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Abstract

Graph Neural Networks (GNNs) have gained widespread usage and achieved remark-

able success in various real-world applications. Nevertheless, recent studies reveal the

vulnerability of GNNs to graph adversarial attacks that fool them by modifying graph

structure. This vulnerability undermines the robustness of GNNs and poses significant

security and privacy risks across various applications. Hence, it is crucial to develop

robust GNN models that can effectively defend against such attacks. One simple ap-

proach is to remodel the graph. However, most existing methods cannot fully preserve

the similarity relationship among the original nodes while learning the node represen-

tation required for reweighting the edges. Furthermore, they lack supervision informa-

tion regarding adversarial perturbations, hampering their ability to recognize adversar-

ial edges. To address these limitations, we propose a novel Dual Robust Graph Neural

Network (DualRGNN) against graph adversarial attacks. DualRGNN first incorpo-

rates a node-similarity-preserving graph refining (SPGR) module to prune and refine

the graph based on the learned node representations, which contain the original nodes’

similarity relationships, weakening the poisoning of graph adversarial attacks on graph

data. DualRGNN then employs an adversarial-supervised graph attention (ASGAT)

network to enhance the model’s capability in identifying adversarial edges by treat-

ing these edges as supervised signals. Through extensive experiments conducted on

four benchmark datasets, DualRGNN has demonstrated remarkable robustness against

various graph adversarial attacks.

Keywords: Graph neural network, graph adversarial attacks, dual robustness, graph

attention network.

1. Introduction

Over the past few years, graph neural networks (GNNs) have attracted much atten-

tion because of their impressive ability to effectively deal with graph-structured data.
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GNNs have achieved remarkable success in a variety of domains, including visual iden-

tity (Chen et al., 2019; Majumdar, 2020; Liu et al., 2023; Gou et al., 2023; Dornaika

et al., 2023), recommendation systems (Song et al., 2022; Yang et al., 2022; Zhang

et al., 2023; Zhang and Wang, 2023), natural language processing (Yin et al., 2020;

Yu et al., 2021; Zhao et al., 2022), link prediction (Dai et al., 2022b; Salha-Galvan

et al., 2022; Han et al., 2023; Zhang and Bai, 2023), etc. The success of GNNs can

be attributed to the graph message propagation mechanism (Wu et al., 2021). In this

mechanism, each node aggregates information from its local neighborhood in each

layer at each iteration. This iterative process enables the model to eventually gener-

ate embeddings that not only capture rich node features but also encapsulate valuable

topological structure information. While the information aggregation from neighbor-

ing nodes is powerful in embedding learning, the manner in which GNNs exchange

this information between nodes introduces a potential risk.

Recent studies have shown that GNNs are vulnerable to adversarial attacks (Dai

et al., 2018; ZÈugner et al., 2018; ZÈugner and GÈunnemann, 2019; Wu et al., 2019b).

These attacks involve introducing subtle or carefully crafted perturbations to the graph-

structured data, which may go unnoticed but have a significant detrimental impact on

the performance of GNNs. The lack of robustness in GNN models can lead to severe

consequences for some security and privacy-related applications. For instance, in finan-

cial credit system, fraudsters can make fraudulent transactions with normal customers

to evade the high-risk customer detection models. As illustrated in Figure 1, originally

the fraudster was classified by the GNN model as a high-risk customer. After mak-

ing fraudulent transactions with some normal customers, the GNN model misclassifies

them as a normal user. In this situation, the lack of the robustness of GNN model

can lead to financial fraud and other fatal consequences. Consequently, studying ro-

bust GNN models to resist graph adversarial attacks is of great significance. Although

attackers have various means to modify clean graph data, such as perturbing node fea-

tures and modifying graph structure, recent research (ZÈugner and GÈunnemann, 2019;

Xu et al., 2020; Finkelshtein et al., 2022) has shown that most of the existing graph ad-

versarial attacks focus on altering the graph structure, especially by adding or rewiring

edges to degrade the performance of GNNs, that is poisoning adversarial attacks. In

this scenario, the graph data undergoes perturbations due to the modified graph struc-

ture and is then used to train the GNN models.

A simple solution to improve the robustness of GNNs against graph adversarial

attacks is to reweight the edges and reconstruct the graph by learning the similarity

relationships between nodes. Most existing methods recalculate edge weights using

either the original node features or node representations learned from GNNs and their

variants, such as graph convolutional networks (GCNs). For example, Jaccard-GCN

(Wu et al., 2019b) modeled edge weights based on the Jaccard similarity of the origi-

nal node features, while GNNGuard (Zhang and Zitnik, 2020) utilized cosine similarity

to calculate edge weights at each layer. However, the original node features typically

lack graph structure information and may contain redundant or noisy data. Relying

solely on these features to model edge weights can lead to mistakenly removing nor-

mal edges and inaccurately reflecting the graph’s topological structure. In an attempt

to address this issue, GRCN (Yu et al., 2020) utilized supervised GCNs to learn node

representations and adjusted edge weights based on the inner product of these learned
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(SPGR) module and an adversarial-supervised graph attention (ASGAT) network. On

one hand, the SPGR module aims to refine the graph structure by leveraging the learned

node representations. This module can preserve the original nodes’ similarity, encapsu-

late graph topology information, and be insensitive to perturbations, thereby mitigating

the detrimental effects of graph adversarial attacks on the graph data. On the other

hand, the ASGAT network employs adversarial edge information as supervised signals

to train an adversarial-supervised attention mechanism. This enables the network to

recognize the adversarial edges and suppress the propagation of adversarial information

within the graph, thereby enhancing the model’s ability to resist graph adversarial at-

tacks. The above two modules are designed to defend against graph adversarial attacks

from the perspective of graph data and models, respectively. By integrating these two

modules effectively, DualRGNN can improve the robustness of GNNs against graph

adversarial attacks, achieving higher levels of resilience and provides an effective de-

fense mechanism against these attacks. The main contributions can be summarized as

follows.

• We propose a novel Dual Robust Graph Neural Network (DualRGNN) against

poisoning graph adversarial attacks on the graph structure, which improves the

robustness of GNNs from graph structure and graph representation learning.

• We propose to refine the graph structure by learning node representations that

preserve the similarity relationships among the original nodes and carry graph

topology information while remaining insensitive to perturbations, to weaken

the poisoning of graph adversarial attacks on the graph data.

• We present a new adversarial-supervised graph attention network that exploits

adversarial edge information as supervised signals, and develop an adversarial-

supervised attention mechanism to improve the model’s ability to recognize ad-

versarial edges.

• Extensive experiments on four real-world datasets demonstrate the effectiveness

of DualRGNN in defending against various types of adversarial attacks. Addi-

tionally, an ablation study is performed to validate the efficacy of each compo-

nent of DualRGNN.

2. Related Work

2.1. Graph Adversarial Attacks

Extensive studies have shown that traditional deep neural networks are vulnerable

to adversarial attacks. GNNs transfer the key ideas of traditional deep neural networks

to graph data processing. In graph-structured data, nodes are interdependent and corre-

late to each other. GNNs perform neighborhood aggregation through a graph message

propagation mechanism to learn node representation. When a node in the graph is sub-

jected by adversarial attacks, the adversarial information will contaminate other nodes

along with the graph message propagation process, greatly reducing the performance

of GNNs. Therefore, GNNs are more vulnerable to persecution from adversarial at-

tacks (Dai et al., 2018; ZÈugner et al., 2018; ZÈugner and GÈunnemann, 2019; Wu et al.,
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2019b). The goal of graph adversarial attacks is to cause GNNs to misclassify graph

nodes by perturbing the graph structure or node features.

According to the time of attack occurrence, graph adversarial attacks can be divided

into poisoning attacks and evasion attacks (Jin et al., 2020a). Poisoning attacks take

place during training, where the attacker manipulates the training data. Evasion attacks

perturb the graph data during testing, where GNN models are trained on clean graphs

and then tested on perturbed data. In our work, we mainly focus on defending against

the poisoning adversarial attacks. Poisoning adversarial attacks can be divided into

two categories: targeted attacks and non-targeted attacks. In a targeted attack, the at-

tacker aims to cause the GNNs model to make incorrect predictions on the target nodes.

While for non-targeted attacks, the attackers focus on reducing the overall performance

of GNN models on all test nodes. One of the most typical poisoning attack methods

is Nettack (ZÈugner et al., 2018), which generates unnoticeable perturbations by mod-

ifying graph structure and node attributes, and simultaneously preserving important

data characteristics such as degree distribution. Metattack (ZÈugner and GÈunnemann,

2019) regarded graph structure as a hyperparameter, introducing meta-learning into

graph adversarial attacks and optimizing the algorithm based on meta gradients. In our

experiments, we will utilize Metattack and Nettack to verify the performance of our

method in resisting various graph adversarial attacks.

2.2. Robust Graph Neural Networks

The vulnerability of GNNs to graph adversarial attacks has led to extensive research

on robust graph neural networks (RGNN). Ding et al. (2018) first introduced generative

transitional networks (GANs) into GNNs, generating fake samples in low-density areas

to reduce the influence of samples nearby, thereby improving the robustness of GNNs.

However, the introduction of GANs also brings significant computation overhead. Jin

and Zhang (2019) proposed to perturb the embedding representations of hidden layers

in GCNs to indirectly generate perturbations to the graph, which can implicitly enforce

the robustness of GNNs while greatly reducing computing cost. Feng et al. (2021)

proposed a GraphAT, designing a graph adversarial regularizer that can maximize the

divergence between the prediction of the target examples and its connected nodes when

generating perturbations. However, graph adversarial training methods rely on clean

graph data and cannot resist poisoning attacks. Zhu et al. (2019) provided a Robust

GCN (RGCN), adopting Gaussian distributions as the hidden representations of nodes

in each GCNs layer and designing a variance-based attention mechanism to absorb

the adversarial attacks. By designing a penalized aggregation mechanism, Tang et al.

(2020) proposed a PA-GNN, which treated the adversarial edges as supervisions of

known perturbations in the clean graphs with similar domains, and transferred this

ability to the target poisoned graph with meta-learning. However, the transfer-based

robustness is extremely limited, and besides, a clean graph with similar domains is not

always available in the real world.

Wu et al. (2019b) proposed a simple pre-processing method, checking the node

pairs of each edge in the graph based on Jaccard similarity and removing those edges

with low similarity scores to obtain a clean graph. Similarly, by introducing the sin-

gular value decomposition (SVD), Entezari et al. (2020) suggested reconstructing the

graph with the low-rank approximation of the adjacency. However, the pre-processing
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methods only process the input graph data once and are independent of the pipeline

of GCNs, making it difficult to obtain a clean graph effectively. Yu et al. (2020) pro-

posed a graph-revised convolutional network (GRCN) to revise the graph structure in

each GCNs layer. Similarly, Zhang and Zitnik (2020) proposed GNNGuard, assigning

higher weights to edges connecting similar nodes while pruning edges between unre-

lated nodes in each GNNs layer, and simultaneously introducing a layer-wise graph

memory module to stabilize training. Zhang and Ma (2020) suggested utilizing varia-

tional graph autoencoders to encode the disturbed graph into latent representations to

reconstruct it. Jin et al. (2020b) proposed Pro-GNN, utilizing the low rank, sparsity,

and smoothness of real-world clean graphs to learn robust graph structures that con-

form to the above characteristics. Li et al. (2022) proposed STABLE, which refined

the graph structure by learning representations that carry both feature and structure in-

formation and are insensitive to perturbations, based on unsupervised graph contrastive

learning, and simultaneously designed a robust normalization mechanism to improve

GCNs. Dai et al. (2022a) proposed RS-GNN to address graph denoising by learning

a link predictor to down-weight noisy edges while reinforcing connections between

nodes with high similarity, thereby enhancing the efficacy of message-passing within

GNNs. Recently, Wang et al. (2023) proposed USER, an unsupervised framework that

utilizes intrinsic graph connectivity, such as the rank of the adjacency matrix and a

structural entropy-based objective function, to mitigate the adverse impacts of random

perturbations.

However, most existing GCN-based robust GNNs primarily concentrate on preserv-

ing graph structure similarity, often neglecting the inherent node similarity in the orig-

inal features, especially for nodes lacking direct edges between them. Consequently,

refining the graph structure based on the original node similarity relationships becomes

essential. Moreover, a notable limitation across most existing robust GNN models lies

in their incapacity to recognize adversarial edges which are mixed with normal edges,

hampering the performance of the message-passing mechanism. Hence, there is a need

for supervision in reweighting edges to alleviate the influence of adversarial edges.

In this paper, we aim to refine the graph structure by learning node representations

that preserve the similarity of original nodes, aiming to mitigate the detrimental ef-

fects of graph adversarial attacks on graph data. Additionally, we treat the adversarial

edges as supervised signals to improve GNNs’ ability to recognize and identify these

edges, thereby purging the process of neighborhood aggregation to obtain cleaner node

representations. By introducing these two mechanisms, the robustness to resist graph

adversarial attacks will be significantly enhanced.

3. Proposed Method

3.1. System Model

In this section, we follow (Guo et al., 2022; Cinà et al., 2023) to introduce our sys-

tem model according to attacker’s goal, knowledge of the target system, and capability

of manipulating the input data. Subsequently, we outline the defender’s objectives,

knowledge, and capabilities.
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3.1.1. Attack Framework

In the context of graph adversarial attacks, the objective of a poisoning attack is

to diminish the performance of GNN models by injecting adversarial samples into the

training dataset. In our method, the attacker executes adversarial attacks by injecting

adversarial edges that do not exist in the original graph datasets before the GNN model

is trained. The attacker’s knowledge includes all information about the architecture of

the model and the original training data. The attacker’s capabilities include launching

various types of adversarial attacks, such as targeted attacks and non-targeted attacks.

In our experiments, we consider two types of non-targeted attacks, one type of targeted

attack, and random noises.

3.1.2. Defense Framework

The defender’s goal is to improve the accuracy and availability of the model by

resisting adversarial attacks initiated by the attacker. When the attacker tries to max-

imize the loss value by injecting poisons into the clean data, the defender struggles

to minimize the loss under various adversarial attacks. Despite lacking access to the

clean training data, the defender can refine or purify the poisoned data from the at-

tacker. Additionally, the defender can adjust the architecture and parameters of the

model, providing a robust defense against adversarial attacks.

In this paper, the proposed model plays the role of the defender, including two

modules. The SPGR module refines the poisoned graph using both original node fea-

tures and multiple graph structures. The ASGAT module injects the adversarial edges

which are removed in SPGR module, treating them as supervised signals to train a GAT

network, enabling the model to recognize the adversarial edges in the perturbed input

graph. In the testing phase, the perturbed graph with refined node representations is

directly fed into the GAT network. With the trained attention weights, the adversar-

ial edges in the graph can be recognized and the propagation of perturbations can be

suppressed by the defender.

3.2. Overall Architecture

The overall architecture of the proposed DualRGNN framework is shown in Fig. 2.

The blue part denotes the SPGR module, and the green one represents the ASGAT

network. Let G = {V,E} be an undirected graph with X ∈ R
N×d as the node feature

matrix, where there are N nodes and each node has a d-dimensional feature vector.

In the SPGR module, we adopt a graph contrastive learning strategy (Velickovic

et al., 2019; You et al., 2020) and design four types of graph augmentations through

edge remodeling, dropping, and recovering to generate correlated views for contrastive

learning. Specifically, given an input perturbed graph G with node features X, G is first

converted to a k-nearest neighbor (kNN) graphGK by modeling original node similarity

relationships. The generated kNN graph GK can be regarded as the first augmented

graph view for the input graph G. Meanwhile, the input graph G is pre-processed by

initially dropping its plausible adversarial edges to produce a relatively clean graph GP

as the second augmented graph view. Based on GP, we then randomly recover a small

portion of removed edges to generate a set of perturbed augmented graph views GP
m

with different recovering ratios as the third type of graph views. In addition, we shuffle

7



GP to obtain the fourth graph view G
P
. Thus, the given graph G undergoes graph

data augmentations to obtain four types of correlated views that contain diverse graph-

structured information. To jointly preserve the original nodes’ similarity and combine

this information, we employ a similarity-preserved graph convolution layer with shared

parameters to learn node representations from three pairs with GK and each of the other

three types of graphs. In the testing phase, node representation HP can be produced

from the similarity-preserved graph convolution layer acting on GP and GK .

Once we obtain the satisfactory node representation HP, we prune and refine the

input graph G based on it, and obtain a robust graph G∗ which serves as the input to

ASGAT.

In the ASGAT network, we inject adversarial edges into G∗ to obtain the perturbed

graph G̃∗ by randomly recovering a small portion of edges removed during the graph

structure refining. These adversarial edges are treated as supervised signals to train

the adversarial-supervised attention mechanism. We then employ the graph contrastive

learning strategy between G∗ and G̃∗ to optimize this module. In the prediction stage,

the class prediction Z can be obtained from the G∗ using the ASGAT network. More

specific designs of DualRGNN are elaborated as follows.

3.3. Node-Similarity-Preserving Graph Refining Module

The proposed DualRGNN employs an SPGR module to cleanse and refine the input

graph to resist poisoning attacks from the perspective of graph data. To learn robust rep-

resentations from graph-structured data, we adopt a graph contrastive learning strategy

(Velickovic et al., 2019; You et al., 2020) to capture diverse information from different

types of graph augmentations in a contrastive learning manner. Specifically, we first

generate four types of graph data augmentations, then perform graph convolution on

them to obtain graph representations through contrastive learning, and refine the input

graph structure with these representations.

3.3.1. Graph augmentation generation

Creating augmented graph views is the prerequisite for graph contrastive learning,

as diverse augmented views of a graph can offer various contexts for this learning

process. In the SPGR module, we aim to refine the graph structure by leveraging

the acquired node representations. There representations maintain the similarity of the

original nodes while incorporating extensive graph topology information, making them

resilient to disturbances.

To capture the similarity information of the original nodes, we introduce a kNN

graph, which models the node similarity relationships in the initial feature space. This

graph can be treated as the first type of augmented graph. For the given input graph

G containing N nodes, we employ the kNN graph construction algorithm using cosine

similarity to compute each similarity score Ci j between the i-th and j-th nodes in the

original feature space. The kNN graph is created by selecting the k (where k ≪ N)

nearest neighbors to each target node. We denote this graph as GK , and its adjacency

matrix is represented as AK .

Ci j = simCos

(
xi, x j

)
, (1)
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AK
i j =

{
1, if x j ∈ knear (xi)

0, else,
(2)

where xi is the feature vector of i-th node, and knear (xi) denotes the k-nearest neigh-

bour nodes of node xi and is determined by Ci j.

In order to obtain a relatively clean graph, following the previous work (Wu et al.,

2019b), we preprocess the input perturbed graph by roughly removing adversarial

edges that usually connect two nodes with low similarity. The purged graph can be

denoted as GP as the second type of augmented graph. Specifically, we assess the sim-

ilarity score between paired nodes of each edge in the input graph based on Jaccard

similarity, which is shown as follows:

Ji j = simJac

(
xi, x j

)
, (3)

where simJac(·) is a similarity measure function. We prune the input graph based on the

similarity matrix J by removing the edges whose similarity score is below a predefined

threshold δ1, which is defined as:

AP
i j =

{
1, if Ji j ≥ δ1
0, if Ji j < δ1,

(4)

where AP is the adjacency matrix of GP. The removed edge can be denoted by a matrix

E, where Ei j = 1 denotes that the edge between xi and x j has been removed. It can be

noted that the adjacency matrices A, AP and E satisfy the formula as:

A = AP + E. (5)

Inspired by the previous work (Li et al., 2022), we introduce several perturbed aug-

mented graph views with slight adversarial perturbations into graph contrastive learn-

ing, to learn the node representations that are insensitive to perturbations. We generate

the perturbed augmented graph views by randomly recovering a small portion of re-

moved edges as the third type of augmented graph. Formally, we first sample a random

masking matrix Mp ∈ {0, 1}N×N ∼ B(1 − p) from a Bernoulli distribution, where p is

a hyper-parameter that controls the recovery ratio. Then we recover a small portion

of edges into GP based on the masking matrix Mp to obtain the perturbed augmented

graph view GP
m, which can be formalized as:

AP
m = AP + E

⊙
Mp, (6)

where
⊙

represents Hadamard product. AP
m is the adjacency matrix of GP

m. Consid-

ering the trade-off between performance and computation overhead, we adopted two

perturbed augmented graph views for implementation.

Following the previous work (Velickovic et al., 2019; Li et al., 2022), we introduce

a corruption function C(·) to generate a negative graph as the fourth type. The negative

graph G
P

is obtained by randomly shuffling the feature rows of GP and keeping the

graph topology. That means GP and G
P

have the same topology structure and different

node orders.
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In summary, the augmented graphs GK , GP, and GP
m are positive instances with dis-

tinct adjacency matrices while sharing identical node feature representations with the

original graph G. Notably, GK is generated with kNN graph construction algorithm

using cosine similarity between the features of each node and its neighbors, capturing

node-wise similarity information. In the similarity-preserving graph convolution, GK

is used to simultaneously aggregate the information from the nodes with higher sim-

ilarities, which is performed in Eq.(8). Note that when generating GK , the adjacency

matrix of G is not used. In a clean graph, nodes with low feature similarity are usually

not connected by edges. If an edge connects a pair of nodes with low similarity, it is

likely to be an adversarial edge. Therefore, we generate a relatively clean graph GP

by removing the edges that connects two nodes with low similarity. GP
m is obtained by

recovering a small portion of removed edges in GK , and this process can be regarded as

injecting slight attacks. Finally, we randomly shuffle the feature rows of GK to obtain

G
P

as the negative augmented graph in our strategy of contrastive learning.

Subsequently, we introduce a similarity-preserved graph convolution layer into the

SPGR module to learn the node representations that can preserve the original nodes’

similarity. More details of the similarity-preserved graph convolution will be described

as follows.

3.3.2. Similarity-preserved graph convolution

Similarity-preserving graph convolution can consider both the graph structure in-

formation and the original node similarity relationship when learning node represen-

tations, aggregating neighborhood feature information from both the graph structure

and the original node similarity relationship, and thereby the learned node representa-

tions can not only carry graph structure information but also preserve the original node

similarity.

For the similarity-preserved graph convolution, the convolution operation in the l-th

layer (l ∈ Z+) is formalized as follows:

H(l) = σ
(
P(l)H(l−1)W (l)

)
, (7)

where H(l−1) ∈ R
N×d(l−1)

is the input node feature matrix from a previous layer and

H(0) = X. σ(·) is an activation function. W (l) is the weight to be trained in the l-th layer.

P(l) is the graph Laplacian matrix in this layer.

Unlike the vanilla GCNs, the graph Laplacian matrix P(l) integrates both the prop-

agation information of the original graph and the kNN graph, enabling it to aggregate

the neighborhood information from these two graphs, which is defined as:

P(l) = s(l) ∗ DP
− 1

2
APDP

− 1
2
+

(
1 − s(l)

)
∗ DK

− 1
2
AK DK

− 1
2
, (8)

where DP and DK are the node degree matrix of graph GP and GK , respectively. s(l) is

the weight vector that adaptively balances the neighborhood information from GP and

GK . s ∗ A denotes the multiplication of the i-th element of vector s and the i-th row

of matrix A. Therefore, s(l) allows nodes to adaptively integrate information from GP

and GK , as each node can have different weight scores. In order to reduce the number
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of parameters in s(l), we model it as a mapping of node representations, which can be

formalized as:

s(l) = sigmoid
(
H(l−1)W (l)

s + b(l)
)
, (9)

where W
(l)
s ∈ R

d(l−1)×1 and b(l) ∈ R are the parameters to be trained to map H(l−1) to s(l).

sigmoid(·) is the activation function. Through this method, the number of parameters

of s(l) has been cut down from N to d(l−1) + 1, thereby reducing the computation cost of

the model.

We adopt the similarity-preserved graph convolution to perform graph representa-

tion learning for the purged graph GP, perturbed augmented graph GP
m , and the nega-

tive graph G
P
, combining with the kNN graph GK , and obtain the corresponding node

representation matrices HP, HP
m and H

P
.

The proposed SPGR module is based on graph contrastive learning, which opti-

mizes the network by maximizing the mutual information between the global represen-

tations of the perturbed augmented graph and the local representations of the purged

graph. The global-local contrastive learning is conducive to learning node representa-

tions insensitive to perturbations.

To obtain the global representations of the augmented graph, we introduce a readout

function R(·) that is implemented with a global average pooling function (Velickovic

et al., 2019) as:

h
g
m = R

(
HP

m

)
= sigmoid


1

N

N∑

i=1

HP
m i

 , (10)

where HP
m i denotes the i-th row of HP

m, that is the representation corresponding to the

i-th node in GP
m.

We introduce a discriminator D to distinguish positive samples pairs and negative

samples pairs, as well as output the probability score of the sample pair from the joint

distribution, which can be implemented using Bilinear operations as follows:

D
(
HP

i, h
g

1

)
= σ

(
HP

i
⊤

WDh
g

1

)
, (11)

where HP
i is the i-th row of HP. WD is a scoring matrix to be trained.

To maximize the mutual information, a binary cross-entropy loss between positive

samples and negative samples is adopted as the objective function of the SPGR module,

which can be formalized as follows:

LC(Θ) = −
1

2N

N∑

i=1

M∑

m=1

[log
(
D

(
HP

i, h
g
m

))
+ log

(
1 −D

(
ÅHP

i, h
g
m

))
], (12)

where Θ = {W (l),W
(l)
s ,W

D, b(l)} is a set containing all of the trainable parameters. log(·)

denotes the logarithmic operation, and M is the number of perturbed augmented graph

views adopted in the SPGR module.

3.3.3. Graph structure refining

The key idea of graph structure refining is to remove adversarial edges while adding

more useful edges connecting nodes with higher similarity, simultaneously.
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Previous work (ZÈugner and GÈunnemann, 2019; Li et al., 2022) has shown that nodes

with higher degrees are more robust and reliable compared than those with lower de-

grees. Due to the graph message propagation mechanism in GNNs, nodes with only a

few neighbors are more vulnerable to graph adversarial attacks than nodes with a large

number of neighbors. Therefore, injecting more useful edges, which usually connect

two high-similarity nodes that are more likely in the same class (Li et al., 2022), into

the graph through graph structure refining can diminish the impact of graph adversarial

attacks on graph data.

In the prediction stage, the node representation can be obtained through the similarity-

preserved graph convolution layer acting on GP combining with GK . We adopt a cosine

similarity function simCos(·) to measure the nodes similarity as:

S i j = simCos

(
hi, h j

)
, (13)

where hi and h j are the representations of the i-th and j-th nodes, respectively. Then,

based on the similarity matrix S , we prune the edges whose similarity score are below

a predefined threshold δ2 from the input graph G, and obtain a clean graph GR:

AR
i j =

{
1, S i j ≥ δ2 and Ai j = 1

0, S i j < δ2
(14)

where AR is the adjacency matrix ofGR. The removed edges can be denoted by a matrix

ER.

Then we construct a Top-K matrix S K based on the similarity matrix S to insert

useful edges into the graph GR. For each node in GR, we connect it with K neighbors

most similar to it. In this way, we can obtain the final graph G∗ with adjacency matrix

A∗:

A∗ = AR + S K . (15)

The entire workflow of the SPGR module is summarized in Algorithm 1. Once we

obtain the final graph G∗, we can perform graph representation learning based on it.

3.4. Adversarial-Supervised Graph Attention Network

Most existing robust GNN models are short of effectively exploiting adversarial

information, which leads to the lack of ability to directly recognize adversarial edges.

Based on the transfer learning, Tang et al. (2020) treated the adversarial edges as su-

pervisions of known perturbations in the clean graph with similar domains to train a ro-

bust GNN model and transferred it to the target graph in the way of meta-optimization.

However, in the real world, clean graphs with similar domains are not always available,

and the robustness achieved through transfer learning is extremely limited. To tackle

this defect, our DualRGNN employs the ASGAT network explicitly treating adversar-

ial edges as supervision signals directly on the target graph to enhance the model’s

ability to recognize adversarial edges.

3.4.1. Adversarial-supervised attention mechanism

The core of the ASGAT network is an adversarial-supervised attention mechanism

that treats adversarial edges as supervised signals to constrain model training.
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Algorithm 1: The algorithm of the SPGR module.

Input: Input perturbed graph G with node features X and adjacency matrix A.

Output: Robust Graph G∗.

1 Initialize the parameters W (l), W
(l)
s , WD, and b(l);

2 GK ← Create kNN graph based on Eq.(1, 2);

3 J ← Check similarity score between paired nodes according to Eq.(3);

4 GP ← Remove adversarial edges using Eq.(4);

5 for m = 1→ M do

6 Mp ← Sample a random mask with ratio p;

7 GP
m ← Recover edges to generate perturbed augmented graph views

according to Eq.(6);

8 end

9 G
P
← C(GP);

10 for i = 1→ epochs do

11 HP, HP
m, H

P
← Perform similarity-preserved graph convolution according

to Eq.(7, 8, 9);

12 h
g
m ← R

(
HP

m

)
;

13 Calculate LC according to Eq.(12);

14 Perform back-propagation to update parameters;

15 end

// Prediction stage

16 HP ← Perform similarity-preserved graph convolution according to Eq.(7, 8,

9);

17 S ← Check similarity between nodes via Eq.(13);

18 GR ← Prune edges of G using Eq.(14);

19 G∗ ← Insert useful edges into G via Eq.(15).
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Firstly, we inject adversarial edges into G∗ by randomly recovering a small portion

of edges removed in the graph structure refining stage to obtain the perturbed graph

G̃∗ whose adjacency matrix is represented as Ã∗. In the implementation, we sample a

random masking matrix Mq ∈ {0, 1}N×N ∼ B(1 − q) from a Bernoulli distribution to

recover a small portion of removed edges, where q is a hyper-parameter that controls

the recovery ratio, that is,

Ã∗ = A∗ + ER
⊙

Mq, (16)

The designed adversarial-supervised attention mechanism adopts an implementa-

tion similar to GATs (Velickovic et al., 2018) whose attention weights are calculated

as follows:

ai j =
exp

(
LeakyReLU

(
αT

[
Wxi∥Wx j

]))

∑
xk∈Nxi

exp
(
LeakyReLU

(
αT [Wxi∥Wxk]

)) , (17)

where α ∈ R
2d×1 and W are the mapping matrix and weight matrix to be trained, re-

spectively. exp(·) denotes the exponential function, and LeakyReLU(·) is an activation

function. Nxi
denotes the set of neighboring nodes of xi, and ∥ represents the concate-

nation operation. The attention weight ai j means the importance of node x j in the pro-

cess of neighborhood aggregation to update the representation of xi. Then we perform

neighborhood aggregation based on this attention weight, which can be formalized as

follows:

x̃i = σ


∑

x j∈Nxi

ai jx j

 , (18)

However, the vanilla graph attention mechanism does not have the ability to rec-

ognize adversarial edges because it lacks supervision of adversarial information and is

not robust to graph adversarial attacks. We develop the adversarial-supervised atten-

tion mechanism, which treats adversarial edges as supervision signals to constrain the

model to allocate higher attention to normal edges and lower attention to adversarial

edges, so as to suppress the propagation of adversarial perturbations and enhance the

model’s ability to recognize adversarial edges.

The optimization objectives of the adversarial-supervised attention mechanism are

as follows:

Ladvs = −min

(
η, E

ei j∈E\P
S − E

ei j∈P
S

)
, (19)

where η is a predefined hyperparameter, and E\P and P respectively denote the set of

normal edges and adversarial edges. E
ei j∈E\P

S and E
ei j∈P

S represent the expected attention

weights for normal and adversarial edges, respectively, which can be calculated as

follows:

E
ei j∈E\P

S =
1

|E\P|

∑

ei j∈E\P

ai j, (20)

E
ei j∈P

S =
1

|P|

∑

ei j∈P

ai j. (21)

However, it is not feasible to directly optimize the adversarial-supervised attention

mechanism. On the one hand, there is a difference in the distribution between the
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perturbed graph G̃∗ injected with adversarial information and the original graph G∗,

and the adversarial-supervised attention mechanism trained on the perturbed graph G̃∗

cannot be directly used for prediction on the original graph G∗. On the other hand,

the perturbed graph G̃∗ is disturbed by adversarial information, so performing class

prediction directly on the perturbed graph G̃∗ is not the optimal solution. To address

this issue, we optimize the adversarial-supervised attention mechanism based on graph

contrastive learning.

3.4.2. Contrastive-learning-based optimization

We optimize the ASGAT network based on the contrastive learning between the

global representations of the perturbed graph and the local representations of the orig-

inal graph. The motivation is that graph adversarial attacks need to ensure that the

attacks are globally imperceptible when poisoning the graph structure. This implies

that graph adversarial attacks may cause significant damage to the local part of the

graph, while without affecting the global graph.

In the ASGAT network, the perturbed graph G̃∗ with a small number of adversarial

edges is regarded as an augmented graph. For the node representation H̃∗ of G̃∗, we

adopt the readout function R(·) to obtain its global representation h̃g, which is defined

as Eq.(10).

Then we optimize the model by maximizing the mutual information between the

global representation of the perturbed graph and the local representation of the original

graph. The objective function is defined as follows:

Lgcl = −
1

N

N∑

i=1

[
log

(
D

(
H∗i, h̃

g
))]
, (22)

whereD is the discriminator that defined as Eq.(11).

The classification loss adopts in the ASGAT network is the cross-entropy loss de-

fined as follows:

Lce = −
∑

i∈L

c∑

j=1

Yi j ln Zi j, (23)

where Y denotes the label matrix, and L is the set of labeled samples. Z is the class

prediction result, which can be obtained by performing a softmax(·) for the node rep-

resentations.

The objective function of the ASGAT network is obtained by linearly combining

the adversarial-supervised attention loss, contrastive learning loss, and cross-entropy

loss, that is,

L(Φ) = Lce + λLadvs + µLgcl, (24)

where Φ = {W,WD, α} is a set containing all trainable parameters. λ and µ are the

trade-off parameters.

In the prediction stage, the class prediction result can be obtained from the original

graph G∗ based on the ASGAT network. The entire algorithm of the ASGAT network

is summarized in Algorithm 2.
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Algorithm 2: The algorithm of the ASGAT network.

Input: G∗ obtained from the SPGR module in Algorithm 1.

Output: The model parameters after training, the class prediction Z.

1 Initialize the parameters W, WD, α;

2 while not converges do

3 Mq ← Sample a random mask with ratio q;

4 G̃∗ ← Inject adversarial edges into G∗ via Eq.(16);

5 H∗, H̃∗ ← Perform attention neighborhood aggregation according to

Eqs.(17, 18);

6 Calculate Ladvs according to Eq.(19);

7 h̃g ← R(H̃∗);

8 Calculate Lgcl according to Eq.(22);

9 Calculate Lce according to Eq.(23);

10 Calculate L according to Eq.(24);

11 Perform back-propagation to update parameters;

12 end

13 Z ← softmax(H∗).

3.5. Computational Complexity Analysis

3.5.1. The computational complexity of SPGR module

As shown in Algorithm 1, given the input graph G with N nodes, we firstly need

to generate the four types of augmentations, and the time complexity of the process is

O(N2). Then we train the similarity-preserving GCN model. According to (Kipf and

Welling, 2017), for the l-th layer of the model, the time complexities of both forward

pass and backward pass are O(Nd(l−1)d(l) + N |E|d(l)), where |E| denotes the number

of edges in the graph G. The total cost of the GCN training is O(e1(Nd2
1
+ N|E|d1)),

where d1 denotes the maximum dimension of features in the GCN model and e1 de-

notes the number of epochs of training. Finally, we perform similarity-preserved

graph convolution and obtain the robust graph G∗, and the total complexity should

be O(Nd2
1
+ N|E|d1 + N2). Considering N is usually in the thousands and both e1 and

d1 are in the hundreds, the order of magnitude of N and e1d1 are close. Therefore, the

total time complexity of SPGR module is O(e1d1N(d1 + |E|) + N2).

3.5.2. The computational complexity of ASGAT network

As shown in Algorithm 2, the main part is a loop which trains the adversarial-

supervised attention network until it converges. In the loop, we first inject adver-

sarial edges into G∗ according to Eq.(15), and the time complexity is O(N2). Ac-

cording to (Velickovic et al., 2018), the time complexity of a single GAT attention

head is O(Nd(l−1)d(l) + |E|d(l)), and thus the total cost of the multi-head GAT train-

ing is O(e2(Nd2
2
+ |E|d2)), where d2 denotes the maximum dimension of features in

the GAT model and e2 denotes the number of epochs of training. Finally, the com-

plexity of the row-wise softmax operation on H∗ is O(Nc), where c is the number of
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classes of the dataset. As c ≪ N, the total time complexity of ASGAT network is

O(e2d2(Nd2 + |E|) + N2).

Based on the analysis above, the total time complexity of DualRGNN is O(e1d1N(d1+

|E|) + e2d2(Nd2 + |E|) + N2).

4. Experiments

4.1. Datasets

To evaluate the effectiveness of our DualRGNN in defending against graph adver-

sarial attacks, we conduct extensive experiments on four widely used graph datasets, in-

cluding Cora, Citeseer, Cora-ML (Sen et al., 2008), and Polblogs (Adamic and Glance,

2005). The Cora, Citeseer, and Cora-ML datasets are citation graphs, in which each

node represents scientific literature, and the edges between nodes represent the citation

relationship of scientific literature. The Polblogs dataset is a blog graph, in which each

edge represents the link between blogs. Note that there are no node features available

in the Polblogs dataset, so following the previous work (Jin et al., 2020b; Liu et al.,

2021; Li et al., 2022), we set the feature matrix to be a N × N identity matrix, where N

is the number of nodes. More details of these datasets are summarized in Table 1.

Table 1: Datasets statistics.

Dataset Nodes Edges Features Classes Training / Validating / Testing

Cora 2485 5069 1433 7 247 / 249 / 1988

Citeseer 2110 3668 3703 6 210 / 211 / 1688

Cora-ML 2810 7981 2879 7 280 / 282 / 2248

Polblogs 1222 16714 / 2 121 / 123 / 978

4.2. Baselines Methods

To highlight the outstanding performance in resisting various graph adversarial at-

tacks of our method, we compare the DualRGNN with representative and state-of-the-

art graph neural networks and robust graph neural network models. More detailed

descriptions of the baselines are as follows:

• GCNs (Kipf and Welling, 2017): They are the graph convolutional networks,

which employed a spectral-based convolution filter designed based on the graph

Laplacian operator to aggregate neighborhood features, and it is not robust for

resisting graph adversarial attacks.

• GATs (Velickovic et al., 2018): They are the graph attention networks, which

introduce a self-attention mechanism to specify different attention weights to

different nodes when performing neighborhood aggregation.

• SGC (Wu et al., 2019a): SGC removes the nonlinear activation function and

collapses weight matrices from GCNs, and also does not have a design aimed at

improving robustness.
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• Jaccard-GCN (Wu et al., 2019b): Jaccard-GCN adopted a Jaccard similarity to

check the similarity between the node pairs of each edge and removed those

edges with low similarity scores to obtain a clean graph.

• GCN-SVD (Entezari et al., 2020): GCN-SVD reconstructed the input graph with

the low-rank approximation of the adjacency.

• RGCN (Zhu et al., 2019): RGCN adopted Gaussian distributions as the hidden

representations of nodes in each GCNs layer and designed a variance-based at-

tention mechanism to absorb the adversarial attacks.

• GNNGuard (Zhang and Zitnik, 2020): GNNGuard pruned edges between un-

related nodes in each GNNs layer, and simultaneously introduced a layer-wise

graph memory module to stabilize training.

• Pro-GNN (Jin et al., 2020b): Pro-GNN utilized the inherent characteristics of

real-world clean graphs to constrain to learn robust graph structures.

• SimP-GCN (Jin et al., 2021): SimP-GCN introduced an aggregation mechanism

to maintain feature similarity, and adaptively integrates the original graph and

the kNN graph.

• ElasticGNN (Liu et al., 2021): ElasticGNN introduced L1 and L2 regularization

to GNNs and provided an elastic message passing scheme to enhance the local

smoothness.

• STABLE (Li et al., 2022): STABLE refined the graph structure by learning rep-

resentations that carry both feature and structure information and are insensitive

to perturbations and simultaneously designed a robust normalization mechanism

to improve GCNs.

4.3. Experimental Setting

For the baseline methods, we adopt their default parameter settings from the initial

implementation. Specifically, for GNNGuard (Zhang and Zitnik, 2020), we choose

GCN as the surrogate model.

In the SPGR module, we adopt a one-layer similarity-preserved graph convolu-

tion network to learn the node representations. We construct the kNN graph based

on the kNN algorithm, where k is tuned from [5, 30]. And we employ two aug-

mented graphs with slight adversarial perturbations for graph contrastive learning.

The predefined threshold δ1 is the Jaccard similarity threshold, which is tuned from

{0.0, 0.01, 0.02, 0.03, 0.04, 0.05}. And δ2 is cosine similarity threshold tuned from {0.1, 0.2, 0.3}.

The hyper-parameter K in Top-K matrix S K is tuned from [2, 20], and the recovery por-

tion p is fixed at 0.2.

For the architecture of the ASGAT, we adopt a two-layer graph attention network

with multi-head attention. The ratio of injected adversarial edges q is tuned from

[0.02, 0.2] with an interval of 0.02. The hyper-parameter η is set to 100. The val-

ues of λ and µ are tuned from [0.5, 2]. The dropout rate is tuned from {0.3, 0.4, 0.5,

0.6, 0.7}. The number of attention heads is tuned from [1, 8].
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We employ Xavier algorithm (Glorot and Bengio, 2010) for the initialization of

trainable parameters in DualRGNN, and adopt Adam algorithm (Kingma and Ba, 2015)

for optimization, with learning rate tuned from [0.0001, 0.1]. The hyper-parameter

weight decay is set to 0.0005. In both modules, we apply an early stopping strategy

on the binary cross-entropy loss (SPGR) or both the cross-entropy loss and accuracy

(ASGAT) on the validation nodes, with a patience of 100 epochs. Following the pre-

vious work (Jin et al., 2020b), the proposed DualRGNN is implemented based on the

DeepRobust (Li et al., 2020) framework.

4.4. Experimental Results and Analysis

We evaluate the robustness of DualRGNN and baselines to defend against non-

targeted, targeted, and random graph adversarial attacks based on the accuracy of semi-

supervised graph node classification on the above four benchmark datasets. Higher

classification accuracy indicates better resistance to graph adversarial attacks, reflecting

higher robustness.

4.4.1. Against non-targeted graph adversarial attack

To evaluate the effectiveness of DualRGNN and baselines in resisting non-target

graph adversarial attacks, Metattack (ZÈugner and GÈunnemann, 2019) is employed as

the non-target graph adversarial attack method, which is an effective attack method.

We set the perturbation rate of Metattack from 0% to 25% with an interval of 5%, and

adopted its default parameter settings from the initial implementation.

Table 2 shows the performance of DualRGNN and baselines on four datasets under

Metattack (ZÈugner and GÈunnemann, 2019) with different perturbation rates. All the

reported results are averaged over 10 runs, and the top two performance is highlighted

in bold and underlined. From these results, we have the following observations:

• On all of the four datasets, DualRGNN significantly outperforms all the base-

line approaches in most cases, and it can maintain high semi-supervised graph

node classification accuracy, especially in cases of high perturbation rates. Even

compared with the recent state-of-the-art robust methods, including STABLE (Li

et al., 2022) and ElasticGNN (Liu et al., 2021), DualRGNN has better results and

achieves at most 1.12%, 0.67%, 0.66%, and 4.63% improvements on the Cora,

Citeseer, Cora-ML, and Polblogs datasets in the perturbation rate of 25%. From

the averaged performance, DualRGNN outperforms the baselines and shows its

stability under different perturbation rates. These prove the high robustness of

DualRGNN in resisting non-target graph adversarial attacks.

• DualRGNN can achieve satisfactory performance on clean graph data. For in-

stance, compared with the robust methods, such as Jaccard-GCN (Wu et al.,

2019b) and GNNGuard (Zhang and Zitnik, 2020), DualRGNN achieves higher

accuracy in semi-supervised graph node classification on clean graph data. This

demonstrates that DualRGNN will not sacrifice its performance on clean graph

data in exchange for robustness against graph adversarial attacks.

• Vanilla GNN models without robust design, such as GCNs (Kipf and Welling,

2017), GATs (Velickovic et al., 2018), SGC (Wu et al., 2019a), etc., suffer severe
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Table 2: Node classification performance (Accuracy±Std %) on four datasets under non-targeted attack

(Metattack) with different perturbation rates. To ensure fair comparisons, we employ the same perturbed

graph for each perturbation rate as the input for both our method (DualRGNN) and the baselines.
Datasets Ptb. Rate 0% 5% 10% 15% 20% 25% Average

Cora

GCNs (Kipf and Welling, 2017) 83.40±0.56 77.21±1.31 70.30±2.03 65.31±1.96 53.96±1.54 49.30±1.84 66.58

GATs (Velickovic et al., 2018) 84.71±0.36 79.36±1.28 74.54±1.29 71.20±1.30 58.55±1.15 53.71±1.96 70.34

SGC (Wu et al., 2019a) 83.80±0.10 76.40±0.16 69.08±0.35 65.66±1.56 58.32±0.11 50.94±0.26 67.37

Jaccard-GCN (Wu et al., 2019b) 82.07±0.72 78.97±0.68 74.52±1.10 70.04±1.28 65.13±1.71 60.90±1.80 71.94

GCN-SVD (Entezari et al., 2020) 71.62±0.45 71.01±0.54 69.43±0.67 67.30±0.76 58.94±1.13 56.20±1.47 65.75

RGCN (Zhu et al., 2019) 83.63±0.18 76.11±0.66 72.68±0.83 68.48±0.70 57.75±0.66 53.35±0.67 68.67

GNNGuard (Zhang and Zitnik, 2020) 78.16±0.25 77.58±0.40 75.25±0.87 74.28±1.25 74.55±0.68 71.62±1.20 75.24

Pro-GNN (Jin et al., 2020b) 85.15±0.31 81.18±0.33 72.59±1.52 67.80±0.94 56.37±1.87 50.02±1.00 68.85

SimP-GCN (Jin et al., 2021) 81.86±0.55 77.06±1.86 74.22±0.77 72.89±3.22 70.98±3.84 68.56±6.71 74.26

ElasticGNN (Liu et al., 2021) 84.66±0.52 81.63±1.29 77.55±2.18 77.34±1.19 67.82±1.49 55.71±1.76 74.12

STABLE (Li et al., 2022) 85.26±0.69 80.83±0.47 80.91±0.43 79.00±0.84 78.38±0.43 76.00±0.71 80.06

DualRGNN (ours) 83.71±0.25 81.29±0.37 81.40±1.44 79.17±0.27 77.64±0.41 77.12±0.34 80.12

Citeseer

GCNs (Kipf and Welling, 2017) 72.00±0.38 70.80±0.94 67.17±1.06 64.34±0.96 55.49±1.86 55.41±2.36 64.20

GATs (Velickovic et al., 2018) 73.31±0.70 72.30±1.13 70.04±0.82 68.32±1.39 60.26±1.14 61.75±1.10 67.66

SGC (Wu et al., 2019a) 73.85±0.21 72.11±0.29 66.10±0.49 64.31±1.62 54.35±0.68 50.70±1.44 63.57

Jaccard-GCN (Wu et al., 2019b) 72.20±0.57 70.36±1.10 68.22±1.07 66.13±0.96 60.15±0.91 59.22±1.77 66.05

GCN-SVD (Entezari et al., 2020) 67.63±1.14 68.61±0.61 69.46±0.81 67.75±1.20 68.40±0.57 64.69±0.95 67.76

RGCN (Zhu et al., 2019) 72.81±0.46 71.71±0.56 69.13±0.32 65.34±0.81 56.39±0.88 58.29±1.21 65.61

GNNGuard (Zhang and Zitnik, 2020) 70.57±0.98 69.32±1.47 70.58±0.98 69.40±0.75 69.28±0.91 68.46±1.08 69.60

Pro-GNN (Jin et al., 2020b) 73.24±0.68 71.55±0.54 69.64±0.81 65.97±0.73 55.76±1.41 56.36±2.49 65.42

SimP-GCN (Jin et al., 2021) 74.30±0.54 73.90±0.72 72.04±1.63 71.65±1.23 67.06±4.09 70.56±2.25 71.58

ElasticGNN (Liu et al., 2021) 73.64±0.52 72.92±0.34 72.23±0.49 70.91±0.76 57.99±1.84 59.77±4.05 67.91

STABLE (Li et al., 2022) 74.03±0.62 73.93±0.42 72.58±0.63 73.32±1.00 72.80±0.58 72.62±0.70 73.21

DualRGNN (ours) 74.49±0.33 75.74±0.55 73.59±0.41 74.97±0.66 73.05±0.25 73.29±0.55 74.19

Cora-ML

GCNs (Kipf and Welling, 2017) 85.72±0.19 80.32±0.25 74.27±0.37 53.98±0.80 45.41±0.71 49.20±0.51 64.82

GATs (Velickovic et al., 2018) 85.48±0.28 81.18±0.95 76.47±0.61 57.45±0.97 42.29±2.14 45.38±3.64 64.71

SGC (Wu et al., 2019a) 82.43±0.00 70.93±0.02 54.76±0.46 47.84±0.25 38.15±0.25 44.98±0.31 56.62

Jaccard-GCN (Wu et al., 2019b) 84.74±0.23 80.20±0.46 75.17±0.41 57.14±1.16 46.76±1.04 49.05±0.32 65.51

GCN-SVD (Entezari et al., 2020) 80.93±0.33 80.08±0.38 80.54±0.30 74.08±0.98 47.42±0.92 56.41±0.75 69.91

RGCN (Zhu et al., 2019) 86.31±0.27 81.30±0.37 74.77±0.47 55.03±0.50 47.32±0.35 50.58±0.14 65.88

GNNGuard (Zhang and Zitnik, 2020) 76.83±0.57 76.25±0.54 76.44±0.50 75.82±0.60 73.53±0.45 73.20±0.83 75.34

Pro-GNN (Jin et al., 2020b) 85.32±0.44 83.75±0.49 81.88±0.42 53.88±0.22 48.67±0.34 50.33±0.64 67.30

SimP-GCN (Jin et al., 2021) 85.34±0.37 83.53±0.51 80.64±0.54 76.72±5.97 69.4±11.70 69.16±12.42 77.46

ElasticGNN (Liu et al., 2021) 86.63±0.45 83.77±0.94 81.03±0.92 71.50±1.70 52.69±0.66 52.79±0.39 71.40

STABLE (Li et al., 2022) 85.63±0.29 83.64±0.39 82.51±0.30 81.11±0.43 80.86±0.43 80.89±0.28 82.44

DualRGNN (ours) 86.18±0.21 84.08±0.32 84.24±0.34 81.98±0.46 82.05±0.27 81.55±0.30 83.35

Polblogs

GCNs (Kipf and Welling, 2017) 95.71±0.22 72.51±0.63 72.49±0.79 68.16±0.84 58.85±3.56 56.64±2.64 70.73

GATs (Velickovic et al., 2018) 95.32±0.42 76.64±0.75 72.78±0.77 59.07±6.68 51.72±0.37 49.58±4.39 67.52

SGC (Wu et al., 2019a) 94.45±0.23 74.56±0.46 70.52±0.15 55.96±1.95 51.88±0.15 51.82±0.32 66.53

Jaccard-GCN (Wu et al., 2019b) / / / / / / /

GCN-SVD (Entezari et al., 2020) 94.52±0.23 77.77±0.97 69.50±3.01 64.22±0.81 54.35±1.78 54.57±1.21 69.16

RGCN (Zhu et al., 2019) 95.31±0.18 71.69±0.47 71.18±0.76 67.19±1.26 62.04±2.95 58.08±0.71 70.92

GNNGuard (Zhang and Zitnik, 2020) / / / / / / /

Pro-GNN (Jin et al., 2020b) 95.60±0.23 81.34±5.85 72.17±2.08 67.87±1.94 54.89±3.86 52.17±1.59 70.67

SimP-GCN (Jin et al., 2021) 94.89±1.13 71.83±0.99 72.12±0.72 69.85±1.20 58.52±2.96 57.45±2.51 70.78

ElasticGNN (Liu et al., 2021) 95.77±0.31 74.52±1.17 75.82±0.75 73.96±0.60 71.87±1.31 52.02±0.06 73.99

STABLE (Li et al., 2022) 95.64±0.19 81.67±1.08 79.07±0.71 72.58±1.31 70.42±0.57 66.86±0.89 77.71

DuanRGNN (ours) 95.52±0.14 83.22±2.57 79.61±0.51 75.45±1.36 72.16±1.26 71.49±1.36 79.58
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performance degradation on perturbed graph data, which indicates the weak ro-

bustness of traditional GNNs in resisting graph adversarial attacks. The robust

GNN methods can still achieve satisfactory semi-supervised graph node classifi-

cation performance on perturbed graphs even with high perturbation rates.

To further show the robustness of our model against diverse attacks, we expand our

experiments by evaluating our model under DICE (Waniek et al., 2018) attack, also

known as ‘delete internally, connect externally’. In each perturbation, DICE randomly

decides whether to insert or remove an edge. Notably, edges are only removed between

nodes of the same class, and only inserted between nodes of different classes. We

choose the Cora-ML dataset for evaluation in this section, vary the perturbation rate of

the DICE attack from 0% to 25% with an interval of 5%, and adopt its default parameter

settings from the initial implementation. Table 3 shows the performance results of

DualRGNN and baselines on the Cora-ML dataset under the DICE attack with different

perturbation rates. All the reported results are averaged over 10 runs, and the top two

performances are respectively highlighted in bold and underlined. From these results,

we can observe that DualRGNN can achieve comparable performance in most cases

under the DICE attack. While the performance of DualRGNN shows a slight decrease

compared to GNNGuard (Zhang and Zitnik, 2020) when the perturbation rate is high,

it excels as the top performer on average.

Table 3: Node classification performance (Accuracy±Std %) on Cora-ML dataset under non-targeted attack

(DICE) with different perturbation rates. To ensure fair comparisons, we employ the same perturbed graph

for each perturbation rate as the input for both our method (DualRGNN) and the baselines.
Ptb. Rate 0% 5% 10% 15% 20% 25% Average

GCNs (Kipf and Welling, 2017) 85.72±0.19 84.26±0.28 83.28±0.36 81.97±0.27 80.28±0.50 80.18±0.23 82.62

GATs (Velickovic et al., 2018) 85.48±0.28 83.82±0.61 82.60±0.38 81.11±0.46 79.18±0.72 77.99±0.36 81.70

SGC (Wu et al., 2019a) 82.43±0.00 78.95±0.02 75.04±0.00 73.79±0.02 71.17±0.07 69.91±0.02 75.22

Jaccard-GCN (Wu et al., 2019b) 84.74±0.23 83.28±0.14 82.02±0.25 81.33±0.36 79.74±0.36 78.84±0.15 81.66

GCN-SVD (Entezari et al., 2020) 80.93±0.33 80.77±0.25 79.31±0.39 77.91±0.22 77.31±0.42 76.32±0.28 78.77

RGCN (Zhu et al., 2019) 86.31±0.27 84.61±0.20 83.55±0.34 82.24±0.23 80.74±0.35 79.92±0.46 82.90

GNNGuard (Zhang and Zitnik, 2020) 76.83±0.57 82.67±0.17 82.56±0.30 82.75±0.19 82.75±0.18 82.74±0.24 81.72

Pro-GNN (Jin et al., 2020b) 85.32±0.44 79.14±0.70 78.32±0.62 76.20±1.71 74.91±1.60 73.51±1.83 77.90

SimP-GCN (Jin et al., 2021) 85.34±0.37 83.73±0.41 83.00±0.49 81.88±0.45 80.97±0.48 81.06±0.35 82.66

ElasticGNN (Liu et al., 2021) 86.63±0.45 73.35±1.78 75.76±0.99 76.69±1.85 74.61±2.03 76.54±1.46 77.26

STABLE (Li et al., 2022) 85.63±0.29 81.98±1.13 80.86±0.92 80.32±0.72 78.96±0.69 78.23±0.6 81.00

DualRGNN (ours) 86.18±0.21 84.65±0.77 83.89±0.48 82.51±0.95 81.94±1.02 81.95±0.69 83.52

4.4.2. Against targeted graph adversarial attack

To evaluate the effectiveness of DualRGNN in defending against target graph ad-

versarial attacks, we employ Nettack (ZÈugner et al., 2018) as the target graph adversar-

ial attack method, and we follow the default parameter settings in the authors’ original

implementation. Following (Zhu et al., 2019; Jin et al., 2020b), we set the number of

perturbations made on every targeted node from 0 to 5 with a step size of 1. The nodes

in the test set with a degree larger than 10 are treated as target nodes.

Table 4 reports the semi-supervised graph node classification accuracy of all base-

line methods on four datasets under Nettack (ZÈugner et al., 2018) attack with different

numbers of perturbations. Due to the node features being unavailable on the Polblogs

dataset, it is no means of evaluating the baselines methods Jaccard-GCN (Wu et al.,
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2019b) and GNNGuard (Zhang and Zitnik, 2020) on this dataset. For our DualRGNN,

a random kNN graph is constructed on the Polblogs dataset as one of the inputs for the

SPGR module. Similarly, all the reported results are averaged over 10 runs, and the

top two performance is highlighted in bold and underlined. From these results, we can

make a few observations as follows:

• On the Cora and Citeseer datasets, our DualRGNN approach can effectively

defend against target graph adversarial attacks, and outperform all the base-

line methods in most cases. Compared with STABLE (Li et al., 2022) and

ElasticGNN (Liu et al., 2021) methods, DualRGNN can achieve higher semi-

supervised graph node classification accuracy, especially in situations where the

target node has a higher number of perturbations. For example, on the Cora and

Citeseer datasets at 5 perturbations per targeted node, DualRGNN outperforms

them by 2.17% and 2.69%, respectively. It can also be noted that DualRGNN

exhibits superior performance on average. These show the high robustness of

DualRGNN in defending against target graph adversarial attacks.

• On the Cora-ML dataset, DualRGNN did not outperform some baseline meth-

ods like GNNGuard (Zhang and Zitnik, 2020) and ElasticGNN (Liu et al., 2021)

on perturbed graphs. Since the Cora-ML dataset is larger than the other three

datasets and DualRGNN outperforms the baseline methods under Metattack on

the same dataset (shown in Table 2), DualRGNN faces challenge in some scenar-

ios, particularly on larger datasets under targeted attacks. Despite this limitation,

the overall performance of DualRGNN remains comparable to most of the base-

line methods.

• On the Polblogs dataset, DualRGNN has also achieved high performance. Even

if the node features are unavailable on this dataset, DualRGNN cannot model the

original node similarity relationship based on the kNN graph. However, com-

pared to most existing graph neural networks and robust graph neural network

models, DualRGNN still achieves acceptable semi-supervised graph node classi-

fication accuracy. This is because on the Polblogs dataset, constructing a random

kNN graph for DualRGNN can improve the model’s generalization ability to a

certain extent, reduce its dependence on input graphs, and thus weaken the im-

pact of attacked graph data on model performance.

4.4.3. Against random graph adversarial attack

We evaluate how DualRGNN behaves under different ratios of random noises, and

we vary the perturbation rate from 0% to 100% with a step size of 20%. We conduct

experiments on four datasets, and the result is reported in Fig. 3. From the result, we

make the following observations:

• Although DualRGNN cannot fully play its advantages in a clean graph, it can

still achieve high semi-supervised graph node classification accuracy on per-

turbed graph data under high perturbation rates, significantly outperforming the

existing methods. For instance, on the Cora, Citeseer, Cora-ML, and Polblogs
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Table 4: Node classification performance (Accuracy±Std %) on four datasets under targeted attack (Nettack)

with different number of perturbations. To ensure fair comparisons, we employ the same perturbed graph for

each number of perturbations as the input for both our method (DualRGNN) and the baselines.
Datasets No. of Ptb. 0 1 2 3 4 5 Average

Cora

GCNs (Kipf and Welling, 2017) 79.52±2.72 75.06±1.97 70.72±1.14 67.71±2.11 61.45±1.50 55.18±1.37 68.27

GATs (Velickovic et al., 2018) 81.57±2.54 77.59±3.86 70.00±4.49 67.35±2.98 57.23±4.44 53.98±5.23 67.95

SGC (Wu et al., 2019a) 83.01±0.68 74.58±0.89 71.08±0.57 67.23±0.51 63.61±0.76 55.54±1.33 69.18

Jaccard-GCN (Wu et al., 2019b) 78.92±2.49 75.54±3.46 70.24±2.54 66.27±1.88 60.00±1.59 61.08±2.84 68.67

GCN-SVD (Entezari et al., 2020) 71.62±0.45 65.42±3.59 63.49±2.61 64.58±1.30 54.46±1.95 60.24±1.70 63.30

RGCN (Zhu et al., 2019) 81.20±1.52 78.31±1.80 71.33±1.24 67.59±1.84 60.84±1.73 55.78±1.80 69.17

GNNGuard (Zhang and Zitnik, 2020) 76.39±2.55 72.41±2.44 73.01±1.90 75.06±2.61 69.88±3.16 69.04±2.73 72.63

Pro-GNN (Jin et al., 2020b) 84.94±1.90 81.93±1.14 73.86±0.81 71.33±0.95 66.51±2.40 60.00±1.59 73.09

SimP-GCN (Jin et al., 2021) 80.72±1.80 77.59±1.16 74.10±2.85 71.20±2.92 65.06±3.11 57.83±3.21 71.08

ElasticGNN (Liu et al., 2021) 83.61±2.55 80.12±2.43 77.95±1.61 75.42±1.90 71.45±3.27 66.99±2.06 75.92

STABLE (Li et al., 2022) 84.10±1.37 81.93±2.27 80.48±2.18 78.43±1.92 72.41±1.33 72.05±1.87 78.23

DualRGNN (ours) 84.34±1.80 82.29±1.51 79.64±1.20 78.55±1.11 73.97±1.62 74.22±2.06 78.83

Citeseer

GCNs (Kipf and Welling, 2017) 80.16±1.87 78.89±1.84 76.19±4.03 65.56±3.09 59.21±3.18 50.95±6.88 68.49

GATs (Velickovic et al., 2018) 81.75±0.84 77.30±3.51 64.76±12.11 51.43±6.53 53.97±7.14 43.97±8.76 62.20

SGC (Wu et al., 2019a) 80.95±0.00 77.78±0.00 76.19±0.00 74.60±0.00 66.67±0.00 61.90±0.00 73.02

Jaccard-GCN (Wu et al., 2019b) 80.79±1.39 78.25±1.31 77.46±1.95 73.97±3.19 65.40±4.41 60.32±3.82 72.70

GCN-SVD (Entezari et al., 2020) 80.32±1.71 75.71±2.90 68.41±5.57 61.11±12.19 57.30±4.39 54.29±11.04 66.19

RGCN (Zhu et al., 2019) 80.95±0.00 79.37±0.75 77.78±1.50 60.95±1.71 57.94±1.12 49.37±1.39 67.73

GNNGuard (Zhang and Zitnik, 2020) 82.06±3.09 79.68±2.34 77.46±2.88 80.32±4.50 77.78±3.51 75.56±8.10 78.81

Pro-GNN (Jin et al., 2020b) 82.22±0.67 81.11±1.39 79.05±0.71 76.83±2.66 68.57±2.07 61.27±9.02 74.84

SimP-GCN (Jin et al., 2021) 80.95±0.75 79.68±1.25 78.89±2.90 74.76±4.58 72.38±7.45 71.43±7.37 76.35

ElasticGNN (Liu et al., 2021) 81.59±0.82 80.95±0.00 80.63±0.67 79.05±2.22 78.25±2.12 73.65±3.10 79.02

STABLE (Li et al., 2022) 82.06±0.77 81.59±0.82 80.79±1.90 80.63±1.00 75.87±3.95 68.41±5.37 78.23

DualRGNN (ours) 82.70±0.90 81.75±1.12 81.27±1.25 80.64±1.00 81.27±1.80 78.25±2.60 80.98

Cora-ML

GCNs (Kipf and Welling, 2017) 86.21±0.20 82.08±0.57 75.72±1.03 70.26±0.47 64.98±1.38 58.36±2.70 72.94

GATs (Velickovic et al., 2018) 86.77±0.71 80.86±3.10 73.27±5.62 71.12±3.46 63.49±4.60 62.23±2.94 72.96

SGC (Wu et al., 2019a) 87.36±0.00 84.01±0.00 78.81±0.00 72.86±0.00 67.29±0.00 60.59±0.00 75.15

Jaccard-GCN (Wu et al., 2019b) 85.54±0.59 81.38±0.31 74.83±0.62 70.74±1.13 63.46±1.09 59.41±1.37 72.56

GCN-SVD (Entezari et al., 2020) 84.28±0.58 81.71±0.52 76.36±0.88 70.07±0.42 68.40±1.00 65.39±1.70 74.37

RGCN (Zhu et al., 2019) 87.21±0.45 82.83±0.46 76.47±1.03 69.85±1.31 61.04±1.70 57.03±1.54 72.41

GNNGuard (Zhang and Zitnik, 2020) 83.53±0.41 83.64±0.58 83.90±0.41 82.75±0.67 82.94±0.61 83.05±0.90 83.30

Pro-GNN (Jin et al., 2020b) 79.64±0.63 79.59±1.49 78.66±1.59 74.57±1.71 71.74±1.84 67.55±2.99 75.29

SimP-GCN (Jin et al., 2021) 84.61±1.21 81.12±0.94 76.99±1.02 72.27±0.83 66.91±1.65 65.43±1.78 74.56

ElasticGNN (Liu et al., 2021) 87.66±0.89 86.21±0.87 84.16±0.40 81.71±0.96 78.03±1.28 74.83±1.23 82.10

STABLE (Li et al., 2022) 86.93±0.89 84.47±0.93 82.19±2.15 78.65±1.76 75.64±0.88 70.97±1.81 79.81

DualRGNN (ours) 87.73±0.89 85.47±0.81 83.12±0.77 80.48±1.15 80.37±1.60 79.15±0.92 82.72

Polblogs

GCNs (Kipf and Welling, 2017) 97.17±0.15 96.94±0.18 95.78±0.23 95.44±0.32 94.20±0.21 93.11±0.31 95.44

GATs (Velickovic et al., 2018) 97.35±0.33 97.41±0.26 96.26±0.32 95.52±0.81 95.00±0.74 91.59±1.27 95.52

SGC (Wu et al., 2019a) 96.85±0.00 96.67±0.00 96.56±0.10 95.96±0.15 94.85±0.29 89.72±1.65 95.10

Jaccard-GCN (Wu et al., 2019b) / / / / / / /

GCN-SVD (Entezari et al., 2020) 97.50±0.18 97.89±0.26 97.65±0.21 97.28±0.15 96.56±0.13 95.41±0.27 97.05

RGCN (Zhu et al., 2019) 97.15±0.22 97.02±0.06 95.63±0.23 95.28±0.24 94.28±0.16 92.72±0.20 95.35

GNNGuard (Zhang and Zitnik, 2020) / / / / / / /

Pro-GNN (Jin et al., 2020b) 97.44±0.08 97.74±0.27 97.33±0.21 96.93±0.21 96.19±0.17 95.30±0.93 96.82

SimP-GCN (Jin et al., 2021) 91.04±0.52 96.50±0.31 94.67±0.38 94.22±0.26 93.15±0.55 91.04±0.52 93.44

ElasticGNN (Liu et al., 2021) 97.44±0.21 96.00±2.07 94.22±2.74 95.33±0.83 95.56±0.56 91.26±7.89 94.97

STABLE (Li et al., 2022) 97.37±0.19 97.91±0.12 97.59±0.23 91.76±1.52 87.24±1.08 86.17±1.71 93.01

DualRGNN (ours) 97.43±0.24 97.98±0.14 97.72±0.26 97.05±0.25 96.35±0.15 96.30±0.30 97.14
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4.5. Ablation Study

4.5.1. Effectiveness of node similarity preserving graph refinining

In this work, we propose refining the graph structure based on the learned node rep-

resentations that preserve the original nodes’ similarity, aiming to mitigate the poison-

ing of graph adversarial attacks on graph data. In order to verify whether learning node

representations preserving the original node similarity relationship for graph structure

refinement is beneficial for improving the robustness of DualRGNN against graph ad-

versarial attacks, we conduct an ablation study. We replace the similarity-preserved

graph convolution with vanilla GCNs and denoted it as DualRGNN-GCN. This implies

that the DualRGNN-GCN employed traditional GCNs for node representation learning,

and the learned node representations cannot preserve the node similarity relationships

in the original feature space. The ablation experiments are conducted on the Cora,

Citeseer, Cora-ML, and Polblogs datasets to defend against non-targeted, targeted, and

random attacks. The comparison results between DualRGNN-GCN and DualRGNN

are shown in Fig. 4.

From these results, we can observe that refining the graph structure based on the

learned node representations that preserve the original nodes’ similarity can effectively

improve the ability of DualRGNN in resisting various graph adversarial attacks, es-

pecially the non-target and random attacks. The proposed DualRGNN model demon-

strates robust and stable performance, especially on the datasets like Citeseer with ran-

dom noise and Metattack. In these cases, the accuracy of DualRGNN remains consis-

tently high in different perturbation rates. For the Cora dataset under Metattack and the

Cora-ML dataset under random attack, although both DualRGNN and vanilla GCNs

experience a decrease in performance as the perturbation rate increases, DualRGNN

performs better vanilla GCNs. When assessing model performance on the Cora and

Polblogs datasets under Nettack, DualRGNN performs comparably with DualRGNN-

GCN. In comparison to vanilla GCNs, DualRGNN exhibits improved robustness, a

result of its effective utilization of similarity information for refining graph structures

and obtaining more reliable node representations.

4.5.2. Effectiveness of adversarial-supervised graph attention network

We propose the ASGAT network, treating adversarial edges as supervisions sig-

nals and developing an adversarial-supervised attention mechanism to recognize ad-

versarial edges suppressing the propagation of adversarial perturbation. To verify

whether the proposed ASGAT is beneficial for improving the robustness of Dual-

RGNN against graph adversarial attacks, another ablation study has been conducted.

Firstly, we remove the adversarial-supervised attention mechanism from DualRGNN

and adopt the traditional graph attention mechanism for graph representation learn-

ing, naming it as DualRGNN-GAT. This means that the DualRGNN-GAT lacks su-

pervision of adversarial information, and it lacks the ability to recognize adversarial

edges. Secondly, we remove the graph contrastive learning framework from Dual-

RGNN, adopting adversarial-supervised attention mechanism but without optimizing

based on graph contrastive learning, and this variant model is denoted as DualRGNN-

AGAT. That is, the DualRGNN-AGAT replaces the traditional attention mechanism in

DualRGNN-GAT with an adversarial-supervised attention mechanism, and it has a cer-

tain recognition ability for adversarial edges. The ablation experiments are conducted
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Table 5: Training times (Mean±Std seconds) on Cora-ML dataset under Metattack.

Model Training Time

ProGNN (Jin et al., 2020b) 1553.70±3.07

SimP-GCN (Jin et al., 2021) 13.74±0.65

Elastic GNN (Liu et al., 2021) 17.41±0.54

STABLE (Li et al., 2022) 15.43±0.98

DualRGNN (1 attention head) 68.46±12.51

DualRGNN (4 attention heads) 82.42±12.05

DualRGNN (8 attention heads) 91.55±14.40

the similarity-preserved graph convolution in the SPGR module needs to be trained for

300 to 600 epochs to minimize the binary cross-entropy loss LC , taking approximately

50 to 60 seconds. The longer training time is a result of the higher number of trainable

parameters in the SPGR module, making a single epoch cost 1 to 2 seconds. After

refining the graph, training the ASGAT network for 500 epochs takes 10 to 30 seconds,

with the duration depending on the number of attention heads. Despite the larger time

complexity of DualRGNN, the modest increase in training time is deemed acceptable,

considering the improvement it brings to the performance of robust GNN models.

5. Conclusion

This paper presents a novel approach called Dual Robust Graph Neural Network

(DualRGNN) that effectively defends against various graph adversarial attacks. Dual-

RGNN comprises two key modules: SPGR and ASGAT. The SPGR module can refine

the graph structure by utilizing learned node representations that preserve the similarity

relationships among the original nodes. This refinement process aims to weaken the

impact of graph adversarial attacks on the graph data. The ASGAT network employs

an adversarial-supervised attention mechanism, where adversarial edges are treated as

supervised signals. This mechanism enhances the model’s ability to identify and han-

dle adversarial edges effectively. By integrating these two modules, DualRGNN can

achieve higher robustness and effectiveness in countering graph adversarial attacks.

Extensive experiments were conducted on four benchmark datasets, demonstrating the

effectiveness of DualRGNN against non-targeted, targeted, and random graph adver-

sarial attacks. Additionally, an extensive ablation study is performed to validate the

efficacy of each component in DualRGNN.

While our approach can achieve impressive performance under adversarial attacks,

there are still some limitations to be revolved in the future. Specifically, DualRGNN

involves a higher number of parameters compared to existing methods, resulting in

increased time and memory consumption during the training phase. Additionally, it can

be noted that DualRGNN is currently limited to node-level representation learning, and

is not applicable to graph-level downstream tasks like graph classification. Addressing

these challenges will be a focus for future enhancements.

For future work, we plan to extend the application of DualRGNN to defend against

other types of graph adversarial attacks. Furthermore, we will explore the incorporation

of hypergraphs to capture and model higher-order correlations among the data. This
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approach has the potential to mitigate the impact of graph adversarial attacks on graph

data to a certain extent.
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