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Abstract

Incomplete multi-view clustering (IMVC) aims to boost clustering performance
by capturing complementary information from incomplete multi-views, where
partial data samples in one or more views are missing. Current IMVC methods
mostly impute missing samples at the guidance of the global/local structure or
directly learn a common representation without imputation using subspace or
graph learning techniques. However, the consistent and inconsistent structures
across views are often ignored during imputation, leading to the introduction of
noise and biases. Additionally, lacking the handling of missing samples would
mislead the learning methods and degrade clustering performance. To this
end, we propose a novel approach called Structure Exploration and Missing-
view Inference (SEMI) for IMVC. Specifically, SEMI explores the underlying
multi-structures of data, including global, local, consistent, and inconsistent
structures, by jointly modeling self-expression subspace, graph, and clustering-
oriented partition learning. This enables the capture of consistent and discrim-
inative information and fuses it into a unified coefficient matrix. The learned

coefficient matrix with the explored multi-structures then guides the inference
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of missing views, facilitating the alleviation of the influence of existing noise and
biases and the mitigation of the introduction of further noise and biases. These
two components are seamlessly integrated and mutually improved through an
efficient alternating optimization strategy. Experimental results demonstrate
the effectiveness and superior performance of the proposed method.

Keywords: Data imputation, multi-structure exploration, consistent and

discriminative information, guidance, noise, and biases.

1. Introduction

Multi-view clustering (MVC) aims to partition multi-view data samples into
different clusters by learning a common representation and then employing clus-
tering on this representation. In real-world applications, multi-view data con-
sists of features collected from multiple sources (or views), providing rich and
complementary information. It is crucial and valuable to build a robust MVC
model that can fuse this information. Many MVC models, such as co-training-
based [1], kernel-based [2, 3, 4], subspace-based [5, 6], graph-based [7, 8], and
tensor-based [9, 10] approaches, have been proposed to improve performance in
various tasks [11]. Most of them have achieved some success because they oper-
ate under the rigorous assumption of multi-view data completeness. However,
in practice, it’s not uncommon to encounter incomplete data due to sensor fail-
ures or human errors. Applying these MVC methods directly to such data can
significantly degrade clustering performance or even cause failures. Address-
ing missing views remains a key challenge in incomplete multi-view clustering
(IMVC).

To address incomplete views, several IMVC methods have been introduced,
encompassing two primary technical strategies: omitting unavailable views and
imputing missing data using available information. For the first strategy, the
majority of methods emphasize clustering while disregarding the missing views
to prevent the introduction of noise and biases. This is because ensuring the

quality of imputed views is challenging [12, 13]. For instance, [14, 15] intro-
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duced a method to learn a latent subspace via non-negative matrix factorization
(NMF) using the data available in two incomplete views. To minimize the ad-
verse effects of missing views in datasets with more than two views, [16, 17, 18]
devised a weighting mechanism that assigns lower weights to samples with miss-
ing views. However, the absence of handling for missing views can misdirect
learning methods, leading to decreased clustering performance. For the second
strategy, efforts have been made to recover missing samples either in the orig-
inal data space or a shared subspace [19, 20, 21]. For example, [22] suggested
a method that jointly undertakes self-representation learning and missing data
imputation in the original data space. This approach considers the guidance
of the global structure but overlooks that of the local structure. [23] proposed
alternating between kernel refining and embedding updating. Meanwhile, [24]
integrated the completion of the incomplete basis matrix with later clustering.
However, a shared drawback of these kernel-based IMVC methods is the ne-
cessity for substantial prior knowledge to choose a suitable kernel function for
discriminative feature extraction. [25, 26] aimed to complete incomplete view
graphs and integrate them into a consensus graph. Yet, each view graph serves
as a sub-graph of the global graph structure, potentially containing biased view-
specific information. This can adversely influence the final clustering outcome
in the absence of consistent structure guidance across views.

Previous MVC studies have underscored the significant improvement in
clustering performance resulting from the preservation of a consistent struc-
ture [27, 28]. To capture this consistent structure, it’s essential to consider
potential instances of inconsistent structures. These can arise from factors such
as mnoise, errors, biases, corruption, or view-specific characteristics embedded
within the dataset. For instance, the authors in [29, 30] proposed two distinct
graph-based MVC methods. Both methods addressed the inconsistent compo-
nents by decomposing each view’s similarity matrix into a combination of a
consistent similarity matrix and an inconsistent matrix.

A recent endeavor in this area is the incorporation of tensor completion

techniques to learn the view-consensus graph [9, 10]. For instance, a tensor
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Figure 1: The architecture of our proposed SEMI method. Given an incomplete multi-view
data X = [A,Y] with un-missing data A and missing data Y, SEMI learns a unified coefficient
matrix S by jointly performing the exploration of global, local, consistent, and inconsistent
structures as well as the inference of missing views Y. At last, the clustering results are

produced from the consistent embedding matrix F'.

Schatten p-norm-based completion technique has been proposed to leverage both
the spatial structure and the complementary information contained within the
similarity matrices of different views [10]. While this method ensures that the
resulting overarching graph not only captures the inter-view similarity structure
but also aligns with the intra-view similarity, it has its own limitations. For high-
dimensional datasets, the method struggles to effectively explore both global and
local structures simultaneously. Moreover, in its effort to construct the graph,
it does not delve deeply into the consistency and correlations between views,
potentially missing crucial nuances.

Turning back to the decomposition approaches, they predominantly focus
on the inconsistencies intrinsic to individual views and can achieve comparable
results when the data is complete. However, in scenarios involving missing data
across views, exploring the consistency structure becomes even more critical
[31]. Incomplete data heightens the risk of divergent clustering outcomes from
different views since certain non-missing samples are interpreted as inconsistent
instances. This introduces challenges in fusing view information. Thus, effec-

tively leveraging the observable information presented across different views to
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explore both consistent and inconsistent structures is indispensable for achieving
efficient and meaningful results, especially when faced with the diverse complex-
ities of incomplete data.

To address these challenges, we introduce a novel approach named Struc-
ture Exploration and Missing-view Inference (SEMI) that jointly explores the
underlying global, local, and consistent structures, infers the missing views un-
der the guidance of the captured multi-structures, and performs clustering. The
overall architecture is depicted in Fig. 1. Specifically, SEMI first uncovers the
global structure using a self-representation learning technique and procures a
unified coefficient matrix, which captures the relationships among all data sam-
ples across views. Subsequently, SEMI allows the unified coefficient matrix to
capture the local structure using the available non-missing data samples. This
aids in ensuring genuine relationship information among non-missing samples
and mitigating the introduction of new noise and biases. To diminish the ef-
fects of specific information and examine the discriminative information within
the consistent structure, we decompose the coefficient matrix into two parts: a
consistent section represented by an embedding matrix and an inconsistent sec-
tion denoted by an error matrix. Following this, the missing views are inferred
under the guidance of the coefficient matrix with multiple structures. The final
cluster assignments are derived from the embedding matrix. In summary, our

contributions are as follows:

e We propose a novel unified approach named SEMI, which jointly integrates
the exploration of the global, local, consistent, and inconsistent structures

to capture consistent and discriminative information across views.

e We introduce the inference of missing views under the structure guidance.
The captured multi-structures can guide the missing-view inference, and

the completed data can also facilitate structure exploration.

e We exploit an efficient alternation optimization method to iteratively op-
timize the involved variables. SEMI can achieve highly competitive clus-

tering results on various multi-view datasets with different missing ratios.
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The remainder of the paper is organized as follows: Section 2 presents related
work, encompassing both complete and incomplete multi-view clustering meth-
ods. In Section 3, we introduce our SEMI approach. The optimization strategy,
as well as the convergence and complexity analysis of SEMI, are detailed in Sec-
tion 4. Section 5 discusses the experiments and their results. Finally, Section 6

concludes the paper.

2. Related Works

Before we present the related work, the main notations are as follows. Through-
out the paper, we denote scalars, vectors, and matrices using the following con-
ventions: italic lowercase letters (e.g., ) for scalars, lowercase letters (e.g., x)
for vectors, and italic capital letters (e.g., X) for matrices. Let us consider a
data matrix with n data samples, denoted as X € R4*". Thereinto, x() € RIx!
represents the i-th column vector, and 2(9) € R1*! represents the (i,7)-th en-
try. For any matrix X, we define the trace operation as Tr(X), the transpose
as X7 and the Frobenius norm as ||X||r. The Lp,g-norm of X is denoted
as || X|lp,g = > i= 1”((2?21 |z(7)|Pya/pyl/a Additionally, T represents the
identity matrix, and 1 represents a vector with all entries equal to one.

Given a complete multi-view data set {X,}Y_; with V views and ¢ clusters,
X, = [xz(,l), o ,xg,")] € R% " represents the v-th view data, where its dimension
is d,, and its number of data samples is n. Partly data samples of one or more
views are missing for an incomplete data setting.

In this section, we briefly review two topics related to this work, includ-
ing self-expression subspace multi-view clustering and graph-based multi-view

clustering.

2.1. Self-Expression Subspace Multi-View Clustering

In a single-view setting, given a data set X € R%*" self-expression subspace
clustering aims to learn a coefficient matrix S by reconstructing each data sam-

ple using a linear combination of the other samples, which can be formulated
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into

msin,Q(X — X8) + MR(S), s.t.,P(9), (1)
where the coefficient matrix S € R™*™ contains the underlying relationships
across all data samples, which can be considered as the global structure of the
data; £ can be any kind of norms [32, 33, 34, 35], such as l; —norm, ls—norm, etc;
R can be any kind of regularization for S like a graph regularization [36, 37],
aiming to introduce constraints or penalties to the learning of S in order to
impose specific structures on the learned models; ® denotes the feasible regions
of the values of S; A is a trade-off parameter to balance the two terms. With
the learned S, the cluster assignments can be computed.

In a complete multi-view setting, given a complete data set {X,}V_,, it
is natural to extend self-expression subspace clustering in Eq. (1) into self-
expression subspace MVC [38, 39] as follows

v v
mgnz (X, = Xu8,) +a ) (S, — )+ MR{S 11, 9),
= =1 (2)
st @({Su}y_1.9),
where S, € R"*" for each view v; £ can be any kind of norms to force each
S, to S; M indicates a regularization for both {S,}Y_; and S; a and X are
trade-off parameters to balance the three terms. It can be observed that co-
efficient matrices {S,}Y_; are fused into a common matrix S, which refers to
the overarching relationships across all views, indicating the global structure of
the multi-view data. In an incomplete multi-view setting, each S, is learned
from the available data samples, and a unified S is obtained by fusing these
individual S, matrices [14, 17]. However, missing views are ignored, resulting
in an inadequate exploration of the global structure [18, 20, 22]. With increased
missing ratios, the global structural quality becomes compromised, leading to

the potential introduction of more noise and biases.

2.2. Graph-based Multi-View Clustering
A graph is a crucial data structure used to depict the connections between

data samples. In a graph, each sample is represented by a node, while the
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relationships between two samples are represented by edges [40, 41, 42, 43].
Graph-based approaches exhibit robust adaptability when handling incomplete
multi-view data. They can construct graph structures leveraging available view
information without significant perturbation from missing data. This endows
them with enhanced robustness in practical applications, especially in scenarios
with data absence in certain views. In a single-view setting, a popular method

is to transform the data X with similarities S € R™*" into a graph through

mSin i (2 — 20569 L AR(S), s.t., ®(9), (3)
i,j=1
where each entry s/ in S represents the similarity probability between z()
and () in which a larger s() means z(® is closer to z(9); £, R, and ® can
be instanced with multiple norms, regularization, and regions. Generally, the
graph is often constrained into a k-nearest neighbor graph to capture the local
structure of the data, where z(* and z(9) are connected with the probability
5() only if (9) belongs to the k-nearest neighbors of (Y. The learned graph S
can be partitioned to obtain the cluster assignments by a partitioning strategy
like spectral clustering.
Similarly, we can have graph-based MVC by extending Eq. (3) into the

following problem

\% n \%
; (3) _ .3\ (id) / _ v
miny Y L) —ai)si? +a ) LS, — 5) + MRS S),

v=114,j=1 v=1 (4)
s.t., ®({Su}i1, 5),

where £ and £ are instanced with multiple norms; R and ® are instanced with
multiple regularizations and feasible regions; The consensus graph S across all
views can be formed by fusing {S, }Y_,, which contain the learned local structure
in each view. However, each view graph S, is unable to completely encapsulate
the local structure in an incomplete multi-view setting [26, 44, 45, 46], leading
to the emergence of distinct view graphs, and ultimately causing a decline in
the quality of the fused graph.

To mitigate the challenges, our proposed method aims to jointly explore
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the global, local, and consistent structures, while also accounting for poten-
tial inconsistencies. Subsequently, the learned structure is employed to guide
the imputation of missing samples. This process of structure exploration and

missing-view inference is designed to be mutually reinforcing.

3. Proposed Method

With incomplete multi-view data, the authentic un-missing data samples
are denoted by {A,}Y_, € R%*"v and the missing data samples are denoted by
{V,}V_, € REx(=n0) for y-th view, where X, is the horizontal concatenation
of 4, and Y,, i.e.,, X, = [A4,,Y].

Our proposed SEMI method aims to group the incomplete data {X, =
[A,,Y,] }V_, into c clusters by jointly imputing the missing data samples for
each view Y, and preserving the structures of un-missing data samples. Specif-
ically, SEMI models global-structure learning, authentic local-structure learn-
ing, structure-consistency learning, and missing data imputation into a unified

framework.

8.1. Global-Structure Learning

V_., we utilize a self-expression sub-

Given complete multi-view data {X,}
space learning technique to explore the global structure of different views. Unlike
Eq. (2), each data sample can be represented by a linear combination of other
samples within the same view through a unified coefficient matrix S, not S,.

Hence, S can be constructed by utilizing the full data samples from multiple

views as below:

”
min Y |1 X, — X, S|[F + AlS|E,
v=1 (5)

s.t.,Vi, 800 = 0,17 = 1,8 >0,

where the coefficient matrix S € R™*"™ contains the relationships among all data
samples across views and can be used to represent the global structure of multi-

view data; a [l norm is employed for £ and R, respectively; a diagonal constraint
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is imposed on S to avoid a trivial solution, which only uses the sample itself to
reconstruct each data sample; s(7) > 0 is to make S non-negative; 17s®) = 1
can be considered as a sparse constraint on .S; A is a balancing parameter.
Unlike MVC on the complete data, for IMVC on incomplete data, each view
data consists of authentic un-missing data and missing data. We aim to learn

the global structure across views contained in S as follows:

v
: 2 2
mb}nZHXv — X,S||F + AlISIE
v=1 (6)

s5.0.,Y0, X, = [Ay, Y], Vi, s = 0,170 = 1,8 >0,

where A, € R%*"™ refers to the un-missing data in X,; Y, € Rdx(n—n)

indicates the missing data in X,.

8.2. Missing-view Inference

It can be noted that learning global structure in S is difficult on an incom-
plete data set. The more missing samples in each X,, the more challenging
learning S is. Hence, we propose to complete the data set by performing an im-
putation for each view with missing samples while learning the global structure.
Specifically, we can first utilize a zero-filling strategy to impute each missing
sample with an all-zero vector to learn the coefficient matrix .S and then itera-
tively use the improved S to update Y, for each view. Hence, we add a variable
Y in Eq. (6) and have

Vv
min Y || X, — X,S||% + \||S]|%
sy ; (7)

s5.0.,Y0, X, = [Ay, Y], Vi, s = 0,170 = 1,9 >0,

where Y = {Y,}V_, represents a set of missing data for all the views. In this
way, the imputations of missing samples Y can benefit from the guidance of the
learned global structure S. To alleviate the influence of view-specific information
and the introduction of biases, we would further enable the coefficient matrix S

to contain local and consistent structures.

10
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8.8. Local-Structure Learning

With global structure learning and missing-view inference, each data sample
in v-th view can be linearly reconstructed by the entire data set X, that con-
tains the authentic un-missing samples A, and the imputed samples Y,,. The S
learned from Eq. (6) can explore the global information of multiple views with
A, and Y, but ignores the local structure among un-missing samples. Coexisting
with completing the incomplete view data, we also need to guarantee authentic
relationship information between the un-missing samples in S. It is conducive
to achieving a more reliable imputation and eliminating the possible introduced
negative impacts by the imputed missing views. Generally, two different data
samples are closer and are likely to have more similar representations. Unlike
the graph-based MVC in Eq. (4), we simplify the learning of each view graph
and directly make the unified coefficient matrix S involve the overall local struc-
ture. Hence, we integrate graph learning into Eq. (7) to simultaneously capture

the local structure of each view with only authentic un-missing samples.

|4 V. ny
g DI = XSl ST 9 32 5% l? — ol
Tou=l v=114,j=1

s, V0, X, = [Ay, Y, ], Zo = G,SGT, Wi, s0) = 0,170 = 1,8 >0,
where ~ is a balancing parameter and n, is the number of un-missing data
samples in v-th view; Z, € R"*™ and Z, = G,SGYI represents the authentic
relationship matrix; G, € R™*" is a prior index matrix, where the entries
related to the missing samples are zero. The matrix G, can be defined as
below.

1, if ag) is the original ij)

gl =

0, otherwise
8.4. Consistent and Inconsistent Structure Learning
With the global- and local-structure learning, the obtained unified coefhi-
cient matrix S can capture the global and local information across views. To
further reduce the influence of unreliable and irrelevant information in com-

pleted multi-view data, we propose to model the consistent and inconsistent

11
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structures jointly. Specifically, the coefficient matrix S can be decomposed into
a consistent part and an inconsistent part, respectively.

Since this task is a clustering-oriented partition learning and the number
of clusters is known to be ¢, we can push the consistent part towards FFT in
which F' € R™*¢ is an orthogonal partition matrix across views. The inconsis-
tent part is expected to involve noise, errors, view-specific information in the
un-missing samples, and view-specific information introduced by the imputed
samples, which highly affect the quality of the learned structure. Hence, the sep-
aration between the consistent and inconsistent structures is necessary. Given

S, we decompose it into these two parts:
S=FF"+E. (9)
Then we can get F' and E by
IlgiélHEHl, st,S=FF' +E F'F =1, (10)

where E € R™ "™ is used to model the inconsistent information by utilizing ¢q
norm on it, which can enforce E to capture sparse inconsistent structure across

different views.

3.5. Overall Objective Function
By integrating the consistent-structure learning Eq. (10) into Eq. (8), the
learned coefficient matrix S involves the information of the global, local, and
consistent structures, which will be more conducive to the inference of missing
views. The overall objective function can be found as follows:
\% Vo n,
minE; 1X0 = XuSI1E+AISIE +7D Y llal) — a[[3287 + BI|E||)

S,Y,F, =
v=114,j=1

5., Vv, X, = [Ay, Y], Zy = GuSGE, Vi, 50 = 0,170 =1,
$>0,S=FF' +E,FTF =1,
(1)
where A, v, and § are trade-off balancing parameters; there are four variables

S,Y, F, and E that need to be optimized.

12
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4. Optimization Strategy

Since the variables in Eq. (11) are interdependent, obtaining an optimized
solution for each variable is a challenging task. To tackle this challenge, the
alternating direction method of multipliers (ADMM) is utilized to update the
variables iteratively. We can first convert Eq. (11) into the following augmented
Lagrangian function:

\4
L(S,Y,F,E) =Y ||X, — X,5||% + AlIS|[%

V.o o U.:l _ 3 a P
Y0 D Mol a3 + BlIEI 4GS~ FFT B+ |7
v=14,j=1
5.V, X, = [Ay, Y], Zo = GuSGT, Vi, s =0,17sW =1, > 0,FTF =1,
(12)
where the matrix P is the Lagrange multiplier and « is a penalty parameter.
When updating one variable, the other three variables updated before can be
treated as constants in the current step. We focus on optimizing the four vari-
ables S,Y, F, and E, and one Lagrange multiplier P. The updated rules are

described in the subsequent sections.

4.1. Update F

When we fix S, Y, E, and P, updating F is to solve the augmented La-

grangian function

P
L(F) = |\S—FFT—E+EH% st,FTF =1, (13)

13
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Based on the trace operator’s properties, we denote H = S — F + —, and the
@

term can be written as below

i
IS = FFT - B+ —|[%

= ||H - FF"|[%

=Tr((H - FFT)T(H - FFT))

(H'H — H"FFT — FFTH + FFTFFT) (14)
=Tr(H'H) - Tr(H'FFT) — Tr(FFTH) + Tr(FI.FT)
=Tr(H'H) - Tr(FTH'F) -~ Tr(FTHF) + Tr(FI.FT)
=Tr(H"H) - Tr(F'(H" + H)F) 4+ Tr(FI.FT)

Notice that Tr(HT H) is a constant with respect to F. To update F, we can

drop this term and reduce Eq. (13) into the following problem for simplicity

F ~ argmin Tr(FT(H" + H)F) (15)
FTP=I.

The approximated optimal solution for F' is formed by the ¢ eigenvectors of

(HT + H) corresponding to the largest c eigenvalues.

4.2. Update S

When F, Y, E, and P are fixed, X, is fixed and the augmented Lagrangian
function in terms of S can be

ZI\X XSHF+MISHF+VZZIIG —ai)||%=(Y

v=114,5=1
(16)
—||IS-FFT - E+ —|
| o
5.6V, Zy = GoSGT: Vi, s = 0,1Ts0 = 1,8 >0
A two-step approximation strategy is utilized to optimize S. Specifically, we can
first use S denote S without considering the constraints on .S and then push S

to approximate S by adding these constraints. The problem in Eq. (16) can be

14



split into two problems: Eq. (17) and Eq. (18) as follows.

:ZI\X - Xy SHF+MISIIF+VZ Z lla? — a3z

v=114,5=1

. (17)

—||IS—FFT —E+ —|?

T3 ||S T3 HF

st Y, Z, = Gngf
S = argmin  [|S - S||} (18)
Vi,s(10=0,1T5()=1,5>0
300 To solve Eq. (17), we take the derivative of L(S) as zero and then have

=@+ + PL)THQ+ 50— ZGTBTG (19)

where @ = 21‘;1 XI'X,, C=FFT+FE— g, and b\ = ||a5,i) - aff)||% is the
ij-th element of B, € R™*"v,

With the obtained S , S can be updated by solving the constrained quadratic
optimization problem in Eq. (18) with the Karush-Kuhn-Tucker (KKT) con-

ss  dition. For each row,

st = argmin || — sO||% (20)
Vi,s(i9)=0,1Ts() =1,S>0

Its Lagrangian function can be found as follows
. 1 ) — . .
LG9, ) = 315 — 5O [F — p(1s0 = 1) — 500 (21)
Based on the KKT conditions, we have
vy, s(ij)—s/(r'j)fufaj =0
V4, s(id) <0

Vj, gj <0

Vj, o050 =0
Hence we can have the solution of s(¥ as
W, 509 = (56D + i), (22)

where the optimal 4 is the root of 3, (s (i) + w4 — 1.

15



s0 4.3, Update Y
Fixing F', S, E and P, the function of Eq. (12) can be transformed into

\4
LY) =Y [|1Xy = X,8||F s.t., Xy = [Ay, Y] (23)

v=1

where

1 X, — X,8||% = Tr((X, — X,8)T (X, — X,,9))

=Tr(XI'X,) - 2Tr(SXI'X,) + Tr(STXI'X,S)
(XI'x,)—2rr(XFSX,)+Tr(STX'X,S) (24)
=Tr(X'X,) - Tr(XI's"Xx,) - Tr(X'SX,) + Tr(XI'ss"X,)
(xI(1, - sT -5+ 857)X,).

From Eq. (23), each Y, in Y can be updated independently by solving

L(Y,) = Tr([Ay, Yo' (I, — 8T — S+ SST)[A,,Y.]) (25)

Let Z = (I, — ST — S+ .SST). Then we can convert Z into a block matrix since

it is a square matrix as below

Zaa Zay
Z Z

ya vy

7 =

where Z,, € R™*™ refers to the block corresponding to the relationships
sis  between available samples; Z,, € R *(n=mw) ig the block matrix correspond-
ing to the relationships between available samples and missing samples; Z,, €
R(n=nv)Xn g the block matrix corresponding to the relationships between miss-
ing samples and available samples; Z,, € R(n=nv)x(n=nv) refers to the block
corresponding to the relationships between missing samples. Adding the block

20 matrix Z into Eq. (25), we can have
L(Y,) = Tr(YoZyy Y + Ay(Zay + ZL)Y]) (26)
Through making the derivative of Eq. (26) in terms of Y, as zero, we can get
Yy = —AyZuy 2y, (27)

where Z,, = (I, — S)I(I,, — §), is positive-definite.

16
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4.4. Update E

When fixing F', S, Y, and P, the sub-problem to solve F can be found below
@ T P
LE) =BlElL + SIS - FF" —E+ —|lr (28)

P

We have I' = S — FFT + —. The closed-form solution of Eq. (28) can be
o

obtained by applying the shrinkage operator [47] to each element of H

r2

E = shrink( a) (29)

4.5. Update P

The Lagrange multiplier matrix P can be updated via

P=P+a(S—-FF'-E) (30)

where the penalty parameter & = min(pa, agp) in which p and ag are constants.
Algorithm 1 summarizes the overall procedure presented above. After ob-
taining the partition matrix F', we employ the k-means algorithm on it to obtain

the final cluster assignments.

4.6. Convergence and Complezity Analysis

1) The convergence of SEMI. SEMI is optimized by the ADMM framework,
which encompasses four sub-problems concerning F', S, Y, and E. Unfortu-
nately, establishing a theoretical proof for the convergence of ADMM in multi-
block optimization [48] poses challenges. Nevertheless, by following similar
procedures [44], the convergence can be guaranteed given that the Lagrangian
function in Equation (12) is Lipschitz differentiable and all sub-problems exhibit
strong convexity. Additionally, in Section V, convergence analysis experiments
are performed to demonstrate the convergence property.

The primary convergence criterion is the stability of the objective function
across consecutive iterations. Specifically, the algorithm monitors the absolute
relative change in the objective function value. If the change between two

successive iterations is smaller than a predefined threshold, € (set to 1 x 1074,
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Algorithm 1 SEMI Optimization Method

Input: Incomplete multi-view dataset of V views {X,}V_; with X, =
[A,,Y,] € R%X" the number of clusters ¢, parameters \, 7, 3, a = 0.01,
ap=10% p=1.1,and e =1 x 10~

Output: The partition matrix F

1: Initialize the index matrices {G,}Y_;.
2: Initialize the missing matrices {Y,}V_, with a zero filling strategy.
3: Initialize the coefficient matrix S.
4: repeat
5. Fix S, {Y,}Y_,, E, and P, update F by Eq. (15).
6: Fix F, {Y"}™  E, and P, update S by Eq. (
7. Fix F, S, E, and P, update {Y"}"", by Eq. (27
8. Fix F, S, {Y"}I"_,, and P, update E by Eq. (
9. Fix F, S, {Y?}™,, and E, update P by Eq. (
10: until 7 < €

11: Calculate the cluster assignments with F'.

the algorithm is considered to have converged. Mathematically, the condition
is given by:

_[ob3t=1) —ob3)| _
T= obi D) < (31)

An alternative is to set a maximum iteration limit.

2) The complexity of SEMI. From Algorithm 1, the computational com-
plexity of our proposed SEMI method includes five parts, which are the ini-
tialization and updates of our variables. To be more specific, updating F'
takes O(cn?), where ¢ is the number of required clusters and n is the num-
ber of data objects. The update of S takes O(n%). Updating {Y}V_, takes
O(Vny(n —ny)? + Vdyn,(n —n,)). Updating E needs to cost O(n?). Overall,
the computational complexity of SEMI can be simplified into O(n?). For the
space complexity, SEMI takes O(n?) to store F,S, E, P, and other auxiliary
variables and takes O(V (n — n,)?) to store {Y*}V_,.
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5. Experiments

Extensive experiments are carried out in this section to validate the effec-

tiveness of our proposed SEMI approach.

5.1. Experiment Setting

5.1.1. Datasets

To evaluate the performance of our proposed SEMI method, we use 5 com-
plete benchmark multi-view datasets to generate incomplete multi-view datasets
as follows.

(1) 100leaves’: The one hundred plant leaves (100leaves) dataset is a bench-
mark dataset widely used in the fields of computer vision and pattern recogni-
tion. This dataset has 3 views with 1600 samples in each view. Each sample
has 64 features and belongs to one of one hundred plant species.

(2) BBCSports?: The BBCSport dataset is a text classification resource
gathered from the BBC Sport website. It encompasses 5 categories to classify
these texts into soccer, rugby, cricket, tennis, and athletics. This dataset has
a total of 116 texts in four views. Each sample in different views has different
features.

(3) Caltech73: The Caltech7 dataset is a classic image classification dataset
that contains images from 7 object categories, which are bread, cookies, candy,
coffee cups, beverage cans, flowers, and apples. This dataset contains 1,474
color images, each with different image sizes. This dataset is also a widely
used benchmark dataset for image classification, data enhancement, and deep
learning.

(4) ORL*: The Olivetti Research Laboratory (ORL) face dataset is a com-

monly used face recognition dataset, provided by Olivetti Labs. The dataset

Thttps://data.world /uci/one-hundred-plant-species-leaves-data-set
2http://mlg.ucd.ie/datasets/bbc.html
3http://www.vision.caltech.edu/Image _Datasets/Caltech101
4https://paperswithcode.com/dataset/orl
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contains 400 images from different people and is widely used for research and
experiments in the field of face recognition.

(5) Mfeat®: The Mfeat handwritten digit dataset contains 10 handwritten
number categories (0 to 9) from the UCI repository. There are a total of 2000

data samples, and each sample has 6 types of features.

Table 1: Statistics of the Benchmark Datasets

Dataset # of Views  # of Clusters # of Samples # of Features in Views

100leaves 3 100 1600 64/64,/64
BBCSport 4 5 116 1991/2063/2113/2158
Caltech? 6 7 1474 48/40,/254/1984/512/928
ORL 2 40 400 1024/288
Mfeat 6 10 2000 216/76/64/6/240/47

The summarised statistics can be found in Table 1. The incomplete datasets
are created from the five complete datasets by randomly eliminating a certain
percentage of instances from each view, including 10%, 20%, 30%, 40%, and

50%, which are five missing ratios from 0.1 to 0.5.

5.1.2. Baseline Methods

We adopt 7 state-of-the-art IMVC methods as baselines to compare the
performance, including

(1) IMSC_AGL [12] integrates the graph learning and spectral clustering
techniques to learn a common representation and then uses the k-means to
obtain final partitions.

(2) IMSR [22] first leverages self-representation subspace learning to obtain
the global structure and then fills the missing samples under its guidance.

(3) PIMVC [46] method for IMVC that utilizes a graph regularized projective

Shttp://archive.ics.uci.edu/ml/datasets/Multiple+Features
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consensus representation in a unified low-dimensional subspace.

(4) LSIMVC [49] is an IMVC approach based on matrix factorization, which
aims to learn a consensus latent representation by incorporating a sparse con-
straint and a graph embedding term.

(5) AGC_IMC [26] simultaneously performs graph completion and consensus
representation learning while utilizing an adaptive scale vector to mitigate the
negative impact of information imbalance.

(6) UEAF [21] infers missing views using a locality-preserved reconstruction,
aligns all views naturally, embeds an adaptively learned consensus graph, and
employs an adaptive weighting strategy to gauge the importance of various
views.

(7) FLSD [31] employs a graph-regularized matrix factorization model to
maintain local geometric similarities and uses a semantic consistency constraint
for a unified representation.

To evaluate the baselines, we acquire their source codes from the authors’
websites and follow the settings outlined in the original papers to fine-tune
the hyperparameters and report the best experimental results. Regarding our
proposed SEMI method, the balancing parameters A, v, and § are determined
via grid searching within the range of 2{=10:=8:--10} ' The initial value of « is set

to 0.01. The constants o and p are assigned values of 10° and 1.1, respectively.

5.1.3. Fvaluation Metrics

We utilize 3 commonly used metrics to assess the performance of all the
methods: accuracy (ACC) [50], Normalized Mutual Information (NMI) [51],
and purity [52]. The values of these metrics range from 0 to 1, with higher
values indicating superior clustering performance.

To ensure a fair comparison, we execute all the methods ten times with
different missing ratios and then calculate the average values as well as the

standard deviations of the metrics.
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5.1.4. FExperimental Environment
We conducted the experiments in the Matlab2023a environment. All our

experiments were done on a desktop computer configured with an Intel 19-12900f

processor and an NVIDIA RTX 3080 graphics card with 32 GB of RAM.

5.2. Ezxperimental Results

The Tables 2, 3, and 4 present the average experimental results, aggregated
over the 5 missing ratios [0.1,0.2,0.3,0.4,0.5], for 8 methods on 5 incomplete
multi-view datasets. The results include the mean metric values and standard
deviations denoted as meantstandard-deviation from the ten best experimental
runs to ensure the stability and reliability of our experimental outcomes. The
average best results are highlighted in bold and the results in the table marked
with an asterisk (*) indicate the second-highest results. From the tables, we
have the following observations.

In Table 2, SEMI outperforms other methods in terms of ACC across all
datasets, notably excelling in the BBCSports dataset. This highlights SEMI’s
robustness and versatility. Its strength lies in its information aggregation strat-
egy, effectively capturing complex data patterns by blending local, global, and
consistent information. This integration leads to superior performance. More-
over, SEMI can achieve consensus results, as seen from its reduced standard
deviations compared to other baselines. Among the baselines, IMSC_AGL per-
forms better than the other methods, chiefly due to its emphasis on graph
learning, highlighting the significance of local information. While SEMI jointly
explores multi-structure information, providing a distinct advantage. Addition-
ally, UEAF, which aims to learn a consensus graph, underperforms in our sim-
ulations. Its graph quality may be influenced by the noise or outliers caused by
incomplete multi-view data. However, SEMI imputes the missing views under
the guidance of the learned structures, alleviating the introduction of noise and
outliers.

In Table 3, SEMI performs better than the other methods in terms of av-
erage NMI across all datasets with different missing ratios. While IMSR and
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Table 2: ACCs with mean + standard-deviation of different methods on the five datasets

across all missing ratios

Datasets IMSC_AGL IMSR PIMVC LSIMVC AGC_IMC UEAF FLSD SEMI

100Leaves  *0.619+0.039  0.476+0.024  0.591£0.018  0.356+0.037  0.579+0.010  0.267+0.039  0.318+0.032  0.646+0.014

BBCSports  0.720+0.017  0.455+0.033  *0.737+0.036  0.725+0.026  0.574+0.005  0.677+0.027  0.723+0.051  0.803+0.015

Caltech7 0.4874+0.053  0.434+0.046  0.465+0.026 ~ 0.501+0.017  *0.520+0.022  0.447+0.068 0.448+0.048 0.668+0.015

ORL *0.615+0.028  0.603+0.021  0.607+0.036  0.530+0.018  0.511+0.035  0.435+0.031  0.535+0.066 0.683+0.019

Mfeat *0.814+0.021  0.626+0.026  0.798+0.020  0.756+0.019  0.741£0.034  0.658+0.051  0.694+0.019 0.835+0.009

FLSD achieve notable results, they cannot outperform SEMI. Specifically, IMSR,
learns a unified coefficient matrix by self-representation subspace learning and
leverages it to guide the data imputation. However, the coefficient matrix solely
encompasses global information, resulting in imprecise imputation. This is pri-
marily due to the difficulty in accurately capturing global information, especially
as the missing ratios increase. In contrast, SEMI integrates both global and lo-
cal structures, allowing it to capture more complex and diverse patterns. FLSD
employs a graph-regularized matrix factorization model for IMVC, prioritizing
local geometry and the importance of different views. However, it ignores in-
consistencies, making it challenging to learn a consistent structure. In the face
of biased or skewed data, SEMI stands out with its design that considers both
consistent and inconsistent structures.

Table 3: NMIs with mean + standard-deviation of different methods on the five datasets

across all missing ratios

Datasets IMSC_AGL IMSR PIMVC LSIMVC AGC.IMC UEAF FLSD SEMI

100Leaves  *0.78140.043  0.707£0.063  0.769+0.059  0.623+0.015 0.77440.015 0.542+0.062 0.588+0.055 0.801+0.016

BBCSports ~ *0.633+0.032  0.24840.023  0.614+0.025  0.603+£0.005 0.4224+0.012  0.55240.043  0.605+0.048  0.720+0.011

Caltech7 0.394+0.038  0.387+0.041  *0.438+0.026  0.42140.007  0.433+£0.003  0.379+0.06  0.401£0.042 0.475+0.012

ORL *0.767+£0.027  0.752+0.007  0.7534+0.049  0.71040.014  0.691+0.020  0.604+0.031  0.708+0.028 0.798+0.019

Mfeat *0.767+£0.015  0.570+0.017  0.75240.027  0.72140.008 0.765+0.011  0.598+0.046  0.654+0.037 0.788+0.014

Table 4 shows the purities of various methods across datasets with all miss-
ing ratios. SEMI excels in most datasets, with the exception of Caltech7. A

hallmark of SEMI is its integration of both consistency and inconsistency across

23



475

480

485

490

views, distinguishing it from methods that focus solely on consistency. Leverag-
ing the inherent correlations and complementarities between views, our method
markedly separates the inconsistencies and consequently improves clustering
purity. On the Caltech? dataset, PIMVC performs the best while our SEMI
method can still achieve comparable results. When considering all three evalu-
ation metrics for Caltech7, our method can surpass the other baselines in most
cases.

Table 4: Purities with mean + standard-deviation of different methods on the five datasets

across all missing ratios

Datasets IMSC_AGL IMSR PIMVC LSIMVC AGC.IMC UEAF FLSD SEMI

100Leaves  *0.660+£0.024 0.498+0.056  0.61840.037  0.398+0.038  0.604=£0.004 0.305+0.035 0.3434+0.064 0.668+0.013

BBCSports  0.820+0.035  0.54140.016  0.832+0.025  0.823+0.013  0.656+0.024 0.76240.049 *0.838+0.035 0.893+0.011

Caltech7 0.836+0.014  0.835+0.029 0.862+0.030 *0.849+0.026 0.84840.002 0.830+£0.058  0.845+0.031  0.844+0.025

ORL 0.641+0.017  0.649+0.019  *0.650+0.029  0.5754+0.029  0.53440.030 0.47840.025 0.568+0.052 0.727+0.018

Mfeat *0.818+0.021  0.62240.028  0.802+0.015  0.761+0.001  0.771+0.014 0.667+0.023  0.698+0.042 0.832+0.015

To systematically analyze the performance changes of different methods un-
der various missing ratios, we present metric curves on multiple incomplete
multi-view datasets. A notable observation becomes evident: as the missing
ratios increase, the performance in terms of three evaluation metrics generally
declines, as shown in Figs. 2, 3, 4, 5, and 6. This underscores the challenges
of missing views. Yet, even amid these challenges, SEMI’s resilience stands
out, consistently outperforming baselines, especially in terms of ACC and NMI
metrics. Instead of a singular focus, SEMI integrates local, global, and consis-
tent structures, capturing the depth and breadth of each view. This holistic
approach, enabling the detection of both broad patterns and intricate details,
is key to SEMTI’s edge. In essence, SEMI’s unique representation approach and
adaptability to data incompleteness set it as a leading method in incomplete

multi-view clustering.
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Figure 2: Clustering performance in terms of ACC, NMI, and purity on 100 leaves dataset

with different missing ratios.

5.8. Time Complexity Analysis

Table 5 presents the average running time of different methods on multiple
datasets at various missing ratios. Notably, our proposed SEMI algorithm can
achieve comparable running time in most cases and rank third place on average.
Specifically, SEMI, IMSC_AGL, and PIMVC all have the same time complexity
of O(n3). However, a distinguishing feature of SEMI is its incorporation of a
consistency term in the optimization process. This term, designed to capture
both consistent and inconsistent structures, leverages the consistent structure
to guide the imputation of missing views. The explicit computation of inconsis-
tency, represented by matrix F, introduces an additional computational burden
of O(n?). For instance, on the BBCsports dataset, SEMI converges in a mere
0.167 seconds, trailing slightly behind IMSC_AGL, which takes 0.121 seconds.

However, by incorporating the exploration of inconsistencies, our SEMI algo-
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Figure 3: Clustering performance in terms of ACC, NMI, and purity on BBCSports dataset

with different missing ratios.

rithm can achieve superior clustering performance, illustrating the existence of

a trade-off between performance and complexity.

Table 5: Average elapsed time across all missing ratios for various methods on different

datasets

Dataset IMSC_AGL IMSR PIMVC LSIMVC AGC.IMC UEAF FLSD SEMI
100Leaves 5.62s 27.9s 0.609s 14.0s 9.71s 8.50s 11.3s 2.31s
BBCsports 0.121s 1.38s 1.23s 12.1s 0.231s 7.24s 4.47s  0.167s
Caltech7 2.54s 24.9s 0.472s 7.68s 7.45s 32.8s 12.6s 2.53s
ORL 0.549s 2.06s 0.171s 27.0s 1.48s 1.45s  0.745s  3.99s
Mfeat 5.07s 50.5s 0.422s 8.62s 13.8s 58.7s 14.9s 5.89s
Average *2.78s 21.4s 0.581s 13.9s 6.53s 21.7s 8.80s 2.97s
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Figure 4: Clustering performance in terms of ACC, NMI, and purity on Caltech7 dataset with

different missing ratios.

5.4. Convergence Analysis

Convergence analysis plays a crucial role in assessing the effectiveness and
stability of a model since it enables us to evaluate the training efficiency of
the model. In light of this, we designed a series of experiments to thoroughly
analyze convergence. Our model computes the value of the objective function
at each iteration according to Eq. (12). We perform 50 iterations and record
the objective function value for each iteration on BBCSport and ORL datasets,
plotting these values as a line figure for an intuitive visualization of the model’s
convergence behavior. The experimental results are depicted in Figure 7, with
the x-axis representing the number of iterations and the y-axis representing the
objective function value. The figures demonstrate that SEMI exhibits rapid

convergence, indicating that it provides an efficient and optimized solution.
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Figure 5: Clustering performance in terms of ACC, NMI, and purity on ORL dataset with

different missing ratios.

5.5. Hyperparameter Sensitivity Analysis

To evaluate the sensitivity of SEMI to hyper-parameter configurations, we
perform a sensitivity analysis, focusing on two critical hyper-parameters: the
balancing parameter A and . We designate a range of values for each hyper-
parameter, specifically 2710, 275,20 25 and 2'°. In our experiments, the values
of A and ~y are adjusted to examine their influence on the model’s performance on
the Mfeat and 100Leaves datasets with a 0.1 missing ratio. For each combination
of A and +y, we show the relationships of the ACCs and the two parameters. We
visualize the experimental results using 3D graphics in Fig. 8. It can be observed
that SEMI can obtain stable and satisfied ACCs when they are in some feasible
ranges. On the Mfeat dataset, the ranges of A and  are [2°,219] and [271°,29].
On the 100Leaves dataset, the ranges of A and v are [2°,210] and [2710,2%]. Tt

demonstrates that SEMI is insensitive to the two parameters to some extent
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Figure 6: Clustering performance in terms of ACC, NMI, and purity on Mfeat dataset with

different missing ratios.

when ) is within the range of [2°,2!°] and v is within the range of [2710,29].
Through this sensitivity analysis, we are able to identify the optimal hyper-
parameter settings for each dataset and gain a better understanding of how
these hyper-parameters influence the model’s performance, which is valuable

for fine-tuning the model to achieve optimal results in practical applications.

5.6. Ablation Study

In this subsection, we conduct a series of ablation experiments to assess the
individual contributions of each component within our proposed model concern-
ing performance. Ablation experiments involve sequentially removing crucial
components from the model and observing the subsequent changes in perfor-
mance. To maintain experimental fairness, we train and evaluate both the
complete model and its ablated versions on the Mfeat dataset with a 0.1 miss-

ing ratio and experimental conditions. We employ the three metrics to gauge
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Figure 8: ACCs versus parameters A and 7 on Mfeat and 100Leaves datasets with a 0.1
missing ratio, respectively.
the performance of each variant model. We have SEMI and its three variants

as follows.
e The full model of SEMI,

e No consistent structure consideration in SEMI, where the learned coef-
ficient matrix S is not split into FF? and E and the terms (4)-(5) are

removed from Eq. (12);

e No local structure consideration in SEMI, where the learned coefficient
matrix S does not contain the local structure exploration and the term

(3) is removed from Eq. (12);

e No data imputation in SEMI, where the missing views Y are not updated.
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e No global structure in SEMI, where ZL/:l || X, — X,S||% is removed from

Eq.(12) ;

Ablation Study: Structure Comparison
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Figure 9: Ablation study histogram on Mfeat dataset with a 0.1 missing ratio.

The results of the ablation study experiments are shown in Fig. 9. From the
results, we observe the following trends: the performance across all metrics expe-
riences a decline when the consistent structure component is omitted, signifying
its pivotal role and contribution to the enhanced performance. Additionally,
when the local structure component is excluded, the performance deterioration
becomes more pronounced, indicating that the local structure also substantially
impacts the model’s performance. Without the data imputation, the missing
views would degrade the performance severely. Notably, the most substantial
impact on performance was observed when the global structure component was
removed. The absence of global structure had a marked negative effect on all
evaluated metrics, signifying its pivotal role in enhancing algorithmic perfor-
mance. This highlights the indispensable contribution of global structure to
our algorithm. In summary, our experimental findings underscore the essential
nature of each component in the SEMI algorithm. These components reinforce
each other during the iterative optimization process. This ablation experiment

provides valuable insights into the internal structure of the algorithm and the
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interplay among its components, aiding in further optimization and understand-

ing of our approach.

6. Conclusion and Future work

In this paper, we proposed a novel incomplete multi-view clustering method
by exploring multiple structures and imputing missing views. We unified the
self-expression learning, graph learning, and clustering-oriented learning to cap-
ture the underlying global, local, and consistent structures, respectively. In
the guiding of the captured structure, the missing samples are inferred and
then reinforce the exploration of the multiple structures during an alternative
optimization process. We conducted a series of experiments to evaluate the
efficacy of our proposed method across a diverse range of scenarios, including
various ratios of missing data, multiple data distributions, and distinct num-
bers of views. Experimental results show that our method can achieve better
performance than the baselines in most cases, demonstrating the effectiveness
in handling incomplete multi-view datasets. For future work, we would enhance
the proposed approach by integrating deep learning techniques to investigate
the nonlinear relationships among data samples and impute missing views in an

adversarial manner.
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