adversarial ML. In this work, we

focus on a class of tractable BLO problems that often appear in

SP and ML applications. We provide an overview of some basic

concepts of this class of BLO problems, such as their optimality

conditions, standard algorithms (including their optimization

principles and practical implementations) as well as how they

can be leveraged to obtain state-of-the-art results for several

key SP and ML applications. Further, we discuss some recent

advances in BLO theory and its implications for applications,

and we point out some limitations of the state of the art that

require significant future research efforts. We hope that this ar-

ticle, together with the associated open source BLO toolbox we

developed for algorithm benchmarking, can serve to accelerate

the adoption of BLO as a generic tool to model, analyze, and

innovate on a wide array of emerging SP and ML applications.

Introduction
BLO is a class of optimization problems involving two nest-

ed levels (upper and lower levels), where the objective and

variables of the upper-level problem depend on the opti-

mizer of the lower-level one. The canonical formulation

of the BLO is given by

:() (,

() (,),

()),

argmin

F f

g

minimize

subject to
(,)h 0

Upper-level optimization over

Lower-level optimization over

U

!

i i i

i i

z

z z

=
)

)

!

#

i

z

i z

i
6 7 844444444 44444444

1 2 3444444 444444

(BLO)

where for analytical tractability we assume that f, g, and

h are bivariate smooth functions; we note that in some set-

tings f and/or g may be nonsmooth, and such settings can be

handled by specialized algorithms based on their particular

settings [1]; R
m!i denotes the upper-level variable subject

to the upper-level constraint set ;U R
n!z is the lower-level

variable subject to the constraint (,)h 0#i z that couples

both i and ;z and ()z i) is one lower-level optimal solution.

Yihua Zhang , Prashant Khanduri , Ioannis Tsaknakis , Yuguang Yao ,

Mingyi Hong , and Sijia Liu

Digital Object Identifier 10.1109/MSP.2024.3358284

Date of current version: 15 April 2024

Foundations and applications in signal processing and machine learning

An Introduction to
Bilevel Optimization

©
SH

U
TT
E
R
S
TO

C
K
.C

O
M
/H
E
R
M
A
N
O
V
A

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

39IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

It is evident that the lower-level problem is an auxiliary prob-

lem since its solution supports the upper-level problem in

finding a better solution.

The study of BLO can be traced to that of Stackelberg

games [2], where the upper (respectively, lower) problem opti-

mizes the action taken by a leader (respectively, the follower).

Early works in optimization formulate BLO to solve resource

allocation problems; see [3] for a comprehensive survey of

BLO algorithms in the late 1990s and early

2000s and also some more recent surveys

on discrete BLO [4], BLO under uncer-

tainty [5], and nonlinear and nonconvex

aspects of BLO [6]. In recent years, BLO

has regained popularity because a sub-

class of BLO has been used to formulate

and solve various challenging problems in

SP, ML, and artificial intelligence. Notable

applications in SP include resource man-

agement [7], signal demodulation [8], and image denoising

and reconstruction [9]. In addition, BLO has been used to

make ML models, especially deep neural networks (DNNs),

robust [10], [11], [12], [13], generalizable [14], [15], [16], effi-

cient [17], [18], [19], easier to train [20], [21], [22], [23], [24],

and scalable [25].

As can be easily imagined, the popularity of BLO in the

aforementioned applications is largely attributed to its ability

to handle (often implicit) hierarchical structures. To better

illustrate the challenges brought by the hierarchical architec-

ture, see the example application of coreset selection for model

training [7], [17] in “Motivating Application: Coreset Selection

for Model Training.”

Clearly, the coreset selection is a typical BLO problem,

where the upper-level and lower-level tasks are intertwined:

without knowing the training result, it is hard to gauge how

representative the selected dataset is effectively, while without

having the coreset, one cannot perform model training to eval-

uate the utility of the learned model further. More importantly,

these two tasks form a hierarchy, with the model training prob-

lem being the main optimization problem, while the data selec-

tion problem is an auxiliary problem that supports the training.

Given the growing interest in BLO, in this work we present

an overview of a class of tractable (BLO) problems that hold

significant importance in SP and ML. Roughly speaking, the

class of BLO problems we consider has some desirable prop-

erties (to be discussed shortly) that allow

the development of efficient and practical

algorithms. We will discuss the basic con-

cepts for this class of BLO problems, along

with their optimality conditions and stan-

dard algorithms (including their theoretical

properties and practical implementations),

and also how they can be used to obtain

state-of-the-art results for a number of key

SP and ML applications.

In the existing literature, several recent surveys have been

conducted on general BLO problems [1], [5], [6]. However,

these surveys primarily focus on the mathematical foundations

of BLO through a classical optimization lens. Other works

[19], [26] aim to provide comprehensive reviews of BLO algo-

rithms, but they lack an in-depth discussion on “when” and

“how” to apply them in practical applications. The most rel-

evant work to ours is [26], which examines complex learning

and vision problems from the BLO perspective. However, the

theoretical component of BLO is missing, and it overlooks a

significant portion of emerging SP and ML applications (e.g.,

those discussed in the sections “BLO for Wireless Resource

Allocation,” “BLO for Wireless Signal Demodulation,” “BLO

for Adversarially Robust Training,” “BLO for Model Pruning,”

and “BLO for Invariant Representation Learning”).

Unlike the existing surveys on BLO [5], [6], [19], [26], most

of which provide a broad overview of BLO in its most generic

form, we focus on the tractable and data-driven problems that

Many contemporary signal processing and machine learn-
ing applications are facing significant challenges in data
storage, transportation, and computation because they
have to deal with excessive amounts of data. Consequently,
the task of identifying the most informative subset of data
from a larger pool becomes crucial [7], [17]. This leads to
the problem of coreset selection, which consists of two
tasks: (T1), selecting the most representative data samples
to form the coreset, and (T2), validating the performance of
the selected coreset in model training. More specifically,
the problem can be formulated as follows:

 (())minimize wval
w U

, i)
!

 (T1)

 () (; ,)argmin N w y
1

subject to ·w xi

i

N

i i

1

,i i=
)

i =

| (T2)

where w represents the weight vector for data selec-
tion over N training data points, with w 0i = indicating
that the ith data sample (,)yx i i is not selected, and
, denotes the loss function for individual training
samples. These weights are subject to the sparsity
constraint U , such as k#1w< < , with k being the
selection budget. The model parameters trained on the
selected data points are denoted by .i The training
loss for the model i with the data selection scheme w is
given by (,) : / ·w N w1 i

N
i1tr, i R= = (; ,),yx i i, i while the val-

idation loss measuring the performance of the learned
model ()wi) over the coreset is denoted by .val, The
previous BLO formulation is also related to the data
reweighting problem [20] and hyperparameter optimi-
zation [22].

Motivating application: Coreset selection for model training

BLO has become popular

largely because it is

powerful in modeling

problems in SP and

ML, among others, that

involve optimizing nested

objective functions.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

40 IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

are relevant to SP and ML applications. A few highlights of

this article are listed next.

First, we distill the common structures and properties of

BLO that emerge across applications related to developing

robust, parsimonious, and generalizable data-driven models in

SP and ML. Our goal is to provide insights

about when, where, and how BLO formu-

lations and algorithms can be best used

to yield a significant performance boost,

as compared with traditional, or heuristic

algorithms. In this process, we present some

recent theoretical results about BLO and the

associated algorithms to give a flavor of the current advances

in the research area, while discussing their practical and scal-

able implementations.

Second, we dive deep to understand the performance of a

selected subset of state-of-the-art gradient-based BLO algo-

rithms on a number of representative applications. Instead

of relying on results reported in existing works, which may

not always be directly comparable because of implementa-

tion differences, we designed an experiment plan and imple-

mented all benchmarking algorithms. The goal is not only

to showcase the effectiveness of the BLO-based algorithms

but also to analyze the pros (e.g., modeling flexibility and

accuracy performance) and the cons (e.g., runtime efficien-

cy) of different subclasses of BLO methods. This effort has

led to the development of an open source project repository

containing all of the codes for the experiments presented in

the article.

Overall, we hope that our balanced treatment of the

subject, together with the open source package developed

to benchmark modern BLO algorithms, will serve as the

cornerstone for the accelerated adoption of BLO in diverse

application areas, including, but not limited to, SP and ML.

Figure 1 provides an overview of the topics to be covered

in this article.

Notation
We use lowercase letters (e.g., a), lowercase boldface let-

ters (e.g., a), and uppercase boldface letters (e.g., A) to de-

note scalars, vectors, and matrices, respectively. For a vector

a, we use a p to denote its -normp, with the typical choice

{ , , }.p 1 2 3! For a matrix A, we use the superscript < (or –1)

to denote the transpose (or inverse) operation. We use I to

represent the identity matrix. For a function (,)f x y (with

x R
m! and),y R

n! we use (,)f x y R
m

xd ! (or (/))f x2 2 and

(,)f x y R
n

yd ! (or (/))f y2 2 to denote the partial derivatives of

f with respect to the partial input argument x and y, respective-

ly. By contrast, we use ()F xd (or /))(dF dx R
m! to represent

the full derivative of a possible implicit function (IF) (·)F with

respect to x, namely, () (,) (,)(/)F f d d fx x y y x x yx yd d d= +
<

following the chain rule, where (/d d)y x R
m n! #< denotes the

Jacobian matrix of y with respect to x. For ease of notation, the

transpose in /)(d dy x R
m n! #< will be omitted if its definition

is clear from the context. We use fx yd d or f R,
m n2

x yd ! # to

denote the second-order partial derivative of f.

Warm-up: Introducing the basic concepts of BLO

A class of tractable BLO problems
We start by discussing the challenges associated with the

generic form of (BLO). Even under the assumption that all

involved functions are well behaved, such

as the convexity or concavity of (·, ·)f and

(·, ·)g , and the linearity of (·, ·)h , solving

the problem can still be highly challenging

(i.e., NP-hard). To see this, let us consider

the following simple example.

Example 1: Nonconvex BLO
Consider the following BLO, where (,) (,)f gi z i z=- =

:·i z z- -
2 2i

() () ;

() () .

min

argmin

imize ·

subject to ·

[,]

[,],

1 1

2 2

1 1 0

2 2

i i z i z i

z i i i z z

- -

= - - -

))

)

!

!

i

z i z

-

- - =

Notice that the objective (,)f i z (respectively, (,)g i z) is

strongly convex (respectively, strongly concave) in i and

strongly concave in z (respectively, strongly convex), and

the previous BLO problem is subject to linear constraints

in both the upper and lower levels. In other words, both

the upper- and lower-level problems are “easy” problems

with respect to their respective parameters. Nonetheless, it

can be shown that solving the previous BLO requires tack-

ling a nonconvex problem, which in general is NP-hard.

Indeed, it is not hard to see that () .z i i=) As a result, the

outer function can be expressed as ,2i- which is a non-

convex function.

We remark that the source of difficulty of the previous

problem is the coupling constraint .0i z- = If this con-

straint is removed, the problem will become a classical saddle-

point problem, expressed next, whose global optimal solution

can be easily obtained:

 .minimize maximize
[,] [,]1 1 1 1

2 2
$i i z z- -

! !i z- -

 (1)

The aforementioned examples, along with numerous others

in existing survey papers like [1], [19], and [26], strongly

motivate us to proceed with a focused discussion for the

subset of tractable (BLO) problems. This subset often

serves as a basis for developing practical BLO algorithms.

By focusing on this subset, we can address the specific

needs of modeling SP and ML problems, which frequently

demand the development of efficient, and sometimes real-

time, algorithms.

To this end, we consider some special classes of (BLO),

with the following simplifications: 1) The lower-level con-

straint set, if present, is linear and is only related to ;z that is,

(,)h A bi z z= - for some matrix A and vector b of appro-

priate sizes; and 2) the solution of the lower-level problem is a

We focus on a class of

tractable BLO problems

that often appear in SP and

ML applications.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

4
1

IEEE SIG
N

A
L P

R
O

CESSIN
G

 M
A

G
A

Z
IN

E | January 2024
 |

Implicit Function

(IF)

BLO

Two-Timescale Stochastic

Approximation (TTSA) [31]

Forward Gradient Unrolling

(FGU) [23]

Backward Gradient Unrolling

(BGU) [21], [22], [23]

Truncated Gradient Unrolling

(TGU) [12], [21]

Bi-Level Descent Aggregation

(BDA) [20]

K-Step Truncated

Backpropagation (K-RMD) [21]

Bilevel Value-Function-Based

Interior-Point Method (BVFIM) [35]

Bilevel Optimization Made Easy

(BOME!) [36]

Primal-Dual Bilevel

Optimization (PDBO) [33]

Penalty-Based Bilevel Gradient Descent

(PBGD) [34]

Fully First-Order Stochastic

Approximation (F2SA) [48]

Single-Timescale Double-Momentum

Stochastic Approximation

(SUSTAIN) [41]

Alternating Implicit Projected

Stochastic Gradient Descent (AiPOD) [37]

Stochastic Bilevel Optimizer

(stocBiO) [40]

Bilevel Stochastic Approximation

(BSA) [30]

Resource

Allocation

[6]

Signal Processing

B
L

O
 A

p
p

li
c
a
ti

o
n

B
L

O
 A

lg
o

ri
th

m
s

P
ri

n
c
ip

le
s

Machine Learning

Signal

Demodulation

[53]

Channel

Prediction

[54]

Image

Reconstruction

[8]

Robust

ML

[9], [10], [11], [12]

Efficient

ML

[16], [17], [18], [55]

Generalizable

ML

[13], [14], [15],

[56], [58]

Automated

ML

[20], [21], [22],

[23], [24]

Gradient Unrolling

(GU)

Value Function

(VF)

BLO

FIGURE 1. A taxonomy of the solvers and application tasks for BLO.

A
u

th
o
riz

e
d
 lic

e
n
s
e
d
 u

s
e

 lim
ite

d
 to

: M
ic

h
ig

a
n
 S

ta
te

 U
n
iv

e
rs

ity
. D

o
w

n
lo

a
d
e
d
 o

n
 J

u
ly

 0
3
,2

0
2
4
 a

t 0
6
:4

2
:2

7
 U

T
C

 fro
m

 IE
E

E
 X

p
lo

re
. R

e
s
tric

tio
n
s
 a

p
p
ly

.

42 IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

singleton, and in most cases we assume an even stronger con-

dition that the objective function (·, ·)g is strongly convex in

the second argument. With these simplifications, it is possible

to show some nice properties; for example, the gradient of the

upper-level objective function may exist, making algorithm

design and analysis tractable. Note that there have been recent

works that extend these conditions and are still able to develop

efficient algorithms. We will discuss these works in the section

“Theoretical Results of BLO.”

In summary, depending on whether the lower-level problem

has a constraint or not, we consider the following two classes

of problems, referred to as the lower unconstrained (LU) and

lower constrained (LC) BLO, respectively:

: () (, ()),

 () (,).argmin

F f

g

minimize

subject to
R

U

n

i i z i

z i i z

=

=

)

)

!

!

i

z

(LU-BLO)

: () (, ()),

 () (,).argmin

F f

g

minimize

subject to

U

C

i i z i

z i i z

=

=

)

)

!

!

i

z

(LC-BLO)

where the set : { }.A b 0C ; #z z= - As will be evident in

the section “Algorithmic Foundations of BLO,” the presence

of lower-level constraints, even in the form

of linear and uncoupled constraints, can

make (LU-BLO) much harder to deal with

than (LC-BLO).

Connections of BLO with game theory
It is important to note that BLO problems

have strong ties with Stackelberg or lead-

er–follower games [2], including Stackel-

berg congestion and security games. These

are sequential games involving two players: the leader and

the follower. The leader acts first, aiming to maximize its

utility by leveraging its knowledge of the follower’s antici-

pated response. The follower, acting second, maximizes its

utility based on the leader’s action. The connection between

BLO and Stackelberg games can be summarized as follows.

First, in certain Stackelberg games, the process of identifying

a solution (i.e., a Stackelberg equilibrium) can be framed as

a BLO. Second, BLO allows a (Stackelberg) game-theoretic

interpretation, where the upper- and lower-level problems

correspond to the tasks of identifying the optimal actions for

the leader and the follower (i.e., the upper-/lower-level vari-

ables), respectively. A special case of Stackelberg game is

min-max optimization (MMO) also referred to as the saddle

point problem. MMO follows a bilevel structure, wherein the

lower-level objective g in (BLO) is exactly opposite of the

upper-level objective function f (i.e.,),g f=- resulting in the

following special case of BLO:

 (,).fminimize maximize
U C

i z
! !i z

 (MMO)

In fact, MMO is much simpler to deal with than BLO, and it

has been heavily studied in the SP and ML communities. In

addition to MMO, it is also worth noting that the algorithms

reviewed in this article are generally applicable to Stackel-

berg games, provided that the game’s BLO formulation ad-

heres to the assumptions of the respective algorithms.

Implicit gradient
As alluded to previously, one important reason to consider

problems (LU-BLO) and (LC-BLO) is that the objective

functions of these problems are potentially differentiable

with respect to .i Indeed, by applying the chain rule and

supposing for now that the Jacobian matrix () /d dz i i) ex-

ists, we have

 () (, ())
()

(, ())F f
d

d
f

IG

d d di i z i
i

i
i i

z
z= +

)

)

)

<

i z

1 2 344 44

 (2)

where we recall from our notational convention that

(,)fd i zi and (,)fd i zz represent the partial derivatives

of f with respect to the partial input arguments i and ,z re-

spectively, and ()Fd i denotes the full derivative of the IF,

F, with respect to .i For ease of notation, the transpose op-

eration < might be omitted in the rest of the article. We refer

to the Jacobian matrix () /d d R
n m!z i i #)

as the implicit gradient (IG). This term is

introduced to characterize the gradient

of the argmin-based lower-level objec-

tive function with respect to the upper-

level variable .i However, the IG does

not always exist for generic BLO prob-

lems. Even for (LU-BLO) and (LC-BLO),

relatively strong assumptions have to be

imposed. For example, (·, ·)g needs to be

strongly convex in its second argument. Further, even when

the IG exists, computing it could be quite different for the

two classes of problems (LU-BLO) and (LC-BLO). For the

former, we will show in the section “Algorithmic Founda-

tions of BLO” that the IG can be expressed in closed form

using the implicit function theorem [27] based on the first-

order stationary condition of the lower-level problem, i.e.,

(, ()) .g 0d i z i =
)

z For this reason, it is referred to as an

implicit gradient. Yet, in (LC-BLO), the stationary condi-

tion cannot be used since a stationary point might violate

the constraint .C!z Therefore, the IG generally does not

admit any closed form. Additionally, for a more restricted

subset of MMO problems, the influence of the IG-involved

term (, ()))(fIG $ d i z i)z in (2) can be neglected. To see

this, assume that the inner problem is unconstrained, i.e.,

;RC n/ then (, ())f 0d i z i =
)

z based on the fact that

(, ())g 0d i iz =
)

z and g f=- for MMO.

BLO with nonsingleton lower-level solutions
As we have mentioned in the section “A Class of Tractable

BLO Problems,” throughout this article, we will mostly focus

on the case where the lower-level solution ()iz) is unique,

i.e., a singleton. Yet, if the lower-level problem involves a

It is important to note that

BLO problems have strong

ties with Stackelberg or

leader–follower games,

including Stackelberg

congestion and security

games.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

43IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

nonsingleton (NS) solution, the resulting BLO problem is

typically cast as

 :(,) () (,)argminf gminimize subject to S
, () CS

i i i zz =

!!i zz i
l

l

 (NS-BLO)

where ()S i denotes a solution set. The previous formulation,

also referred to as the optimistic BLO with NS lower-level

solutions, has been discussed in the literature, for example,

in [1] and [4]. Note that problem (NS-BLO) presents signifi-

cantly greater challenges from both practical and theoretical

perspectives compared to problem (BLO). The reason is that

optimization over z is coupled across both upper- and lower-

level objectives. While our work primarily focuses on BLO

with a singleton lower-level solution, we will also explore in

the section “Algorithmic Foundations of BLO” the applicabil-

ity of BLO algorithms, derived from (BLO), to solve problem

(NS-BLO).

Theory and algorithms for tractable BLO
In the next two sections, we will delve into the essential

optimization principles employed in

BLO, explore several popular classes of

BLO algorithms, and examine their the-

oretical properties.

Algorithmic foundations of BLO
This section presents an overview of

three key optimization frameworks used

to solve the tractable BLO problems

(LU-BLO) and (LC-BLO). The first two classes both le-

verage (some approximated version of) the IG as defined

in (2). The key difference is in how the approximation of

the IG is conducted: one directly assumes that there is some

given procedure that can provide a high-quality solution of

the lower-level problem, while the other approximates the

lower-level solution by unrolling a given algorithm for a

fixed number of steps. The third class is referred to as the

value function (VF)-based approach, which reformulates

BLO as a single-level regularized optimization problem. It

is worth mentioning that this approach offers flexibility in

handling lower-level constraints and solving NS lower-level

problems (NS-BLO).

The IF-based approach

The IF for lower-level unconstrained BLO
Let us examine the problem setup (LU-BLO) with a single-

ton lower-level solution. For ease of theoretical analysis in

the section “Theoretical Results of BLO,” we further assume

that (·)g is strongly convex in .z In certain applications,

one can explicitly add a strongly convex regularization func-

tion, such as 2
2

$ zc (with large enough),c to satisfy such

an assumption.

The reason that we call this approach IF based is that we

will explicitly utilize the implicit function theorem [27] to cal-

culate the IG as expressed in (2). Recall from (LU-BLO) that

()z i) is a lower-level solution; thus, it satisfies

 (, ()) .g 0d i z i =
)

z (3)

Following the implicit function theorem, we can take the

first-order derivative of (3) with respect to ,i yielding

/ [(, ())] .()d d g 0d zi i i =
)

z Further assume that the lower-

level objective (·)g is second-order differentiable; we can then

obtain the IG in (2) with the following:

 (, ()) (, ()) .
()

d

d
g g, ,

2 2 1
d d i i

i

z i
i z i z= -

)

))
i z z z

- (4)

As observed previously, the computation of the IG involves

the mixed (second-order) partial derivative g,
2
di z and the in-

verse of the Hessian .g,
2
dz z Yet, computing these quantities

can be challenging in practice. Therefore, the class using the

IF approach utilizes different kinds of approximation tech-

niques to approximately compute the IG as expressed in (4).

We summarize the IF approach in Algorithm 1.

Practical considerations of IF
In Algorithm 1, the main computational over-

head arises from the inverse Hessian gradient

product ,H g1- where : (, ())gH , t t
2
d i z i= z z
u u

and : (, ()).fv t td i z i= z
u Yet, in many con-

temporary applications, directly computing

and storing the Hessian is computation-

ally prohibitive. To address the scalability

challenge in the IF method, we introduce four approaches

to approximate the inverse Hessian gradient product (or the

inverse Hessian) :H g1- the conjugate gradient (CG) method

[28], the WoodFisher approximation [29], the Neumann-se-

ries method to directly estimate the inverse Hessian [30], [31],

and a Hessian-free simplification [10], [18]. These methods

offer different tradeoffs between computational costs, with

the CG method being the most computationally expensive

and the Hessian-free simplification being the least expensive.

First, the CG approach maps the product H g1- to the solu-

tion of a quadratic program defined as /min 2 .x Hx g xx -
<<

By utilizing the first-order GD algorithm, we can numerically

Algorithm 1: IF-based approach for solving (LU-BLO).

Given initialization ,0i learning rate ,02a and iteration number T,
iteration t 0$ yields the following:
• Lower-level optimization: Given ,ti obtain an approximate solution of

the lower-level problem, denoted as () .tz iu

• Approximation: Based on (),tz iu compute approximated versions of
two second-order matrices in (4), denoted as (, ())g, t

2
d i z ii z
u u and

(, ()) ;g, t
2 1
d i z ii z

-u u compute an approximated IG following (2):

(): (, ()) (, ()) (, ())

(, ()) .

F f g g

f

, ,t t

t

t t t t t

t

2 2 1
d d d d

d

i i z i i z i i z i

i z i

= -i i z z z

z

-u u u u u u

u

(5)

• Upper-level optimization: Utilize ()F td iu in (5) to update ti through,
e.g., gradient descent (GD): () .Ft t t1 ! di i ia-+

u

In comparison to IF- and

GU-based methods, the

VF-based approach has

broader applicability

in solving complex BLO

problems.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

44 IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

approximate .H g1- However, the convergence speed of the

CG method depends on the smallest eigenvalue of the posi-

tive definite matrix H. Therefore, if the lower-level problem

is not well conditioned, the CG method can be slow. This

approach has also been employed in the context of model-

agnostic metalearning (MAML) [16] and adversarially

robust training [10].

Second, the WoodFisher approximation [29] expresses the

Hessian as a recurrence of a rank-one modified Hessian estimate

and calls the Woodbury matrix identity to compute the inverse

of a rank-one modification to the given Hessian matrix. The one-

shot WoodFisher approximation is equiva-

lent to the quasi-Newton approximation,

,H vv IT. c+ where 02c is the damping

term to render the invertibility of H . We can

then readily obtain the inverse Hessian vec-

tor product by the Woodbury matrix identity

/1 .()H v v vv v v v1 1 2 1c c c= + +
<<- - - -

Further, an iterative WoodFisher approxima-

tion for the Hessian inverse proposed in [29]

enhances the estimation accuracy.

Third, one may use a Neumann-series approximation to

estimate the inverse Hessian directly by the approximation

[] .H I Hi
K i1

0. R -
-

= (assuming H is normalized to ensure

).1H # Note that as K " 3 the approximation becomes

increasingly more accurate. This technique is popular for

approximating the inverse Hessian in a stochastic setting

wherein the upper- and lower-level objectives are accessed

via a stochastic oracle [30], [31]. Here, we briefly describe the

procedure to approximate the inverse Hessian stochastically

using the Neumann-series method. Let us choose k uniformly

randomly from the set { , , , },K0 1 1f - access batch samples

of (,)g i z denoted by { (, ;)} ,g k k
k

1i z g = and compute

L
k

H
(, ;)

g
L

I g

i

k
1

1

,

g

i
2

.
d i z g- -

=

z z` j% (6)

where Lg is the Lipschitz smoothness constant of (, ;).g ki z g

This procedure requires the computation of k stochastic Hes-

sians and their products. Importantly, this estimator is a biased

estimator of the inverse Hessian with the bias decreasing expo-

nentially with K [30, Lemma 3.2].

Finally, to ensure the local convexity, some quadratic regu-

larization term is usually added to the lower-level problem in

BLO [10], [18]. This modifies (LU-BLO) to

:() (, ()),

() (,)argmin

F f

g
2

minimize

subject to

(,)g

2
2

R

U

n

i i z i

z i i z z
m

=

= +

)

)

!

!

i

z

i zl
1 2 3444444 444444

 (7)

where we recall that 02m is a regularization parameter. In

this context, the Hessian-free simplification is usually adopted,

which assumes (, ())g 0., t t
2
d i z i =z z
u u This assumption can be

reasonable when the lower-level objective function g involves

deep model training. For instance, in the case of a neural net-

work with rectified linear unit activation, the decision bound-

ary is piecewise linear in a tropical hypersurface, leading to an

approximate Hessian of zeros. This Hessian-free simplifica-

tion has been used for pruning DNNs [18]. Thus, the Hessian

matrix of (,)g i zl in (7) will be simplified to .H I. m

Extension to lower-level constrained BLO
Unlike in the previous section, it turns out that when including

constraints to the lower-level problem, the IG no longer has the

closed-form expression because the stationary condition in (3)

does not hold anymore. To see the impact of having constraints

(even linear ones) on the lower-level problem,

we present the following example, where the

gradient /df di is not rigorously defined.

Example 2: (LC-BLO) can still be
nondifferentiable [32]
Consider the following special case of (LC-

BLO), where the lower-level objective is

strongly convex in both scalar variables i

and ,z the upper level is linear, and both

levels are subject to linear constraints:

() () () .min argminimize subject to
[,] /0 1 1 2 1

2!i z i z i i z+ -
))

! # #i z

It follows that () / ,1 2z i =) for / ,1 2#i and () ,z i i=) for

/ .1 22i We notice that at the point /1 2i= the mapping ()z i)

is continuous, but not differentiable. As a result, the outer func-

tion ()i z i+
) is nondifferentiable.

An immediate question is: Can we still leverage the IF-

based approach for this subclass of problems? It turns out

that if we make some additional assumptions on the matrix

C in the constraint set of (LC-BLO), one can still apply

the implicit function theorem to the Karush–Kuhn–Tucker

(KKT) condition of the lower-level problem to calculate

the IG [10], [32]. It is also important to note that IF-based

approaches are typically not suitable for handling gen-

eral nonlinear constraints in the lower-level problem. For

problems with complex constraints, VF- or penalty-based

approaches are often employed [33], [34].

The gradient unrolling-based approach
The gradient unrolling (GU)-based approach is another class of

popular algorithms for solving BLO problems in practice [13],

[22], [23], [24]. Unlike the IF-based framework, it employs an

unrolled lower-level optimizer as an intermediary step to con-

nect the lower-level solution with the upper-level optimization

process. An automatic differentiation (AD) technique is then

used to compute gradients with respect to the upper-level opti-

mization variable .i Consequently, the computation of the IG

in GU is dependent on the choice of the lower-level optimizer,

and it no longer uses the IF-based expressions (3) and (4).

GU-based approach for unconstrained BLO
In particular, the GU-based approach approximates ()z i) by

running a given algorithm for a fixed number of iterations and

MAML, as an optimization-

based meta-learning

approach, has gained

significant popularity in

various fields, especially

in scenarios with limited

resources.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

45IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

then inserting the entire trajectory into the upper-level objec-

tive. See Algorithm 2 for an illustration of the idea.

To see the difference between the AD- and IF-based

approaches, let us consider the simple case where (·)h is the

gradient mapping, (,) (,)q gt k k t k1 1 1# di z iz zb= - z- - -

(for some constant step-size),02b and K 1= (i.e., a single-step

GD step is performed for lower-level optimization). Further

assume that 0z is independent of ;i then the closed-form

expression of the IG can be written as

() [(,)]

(,).
d

d

d

d g
g,

t t
t

0 0 2
0

d
d

i

i

i

z i z
i z

z b
b=

-
= -

z
i z

u
 (9)

In some sense, the preceding computation is simpler than

the computation of the IG (4) in the IF-based approach since

the Hessian inverse is no longer needed. However, things

can get much more complicated very quickly as the total

number of inner iterations K increases. Suppose that K = 2;

then we obtain

() [(,)]

(,) (,).

d

d

d

d g

g gI , ,

t t

t t

1 1

2
1

2
0#

d

d d

i z i z

i z i z

i

z

i

b

b b

=
-

= - +

z

z z i z

u

6 @

(10)

Clearly, the Hessian inverse is still not needed, but as the num-

ber of unrolling steps increases, much higher computational

and memory requirements will be involved.

Practical considerations
When the unrolling step K becomes too large or the problem

scale itself is computationally expensive for GU, manual un-

rolling becomes necessary to save memory costs and reduce

the computational overhead. Various GU approaches have

been proposed to achieve this goal efficiently. Notable tech-

niques include forward gradient unrolling (FGU) [24], back-

ward gradient unrolling (BGU) [22], [23], [24], and truncated

gradient unrolling (TGU) [13], [22]. FGU performs unrolling

iteratively, and in the final step K, the Jacobian of Kz with

respect to i yields

.

d

d

d

d
A B

A Z

K

K

K K K
t

t i

K

i

K

i

t

K

t

1

1

11

1

0

Z A Z BK K K K1

$

2

2

2

2
g

i

z

z

z

i

z

i

z
= + = =

+

-

-

= +=

=

-

e

e

o

o; >> ; %

%

/

(11)

We also assume that 0z is independent of ,i which implies

/ .d d 00z i = Consequently, expression (11) can be rewritten

as the following iterative form:

 , , , , .k K1 2Z A Z Bk k k k1 f= + =- (FGU)

Both Ak and Bk will be calculated along with the kth lower-

level step (,)qk t k 1z i z= - and will be discarded immedi-

ately after Zk is obtained. Such an iterative nature of (FGU)

makes it particularly suitable for scenarios that involve a

large number of unrolling steps K as the memory cost of

calculating Ak and Bk only involves any gradient flow gen-

erated within the kth step. However, (FGU) requires keep-

ing track of the matrices , ,A Bk k and .Zk 1- Hence, it may

not be suitable for problems with high-dimensional vari-

ables i and .z

To achieve more efficient computations when i and z are

of large scale, BGU is introduced, which eliminates the need

for storing any intermediate matrices [22], [23], [24]. BGU

explores the calculation of the IG following (2):

(, (,) (,)

()

()

.

)

d

df f

d

d f

c Z A B d

c B d Z A d c

Z d c Z d c

()

K K K

K

K

FGU

K K K K K

K K K K K K K

K K

1

1 1

1 1 0 0 0 1

c Z d

c d

K
K K

K K1 1

$

2

2

2

2

g

i

i z

i

i z

i z

i zz
= +

= + +

= + + =

+ = = + =

< < <

< < <

< <

<

-

- -

- - -

<

- -

1 2 344 44

1 2 3444 444

1 2 344 44;

=

(12)

Instead of calculating IG explicitly like (FGU) does, (12) di-

rectly obtains the gradient of the upper-level variable, which

can be further simplified with the following recursive formulas:

, , , , ,
(,

, , , , ,
(,)

.

)
k K

f

k K
f

0 1

0 1

with

with

c c B d c

d A d d

R

R

k k k k K
K m

k t k K
K

K n

1

1

f
2

2

f
2

2

!

!

i

i z

z

i z

= + = =

= = =
<

<
-

-

(BGU)

It can be observed that (BGU) only requires storing vectors (ck

and)dk throughout the recursion by utilizing the Jacobian–

vector product trick. As a result, BGU is particularly advan-

tageous for problems with large-scale variables compared

to FGU. Yet, because of its recursive nature, BGU can be

conducted only after all of the K lower-level steps are fin-

ished. Thus, (BGU) needs to store all of the unrolling steps

{ } ,Rk
n

k
K

1!z = compared with (FGU). Consequently, it may

not be efficient for handling BLO as the number of unrolling

steps K grows.

It should also be noted that GU differs from the IF as its

computation relies on the choice of the lower-level optimizer.

For instance, employing sign-based GD (signGD) as the lower-

level optimizer leads to a computationally efficient GU variant

Algorithm 2: GU-based approach for solving (LU-BLO).

Given initializations 0z and 0i and iteration numbers K and T,
let () :q U C C"$ # denote one step of a given algorithm, which takes
both i and z as input and outputs an updated .z At iteration ,t 0$
• Lower-level optimization by K-step optimization:

 (), , .,q K1t 1 fz i z l= =l l- (8)

Define () (, (, , (,)));q q qt K t t t 0fz i z i i i z= =:u

• Upper-level optimization: Leverage AD to compute the approximated

gradient ()
(, (, (, , (,))))

F
d

df q q q
t

t t t t 0

d
f

i i
i i i i z

=: ,u and use this

gradient to update .ti

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

46 IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

referred to as signGD-based GU [15]. Specifically, the modi-

fied lower-level update rule (8) becomes

() ; , ,

, , , ,

g

k K1 2

signt K k k t k1 1d

f

z i z z z i zb= = -

=

z- -
u ^ ^ hh

(signGD)

where ()sign $ denotes the element-wise sign operation, and

02b is a certain learning rate. Given the approximation

() /d d 0sign x x = (holding almost everywhere), the IG can be

simplified to

()

.
d

d

d

d

d

d

d

dt K K 1 0
g

i

i

i i i

z z z z
= = = =

-
u

 (13)

In the case that 0z is independent of ,i we can achieve the

IG-free variant of the GU approach.

VF-based approach
VF-based methods [33], [34], [35], [36] can also avoid the com-

putation of the inverse of the Hessian required in the IF method.

The key technique is to reformulate a standard BLO problem

into a constrained single-level optimization problem. This re-

formulation involves transforming the lower-level problem into

an upper-level inequality constraint. The resulting VF-based

variants can then be solved using algorithms for constrained

optimization. Furthermore, in comparison to IF- and GU-based

methods, the VF-based approach has broader applicability in

solving complex BLO problems. Not only can it handle lower-

level objectives with NS solutions (including both convex and

nonconvex objectives), but more importantly, it can accom-

modate lower-level constraints as well. However, the VF-based

approach has not yet been popular in practical SP and ML ap-

plications, partly because this approach has not been able to

deal with large-scale stochastic problems. This point will be

illustrated shortly in the section “Theoretical Results of BLO.”

To understand the VF-based approach, consider the follow-

ing equivalent reformulation of (LC-BLO):

 (,), (,) ()f g gminimize subject to
, C

#i z i z i)
!i z

 (14)

where :() (,)ming gCi i z=
)

!z is referred to as the VF of the

lower-level problem. However, solving (14) is highly nontrivial,

partly because ()g i) is not necessarily smooth, and it can be

nonconvex. To address these challenges, a relaxed version of

problem (14) is typically considered by replacing ()g i) with a

smooth surrogate [33], [35]

 () (,)g g
2

minimize
1

2
2

2
C

i i z z
n

n= + +
)

!z
n (15)

where : (,)1 2n n n= is a pair of positive coefficients that are in-

troduced to guarantee the smoothness of ()g i)n and to ensure

the feasibility of the inequality constraint (,) ().g g#i z i)n

Given the relaxed VF formulation, one can adopt standard

nonlinear optimization algorithms, such as a penalty-based

algorithm, to solve the constrained optimization problem (14).

For example, a log-barrier interior-point method, called the

bilevel value-function-based interior-point method (BVFIM),

is leveraged in [35] to solve a sequence of smooth approximat-

ed single-level problems of (14). Other related methods to solve

(14) include primal–dual bilevel optimization (PDBO) [33],

bilevel optimization made easy (BOME!) [36], and V-penalty-

based bilevel GD (PBGD) [34] methods.

Theoretical results of BLO
In this section, we examine the theoretical guarantees of various

BLO methods. The section is divided into two parts. In the first

part, we discuss the convergence results of popular algorithms

for solving the (LU-BLO) problem, while the second part will

focus on the more general formulations, such as (LC-BLO) and

(NS-BLO). We list specific algorithms that can handle both sto-

chastic and deterministic BLO problems. Given the differences

in theoretical analysis between stochastic and deterministic op-

timization, we also consider a generalized stochastic version of

BLO, whose upper- and lower-level objectives are

:

:(, ,

(,) (, ;)

()) (();),f
N

f

g
N

g
1

1

i

N

i

i

N

i

1

1

i z i z i

i z i z

i

g

p

=

=
))

=

=

/

/

(16)

where Di f+p (respectively,)Di g+g represents the data

sample of the upper-level (respectively, lower-level) objective

from the distribution D f (respectively,),Dg and N is the total

number of data samples.

Convergence measures of BLO
In what follows, we introduce the convergence measures uti-

lized for evaluating the performance of BLO algorithms.

These measures serve to assess the quality of solutions

obtained by these algorithms. Note that in general the IF

:() (, ())F fi i z i=
) may be nonconvex; therefore, we define

the concept of an stationary-e point for (LU-BLO), which

plays a crucial role in characterizing the convergence proper-

ties of BLO when the upper-level problem is unconstrained,

i.e., .RU m
= In the deterministic setting of (LU-BLO), a

point R
m!ir is considered an -stationarye point if it satis-

fies () .F 2

2
d #i er In the stochastic setting (16), where the

algorithm incorporates randomness, the expectation is taken

over the stochasticity of the algorithm. Thus, an -stationarye

point is defined as () .FE 2

2
d #i er It is important to note that

when the upper-level problem in (LU-BLO) is constrained,

i.e., RU m1 , then the upper-level objective ()F ir may not be

differentiable over ir in general. When solving (LC-BLO) us-

ing the IF-based approach, if the IF is differentiable, similar

measures of stationarity as in standard optimization can be

utilized. However, if the IF is nondifferentiable, alternative

stationarity measures are commonly employed. These include

subgradient optimality [32], proximal gradient methods [34],

[37], and Moreau envelope techniques [31], [32], [38]. Further-

more, when employing VF-based approaches to solve (LC-

BLO), a widely used measure of stationarity is to evaluate the

convergence of the algorithms toward the KKT points of the

constrained reformulation of the BLO problem [33].

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

47IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

In addition, the concept of oracle complexity is employed to

quantify the number of gradient evaluations needed to obtain

an -stationarye solution, as defined earlier. We denote (,)fG e

(respectively, (,))gG e as the total number of (stochastic) gra-

dients of f (respectively, g) evaluated to achieve an -stationarye

solution. This measure provides insights into the computation-

al requirements of BLO algorithms and their scalability with

respect to the problem size and desired solution accuracy.

Convergence guarantees for LU-BLO
As discussed in the section “Algorithmic Foundations of BLO,”

solving (LU-BLO) requires computing the Hessian or its in-

verse. However, the stochastic formulation (16) leads to some

challenges, especially for convergence analysis. For example,

in the case of solving the stochastic BLO problem using Algo-

rithm 1 (IF), the gradient estimates would be replaced with ap-

propriate stochastic gradient estimates for both the upper- and

lower-level updates. However, obtaining an unbiased estimator

for the Hessian inverse term in the IG [as

defined in (4)] is challenging. To overcome

this challenge, a biased stochastic gradi-

ent estimator based on Neumann-series

approximation, as discussed in the section

“Practical Considerations of IF,” has been

used in [30] and [31]. We note that the bias

of the estimator can be easily controlled by

choosing a larger batch to compute the Hes-

sian of the lower-level objective [30, Lemma 3.2]. Moreover,

we point out that the stochastic CG (discussed in the section

“Practical Considerations of IF”) can also be utilized to obtain

the inverse Hessian gradient vector product to approximate the

IG [39], [40].

In addition, a key design choice for BLO algorithms is

whether the inner problem is solved accurately or not. In a

single-loop algorithm, one only performs a fixed number of

steps for the lower-level updates before every upper-level

update [31], [41], [42], while in a double loop, many lower-level

updates are carried out to obtain a very accurate approxima-

tion of ()z i) [30], [39], [40]. Typically, the former is simpler

to implement in practice, while the latter is easier to analyze

since the error caused by approximating ()z i) can be well

controlled. In addition, the stochastic descent direction to

solve both (or either) upper- and lower-level problems can be

constructed using either vanilla stochastic GD (SGD) [43]

or variance-reduced (VR) algorithms [44]. Specifically, it is

well known that VR-based algorithms can lead to improved

theoretical convergence of stochastic algorithms compared to

vanilla SGD-based algorithms to solve standard optimization

problems. The VR-based algorithms accomplish this improved

convergence by computing additional stochastic gradients on

optimization variables computed in consecutive iterations [44].

Similar behavior is observed in solving BLO algorithms using

VR-based gradient constructions, as discussed next.

In Algorithm 3, we provide a generic stochastic algorithm

to solve BLO problems using the IF-based approach. As point-

ed out earlier, for double-loop algorithms, ()tz iu will approxi-

mate ()tz i) closely, while for a single-loop algorithm, ()tz iu

could be given by a crude approximation of ().tz i) Table 1

provides a summary of the oracle complexities of existing

BLO algorithms for achieving an -stationarye point in solv-

ing problem (LU-BLO). The theoretical results are categorized

based on three algorithmic families: stochastic BLO (16), VR-

based BLO, and deterministic BLO. The convergence perfor-

mance is evaluated in terms of the oracle complexities (,)fG e

and (,),gG e as introduced in the section “Convergence Mea-

sures of BLO.” In Table 1, we also illustrate the BLO solver

employed by different optimization principles (i.e., IF, GU, or

VF) and the algorithmic design choices, such as double versus

single loop.

Stochastic BLO
This set of algorithms updates the lower- and upper-level

variables using SGD, following the IF or GU optimization

principle. The stochastic gradient estimates are evaluated as

discussed in Algorithm 3, while for the

deterministic setting, the gradients are ap-

proximated using the techniques discussed

in the section “Algorithmic Foundations

of BLO.” Bilevel stochastic approximation

(BSA) [30] was the first algorithm that of-

fered finite-time convergence guarantees

for solving unconstrained stochastic BLO

problems. It employed a double-loop algo-

rithm where the lower-level variable is iteratively estimated

with multiple SGD updates, resulting in a larger oracle

complexity of (/)1O 3e for the inner-level optimization

compared to (/)1O 2e for the upper-level optimization.

Two-timescale stochastic approximation (TTSA) [31], a

fully single-loop algorithm (with projected SGD update for

upper-level constrained optimization) improved the lower-

level oracle complexity to (/);1O /5 2e however, at the cost of

worsening the upper-level oracle complexity to (/).1O /5 2e

More recently, the stochastic bilevel optimizer (stocBiO)

[40], the stochastic bilevel algorithm (SOBA) [46], and the

alternating stochastic GD (ALSET) [42] algorithm have

been developed to achieve (/)1O 2e complexity for both the

Algorithm 3: (S)GD and VR for solving stochastic
(LU-BLO) and (LC-BLO).

Given the initialization 0i and iteration number T, iteration t 0$
yields:
• Lower-level optimization: Given ,ti call SGD (or VR based on both

ti and)t 1i - to obtain a lower-level solution () .tz iu

• Approximation: Given (),tz iu compute a stochastic gradient estimate
of (5) as follows:
– Estimate stochastic versions of (, ()),f t td i z ii

u
(, ()), (, ()) .f g,t t t t

2
d di z i i z iz i z

u u

– Approximate Hessian inverse, (, ()) ,g, t t
2 1
d i z iz z

-u u following (6)
in the section “Practical Considerations of IF.”

– Obtain stochastic estimate of (5) and construct a descent direction
(;)F td i pu u for .ti

• Upper-level optimization: Call SGD (or VR) to update ti using
(;)F td i pu u (or (;)F td i pu u and (;) .F t 1d i p-

u u

The problem of model

pruning arises, aiming to

reduce the sizes of an ML

model by identifying and

removing redundant model

weights.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

48 IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

upper- and the lower-level optimization. Note that stocBiO

[40] requires a batch size of (/)1O e to achieve this complex-

ity, while ALSET [42] and SOBA [46] rely on only ()1O

batches to achieve the same performance. In [48], the au-

thors developed fully first-order stochastic approximation

(F2SA), a VF-based algorithm to solve (LU-BLO). The al-

gorithm achieved an oracle complexity of (/)1O /7 2e for both

upper- and lower-level objectives while circumventing the

need to compute Hessians (or Hessian vector products) dur-

ing the execution of the algorithm.

VR stochastic BLO
Several VR algorithms have been proposed to improve the per-

formance of vanilla stochastic algorithms by computing addi-

tional stochastic gradients in each iteration (see Algorithm 3).

Examples including single-timescale stochastic bilevel op-

timization (STABLE) [38] and momentum-assisted single-

timescale stochastic approximation (MSTSA) [41] utilized

momentum-based variance reduction techniques [44] for

upper-level optimization, improving the performance of

TTSA [31] and BSA [30] and achieving an oracle complex-

ity of (/)1O 2e for both upper- and lower-level objectives.

Single-timescale double-momentum stochastic approxima-

tion (SUSTAIN) [41], the momentum-based recursive bilevel

optimizer [45], and the stochastic VR bilevel method [50] fur-

ther improved the performance by applying variance reduc-

tion to both upper- and lower-level optimization, achieving

an oracle complexity of (/).1O /3 2e The VR bilevel optimizer

(VRBO) [45] employed the stochastic path-integrated differ-

ential estimator [51], a double-loop VR gradient estimator,

to achieve the same complexity. More recently, a stochastic

average bilevel algorithm (SABA) [46] was developed, apply-

ing SAGA (an incremental gradient estimator) [52] to achieve

an oracle complexity of (/),NO /3 2 e where N is the number of

empirical data points. In addition to F2SA, the authors of [48]

also proposed the faster fully first-order stochastic approxi-

mation (F3SA), which improved on the oracle complexity of

F2SA. F3SA utilized momentum-based variance reduction to

achieve an oracle complexity of (/)1O /5 2e for both upper- and

lower-level objectives.

Deterministic BLO
Popular approaches for solving deterministic BLO prob-

lems include iterative differentiation (ITD) and approxi-

mate implicit differentiation (AID) methods. ITD-based

approaches, proposed in [23] and [24], established asymp-

totic convergence guarantees and were extended to TGU in

[22], achieving oracle complexities of (/).1O 2e Improved

guarantees were later shown in [40], achieving oracle com-

plexities of (/),1O e comparable to solving a deterministic

single-level optimization problem. AID-based approaches

for solving deterministic BLO problems include bilevel

approximation (BA) [30], the AID bilevel optimizer (AID-

BiO) [40], and MSTSA [41]. BA, a double-loop algorithm,

was the first to establish convergence guarantees for deter-

ministic BLO using AID. BA achieved an oracle complexity Ta
bl

e
1.

 S
um

m
ar

y
of

 c
on

ve
rg

en
ce

 r
es

ul
ts

 o
f r

ep
re

se
nt

at
iv

e
BL

O
 a

lg
or

ith
m

s
fo

r
so

lv
in

g
(L

U-
BL

O
).

St
oc

ha
st

ic
 B

LO
V

R
BL

O
D

et
er

m
in

is
tic

 B
LO

A
lg

or
ith

m
Pr

in
ci

pl
e

D
es

ig
n

O
ra

cl
e

Co
m

pl
ex

ity
A

lg
or

ith
m

Pr
in

ci
pl

e
D

es
ig

n
O

ra
cl

e
Co

m
pl

ex
ity

A
lg

or
ith

m
Pr

in
ci

pl
e

D
es

ig
n

O
ra

cl
e

Co
m

pl
ex

ity

(
,

)
f

G
e

(
,

)
g

G
e

(
,

)
f

G
e

(
,

)
g

G
e

(
,

)
f

G
e

(
,

)
g

G
e

BS
A

 [3
0]

IF

D

ou
bl

e
(

/
)

1
O

2
e

(
/

)
1

O
3
e

ST
A

BL
E

[3
8]

IF

Si

ng
le

(

/
)

1
O

2
e

(
/

)
1

O
2
e

BA
 [3

0]

IF

D
ou

bl
e

(
/

)
1

O
e

(
/

)
1

O
/

5
4
e

TT
SA

 [3
1]

IF

Si

ng
le

(

/
)

1
O

/
5

2
e

(
/

)
1

O
/

5
2
e

SU
ST

A
IN

 [4
1]

IF

Si

ng
le

(

/
)

1
O

/
3

2
e

(
/

)
1

O
/

3
2
e

A
ID

-B
iO

 [4
0]

IF

Si

ng
le

(

/
)

1
O
e

(
/

)
1

O
e

st
oc

Bi
O

 [4
0]

IF

D

ou
bl

e
(

/
)

1
O

2
e

(
/

)
1

O
2
e

V
RB

O
 [4

5]

IF

D
ou

bl
e

(
/

)
1

O
/

3
2
e

(
/

)
1

O
/

3
2
e

IT
D

-B
iO

 [4
0]

G

U

D
ou

bl
e

(
/

)
1

O
e

(
/

)
1

O
e

A
LS

ET
 [4

2]

IF

Si
ng

le

(
/

)
1

O
2
e

(
/

)
1

O
2
e

SA
BA

 [4
6]

IF

D

ou
bl

e
(

/
)

N
O

/
2

3
e

(
/

)
N

O
/

2
3
e

M
ST

SA
 [4

1]

IF

Si
ng

le

(
/

)
1

O
e

(
/

)
1

O
e

F2 SA
 [4

8]
V
F

Si
ng

le

(
/

)
1

O
/

7
2
e

(
/

)
1

O
/

7
2
e

F3 SA
 [4

8]
V
F

Si
ng

le

(
/

)
1

O
/

5
2
e

(
/

)
1

O
/

5
2
e

K-
RM

D
 [2

2]

G
U

D

ou
bl

e
(

/
)

1
O

2
e

(
/

)
K

O
2
e

A
m

IG
O

 [3
9]

IF

D

ou
bl

e
(

/
)

1
O

2
e

(
/

)
1

O
2
e

SB
FW

 [4
9]

IF

Si

ng
le

(

/
)

1
O

4
e

(
/

)
1

O
2
e

FG
U

/B
G

U
 [2

3]

G
U

D

ou
bl

e
N

/A

N
/A

Th
e

co
nv

er
ge

nc
e

pe
rfo

rm
an

ce
 is

 m
ea

su
re

d
by

 th
e

or
ac

le
 c

om
pl

ex
ity

 G
(

,
)

f
e

 a
nd

 G
(

,
)

g
e

 fo
r

up
pe

r-
an

d
lo

w
er

-le
ve

l o
pt

im
iz

at
io

n,
 r

es
pe

ct
iv

el
y.

 “
D

ou
bl

e”
 o

r
“S

in
gl

e”
 r

ef
er

s
to

 th
e

ch
oi

ce
 o

f t
he

 a
lg

or
ith

m
 d

es
ig

n,
 e

ith
er

 d
ou

bl
e

lo
op

 o
r

si
ng

le
 lo

op
.

BS
A

: b
ile

ve
l s

to
ch

as
tic

 a
pp

ro
xi

m
at

io
n;

 T
TS

A
: t

w
o-

tim
es

ca
le

 s
to

ch
as

tic
 a

pp
ro

xi
m

at
io

n;
 s

to
cB

iO
: s

to
ch

as
tic

 b
ile

ve
l o

pt
im

iz
er

; A
LS

ET
: a

lte
rn

at
in

g
st

oc
ha

st
ic

 G
D

; F
2 SA

: f
ul

ly
 fi

rs
t-o

rd
er

 s
to

ch
as

tic
 a

pp
ro

xi
m

at
io

n;
 S

TA
BL

E:
 s

in
gl

e-
tim

es
ca

le
 s

to
ch

as
tic

 b
ile

ve
l

op
tim

iz
at

io
n;

 S
U

ST
A

IN
: s

in
gl

e-
tim

es
ca

le
 d

ou
bl

e-
m

om
en

tu
m

 s
to

ch
as

tic
 a

pp
ro

xi
m

at
io

n;
 V

RB
O

: V
R

bi
le

ve
l o

pt
im

iz
er

; S
A

BA
: s

to
ch

as
tic

 a
ve

ra
ge

 b
ile

ve
l a

lg
or

ith
m

; F
3 SA

: f
as

te
r

fu
lly

 fi
rs

t-o
rd

er
 s

to
ch

as
tic

 a
pp

ro
xi

m
at

io
n;

 B
A

: b
ile

ve
l a

pp
ro

xi
m

at
io

n;
 A

ID
-

Bi
O

: a
pp

ro
xi

m
at

e
im

pl
ic

it
di

ffe
re

nt
ia

tio
n

bi
le

ve
l o

pt
im

iz
er

; M
ST

SA
: m

om
en

tu
m

-a
ss

is
te

d
si

ng
le

-ti
m

es
ca

le
 s

to
ch

as
tic

 a
pp

ro
xi

m
at

io
n;

 S
BF

W
: s

to
ch

as
tic

 b
i-l

ev
el

 F
ra

nk
-W

ol
fe

; I
TD

-B
IO

: i
te

ra
tiv

e
di

ffe
re

nt
ia

tio
n-

ba
se

d
bi

le
ve

l o
pt

im
iz

at
io

n;
 K

-R
M

D
: K

-st
ep

re

ve
rs

e
m

od
e

di
ffe

re
nt

ia
tio

n.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

49IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

of (/)1O e for the upper-level optimi-

zation and (/)1O /5 4e for the lower-

level optimization. The performance

of BA was improved in AID-BiO [40]

and MSTSA [41], which achieved an

oracle complexity of (/)1O e for both

upper- and lower-level objectives.

Please refer to Table 1 for a summary

of the discussed approaches.

Convergence guarantees for
(LC-BLO) and (NS-BLO)
Obtaining convergence guarantees for

BLO algorithms becomes more chal-

lenging when solving more complex

problems, such as those involving

lower-level constraints in (LC-BLO) or NS lower-level solu-

tions in (NS-BLO). In the previous section, the majority of

the algorithms discussed employed an IF-based approach to

solve the BLO problem. However, in this section, only the

algorithms designed to solve (LC-BLO) utilize IF-based ap-

proaches. It is also worth mentioning that IF-based approaches

are not applicable for solving (NS-BLO) [or (LC-BLO) with

general constraints] because of the inapplicability of the im-

plicit function theorem in this context. Instead, standard ap-

proaches to solve these more complex problems include inte-

rior-point methods [35], primal–dual methods [33], dynamic

barrier GD [36], and penalty-based GD [34]. As pointed out

earlier, a major drawback of these algorithms is that they are

exclusively developed for deterministic problems and lack

efficient implementations for stochastic formulations (16).

Consequently, they are not well suited for large-scale SP and

ML applications, which often involve learning over large

volumes of data.

In the following, we present a summary of recent theoreti-

cal advancements for solving highly complex BLO problems,

such as (LC-BLO) and (NS-BLO) (see Table 2). We list the ora-

cle complexities of representative methods, design principles,

and the type of constraints present in the lower-level objective

function. Note that in Table 2, we list the oracle complexity for

only the upper-level objective with the notion of stationarity

defined according to either the squared norm of the projected

gradient [10], [32], [34] or KKT conditions [33], [36].

Theoretical results for (LC-BLO)
BLO problems of the form (LC-BLO) involving lin-

ear constraints of the form : { (,) }h 0C ; #z i z= with

:(,)h A bi z z= - in the lower level have gained popularity

in both theory and practice [10], [32], [37]. Under some regu-

larity assumptions on upper- and lower-level objectives and the

constraint set of the lower-level problem, IF-based methods

can be developed for solving such problems. These algorithms

(see, e.g., Algorithm 4) follow the same structure as the one

presented in Algorithm 1; the key difference is that the con-

struction of the (stochastic) gradient estimate depends on the

lower-level constraints.

In [32], the SIGD approach was developed to handle (LC-

BLO) with linear inequality constraints in the lower level.

SIGD is an implicit GD algorithm that ensures the differ-

entiability of the IF through perturbation-based smoothing.

The SIGD algorithm and the expression for IG used in [32]

are stated in (17). SIGD guarantees asymptotic convergence

to a stationary point. A similar IF-based approach was also

utilized in [10], termed Fast Bilevel Adversarial Training

(Fast-BAT). Fast-BAT aims to enhance the robustness of

deep learning models against adversarial attacks using BLO.

It achieves an oracle complexity of (/)1O e under certain

smoothness assumptions. In [37], the stochastic BLO prob-

lem with linear equality constraints in both the upper- and

lower-level problems is considered. The authors proposed an

IF-based approach by constructing an approximate stochas-

tic implicit gradient for linearly constrained BLO. They also

proposed the alternating implicit projected SGD (AiPOD)

algorithm, an alternating projection method that achieves

an oracle complexity of (/)1O 2e for both upper- and lower-

level objectives. The work [33] considered BLO with general

constraints in both upper- and lower-level objectives and

NS lower-level solutions. It utilized the VF-based approach

developed in BVFIM [35] for solving (NS-BLO) and pro-

posed PDBO, a primal–dual algorithm for solving (14) when

Table 2. Convergence results of representative algorithms for solving (LC-BLO)
and (NS-BLO) problems.

Objective Functions

Algorithm Principle Upper Level Lower Level Constraints Oracle Complexity

BDA [21] GU Strongly convex Convex No Asymptotic
BVFIM [35] VF Smooth Nonconvex No Asymptotic
BOME! [36] VF Smooth PL No (/)1O 4e
SIGD [32] IF Smooth Strongly convex Linear inequality Asymptotic
AiPOD [37] IF Smooth Strongly convex Linear equality (/)1O 2e
PDBO [33] VF Smooth Convex Nonlinear (/)1O /3 2e
PBGD [34] VF Smooth PL Nonlinear (/)1O /3 2e

Similar to Table 1, convergence is measured by oracle complexity. Other algorithmic details include optimization princi-
ples (IF, GU, and VF), problem setups [(LC-BLO) and (NS-BLO)], objective function types, and lower-level constraint types.
BDA: bilevel descent aggregation; SIGD: smoothed implicit gradient; AiPOD: alternating implicit projected SGD.

Algorithm 4: Smoothed implicit gradient (SIGD), an IF-based
approach for (LC-BLO).

Given the initialization 0i and iteration number ,T iteration t 0$
yields the following:
• Call Algorithm 1 and use the following procedure to compute the IG.
• Notation: Let ()A zr be the matrix that contains the rows of A that

correspond to the active constraints of inequality 0A b#z- , and
()im)r is the Lagrange multipliers vector that corresponds to the active

constraints at ();z i) compute:

: [(,)]

[(, ()) ()]

() [[(,)]]

[[(, ())] (, ())] .

()
()

()

d

d
g

g

g

g g

IG

A

A A

A

T

2 1

2

2 1 1

2 1 2

#

#

d

d d

d d

d d

z m

m

z z

i
z i

i z i

i i i

i i z i

i i i i

=

- -

=-

))

)

))

)

)

) <

<

zz

zz

iz

zz iz

-

- -

-

r r

r r r

r (17)

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

50 IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

the VF is approximated using (15). Under the assumptions

of convex and compact constraint sets and convex lower-

level objectives, PDBO achieves an oracle complexity of

(/).1O /3 2e Recently, the authors of [34] proposed PBGD for

BLO with general constraints and NS lower-level solutions.

The authors established the equivalence of BLO and its pen-

alty-based reformulations based on VF and KKT conditions.

PBGD achieved an oracle complexity of (/)1O /3 2e for solv-

ing constrained BLO with lower-level objectives satisfying

the Polyak-Łojasiewicz (PL) inequality. Note that the algo-

rithms PDBO [33] and PBGD [34] can be utilized to solve

both (LC-BLO) and (NS-BLO) problems. Next, we discuss

specific algorithms for solving (NS-BLO).

Theoretical results for (NS-BLO)
An attempt to relax the lower-level singleton assumption for

the lower-level problem was made in [21] with the introduction

of bilevel descent aggregation (BDA), a bilevel descent frame-

work for solving (NS-BLO). BDA assumes convexity of the

lower-level objective and strong convexity of the upper-level

objective with respect to .z The framework updates the lower-

level variable, ,z using a convex combination of the upper- and

lower-level partial gradients and then updates the upper-level

variable, ,i using standard FGU/BGU techniques. The au-

thors established the asymptotic convergence of BDA in [21].

In [35], the authors relaxed the convexity assumptions on the

lower- and upper-level objectives in (NS-BLO) and proposed

BVFIM, a VF-based approach to solving the problem. BVFIM

solves a sequence of penalty-based reformulations of the VF

problem using the interior-point method with asymptotic

 convergence. In [36], the authors introduced BOME!, an al-

ternative approach to directly solve the VF problem using a

dynamic barrier GD algorithm. Under the assumption of PL

inequality for the lower-level objective, BOME! achieves a

finite-time sample complexity of (/)1O 4e in the worst case.

BLO-enabled SP and ML applications
In the following sections, we will showcase how BLO can be

leveraged to obtain state-of-the-art results for a number of key

SP and ML applications, such as wireless resource allocation

(see the section “BLO for Wireless Resource Allocation”),

signal demodulation (see the section “BLO for Wireless Sig-

nal Demodulation”), adversarial training for robustifying ML

models (see the section “BLO for Adversarially Robust Train-

ing”), weight pruning for enhancing model efficiency (see the

section “BLO for Model Pruning”), and invariant representa-

tion learning for improving domain generalization (see the

section “BLO for Invariant Representation Learning”). Table 3

summarizes a number of emerging BLO application areas, to-

gether with some representative references.

BLO for wireless resource allocation
In this section, we explore the application of BLO in wireless

communications, specifically in the context of wireless optimal

resource allocation (power control) [7]. The goal is to allocate

power efficiently among multiple transmitter–receiver pairs to

maximize some system-level performance. We consider a dy-

namic environment where wireless channel statistics change

episodically, where the environment statistics change in “epi-

sodes,” and in each episode the environment is stationary. To

solve this problem, we employ a neural network trained to pre-

dict the optimal power allocation for users based on channel

information. However, neural networks often struggle when

evaluated on data that deviate from the training distribution.

Table 3. An overview of emerging applications of BLO in SP and ML (image indicates applications we studied).

Representative Applications Application Areas Problem Description Selected References

Wireless resource allocation SP To allocate wireless resources optimally and maximize
their utilities

[7]

Signal demodulation To accurately estimate transmitted symbols from
received baseband signals

[53]

Channel prediction To predict the states of a communication channel by leveraging
previous observations

[54]

Image reconstruction To recover images from their sparse measurements [9]

Adversarial training Robust ML To train an ML model with adversarial robustness against
adversarial attacks

[10], [11]

Poisoning attack generation To generate malicious data into the training set, creating
 vulnerabilities/backdoors in ML models

[12], [13]

Model pruning Efficient ML To find sparse subnetworks from a dense DNN without
 generalization loss

[18], [55]

Dataset condensation To select a subset or distill a condensed version of the training
set without generalization loss

[17], [19]

MAML Generalized ML To train an ML model that can quickly adapt to new tasks
using limited data

[14], [15], [16]

IRM To train an ML model with invariant features against
 distribution shift

[56], [57], [58]

Neural architecture search Automated ML To automatically optimize the architecture of DNNs for
improved performance

[25]

Hyperparameter optimization To optimize the hyperparameters and model selection
schemes in an ML pipeline

[21], [22], [23], [24]

IRM: invariant risk minimization.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

51IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

To address this challenge, we adopt a continual learning frame-

work [59] and maintain a memory set, containing a representa-

tive subset of samples encountered so far, to facilitate adapta-

tion to new episodes while preserving performance on previous

ones. The model is trained not only on the current data batch

but also on the memory set, and the dual requirement of con-

tinuously updating the memory set while optimizing the system

performance leads to the bilevel formulation. In what follows,

we provide a detailed problem formulation [7].

Formulation
Consider a dynamic wireless environment with T episodes,

where the channel state information (CSI) statistics re-

main stationary within each episode. Consider a supervised

learning setting, where the ith data pair ,h p() ()i i^ h consists

of the CSI vector h()i (the feature vector)

capturing the channel characteristics and

the corresponding optimal power alloca-

tion p()i across the users (the label). We

train a neural network ; h()iir^ h on these

data pairs, where i represents the model

parameters and h()i serves as the network

input, with the output being the power al-

location prediction. Assuming the data

arrive sequentially in multiple batches,

let Dt denote the batch we receive at time t. Assume that

there is a fixed-size memory set Mt available, which stores

representative historical data to be combined with Dt for

training, and it is updated when a new batch arrives. The

 performance of a power allocation scheme p (for a given

CSI h) is measured by the weighted sum–rate loss function

(;)R p h [7, equation (1)].

At each time t, our problem involves two tasks. The first

task is to train the neural network on a (weighted) set of train-

ing samples, aiming to find the optimal model parameter i .

The second task is to select the most representative subset

from the available training data, which includes the samples

in memory Mt and the current data batch Dt (denoted as

M Dt t,). This selected subset will be then used for training

as well as to form the new memory to be used in the next time

t + 1. Toward this end, we introduce the variable ,m which

represents the weights associated with each sample. Higher

weights are assigned to samples that are more representative or

challenging, as determined by the system performance metric

(;).R p h These weighted samples (with nonzero weights) are

then selected to form the updated memory set, and they will

contribute to the next round of training. The idea is that by

focusing on training the model on these challenging samples,

we can expect better performance on the remaining easier

samples. This problem can be naturally formulated as the fol-

lowing BLO problem:

() (; ,)

() ((;);)argmin R

minimize

subject to

h p

h h

() () ()

() () ()

i

i M D

i i

i

i M D

i i

1 1

t t

T
t t

,i i

m i i

m

m r=

,

,

!

!

i

m=

/

/

(18)

where (; ,) (;)h p p h() () () ()i i i i
2

2
, i ir= - is the mean-square-

error loss over the ith sample, and M Dt t, are the available

training samples at time t. At the upper level, supervised train-

ing is performed by using the weighted loss, while at the lower

level, the weights are optimized based on their achieved rates,

where higher weights are assigned to samples achieving lower

rates. Based on solutions obtained by solving (18) [denoted

as , ,t ti m^ h@ in iteration t + 1 a new memory set is formed by

: .M i 0
()

t t
i

1 2m=+ " ,
Methods
Problem (18) is a constrained BLO problem with linear equali-

ty constraints with respect to the lower-level variable .m Based

on the problem structure and the optimization principles and

algorithms introduced in the sections “Algorithmic Founda-

tions of BLO” and “Convergence Guaran-

tees for (LC-BLO) and (NS-BLO),” we uti-

lize the IF-based SIGD method [32] to solve

(18). However, it should be noted that the

SIGD method assumes a strongly convex

lower-level problem (see Table 2). To ensure

this property, we introduce a regularization

term / ,2 2
2

mc^ h where c is the regulariza-

tion parameter, as described in the section

“Extension to Lower-Level Constrained

BLO.” As a classical baseline approach, we also consider trans-

fer learning (TL). In TL, when a new data batch Dt arrives,

the current model trained on data up to time t – 1 is fine-tuned

using only .Dt This approach is motivated by the expectation

that previous knowledge can be transferred to the new environ-

ment, enabling quick adaptation of the model. However, updat-

ing the model may result in a loss of prior knowledge, leading

to performance degradation on the prior episodes.

Experiment results
We consider an experiment setting with T 4= episodes

and 10 users and with three different types of communica-

tion channels: Rayleigh fading, Rician fading, and Geometry

channels; see [7, p. 13] for more details. The neural network

trained for power allocation consists of three hidden layers

with sizes 200, 80, 80, respectively. Figure 2 illustrates the

performance of power allocation, measured by the sum rate;

in the horizontal axis we have the total number of samples

used for model training as these arrive sequentially in batch-

es. Here the power allocation schemes are obtained using the

BLO-based SIGD method and the baseline approach (TL), re-

spectively. As we can see, the SIGD method exhibits smoother

adaptation to each episode (note that the boundaries between

episodes locate at x=2,4,6,8). It also experiences less deteri-

oration in performance compared to the baseline approach.

These results demonstrate the advantage of using BLO for

power allocation.

BLO for wireless signal demodulation
In this section, we explore the application of BLO in wire-

less signal demodulation by associating it with another BLO

Note that all IRM variants

outperform ERM, which

justifies the importance

of IRM training to improve

model generalization

across diverse

environments.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

52 IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

 application, MAML [14]. Thus, we begin by introducing the

fundamental concepts of MAML within the framework of

BLO and then establish the connection between MAML and

signal demodulation.

Fundamentals of BLO in MAML
MAML, as an optimization-based metalearning approach,

has gained significant popularity in various fields, especially

in scenarios with limited resources [14], [15], [16]. Specifical-

ly, MAML learns a metainitialization of optimized variables

(e.g., model weights ih to enable fast adaptation to new tasks

when fine-tuning the model from the learned initialization

with only a few new data points [14]. With N learning tasks

,Ti i
N

1=" , 1) a fine-tuning set Di
tr is used in Ti for the task-

specific lower-level optimization over the task-agnostic model

initialization ,i and 2) a validation set Di
val is used in the

upper-level optimization for evaluating the fine-tuned model

ii
) from i . Thus, MAML can be formulated as the following

BLO problem:

();

() (; ,),argmin

N
1

minimize

subject to

E D

D

*

*

(,)~ i

i

i

N

i i

i i i

1

val

tr

R

D D Ti i i

i
n

tr val ,

,

i i

i i i i=

!

i
=

i

^ h6 @/

(MAML-BLO)

where *
ii i^ h signifies the fine-tuned model weights using the

initialization i under the task ,Ti and i, denotes the model

training (or validation) loss over Di
tr (or Di

val) with initializa-

tion i (or fine-tuned model .*
ii i^ hh

The MAML-BLO problem falls into the category of uncon-

strained BLO. Thereby, existing works, such as [14], [15], and

[16], commonly employ the IF- or GU-based approaches to

solve it. The vanilla MAML algorithm [14] utilizes a GU-

based BLO solver, which carries out the upper- and lower-level

updates using the following steps:

: () , (),

, , ,

: (()),

m M

N

1

1

Lower

given

Upper

* () () () ()

()

*

i i
M

i
m

i
m

i i
m

i

i

N

i i

1 1

0

1

i!

!

d

f

d

,

,

i i i i i i

i i

i i i i

b

a

= -

= =

-

i

i

- -

=

/

 (MAML)

where ,a 02b represent the learning rates for the SGD up-

dates in the upper and the lower level, respectively. As men-

tioned in the section “GU-Based Approach for Unconstrained

BLO”), the choice of the lower-level optimizer will greatly in-

fluence the GU-based BLO solvers.

As described in the section “Practical Considerations,” the

usage of the sign-based SGD in the lower level can lead the

vanilla MAML to a first-order BLO solver, known as Sign-

MAML [15]. In contrast to the GU-based MAML methods

discussed previously, the implicit MAML (iMAML) [16]

utilizes an IF-based approach, where the CG method is used

to compute the inverse Hessian gradient product. Compared

to the vanilla MAML, iMAML shares the same lower-level

updating rule, while adopting the IF-based upper-level itera-

tion, similar to (5). Unlike IF and GU, the first-order MAML

(FO-MAML) operates by alternating between SGD-based

lower-level optimization and SGD-based upper-level optimi-

zation, without explicitly considering the implicit gradient.

We refer to this optimization procedure as alternating opti-

mization (AO).

We next demonstrate the effectiveness of BLO in MAML

by applying it to benchmark few-shot learning tasks on the

Omniglot and Mini-ImageNet datasets, where the generaliza-

tion of the learned metainitialization is evaluated on the new

(a)

2

1.1

1.2

1.3

1.4

4
Total Number of Training Samples (×103)

A
ve

ra
g
e
 S

u
m

 R
a
te

 (
b
it
s
/s

)

6 8

(b)

2

1.1

1.2

1.3

1.4

4

Total Number of Training Samples (×103)

A
ve

ra
g
e
 S

u
m

 R
a
te

 (
b
it
s
/s

)

6 8

TL SIGD

(c)

0.75

0.8

0.85

0.9

A
ve

ra
g
e
 S

u
m

 R
a
te

 (
b
it
s
/s

)

2 4
Total Number of Training Samples (×103)

6 8

FIGURE 2. The average sum rate achieved on the combined test set

(across all four episodes) is plotted as a function of the total number of

samples used for model training, which arrive sequentially in batches.

Three experiments are conducted with different types of channel statistics

across the four episodes. (a) The channel sequence is Rayleigh-Rician-

Geometry10-Geometry50. (b) The channel sequence is Rician-Geome-

try10-Rayleigh-Geometry50. (c) The channel sequence is Geometry10-

Geometry20-Geometry50-Rayleigh. The numbers after the Geometry

channel indicate the spatial arrangement of the nodes, such as a 20 m ×

20 m area for Geometry20.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

53IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

tasks, each with only a few examples. We follow the standard

experimental setting [14], [15], [16], considering 20-way-

1-shot and 20-way-5-shot learning on Omniglot and 5-way-

1-shot and 5-way-5-shot learning on Mini-ImageNet. Here

P-way-Q-shot refers to training a model using a small set of

data points sampled from P classes, with each class contain-

ing Q examples. Table 4 provides an overview of the accuracy

and runtime efficiency of different methods

for solving MAML-BLO, including AO-

based FO-MAML [14], GU-based Sign-

MAML [15], GU-based vanilla MAML

[14], and IF-based iMAML [16]. As we can

see, the vanilla MAML and iMAML gen-

erally achieve higher testing accuracy than

other MAML variants, but they require more

computation time. This is expected for their

fewer implementation assumptions, resulting in more precise

metainitialization states. In the FO optimization category, we

observe that Sign-MAML outperforms FO-MAML, demon-

strating the advantage of using GU to solve BLO problems.

BLO for wireless signal demodulation

Background and connection to MAML
We next examine the application of BLO in the context of wire-

less signal demodulation through the lens of MAML. Wireless

signal demodulation aims to recover the transmitted symbols

s from the received signals y . Our investigation aligns with

prior research [8] and focuses on a scenario where wireless de-

vices frequently transmit short packets with a few pilot symbols

through a varying channel. Notably, only a limited number of pi-

lot symbols is available to optimize the demodulator when work-

ing with any new wireless transmitter device in the field. Mean-

while, the historical data pairs for previous devices and channel

conditions can hardly transfer to new ones. Thus, demodulation

modeling can be viewed as a few-shot metalearning problem,

aiming to obtain a metainitialization that is able to quickly adapt

to future devices. Similar to MAML, a metademodulator char-

acterized by a learnable parameter i is trained to quickly adjust

to new devices with only a few new pilot symbols.

Formulation
Specifically, N supervised datasets are collected to train the

metademodulator, each associated with a specific device,

which can be treated as N tasks. The ith dataset with K

samples is given by , ,s yD
() ()

i i
k

i
k

k

K

1=
=

^ h" , where y
()
i
k

 rep-

resents the kth received signal, and s
()
i
k

 is its corresponding

ground-truth transmitted symbol. The demodulation task

for each single device can be formulated as a classification

problem as each symbol s
()
i
k

 can only be one of the several

binary encodings, e.g., ranging from 0000 to 1111 following

the 16-quadrature amplitude modulation

(16-QAM) [8]. Thus, the cross-entropy

loss between the predicted transmitted

symbol (,)s y it and the true symbol s

is used to train the demodulator model:

(;) ,(,),D s y sE L, ~
() ()

i i i
k

i
k

CEs y D
() ()
i
k

i
k

i, i i= t^^ hh

where we use a multilayer neural network

as the demodulation model i following [8]

to predict the transmitted symbol st using

the received signal y. Given N devices (datasets) within the

metatraining dataset, each contains K data samples, which

are divided into Ktr for fine-tuning i and Kval for validat-

ing the performance of the fine-tuned model. In line with the

notions used in (MAML-BLO), the demodulation of the ith

device can be regarded as learning task ,Ti which consists

of a fine-tuning dataset Di
tr and a validation dataset .Di

val

To this end, we can apply the previously introduced MAML

methods [14], [15], [16] to address the problem of wireless

signal demodulation.

Experiment results
During the metatraining phase, we consider N = 1,000 dif-

ferent devices, each of which has { , , , }K 1 5 10 20tr ! training

samples designated as the fine-tuning set. For the metatesting

phase, we use another set of 100 devices, each of which has

Ktr pairs for the few-shot demodulator fine-tuning and an ad-

ditional 10,000 pilot symbol pairs for symbol classification

accuracy evaluation. Table 5 shows the average classification

accuracy and running time for different MAML methods, pro-

viding insights into how the choice of Ktr affects the perfor-

mance of these methods. As we can see, MAML and iMAML

achieved the highest symbol classification accuracy, although

they required more computational time, consistent with the

findings in Table 4. Sign-MAML outperformed FO-MAML in

the one-shot scenario, benefiting from the effectiveness of the

GU solver. However, in scenarios with more shots, FO-MAML

can achieve a performance on par with that of MAML.

Table 4. Performance comparison of various MAML methods on the commonly used datasets for few-shot learning tasks Omniglot and Mini-ImageNet.

Test Accuracy
(%)

Time
(min)

Test Accuracy
(%)

Time
(min)

Test Accuracy
(%) Time (min)

Test Accuracy
(%) Time (min)

Method BLO (Solver) Omniglot 20-way-1-shot Omniglot 20-way-5-shot Mini-ImageNet 5-way-1-shot Mini-ImageNet 5-way-5-shot

FO-MAML [14] AO 90.62 ± 0.29 2.71 96.44 ± 0.23 2.99 46.39 ± 0.44 4.32 54.45 ± 0.29 4.93
Sign-MAML [15] GU 91.75 ± 0.26 2.85 97.79 ± 0.18 2.91 47.73 ± 0.55 4.51 55.12 ± 0.33 4.72
Vanilla MAML [14] GU 95.65 ± 0.25 4.71 98.42 ± 0.23 4.94 48.77 ± 0.65 15.5 55.72 ± 0.36 15.9
iMAML [16] IF 95.99 ± 0.19 3.64 98.63 ± 0.14 3.85 49.31 ± 0.41 11.6 54.71 ± 0.27 13.3

The best performance in each setting is marked in boldface. The standard deviations are reported based on five random trials. Rows marked in gray indicate BLO-enabled algorithms.

Developing efficient

algorithms that can handle

NS lower-level solutions

and provide convergence

guarantees is a key

research direction.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

54 IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

BLO for adversarially robust training
The lack of adversarial robustness in ML models has prompted

extensive research on adversarial defense mechanisms [10], [11],

[60]. While most of the existing defenses rely on MMO to mini-

mize worst-case training loss by incorporating a synthesized ad-

versary, this approach requires completely opposing objectives

for the defender and attacker. This limits its applicability to sce-

narios where differing objectives are desired. Recent works [10],

[11] have demonstrated the use of BLO with customizable attack

objectives to improve the efficiency and robustness of robust

model training across a wide range of adversarial attack strengths.

Formulation
We formulate the BLO-based robust training for defending

against adversarial attacks. Using variables i for model pa-

rameters and d for input perturbation, and loss functions tr,

for training and atk, for attacks, we define the task of robust

training as a BLO problem (RT-BLO). The upper-level prob-

lem involves training the model ,i while the lower-level problem

optimizes d for adversarial attack generation to produce worst-

case input in model training. This yields the following:

[(, (),)],

() (, ; ,),argmin

y

y

minimize

subject to

x

x

E(,)
*

*

y tr

atk

x D

C

,

,

i d i

d i d i

+

=

!

!

i

d

(RT-BLO)

where (,)yx is a data pair with feature x and label y drawn from

the training dataset , ()xD d+ is an adversarial example with

respect to ,x and C!d denotes a perturbation constraint, e.g.,

, [,]0 1xC # !d d de= +3" , for an tolerated-e ,3 -norm

constrained attack with normalized input in []0,1 .

If we choose atk tr, ,=- , then problem (RT-BLO) reduces to

the MMO-based adversarial training [60]. However, the flex-

ibility of independently choosing the lower-level attack objec-

tive allows for a broader range of robust training scenarios. In

particular, it enables the development of a fast robust train-

ing variant called Fast-BAT [10]. The Fast-BAT formulation,

given next, specifies the lower-level attack generation problem

of (RT-BLO) as a constrained convex quadratic program:

,

(; ,)

() (, ,) (/)

[(, (; ,),)]

argmin

y y

y

y 2

minimize

subject to x

x

x xE

*

: (, ; ,)

(,)
*

y

y

0 0 2

2
CE

CE

x

x

C

D

0

atk

d ,

, i d i

d i

d d i d d dc= - - + + -

+

<

,
!

!
i

d
d d

i d

=

=

1 2 34444444444444 4444444444444

(Fast-BAT)

where (, ,)x yCE, i is the cross-entropy loss for training model

weights i evaluated at the data point (,)yx , and the lower-

level attack objective is given by a first-order Taylor expan-

sion of CE,- (at the linearization point 0d h plus a quadratic

residual with the regularization parameter .02c Since the

lower-level problem becomes a convex quadratic program,

it leads to the closed-form projected GD (PGD) solution

() (/) (,)1P*
0 CEC 0d ,d i d i dc= - d d d=^ h .

Methods
As problem (Fast-BAT) falls into the category of (LC-BLO), we

can solve it using optimization methods introduced in the sec-

tion “Convergence Guarantees for (LC-BLO) and (NS-BLO).”

Specifically, we consider the KKT-oriented IF approach (see

the section “Extension to Lower-Level Constrained BLO”) as

our BLO solver (see Algorithm 4). In our experiments, we refer

to this method as Fast-BAT-IF. Furthermore, we compare Fast-

BAT-IF with non-BLO representative robust training base-

lines, such as Fast-AT [61] and Fast-AT-GA [62].

Experiment results
In Table 6, we empirically show the performance of differ-

ent robust training methods to robustify PreActResNet-18

on the CIFAR-10 and Tiny-ImageNet datasets. The evalu-

ation metrics include 1) the test-time robust accuracy (RA)

of the learned model against 50-step PGD attacks [60]

with 10 restarts (RA-PGD) using the perturbation budgets

/8 255e = and 16/255; 2) RA against AutoAttack (RA-AA)

[47] in a setup similar to RA-PGD; 3) the standard accu-

racy of the learned model on natural examples; and 4) the

time consumption required for robust training. As observed,

Fast-BAT-IF exhibits higher robustness compared to non-

BLO baselines, highlighting the effectiveness of BLO in

robust training.

BLO for model pruning
While overparameterized structures are key to the improved

generalization of DNNs, they create new challenges—the huge

number of parameters not only increases computational costs

during inference, but it also poses serious deployment chal-

lenges on resource-limited devices. Thus, the problem of mod-

el pruning arises, aiming to reduce the sizes of an ML model

by identifying and removing redundant model weights. In this

section, we investigate the application of BLO in the context of

model pruning [18], [55].

Table 5. Performance comparison of different MAML methods for few-shot demodulation of 16-QAM modulated wireless signals.

Test Accuracy
(%)

Time
(min)

Test Accuracy
(%)

Time
(min)

Test Accuracy
(%) Time (min)

Test Accuracy
(%) Time (min)

Method BLO (Solver) 16-way-1-shot 16-way-5-shot 16-way-10-shot 16-way-20-shot

FO-MAML [14] AO 94.46 ± 0.35 8.59 97.93 ± 0.11 8.73 99.13 ± 0.13 8.87 99.17 ± 0.04 9.01
Sign-MAML [15] GU 96.91 ± 0.1 8.1 97.35 ± 0.28 8.14 97.42 ± 0.3 8.23 97.46 ± 0.24 8.32
Vanilla MAML [14] GU 98.84 ± 0.1 13.04 99.49 ± 0.03 13.27 99.63 ± 0.01 13.29 99.66 ± 0.02 13.35
iMAML [16] IF 97.66 ± 0.07 14.14 98.58 ± 0.04 14.52 99.35 ± 0.04 14.81 99.43 ± 0.02 14.88

The best performance in each setting is indicated in boldface. Standard deviations are reported based on five random trials. Rows marked in gray indicate BLO-enabled algorithms.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

55IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

Formulation
The study of model pruning through the lens of BLO was

first explored in [18]. Specifically, there exist two main

tasks in model pruning: pruning and retraining. Pruning

involves determining the sparse pattern of model weights,

while retraining focuses on recovering model accuracy us-

ing the remaining nonzero weights [55]. To facilitate these

tasks, one can introduce the binary pruning mask variable

{ , }0 1m m! and the model weight variable ,Rm!z where

m represents the total number of model parameters. Ac-

cordingly, the pruned model is given by (),m9 z where

9 denotes element-wise multiplication. To achieve a prun-

ing ratio of %p , we impose a sparsity constraint on m,

where m ! X and { , | , { , } , },k0 1 1m m mn T! #X = with

(%) .k p n1= - Our goal is to prune the original dense

model to the targeted pruning ratio of %p and obtain the

optimal sparse model ().m9 z To achieve this, we view

the pruning task (①) and the model retraining task (②) as

two optimization levels, leading to the formulation of bi-

level pruning (BiP):

(;

 () () ,

())

argmin
2

minimize

subject to

m

m m

m

:

:

2
2

2

1

tr

tr

Sparsity-fixed model retraining

m

R
n

9

9

,

,

z

z z z
c

= +
)

)

!

!z

X

Pruning task

u

1 2 34444 4444

1 2 3444444444 444444444

(BiP)

where tr, and tr,u denote the training losses under different data

batches, m and z are the upper-level and lower-level optimiza-

tion variables, respectively, and ()mz) signifies the retrained

model weights given the pruning mask m. In (BiP), the lower-

level training objective was regularized using a strongly con-

vex regularizer /2 2
2

zc like (Fast-BAT).

Methods
Since BiP is an unconstrained BLO problem, it can be solved

using BLO algorithms, e.g., IF and GU, introduced in the sec-

tions “IF for Lower-Level Unconstrained BLO” and “GU-Based

Approach for Unconstrained BLO.” Moreover, since the Hes-

sian of the lower-level objective function with respect to model

parameters is of high dimension, we impose the Hessian-free

assumption 0, trd , =z z to make the BLO implementation com-

putationally feasible. Following (4), one can then obtain the closed

form of the IG [18]: / (),() (/)d d 1m mm ,
2

trm 9d , zz c= -
))

z

where z) signifies a lower-level solution. Furthermore, the bi-

linearity of the pruning mask m and the model weights z allows

us to further simplify the IG to

 ()
()

d

d 1
diag

m
z

m
trz z md ,

z

c
= - 9

)

z=
)^ h (19)

where the Hessian-free assumption is adopted and ()diag a de-

notes the diagonal matrix with a being the main diagonal vec-

tor. A detailed proof can be found in [18, Section 3].

Experiment results
To implement BiP, we adopt two BLO methods: the IF (see

the section “IF for Lower-Level Unconstrained BLO”) and

GU (see the section “GU-Based Approach for Unconstrained

BLO”). We term the resulting BLO-inspired model prun-

ing approaches BiP-IF and BiP-GU. For comparison, we

also consider two commonly used non-BLO-based pruning

methods, the state-of-the-art iterative magnitude pruning

(IMP) [55] and the most efficient one-shot magnitude prun-

ing (OMP) [55]. We remark that the notable lottery ticket hy-

pothesis [55] stated that IMP is able to identify a trainable

sparse subnetwork (known as a “winning ticket”) with a test

accuracy surprisingly on par with or even better than that of

the original model.

Figure 3 illustrates the pruning accuracy and the run-

time efficiency of BLO-based pruning methods versus non-

BLO approaches across diverse image classification datasets

(including CIFAR-10, CIFAR-100, and Tiny-ImageNet) under

ResNet-18. As we can see, BiP-IF yields the best performance

in all of the dataset settings shown in Figure 3(a)–(c). This is

also the pruning recipe used in [18]. Thanks to the closed-form

expression of the IG in (19), the computation of BiP-IF is also

more efficient than that of BiP-GU, as shown in Figure 3(d).

In addition, BiP-GU can also provide competitive pruning

accuracy to IMP and takes less computation time than IMP.

Furthermore, we observe that OMP yields the least computa-

tion time but the worst pruning accuracy. This is not surprising

Table 6. Performance comparison of different robust training methods using PreActResNet-18 on CIFAR-10 and Tiny-ImageNet datasets.

Method
BLO
(Solver)

Standard
Accuracy (%)

(/)8 255=e
RA-PGD (%)

(/)8 255=e
RA-AA (%)

(/)8 255=e

Standard
Accuracy (%)

(/)16 255e =
RA-PGD (%)

(/)16 255e =
RA-AA (%)

(/)16 255e =

Time
(s/epoch)

CIFAR-10, PreActResNet-18

Fast-AT [61] N/A 82.39 ± 0.14 45.49 ± 0.21 41.87 ± 0.15 44.15 ± 7.27 21.83 ± 1.32 12.49 ± 0.33 23.1
Fast-AT-GA [62] 79.71 ± 0.24 47.27 ± 0.22 43.24 ± 0.27 58.29 ± 1.32 26.01 ± 0.16 17.97 ± 0.33 75.3
Fast-BAT-IF [10] IF 79.97 ± 0.12 48.83 ± 0.17 45.19 ± 0.12 68.16 ± 0.25 27.69 ± 0.16 18.79 ± 0.24 61.4

Tiny-ImageNet, PreActResNet-18
Fast-AT [61] N/A 41.37 ± 3.08 17.05 ± 3.25 12.31 ± 2.73 31.38 ± 0.19 5.42 ± 2.17 3.13 ± 0.24 284.6
Fast-AT-GA [62] 45.52 ± 0.24 20.39 ± 0.19 16.25 ± 0.17 29.17 ± 0.32 6.79 ± 0.27 4.27 ± 0.15 592.7
Fast-BAT-IF [10] IF 45.80 ± 0.22 21.97 ± 0.21 17.64 ± 0.15 33.78 ± 0.23 8.83 ± 0.22 5.52 ± 0.14 572.4

The training phase includes adversarial perturbations with two budgets: /8 255e = and 16/255 over 20 epochs. Results are presented as mean ± standard deviation over
10 random trials. Rows marked in gray indicate BLO-enabled algorithms. RA: robust accuracy; RA-AA: RA against AutoAttack.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

56 IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

since OMP adopts a noniterative pruning scheme to find the

model’s sparse pattern.

BLO for invariant representation learning
In this section, we explore the application of BLO in improving

the generalization of ML models. Specifically, we investigate

the use of BLO for acquiring training environment-agnostic

data representations through invariant risk minimization

(IRM) [56].

Formulation
IRM [56] is proposed to acquire invariant data representa-

tions and to enforce invariant predictions against distribution

shifts. Unlike the conventional environment risk minimization

(ERM)-based training, IRM yields a BLO-like formulation:

the upper-level optimization task of IRM is to train a network

backbone to capture environment-agnostic data representa-

tions, and the lower-level optimization task is to find an in-

variant prediction head (on top of the learned representation

network) to produce a global optimum to all of the training

environments. Formally, IRM can be cast as follows:

(())

() (), []

min

argmin i E

imize

subject to

i

i

E

i

1

%

% 6

,

,! !

z i i

z i iz

)

)

i

z

=

/

 (IRM)

where %z i denotes the representation–acquisition model ,i

the predictor , i,z is the training loss associated with the ith

training environment, and E is the total number of training envi-

ronments. The rationale behind (IRM) is that, given the invari-

ant representation extractor ,i there exists an invariant predictor

()z i) that is optimal across all of the training environments.

Methods
Solving problem (IRM) is highly nontrivial since the lower-

level solution ()z i should be universal and applied to all E

training environments. To circumvent this difficulty, IRM

0

93.5

94

94.5

95

95.5

20 40
Pruning Ratio (%)

T
e
s
t
A

c
c
u
ra

c
y
 (

%
)

60 80 100

(a)

Dense Model

IMP

OMP

BiP-GU

BiP-IF

Best Winning Ticket

75.5

76

76.5

77

77.5

78

75

T
e
s
t
A

c
c
u
ra

c
y
 (

%
)

0 20 40
Pruning Ratio (%)

60 80 100

(b)

Dense Model

IMP

OMP

BiP-GU

BiP-IF

Best Winning Ticket

60

61

62

63

64

T
e
s
t
A

c
c
u
ra

c
y
 (

%
)

0 20 40
Pruning Ratio (%)

60 80 100

(c)

Dense Model

OMP

BiP-GU

BiP-IF

Best Winning Ticket

IMP

102

103

T
e
s
t
C

o
n
s
u
m

p
ti
o
n
 (

m
in

)

20 40
Pruning Ratio (%)

(d)

60 80 100

IMP

Dense Model

OMP

BiP-GU

BiP-IF

FIGURE 3. Experiment results of model pruning on different datasets under ResNet-18. (a)–(c) Pruning trajectory is given by test accuracy (%) versus

sparsity (%) under different datasets. (a) CIFAR-10, (b) CIFAR-100, and (c) Tiny-ImageNet. (d) Efficiency comparison: the entire time consumption

versus the pruning ratio.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

57IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

is typically relaxed to a single-level optimization problem,

known as IRMv1 [56]:

 () ()min wimize | .i w w i

i

E

1 0 2

2

1

%, d ,i ic+
i

=

=

8 B/ (20)

where 02c is a regularization parameter and | .w w 1 0d =

()wi 9, i denotes the gradient of i, with respect to w, comput-

ed at w = 1. In the preceding formulation, the identity mapping

w = 1 is adopted, symbolizing a basic “imaginary” classifica-

tion head. Meanwhile, i corresponds to the combination of

the representation extractor and the actual invariant predictor.

However, the preceding formulation is restricted to linear in-

variant prediction and penalizes the deviation of individual en-

vironment losses from stationarity to approach the lower-level

optimality in IRM.

Beyond IRMv1, a consensus-constrained BLO method is

developed in [58] to solve problem (IRM). The key idea is to

introduce E auxiliary predictors { }iz and explicitly enforce pre-

diction invariance by infusing a consensus prediction constraint

{{ } }C fi Ef;z z z= = = to the lower-level problem of (IRM)

and promote the per-environment stationarity in its upper-level

problem. This modifies (IRM) to an ordinary BLO problem:

(

{ ()} (), [],

()) (())min

argmin i E

imize

subject to
{ }

* *
i i i i

i

E

i i
E

i

i

E

i

1

1

1

2

2

C

i

i

%

% %,

6

d

,

,

!

i i i i

z i z i

z zc

=

+

)

!

i

z

z

=

=

=

8 B/

/

(IRM-BLO)

where 02c is a regularization parameter, and []E denotes the

integer set { , , , } .E1 2 f The advantage of converting (IRM)

into the consensus-constrained (IRM-BLO) is that projec-

tion onto the consensus constraint yields a closed-form solu-

tion, i.e., () argaP { } i
E

i i i i1
2

C Ci= !z = 2 ,/min E1a a< <zR R- =

where ()aPC denotes the projection operation to project the

point a onto the constraint C . It has been shown in [58] that

problem (IRM-BLO) can be effectively solved using the GU

approach, which approximates each individual lower-level

solution using K-step GD unrolling together with the consen-

sus projection. Thus, the lower-level solution becomes

, (), %d ,z z z ib= -() .z i z,

 []

i
E

k K

1

for

() () () ()
i i

K
i
k

i
k

i i
k

i

E
1 1

1

i6

!

)
z

- -

=

/

(21)

where 02b is the lower-level learning

rate. Based on this expression, AD can

be called to compute the implicit gradi-

ent from ()
()
i
K

z i to the variable i in

the GU process.

Experiment results
We evaluate the performance of IRM-

BLO with two commonly used image

classification datasets, Colored-MNIST

[56] and Colored-FashionMNIST [57], where spurious cor-

relation between the image label and the background color is

manually imposed in the datasets, which makes the conven-

tional ERM training ineffective. To capture both the accuracy

and the variance of invariant predictions across multiple test-

ing environments, the average accuracy and the accuracy gap

(the difference between the best-case and worst-case accuracy)

are measured for IRM methods. Table 7 presents the resulting

performance of IRM-BLO and compares it with those of ERM

and two IRM baselines, IRMv1 [56] and IRM-Game [57].

Note that all IRM variants outperform ERM, which justifies

the importance of IRM training to improve model generaliza-

tion across diverse environments. Within the IRM training

family, IRM-BLO outperforms others by achieving the high-

est average accuracy and the smallest accuracy gap across both

datasets. This superior performance underscores the value of

BLO compared to the suboptimal design IRMv1.

Discussion
BLO is a challenging but rapidly developing subject. Despite

the recent progress discussed in this article, significant work is

yet to be done to address various challenges, ranging from de-

veloping scalable algorithms to extending the applicability of

BLO to a wider range of problems. Here we highlight several

worthwhile future directions.

 ■ BLO algorithms: First, the development and analysis of

BLO algorithms for more general BLO problems, includ-

ing those with complex lower-level constraints (e.g., non-

linear constraints), require additional exploration. The

current focus has predominantly been on problems with

linear constraints, and extending the BLO framework to

handle nonlinear constraints is an important and challeng-

ing task. Additionally, exploring scenarios with coupled

constraints between lower and upper levels, such as

resource sharing among adversarial and normal agents,

presents a complex area that is underexplored. Second,

BLO formulations with NS lower-level solutions, such as

(NS-BLO), lack theoretically grounded, scalable, and

easy-to-implement algorithms. This aspect of BLO has

received less attention from the community, making it an

open topic for future investigation. Developing efficient

algorithms that can handle NS lower-level solutions and

provide convergence guarantees is a key research direc-

tion. Third, beyond the scope of BLO, exploring problems

involving more than two levels, such as dataset pruning

Table 7. Performance of different IRM training methods.

Colored-MNIST Colored-FashionMNIST

Method BLO (Solver) Average Accuracy Accuracy Gap Average Accuracy Accuracy Gap

ERM N/A 49.19 ± 1.89 90.72 ± 2.08 49.77 ± 1.71 88.62 ± 2.49
IRMv1 [56] N/A 68.33 ± 0.31 2.04 ± 0.05 68.76 ± 0.31 1.45 ± 0.09
IRM-Game [57] N/A 67.73 ± 0.24 1.67 ± 0.14 67.49 ± 0.32 1.82 ± 0.13
IRM-BLO [58] GU 69.47 ± 0.24 1.04 ± 0.07 69.43 ± 0.21 1.14 ± 0.11

The best performance per evaluation metric is highlighted in boldface, and the performance of the BLO-enabled
 method is marked in gray.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

58 IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

for TL, represents an exciting frontier. These multilevel

problems introduce additional complexity and challenges,

requiring the design of novel algorithms to tackle the

inherent hierarchical structure effectively. Finally, the

large scale and distributed availability of data demand the

development of decentralized and federated algorithms to

solve these complex BLO problems, which also presents a

compelling research direction for future exploration.

 ■ BLO theories: First, while significant progress has been

made in establishing theoretical guarantees for solving the

basic BLO problem (LU-BLO), more attention is needed

on exploring practical settings, including (coupled) lower-

level constraints, nonconvex lower-level problems, and/or

black-box settings, where one may not have access to

upper-/lower-level parameters. These scenarios present

unique challenges and complexities, making it difficult to

analyze the problem and derive theoretical guarantees.

Investigating the convergence properties and establishing

theoretical foundations for solving BLO problems under

these practical settings is an important avenue for future

research. Second, when datasets become massive, it is cru-

cial to develop theoretically grounded BLO algorithms that

can adhere to practical requirements. Therefore, develop-

ing theoretical frameworks and analyzing the convergence

properties of algorithms for solving large-scale BLO prob-

lems under realistic assumptions is also an important

research topic. Finally, with the discovery of the phenome-

non of double descent, theoretical analysis of standard ML

algorithms on overparameterized neural networks has

received significant attention from the research community.

Theoretical investigation of BLO algorithms for such over-

parameterized problems is certainly an interesting research

direction.

 ■ BLO applications: First, in the context of mixture-of-

experts (MoE) training, there is a complex interplay

between the training of the gating network that selects

experts and the training of the expert-oriented pathways

used for final predictions. Exploring BLO techniques to

effectively optimize the coupling between these two pro-

cesses in MoE training can lead to improved performance

and better utilization of emerging ML models like MoE.

Second, prompt learning, a key technique used in today’s

foundation models, involves a crucial coupling between

prompt pattern learning and label/feature mapping optimi-

zation. Leveraging BLO methods to model and optimize

the interactions between prompt pattern learning and

label/feature mapping can enhance the learning process

and enable accurate and robust prompt generations. Third,

BLO is highly applicable in (inverse) reinforcement learn-

ing. For instance, the actor/critic algorithm can be formu-

lated as a BLO problem, with separate agents evaluating

and optimizing the policy. In inverse reinforcement learn-

ing, the tasks involve inferring the agents’ reward function

and finding the optimal policy based on it. Applying BLO

frameworks to these scenarios offers potential for novel

insights and improved efficiency.

In summary, the interplay between the theoretical under-

pinnings of BLO and its practical applications promises a

fertile ground for future exploration and innovation, pushing

the boundaries of optimization theory and applications in SP

and ML.

Authors
Yihua Zhang (zhan1908@msu.edu) received his bachelor’s

degree in automation from Huazhong University of Science and

Technology. He is with the Computer Science and Engineering

Department, Michigan State University, East Lansing, MI

48824-1312 USA. He is a Graduate Student Member of IEEE

Prashant Khanduri (khanduri.prashant@wayne.edu)

received his Ph.D. degree in electrical engineering and com-

puter science from Syracuse University. He is with the

Computer Science Department, Wayne State University,

Detroit, MI 48202 USA. He is a Member of IEEE.

Ioannis Tsaknakis (tsakn001@umn.edu) received his Ph.D.

degree in electrical and computer engineering from the

University of Minnesota. He is with the Department of

Electrical and Computer Engineering, University of Minnesota,

MN 55455 USA. He is a Graduate Student Member of IEEE.

Yuguang Yao (yaoyugua@msu.edu) received his bache-

lor’s degree in automation from Tsinghua University. He is

with the Computer Science and Engineering Department,

Michigan State University, East Lansing, MI 48824-1312

USA. He is a Graduate Student Member of IEEE.

Mingyi Hong (mhong@umn.edu) received his Ph.D.

degree in systems engineering from the University of Virginia.

He is with the Department of Electrical and Computer

Engineering, University of Minnesota, MN 55455 USA. He is

a Senior Member of IEEE.

Sijia Liu (liusiji5@msu.edu) received his Ph.D. degree

in electrical and computer engineering from Syracuse

University. He is with the Computer Science and Engineering

Department, Michigan State University, East Lansing, MI

48824-1312 USA, and the Massachusetts Institute of

Technology-IBM Watson Artificial Intelligence Lab,

Cambridge, MA, USA. He is a Senior Member of IEEE.

References
[1] S. Dempe, “Bilevel optimization: Theory, algorithms, applications and a bibli-
ography,” Bilevel Optimization: Advances and Next Challenges, S. Dempe and
A. Zemkoho, Eds., Cham, Switzerland: Springer-Verlag, 2020, pp. 581–672.

[2] H. V. Stackelberg, The Theory of the Market Economy. London, U.K.: Oxford
Univ. Press, 1952.

[3] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel optimization,”
Ann. Oper. Res., vol. 153, pp. 235–256, Sep. 2007, doi: 10.1007/s10479-007-0176-2.

[4] A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization: From classi-
cal to evolutionary approaches and applications,” IEEE Trans. Evol. Comput., vol.
22, no. 2, pp. 276–295, Apr. 2018, doi: 10.1109/TEVC.2017.2712906.

[5] Y. Beck, I. Ljubić, and M. Schmidt, “A survey on bilevel optimization under
uncertainty,” Eur. J. Oper. Res., vol. 311, no. 2, pp. 401–426, Dec. 2023, doi:
10.1016/j.ejor.2023.01.008.

[6] Y. Beck, D. Bienstock, M. Schmidt, and J. Thürauf, “On a computationally Ill-
behaved bilevel problem with a continuous and nonconvex lower level,” J. Optim.

Theory Appl., vol. 198, pp. 428–447, Jul. 2023, doi: 10.1007/s10957-023-02238-9.

[7] H. Sun, W. Pu, X. Fu, T. H. Chang, and M. Hong, “Learning to continuously
optimize wireless resource in a dynamic environment: A bilevel optimization per-
spective,” IEEE Trans. Signal Process., vol. 70, pp. 1900–1917, Jan. 2022, doi:
10.1109/TSP.2022.3143372.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

59IEEE SIGNAL PROCESSING MAGAZINE | January 2024 |

[8] S. Park, H. Jang, O. Simeone, and J. Kang, “Learning to demodulate from few
pilots via offline and online meta-learning,” IEEE Trans. Signal Process., vol. 69,
pp. 226–239, 2021, doi: 10.1109/TSP.2020.3043879.

[9] C. Crockett and J. A. Fessler, “Bilevel methods for image reconstruction,”
Found. Trends Signal Process., vol. 15, nos. 2–3, pp. 121–289, 2022, doi:
10.1561/2000000111.

[10] Y. Zhang, G. Zhang, P. Khanduri, M. Hong, S. Chang, and S. Liu, “Revisiting
and advancing fast adversarial training through the lens of bi-level optimization,” in
Proc. Int. Conf. Mach. Learn., 2022, pp. 26,693–26,712.

[11] A. Robey, F. Latorre, G. J. Pappas, H. Hassani, and V. Cevher, “Adversarial
training should be cast as a non-zero-sum game,” 2023, arXiv:2306.11035.

[12] M. Zhao, B. An, Y. Yu, S. Liu, and S. Pan, “Data poisoning attacks on multi-
task relationship learning,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018, pp. 1–8,
doi: 10.1609/aaai.v32i1.11838.

[13] W. R. Huang, J. Geiping, L. Fowl, G. Taylor, and T. Goldstein, “MetaPoison:
Practical general-purpose clean-label data poisoning,” in Proc. 34th Int. Conf.

Neural Inf. Process. Syst., 2020, pp. 12,080–12,091, doi: 10.5555/3495724.
3496737.

[14] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in Proc. 34th Int. Conf. Mach. Learn., 2017, pp.
1126–1135, doi: 10.5555/3305381.3305498.

[15] C. Fan, P. Ram, and S. Liu, “Sign-MAML: Efficient model-agnostic meta-
learning by signSGD,” in Proc. 5th Workshop Meta-Learn. Conf. Neural Inf.

Process. Syst., 2021.

[16] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine, “Meta-learning with
implicit gradients,” in Proc. 33rd Int. Conf. Neural Inf. Process. Syst., 2019,
pp. 1–12.

[17] Z. Borsos, M. Mutny, and A. Krause, “Coresets via bilevel optimization for
continual learning and streaming,” in Proc. 34th Conf. Neural Inf. Process. Syst.,
2020, pp. 1–12.

[18] Y. Zhang, Y. Yao, P. Ram, P. Zhao, T. Chen, M. Hong, Y. Wang, and S. Liu,
“Advancing model pruning via bi-level optimization,” in Proc. 36th Conf. Neural

Inf. Process. Syst., 2022, pp. 1–18.

[19] C. Chen, X. Chen, C. Ma, Z. Liu, and X. Liu, “Gradient-based bi-level optimi-
zation for deep learning: A survey,” 2022, arXiv:2207.11719.

[20] C. Holtz, T.-W. Weng, and G. Mishne, “Learning sample reweighting for accu-
racy and adversarial robustness,” 2022, arXiv:2210.11513.

[21] R. Liu, P. Mu, X. Yuan, S. Zeng, and J. Zhang, “A generic first-order algorithmic
framework for bi-level programming beyond lower-level singleton,” in Proc. 37th Int.

Conf. Mach. Learn., 2020, pp. 6305–6315, doi: 10.5555/3524938.3525523.

[22] A. Shaban, C.-A. Cheng, N. Hatch, and B. Boots, “Truncated back-propagation
for bilevel optimization,” in Proc. 22nd Int. Conf. Artif. Intell. Statist., 2019, pp.
1723–1732.

[23] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, “Bilevel pro-
gramming for hyperparameter optimization and meta-learning,” in Proc. 35th Int.

Conf. Mach. Learn., 2018, pp. 1568–1577.

[24] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil, “Forward and reverse
gradient-based hyperparameter optimization,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 1165–1173, doi: 10.5555/3305381.3305502.

[25] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,”
in Proc. Int. Conf. Learn. Representations, 2018.

[26] R. Liu, J. Gao, J. Zhang, D. Meng, and Z. Lin, “Investigating bi-level optimiza-
tion for learning and vision from a unified perspective: A survey and beyond,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12, pp. 10,045–10,067, Dec. 1,
2022, doi: 10.1109/TPAMI.2021.3132674.

[27] S. G. Krantz and H. R. Parks, The Implicit Function Theorem: History, Theory,

and Applications. Berlin, Germany: Springer Science & Business Media, 2002.

[28] J. L. Nazareth, “Conjugate gradient method,” Wiley Interdisciplinary Rev.,

Comput. Statist., vol. 1, no. 3, pp. 348–353, 2009, doi: 10.1002/wics.13.

[29] S. P. Singh and D. Alistarh, “WoodFisher: Efficient second-order approxima-
tion for neural network compression,” in Proc. 34th Int. Conf. Neural Inf. Process.

Syst., 2020, pp. 18,098–18,109, doi: 10.5555/3495724.3497243.

[30] S. Ghadimi and M. Wang, “Approximation methods for bilevel programming,”
2018, arXiv:1802.02246.

[31] M. Hong, H.-T. Wai, Z. Wang, and Z. Yang, “A two-timescale framework for
bilevel optimization: Complexity analysis and application to actor-critic,” SIAM J.

Optim., vol. 33, no. 1, pp. 147–180, 2023, doi: 10.1137/20M1387341.

[32] P. Khanduri, I. Tsaknakis, Y. Zhang, J. Liu, S. Liu, J. Zhang, and M. Hong,
“Linearly constrained bilevel optimization: A smoothed implicit gradient approach,”
in Proc. Int. Conf. Mach. Learn., 2023, pp. 16,291–16,325.

[33] D. Sow, K. Ji, Ziwei Guan, and Y. Liang, “A constrained optimization approach
to bilevel optimization with multiple inner minima,” 2022, arXiv:2203.01123.

[34] H. Shen and T. Chen, “On penalty-based bilevel gradient descent method,”
2023, arXiv:2302.05185.

[35] R. Liu, X. Liu, X. Yuan, S. Zeng, and J. Zhang, “A value-function-based interi-
or-point method for non-convex bi-level optimization,” in Proc. Int. Conf. Mach.

Learn., 2021, pp. 6882–6892.

[36] B. Liu, M. Ye, S. Wright, P. Stone, and Q. Liu, “Bome! Bilevel optimization
made easy: A simple first-order approach,” in Proc. Adv. Neural Inf. Process. Syst.,
2022, pp. 17,248–17,262.

[37] Q. Xiao, H. Shen, W. Yin, and T. Chen, “Alternating projected SGD for equali-
ty-constrained bilevel optimization,” in Proc. 26th Int. Conf. Artif. Intel. Statist.,
2023, pp. 987–1023.

[38] T. Chen, Y. Sun, Q. Xiao, and W. Yin, “A single-timescale method for stochastic
bilevel optimization,” in Proc. Int. Conf. Artif. Intell. Statist., 2022, pp. 2466–2488.

[39] M. Arbel and J. Mairal, “Amortized implicit differentiation for stochastic bilev-
el optimization,” in Proc. Int. Conf. Learn. Representations, 2022, pp. 1–39.

[40] K. Ji, J. Yang, and Y. Liang, “Bilevel optimization: Convergence analysis and
enhanced design,” in Proc. Int. Conf. Mach. Learn., 2021, pp. 4882–4892.

[41] P. Khanduri, S. Zeng, M. Hong, H.-T. Wai, Z. Wang, and Z. Yang, “A near-
optimal algorithm for stochastic bilevel optimization via double-momentum,” in
Proc. Adv. Neural Inf. Process. Syst., 2021, pp. 30,271–30,283.

[42] T. Chen, Y. Sun, and W. Yin, “Tighter analysis of alternating stochastic gradi-
ent method for stochastic nested problems,” 2021, arXiv:2106.13781.

[43] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for noncon-
vex stochastic programming,” SIAM J. Optim., vol. 23, no. 4, pp. 2341–2368, 2013,
doi: 10.1137/120880811.

[44] A. Cutkosky and F. Orabona, “Momentum-based variance reduction in non-
convex SGD,” in Proc. 33rd Int. Conf. Neural Inf. Process. Syst., 2019, pp. 15,236–
15,245, doi: 10.5555/3454287.3455652.

[45] J. Yang, K. Ji, and Y. Liang, “Provably faster algorithms for bilevel optimiza-
tion,” in Proc. 35th Int. Conf. Neural Inf. Process. Syst., 2021, pp. 1–13.

[46] M. Dagréou, P. Ablin, S. Vaiter, and T. Moreau, “A framework for bilevel opti-
mization that enables stochastic and global variance reduction algorithms,” in Proc.

36th Int. Conf. Neural Inf. Process. Syst., 2022, pp. 1–13.

[47] F. Croce and M. Hein, “Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks,” in Proc. 37th Int. Conf. Mach. Learn.,
2020, pp. 2206–2216, doi: 10.5555/3524938.3525144.

[48] J. Kwon, D. Kwon, S. Wright, and R. Nowak, “A fully first-order method for
stochastic bilevel optimization,” in Proc. Int. Conf. Mach. Learn., 2023,
pp. 18,083–18,113.

[49] Z. Akhtar, A. Singh Bedi, S. Teja Thomdapu, and K. Rajawat, “Projection-free
algorithm for stochastic bi-level optimization,” 2021, arXiv:2110.11721.

[50] Z. Guo, Q. Hu, L. Zhang, and T. Yang, “Randomized stochastic variance-reduced
methods for multi-task stochastic bilevel optimization,” 2021, arXiv:2105.02266.

[51] C. Fang, C. J. Li, Z. Lin, and T. Zhang, “SPIDER: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator,” in Proc. 32nd Int.

Conf. Neural Inf. Process. Syst., 2018, pp. 1–11.

[52] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental gradi-
ent method with support for non-strongly convex composite objectives,” Proc. Int.

Conf. Neural Inf. Process. Syst., 2014, pp. 1–9.

[53] O. Simeone, “A very brief introduction to machine learning with applications to
communication systems,” IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 4,
pp. 648–664, Dec. 2018, doi: 10.1109/TCCN.2018.2881442.

[54] M. Cicerone, O. Simeone, and U. Spagnolini, “Channel estimation for MIMO-
OFDM systems by modal analysis/filtering,” IEEE Trans. Commun., vol. 54, no. 11,
pp. 2062–2074, Nov. 2006, doi: 10.1109/TCOMM.2006.884849.

[55] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, train-
able neural networks,” in Proc. Int. Conf. Learn. Representations, 2018, pp. 1–42.

[56] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, “Invariant risk mini-
mization,” 2019, arXiv:1907.02893.

[57] K. Ahuja, K. Shanmugam, K. Varshney, and A. Dhurandhar, “Invariant risk
minimization games,” in Proc. 37th Int. Conf. Mach. Learn., 2020, pp. 145–155.

[58] Y. Zhang, P. Sharma, P. Ram, M. Hong, K. Varshney, and S. Liu, “What is
missing in IRM training and evaluation? Challenges and solutions,” in Proc. Int.

Conf. Learn. Representations, 2023.

[59] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual life-
long learning with neural networks: A review,” Neural Netw., vol. 113, pp. 54–71,
May 2019, doi: 10.1016/j.neunet.2019.01.012.

[60] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” in Proc. Int. Conf. Learn.

Representations, 2018, pp. 1–23.

[61] E. Wong, L. Rice, and J. Zico Kolter, “Fast is better than free: Revisiting adver-
sarial training,” in Proc. Int. Conf. Learn. Representations, 2020, pp. 1–23.

[62] M. Andriushchenko and N. Flammarion, “Understanding and improving fast
adversarial training,” in Proc. 34th Conf. Neural Inf. Process. Syst., 2020,
pp. 16,048–16,059.
 SP

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 06:42:27 UTC from IEEE Xplore. Restrictions apply.

	038_41msp01-zhang-3358284

