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On estimation of nonparametric regression models with
autoregressive and moving average errors

Qi Zheng 1. Yunwei Cui ? - Rongning Wu 3

Abstract The nonparametric regression model with correlated random errors is a
powerful tool for time series forecasting. We are interested in the estimation of such a
model under a random design setup, where the random errors are assumed to follow
an autoregressive and moving average (ARMA) process, and the covariates can also
be correlated. Instead of estimating the constituent parts of the model in a sequential
fashion, we propose a spline-based method to estimate the mean function and the pa-
rameters of the ARMA process jointly based on a least squares method. We establish
the desirable asymptotic properties of the proposed approach under mild regularity
conditions. Extensive simulation studies demonstrate that our proposed method per-
forms well and generates strong evidence supporting the established theoretical results.
The proposed method provides a new addition to the arsenal of tools for nonparametric
models for serially correlated data. We further illustrate the practical usefulness of our
method by modeling and forecasting the weekly natural gas scraping data for the state
of Towa.

Keywords nonparametric model with correlated errors - oracally efficient estimation -
T-mixing - splines

1 Introduction

The linear regression model with autoregressive and moving average errors (RegARMA)
frequently arises in modeling real-life time series data (see, e.g., 7?777?), due to its rela-
tively simple structure and straightforward inference. However, there are severe draw-
backs in model goodness of fit, if the postulated linearity in the model does not match
the nature of the data. To alleviate the problem, researchers proposed to use nonpara-
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among others) and hence considered
Y;f:gO(Xt)+€t7 t=1,---,m, (1)

where go(-) is a smooth regression function such that go(z) = E[Y:|X: = z], Yi’s
are outcome variables, X¢’s are covariates, and €;’s are independent from X:’s and
constitute a correlated random error process. It is worth mentioning that although we
only consider a single covariate throughout the paper for the simplicity of presentation,
our proposed method can be readily extended to multivariate cases by following a
general additive model (?) or a partially linear single-index model (?).

Kernel methods (see, e.g., 7) and spline approximations (see, e.g., 7) are the two
commonly used approaches in nonparametric regression. They both can be applied
to estimate go(-). The existing literature devoted to studying kernel regression under

method is more practically appealing due to its easiness in computation and better per-
formance reported in related literature (see, e.g., 7). However, the related development
based on spline approximations in studying (1) has been relatively sparse (??), which
is mainly due to several theoretical obstacles encountered in the course of establishing
the asymptotic properties. First, as the time series data is correlated, the techniques
for consistency of spline regression estimates in independent data (see, e.g., 7) cannot
be directly used without further adaptation for serially correlated data. Second, due to
the fact that the number of spline basis functions is required to increase as n increases,
special treatment is needed to address the inherent high-dimensional issues, otherwise
many powerful techniques in time series, such as uniform ergodic theorem (see, e.g., 7)
and martingale central limit theorem (see, e.g., 7), are not applicable. Third, due to the
MA component, the objective function usually is not convex (?), making it challenging
to examine the limiting distribution of estimators of ARMA parameters. It is by no
means a trivial task to tackle these challenges for model (1).

To mitigate the theoretical challenges, ? investigates the spline methods on model
(1) by assuming {X;} to be deterministic (so-called fixed design setup). More specif-
ically, they considered almost equally spaced time points and studied the asymptotic
properties of penalized least square estimation under a set of regularity conditions.
When {X;} are random (so-called random design setup), ? established the asymptotic
properties for a two-step model fitting procedure based on B-splines and maximum like-
lihood estimators for ARMA processes. First, go(-) is fitted by ordinary nonparametric
methods with {e;} being treated as uncorrelated; second, by assuming the consistency
of spline regression estimates in the first step, an ARMA process is estimated based on
the residuals. ? proposed a method to estimate both mean function and autocovari-
ance function based on assumptions of Gaussian noise process and further developed
confidence sets for the mean function that quantify the uncertainty of the estimator.
To our knowledge, the consistency of regression function estimates and the asymptotic
distribution of ARMA parameters has not been fully addressed in the literature for a
random design setup.

In contrast to the existing two-step procedure developed by ?, this paper aims to
develop a spline-based method that estimates the mean function go(-) and the pa-
rameters of the ARMA process simultaneously under model (1) with a random design
setup. Under the assumption that the random errors, {e;}, are generated by a classic
ARMA process, we investigate the random design that even allows covariates {X¢}
to be be weakly dependent.To rise to the theoretical challenges, we novelly employ



Bernstein’s inequality for mixing sequences (?) to establish proper probability bounds
and show that the bounds hold even when the number of basis functions increases. As
a consequence, our theoretical development not only works for nonparametric spline
estimation but can be adapted to high dimensional linear ARMA models. Finally, we
utilize the approach developed by ? and rigorously demonstrate that our spline estima-
tor of go(-) is uniformly consistent and the estimator of the parameters of the ARMA
process achieves asymptotic normality.

In fact, our estimator of the ARMA parameters performs oracally efficiently, in
that it is asymptotically as efficient as if the true function go(-) is known and ARMA
models are fitted to the real ARMA errors {e:} (see, e.g., ??7). Thus, our proposed
method enjoys a broad applicable scope in time series data, where the covariates are
often dependent in practice. Another key feature of this paper is that while ?’s oracle
efficiency result is achieved based on the assumption that the estimator of go(-) is
consistent (see assumption (c) in ?), our work completely alleviates this assumption by
directly establishing the consistency property of the proposed estimator. Moreover, we
can show that the proposed estimator of go(-) achieves the optimal global convergence
rate of nonparametric models (see, e.g., 7).

The remainder of this paper is organized as follows. In section 2, we introduce
the model setup and propose an estimation method based on least square estimation
with spline approximation. In section 3, the asymptotic properties of the proposed
estimation method are established. In section 4, a comprehensive simulation study is
performed to evaluate the developed results. In Section 5, we illustrate the practical
usage of our method by analyzing a natural gas data set obtained for the state of lowa.
All proofs are relegated to the Appendix.

2 Model setup and estimation method

In the sequel, €; in (1) is assumed to follow an ARMA(p, q) process, that is

P q
=Y bineti =G+ Y 05uCiy, ©)
i=1 =1
where ¢;4,0;+ € Ryji = 1,---,p,j = 1,---,q. Let B denote the backshift operator,

such that B(e:) = e;—1. The ARMA(p, q) process (2) satisfies ¢, (B)er = 0+(B)(t,
where ¢, (2) =1 —>"F | ¢;x2" is the AR polynomial and 64 (z) = 1 + 23:1 Ojszi—;
is the MA polynomial. We further denote (¢1x, - - - ,¢p*)T and (014, - ,Gq*)T by ¢,
and O, respectively.

Let Bn(u) = (B1(u),---, By, (u))T be a set of xth order normalized B-spline basis
functions with knot sequences {7s}, where {75} satisfy 71 = -+ = 7% < Tpq1 < -+ <
Tj, < Tj,+1 ="+ =Tj, +r. Following the literature of spline estimators (see e.g. 77),
we require

max,<s<J, Ts+1 — Ts

< C,

minKSSSJn Ts+1 — Ts

uniformly in n, to investigate the asymptotic properties of our proposed estimators.
Throughout the rest of the paper, we use C to represent an unspecified positive constant
whose value may vary. In addition, we may suppress the dependence of J,, and By (-)
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on n for notation simplicity, when there is no confusion. The unknown function gg(-)
then can be approximated by B-spline functions:

J
go(u) = g« (u) =Y BjuBj(u) = B B(u),
j=1

where 8, = (B1x,-- ,B7:)" minimizes ||go(u) — BTB(u)||oo with respect to 8. Ac-
cording to 7, A := ||gx(u) — go(u)|lec < CoJ ™ for some constant Cp, under Condition
(C1) in Section 3, where « is defined in Condition (C1). Let Wy = B(X4). Then (1)
can be approximated by

Y, ~ BIWy + e, t=1,---,n, (3)

Denote (,@T,d)T,OT)T by &. Let &, = (ﬁ;f,¢*T,9;f)T denote the true regression,
AR, and MA coefficients of the model (3). We define e;(8) = 1{t > 0}(Y; — BT W) and
Ce(€) = 1{t > 0}(et(B) = 2011 piet—i(B) — 271 0jCG—;(€)), where 1{-} is an indicator
function. We propose to obtain é = (BT, &T, éT)T, the least squares estimator of &, by
minimizing L£n(€) = Z?:l CtZ(E). Consequently, §(-), the estimator of go(-), is ,@TB(-).

AT T
In the next section, we establish the asymptotic properties of § and (¢ ,0 )T.

3 Asymptotic Properties

We begin with imposing some necessary notations. Let ||Al|q denote the Ly norm of
A, where A can be a vector, matrix, or function. In particular, ||A|| denotes the Lo
norm of A. We also adopt the empirical process notations as follows: for a generic
variable Z and function f, Gn(f) = Gn(f(Z;)) := n~1/2 S (f(Z) — E[f(Z;)]) and
Enf(Zi) :=n"" Y0 f(Z0).

The following regularity conditions are needed to facilitate our technical derivations:

(C1) go(+) € Cg‘)(X), where Cg‘)(X) is the collection of the continuous functions
g: X — R on a bounded set X € R with the ath derivative ||g(*) || < D, for
some integer a > 2 and D > 0. Without loss of generality, we assume X = [0, 1].

(C2) The polynomials ¢, (z) and 8«(z) have no common roots, and their roots lie
outside the unit circle in the complex plane.

(C3) {Ct}i=1 and {X};=, are independent. (¢’s are independent and identically dis-
tributed (i.i.d.) with E[(;] = 0 and E [CE] = ¢2. In addition, (; satisfies the
Bernstein’s condition, that is, E[\Q\k} < k!C]l%/Q, for some large Cg > 0 and
E>1.

(C4) {X:} is a strictly stationary sequence of absolutely continuous random variables
and {X;} is S-mixing with coefficients 8(k) < 2exp(—dik"") for any positive k,
where dy,7y1 > 0. We refer the definition of S-mixing to 7. Let

T
e d)*(B)Wt(d)*(B)Wt) }

0.(B) 0.(B)

The smallest eigenvalue of I' is bounded below by AnyindJ 71, for some constant
Amin > 0.



Remark 1 Condition (C1) is commonly assumed in the spline smoothing literature (e.g.
?), which gives smoothness conditions of the nonparametric functions. It is worthy
mentioning that Condition (C1) implicitly requires the order of splines K < « + 2.
Condition (C2) is often adopted in the literature studying ARMA models (see, e.g.,
?7?7?). It implies that {¢;} is the unique causal-invertible stationary solution.

Remark 2 By Condition (C2), we also have ¢, (2)/0x(z) = >.72 Tz, oy (z)
S22 o prist and 0571 (2) = Y02 iz’ where 7.0 = a0 = a0 = L, |7iels [pisls Vi
Cyr',i > 1, for some C1 > 0 and 0 < r < 1. We denote C1 > = r" by Ca.

IA

Remark 3 Condition (C3) and (C4) are technical conditions. The S-mixing condition
allows {X;} to be weakly dependent, which relaxes the widely assumed independent
condition and would help improve the applicability of our proposed method. The f-
mixing condition can be satisfied if {X;} is an ARMA process, under some mild condi-
tions (7). The Bernstein condition is imposed to circumvent the difficulty of establishing
the consistency of g under the increasing dimensionality of the splines approximation
and the dependent covariates. The two conditions are often met in practice. In fact,
Bernstein’s condition implies that (; is sub-exponential, which is weaker than the com-
monly used sub-Gaussian condition in the studies with increasing dimensionalities (see
e.g., 7).

By ?, the smallest and largest eigenvalues of E [WtW;F] are bounded below

and above by )\minJ_l and )\maXJ_l, respectively, where 0 < Apin < Amax < 00.
By Proposition B-4, we can show that the largest eigenvalue of I' is bounded by
C’22/\maXJ -1 Thus, the eigenvalue assumption in Condition (C4) can be viewed as
an adapted version of the ARMA process.

Let T(h) = Ln(€, +h) — Ln(£,), where h = (h],h) h1)T € R/*PT9 and
hi,hs, and hs are vectors of size J, p, and ¢, respectively. Further, let h denote a
local minimizer of T'(h). Then minimizing £, (&) with respect to & is equivalent to
minimizing 7'(h) with respect to h and € = &, + h.

Theorem 3-1 Suppose Conditions (C1)-(C4) hold. If J ~ nt/CotD) there exists a
local minimizer of T'(h), h, such that h —, 0.

Since E =€, +ﬁ, Theorem 3-1 indicates that there exists a a local minimizer é of Ln(£),
such that & is consistent to &€,. This immediately implies the following corollary.

Corollary 3-1 Under the same conditions as in Proposition A-2,

E [(@(Xt) - gO(Xt))Q} =0, (n—za/<2a+1)> ’

where « is defined in Condition (1).

Corollary 3-1 shows that even if dependent covariates and non-Gaussian ARMA errors
are present, the proposed estimator ¢ still achieves optimal global convergence rate of
nonparametric models (7). In particular, if & = 2, the convergence rate of § is n=2/5,

~T ~T
The next theorem summarizes the asymptotic distribution of (¢ ,0 )T as de-
sired. We define Qr = (Q/1, Q2 Qf3)", such that Qi = ¢,(B)6: ' (B)W¢, Qi =
&' (B)(G-1,- 1 Gt—p) 'y and Quz = 051 (B)(G-1, -+, Gt—g) -
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Theorem 3-2 Under the same conditions as in Theorem 3-1,

E|QuQbL| E|QnQf

\/ﬁ(?—qﬁ*) —a N(0,6*°57Y),  where X = T T
0 — 0. E1QuQi| B |QusQus

Comparing Theorem 3-2 to the classic results for estimating ARMA processes (cf.
chapter 8, ?7), one can see that the proposed method for model (1) produces “oracally”

efficient estimators of the ARMA parameters (¢;F, G;F)T, in the sense that ($T7/0\T)T
are asymptotically indistinguishable from the estimators when gg(-) is known a priori
(7).

Theorems 3-1 and 3-2 only require the asymptotic order of the number of knots.
In our numerical studies, we chose equally spaced quantiles in X as knots to avoid the
complication of determining the knot locations. Regarding the number of knots and the
ARMA orders p and ¢, there are several approaches to determine. For instance, we can
employ the Bayesian Information Criterion (see, e.g., 7), or we can develop a penalized
Ln(€) by incorporating the LASSO type penalties (7). However, the investigation of
the validity of those methods is beyond the scope of this work and will be examined in
our future research.

4 Simulation study

We conduct a simulation study to attest to the validity of the asymptotic results.
An assortment of model setups and parameter configurations satisfying the regularity
conditions of Theorems 3-1 and 3-2 are adopted. In particular, three different smooth
functions are defined on X = [0, 1] with

f1(Xt) =1—6X; 4 36X7 — 53X} +22X7;
f2(Xt) = sin(2m X)) + 2X7;
f3(X¢) = arctan(5X; — 5/2) — X7 /3.

The covariate variable X;’s are generated from AR(1) models with normal innova-
tions first and then rescaled within X = [0, 1]. For the ARMA processes (2), various
innovations are investigated, including normal distributions. The proposed estimation
method is tested for three different sample sizes, n = 500, n = 1000, and n = 2000.
We assume that the order of the ARMA model for ¢; are known a priori as in the
previous works (e.g., ?); yet for practical purpose, we propose using Theorem 3-2 to
assist in selecting a proper order of ARMA process for which the details are given in
the next section. The inner knots for B(X;) are constructed as eight equally spaced
quantiles in X for n = 500, and nine equally spaced quantiles in X for n = 1000 and
n = 2000. For each model setting, we repeat simulations 1000 times and report the
sample mean and sample standard deviation of the parameter estimates. In light of
Theorem 3-2, the theoretical approximation for the standard deviation of each model
setting is computed and presented for comparison purposes.

Overall, the simulation study indicates a strong congruence between the observed
estimates and the asymptotic properties for ARMA parameters. The theory established
in this paper is versatile, in the sense that the asymptotic properties are developed
under the condition that (¢ is not merely just normally distributed. In addition, empir-
ically, we found that models with ¢; that does not satisfy Condition (C3) still comply



satisfactorily with the theoretical asymptotic results. We specifically present simula-
tion summaries for models with (; being t—distributed in Table 1 through Table 3.
Among the reported results, the proposed method was tested for various serial correla-
tion structures for ; introduced by ARMA(1, 1), AR(2), and MA(2) models. In Table 1
through Table 3, the mean values of the estimates of the ARMA parameters are close
to the corresponding true parameter values. It is evident that the related empirical
sample standard deviations are in high agreement with their theoretical approxima-
tions, which are given in the parentheses. Moreover, comparing results across different
values for n, the decreasing differences between the means and their corresponding true
parameter values, and the decreasing standard deviations of the estimates all imply
the proposed estimation method becomes more accurate and precise as sample path
length increases.

To further gauge the performance of the proposed method, we also adopt two
metrics to calculate the discrapency between go(-) and §(-)

1 0.9
pd0,3) = /0 (90(x) — 3())%dz,  pro(go,d) = /0 (90() — §(x))?d.

1

The metric p(go, §) is intended to measures the overall performance over [0, 1]. Since it is
well-known that nonparametric smooth function estimation may encounter difficulties
and generate larger deviates from the true function in the regions close to the boundary
points than the regions close to the middle, p19(go, §) is used to measure the difference
over the interval [0.1,0.9] to obtain a more comprehensive evaluation of §(-).

In simulation study, corresponding to each case presented in Table 1 through Table
3, we also calculated p and p1g which were presented in Table 4 through Table 6,
wherein the proposed method is labeled as ‘one step’ and the sequential method is
labeled as ‘sequential’. The obtained results demonstrate the consistency property of
g(+), in that as sample path length n increases, p and p1g both decrease, indicating a
diminishing difference between gg and §. Additionally, it is evident that the proposed
method dominated the sequential method. Among 108 pairwise comparisons between
‘one-step’ method and ‘sequential’ method, the proposed method outperformed the
sequential method for 105 times. More specifically, the proposed method yielded smaller
values than those of the sequential method for all 54 cases in terms of p, which indicates
better boundary performance; the proposed method yielded smaller values than those
of the sequential method in terms of p and pjg for all 72 cases, when sample path
size is relatively small, i.e. n = 500 and n = 1000, indicating better performance for
small sample size. The only 3 cases where the sequential method performed better are
located in Table 5. All 3 cases are related to AR(2) models with large sample size,
n = 2000. All in all, the simulation study clearly vindicates the proposed method as a
valuable supplementary tool to the existing sequential method.

Of note, we remark that the residuals for the sequential method which are fed into
the ARMA estimation process have a mean equal to zero, since they are obtained by
a regression procedure. As such, they naturally meet the specification of model (1),
E(et) = 0. However, in order to enforce the condition for the proposed method, an
additional sum-to-zero constraint should be imposed for Y; — §(X¢). We simply center
all basis functions of X; and the response values Y; by their average values, i.e. the
column mean is subtracted from each column of the basis functions and the mean of
Y: is subtracted from each value of Y, such that all linear combinations of the basis
functions and Yz have mean zero. The upshot is that we solve the model identification
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problem for numerical implementation of model (1) by a sum-to-zero condition. The
initial values of the ARMA process for the optimization process are rendered by random
numbers over [0,1], and all parameters for the basis functions are set to be one. An
implementation of the proposed method by R turns out to consistently converge to
estimates that are close to the true ARMA parameters in the simulation study. For
further details of the numerical implementation of the proposed method, interested
readers are invited to visit https://github.com/cui-yun-wei/trend-model to play
with the code.

Please put Table 1 through Table 6 here

5 A real data example

Compared with other fossil fuel options, natural gas is a cleaner and more efficient en-
ergy source. The use of natural gas in the U.S. has steadily increased in the last decade.
According to the U.S. Energy Information Administration (EIA), natural gas accounts
for 35.4% of total U.S. primary energy production in the year 2021. The production
increases contributed to a decline in natural gas prices, which in turn has induced
growth in natural gas use. About half of the households in the U.S. use natural gas
for space heating and water heating. Being used to monitor natural gas transportation
and gauge natural gas consumption, the pipeline scrape data comprise the records of
the total amount of natural gas entering a state through the interstate pipelines and
are obtained from the interstate pipeline Electronic Bulletin Boards as mandated by
Order NO. 636 for the capacity release program of the U.S. Federal Energy Regulatory
Commission.

Natural gas consumption is highly sensitive to weather impacts, especially for the
regions which use natural gas as their primary heating source. Since natural consump-
tion and natural gas scrape data are highly correlated, it is of great interest to study the
natural gas scrape data. To model and forecast scrape data, one of the main covariate
variables is the Heating Degree Days (HDD) which measures how long and how much
the exterior temperature is below a predetermined reference temperature (called the
base temperature, usually 65 degrees Fahrenheit). Denote the temperature in a day at
time ¢ by T'(t), where ¢ represents the length of time in hours since midnight. The daily
HDD can be computed by the following two formulas, as either the total for a day in
degree x hours or the 24-hour average in degrees

24

L[ 65— ()t at,

24
+
/0 (65 —T(t))" dt, or 2 ;
where (65 — T'(t))" = max{65 — T'(t),0}. Aggregating the daily HDD of a week gives
weekly HDD.

The weekly scrape data from year 2013 through year 2016 were obtained for the
state of Iowa. Meanwhile, the corresponding weekly HDD data in degree x hours were
computed based on the hourly temperature profile of the Des Moines International
Airport weather station, which were downloaded from the Integrated Surface Database
of National Centers for Environmental Information. We are concerned with modeling
and forecasting the weekly scrape (data), Yz, based on the weekly HDD (data), X¢, of
Towa. The whole data are split into two parts. The first 157 weeks, covering the years
2013 through 2015 entirely, constitute the training data to fit proper regression models



of Y; on X;. The remaining data in 2016, totally 52 weeks, is set aside as testing data
for model evaluation.

A scatter plot (Figure 1) for the two variables demonstrates a curvilinear relation-
ship. Based on the X values in the training set, spline basis functions, B(X¢), are
constructed. The effects of X on Y; are assumed to be appropriately represented by a
smooth function, denoted by go(X:). We first obtain an approximation of the smooth
function go(X¢) by the ordinary multiple linear regression of ¥; on B(X}) and denote

the approximation by g(X¢) with g(X¢) = ETB(Xt), where 3 represents the esti-
mates for the regression coefficients. The ensuing model diagnostics show that there
exists significant serial correlation among the residuals & = Y; — g(X}), and spline
approximation alone cannot adequately address the dynamics of the data generating
mechanism of Y;. Therefore, (1) appears to be a more appropriate model due to its
ability to accommodate the serial correlation in the data.

We try to fit model (1) with an ARMA type random error process as defined by (2).
We consider the two-step procedure which fits the model in a sequential way (??) and
the proposed method (one-step method). For the sequential procedure, first we fit g(X¢)
by ordinary multiple linear regression, and then estimate the ARMA process based on
residuals €;. In contrast, the proposed method estimates the spline approximation and
ARMA process jointly through a single optimization. We use g(X¢) to denote the spline
approximation of gg(X¢) derived by the optimal solution of the proposed method.

The knots for B(X¢) are chosen as equally spaced quantile points in the range of
Xt. We employ a heuristic to determine a proper value for the number of knots, i.e.,
Jn should be chosen such that the total sum of squares of the residuals is minimized
for the fitted model among all choices of J,. We implement a grid search with J, €
{5,6,...,18,19}. It turns out the value of J, induces a similar impact on the both
the sequential method and the one-step method, in that the total sum of squares of
the residuals exhibit a decreasing pattern. For the sequential method, as the number
of knots increases, the total sum of squared residuals (SSR) decreases first and then
stabilizes around 2.86 x 1012; after J, reaches 15, SSR continues to show a trend of
minor but steady decrease from knot to knot. In a similar way, the SSR by the one-step
method also decreases first and then stabilizes around 2.72 x 10'2. Compared with the
sequential method, the SSR by the one-step method has a smaller average value, but
exhibits a bigger variation among different values of Jy, e.g., for J, = 13, the value
spikes above 2.95 x 1012, but for J, = 16, it plummets to 2.55 x 10'2. We pick Jp, =7
and J, = 8, since each of them marks the smallest number of knots for which the SSR,
for sequential method or the one-step method experiences a series of steady decrease
and begins to touch the region of the stable level (the so-called elbow point).

Please put Figure 1 here

Please put Figure 2 here
To develop a proper model for the training data, we implement the automatic proce-
dure of auto.arima to pick preliminary values for the order of ARMA process for the se-
quential method. The procedure suggests an ARMA(2,2) model with (<1A>17 b2, 01, 92) =
(—0.6118,—-0.2972,0.8892,0.6276), for J, = 7. The time series model appears to be
overfitted since the associated standard errors are given by (0.1884,0.1818,0.1559, 0.1443)
and 65 is not significantly different from zero. We also fit the training data with J, =7
and ARMA(2,2) by the proposed least squares method which yields (¢21, b, 01, ég) =
(0.3371,0.5345,0.3352, —0.0988). Next, we invoke Theorem 3-2 to obtain the standard
errors of the above estimates by assuming that all regularity conditions are satisfied. It
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shows that the ARMA(2,2) model by the one-step method is overfitted since the stan-
dard errors are given as (1.1416,1.0604, 1.1503,0.3296). By repeatedly using standard
errors to detect overfitted models, both the sequential method and the one-step method
finally entertain with AR(1) models. Specifically, the sequential method settles with
é = 0.2865 (s.e=0.076) and the one-step method settles with ¢ = 0.8987 (s.c.=0.035).
Both models pass the Ljung-Box test at five different lags. For the case Jp, = 8, a similar
situation arises, as auto.arima suggests an AR(4) with most of the fitted parameters
being not significantly different from zero. Once again, through a process of trial and
error, both methods favor AR(1) models, i.e., é=0.2772 (s.6=0.077) for the sequential
method, and QAS = 0.8916 (s.e=0.036). Despite Jn, = 7 being a strong competitor, our
preference tilt towards to Jp, = 8 with AR(1), since in Figure 2, the one-step method
usually produces a smaller SSR than that by the sequential method, and J,, = 8 scores
a significant reduction in the total sum of squared errors for the one-step method.

Finally, we fit model (1) with an AR(1) type random error processes for the training
data by the sequential method and the proposed method respectively with J, = 8.
From Figure 1, it is evident that significant difference exists between g(X¢) and §(X¢).
At first sight, it might appear to be counterintuitive for the fitted smooth function
by the one-step method, §(X¢), to differ substantially from g(X¢) by the sequential
method (see the blue dashed curve and the solid red curve of Figure 1). However, the
overall fitted values (the fitted curve plus the fitted ARMA process) by the sequential
method and the proposed method are more closely in line with each other. While the
sequential method subjugates the ARMA process to address the remnant of fitting a
spline approximation to the data, our method possesses the advantage of being able
to balance the tradeoffs between the spline approximation and the ARMA model. The
scatter plot of the fitted values vs the true values of Y, Figure 1, shows that the fitted
model by the proposed method has a better fit, since the fitted values are distributed
more compactly around the 45° line going through the origin. In Figure 3, we plot
the ACF graphs for the remnants Y; — g(X;¢) and Y: — §(X¢). It shows that spline
approximation alone cannot adequately address the dynamics of the scrape data, since
both ACF graphs show the existence of unaccounted autocorrelations. At the same
time, we note that in Figure 4 both the sequential method and the one-step method
adequately solve the issue, in that the generated residuals seem to be uncorrelated,
especially for one-step method, as all the ACF ticks are within the 95% confidence
interval.

Please put Figure 3 here

Please put Figure 4 here

We continue to perform an evaluation of the model (J, = 8, AR(1)) on the basis of
a rolling forecasting origin method for successively 52 weeks for the year 2016. The fore-
casting origin is initially placed on January 2nd, 2016. All the data, from December 30,
2012, to the forecasting origin, are assumed to be known and fitted by model (1). Sub-
sequently, one week ahead forecast for the scrape data is generated by using the fitted
models and the true value of HDD. Then the forecasting origin is moved forward one
week at a time to fit new models and generate new forecasts, until it reaches December
24, 2016. Altogether, 52 forecasts are made for both the sequential method and the
proposed least squares method. Let Y; denote the true scrape value in week w of the the
testing set and ?t denote its forecast value. We examine the forecasting accuracy based
on the following forecast error metrics, i.e., Absolute Deviation (AD), Mean Absolute
Deviation (MAD), Mean Absolute Percentage Error (MAPE), and Root Mean Square
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Deviation (RMSD), with AD — ‘Yt —5?;‘ for week £, MAD = 3272, ‘Yt —5?;‘/52,

~ ~\ 2
MAPE = Y252, ’(Yt - Yt) /Yt‘ /52, and RMSD = \/ 52 (Yt - Yt) /52 (see, e.g.,

?7?77). We find that our one-step method performs better than the sequential method
in terms of MAD, MAPE, and RMSD. More specifically, it achieves 109312.5 thou-
sand cubic feet (MCF), 0.0472 , and 154919.0 MCF respectively for MAD, MAPE, and
RMSD, while the sequential method achieves 129235.5 MCF, 0.0543, and 187598.5
MCF. The sequential method produces a smaller maximum AD, 547000.3 MCF, than
that by the one-step method, 642692.5 MCF. A further investigation shows that both
maximum values happen in week 48, from November 27th, 2016 to December 3rd,
2016. The plot for the ordered AD, Figure 5, shows that the one-step method generally
produces more accurate forecast than that by the sequential method, except for the
last point which corresponds to the forecast in week 48. If the highest point of Figure
5 is removed, one-step method outperforms sequential methods for the next 18 highest
values of AD.

During the previous forecasting test, for the sequential method, the ARMA orders
are fixed at (1,0). Aiming at more flexibility, we implement the sequential method
with auto.arima being used to pick the order of ARMA process. During the 52 testing
weeks, it achieves 131607.2 MCF for MAD, 0.0547 for MAPE, 621101.3 MCF for the
maximum AD, and 191983.1 MCF for RMSD. For completeness, we also assess the
performance of g(X¢), the spline approximation without time series consideration. It
shows that g(X¢) is outperformed by both the sequential method and the proposed
method, demonstrating the necessity of time series component in scape data modeling.
Specifically, if time series dynamics are not addressed in the testing data and only
spline approximation is used, MDA, MAPE, and maximum AD are equal to 174298.9
MCF, 0.0712, and 770422.2 MCF.

Moreover, to produce a comprehensive picture of the forecasting capacity of the
one-step method, we repeat the test across different J,, values. The forecasting test
results are summarized in Table 7. A row by row inspection of Table 7 makes it clear
that our proposed method with an AR(1) process dominates the metrics MAD, MAPE,
and RMSD, in that it almost always generates the best results for each J, value. The
results demonstrate the usefulness of Theorem 3-2 for model selection purpose. Also
from an applied perspective, the heuristic to choose Jp by its elbow point appears to
work well.

Please put Table 7 here

Please put Figure 5 here

In summary, we fit a real-world data set with model (1) using the proposed method
and show that the proposed method is effective in model fitting. We invoke Theorem
3-2 to choose a proper ARMA order. The technique greatly facilitates model selection,
and its effectiveness is established in the forecasting test. Instead separating spline
approximation and ARMA models into two arenas of model fitting and relegating
ARMA models to a second place, the one-step method allows spline approximations
and ARMA models to compete on an equal basis on the same stage of minimizing sum
of squared errors. The proposed method opens a new possibility and offers new insight
for nonparametric model (1). It readily lends itself as an addition to the arsenal of
tools available for nonparametric time series analysis.
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6 Concluding remarks

We propose a method to estimate the mean function and the parameters of the ARMA
process based on least square estimation with spline approximation under a random
design setup. Our proposed approach relaxes the independent covariates assumption
and allows them to be weakly dependent. Utilizing results in empirical processes in
mixing sequence, we establish the consistency and asymptotic normality of the re-
sulting estimator. Our numerical analysis, including both simulation studies and the
examination of Iowa natural gas scrape data show that the proposed method pro-
vided excellent model fitting and forecasting ability and the performance supports our
theoretical results.

Appendix
A. The proofs of main results

We present the proofs of our main results in this section.

As L, (&) = Z?:l ¢? (&) is not convex with respect to &, due to the MA component
0, in order to study the asymptotic property of é, we employ a second-order Taylor’s
expansion of ¢(€) around &, (7) : (1(€) = (1(€.)—Dy (6.)(6—€,)~(6—€.) THL(E,) (¢~
£.)/2, where Dy(€) = —0(¢(€)/0€ and Hy(€) = —0%¢:(€)/(9€0ET).

We decompose D¢ () as (D1 (€), Di2(€), Dtg(ﬁ))T, such that Dy (&) = —9¢:(€)/98,
Dy (&) = —0(:(€)/0¢, and Dy3(€) = —0¢t(€)/00, and partition H¢(€) as follows:

Hy11(€) Hy12(8) Hy13(€)
H: (&) = | Hy21(8) Hy22(8) Hy23(8)
H; 31(€) Hy 32(€) Hy 33(8)

where Hy 11(§) = —9%¢1(€) /08987 is azero J xJ matrix, Hy 12(€) = —9%¢(€)/0B0¢T
is a J x p matrix, Hy 13(€) = —9°¢:(€)/0B00" is a J x q matrix, Hy 21(€) = Hf 15(€),
H; 22(¢) = 782@5 ({)/8¢8¢T is a zero p x p matrices, Hy 23(§) = 782@ ({)/8¢80T isa
pxqmatrix, Hy 31(€) = H/ 13(€), Hy 32(€) = H/ 3(€), and Hy 33(§) = —9°¢:(€)/00060™
is a ¢ X ¢ matrix.

Let [A]; denote the I*" element of the vector A. By simple algebra, we obtain
that Dy1(§) = 01 (B)p(B)W, [Dia(§)]; = 0" (B)er—1(B),1 < 1 < p, [Dy3(8)]; =
0~ (B)G-1(€), 1< 1<q,

:% {E)%/(BE)L]M_OSB)[Wt—m]l’lﬁlvalﬁmép,
:5% :agatf):l:m—m,lszs;a,lsmgq, and
% :a%éﬁ):l:m = %Q 1-m(€),1<l,m<gq
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Furthermore, let V¢ be a symmetric matrix of dimension (J +p+q) x (J+p+q),
whose upper triangular elements are given as

0 fl1<li<m<JorJ+1<I<m<J+p,
—6:1(B) [Wy_ (-], if1<I<J1<m—J<p,

Vil =4 ~0:2(B)§o(B) [Wi_(m_y_p)], H1<I<I1<m—J-p<q,
_0;1(B)d);l(B)Ct—(l—J)_(m_J_p) if1<li—-J<p1<m—-J—-p<gq,

—205(B)Cy— (1—J—p)—(m—T—p) if J+p+1<I<m<J+p+q
We partition V; as follows:

Vi1 V2 Vi
Vi=| Vio1 Vioo Vios |,
V.31 V32 Viss

where V; 11 is a J x J matrix, Vy 12 is a J X p matrix, V¢ 13 is a J x ¢ matrix, V¢ 29 is
a p X p matrix, Vi o3 is a p X ¢ matrix, and V¢ 33 is a ¢ X ¢ matrix. By the definition,
V11 =0 and V29 = 0.

In addition, let Ry = (go(X¢) — BrB(X))1{t > 0} = (e+(B,) — e)1{t > 0} be the
spline approximation error at time ¢.

In the following Proposition A-1, we show that D¢(&,) and H¢(€, ) are well approx-
imated by Q¢ and V¢, respectively.

Proposition A-1 Suppose Conditions (C1) — (C4) hold. There exists some constants
61 and 6, such that for all |8 — B,|| < 61, ||(¢T,0T) — (¢L,07)| < 6o,

(i) 1G] < me, 1Ge(€x) — Du(B)OT (B)Ry — Gi| < rimo, [C(€)] < my + C2(A+61), and
[Ct(€) — Gt (&) < C3dane + C2C302(01 + A) + Cadn,
(i1) ID(&)lo < @i, Dir(€)-Qu = 0, and [|(DE(E.). DE(E)) - (@b QB)|| <
ring + CaA,
(i) | H ()l max < we, He11(€2) = Vi1 = 0, and [He(€,) — Villmax < 70 + C24,

where ny = C4 Z;io rd |et,j|, wp = maX{Cg,r_(p+q)nt +Cy (A + 61)}, and C3 is
defined in Lemma B-7.

Proposition A-1 indicates that D¢ (€, ) and H¢(€,) can be approximated by Q¢ and Vi,
respectively. Moreover, if £ is sufficiently close to the true parameters &, |D¢(€)||o and
[|Ht(€)||max are bounded and the difference between (;(£) and (¢(&,) is well bounded,
too. The proofs of Proposition A-1 and Propositions A-2 — A-3 below are regulated to
the supplementary material.

To circumvent the non-covexity of T'(h) with respect to h, we study a convex
objective function

n

Ty(h) =)

t=1

2 2
<Ct + (giég)) Ry — hTQt) - (Ct + (g:ég)) Rt)

It is worth mentioning that 7 (h) and T5(h), T3(h) defined in Section B of the Ap-
pendix are introduced for the theoretical development. As they involve unknown quan-
tities, such as Q¢ and R, they cannot be computed in practice.

We first show that T3 (h) is an excellent approximation of T'(h). Define 2(C) :=

{h:|h{] < Ccn=1/2, I (h;hg) | < CJl/znfl/z} for any C' > 0. We use 2(C) and
02°(C) to denote the boundary and the complement of £2(C), respectively.
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Proposition A-2 Suppose Conditions (C1)-(C4) hold. If J = n*/ D for any C >
0,

sup |Ti(h) —T'(h)| —p O,
hen(C)

Proposition A-2 is inspired by 7. It demonstrates that 7'(h) can be well approximated
by Ti(h) locally. Therefore, we can study the properties of the minimizer of T} (h) and
infer the properties of the minimizer of T'(h). We refer to ? for a detailed discussion.
We next show that Tj(h) achieves its minimum in a ball round 0 in the following
proposition.

Proposition A-3 Under the same conditions as in Proposition A-2, given any 0 <
e < 1, there exists some Ce > 0, such that

P( _inf Tl(h)>1)>1—e.
he(C.) U R2¢(C.)

Propositions A-2 and A-3 together enable us to establish the consistency of h and
subsequently &.

Proof of Theorem 3-1: By Proposition A-3, given any 0 < € < 1, there exists some
Cs, such that

P( _inf Tl(h)>1)>1fs.

he(C:) U N2¢(Ce)

Under the event {inthQ(CE)UQC(CE) T1(h) > 1}, we claim that there exists a local
minimizer of T'(h), h, which satisfies h € £2(Cc) but h ¢ £2(C). Suppose the claim is
not true. We can find a h, € £2(C¢), such that T'(hg) = minye o(c.) T'(h).

By Proposition A-2, for any C' > 0, suppe(c) [T1(h) — T'(h)| —p 0. Choose C'
as Ce. Then 0 > T'(ha) — T(0) —p Ti(he) — 71(0) = T1(he) > 1. Contradiction!
Therefore, for any 0 < € < 1, there exists C¢, such that h € 2(C¢) with probability at
least 1 —e.

Given any h € 2(C.), E [thWtWtThl} < a7 (C27%07 1) = AmaxC2Jn

Noting that é =&, + R with probability at least 1 — ¢,

B [(50X0) = 90(X0)*] < 2B [ (3(X0) = 9:(X0))*| + 2 [ (94 (X0) = go(X0))]

- E [ﬂthW?ﬁl} +202772 < 2\naxC2In ! + 20372,

Thus, E [(g(xt) _ gO(Xt))Z} = Op(Jn~t + 72 = 0, (n*%é/(m“)), This com-
pletes the proof of Theorem 3-1. ([l

Proof of Theorem 3-2: In the proof of Theorem 3-1, we have shown that for any
0 < & < 1, there exists C¢, such that h € £2(C¢) with probability at least 1 — . Thus,
we restrict our attention to the event that h € 2(C¢).
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We consider that S(ba, bs) := Ty ((h], b3 /v/n, b3 /v/n)T) = T1((hT, 0", 0T)T). 1t
is easily seen that

N "~ (bIQi2 | baQ3 b3 Q2 ngts
S(b27bd)t_zl(\/ﬁ+ QZC ( un )

2y ®.(B) R <b2\/%t2 L bg,\/(%t?))

By Lemma B-3, we obtain that
i by Q2 n b3 Qi 2%, b Q2 n b3 Q3
P vn vn vn N
4 0” (b3, b3 ) 2 (b2,bg) - 2 (bJ, b3 ) N(0,0”5), )
over ||(ba,b3)|| < C for any C > 0.
According to Condition (C3), {¢:} and {X;} are independent. Hence, {Rf} and

{(Qs2,Qu3)} are independent. As |R¢| < A < CoJ ™% and hence |¢,(B)0; ' (B)R| <
CoCoJ™ % — 0, by the same arguments as used for Lemma B-3, we can show that

¢.(B) ,, (b3 Qe b?th)
0*(B>Rt< N

The independence between {(:} and {X;} again implies the independence between

Qi1 and (Quz, Qua), bY Q1. Thus, £ [hT Qu1 (b3 Quz + b Qus ) | = 0, as £[Qua] =
E [Q¢3] = 0. Noting that ||ﬁ1\| < Cedn~ Y2 it follows from Lemma B-2 that

b by _
ZhTQt (% 3\%”) = C.Jn %0, (7(p1/2+q1/2)\/C’4J10gn)

= op(1). (6)
Combining (4), (5), and (6) together yield that

= op(1). ()

sup 2 Z
(T bHII<C ;=1

S(ba, by) —+a o (b3, b3 ) 2 (b2, by) — 2 (b3, b3 ) N(0,0°5).

over |(bd,bd)| < C for any C > 0.
Following from Lemmas B-4- B-6, we have uniformly over ||(ba , b3 )|| < C for any
C>0.

7((bT, b3 /vn, T /vin)T) - (BT, 07,07)T) 5, S(ba, by).

Noting that N(0,02X~!) is the minimizer of the random process which S(bz, b3) con-
verges to, by Lemma 2.2 and Remark 1 in ?, there exists (ba , bs ), a local minimizer of

T((hf, by /v/n, b3 /va)")-T((hT, 0" 0T> s such that (by,b5)™ —q N(0,0?£7).
Since h is the minimizer of T( ) (h h2 ) must also be the minimizer of

T((hf,h3,h3)") - T((h{,07,0")T).

We thus have ﬁ(ﬁaﬁg) = (ET,B;F) and ﬁ(ﬁg,ﬁg)T —4 N(0,02371). This com-
pletes the proof of Theorem 3-2. O
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B. Preliminary proposition and lemmas

Next, we present the technical proposition and lemmas that are used in the proofs of
our theorems and corollaries. The proofs of the proposition and lemmas are relegated
to supplementary materials.

Proposition B-4 If Condition (C/) is satisfied,

sup nlE [(¢<B )Wt) <¢(B )W ﬂ B1 < Amaxd 1 C2,
by [|=1,]|(¢7,67)— (¢ ,67) | <52 6(B) 6(B)

where 9o 1is chosen as in Proposition A-1.

Lemma B-1 Suppose Condition (C3) holds. Then

] 2

() P (¢l > v) < 2050 (57 Loy )
i) B[ aici] ") < (Zglail)* KCE/2, for any a sequence {ar,t > 0} and
k>1.

and

Lemma B-2 Suppose Conditions (C1) — (C/) hold. There exists some constant Cy > 0
that does not depend on n, such that if J = O(nl/(2a+1)),

(i)

Gn {(h?Qﬂ)zcﬂ

P ( sup > 702\/C4J10gn> < 2exp(—6Jlogn).
Ihy]I<1
(ii)

sup
[lh1||<1,h17#0

=1+o0p(1).

(e[t ]) = ran)'e]

(i)
P sup n~1/2 ‘Gn [thQtthTth} ‘ > 7p1/2\/C4Jn*1 logn
1| <1,[h2||<1
<2pexp(—6Jlogn).
P sup n~ /2 ‘Gn [hrlerthTgh3} ‘ > 7q1/2\/ CyJn—1llogn
Ih1I<1,|Ihs]|<1
<2gexp(—6Jlogn).
Lemma B-3 Suppose Conditions (C1) — (C4) hold. Then,
T
En |(h3 Qe + 1} Qu)?¢?| - o2 (0] 0]) = (nf )
(i)): Gn, [(thtQ + hgTth)Ct} —d (hg, hg) N(0,0%%), given any (h3 ,h3 ) such that
(h3,h3)|| < C, for any C > 0.

(iii): Gn [(h;erz + hgTth)Ct] —d (hg,hg) N(0, 022) on ||(hér,hr§)\| < C, for any
C > 0.

—a.s. 0,

(1): suP 7wy <1
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Lemmas B-4— B-6 follow from the steps in 7 and 7.
According to Proposition A-1, |G| < nt, [|Qtllee < [|Qt =Di(&) oo +[Dt(€4) [loo <
ring + CoA + wy =: xt, and similarly || V¢||max < x¢. Thus,

[07Qe| < [11Qu | + b3 Q2 + 13 Qusll < Callbu | + xe(vIBa | + valhal), (7)
'hTVth' = ‘2h’2rvt,21h1 + 2h3TVt,31h1 + 2tht,32hz + hsTVt,33h3’

2
< 2C2(Vplh2|l + valbs Dbl 4+ 2v/pax: [bz(l[[ha]l + gx:[hs " (8)

Let

Ty(h) =)

t=1

2 2
(Ct + (g:((g)) Ry —hTQ; - %hTVth) - (Ct + ﬁ:((g)) Rt) , and

<
3

2
Ty(h) = {(Ct(s*)—hTDt@*)—%hTHt(wh) —43(5*)},

t

Il
-

Lemma B-4 Suppose Conditions (C1) — (C4) hold. If J2logn = o(n1/2), then for
any C' >0, suppecn(c) |71 (h) — T2 (h)| —p 0.

Lemma B-5 Suppose Conditions (C1) — (C4) hold. If J=2¢TY2 = o(n=1/2), then for
any C > O, Supheg(c) |T2(h) — T3(h)‘ —p 0.

Lemma B-6 Suppose Conditions (C1) — (C4) hold. If J?logn = 0(n1/2), then for
any C' >0, suppen(c) |T5(h) — T'(h)| —p 0.

Lemma B-7 Under the same conditions as in Proposition A-1, for any sequence {at},t >
1, there exists some constant C3 such that

() ooy,

o0

< C30y Y r'lag—il,
=0

where d and r are defined in Proposition A-1.
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stimation of the parameters o ,1) process, when X;’s are serially correlated and satisfy the
Table 1 Estimati £ th £ ARMA(1, 1 hen Xy’ ially lated and satisfy th
conditions of Theorem 3.1, and innovations C;’s have a t distribution with

degrees of freedom v.

(¢,0) =(0.6,0.3) v =3 go(Xy)=f1(X¢)
n = 500 n = 1000 n = 2000
B3 o 3 0 $ é
mean 0.5907 0.3160 0.5991 0.3058 0.5989 0.3024
s.d. 0.0489 0.0583 0.0325 0.0386 0.0232 0.0272
(0.0469)  (0.0559) (0.0332)  (0.0396) (0.0235)  (0.0280)
(6.0) = (0.6,03) v =3 go(Xy) = f2(X¢)
n = 500 n = 1000 n = 2000
P 0 ¢ 0 P 0
mean 0.5934 0.3182 0.5957 0.3081 0.5987 0.3026
s.d. 0.0505 0.0621 0.0327 0.0393 0.0238 0.0285
(0.0469)  (0.0559) (0.0332)  (0.0396) (0.0235)  (0.0280)
(#,0) =(0.6,0.3) v =3 go(Xg)= f3(Xy)
n = 500 n = 1000 n = 2000
b 0 P 0 ] 0
mean 0.5911 0.3151 0.5969 0.3061 0.5983 0.3045
s.d. 0.0478 0.0585 0.0327 0.0407 0.0240 0.0290
(0.0469)  (0.0559) (0.0332)  (0.0396) (0.0235)  (0.0280)
(¢,0) =(0.2,-0.5) v =3 gg(X¢)=f1(Xyg)
n = 500 n = 1000 n = 2000
$ 4 b 3 @ 6
mean 0.2064 -0.5230 0.2048 -0.5123 0.2001 -0.5041
s.d. 0.1428 0.1273 0.0922 0.0814 0.0675 0.0606
(0.1315)  (0.1162) (0.0930)  (0.0822) (0.0657)  (0.0581)
(¢,0) =(0.2,-0.5) v =3 go(X¢) = fa(Xy)
n = 500 n = 1000 n = 2000
4 0 ¢ 0 P 0
mean 0.2185 -0.5320 0.2025 -0.5113 0.2026 -0.5057
s.d. 0.1388 0.1256 0.0956 0.0859 0.0660 0.0581
(0.1315)  (0.1162) (0.0930)  (0.0822) (0.0657)  (0.0581)
(¢,0) =(0.2,-0.5) v=3 go(Xg)=f3(X¢)
n = 500 n = 1000 n = 2000
6 3 6 é 6
mean 0.2022 -0.5165 0.2035 -0.5098 0.2062 -0.5099
s.d. 0.1444 0.1300 0.1009 0.0901 0.0646 0.0562
(0.1315)  (0.1162) (0.0930)  (0.0822) (0.0657)  (0.0581)

Table 2 Estimation of the parameters of AR(2) process, when X’s are serially correlated and satisfy the condi-
tions of Theorem 3.1, and innovations C¢’s have a t distribution with degrees of freedom .

(61,62) =(0.4,0.2) v =3 g9(Xg) = f1(Xy¢)
n = 500 n = 1000 n = 2000
1 2 P1 2 P1 2
mean 0.4002 0.1948 0.3996 0.1965 0.3992 0.1986
s.d. 0.0451 0.4610 0.03144 0.0337 0.0234 0.0237
(0.0438) (0.0438) (0.0310) (0.0310) (0.0219) (0.0219)
(¢1,¢2) =(0.4,0.2) v =3 gg(X¢)= fa(Xy)
n = 500 n = 1000 n = 2000
() 1 2 ¢ ¢2
mean 0.4007 0.1935 0.3980 0.1969 0.3990 0.1988
s.d. 0.0451 0.0461 0.0309 0.0307 0.0219 0.0222
(0.0438) (0.0438) (0.0310) (0.0310) (0.0219) (0.0219)
(P1,¢2) = (0.4,0.2) v =3 gg(X¢) = f3(X¢)
n = 500 n = 1000 n = 2000
b1 b2 b1 b2 b1 P2
mean 0.4007 0.1936 0.3993 0.1995 0.3963 0.1991
s.d. 0.0448 0.0450 0.0311 0.0312 0.0226 0.0225
(0.0438) (0.0438) (0.0310) (0.0310) (0.0219) (0.0219)
(¢1,¢2) = (0.5,0.1) v =3 go(X¢) = f1(X¢)
n = 500 n = 1000 n = 2000
1 $2 1 2 1 2
mean 0.4827 0.0976 0.4995 0.0965 0.4990 0.0989
s.d. 0.0458 0.0467 0.0321 0.0316 0.0227 0.0229
(0.0445) (0.0445) (0.0314) (0.0314) (0.0222) (0.0222)
(¢1,¢2) = (0.5,0.1) v =3 go(X¢) = f2(Xy)
n = 500 n = 1000 n = 2000
b1 () b1 (2] b1 P2
mean 0.5002 0.0958 0.4992 0.0977 0.4991 0.0979
s.d. 0.0451 0.0473 0.0331 0.0324 0.0232 0.0237
(0.0445) (0.0445) (0.0314) (0.0314) (0.0222) (0.0222)
(¢1,¢2) = (0.5,0.1) v =3 go(X¢) = f3(X¢)
n = 500 n = 1000 n = 2000
b1 () b1 92 b1 P2
mean 0.4987 0.0924 0.5009 0.0961 0.4995 0.0987
s.d. 0.0453 0.0461 0.0324 0.0318 0.0234 0.0230
(0.0445) (0.0445) (0.0314) (0.0314) (0.0222) (0.0222)
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Table 3 Estimation of the parameters of MA(2) process, when X;'s are serially correlated and satisfy the condi-
tions of Theorem 3.1, and innovations C¢’s have a t distribution with degrees of freedom v.

(01,02) =(0.4,0.2) v =3 go(Xg) = f1(X¢)
n = 500 n = 1000 n = 2000
6, 6o 6, bo 61 o
mean 0.4046 0.2025 0.4030 0.2031 0.4014 0.2014
s.d. 0.0439 0.0457 0.0322 0.0317 0.0227 0.0208
(0.0438)  (0.0438) (0.0310)  (0.0310) (0.0219)  (0.0219)
(61,602) = (0.4,0.2) v =3 90(X¢) = fo(Xy¢)
n = 500 n = 1000 n = 2000
6, 6o 61 6o 61 6o
mean 0.4028 0.2026 0.4021 0.2002 0.4010 0.2007
s.d. 0.0452 0.0453 0.0312 0.0315 0.0216 0.0222
(0.0438)  (0.0438) (0.0310)  (0.0310) (0.0219)  (0.0219)
(61,02) = (0.4,0.2) v =3 90 (X¢) = f3(Xy¢)
n = 500 n = 1000 n = 2000
6, 6o 6, 6o 61 6o
mean 0.4046 0.2025 0.4029 0.2010 0.4020 0.2009
s.d. 0.0455 0.0465 0.0312 0.0316 0.0222 0.0218
(0.0438)  (0.0438) (0.0310)  (0.0310) (0.0219)  (0.0219)
(61,62) = (—0.2,—0.4) v =3 gq(X¢) = Ff1(Xy)
n = 500 n = 1000 n = 2000
01 [ 01 2 2 0o
mean -0.2140 -0.4155 -0.2072 -0.4071 -0.2036 -0.4034
s.d. 0.0470 0.0454 0.0305 0.0300 0.0201 0.0207
(0.0410)  (0.0410) (0.0290)  (0.0290) (0.0205)  (0.0205)
(01,02) = (-0.2,-0.4) v =3 gg(Xy) = fa(Xy)
n = 500 n = 1000 n = 2000
6, 6o 6, 6o 61 fo
mean  -0.2163 -0.4160 -0.2073 -0.4092 -0.2042 -0.4030
s.d. 0.0470 0.0436 0.0307 0.0296 0.0210 0.0207
(0.0410)  (0.0410) (0.0290)  (0.0290) (0.0205)  (0.0205)
(01,602) = (-0.2,-0.4) v =3 go(X¢)= f3(X¢)
n = 500 n = 1000 n = 2000
6, 6o 61 6o 61 6o
mean  -0.2150 -0.4158 -0.2083 -0.4070 -0.2034 -0.4032
s.d. 0.0450 0.0457 0.0300 0.0295 0.0207 0.0206
(0.0410)  (0.0410) (0.0290)  (0.0290) (0.0205)  (0.0205)

Table 4 Comparing §(-) and gg(-), when e;’s follow an ARMA(1L, 1) process, X4’s are serially correlated and
0 t t

satisfy the conditions of Theorem 3.1, and innovations ¢’s have a t distribution with degrees of freedom v.

(¢,0) =(0.6,0.3) v =3 gg(X¢)=f1(X¢)
n = 500 n = 1000 n = 2000
,(90,9) p19(90, 9) r(90,9) r19(90, 9) r(90, 9) r19(90- 9)
one step 0.3193 0.1550 0.205 .0798 0.1608 .0447
sequential 0.7797 0.3345 0.5655 0.1867 0.4633 0.1193
(¢,0) = (0.6,0.3) v =38 go(Xg)= fo(Xy)
n = 500 n = 1000 n = 2000
p(90:9) r19(90, 9) p(90, 9) r19(90, 9) ,(90, 9) r19(90: )
one step 0.3018 0.1387 0.2584 .0959 0.1326 0.0462
sequential 0.7461 0.3255 0.7346 0.2885 0.4343 0.1303
(¢,0) =(0.6,0.3) v =3 gg(Xt)= f3(X¢)
n = 500 n = 1000 n = 2000
p(90, ) p19(90- 9) p(90, ) r19(90- 9) r(90, 9) r19(90- 9)
one step 0.3003 0.1370 0.2106 0.0770 0.1628 0.0482
sequential 0.8628 0.3414 0.5499 0.1940 0.4890 0.1214
(¢,0) =(0.2,-0.5) v =3 go(X¢)=f1(Xy)
n = 500 n = 1000 n = 2000
,(90:9) r19(90, 9) r(90,9) r19(90- 3) r(90, 9) r19(90,9)
one step 0.2079 0.0719 0.1440 0.0401 0.1133 0.0232
sequential 0.2365 0.0820 0.1710 0.0489 0.1342 0.0285
(¢,0) =(0.2,-0.5) v =3 go(X¢)= fo(Xy)
n = 500 n = 1000 n = 2000
p(90, 9) p19(90, 9) ,(90, 9) r19(90-9) ,(90, 9) ,19(90-9)
one step 0.2033 0.0727 0.1804 0.0527 0.1056 0.0237
sequential 0.2329 0.0838 0.2067 0.0545 0.1261 0.0283
(¢,0) =(0.2,-0.5) v =3 gg(Xy)=f3(X¢)
n = 500 n = 1000 n = 2000
p(90, 9) p19(90, 9) p(90, 9) r19(90, 9) p(90, 9) r19(90, 9)
one step 0.2022 0.0679 0.1478 0.0422 0.1403 0.0270
sequential 0.2444 0.0843 0.1715 0.0513 0.1667 0.0314
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Table 5 Comparing §(-) and gg(-), when €;’s follow an AR(2) process, X;'s are serially correlated and satisfy
the conditions of Theorem 3.1, and innovations C;’s have a t distribution with degrees of freedom v.

(61, 02) =(0.4,0.2) v =3 go(X¢) = f1(Xy)
n = 500 n = 1000 n = 2000
,(90,9) r19(90, 9) r(90, 9) r19(90,9) r(90, 9) r19(90,9)
one step 0.2215 0.1044 0.2028 0.0878 0.1983 0.0751
sequential 0.4083 0.1532 0.3086 0.0996 0.2429 0.0538
(¢1,02) =(0.4,0.2) v =3 go(X¢) = fo(Xy)
n = 500 n = 1000 n = 2000
p(90, 9) r19(90, 9) ,(90, 9) r19(90-9) ,(90, 9) r19(90: )
one step 0.1848 0.0919 0.1478 0.0534 0.1395 0.0381
sequential 0.4028 0.1590 0.3173 0.0899 0.2500 0.0556
(1, ¢2) = (0.4,0.2) v =3 go(Xt)= f3(Xy)
n = 500 n = 1000 n = 2000
p(90, 9) r19(90, 9) p(90, 9) r19(90, 9) r(90, 9) ,19(90: 9)
one step 0.1873 0.0965 0.1534 0.0706 0.1575 0.0593
sequential 0.3782 0.1455 0.3234 0.0913 0.2811 0.0594
(1, ¢2) = (0.5,0.1) v =3 go(Xt)= f1(Xy)
n = 500 n = 1000 n = 2000
p(90, 9) r19(90, 9) r(90, 9) p19(90, 9) r(90, 9) r19(90: 9)
one step 0.2279 0.1096 0.2248 0.0936 0.2057 0.0617
sequential 0.4556 0.1734 0.3723 0.1240 0.2798 0.0436
(¢1,02) =(0.5,0.1) v =3 go(X¢) = fa(Xy¢)
n = 500 n = 1000 n = 2000
p(90: 9) p19(90- 9) p(90 8) p19(90- 9) r(90: 9) r19(90: 9)
one step 0.1877 0.0892 0.1514 0.0539 0.1417 0.0413
sequential 0.4290 0.1688 0.3150 0.1027 0.2789 0.0623
(¢1,¢2) =(0.5,0.1) v =3 go(X¢) = f3(X¢)
n = 500 n = 1000 n = 2000
,(9059) p19(90, 9) p(90, ) r19(90, 9) r(90, 9) r19(90, 9)
one step 0.2016 0.1035 0.1710 0.0792 0.1625 0.0574
sequential 0.4633 0.1848 0.3252 0.1011 0.3475 0.0396

Table 6 Comparing §(-) and gg(-), when e;’s follow an MA(2) process, X¢’s are serially correlated and satisfy
the conditions of Theorem 3.1, and innovations (4’s have a ¢ distribution with degrees of freedom v.

(01,602) =(0.4,0.2) v =3 gg(Xg)= f1(X¢)
n = 500 n = 1000 n = 2000
p(90, ) p19(90- 9) p(90, ) r19(90-9) r(90, 9) r19(90- 9)
one step 0.2328 0.0884 0.1837 0.0515 0.1612 0.0297
sequential 0.3109 0.1141 0.2489 0.0687 0.2234 0.0400
(61,602) =(0.4,0.2) v =3 go(Xy)= fa(Xy)
n = 500 n = 1000 n = 2000
p(90, 9) r19(90, 9) r(90, 9) r19(90, 9) p(90, 9) r19(90: 9)
one step 0.2471 0.0916 0.1918 0.0598 0.1371 0.0317
sequential 0.3262 0.1171 0.2548 0.0763 0.1990 0.0427
(01,02) = (0.4,0.2) v =38 go(Xy) = fa(Xy)
n = 500 n = 1000 n = 2000
r(g90, 9) p19(90- 9) r(g90, 9) r19(90: 9) r(g90, 9) r19(90: 9)
one step 0.2520 0.0931 0.2124 0.0549 0.1465 0.0328
sequential 0.3296 0.1199 0.2788 0.0717 0.1966 0.0435
(01,02) = (=0.2,-0.4) v =3 go(Xt)= f1(Xy)
n = 500 n = 1000 n = 2000
,(90,9) p19(90, 9) r(90, 9) r19(90, 9) r(90, 9) r19(90- 9)
one step 0.1877 0.0536 0.1185 0.0316 0.1032 0.0182
sequential 0.2760 0.0825 0.1963 0.0522 0.1640 0.0302
(01,02) = (-0.2,-0.4) v =3 go(Xy)= fa(Xy)
n = 500 n = 1000 n = 2000
p(90:9) r19(90, 9) p(90, 9) r19(90-9) ,(90, 9) ,19(90- 9)
one step 0.1605 0.0536 0.1389 0.0325 0.1017 0.0183
sequential 0.2459 0.0850 0.2189 0.0325 0.1670 0.0302
(61,62) = (—0.2,-0.4) v =3 gg(Xg)= fa(X¢)
n = 500 n = 1000 n = 2000
p(90- 9) p19(90- 9) r(90, ) p19(90- 9) r(90, 9) r19(90- 9)
one step 0.1801 0.0530 0.1349 0.0339 0.1056 .0178
sequential 0.2791 0.0827 0.2187 0.0564 0.1796 0.0295
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Regression  Two-step  Two-step AR(1)  One-step AR(1)

MAD 177517.3 130700.2 127577.3 110803.0

Jn =5 MAPE 0.0734 0.0558 0.0541 0.0481
max AD 733710.5  535115.6 503171.3 644047.8

RMSD 245891.7  186652.6 182356.9 156313.5

MAD 174353.2 131383.8 128225 110215.1

Jn =17 MAPE 0.07140065 0.0546 0.0540 0.0478
max AD 762511.9  622775.3 553074.1 658089.4

RMSD 246153.2 192506.8 186318.0 155665.3

MAD 174298.9 131607.2 129235.5 109312.5

Jn =8 MAPE 0.0712 0.0547 0.0543 0.0472
max AD 770422.2  621101.3 547000.3 642692.5

RMSD 246971.2 191983.1 187598.5 154919.0

MAD 175420.4 138837.7 133504.9 115376.8

Jn =11 MAPE 0.0717 0.0583 0.0560 0.0499
max AD 759285.9  655971.6 579935.8 604635.9

RMSD 250072.8  200472.2 193994.1 162019.7

MAD 181497.5 141109.2 143740.2 114578.4

Jn =14 MAPE 0.0755 0.0599 0.0619 0.0482
max AD 755049.7  674575.4 588503.0 694568

RMSD 254529.6  201237.5 200988.8 164707.3

MAD 184547.3 143267.8 147126.7 113950.1

Jn =17 MAPE 0.0762 0.0602 0.0626 0.0485
max AD 786012.7  655668.4 572125.8 719067.2

RMSD 256977.5  206435.5 205303.8 164544.7

Table 7 Forecast accuracy for different models; Regression refers to spline approximation
without addressing the serial correlation issue; Two-step refers to sequential method with
auto.arima being used to choose ARMA order; Two-step AR(1) refers to sequential method
with AR(1); and One-step AR(1) refers to the proposed method wtih AR(1).
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compare spline approximations compare fitted values
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Fig. 1 Left: the solid line represents the fitted spline approximation function g(X:), and
the dashed line represents the fitted spline approximation function §(X:); Right: the circles
represent fitted values by the sequential method, and the solid diamonds represent the fitted
values by the proposed method; the dashed straight line is the 45° degree line going through
the origin.
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Fig. 2 The circles represent the total sum of squared residuals for the sequential method;
the solid dots represent the total sum of squared residuals for the proposed method.
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Fig. 3 Top: the ACF for Y; — §(X¢) values which are the estimates for ¢; in (1) given by the
sequential method; Bottom: the ACF for Y; — §(X¢) values which are the estimates for € in
(1) given by the proposed method.
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Fig. 4 Top: the ACF for residuals, estimates for ¢; in (2), given by the sequential method;
Bottom: the ACF for residuals, estimates for (¢ in (2), given by the proposed method.
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Fig. 5 The plot for the ordered absolute deviations: the circles represent the sequential
method, and the solid diamonds represent the one-step method.
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