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ecently, bilevel optimization (BLO) has taken center stage
in some very exciting developments in the area of signal
processing (SP) and machine learning (ML). Roughly
speaking, BLO is a classical optimization problem that in-
volvestwolevels of hierarchy (i.e., upper and lower levels), where-
in obtaining the solution to the upper-level problem requires
solving the lower-level one. BLO has become popular largely
because it is powerful in modeling problems in SP and ML,
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among others, that involve optimizing nested objective func-
tions. Prominent applications of BLO range from resource allo-
cation for wireless systems to adversarial ML. In this work, we
focus on a class of tractable BLO problems that often appear in
SP and ML applications. We provide an overview of some basic
concepts of this class of BLO problems, such as their optimality
conditions, standard algorithms (including their optimization
principles and practical implementations) as well as how they
can be leveraged to obtain state-of-the-art results for several
key SP and ML applications. Further, we discuss some recent
advances in BLO theory and its implications for applications,
and we point out some limitations of the state of the art that
require significant future research efforts. We hope that this ar-
ticle, together with the associated open source BLO toolbox we
developed for algorithm benchmarking, can serve to accelerate
the adoption of BLO as a generic tool to model, analyze, and
innovate on a wide array of emerging SP and ML applications.

Introduction
BLO is a class of optimization problems involving two nest-
ed levels (upper and lower levels), where the objective and
variables of the upper-level problem depend on the opti-
mizer of the lower-level one. The canonical formulation
of the BLO is given by

Upper-level optimization over 6

rmigien(lllize F(0)= f(6,"(6)),

subject to ¢"(0) € argming (0, ¢), (BLO)
(O, $)<0

Lower-level optimization over ¢

where for analytical tractability we assume that f; g, and
h are bivariate smooth functions; we note that in some set-

tings f and/or g may be nonsmooth, and such settings can be
handled by specialized algorithms based on their particular
settings [1]; @ € R™ denotes the upper-level variable subject
to the upper-level constraint set U; ¢ € R” is the lower-level
variable subject to the constraint 2(0, ¢) <0 that couples
both 6 and ¢; and ¢ (0) is one lower-level optimal solution.
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It is evident that the lower-level problem is an auxiliary prob-
lem since its solution supports the upper-level problem in
finding a better solution.

The study of BLO can be traced to that of Stackelberg
games [2], where the upper (respectively, lower) problem opti-
mizes the action taken by a leader (respectively, the follower).
Early works in optimization formulate BLO to solve resource
allocation problems; see [3] for a comprehensive survey of
BLO algorithms in the late 1990s and early

uate the utility of the learned model further. More importantly,
these two tasks form a hierarchy, with the model training prob-
lem being the main optimization problem, while the data selec-
tion problem is an auxiliary problem that supports the training.
Given the growing interest in BLO, in this work we present

an overview of a class of tractable (BLO) problems that hold
significant importance in SP and ML. Roughly speaking, the
class of BLO problems we consider has some desirable prop-
erties (to be discussed shortly) that allow

2000s and also some more recent surveys BLO has hecome popular the development of efficient and practical
on discrete BLO [4], BLO under uncer- largely hecause it is algorithms. We will discuss the basic con-
tainty [5], and nonlinear and nonconvex powerful in modeling cepts for this class of BLO problems, along
aspects of BLO [6]. In recent years, BLO problems in SP and with their optimality conditions and stan-

has regained popularity because a sub-
class of BLO has been used to formulate
and solve various challenging problems in
SP, ML, and artificial intelligence. Notable
applications in SP include resource man-
agement [7], signal demodulation [8], and image denoising
and reconstruction [9]. In addition, BLO has been used to
make ML models, especially deep neural networks (DNNG),
robust [10], [11], [12], [13], generalizable [14], [15], [16], effi-
cient [17], [18], [19], easier to train [20], [21], [22], [23], [24],
and scalable [25].

As can be easily imagined, the popularity of BLO in the
aforementioned applications is largely attributed to its ability
to handle (often implicit) hierarchical structures. To better
illustrate the challenges brought by the hierarchical architec-
ture, see the example application of coreset selection for model
training [7], [17] in “Motivating Application: Coreset Selection
for Model Training.”

Clearly, the coreset selection is a typical BLO problem,
where the upper-level and lower-level tasks are intertwined:
without knowing the training result, it is hard to gauge how
representative the selected dataset is effectively, while without
having the coreset, one cannot perform model training to eval-

ML, among others, that
involve optimizing nested
objective functions.

dard algorithms (including their theoretical
properties and practical implementations),
and also how they can be used to obtain
state-of-the-art results for a number of key
SP and ML applications.

In the existing literature, several recent surveys have been
conducted on general BLO problems [1], [5], [6]. However,
these surveys primarily focus on the mathematical foundations
of BLO through a classical optimization lens. Other works
[19], [26] aim to provide comprehensive reviews of BLO algo-
rithms, but they lack an in-depth discussion on “when” and
“how” to apply them in practical applications. The most rel-
evant work to ours is [26], which examines complex learning
and vision problems from the BLO perspective. However, the
theoretical component of BLO is missing, and it overlooks a
significant portion of emerging SP and ML applications (e.g.,
those discussed in the sections “BLO for Wireless Resource
Allocation,” “BLO for Wireless Signal Demodulation,” “BLO
for Adversarially Robust Training,” “BLO for Model Pruning,”
and “BLO for Invariant Representation Learning”).

Unlike the existing surveys on BLO [5], [6], [19], [26], most
of which provide a broad overview of BLO in its most generic
form, we focus on the tractable and data-driven problems that

Motivating application: Coreset selection for model training

Many contemporary signal processing and machine learn-
ing applications are facing significant challenges in data
storage, transportation, and computation because they
have to deal with excessive amounts of data. Consequently,
the task of identifying the most informative subset of data
from a larger pool becomes crucial [7], [17]. This leads to
the problem of coreset selection, which consists of two
tasks: (T1), selecting the most representative data samples
to form the coreset, and (T2), validating the performance of
the selected coreset in model training. More specifically,
the problem can be formulated as follows:

(T1)

minimize 0. (6" (w))

subject to O (w) = argmin %Z wi-00;x,y) (T2)
6 i=1

where w represents the weight vector for data selec-
tion over N training data points, with w,=0 indicating
that the ith data sample (x,y) is not selected, and
¢ denotes the loss function for individual training
samples. These weights are subject to the sparsity
constraint U, such as |w|,<k, with k being the
selection budget. The model parameters trained on the
selected data points are denoted by 6. The training
loss for the model 6 with the data selection scheme w is
given by 0.(0,w) :=1/N XX w,- 0(0;x,y), while the val-
idation loss measuring the performance of the learned
model @'(w) over the coreset is denoted by (.. The
previous BLO formulation is also related to the data
reweighting problem [20] and hyperparameter optimi-
zation [22].
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are relevant to SP and ML applications. A few highlights of
this article are listed next.

First, we distill the common structures and properties of
BLO that emerge across applications related to developing
robust, parsimonious, and generalizable data-driven models in
SP and ML. Our goal is to provide insights

Warm-up: Introducing the basic concepts of BLO

A class of tractable BLO problems

We start by discussing the challenges associated with the

generic form of (BLO). Even under the assumption that all
involved functions are well behaved, such

ab(.)ut when, wher.e, and how BLO formu- We focus on a class of as the convexity .or cqncavity of f(-,-) z}nd
lathTIS and .alg.orllthms can be best used tractable BLO problems g(-,+), and the hn.earlty 9f h(,-), solv%ng
to yield a significant performance boost, _ the problem can still be highly challenging
as compared with traditional, or heuristic that often appear in SP and (i.e., NP-hard). To see this, let us consider
algorithms. In this process, we present some ML applications. the following simple example.

recent theoretical results about BLO and the

associated algorithms to give a flavor of the current advances
in the research area, while discussing their practical and scal-
able implementations.

Second, we dive deep to understand the performance of a
selected subset of state-of-the-art gradient-based BLO algo-
rithms on a number of representative applications. Instead
of relying on results reported in existing works, which may
not always be directly comparable because of implementa-
tion differences, we designed an experiment plan and imple-
mented all benchmarking algorithms. The goal is not only
to showcase the effectiveness of the BLO-based algorithms
but also to analyze the pros (e.g., modeling flexibility and
accuracy performance) and the cons (e.g., runtime efficien-
cy) of different subclasses of BLO methods. This effort has
led to the development of an open source project repository
containing all of the codes for the experiments presented in
the article.

Overall, we hope that our balanced treatment of the
subject, together with the open source package developed
to benchmark modern BLO algorithms, will serve as the
cornerstone for the accelerated adoption of BLO in diverse
application areas, including, but not limited to, SP and ML.
Figure 1 provides an overview of the topics to be covered
in this article.

Notation

We use lowercase letters (e.g., a), lowercase boldface let-
ters (e.g., a), and uppercase boldface letters (e.g., A) to de-
note scalars, vectors, and matrices, respectively. For a vector
a, we use H a || , to denote its {,-norm with the typical choice
p € {1,2,00). For a matrix A, we use the superscript T (or )
to denote the transpose (or inverse) operation. We use I to
represent the identity matrix. For a function f(x,y) (with
x € R" and y € R"), we use Vxf(x,y) € R" (or (9f/0x)) and
Vyf(x,y) € R”" (or (9f/dy)) to denote the partial derivatives of
fwith respect to the partial input argument x and y, respective-
ly. By contrast, we use VF(x) (or (dF/dx) € R™) to represent
the full derivative of a possible implicit function (IF) F(-) with
respect to X, namely, VF(x) = Vxf(x,y) + (dyldx) "Vf(x,y)
following the chain rule, where (dy/dx)" € R™*" denotes the
Jacobian matrix of y with respect to x. For ease of notation, the
transpose in (dy/dx) " € R™*" will be omitted if its definition
is clear from the context. We use VxVyf or Viyfe€ R™" to
denote the second-order partial derivative of f.

40

Example 1: Nonconvex BLO
Consider the following BLO, where f(0,¢)=— g(6,¢)=

0°—0-¢p— ¢*
minimize 62— 6 $*(0) — ¢* ()%

oc[—1,1]
argmin  — (6> —6-¢ — ¢7).
pe[-1,11.6—¢=0

subject to ¢*(0) =

Notice that the objective f(0,¢) (respectively, g(6,9)) is
strongly convex (respectively, strongly concave) in 6 and
strongly concave in ¢ (respectively, strongly convex), and
the previous BLO problem is subject to linear constraints
in both the upper and lower levels. In other words, both
the upper- and lower-level problems are “easy” problems
with respect to their respective parameters. Nonetheless, it
can be shown that solving the previous BLO requires tack-
ling a nonconvex problem, which in general is NP-hard.
Indeed, it is not hard to see that ¢"(6)=6. As a result, the
outer function can be expressed as —6°, which is a non-
convex function.

We remark that the source of difficulty of the previous
problem is the coupling constraint 6 — ¢ = 0. If this con-
straint is removed, the problem will become a classical saddle-
point problem, expressed next, whose global optimal solution
can be easily obtained:

e e . . 2 2
minimize maximize 6 — 6-¢ — ¢~. 1
o[- 1,i]  $E[-1,1] =9 @)

The aforementioned examples, along with numerous others
in existing survey papers like [1], [19], and [26], strongly
motivate us to proceed with a focused discussion for the
subset of tractable (BLO) problems. This subset often
serves as a basis for developing practical BLO algorithms.
By focusing on this subset, we can address the specific
needs of modeling SP and ML problems, which frequently
demand the development of efficient, and sometimes real-
time, algorithms.

To this end, we consider some special classes of (BLO),
with the following simplifications: 1) The lower-level con-
straint set, if present, is linear and is only related to ¢; that is,
h(6,¢) = A¢ — b for some matrix A and vector b of appro-
priate sizes; and 2) the solution of the lower-level problem is a
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BLO

BLO Application

FIGURE 1. A taxonomy of the solvers and application tasks for BLO.
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singleton, and in most cases we assume an even stronger con-
dition that the objective function g(:,-) is strongly convex in
the second argument. With these simplifications, it is possible
to show some nice properties; for example, the gradient of the
upper-level objective function may exist, making algorithm
design and analysis tractable. Note that there have been recent
works that extend these conditions and are still able to develop
efficient algorithms. We will discuss these works in the section
“Theoretical Results of BLO.”

In summary, depending on whether the lower-level problem
has a constraint or not, we consider the following two classes
of problems, referred to as the lower unconstrained (LU) and
lower constrained (LC) BLO, respectively:

migien(ll!ize F(©) = f(8,¢"(0)),

subject to ¢ (0) = argming (0, ¢). (LU-BLO)
peR"
mig{ignq/l(ize F(0)= f(6, ¢"(0)),
(LC-BLO)

subject to ¢ (0) = argming (0, ¢).
¢peC

where the set C:={¢|A¢p— b < 0}. As will be evident in
the section “Algorithmic Foundations of BLO,” the presence
of lower-level constraints, even in the form
of linear and uncoupled constraints, can
make (LU-BLO) much harder to deal with
than (LC-BLO).

It is important to note that
BLO problems have strong
ties with Stackelberg or

addition to MMO, it is also worth noting that the algorithms
reviewed in this article are generally applicable to Stackel-
berg games, provided that the game’s BLO formulation ad-
heres to the assumptions of the respective algorithms.

Implicit gradient

As alluded to previously, one important reason to consider
problems (LU-BLO) and (LC-BLO) is that the objective
functions of these problems are potentially differentiable
with respect to 6. Indeed, by applying the chain rule and
supposing for now that the Jacobian matrix d¢"(6)/dO ex-
ists, we have

VF(0) = Vof(6,¢°(0)) + Vf(6, ¢7(0))

d$’(©)'
70 2

—_—
1G

where we recall from our notational convention that
Vof(0,¢) and V4f(0, ¢) represent the partial derivatives
of f with respect to the partial input arguments 6 and ¢, re-
spectively, and VF(0) denotes the full derivative of the IF,
F, with respect to 6. For ease of notation, the transpose op-
eration T might be omitted in the rest of the article. We refer
to the Jacobian matrix de¢*(0)/d6 € R"*™
as the implicit gradient (IG). This term is
introduced to characterize the gradient
of the argmin-based lower-level objec-
tive function with respect to the upper-

Connections of BLO with game theory !eader_—follower games, level variable 6. However, the IG does
It is important to note that BLO problems including Stackelberg not always exist for generic BLO prob-
have strong ties with Stackelberg or lead- congestion and security lems. Even for (LU-BLO) and (LC-BLO),
er—follower games [2], including Stackel- games. relatively strong assumptions have to be

berg congestion and security games. These
are sequential games involving two players: the leader and
the follower. The leader acts first, aiming to maximize its
utility by leveraging its knowledge of the follower’s antici-
pated response. The follower, acting second, maximizes its
utility based on the leader’s action. The connection between
BLO and Stackelberg games can be summarized as follows.
First, in certain Stackelberg games, the process of identifying
a solution (i.e., a Stackelberg equilibrium) can be framed as
a BLO. Second, BLO allows a (Stackelberg) game-theoretic
interpretation, where the upper- and lower-level problems
correspond to the tasks of identifying the optimal actions for
the leader and the follower (i.e., the upper-/lower-level vari-
ables), respectively. A special case of Stackelberg game is
min-max optimization (MMO) also referred to as the saddle
point problem. MMO follows a bilevel structure, wherein the
lower-level objective g in (BLO) is exactly opposite of the
upper-level objective function f (i.e., g = — f), resulting in the
following special case of BLO:

mlgéI;ILl{lZC ma;cé%uze f(6,9). (MMO)

In fact, MMO is much simpler to deal with than BLO, and it
has been heavily studied in the SP and ML communities. In

imposed. For example, g(:,-) needs to be
strongly convex in its second argument. Further, even when
the IG exists, computing it could be quite different for the
two classes of problems (LU-BLO) and (LC-BLO). For the
former, we will show in the section “Algorithmic Founda-
tions of BLO” that the IG can be expressed in closed form
using the implicit function theorem [27] based on the first-
order stationary condition of the lower-level problem, i.e.,
Vg (0,¢"(0)) = 0. For this reason, it is referred to as an
implicit gradient. Yet, in (LC-BLO), the stationary condi-
tion cannot be used since a stationary point might violate
the constraint ¢ € C. Therefore, the IG generally does not
admit any closed form. Additionally, for a more restricted
subset of MMO problems, the influence of the IG-involved
term (IG-Vgf(0, ¢"(0))) in (2) can be neglected. To see
this, assume that the inner problem is unconstrained, i.e.,
C=R" then V4f(0,¢ (0)) = 0 based on the fact that
Vsg(0,¢7(0)) = 0 and g =—f for MMO.

BLO with nonsingleton lower-level solutions

As we have mentioned in the section “A Class of Tractable
BLO Problems,” throughout this article, we will mostly focus
on the case where the lower-level solution ¢"(0) is unique,
i.e., a singleton. Yet, if the lower-level problem involves a
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nonsingleton (NS) solution, the resulting BLO problem is
typically cast as

minimize f(0, ¢’) subject to S(O) = argming (0, ¢)
0,9’ €S(6) eC
(NS-BLO)

where S(0) denotes a solution set. The previous formulation,
also referred to as the optimistic BLO with NS lower-level
solutions, has been discussed in the literature, for example,
in [1] and [4]. Note that problem (NS-BLO) presents signifi-
cantly greater challenges from both practical and theoretical
perspectives compared to problem (BLO). The reason is that
optimization over ¢ is coupled across both upper- and lower-
level objectives. While our work primarily focuses on BLO
with a singleton lower-level solution, we will also explore in
the section “Algorithmic Foundations of BLO” the applicabil-
ity of BLO algorithms, derived from (BLO), to solve problem
(NS-BLO).

Theory and algorithms for tractable BLO
In the next two sections, we will delve into the essential
optimization principles employed in

culate the IG as expressed in (2). Recall from (LU-BLO) that
¢ (0) is a lower-level solution; thus, it satisfies

Vg(0,97(0) = 0. 3)
Following the implicit function theorem, we can take the
first-order derivative of (3) with respect to 6, yielding
(dldO)[V¢g (0, ¢"(0))] = 0. Further assume that the lower-

level objective g(-) is second-order differentiable; we can then
obtain the IG in (2) with the following:

¢’ (©) _

o = Vo.98(6,9"(0) V480,96 (0) "

“4)

As observed previously, the computation of the IG involves
the mixed (second-order) partial derivative V(Z;,,,, g and the in-
verse of the Hessian V3§ 4g. Yet, computing these quantities
can be challenging in practice. Therefore, the class using the
IF approach utilizes different kinds of approximation tech-
niques to approximately compute the IG as expressed in (4).
We summarize the IF approach in Algorithm 1.

BLO, explore several popular classes of In comparison to IF- and Practical considerations of IF

BLO algorithms, and examine their the- GU-based methods, the In Algorithm 1, the main computational over-

oretical properties. head arises from the inverse Hessian gradient
VF-hased aﬂl!l'oa(_ﬂ_l has product H™ ! g, where H = @3,,4, g(6,, (IN)(OT))

Algorithmic foundations of BLO broader applicability and v := Vyf(6,, $(6,). Yet, in many con-

This section presents an overview of in solving complex BLO temporary applications, directly computing

three key optimization frameworks used problems. and storing the Hessian is computation-

to solve the tractable BLO problems

(LU-BLO) and (LC-BLO). The first two classes both le-
verage (some approximated version of) the IG as defined
in (2). The key difference is in how the approximation of
the IG is conducted: one directly assumes that there is some
given procedure that can provide a high-quality solution of
the lower-level problem, while the other approximates the
lower-level solution by unrolling a given algorithm for a
fixed number of steps. The third class is referred to as the
value function (VF)-based approach, which reformulates
BLO as a single-level regularized optimization problem. It
is worth mentioning that this approach offers flexibility in
handling lower-level constraints and solving NS lower-level
problems (NS-BLO).

The IF-based approach

The IF for lowerlevel unconstrained BLO
Let us examine the problem setup (LU-BLO) with a single-
ton lower-level solution. For ease of theoretical analysis in
the section “Theoretical Results of BLO,” we further assume
that g(-) is strongly convex in ¢. In certain applications,
one can explicitly add a strongly convex regularization func-
tion, such as v | ¢ ||§ (with large enough v), to satisfy such
an assumption.

The reason that we call this approach IF based is that we
will explicitly utilize the implicit function theorem [27] to cal-

ally prohibitive. To address the scalability

challenge in the IF method, we introduce four approaches
to approximate the inverse Hessian gradient product (or the
inverse Hessian) H™'g: the conjugate gradient (CG) method
[28], the WoodFisher approximation [29], the Neumann-se-
ries method to directly estimate the inverse Hessian [30], [31],
and a Hessian-free simplification [10], [18]. These methods
offer different tradeoffs between computational costs, with
the CG method being the most computationally expensive
and the Hessian-free simplification being the least expensive.
First, the CG approach maps the product H™'g to the solu-
tion of a quadratic program defined as minxx'Hx/2 — g'x.
By utilizing the first-order GD algorithm, we can numerically

Algorithm 1: IF-based approach for solving (LU-BLO).

Given initialization @y, learning rate ot >0, and iteration number T,
iteration =0 yields the following:

Lowerlevel optimization: Given 6., obtain an approximate solution of
the lower-level problem, denoted as ¢ (0.).

Approximation: Based on ¢p(6.), compute approximated versions of
two second-order matrices in (4), denoted as Vi42(0,¢(6,)) and
Vésg(0,9(0,)"; compute an approximated IG following (2):

VF(©):=Vof (0. (0)) = Viyg(0.4(0))Vis30.$©) "
Vf(0..¢(0)). (5)

Upperlevel optimization: Utilize VF(@,) in (5) to update O, through,
e.g., gradient descent (GD): 0,.. — 0, —aVF(0,).
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approximate H™'g. However, the convergence speed of the
CG method depends on the smallest eigenvalue of the posi-
tive definite matrix H. Therefore, if the lower-level problem
is not well conditioned, the CG method can be slow. This
approach has also been employed in the context of model-
agnostic metalearning (MAML) [16] and adversarially
robust training [10].

Second, the WoodFisher approximation [29] expresses the
Hessian as a recurrence of a rank-one modified Hessian estimate
and calls the Woodbury matrix identity to compute the inverse
of a rank-one modification to the given Hessian matrix. The one-
shot WoodFisher approximation is equiva-
lent to the quasi-Newton approximation,
H ~ vv’ + yI, where y > 0 is the damping
term to render the invertibility of H. We can
then readily obtain the inverse Hessian vec-
tor product by the Woodbury matrix identity
H'v=y'v+ @ w1+ 7y 'vivv.
Further, an iterative WoodFisher approxima-
tion for the Hessian inverse proposed in [29]
enhances the estimation accuracy.

Third, one may use a Neumann-series approximation to
estimate the inverse Hessian directly by the approximation
H'=~XE 1-H]. (assuming H is normalized to ensure
H H|| < 1). Note that as K — oo the approximation becomes
increasingly more accurate. This technique is popular for
approximating the inverse Hessian in a stochastic setting
wherein the upper- and lower-level objectives are accessed
via a stochastic oracle [30], [31]. Here, we briefly describe the
procedure to approximate the inverse Hessian stochastically
using the Neumann-series method. Let us choose k uniformly
randomly from the set {0, 1, ..., K — 1}, access batch samples
of g(6, ¢) denoted by {g(6, ¢; {v)} k-1, and compute

k 5 )
H '~ K] (b0t ©
Le i .

where L, is the Lipschitz smoothness constant of g (6, ¢; ).
This procedure requires the computation of k stochastic Hes-
sians and their products. Importantly, this estimator is a biased
estimator of the inverse Hessian with the bias decreasing expo-
nentially with K [30, Lemma 3.2].

Finally, to ensure the local convexity, some quadratic regu-
larization term is usually added to the lower-level problem in
BLO [10], [18]. This modifies (LU-BLO) to

mi(r)lien(ll{ize F(6) = f(6, ¢ (0)),

subject to ¢*(@) = argming (6, ¢) + iH ol 7
peR" 2

5'(0.9)

where we recall that A > 0 is a regularization parameter. In
this context, the Hessian-free simplification is usually adopted,
which assumes 6%4,,(,, 2(6,, ¢(6,) = 0. This assumption can be
reasonable when the lower-level objective function g involves
deep model training. For instance, in the case of a neural net-

MAML, as an optimization-
hased meta-learning
approach, has gained
significant popularity in
various fields, especially
in scenarios with limited
resources.

work with rectified linear unit activation, the decision bound-
ary is piecewise linear in a tropical hypersurface, leading to an
approximate Hessian of zeros. This Hessian-free simplifica-
tion has been used for pruning DNNs [18]. Thus, the Hessian
matrix of g’ (6, ¢) in (7) will be simplified to H =~ AL

Extension to lowerlevel constrained BLO

Unlike in the previous section, it turns out that when including
constraints to the lower-level problem, the IG no longer has the
closed-form expression because the stationary condition in (3)
does not hold anymore. To see the impact of having constraints
(even linear ones) on the lower-level problem,
we present the following example, where the
gradient df/d® is not rigorously defined.

Example 2: (LCBLO) can sill be
nondifferentiable [32]

Consider the following special case of (LC-
BLO), where the lower-level objective is
strongly convex in both scalar variables 6
and ¢, the upper level is linear, and both
levels are subject to linear constraints:

subject to ¢*(6) € argmin (6 — $)*.
12<¢<1

mlenég}hle 0+ ¢ (6)
It follows that ¢*(0)=1/2, for 6 <1/2, and ¢ (6)=0, for
6 >1/2. We notice that at the point 6 = 1/2 the mapping ¢"(6)
is continuous, but not differentiable. As a result, the outer func-
tion 6+ ¢ (0) is nondifferentiable.

An immediate question is: Can we still leverage the IF-
based approach for this subclass of problems? It turns out
that if we make some additional assumptions on the matrix
C in the constraint set of (LC-BLO), one can still apply
the implicit function theorem to the Karush—Kuhn-Tucker
(KKT) condition of the lower-level problem to calculate
the IG [10], [32]. It is also important to note that IF-based
approaches are typically not suitable for handling gen-
eral nonlinear constraints in the lower-level problem. For
problems with complex constraints, VF- or penalty-based
approaches are often employed [33], [34].

The gradient unrolling-based approach

The gradient unrolling (GU)-based approach is another class of
popular algorithms for solving BLO problems in practice [13],
[22], [23], [24]. Unlike the IF-based framework, it employs an
unrolled lower-level optimizer as an intermediary step to con-
nect the lower-level solution with the upper-level optimization
process. An automatic differentiation (AD) technique is then
used to compute gradients with respect to the upper-level opti-
mization variable 6. Consequently, the computation of the IG
in GU is dependent on the choice of the lower-level optimizer,
and it no longer uses the IF-based expressions (3) and (4).

GUbased approach for unconstrained BLO
In particular, the GU-based approach approximates ¢"(6) by
running a given algorithm for a fixed number of iterations and
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then inserting the entire trajectory into the upper-level objec-
tive. See Algorithm 2 for an illustration of the idea.

To see the difference between the AD- and IF-based
approaches, let us consider the simple case where A (-) is the
gradient mapping, q(0:, $r-1) = Pr—1— B X Vg (01, Pr-1)
(for some constant step-size S > 0), and K = 1 (ie., a single-step
GD step is performed for lower-level optimization). Further
assume that ¢o is independent of O; then the closed-form
expression of the IG can be written as

dp(©) _ dido— BX Vg (6,
4;1; b A ﬁxd9¢g( L =—BVo.48(0:, o). (9)

In some sense, the preceding computation is simpler than
the computation of the IG (4) in the IF-based approach since
the Hessian inverse is no longer needed. However, things
can get much more complicated very quickly as the total
number of inner iterations K increases. Suppose that K = 2;
then we obtain

dp () _ dig1— Vg0, P1)]
dae de

=—BlI+ X V4486, ¢1)]|Ve4g(0: Pp0). (10)

Clearly, the Hessian inverse is still not needed, but as the num-
ber of unrolling steps increases, much higher computational
and memory requirements will be involved.

Practical considerations

When the unrolling step K becomes too large or the problem
scale itself is computationally expensive for GU, manual un-
rolling becomes necessary to save memory costs and reduce
the computational overhead. Various GU approaches have
been proposed to achieve this goal efficiently. Notable tech-
niques include forward gradient unrolling (FGU) [24], back-
ward gradient unrolling (BGU) [22], [23], [24], and truncated
gradient unrolling (TGU) [13], [22]. FGU performs unrolling
iteratively, and in the final step K, the Jacobian of ¢x with
respect to O yields

K K
dpx _ _Opx dpx-1 Pk _  _ U I A/B:
40 dpx—1_ de 20 i=1\r=i+1
ey e R ©

+ (ﬁ'Ar)Z(). (11)
t=1

We also assume that ¢o is independent of €, which implies
d¢o/do = 0. Consequently, expression (11) can be rewritten
as the following iterative form:
Zi=AZi-1+ By, k=12,...,K. (FGU)
Both Ax and Bx will be calculated along with the kth lower-
level step ¢ = q(6:, pir—1) and will be discarded immedi-

ately after Z; is obtained. Such an iterative nature of (FGU)
makes it particularly suitable for scenarios that involve a

large number of unrolling steps K as the memory cost of
calculating Ax and B only involves any gradient flow gen-
erated within the kth step. However, (FGU) requires keep-
ing track of the matrices A, B, and Z:-1. Hence, it may
not be suitable for problems with high-dimensional vari-
ables 6 and ¢.

To achieve more efficient computations when 6 and ¢ are
of large scale, BGU is introduced, which eliminates the need
for storing any intermediate matrices [22], [23], [24]. BGU
explores the calculation of the IG following (2):

df(©.¢x) _ (0. $x)  dpx (©. $x)

0 20 40 odx
cK Zk dx
(FG

ek + (ZE- AF+ Bhdk
= (cxk+ Bikdx)+ Zk_ - Akdx = ckx-1
—_— ——

CK-1 dg—1

+Zk-1dg-1=--=co+ Zido=c-1. (12)

Instead of calculating IG explicitly like (FGU) does, (12) di-
rectly obtains the gradient of the upper-level variable, which
can be further simplified with the following recursive formulas:

3f©.48) _
20

di-1=Aldi, k=0,1,...,K, withdg = %ew
K
(BGU)

ci-1=ci+ Bidy, k= 0,1,...., K, withcx =

It can be observed that (BGU) only requires storing vectors (¢«
and dy) throughout the recursion by utilizing the Jacobian—
vector product trick. As a result, BGU is particularly advan-
tageous for problems with large-scale variables compared
to FGU. Yet, because of its recursive nature, BGU can be
conducted only after all of the K lower-level steps are fin-
ished. Thus, (BGU) needs to store all of the unrolling steps
{¢pr € R"} £~ 1, compared with (FGU). Consequently, it may
not be efficient for handling BLO as the number of unrolling
steps K grows.

It should also be noted that GU differs from the IF as its
computation relies on the choice of the lower-level optimizer.
For instance, employing sign-based GD (signGD) as the lower-
level optimizer leads to a computationally efficient GU variant

Algorithm 2: GU-based approach for solving (LU-BLO).

Given inifializations ¢, and 6, and iteration numbers K and T,

let ¢(): U x C — C denote one step of a given algorithm, which takes
both © and ¢ as input and outputs an updated ¢. At iteration 7> 0,
o lowerlevel optimization by K-step optimization:

P=qO,P-1), K=1,..K. 8)
Define (@) :=p=¢(0.¢(0......q(0..¢.)):

e Upperlevel optimization: Leverage AD to compute the approximated

df(0.,9(0,9(6.,....q(0.,9.))))

gradient VF(0,) := 70 . and use this

gradient to update 6,.
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referred to as signGD-based GU [15]. Specifically, the modi-
fied lower-level update rule (8) becomes

$6) = ;. = Ppi—1— Psign(Vyg (61, pi1)),

k=1,2,...,K, (signGD)
where sign (-) denotes the element-wise sign operation, and
B >0 is a certain learning rate. Given the approximation
dsign(x)/dx = 0 (holding almost everywhere), the IG can be
simplified to

dp(©) _ dox _
do do

dpx—1 _
dae

deo
= 13

46 (13)
In the case that ¢o is independent of 6, we can achieve the
IG-free variant of the GU approach.

VF-based approach
VE-based methods [33], [34], [35], [36] can also avoid the com-
putation of the inverse of the Hessian required in the IF method.
The key technique is to reformulate a standard BLO problem
into a constrained single-level optimization problem. This re-
formulation involves transforming the lower-level problem into
an upper-level inequality constraint. The resulting VF-based
variants can then be solved using algorithms for constrained
optimization. Furthermore, in comparison to IF- and GU-based
methods, the VF-based approach has broader applicability in
solving complex BLO problems. Not only can it handle lower-
level objectives with NS solutions (including both convex and
nonconvex objectives), but more importantly, it can accom-
modate lower-level constraints as well. However, the VF-based
approach has not yet been popular in practical SP and ML ap-
plications, partly because this approach has not been able to
deal with large-scale stochastic problems. This point will be
illustrated shortly in the section “Theoretical Results of BLO.”
To understand the VF-based approach, consider the follow-
ing equivalent reformulation of (LC-BLO):

m}gl’lggl(i:ze f(6, ), subjectto g(0,d) < g"(0) (14)
where g*(0) = mingecg (0, @) is referred to as the VF of the
lower-level problem. However, solving (14) is highly nontrivial,
partly because g*(6) is not necessarily smooth, and it can be
nonconvex. To address these challenges, a relaxed version of
problem (14) is typically considered by replacing g"(0) with a
smooth surrogate [33], [35]
gi(6) = minimize g0, ) + i+ 2 (15)
peC 2
where y = (u1, 42) is a pair of positive coefficients that are in-
troduced to guarantee the smoothness of g, (0) and to ensure
the feasibility of the inequality constraint g(6, ¢) < g.(0).
Given the relaxed VF formulation, one can adopt standard
nonlinear optimization algorithms, such as a penalty-based
algorithm, to solve the constrained optimization problem (14).
For example, a log-barrier interior-point method, called the
bilevel value-function-based interior-point method (BVFIM),

is leveraged in [35] to solve a sequence of smooth approximat-
ed single-level problems of (14). Other related methods to solve
(14) include primal-dual bilevel optimization (PDBO) [33],
bilevel optimization made easy (BOME!) [36], and V-penalty-
based bilevel GD (PBGD) [34] methods.

Theoretical results of BLO

In this section, we examine the theoretical guarantees of various
BLO methods. The section is divided into two parts. In the first
part, we discuss the convergence results of popular algorithms
for solving the (LU-BLO) problem, while the second part will
focus on the more general formulations, such as (LC-BLO) and
(NS-BLO). We list specific algorithms that can handle both sto-
chastic and deterministic BLO problems. Given the differences
in theoretical analysis between stochastic and deterministic op-
timization, we also consider a generalized stochastic version of
BLO, whose upper- and lower-level objectives are

N
fO.9 ()= 3" (6. ©): £,
i=1
N
§0.4)=~ " 5(6,4:() (16)
1

i

where &~ Dy (respectively, (i~ Dy) represents the data
sample of the upper-level (respectively, lower-level) objective
from the distribution Dy (respectively, Dy), and N is the total
number of data samples.

Convergence measures of BLO

In what follows, we introduce the convergence measures uti-
lized for evaluating the performance of BLO algorithms.
These measures serve to assess the quality of solutions
obtained by these algorithms. Note that in general the IF
F(06) = f(0, ¢"(0)) may be nonconvex; therefore, we define
the concept of an e-stationary point for (LU-BLO), which
plays a crucial role in characterizing the convergence proper-
ties of BLO when the upper-level problem is unconstrained,
ie., U= R" In the deterministic setting of (LU-BLO), a
point @ € R" is considered an e-stationary point if it satis-
fies || VF(6) H; < €. In the stochastic setting (16), where the
algorithm incorporates randomness, the expectation is taken
over the stochasticity of the algorithm. Thus, an e-stationary
point is defined as EH VF(6) H; < €. Itis important to note that
when the upper-level problem in (LU-BLO) is constrained,
i.e.,, U C R, then the upper-level objective F(0) may not be
differentiable over @ in general. When solving (LC-BLO) us-
ing the IF-based approach, if the IF is differentiable, similar
measures of stationarity as in standard optimization can be
utilized. However, if the IF is nondifferentiable, alternative
stationarity measures are commonly employed. These include
subgradient optimality [32], proximal gradient methods [34],
[37], and Moreau envelope techniques [31], [32], [38]. Further-
more, when employing VF-based approaches to solve (LC-
BLO), a widely used measure of stationarity is to evaluate the
convergence of the algorithms toward the KKT points of the
constrained reformulation of the BLO problem [33].
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In addition, the concept of oracle complexity is employed to
quantify the number of gradient evaluations needed to obtain
an e-stationary solution, as defined earlier. We denote G (f, €)
(respectively, G(g, €)) as the total number of (stochastic) gra-
dients of f (respectively, g) evaluated to achieve an e-stationary
solution. This measure provides insights into the computation-
al requirements of BLO algorithms and their scalability with
respect to the problem size and desired solution accuracy.

Convergence guarantees for LU-BLO

As discussed in the section “Algorithmic Foundations of BLO,”
solving (LU-BLO) requires computing the Hessian or its in-
verse. However, the stochastic formulation (16) leads to some
challenges, especially for convergence analysis. For example,
in the case of solving the stochastic BLO problem using Algo-
rithm 1 (IF), the gradient estimates would be replaced with ap-
propriate stochastic gradient estimates for both the upper- and
lower-level updates. However, obtaining an unbiased estimator
for the Hessian inverse term in the IG [as

mate ¢"(6,) closely, while for a single-loop algorithm, ¢ (6,)
could be given by a crude approximation of ¢"(6;). Table 1
provides a summary of the oracle complexities of existing
BLO algorithms for achieving an e-stationary point in solv-
ing problem (LU-BLO). The theoretical results are categorized
based on three algorithmic families: stochastic BLO (16), VR-
based BLO, and deterministic BLO. The convergence perfor-
mance is evaluated in terms of the oracle complexities G (f, €)
and G (g, €), as introduced in the section “Convergence Mea-
sures of BLO.” In Table 1, we also illustrate the BLO solver
employed by different optimization principles (i.e., IF, GU, or
VF) and the algorithmic design choices, such as double versus
single loop.

Stochastic BLO

This set of algorithms updates the lower- and upper-level

variables using SGD, following the IF or GU optimization

principle. The stochastic gradient estimates are evaluated as
discussed in Algorithm 3, while for the

defined in (4)] is challenging. To overcome The problem of model deterministic setting, the gradients are ap-
this challenge, a biased stochastic gradi- pruning arises, aiming to proximated using the techniques discussed
ent estimator based on Neumann-series - in the section “Algorithmic Foundations
approximation, as discussed in the section reduce ““_} Slle_s ‘_" an ML of BLO.” Bilevel stochastic approximation
“Practical Considerations of IF,” has been model by identifying and (BSA) [30] was the first algorithm that of-

used in [30] and [31]. We note that the bias
of the estimator can be easily controlled by
choosing a larger batch to compute the Hes-
sian of the lower-level objective [30, Lemma 3.2]. Moreover,
we point out that the stochastic CG (discussed in the section
“Practical Considerations of IF”’) can also be utilized to obtain
the inverse Hessian gradient vector product to approximate the
IG [39], [40].

In addition, a key design choice for BLO algorithms is
whether the inner problem is solved accurately or not. In a
single-loop algorithm, one only performs a fixed number of

steps for the lower-level updates before every upper-level
update [31], [41], [42], while in a double loop, many lower-level
updates are carried out to obtain a very accurate approxima-
tion of ¢"(0) [30], [39], [40]. Typically, the former is simpler
to implement in practice, while the latter is easier to analyze
since the error caused by approximating ¢*(6) can be well
controlled. In addition, the stochastic descent direction to
solve both (or either) upper- and lower-level problems can be
constructed using either vanilla stochastic GD (SGD) [43]
or variance-reduced (VR) algorithms [44]. Specifically, it is
well known that VR-based algorithms can lead to improved
theoretical convergence of stochastic algorithms compared to
vanilla SGD-based algorithms to solve standard optimization
problems. The VR-based algorithms accomplish this improved
convergence by computing additional stochastic gradients on
optimization variables computed in consecutive iterations [44].
Similar behavior is observed in solving BLO algorithms using
VR-based gradient constructions, as discussed next.

In Algorithm 3, we provide a generic stochastic algorithm
to solve BLO problems using the IF-based approach. As point-
ed out earlier, for double-loop algorithms, ¢(6;) will approxi-

fered finite-time convergence guarantees
for solving unconstrained stochastic BLO
problems. It employed a double-loop algo-
rithm where the lower-level variable is iteratively estimated
with multiple SGD updates, resulting in a larger oracle
complexity of O(1/€’) for the inner-level optimization
compared to O(1/€®) for the upper-level optimization.
Two-timescale stochastic approximation (TTSA) [31], a
fully single-loop algorithm (with projected SGD update for
upper-level constrained optimization) improved the lower-
level oracle complexity to 0(1/65/2); however, at the cost of
worsening the upper-level oracle complexity to O (1/€?).
More recently, the stochastic bilevel optimizer (stocBiO)
[40], the stochastic bilevel algorithm (SOBA) [46], and the
alternating stochastic GD (ALSET) [42] algorithm have
been developed to achieve O(1/€*) complexity for both the

Algorithm 3: (S)GD and VR for solving stochastic

(LU-BLO) and (LC-BLO).

Given the initialization @, and iteration number 7} iteration >0
yields:
o lowerlevel optimization: Given 6., call SGD (or VR based on both
0, and O,)) to obfain a lowerlevel solution ¢ (O,).
e Approximation: Given ¢(6.,), compute a stochasfic gradient esfimate
of (5) as follows: .
~ Estimate stochastic versions of Vof(0,,¢(6.)),
Vaf(0.,(0)),Visg(0.$(6)). N
~ Approximate Hessian inverse, V545(0,,¢(0,) ", following (6)
in the section “Practical Considerations of IF.”
— Obtain stochastic estimate of (5) and consfruct a descent direction
VF(©;¢) for 6..
o Upperlevel optimization; Call SGD (or VR) to update O, using
VF(©;¢) (or VF(0,;&) and VF(O,-;E).
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- upper- and the lower-level optimization. Note that stocBiO
~ = g% % 5 [40] requires a batch size of O(1/€) to achieve this complex-
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B[ = 2 2 2 ¥ 2854 .
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S S g o thors developed fully first-order stochastic approximation
< 85 &¢
% <802 (F°SA), a VF-based algorithm to solve (LU-BLO). The al-
© 273 . . .
Sl o o T O 3 %é £ gorithm achieved an oracle complexity of O(1/€") for both
-~ ~ ~ ~ ~ ~ —-Q =
g 8 % g 8 g L (328 upper- and lower-level objectives while circumventing the
g < |5 e g§ need to compute Hessians (or Hessian vector products) dur-
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3| 8 8 5 &8 65 848 £E28¢ R stochastic BLO
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.:LE_ L L O w B3 283 2 tional stochastic gradients in each iteration (see Algorithm 3).
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of O(l1/e) for the upper-level optimi-
zation and O(1/€”*) for the lower-
level optimization. The performance
of BA was improved in AID-BiO [40]
and MSTSA [41], which achieved an

and (NS-BLO) problems.

oracle complexity of O(1/e€) for both :E:T;I‘]T g:?cnple

upper- and lower-level objectives.  pypm [35]  VF

Please refer to Table 1 for a summary BOME! [36]  VF

of the discussed approaches. SIGD [32] IF
AIPOD [37] IF

PDBO [33]  VF

Convergence guarantees for
PBGD [34]  VF

(LC-BLO) and (NS-BLO)

Table 2. Convergence results of representative algorithms for solving (LC-BLO)

Objective Functions

Upper Level Lower Level Constraints Oracle Complexity
Strongly convex  Convex No Asymptotic
Smooth Nonconvex No Asymptotic
Smooth PL No O(1/€%)

Smooth Strongly convex  Linear inequality ~ Asymptotic
Smooth Strongly convex  Linear equality  O(1/€?)

Smooth Convex Nonlinear o(1/e™)

Smooth PL Nonlinear o/e™)

Obtaining convergence guarantees for
BLO algorithms becomes more chal-
lenging when solving more complex
problems, such as those involving
lower-level constraints in (LC-BLO) or NS lower-level solu-
tions in (NS-BLO). In the previous section, the majority of
the algorithms discussed employed an IF-based approach to
solve the BLO problem. However, in this section, only the
algorithms designed to solve (LC-BLO) utilize IF-based ap-
proaches. Itis also worth mentioning that IF-based approaches
are not applicable for solving (NS-BLO) [or (LC-BLO) with
general constraints] because of the inapplicability of the im-
plicit function theorem in this context. Instead, standard ap-
proaches to solve these more complex problems include inte-
rior-point methods [35], primal—dual methods [33], dynamic
barrier GD [36], and penalty-based GD [34]. As pointed out
earlier, a major drawback of these algorithms is that they are
exclusively developed for deterministic problems and lack
efficient implementations for stochastic formulations (16).
Consequently, they are not well suited for large-scale SP and
ML applications, which often involve learning over large
volumes of data.

In the following, we present a summary of recent theoreti-
cal advancements for solving highly complex BLO problems,
such as (LC-BLO) and (NS-BLO) (see Table 2). We list the ora-
cle complexities of representative methods, design principles,
and the type of constraints present in the lower-level objective
function. Note that in Table 2, we list the oracle complexity for
only the upper-level objective with the notion of stationarity
defined according to either the squared norm of the projected
gradient [10], [32], [34] or KKT conditions [33], [36].

Theoretical results for (LC-BLO)

BLO problems of the form (LC-BLO) involving lin-
ear constraints of the form C:={¢|h(0,¢) <0} with
h(6, ¢) = A¢ — b in the lower level have gained popularity
in both theory and practice [10], [32], [37]. Under some regu-
larity assumptions on upper- and lower-level objectives and the
constraint set of the lower-level problem, IF-based methods
can be developed for solving such problems. These algorithms
(see, e.g., Algorithm 4) follow the same structure as the one
presented in Algorithm 1; the key difference is that the con-
struction of the (stochastic) gradient estimate depends on the
lower-level constraints.
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Similar fo Table 1, convergence is measured by oracle complexity. Other algorithmic details include optimization princi-
ples (IF, GU, and VF), problem setups [(LCBLO) and (NS-BLOJ], objective function types, and lower-level constraint types.
BDA: bilevel descent aggregation; SIGD: smoothed implicit gradient; AiPOD: alternating implicit projected SGD.

In [32], the SIGD approach was developed to handle (LC-
BLO) with linear inequality constraints in the lower level.
SIGD is an implicit GD algorithm that ensures the differ-
entiability of the IF through perturbation-based smoothing.
The SIGD algorithm and the expression for IG used in [32]
are stated in (17). SIGD guarantees asymptotic convergence
to a stationary point. A similar IF-based approach was also
utilized in [10], termed Fast Bilevel Adversarial Training
(Fast-BAT). Fast-BAT aims to enhance the robustness of
deep learning models against adversarial attacks using BLO.
It achieves an oracle complexity of O(1/€) under certain
smoothness assumptions. In [37], the stochastic BLO prob-
lem with linear equality constraints in both the upper- and
lower-level problems is considered. The authors proposed an
IF-based approach by constructing an approximate stochas-
tic implicit gradient for linearly constrained BLO. They also
proposed the alternating implicit projected SGD (AiPOD)
algorithm, an alternating projection method that achieves
an oracle complexity of O(1/€*) for both upper- and lower-
level objectives. The work [33] considered BLO with general
constraints in both upper- and lower-level objectives and
NS lower-level solutions. It utilized the VF-based approach
developed in BVFIM [35] for solving (NS-BLO) and pro-
posed PDBO, a primal—dual algorithm for solving (14) when

Algorithm 4: Smoothed implicit gradient (SIGD), an IF-based

approach for (LC-BLO).

Given the initialization @, and iteration number 7, iteration >0

yields the following:

e Call Algorithm 1 and use the following procedure to compute the IG.

* Notation: Let A (¢p) be the matrix that contains the rows of A that
correspond fo the active constraints of inequality A¢p—b =<0, and
A’'(0) is the Lagrange multipliers vector that corresponds to the active
consfraints at ¢’ (0); compute:

d (©)'

1G : 0

=Y. O))]"
| XIVisg(0.9°(0) ~A'VA©)]
VA'(6)=~[A[Viss(6.9 (©)] AT

X [A[Vieg(6.9 (0)] 'Vieg©.9 ©O)].  (17)
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the VF is approximated using (15). Under the assumptions
of convex and compact constraint sets and convex lower-
level objectives, PDBO achieves an oracle complexity of
O(1/€*%). Recently, the authors of [34] proposed PBGD for
BLO with general constraints and NS lower-level solutions.
The authors established the equivalence of BLO and its pen-
alty-based reformulations based on VF and KKT conditions.
PBGD achieved an oracle complexity of O(1/e*?) for solv-
ing constrained BLO with lower-level objectives satisfying
the Polyak-Lojasiewicz (PL) inequality. Note that the algo-
rithms PDBO [33] and PBGD [34] can be utilized to solve
both (LC-BLO) and (NS-BLO) problems. Next, we discuss
specific algorithms for solving (NS-BLO).

Theoretical results for (NSBLO)

An attempt to relax the lower-level singleton assumption for
the lower-level problem was made in [21] with the introduction
of bilevel descent aggregation (BDA), a bilevel descent frame-
work for solving (NS-BLO). BDA assumes convexity of the
lower-level objective and strong convexity of the upper-level
objective with respect to ¢. The framework updates the lower-
level variable, ¢, using a convex combination of the upper- and
lower-level partial gradients and then updates the upper-level
variable, 0, using standard FGU/BGU techniques. The au-
thors established the asymptotic convergence of BDA in [21].
In [35], the authors relaxed the convexity assumptions on the
lower- and upper-level objectives in (NS-BLO) and proposed
BVFIM, a VF-based approach to solving the problem. BVFIM
solves a sequence of penalty-based reformulations of the VF
problem using the interior-point method with asymptotic
convergence. In [36], the authors introduced BOME!, an al-
ternative approach to directly solve the VF problem using a

Table 3. An overview of emerging applications of BLO in SP and ML (

dynamic barrier GD algorithm. Under the assumption of PL
inequality for the lower-level objective, BOME! achieves a
finite-time sample complexity of O(1/€*) in the worst case.

BLO-enabled SP and ML applications

In the following sections, we will showcase how BLO can be
leveraged to obtain state-of-the-art results for a number of key
SP and ML applications, such as wireless resource allocation
(see the section “BLO for Wireless Resource Allocation”),
signal demodulation (see the section “BLO for Wireless Sig-
nal Demodulation”), adversarial training for robustifying ML
models (see the section “BLO for Adversarially Robust Train-
ing”), weight pruning for enhancing model efficiency (see the
section “BLO for Model Pruning”), and invariant representa-
tion learning for improving domain generalization (see the
section “BLO for Invariant Representation Learning”). Table 3
summarizes a number of emerging BLO application areas, to-
gether with some representative references.

BLO for wireless resource allocation

In this section, we explore the application of BLO in wireless
communications, specifically in the context of wireless optimal
resource allocation (power control) [7]. The goal is to allocate
power efficiently among multiple transmitter—receiver pairs to
maximize some system-level performance. We consider a dy-
namic environment where wireless channel statistics change
episodically, where the environment statistics change in “epi-
sodes,” and in each episode the environment is stationary. To
solve this problem, we employ a neural network trained to pre-
dict the optimal power allocation for users based on channel
information. However, neural networks often struggle when
evaluated on data that deviate from the training distribution.

image indicates applications we studied).
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Representative Applications Application Areas

Problem Description

Selected References

Wireless resource allocation €3 Sp To allocate wireless resources optimally and maximize 7]
their utilities

Signal demodulation £ To accurately estimate fransmitted symbols from [53]
received baseband signals

Channel prediction To predict the states of a communication channel by leveraging  [54]
previous observations

Image reconstruction To recover images from their sparse measurements 9]

Adversarial training £ Robust ML To train an ML model with adversarial robustness against [10], [11]
adversarial attacks

Poisoning attack generation To generate malicious data info the training set, creating [12],[13]
vulnerabilities/backdoors in ML models

Model pruning 6} Efficient ML To find sparse subnetworks from a dense DNN without [18], [55]
generalization loss

Dataset condensation To select a subset or distill a condensed version of the training ~ [17], [19]

set without generalization loss

MAML 3 Generalized ML

To train an ML model that can quickly adapt to new tasks

[14], [15], [16]

using limited data

RM

To train an ML model with invariant features against

[56], [57], [58]

distribution shift

Automated ML

Neural architecture search

To automatically optimize the architecture of DNNs for

(25]

improved performance

Hyperparameter optimization

To optimize the hyperparameters and model selection

[21], [22], [23], [24]

schemes in an ML pipeline

IRM: invariant risk minimization.
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To address this challenge, we adopt a continual learning frame-
work [59] and maintain a memory set, containing a representa-
tive subset of samples encountered so far, to facilitate adapta-
tion to new episodes while preserving performance on previous
ones. The model is trained not only on the current data batch
but also on the memory set, and the dual requirement of con-
tinuously updating the memory set while optimizing the system
performance leads to the bilevel formulation. In what follows,
we provide a detailed problem formulation [7].

Formulation
Consider a dynamic wireless environment with T episodes,
where the channel state information (CSI) statistics re-
main stationary within each episode. Consider a supervised
learning setting, where the ith data pair (h"”, p) consists
of the CSI vector h (the feature vector)
capturing the channel characteristics and
the corresponding optimal power alloca-
tion p® across the users (the label). We
train a neural network 7(0; h®) on these
data pairs, where 6 represents the model

Note that all IRM variants
outperform ERM, which
justifies the importance
of IRM training to improve

where 0(0;h?,p?) = H p?” —7(6;h?) Hi is the mean-square-
error loss over the ith sample, and M;U D, are the available
training samples at time 7. At the upper level, supervised train-
ing is performed by using the weighted loss, while at the lower
level, the weights are optimized based on their achieved rates,
where higher weights are assigned to samples achieving lower
rates. Based on solutions obtained by solving (18) [denoted
as (01, A¢)), in iteration ¢ + 1 a new memory set is formed by
M :={i[]Af > 0}.

Methods

Problem (18) is a constrained BLO problem with linear equali-
ty constraints with respect to the lower-level variable A. Based
on the problem structure and the optimization principles and
algorithms introduced in the sections “Algorithmic Founda-
tions of BLO” and “Convergence Guaran-
tees for (LC-BLO) and (NS-BLO),” we uti-
lize the IF-based SIGD method [32] to solve
(18). However, it should be noted that the
SIGD method assumes a strongly convex
lower-level problem (see Table 2). To ensure

parameters and h®” serves as the network model generalization this property, we introduce a regularization
input, with the output being the power al- across diverse term (y/2)|| A |3, where v is the regulariza-
location prediction. Assuming the data environments. tion parameter, as described in the section

arrive sequentially in multiple batches,

let D, denote the batch we receive at time ¢. Assume that
there is a fixed-size memory set M, available, which stores
representative historical data to be combined with D; for
training, and it is updated when a new batch arrives. The
performance of a power allocation scheme p (for a given
CSI h) is measured by the weighted sum-rate loss function
R(p; h) [7, equation (1)].

At each time ¢, our problem involves two tasks. The first
task is to train the neural network on a (weighted) set of train-
ing samples, aiming to find the optimal model parameter 6.
The second task is to select the most representative subset
from the available training data, which includes the samples
in memory M; and the current data batch D; (denoted as
M:U Dy). This selected subset will be then used for training
as well as to form the new memory to be used in the next time
t + 1. Toward this end, we introduce the variable A, which
represents the weights associated with each sample. Higher
weights are assigned to samples that are more representative or
challenging, as determined by the system performance metric
R(p;h). These weighted samples (with nonzero weights) are
then selected to form the updated memory set, and they will
contribute to the next round of training. The idea is that by
focusing on training the model on these challenging samples,
we can expect better performance on the remaining easier
samples. This problem can be naturally formulated as the fol-
lowing BLO problem:

minimize Y, A?(6)0(6;h?,p?)
0 iEMUD; X . .
subject to A(@) = argmin Y, AYR(z(6;h?”);h?) (18)

1"A=1 ieMuD,

“Extension to Lower-Level Constrained
BLO.” As a classical baseline approach, we also consider trans-
fer learning (TL). In TL, when a new data batch D; arrives,
the current model trained on data up to time ¢ — 1 is fine-tuned
using only D;. This approach is motivated by the expectation
that previous knowledge can be transferred to the new environ-
ment, enabling quick adaptation of the model. However, updat-
ing the model may result in a loss of prior knowledge, leading
to performance degradation on the prior episodes.

Experiment results

We consider an experiment setting with 7 =4 episodes
and 10 users and with three different types of communica-
tion channels: Rayleigh fading, Rician fading, and Geometry
channels; see [7, p. 13] for more details. The neural network
trained for power allocation consists of three hidden layers
with sizes 200, 80, 80, respectively. Figure 2 illustrates the
performance of power allocation, measured by the sum rate;
in the horizontal axis we have the total number of samples
used for model training as these arrive sequentially in batch-
es. Here the power allocation schemes are obtained using the
BLO-based SIGD method and the baseline approach (TL), re-
spectively. As we can see, the SIGD method exhibits smoother
adaptation to each episode (note that the boundaries between
episodes locate at x=2,4,6,8). It also experiences less deteri-
oration in performance compared to the baseline approach.
These results demonstrate the advantage of using BLO for
power allocation.

BLO for wireless signal demodulation
In this section, we explore the application of BLO in wire-
less signal demodulation by associating it with another BLO
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application, MAML [14]. Thus, we begin by introducing the
fundamental concepts of MAML within the framework of
BLO and then establish the connection between MAML and
signal demodulation.

Fundamentals of BLO in MAML

MAML, as an optimization-based metalearning approach,
has gained significant popularity in various fields, especially
in scenarios with limited resources [14], [15], [16]. Specifical-
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FIGURE 2. The average sum rate achieved on the combined test set
(across all four episodes) is plotted as a function of the total number of
samples used for model training, which arrive sequentially in batches.
Three experiments are conducted with different types of channel statistics
across the four episodes. (a) The channel sequence is Rayleigh-Rician-
Geometry10-Geometry50. (b) The channel sequence is Rician-Geome-
try10-Rayleigh-Geometry50. (c) The channel sequence is Geometry10-
Geometry20-Geometry50-Rayleigh. The numbers after the Geometry
channel indicate the spatial arrangement of the nodes, such as a 20 m x
20 m area for Geometry20.

ly, MAML learns a metainitialization of optimized variables
(e.g., model weights ) to enable fast adaptation to new tasks
when fine-tuning the model from the learned initialization
with only a few new data points [14]. With N learning tasks
{7}, 1) a fine-tuning set D} is used in 77 for the task-
specific lower-level optimization over the task-agnostic model
initialization €, and 2) a validation set D} is used in the
upper-level optimization for evaluating the fine-tuned model
0; from 6. Thus, MAML can be formulated as the following
BLO problem:

N
miniemlz % Z E(D" ) 7. (9;‘ (9),@,\'(!])]
i=1
0; (6) = argmin 0;(0;; DV, 6),

si€R"

subject to (MAML-BLO)

where 6; (0) signifies the fine-tuned model weights using the
initialization @ under the task 77, and {; denotes the model
training (or validation) loss over D} (or D}*) with initializa-
tion O (or fine-tuned model 6; (0)).

The MAML-BLO problem falls into the category of uncon-
strained BLO. Thereby, existing works, such as [14], [15], and
[16], commonly employ the IF- or GU-based approaches to
solve it. The vanilla MAML algorithm [14] utilizes a GU-
based BLO solver, which carries out the upper- and lower-level
updates using the following steps:

Lower: 6; (0) = 0", 0/ — 0"~ " — BVq.0:(0" "),

=1,. M given 0" =0
Upper: 6 — 0 — a—z Voli(6: (0)),

i=1

(MAML)

where o, B > 0 represent the learning rates for the SGD up-
dates in the upper and the lower level, respectively. As men-
tioned in the section “GU-Based Approach for Unconstrained
BLO”), the choice of the lower-level optimizer will greatly in-
fluence the GU-based BLO solvers.

As described in the section “Practical Considerations,” the
usage of the sign-based SGD in the lower level can lead the
vanilla MAML to a first-order BLO solver, known as Sign-
MAML [15]. In contrast to the GU-based MAML methods
discussed previously, the implicit MAML (iMAML) [16]
utilizes an IF-based approach, where the CG method is used
to compute the inverse Hessian gradient product. Compared
to the vanilla MAML, iMAML shares the same lower-level
updating rule, while adopting the IF-based upper-level itera-
tion, similar to (5). Unlike IF and GU, the first-order MAML
(FO-MAML) operates by alternating between SGD-based
lower-level optimization and SGD-based upper-level optimi-
zation, without explicitly considering the implicit gradient.
We refer to this optimization procedure as alternating opti-
mization (AO).

We next demonstrate the effectiveness of BLO in MAML
by applying it to benchmark few-shot learning tasks on the
Omniglot and Mini-ImageNet datasets, where the generaliza-
tion of the learned metainitialization is evaluated on the new
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tasks, each with only a few examples. We follow the standard
experimental setting [14], [15], [16], considering 20-way-
1-shot and 20-way-5-shot learning on Omniglot and 5-way-
1-shot and 5-way-5-shot learning on Mini-ImageNet. Here
P-way-Q-shot refers to training a model using a small set of
data points sampled from P classes, with each class contain-
ing Q examples. Table 4 provides an overview of the accuracy
and runtime efficiency of different methods
for solving MAML-BLO, including AO-
based FO-MAML [14], GU-based Sign-
MAML [15], GU-based vanilla MAML
[14], and IF-based iMAML [16]. As we can
see, the vanilla MAML and iMAML gen-
erally achieve higher testing accuracy than
other MAML variants, but they require more
computation time. This is expected for their
fewer implementation assumptions, resulting in more precise
metainitialization states. In the FO optimization category, we
observe that Sign-MAML outperforms FO-MAML, demon-
strating the advantage of using GU to solve BLO problems.

BLO for wireless signal demodulation

Background and connection fo MAML

‘We next examine the application of BLO in the context of wire-
less signal demodulation through the lens of MAML. Wireless
signal demodulation aims to recover the transmitted symbols
s from the received signals y. Our investigation aligns with
prior research [8] and focuses on a scenario where wireless de-
vices frequently transmit short packets with a few pilot symbols
through a varying channel. Notably, only a limited number of pi-
lot symbols is available to optimize the demodulator when work-
ing with any new wireless transmitter device in the field. Mean-
while, the historical data pairs for previous devices and channel
conditions can hardly transfer to new ones. Thus, demodulation
modeling can be viewed as a few-shot metalearning problem,
aiming to obtain a metainitialization that is able to quickly adapt
to future devices. Similar to MAML, a metademodulator char-
acterized by a learnable parameter 0 is trained to quickly adjust
to new devices with only a few new pilot symbols.

Formulation
Specifically, N supervised datasets are collected to train the
metademodulator, each associated with a specific device,

Developing efficient
algorithms that can handle
NS lower-level solutions
and provide convergence
guarantees is a key
research direction.

which can be treated as N tasks. The ith dataset with K
samples is given by D;= {(s,(-k), ygk))},l((:l, where ygk) rep-
resents the kth received signal, and st s its corresponding
ground-truth transmitted symbol. The demodulation task
for each single device can be formulated as a classification
problem as each symbol s can only be one of the several
binary encodings, e.g., ranging from 0000 to 1111 following
the 16-quadrature amplitude modulation
(16-QAM) [8]. Thus, the cross-entropy
loss between the predicted transmitted
symbol §(y,0) and the true symbol s
is used to train the demodulator model:
0:6:D)) = B, y0)-0.Lee (3(y1".0).5),
where we use a multilayer neural network
as the demodulation model 6 following [§]
to predict the transmitted symbol § using
the received signal y. Given N devices (datasets) within the
metatraining dataset, each contains K data samples, which
are divided into K" for fine-tuning 6 and K** for validat-
ing the performance of the fine-tuned model. In line with the
notions used in (MAML-BLO), the demodulation of the ith
device can be regarded as learning task 77, which consists
of a fine-tuning dataset D! and a validation dataset D}".
To this end, we can apply the previously introduced MAML
methods [14], [15], [16] to address the problem of wireless

signal demodulation.

Experiment results

During the metatraining phase, we consider N = 1,000 dif-
ferent devices, each of which has K" € {1,5,10,20} training
samples designated as the fine-tuning set. For the metatesting
phase, we use another set of 100 devices, each of which has
K" pairs for the few-shot demodulator fine-tuning and an ad-
ditional 10,000 pilot symbol pairs for symbol classification
accuracy evaluation. Table 5 shows the average classification
accuracy and running time for different MAML methods, pro-
viding insights into how the choice of K" affects the perfor-
mance of these methods. As we can see, MAML and iIMAML
achieved the highest symbol classification accuracy, although
they required more computational time, consistent with the
findings in Table 4. Sign-MAML outperformed FO-MAML in
the one-shot scenario, benefiting from the effectiveness of the
GU solver. However, in scenarios with more shots, FO-MAML
can achieve a performance on par with that of MAML.

Table 4. Performance comparison of various MAML methods on the commonly used datasets for few-shot learning tasks Omniglot and Mini-ImageNet.

Test Accuracy  Time  TestAccuracy  Time  Test Accuracy Test Accuracy

(%) (min) (%) (min) (%) Time (min) (%) Time (min)
Method BLO (Solver)  Omniglot 20-way-1-shot  Omniglot 20-way-5-shot ~ Mini-ImageNet 5-way-1-shot  Mini-ImageNet 5-way-5-shot
FO-MAML [14] AO 90.62+0.29 271 9644 +023 299 4639+0.44 432 54.45+029 493

Sign-MAML [15] GU
Vanilla MAML [14]  GU
IMAML [16] IF

9175026 285
905.65+025 471
95.99+0.19 3.64

9779 +0.18 291
08.42+0.23 494
98.63+0.14 3.85

4773 +0.55 4.51
48.77 £0.65 15.5
49.31 041 11.6

55.12+0.33 472
55.72+ 036 159
5471027 133

The best performance in each setting is marked in boldface. The standard deviations are reported based on five random trials. Rows marked in gray indicate BLO-enabled algorithms.
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BLO for adversarially robust training

The lack of adversarial robustness in ML models has prompted
extensive research on adversarial defense mechanisms [10], [11],
[60]. While most of the existing defenses rely on MMO to mini-
mize worst-case training loss by incorporating a synthesized ad-
versary, this approach requires completely opposing objectives
for the defender and attacker. This limits its applicability to sce-
narios where differing objectives are desired. Recent works [10],
[11] have demonstrated the use of BLO with customizable attack
objectives to improve the efficiency and robustness of robust
model training across a wide range of adversarial attack strengths.

Formulation

We formulate the BLO-based robust training for defending
against adversarial attacks. Using variables € for model pa-
rameters and & for input perturbation, and loss functions {i
for training and lax for attacks, we define the task of robust
training as a BLO problem (RT-BLO). The upper-level prob-
lem involves training the model 6, while the lower-level problem
optimizes & for adversarial attack generation to produce worst-
case input in model training. This yields the following:

minignize Exyen[le(0,x+8(6), y)],

subject to 8 () = argmin {u (5,0:X,y), (RT-BLO)
seC

where (X, y) is a data pair with feature x and label y drawn from
the training dataset 9, (x + &) is an adversarial example with
respect to X, and 8 € C denotes a perturbation constraint, e.g.,
C={6l6-<e x+6c[0,1]} for an e-tolerated {~-norm
constrained attack with normalized input in [0,1].

If we choose lai O, then problem (RT-BLO) reduces to
the MMO-based adversarial training [60]. However, the flex-
ibility of independently choosing the lower-level attack objec-
tive allows for a broader range of robust training scenarios. In
particular, it enables the development of a fast robust train-
ing variant called Fast-BAT [10]. The Fast-BAT formulation,
given next, specifies the lower-level attack generation problem
of (RT-BLO) as a constrained convex quadratic program:

miniemize Exyenllce®,x+ 87 (6;%,y),y)]
subject to 8 (6;X,y)

=argmin — (5 — 80) Vs s,lce(0,x + 8,y) + (v/2)| 8 — 8o
seC = Lak(0,8:X,y)

2
25

(Fast-BAT)

where (ce(0,x,y) is the cross-entropy loss for training model
weights 6 evaluated at the data point (X,y), and the lower-
level attack objective is given by a first-order Taylor expan-
sion of —{ce (at the linearization point &o) plus a quadratic
residual with the regularization parameter y > 0. Since the
lower-level problem becomes a convex quadratic program,
it leads to the closed-form projected GD (PGD) solution
87(0) = Pc (80— (1/7)Vslce(6,8))| s=60.

Methods

As problem (Fast-BAT) falls into the category of (LC-BLO), we
can solve it using optimization methods introduced in the sec-
tion “Convergence Guarantees for (LC-BLO) and (NS-BLO).”
Specifically, we consider the KKT-oriented IF approach (see
the section “Extension to Lower-Level Constrained BLO”) as
our BLO solver (see Algorithm 4). In our experiments, we refer
to this method as Fast-BAT-IF. Furthermore, we compare Fast-
BAT-IF with non-BLO representative robust training base-
lines, such as Fast-AT [61] and Fast-AT-GA [62].

Experiment results

In Table 6, we empirically show the performance of differ-
ent robust training methods to robustify PreActResNet-18
on the CIFAR-10 and Tiny-ImageNet datasets. The evalu-
ation metrics include 1) the test-time robust accuracy (RA)
of the learned model against 50-step PGD attacks [60]
with 10 restarts (RA-PGD) using the perturbation budgets
€ = 8/255 and 16/255; 2) RA against AutoAttack (RA-AA)
[47] in a setup similar to RA-PGD; 3) the standard accu-
racy of the learned model on natural examples; and 4) the
time consumption required for robust training. As observed,
Fast-BAT-IF exhibits higher robustness compared to non-
BLO baselines, highlighting the effectiveness of BLO in
robust training.

BLO for model pruning

While overparameterized structures are key to the improved
generalization of DNNs, they create new challenges—the huge
number of parameters not only increases computational costs
during inference, but it also poses serious deployment chal-
lenges on resource-limited devices. Thus, the problem of mod-
el pruning arises, aiming to reduce the sizes of an ML model
by identifying and removing redundant model weights. In this
section, we investigate the application of BLO in the context of
model pruning [18], [55].

Table 5. Performance comparison of different MAML methods for few-shot demodulation of 16-QAM modulated wireless signals.

Test Accuracy  Time Test Accuracy ~ Time Test Accuracy Test Accuracy

(%) (min) (%) (min) (%) Time (min) (%) Time (min)
Method BLO (Solver) 16-way-1-shot 16-way-5-shot 16-way-10-shot 16-way-20-shot
FO-MAML [14] AO 94.46 +0.35 8.59 9793+0.11 873 99.13+0.13 8.87 99.17£0.04 9.01
Sign-MAML [15] GuU 9691 0.1 8.1 97.35+£028 8.14 97.42+03  8.23 97.46£024 832
Vanilla MAML [14]  GU 98.84:0.1 13.04 99.49:003 1327 99.63:0.01 13.29 99.66 = 0.02 13.35
iIMAML [16] IF 97.66£0.07 14.14 9858 +£0.04 1452 99.35+0.04 14.81 99.43£0.02 14.88

54

The best performance in each setting is indicated in boldface. Standard deviations are reported based on five random trials. Rows marked in gray indicate BLO-enabled algorithms.
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Formulation

The study of model pruning through the lens of BLO was
first explored in [18]. Specifically, there exist two main
tasks in model pruning: pruning and retraining. Pruning
involves determining the sparse pattern of model weights,
while retraining focuses on recovering model accuracy us-
ing the remaining nonzero weights [55]. To facilitate these
tasks, one can introduce the binary pruning mask variable
m € {0,1}" and the model weight variable ¢ € R™, where
m represents the total number of model parameters. Ac-
cordingly, the pruned model is given by (m© ¢), where
© denotes element-wise multiplication. To achieve a prun-
ing ratio of p%, we impose a sparsity constraint on m,
where me Q and Q= {m,|,m € {0,1}",1"m <k}, with
k= (1—p%)n. Our goal is to prune the original dense
model to the targeted pruning ratio of p% and obtain the
optimal sparse model (m© ¢). To achieve this, we view
the pruning task (®) and the model retraining task (@) as
two optimization levels, leading to the formulation of bi-
level pruning (BiP):

minimize (i (m O ¢* (m)),
meQ ——
@: Pruning task

subject to ¢*(m) = argmin lx(m O P) + %H ¢ ||§, (BiP)
peR"

@: Sparsity-fixed model retraining

where 0, and 0 denote the training losses under different data
batches, m and ¢ are the upper-level and lower-level optimiza-
tion variables, respectively, and ¢*(m) signifies the retrained
model weights given the pruning mask m. In (BiP), the lower-
level training objective was regularized using a strongly con-
vex regularizer y/2| ¢ ||% like (Fast-BAT).

Methods

Since BiP is an unconstrained BLO problem, it can be solved
using BLO algorithms, e.g., IF and GU, introduced in the sec-
tions “IF for Lower-Level Unconstrained BLO” and “GU-Based
Approach for Unconstrained BLO.” Moreover, since the Hes-
sian of the lower-level objective function with respect to model
parameters is of high dimension, we impose the Hessian-free

assumption V¢ ¢l = 0 to make the BLO implementation com-
putationally feasible. Following (4), one can then obtain the closed
form of the IG [18]: d¢p*(m)/dm = — (1/y) Vi ¢lu(m O ¢"),
where ¢" signifies a lower-level solution. Furthermore, the bi-
linearity of the pruning mask m and the model weights ¢ allows
us to further simplify the IG to

W =L diag(Vale@liomos)  (19)
where the Hessian-free assumption is adopted and diag(a) de-
notes the diagonal matrix with a being the main diagonal vec-
tor. A detailed proof can be found in [18, Section 3].

Experiment results

To implement BiP, we adopt two BLO methods: the IF (see
the section “IF for Lower-Level Unconstrained BLO”) and
GU (see the section “GU-Based Approach for Unconstrained
BLO”). We term the resulting BLO-inspired model prun-
ing approaches BiP-IF and BiP-GU. For comparison, we
also consider two commonly used non-BLO-based pruning
methods, the state-of-the-art iterative magnitude pruning
(IMP) [55] and the most efficient one-shot magnitude prun-
ing (OMP) [55]. We remark that the notable lottery ticket hy-
pothesis [55] stated that IMP is able to identify a trainable
sparse subnetwork (known as a “winning ticket”) with a test
accuracy surprisingly on par with or even better than that of
the original model.

Figure 3 illustrates the pruning accuracy and the run-
time efficiency of BLO-based pruning methods versus non-
BLO approaches across diverse image classification datasets
(including CIFAR-10, CIFAR-100, and Tiny-ImageNet) under
ResNet-18. As we can see, BiP-IF yields the best performance
in all of the dataset settings shown in Figure 3(a)—(c). This is
also the pruning recipe used in [18]. Thanks to the closed-form
expression of the IG in (19), the computation of BiP-IF is also
more efficient than that of BiP-GU, as shown in Figure 3(d).
In addition, BiP-GU can also provide competitive pruning
accuracy to IMP and takes less computation time than IMP.
Furthermore, we observe that OMP yields the least computa-
tion time but the worst pruning accuracy. This is not surprising

Table 6. Performance comparison of different robust training methods using PreActResNet-18 on CIFAR-10 and Tiny-ImageNet datasets.

Standard Standard

BLO Accuracy (%) RA-PGD (%) RA-AA (%) Accuracy (%) RA-PGD (%) RA-AA (%) Time

Method (Solver) (€ =8/255) (€ =8/255) (€ =8/255) (€ =16/255) (€=16/255) (e=16/255) (s/epoch)
CIFAR-10, PreActResNet-18
FastAT [61] N/A 82.39+0.14 4549 +0.21 4187 +0.15 4415727 21.83+1.32 1249+0.33 23.1
FastAT-GA [62] 7971 +024  47.27 +0.22 43.24+0.27 5829 +1.32 2601 +0.16 1797+033 753
FastBATAF [10] IF 7997 +0.12 48.83:0.17 45.19:0.12 68.16+025 27.69:0.16 1879:024 61.4
Tiny-ImageNet, PreActResNet-18

FastAT [61] N/A 41.37 + 3.08 17.05+3.25 1231+273 31.38+0.19 542 +2.17 3.13+£0.24 284.6
Fast-AT-GA [62] 4552024 2039+0.19 1625+0.17 2917032 679+027  427+0.15 5927
FastBATAF [10] IF 45.80:022 21.97:021 17.64:0.15 33.78:023 8.83:022 5.52:0.14 5724

The fraining phase includes adversarial perturbations with two budgets: € =8/255 and 16/255 over 20 epochs. Results are presented as mean + standard deviation over
10 random trials. Rows marked in gray indicate BLO-enabled algorithms. RA: robust accuracy; RA-AA: RA against AutoAttack.
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since OMP adopts a noniterative pruning scheme to find the
model’s sparse pattern.

BLO for invariant representation learning

In this section, we explore the application of BLO in improving
the generalization of ML models. Specifically, we investigate
the use of BLO for acquiring training environment-agnostic

data representations through invariant risk minimization
(IRM) [56].

Formulation

IRM [56] is proposed to acquire invariant data representa-
tions and to enforce invariant predictions against distribution
shifts. Unlike the conventional environment risk minimization
(ERM)-based training, IRM yields a BLO-like formulation:
the upper-level optimization task of IRM is to train a network
backbone to capture environment-agnostic data representa-
tions, and the lower-level optimization task is to find an in-
variant prediction head (on top of the learned representation
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network) to produce a global optimum to all of the training
environments. Formally, IRM can be cast as follows:

E
minimize D Ui(p"(0)-0)
i=1

subjectto ¢"(0) € argminli(¢p°0),Vic[E] (IRM)
¢

where ¢ -0 denotes the representation—acquisition model 6,
the predictor ¢, {; is the training loss associated with the ith
training environment, and E is the total number of training envi-
ronments. The rationale behind (IRM) is that, given the invari-
ant representation extractor 0, there exists an invariant predictor
¢ (0) that is optimal across all of the training environments.

Methods

Solving problem (IRM) is highly nontrivial since the lower-
level solution ¢ (6) should be universal and applied to all E
training environments. To circumvent this difficulty, IRM
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FIGURE 3. Experiment results of model pruning on different datasets under ResNet-18. (a)—(c) Pruning trajectory is given by test accuracy (%) versus
sparsity (%) under different datasets. (a) CIFAR-10, (b) CIFAR-100, and (c) Tiny-ImageNet. (d) Efficiency comparison: the entire time consumption

versus the pruning ratio.
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is typically relaxed to a single-level optimization problem,
known as IRMvl [56]:

E
minimize ) [0:(0)+ 7| Vun-10tow-0) ;| 0)

i=1

where y >0 is a regularization parameter and V=10
0i(w © 0) denotes the gradient of ¢; with respect to w, comput-
ed at w = 1. In the preceding formulation, the identity mapping
w = 1 is adopted, symbolizing a basic “imaginary” classifica-
tion head. Meanwhile, 6 corresponds to the combination of
the representation extractor and the actual invariant predictor.
However, the preceding formulation is restricted to linear in-
variant prediction and penalizes the deviation of individual en-
vironment losses from stationarity to approach the lower-level
optimality in IRM.

Beyond IRMv1, a consensus-constrained BLO method is
developed in [58] to solve problem (IRM). The key idea is to
introduce E auxiliary predictors {¢;} and explicitly enforce pre-
diction invariance by infusing a consensus prediction constraint
C={{¢i}|fPp=...= ¢} to the lower-level problem of (IRM)
and promote the per-environment stationarity in its upper-level
problem. This modifies (IRM) to an ordinary BLO problem:

E
minimize )" [0i(¢hi (0) - 0) + 7] Vo Li(pi 0)- 0) 1]
i=1

E
subject to {¢; (0)} = | = argmin Y li(¢; - 0), Vi € [E],
{pileC i=1
(IRM-BLO)

where y > 0 is aregularization parameter, and [E] denotes the
integer set {1,2,...,E}. The advantage of converting (IRM)
into the consensus-constrained (IRM-BLO) is that projec-
tion onto the consensus constraint yields a closed-form solu-
tion, i.e., Pc(a)=argmin(g)ec =1 | ¢pi— a; [5=1/E Z;a;,
where $c(a) denotes the projection operation to project the
point a onto the constraint C. It has been shown in [58] that
problem (IRM-BLO) can be effectively solved using the GU
approach, which approximates each individual lower-level
solution using K-step GD unrolling together with the consen-
sus projection. Thus, the lower-level solution becomes

E
Vi, i (0)~ % > o®, ¢l =gtV — V4 0(p " - 0),

i=1

for k €[K] 21)

where > 0 is the lower-level learning
rate. Based on this expression, AD can
be called to compute the implicit gradi-
ent from ¢§K) (0) to the variable 6 in

Method
the GU process. ERM N/A
, RMvI [56]  N/A
Experiment results RMGame [57] N/A

We evaluate the performance of IRM-  IRMBLO [58] GU

[56] and Colored-FashionMNIST [57], where spurious cor-
relation between the image label and the background color is
manually imposed in the datasets, which makes the conven-
tional ERM training ineffective. To capture both the accuracy
and the variance of invariant predictions across multiple test-
ing environments, the average accuracy and the accuracy gap
(the difference between the best-case and worst-case accuracy)
are measured for IRM methods. Table 7 presents the resulting
performance of IRM-BLO and compares it with those of ERM
and two IRM baselines, IRMvl [56] and IRM-Game [57].
Note that all IRM variants outperform ERM, which justifies
the importance of IRM training to improve model generaliza-
tion across diverse environments. Within the IRM training
family, IRM-BLO outperforms others by achieving the high-
est average accuracy and the smallest accuracy gap across both
datasets. This superior performance underscores the value of
BLO compared to the suboptimal design IRMvl.

Discussion

BLO is a challenging but rapidly developing subject. Despite

the recent progress discussed in this article, significant work is

yet to be done to address various challenges, ranging from de-
veloping scalable algorithms to extending the applicability of

BLO to a wider range of problems. Here we highlight several

worthwhile future directions.

B BLO algorithms: First, the development and analysis of
BLO algorithms for more general BLO problems, includ-
ing those with complex lower-level constraints (e.g., non-
linear constraints), require additional exploration. The
current focus has predominantly been on problems with
linear constraints, and extending the BLO framework to
handle nonlinear constraints is an important and challeng-
ing task. Additionally, exploring scenarios with coupled
constraints between lower and upper levels, such as
resource sharing among adversarial and normal agents,
presents a complex area that is underexplored. Second,
BLO formulations with NS lower-level solutions, such as
(NS-BLO), lack theoretically grounded, scalable, and
easy-to-implement algorithms. This aspect of BLO has
received less attention from the community, making it an
open topic for future investigation. Developing efficient
algorithms that can handle NS lower-level solutions and
provide convergence guarantees is a key research direc-
tion. Third, beyond the scope of BLO, exploring problems
involving more than two levels, such as dataset pruning

Table 7. Performance of different IRM training methods.

Colored-MNIST Colored-FashionMNIST

BLO (Solver) Average Accuracy Accuracy Gap Average Accuracy Accuracy Gap

49.19 +1.89 90.72 +2.08 49.77 +1.71 88.62 + 2.49
68.33 +0.31 2.04+0.05 68.76+0.31 1.45 +0.09
67.73+0.24 1.67+0.14  67.49 +0.32 1.82+0.13
69.47 -+ 024 1.04:0.07 69.43 +0.21 1.14 £ 0.11

BLO with two commonly used image
classification datasets, Colored-MNIST

method is marked in gray.

The best performance per evaluation metric is highlighted in boldface, and the performance of the BLO-enabled
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for TL, represents an exciting frontier. These multilevel
problems introduce additional complexity and challenges,
requiring the design of novel algorithms to tackle the
inherent hierarchical structure effectively. Finally, the
large scale and distributed availability of data demand the
development of decentralized and federated algorithms to
solve these complex BLO problems, which also presents a
compelling research direction for future exploration.

BLO theories: First, while significant progress has been
made in establishing theoretical guarantees for solving the
basic BLO problem (LU-BLO), more attention is needed
on exploring practical settings, including (coupled) lower-
level constraints, nonconvex lower-level problems, and/or
black-box settings, where one may not have access to
upper-/lower-level parameters. These scenarios present
unique challenges and complexities, making it difficult to
analyze the problem and derive theoretical guarantees.
Investigating the convergence properties and establishing
theoretical foundations for solving BLO problems under
these practical settings is an important avenue for future
research. Second, when datasets become massive, it is cru-
cial to develop theoretically grounded BLO algorithms that
can adhere to practical requirements. Therefore, develop-
ing theoretical frameworks and analyzing the convergence
properties of algorithms for solving large-scale BLO prob-
lems under realistic assumptions is also an important
research topic. Finally, with the discovery of the phenome-
non of double descent, theoretical analysis of standard ML
algorithms on overparameterized neural networks has
received significant attention from the research community.
Theoretical investigation of BLO algorithms for such over-
parameterized problems is certainly an interesting research
direction.

BLO applications: First, in the context of mixture-of-
experts (MoE) training, there is a complex interplay
between the training of the gating network that selects
experts and the training of the expert-oriented pathways
used for final predictions. Exploring BLO techniques to
effectively optimize the coupling between these two pro-
cesses in MoE training can lead to improved performance
and better utilization of emerging ML models like MoE.
Second, prompt learning, a key technique used in today’s
foundation models, involves a crucial coupling between
prompt pattern learning and label/feature mapping optimi-
zation. Leveraging BLO methods to model and optimize
the interactions between prompt pattern learning and
label/feature mapping can enhance the learning process
and enable accurate and robust prompt generations. Third,
BLO is highly applicable in (inverse) reinforcement learn-
ing. For instance, the actor/critic algorithm can be formu-
lated as a BLO problem, with separate agents evaluating
and optimizing the policy. In inverse reinforcement learn-
ing, the tasks involve inferring the agents’ reward function
and finding the optimal policy based on it. Applying BLO
frameworks to these scenarios offers potential for novel
insights and improved efficiency.

In summary, the interplay between the theoretical under-
pinnings of BLO and its practical applications promises a
fertile ground for future exploration and innovation, pushing
the boundaries of optimization theory and applications in SP
and ML.
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