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Abstract The nonparametric regression model with correlated random errors is a

powerful tool for time series forecasting. We are interested in the estimation of such a

model under a random design setup, where the random errors are assumed to follow

an autoregressive and moving average (ARMA) process, and the covariates can also

be correlated. Instead of estimating the constituent parts of the model in a sequential

fashion, we propose a spline-based method to estimate the mean function and the pa-

rameters of the ARMA process jointly based on a least squares method. We establish

the desirable asymptotic properties of the proposed approach under mild regularity

conditions. Extensive simulation studies demonstrate that our proposed method per-

forms well and generates strong evidence supporting the established theoretical results.

The proposed method provides a new addition to the arsenal of tools for nonparametric

models for serially correlated data. We further illustrate the practical usefulness of our

method by modeling and forecasting the weekly natural gas scraping data for the state

of Iowa.

Keywords nonparametric model with correlated errors · oracally efficient estimation ·
τ -mixing · splines

1 Introduction

The linear regression model with autoregressive and moving average errors (RegARMA)

frequently arises in modeling real-life time series data (see, e.g., ????), due to its rela-

tively simple structure and straightforward inference. However, there are severe draw-

backs in model goodness of fit, if the postulated linearity in the model does not match

the nature of the data. To alleviate the problem, researchers proposed to use nonpara-

metric functions to replace the parametric linearity part of RegARMA (???????????,
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among others) and hence considered

Yt = g0(Xt) + ϵt, t = 1, · · · , n, (1)

where g0(·) is a smooth regression function such that g0(x) = E[Yt|Xt = x], Yt’s

are outcome variables, Xt’s are covariates, and ϵt’s are independent from Xt’s and

constitute a correlated random error process. It is worth mentioning that although we

only consider a single covariate throughout the paper for the simplicity of presentation,

our proposed method can be readily extended to multivariate cases by following a

general additive model (?) or a partially linear single-index model (?).

Kernel methods (see, e.g., ?) and spline approximations (see, e.g., ?) are the two

commonly used approaches in nonparametric regression. They both can be applied

to estimate g0(·). The existing literature devoted to studying kernel regression under

model (1) includes ????????, among others. Compared with kernel methods, the spline

method is more practically appealing due to its easiness in computation and better per-

formance reported in related literature (see, e.g., ?). However, the related development

based on spline approximations in studying (1) has been relatively sparse (??), which

is mainly due to several theoretical obstacles encountered in the course of establishing

the asymptotic properties. First, as the time series data is correlated, the techniques

for consistency of spline regression estimates in independent data (see, e.g., ?) cannot

be directly used without further adaptation for serially correlated data. Second, due to

the fact that the number of spline basis functions is required to increase as n increases,

special treatment is needed to address the inherent high-dimensional issues, otherwise

many powerful techniques in time series, such as uniform ergodic theorem (see, e.g., ?)

and martingale central limit theorem (see, e.g., ?), are not applicable. Third, due to the

MA component, the objective function usually is not convex (?), making it challenging

to examine the limiting distribution of estimators of ARMA parameters. It is by no

means a trivial task to tackle these challenges for model (1).

To mitigate the theoretical challenges, ? investigates the spline methods on model

(1) by assuming {Xt} to be deterministic (so-called fixed design setup). More specif-

ically, they considered almost equally spaced time points and studied the asymptotic

properties of penalized least square estimation under a set of regularity conditions.

When {Xt} are random (so-called random design setup), ? established the asymptotic

properties for a two-step model fitting procedure based on B-splines and maximum like-

lihood estimators for ARMA processes. First, g0(·) is fitted by ordinary nonparametric

methods with {ϵt} being treated as uncorrelated; second, by assuming the consistency

of spline regression estimates in the first step, an ARMA process is estimated based on

the residuals. ? proposed a method to estimate both mean function and autocovari-

ance function based on assumptions of Gaussian noise process and further developed

confidence sets for the mean function that quantify the uncertainty of the estimator.

To our knowledge, the consistency of regression function estimates and the asymptotic

distribution of ARMA parameters has not been fully addressed in the literature for a

random design setup.

In contrast to the existing two-step procedure developed by ?, this paper aims to

develop a spline-based method that estimates the mean function g0(·) and the pa-

rameters of the ARMA process simultaneously under model (1) with a random design

setup. Under the assumption that the random errors, {ϵt}, are generated by a classic

ARMA process, we investigate the random design that even allows covariates {Xt}
to be be weakly dependent.To rise to the theoretical challenges, we novelly employ
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Bernstein’s inequality for mixing sequences (?) to establish proper probability bounds

and show that the bounds hold even when the number of basis functions increases. As

a consequence, our theoretical development not only works for nonparametric spline

estimation but can be adapted to high dimensional linear ARMA models. Finally, we

utilize the approach developed by ? and rigorously demonstrate that our spline estima-

tor of g0(·) is uniformly consistent and the estimator of the parameters of the ARMA

process achieves asymptotic normality.

In fact, our estimator of the ARMA parameters performs oracally efficiently, in

that it is asymptotically as efficient as if the true function g0(·) is known and ARMA

models are fitted to the real ARMA errors {ϵt} (see, e.g., ???). Thus, our proposed

method enjoys a broad applicable scope in time series data, where the covariates are

often dependent in practice. Another key feature of this paper is that while ?’s oracle

efficiency result is achieved based on the assumption that the estimator of g0(·) is

consistent (see assumption (c) in ?), our work completely alleviates this assumption by

directly establishing the consistency property of the proposed estimator. Moreover, we

can show that the proposed estimator of g0(·) achieves the optimal global convergence

rate of nonparametric models (see, e.g., ?).

The remainder of this paper is organized as follows. In section 2, we introduce

the model setup and propose an estimation method based on least square estimation

with spline approximation. In section 3, the asymptotic properties of the proposed

estimation method are established. In section 4, a comprehensive simulation study is

performed to evaluate the developed results. In Section 5, we illustrate the practical

usage of our method by analyzing a natural gas data set obtained for the state of Iowa.

All proofs are relegated to the Appendix.

2 Model setup and estimation method

In the sequel, ϵt in (1) is assumed to follow an ARMA(p, q) process, that is

ϵt −
p∑

i=1

ϕi∗ϵt−i = ζt +

q∑
j=1

θj∗ζt−j , (2)

where ϕi∗, θj∗ ∈ R, i = 1, · · · , p, j = 1, · · · , q. Let B denote the backshift operator,

such that B(ϵt) = ϵt−1. The ARMA(p, q) process (2) satisfies ϕ∗(B)ϵt = θ∗(B)ζt,

where ϕ∗(z) = 1 −
∑p

i=1 ϕi∗z
i is the AR polynomial and θ∗(z) = 1 +

∑q
j=1 θj∗zt−j

is the MA polynomial. We further denote (ϕ1∗, · · · , ϕp∗)
T and (θ1∗, · · · , θq∗)T by ϕ∗

and θ∗, respectively.
Let Bn(u) = (B1(u), · · · , BJn

(u))T be a set of κth order normalized B-spline basis

functions with knot sequences {τs}, where {τs} satisfy τ1 = · · · = τκ < τκ+1 < · · · <
τJn

< τJn+1 = · · · = τJn+κ. Following the literature of spline estimators (see e.g. ??),

we require

maxκ≤s≤Jn
τs+1 − τs

minκ≤s≤Jn
τs+1 − τs

< C,

uniformly in n, to investigate the asymptotic properties of our proposed estimators.

Throughout the rest of the paper, we use C to represent an unspecified positive constant

whose value may vary. In addition, we may suppress the dependence of Jn and Bn(·)
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on n for notation simplicity, when there is no confusion. The unknown function g0(·)
then can be approximated by B-spline functions:

g0(u) ≈ g∗(u) =
J∑

j=1

βj∗Bj(u) = βT
∗ B(u),

where β∗ = (β1∗, · · · , βJ∗)T minimizes ∥g0(u) − βTB(u)∥∞ with respect to β. Ac-

cording to ?, ∆ := ∥g∗(u)− g0(u)∥∞ ≤ C0J
−α for some constant C0, under Condition

(C1) in Section 3, where α is defined in Condition (C1). Let Wt = B(Xt). Then (1)

can be approximated by

Yt ≈ βT
∗ Wt + ϵt, t = 1, · · · , n, (3)

Denote (βT,ϕT,θT)T by ξ. Let ξ∗ = (βT
∗ ,ϕ

T
∗ ,θ

T
∗ )

T denote the true regression,

AR, and MA coefficients of the model (3). We define ϵt(β) = 1{t > 0}(Yt−βTWt) and

ζt(ξ) = 1{t > 0}(ϵt(β)−
∑p

i=1 ϕiϵt−i(β)−
∑q

j=1 θjζt−j(ξ)), where 1{·} is an indicator

function. We propose to obtain ξ̂ = (β̂
T
, ϕ̂

T
, θ̂

T
)T, the least squares estimator of ξ, by

minimizing Ln(ξ) =
∑n

t=1 ζ
2
t (ξ). Consequently, ĝ(·), the estimator of g0(·), is β̂

T
B(·).

In the next section, we establish the asymptotic properties of ĝ and (ϕ̂
T
, θ̂

T
)T.

3 Asymptotic Properties

We begin with imposing some necessary notations. Let ∥A∥q denote the Lq norm of

A, where A can be a vector, matrix, or function. In particular, ∥A∥ denotes the L2

norm of A. We also adopt the empirical process notations as follows: for a generic

variable Z and function f , Gn(f) = Gn(f(Zi)) := n−1/2∑n
i=1(f(Zi)−E[f(Zi)]) and

Enf(Zi) := n−1∑n
i=1 f(Zi).

The following regularity conditions are needed to facilitate our technical derivations:

(C1) g0(·) ∈ C(α)D (X ), where C(α)D (X ) is the collection of the continuous functions

g : X → R on a bounded set X ∈ R with the αth derivative ∥g(α)∥∞ ≤ D, for

some integer α ≥ 2 and D > 0. Without loss of generality, we assume X = [0, 1].

(C2) The polynomials ϕ∗(z) and θ∗(z) have no common roots, and their roots lie

outside the unit circle in the complex plane.

(C3) {ζt}nt=1 and {Xt}nt=1 are independent. ζt’s are independent and identically dis-

tributed (i.i.d.) with E [ζt] = 0 and E
[
ζ2t
]
= σ2. In addition, ζt satisfies the

Bernstein’s condition, that is, E[|ζt|k] ≤ k!Ck
B/2, for some large CB > 0 and

k ≥ 1.

(C4) {Xt} is a strictly stationary sequence of absolutely continuous random variables

and {Xt} is β-mixing with coefficients β(k) ≤ 2 exp(−d1k
γ1) for any positive k,

where d1, γ1 > 0. We refer the definition of β-mixing to ?. Let

Γ = E

[
ϕ∗(B)

θ∗(B)
Wt

(
ϕ∗(B)

θ∗(B)
Wt

)T
]
.

The smallest eigenvalue of Γ is bounded below by λminJ
−1, for some constant

λmin > 0.
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Remark 1 Condition (C1) is commonly assumed in the spline smoothing literature (e.g.

?), which gives smoothness conditions of the nonparametric functions. It is worthy

mentioning that Condition (C1) implicitly requires the order of splines κ ≤ α + 2.

Condition (C2) is often adopted in the literature studying ARMA models (see, e.g.,

???). It implies that {ζt} is the unique causal-invertible stationary solution.

Remark 2 By Condition (C2), we also have ϕ∗(z)/θ∗(z) =
∑∞

i=0 π∗iz
i, ϕ−1

∗ (z) =∑∞
i=0 ρ∗iz

i, and θ−1
∗ (z) =

∑∞
i=0 ν∗iz

i, where π∗0 = ρ∗0 = ν∗0 = 1, |πi∗|, |ρi∗|, |νi∗| ≤
C1r

i, i ≥ 1, for some C1 > 0 and 0 < r < 1. We denote C1
∑∞

i=0 r
i by C2.

Remark 3 Condition (C3) and (C4) are technical conditions. The β-mixing condition

allows {Xt} to be weakly dependent, which relaxes the widely assumed independent

condition and would help improve the applicability of our proposed method. The β-

mixing condition can be satisfied if {Xt} is an ARMA process, under some mild condi-

tions (?). The Bernstein condition is imposed to circumvent the difficulty of establishing

the consistency of ĝ under the increasing dimensionality of the splines approximation

and the dependent covariates. The two conditions are often met in practice. In fact,

Bernstein’s condition implies that ζt is sub-exponential, which is weaker than the com-

monly used sub-Gaussian condition in the studies with increasing dimensionalities (see

e.g., ??).

By ?, the smallest and largest eigenvalues of E
[
WtW

T
t

]
are bounded below

and above by λminJ
−1 and λmaxJ

−1, respectively, where 0 < λmin < λmax < ∞.

By Proposition B·4, we can show that the largest eigenvalue of Γ is bounded by

C2
2λmaxJ

−1. Thus, the eigenvalue assumption in Condition (C4) can be viewed as

an adapted version of the ARMA process.

Let T (h) = Ln(ξ∗ + h) − Ln(ξ∗), where h = (hT
1 ,h

T
2 ,h

T
3 )

T ∈ RJ+p+q, and

h1,h2, and h3 are vectors of size J , p, and q, respectively. Further, let ĥ denote a

local minimizer of T (h). Then minimizing Ln(ξ) with respect to ξ is equivalent to

minimizing T (h) with respect to h and ξ̂ = ξ∗ + ĥ.

Theorem 3·1 Suppose Conditions (C1)–(C4) hold. If J ∼ n1/(2α+1), there exists a

local minimizer of T (h), ĥ, such that ĥ →p 0.

Since ξ̂ = ξ∗+ĥ, Theorem 3·1 indicates that there exists a a local minimizer ξ̂ of Ln(ξ),

such that ξ̂ is consistent to ξ∗. This immediately implies the following corollary.

Corollary 3·1 Under the same conditions as in Proposition A·2,

E
[(
ĝ(Xt)− g0(Xt)

)2]
= Op

(
n−2α/(2α+1)

)
,

where α is defined in Condition (1).

Corollary 3·1 shows that even if dependent covariates and non-Gaussian ARMA errors

are present, the proposed estimator ĝ still achieves optimal global convergence rate of

nonparametric models (?). In particular, if α = 2, the convergence rate of ĝ is n−2/5.

The next theorem summarizes the asymptotic distribution of (ϕ̂
T
, θ̂

T
)T as de-

sired. We define Qt = (QT
t1,Q

T
t2,Q

T
t3)

T, such that Qt1 = ϕ∗(B)θ−1
∗ (B)Wt,Qt2 =

ϕ−1
∗ (B)(ζt−1, · · · , ζt−p)

T, and Qt3 = θ−1
∗ (B)(ζt−1, · · · , ζt−q)

T.
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Theorem 3·2 Under the same conditions as in Theorem 3·1,

√
n

(
ϕ̂− ϕ∗
θ̂ − θ∗

)
→d N(0, σ2Σ−1), where Σ =

E
[
Qt2Q

T
t2

]
E
[
Qt2Q

T
t3

]
E
[
Qt3Q

T
t2

]
E
[
Qt3Q

T
t3

] .

Comparing Theorem 3·2 to the classic results for estimating ARMA processes (cf.

chapter 8, ?), one can see that the proposed method for model (1) produces “oracally”

efficient estimators of the ARMA parameters (ϕT
∗ ,θ

T
∗ )

T, in the sense that (ϕ̂
T
, θ̂

T
)T

are asymptotically indistinguishable from the estimators when g0(·) is known a priori

(?).

Theorems 3·1 and 3·2 only require the asymptotic order of the number of knots.

In our numerical studies, we chose equally spaced quantiles in X as knots to avoid the

complication of determining the knot locations. Regarding the number of knots and the

ARMA orders p and q, there are several approaches to determine. For instance, we can

employ the Bayesian Information Criterion (see, e.g., ?), or we can develop a penalized

Ln(ξ) by incorporating the LASSO type penalties (?). However, the investigation of

the validity of those methods is beyond the scope of this work and will be examined in

our future research.

4 Simulation study

We conduct a simulation study to attest to the validity of the asymptotic results.

An assortment of model setups and parameter configurations satisfying the regularity

conditions of Theorems 3·1 and 3·2 are adopted. In particular, three different smooth

functions are defined on X = [0, 1] with
f1(Xt) = 1− 6Xt + 36X2

t − 53X3
t + 22X5

t ;

f2(Xt) = sin(2πXt) + 2X2
t ;

f3(Xt) = arctan(5Xt − 5/2)−X2
t /3.

The covariate variable Xt’s are generated from AR(1) models with normal innova-

tions first and then rescaled within X = [0, 1]. For the ARMA processes (2), various

innovations are investigated, including normal distributions. The proposed estimation

method is tested for three different sample sizes, n = 500, n = 1000, and n = 2000.

We assume that the order of the ARMA model for ϵt are known a priori as in the

previous works (e.g., ?); yet for practical purpose, we propose using Theorem 3·2 to

assist in selecting a proper order of ARMA process for which the details are given in

the next section. The inner knots for B(Xt) are constructed as eight equally spaced

quantiles in X for n = 500, and nine equally spaced quantiles in X for n = 1000 and

n = 2000. For each model setting, we repeat simulations 1000 times and report the

sample mean and sample standard deviation of the parameter estimates. In light of

Theorem 3·2, the theoretical approximation for the standard deviation of each model

setting is computed and presented for comparison purposes.

Overall, the simulation study indicates a strong congruence between the observed

estimates and the asymptotic properties for ARMA parameters. The theory established

in this paper is versatile, in the sense that the asymptotic properties are developed

under the condition that ζt is not merely just normally distributed. In addition, empir-

ically, we found that models with ζt that does not satisfy Condition (C3) still comply
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satisfactorily with the theoretical asymptotic results. We specifically present simula-

tion summaries for models with ζt being t−distributed in Table 1 through Table 3.

Among the reported results, the proposed method was tested for various serial correla-

tion structures for ϵt introduced by ARMA(1, 1), AR(2), and MA(2) models. In Table 1

through Table 3, the mean values of the estimates of the ARMA parameters are close

to the corresponding true parameter values. It is evident that the related empirical

sample standard deviations are in high agreement with their theoretical approxima-

tions, which are given in the parentheses. Moreover, comparing results across different

values for n, the decreasing differences between the means and their corresponding true

parameter values, and the decreasing standard deviations of the estimates all imply

the proposed estimation method becomes more accurate and precise as sample path

length increases.

To further gauge the performance of the proposed method, we also adopt two

metrics to calculate the discrapency between g0(·) and ĝ(·)

ρ(g0, ĝ) =

∫ 1

0

(g0(x)− ĝ(x))2dx, ρ19(g0, ĝ) =

∫ 0.9

0.1

(g0(x)− ĝ(x))2dx.

The metric ρ(g0, ĝ) is intended to measures the overall performance over [0, 1]. Since it is

well-known that nonparametric smooth function estimation may encounter difficulties

and generate larger deviates from the true function in the regions close to the boundary

points than the regions close to the middle, ρ19(g0, ĝ) is used to measure the difference

over the interval [0.1, 0.9] to obtain a more comprehensive evaluation of ĝ(·).
In simulation study, corresponding to each case presented in Table 1 through Table

3, we also calculated ρ and ρ19 which were presented in Table 4 through Table 6,

wherein the proposed method is labeled as ‘one step’ and the sequential method is

labeled as ‘sequential’. The obtained results demonstrate the consistency property of

ĝ(·), in that as sample path length n increases, ρ and ρ19 both decrease, indicating a

diminishing difference between g0 and ĝ. Additionally, it is evident that the proposed

method dominated the sequential method. Among 108 pairwise comparisons between

‘one-step’ method and ‘sequential’ method, the proposed method outperformed the

sequential method for 105 times. More specifically, the proposed method yielded smaller

values than those of the sequential method for all 54 cases in terms of ρ, which indicates

better boundary performance; the proposed method yielded smaller values than those

of the sequential method in terms of ρ and ρ19 for all 72 cases, when sample path

size is relatively small, i.e. n = 500 and n = 1000, indicating better performance for

small sample size. The only 3 cases where the sequential method performed better are

located in Table 5. All 3 cases are related to AR(2) models with large sample size,

n = 2000. All in all, the simulation study clearly vindicates the proposed method as a

valuable supplementary tool to the existing sequential method.

Of note, we remark that the residuals for the sequential method which are fed into

the ARMA estimation process have a mean equal to zero, since they are obtained by

a regression procedure. As such, they naturally meet the specification of model (1),

E(ϵt) = 0. However, in order to enforce the condition for the proposed method, an

additional sum-to-zero constraint should be imposed for Yt − ĝ(Xt). We simply center

all basis functions of Xt and the response values Yt by their average values, i.e. the

column mean is subtracted from each column of the basis functions and the mean of

Yt is subtracted from each value of Yt, such that all linear combinations of the basis

functions and Yt have mean zero. The upshot is that we solve the model identification
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problem for numerical implementation of model (1) by a sum-to-zero condition. The

initial values of the ARMA process for the optimization process are rendered by random

numbers over [0, 1], and all parameters for the basis functions are set to be one. An

implementation of the proposed method by R turns out to consistently converge to

estimates that are close to the true ARMA parameters in the simulation study. For

further details of the numerical implementation of the proposed method, interested

readers are invited to visit https://github.com/cui-yun-wei/trend-model to play

with the code.

——————————Please put Table 1 through Table 6 here ——————————

5 A real data example

Compared with other fossil fuel options, natural gas is a cleaner and more efficient en-

ergy source. The use of natural gas in the U.S. has steadily increased in the last decade.

According to the U.S. Energy Information Administration (EIA), natural gas accounts

for 35.4% of total U.S. primary energy production in the year 2021. The production

increases contributed to a decline in natural gas prices, which in turn has induced

growth in natural gas use. About half of the households in the U.S. use natural gas

for space heating and water heating. Being used to monitor natural gas transportation

and gauge natural gas consumption, the pipeline scrape data comprise the records of

the total amount of natural gas entering a state through the interstate pipelines and

are obtained from the interstate pipeline Electronic Bulletin Boards as mandated by

Order NO. 636 for the capacity release program of the U.S. Federal Energy Regulatory

Commission.

Natural gas consumption is highly sensitive to weather impacts, especially for the

regions which use natural gas as their primary heating source. Since natural consump-

tion and natural gas scrape data are highly correlated, it is of great interest to study the

natural gas scrape data. To model and forecast scrape data, one of the main covariate

variables is the Heating Degree Days (HDD) which measures how long and how much

the exterior temperature is below a predetermined reference temperature (called the

base temperature, usually 65 degrees Fahrenheit). Denote the temperature in a day at

time t by T (t), where t represents the length of time in hours since midnight. The daily

HDD can be computed by the following two formulas, as either the total for a day in

degree× hours or the 24-hour average in degrees∫ 24

0

(65− T (t))+ dt, or
1

24

∫ 24

0

(65− T (t))+ dt,

where (65− T (t))+ = max{65 − T (t), 0}. Aggregating the daily HDD of a week gives

weekly HDD.

The weekly scrape data from year 2013 through year 2016 were obtained for the

state of Iowa. Meanwhile, the corresponding weekly HDD data in degree×hours were

computed based on the hourly temperature profile of the Des Moines International

Airport weather station, which were downloaded from the Integrated Surface Database

of National Centers for Environmental Information. We are concerned with modeling

and forecasting the weekly scrape (data), Yt, based on the weekly HDD (data), Xt, of

Iowa. The whole data are split into two parts. The first 157 weeks, covering the years

2013 through 2015 entirely, constitute the training data to fit proper regression models
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of Yt on Xt. The remaining data in 2016, totally 52 weeks, is set aside as testing data

for model evaluation.

A scatter plot (Figure 1) for the two variables demonstrates a curvilinear relation-

ship. Based on the Xt values in the training set, spline basis functions, B(Xt), are

constructed. The effects of Xt on Yt are assumed to be appropriately represented by a

smooth function, denoted by g0(Xt). We first obtain an approximation of the smooth

function g0(Xt) by the ordinary multiple linear regression of Yt on B(Xt) and denote

the approximation by g̃(Xt) with g̃(Xt) = β̃
⊤
B(Xt), where β̃ represents the esti-

mates for the regression coefficients. The ensuing model diagnostics show that there

exists significant serial correlation among the residuals ϵ̃t = Yt − g̃(Xt), and spline

approximation alone cannot adequately address the dynamics of the data generating

mechanism of Yt. Therefore, (1) appears to be a more appropriate model due to its

ability to accommodate the serial correlation in the data.

We try to fit model (1) with an ARMA type random error process as defined by (2).

We consider the two-step procedure which fits the model in a sequential way (??) and

the proposed method (one-step method). For the sequential procedure, first we fit g̃(Xt)

by ordinary multiple linear regression, and then estimate the ARMA process based on

residuals ϵ̃t. In contrast, the proposed method estimates the spline approximation and

ARMA process jointly through a single optimization. We use ĝ(Xt) to denote the spline

approximation of g0(Xt) derived by the optimal solution of the proposed method.

The knots for B(Xt) are chosen as equally spaced quantile points in the range of

Xt. We employ a heuristic to determine a proper value for the number of knots, i.e.,

Jn should be chosen such that the total sum of squares of the residuals is minimized

for the fitted model among all choices of Jn. We implement a grid search with Jn ∈
{5, 6, . . . , 18, 19}. It turns out the value of Jn induces a similar impact on the both

the sequential method and the one-step method, in that the total sum of squares of

the residuals exhibit a decreasing pattern. For the sequential method, as the number

of knots increases, the total sum of squared residuals (SSR) decreases first and then

stabilizes around 2.86 × 1012; after Jn reaches 15, SSR continues to show a trend of

minor but steady decrease from knot to knot. In a similar way, the SSR by the one-step

method also decreases first and then stabilizes around 2.72× 1012. Compared with the

sequential method, the SSR by the one-step method has a smaller average value, but

exhibits a bigger variation among different values of Jn, e.g., for Jn = 13, the value

spikes above 2.95× 1012, but for Jn = 16, it plummets to 2.55× 1012. We pick Jn = 7

and Jn = 8, since each of them marks the smallest number of knots for which the SSR

for sequential method or the one-step method experiences a series of steady decrease

and begins to touch the region of the stable level (the so-called elbow point).

————————————— Please put Figure 1 here —————————————

————————————— Please put Figure 2 here —————————————

To develop a proper model for the training data, we implement the automatic proce-

dure of auto.arima to pick preliminary values for the order of ARMA process for the se-

quential method. The procedure suggests an ARMA(2, 2) model with (ϕ̂1, ϕ̂2, θ̂1, θ̂2) =

(−0.6118,−0.2972, 0.8892, 0.6276), for Jn = 7. The time series model appears to be

overfitted since the associated standard errors are given by (0.1884, 0.1818, 0.1559, 0.1443)

and θ̂2 is not significantly different from zero. We also fit the training data with Jn = 7

and ARMA(2, 2) by the proposed least squares method which yields (ϕ̂1, ϕ̂2, θ̂1, θ̂2) =

(0.3371, 0.5345, 0.3352,−0.0988). Next, we invoke Theorem 3·2 to obtain the standard

errors of the above estimates by assuming that all regularity conditions are satisfied. It
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shows that the ARMA(2,2) model by the one-step method is overfitted since the stan-

dard errors are given as (1.1416, 1.0604, 1.1503, 0.3296). By repeatedly using standard

errors to detect overfitted models, both the sequential method and the one-step method

finally entertain with AR(1) models. Specifically, the sequential method settles with

ϕ̂ = 0.2865 (s.e=0.076) and the one-step method settles with ϕ̂ = 0.8987 (s.e.=0.035).

Both models pass the Ljung-Box test at five different lags. For the case Jn = 8, a similar

situation arises, as auto.arima suggests an AR(4) with most of the fitted parameters

being not significantly different from zero. Once again, through a process of trial and

error, both methods favor AR(1) models, i.e., ϕ̂ = 0.2772 (s.e=0.077) for the sequential

method, and ϕ̂ = 0.8916 (s.e=0.036). Despite Jn = 7 being a strong competitor, our

preference tilt towards to Jn = 8 with AR(1), since in Figure 2, the one-step method

usually produces a smaller SSR than that by the sequential method, and Jn = 8 scores

a significant reduction in the total sum of squared errors for the one-step method.

Finally, we fit model (1) with an AR(1) type random error processes for the training

data by the sequential method and the proposed method respectively with Jn = 8.

From Figure 1, it is evident that significant difference exists between g̃(Xt) and ĝ(Xt).

At first sight, it might appear to be counterintuitive for the fitted smooth function

by the one-step method, ĝ(Xt), to differ substantially from g̃(Xt) by the sequential

method (see the blue dashed curve and the solid red curve of Figure 1). However, the

overall fitted values (the fitted curve plus the fitted ARMA process) by the sequential

method and the proposed method are more closely in line with each other. While the

sequential method subjugates the ARMA process to address the remnant of fitting a

spline approximation to the data, our method possesses the advantage of being able

to balance the tradeoffs between the spline approximation and the ARMA model. The

scatter plot of the fitted values vs the true values of Yt, Figure 1, shows that the fitted

model by the proposed method has a better fit, since the fitted values are distributed

more compactly around the 45◦ line going through the origin. In Figure 3, we plot

the ACF graphs for the remnants Yt − g̃(Xt) and Yt − ĝ(Xt). It shows that spline

approximation alone cannot adequately address the dynamics of the scrape data, since

both ACF graphs show the existence of unaccounted autocorrelations. At the same

time, we note that in Figure 4 both the sequential method and the one-step method

adequately solve the issue, in that the generated residuals seem to be uncorrelated,

especially for one-step method, as all the ACF ticks are within the 95% confidence

interval.

————————————— Please put Figure 3 here —————————————

————————————— Please put Figure 4 here —————————————

We continue to perform an evaluation of the model (Jn = 8, AR(1)) on the basis of

a rolling forecasting origin method for successively 52 weeks for the year 2016. The fore-

casting origin is initially placed on January 2nd, 2016. All the data, from December 30,

2012, to the forecasting origin, are assumed to be known and fitted by model (1). Sub-

sequently, one week ahead forecast for the scrape data is generated by using the fitted

models and the true value of HDD. Then the forecasting origin is moved forward one

week at a time to fit new models and generate new forecasts, until it reaches December

24, 2016. Altogether, 52 forecasts are made for both the sequential method and the

proposed least squares method. Let Yt denote the true scrape value in week w of the the

testing set and Ŷt denote its forecast value. We examine the forecasting accuracy based

on the following forecast error metrics, i.e., Absolute Deviation (AD), Mean Absolute

Deviation (MAD), Mean Absolute Percentage Error (MAPE), and Root Mean Square
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Deviation (RMSD), with AD =
∣∣∣Yt − Ŷt

∣∣∣ for week t, MAD =
∑52

t=1

∣∣∣Yt − Ŷt

∣∣∣ /52,
MAPE =

∑52
t=1

∣∣∣(Yt − Ŷt

)
/Yt

∣∣∣ /52, and RMSD =

√∑52
t=1

(
Yt − Ŷt

)2
/52 (see, e.g.,

????). We find that our one-step method performs better than the sequential method

in terms of MAD, MAPE, and RMSD. More specifically, it achieves 109312.5 thou-

sand cubic feet (MCF), 0.0472 , and 154919.0 MCF respectively for MAD, MAPE, and

RMSD, while the sequential method achieves 129235.5 MCF, 0.0543, and 187598.5

MCF. The sequential method produces a smaller maximum AD, 547000.3 MCF, than

that by the one-step method, 642692.5 MCF. A further investigation shows that both

maximum values happen in week 48, from November 27th, 2016 to December 3rd,

2016. The plot for the ordered AD, Figure 5, shows that the one-step method generally

produces more accurate forecast than that by the sequential method, except for the

last point which corresponds to the forecast in week 48. If the highest point of Figure

5 is removed, one-step method outperforms sequential methods for the next 18 highest

values of AD.

During the previous forecasting test, for the sequential method, the ARMA orders

are fixed at (1, 0). Aiming at more flexibility, we implement the sequential method

with auto.arima being used to pick the order of ARMA process. During the 52 testing

weeks, it achieves 131607.2 MCF for MAD, 0.0547 for MAPE, 621101.3 MCF for the

maximum AD, and 191983.1 MCF for RMSD. For completeness, we also assess the

performance of g̃(Xt), the spline approximation without time series consideration. It

shows that g̃(Xt) is outperformed by both the sequential method and the proposed

method, demonstrating the necessity of time series component in scape data modeling.

Specifically, if time series dynamics are not addressed in the testing data and only

spline approximation is used, MDA, MAPE, and maximum AD are equal to 174298.9

MCF, 0.0712, and 770422.2 MCF.

Moreover, to produce a comprehensive picture of the forecasting capacity of the

one-step method, we repeat the test across different Jn values. The forecasting test

results are summarized in Table 7. A row by row inspection of Table 7 makes it clear

that our proposed method with an AR(1) process dominates the metrics MAD, MAPE,

and RMSD, in that it almost always generates the best results for each Jn value. The

results demonstrate the usefulness of Theorem 3·2 for model selection purpose. Also

from an applied perspective, the heuristic to choose Jn by its elbow point appears to

work well.

————————————— Please put Table 7 here —————————————

————————————— Please put Figure 5 here —————————————

In summary, we fit a real-world data set with model (1) using the proposed method

and show that the proposed method is effective in model fitting. We invoke Theorem

3·2 to choose a proper ARMA order. The technique greatly facilitates model selection,

and its effectiveness is established in the forecasting test. Instead separating spline

approximation and ARMA models into two arenas of model fitting and relegating

ARMA models to a second place, the one-step method allows spline approximations

and ARMA models to compete on an equal basis on the same stage of minimizing sum

of squared errors. The proposed method opens a new possibility and offers new insight

for nonparametric model (1). It readily lends itself as an addition to the arsenal of

tools available for nonparametric time series analysis.
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6 Concluding remarks

We propose a method to estimate the mean function and the parameters of the ARMA

process based on least square estimation with spline approximation under a random

design setup. Our proposed approach relaxes the independent covariates assumption

and allows them to be weakly dependent. Utilizing results in empirical processes in

mixing sequence, we establish the consistency and asymptotic normality of the re-

sulting estimator. Our numerical analysis, including both simulation studies and the

examination of Iowa natural gas scrape data show that the proposed method pro-

vided excellent model fitting and forecasting ability and the performance supports our

theoretical results.

Appendix

A. The proofs of main results

We present the proofs of our main results in this section.

As Ln(ξ) =
∑n

t=1 ζ
2
t (ξ) is not convex with respect to ξ, due to the MA component

θ, in order to study the asymptotic property of ξ̂, we employ a second-order Taylor’s

expansion of ζt(ξ) around ξ∗ (?) : ζt(ξ) ≈ ζt(ξ∗)−DT
t (ξ∗)(ξ−ξ∗)−(ξ−ξ∗)

THt(ξ∗)(ξ−
ξ∗)/2, where Dt(ξ) = −∂ζt(ξ)/∂ξ and Ht(ξ) = −∂2ζt(ξ)/(∂ξ∂ξ

T).

We decomposeDt(ξ) as (Dt1(ξ),Dt2(ξ),Dt3(ξ))
T, such thatDt1(ξ) = −∂ζt(ξ)/∂β,

Dt2(ξ) = −∂ζt(ξ)/∂ϕ, and Dt3(ξ) = −∂ζt(ξ)/∂θ, and partition Ht(ξ) as follows:

Ht(ξ) =

Ht,11(ξ) Ht,12(ξ) Ht,13(ξ)

Ht,21(ξ) Ht,22(ξ) Ht,23(ξ)

Ht,31(ξ) Ht,32(ξ) Ht,33(ξ)


whereHt,11(ξ) = −∂2ζt(ξ)/∂β∂β

T is a zero J×J matrix,Ht,12(ξ) = −∂2ζt(ξ)/∂β∂ϕ
T

is a J ×p matrix, Ht,13(ξ) = −∂2ζt(ξ)/∂β∂θ
T is a J × q matrix, Ht,21(ξ) = HT

t,12(ξ),

Ht,22(ξ) = −∂2ζt(ξ)/∂ϕ∂ϕ
T is a zero p×p matrices, Ht,23(ξ) = −∂2ζt(ξ)/∂ϕ∂θ

T is a

p×q matrix,Ht,31(ξ) = HT
t,13(ξ),Ht,32(ξ) = HT

t,23(ξ), andHt,33(ξ) = −∂2ζt(ξ)/∂θ∂θ
T

is a q × q matrix.

Let [A]l denote the lth element of the vector A. By simple algebra, we obtain

that Dt1(ξ) = θ−1(B)ϕ(B)Wt, [Dt2(ξ)]l = θ−1(B)ϵt−l(β), 1 ≤ l ≤ p, [Dt3(ξ)]l =

θ−1(B)ζt−l(ξ), 1 ≤ l ≤ q,[
∂

∂ϕ

[
∂ζt(ξ)

∂β

]
l

]
m

=
1

θ(B)
[Wt−m]l , 1 ≤ l ≤ J, 1 ≤ m ≤ p,[

∂

∂θ

[
∂ζt(ξ)

∂β

]
l

]
m

=
ϕ(B)

θ2(B)
[Wt−m]l , 1 ≤ l ≤ J, 1 ≤ m ≤ q,[

∂

∂θ

[
∂ζt(ξ)

∂ϕ

]
l

]
m

=
ϵt−l−m(β)

ϕ(B)θ(B)
, 1 ≤ l ≤ p, 1 ≤ m ≤ q, and[

∂

∂θ

[
∂ζt(ξ)

∂θ

]
l

]
m

=
2

θ2(B)
ζt−l−m(ξ), 1 ≤ l,m ≤ q.
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Furthermore, let Vt be a symmetric matrix of dimension (J + p+ q)× (J + p+ q),

whose upper triangular elements are given as

[Vt]l,m =


0 if 1 ≤ l ≤ m ≤ J or J + 1 ≤ l ≤ m ≤ J + p,

−θ−1
∗ (B)

[
Wt−(m−J)

]
l

if 1 ≤ l ≤ J, 1 ≤ m− J ≤ p,

−θ−2
∗ (B)ϕ∗(B)

[
Wt−(m−J−p)

]
l

if 1 ≤ l ≤ J, 1 ≤ m− J − p ≤ q,

−θ−1
∗ (B)ϕ−1

∗ (B)ζt−(l−J)−(m−J−p) if 1 ≤ l − J ≤ p, 1 ≤ m− J − p ≤ q,

−2θ−2
∗ (B)ζt−(l−J−p)−(m−J−p) if J + p+ 1 ≤ l ≤ m ≤ J + p+ q.

We partition Vt as follows:

Vt =

Vt,11 Vt,12 Vt,13

Vt,21 Vt,22 Vt,23

Vt,31 Vt,32 Vt,33

 ,

where Vt,11 is a J×J matrix, Vt,12 is a J×p matrix, Vt,13 is a J× q matrix, Vt,22 is

a p× p matrix, Vt,23 is a p× q matrix, and Vt,33 is a q × q matrix. By the definition,

Vt,11 = 0 and Vt,22 = 0.

In addition, let Rt = (g0(Xt)− βT
∗ B(Xt))1{t > 0} = (ϵt(β∗)− ϵt)1{t > 0} be the

spline approximation error at time t.

In the following Proposition A·1, we show that Dt(ξ∗) and Ht(ξ∗) are well approx-
imated by Qt and Vt, respectively.

Proposition A·1 Suppose Conditions (C1) – (C4) hold. There exists some constants

δ1 and δ2, such that for all ∥β − β∗∥ ≤ δ1, ∥(ϕT,θT)− (ϕT
∗ ,θ

T
∗ )∥ ≤ δ2,

(i) |ζt| ≤ ηt, |ζt(ξ∗)− ϕ∗(B)θ−1
∗ (B)Rt − ζt| ≤ rtη0, |ζ(ξ)| ≤ ηt + C2(∆+ δ1), and

|ζt(ξ)− ζt(ξ∗)| ≤ C3δ2ηt + C2C3δ2(δ1 +∆) + C2δ1,

(ii) ∥Dt(ξ)∥∞ ≤ ωt, Dt1(ξ∗)−Qt1 = 0, and
∥∥∥(DT

t2(ξ∗),D
T
t3(ξ∗)

)
− (QT

t2,Q
T
t3)
∥∥∥
∞

≤

rtη0 + C2∆,

(iii) ∥Ht(ξ)∥max ≤ ωt, Ht,11(ξ∗)−Vt,11 = 0, and ∥Ht(ξ∗)−Vt∥max ≤ rtη0+C2∆,

where ηt = C1
∑∞

j=0 r
j
∣∣ϵt−j

∣∣, ωt = max
{
C2, r

−(p+q)ηt + C2 (∆+ δ1)
}
, and C3 is

defined in Lemma B·7.

Proposition A·1 indicates that Dt(ξ∗) and Ht(ξ∗) can be approximated by Qt and Vt,

respectively. Moreover, if ξ is sufficiently close to the true parameters ξ∗, ∥Dt(ξ)∥∞ and

∥Ht(ξ)∥max are bounded and the difference between ζt(ξ) and ζt(ξ∗) is well bounded,
too. The proofs of Proposition A·1 and Propositions A·2 – A·3 below are regulated to

the supplementary material.

To circumvent the non-covexity of T (h) with respect to h, we study a convex

objective function

T1(h) =

n∑
t=1

[(
ζt +

ϕ∗(B)

θ∗(B)
Rt − hTQt

)2

−
(
ζt +

ϕ∗(B)

θ∗(B)
Rt

)2
]
.

It is worth mentioning that T1(h) and T2(h), T3(h) defined in Section B of the Ap-

pendix are introduced for the theoretical development. As they involve unknown quan-

tities, such as Qt and Rt, they cannot be computed in practice.

We first show that T1(h) is an excellent approximation of T (h). Define Ω(C) :=

{h : ∥h1∥ ≤ CJn−1/2, ∥
(
hT
2 ,h

T
3

)
∥ ≤ CJ1/2n−1/2} for any C > 0. We use Ω̄(C) and

Ωc(C) to denote the boundary and the complement of Ω(C), respectively.
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Proposition A·2 Suppose Conditions (C1)–(C4) hold. If J = n1/(2α+1), for any C >

0,

sup
h∈Ω(C)

|T1(h)− T (h)| →p 0,

Proposition A·2 is inspired by ?. It demonstrates that T (h) can be well approximated

by T1(h) locally. Therefore, we can study the properties of the minimizer of T1(h) and

infer the properties of the minimizer of T (h). We refer to ? for a detailed discussion.

We next show that T1(h) achieves its minimum in a ball round 0 in the following

proposition.

Proposition A·3 Under the same conditions as in Proposition A·2, given any 0 <

ε < 1, there exists some Cε > 0, such that

P

(
inf

h∈Ω̄(Cε)
⋃

Ωc(Cε)
T1(h) > 1

)
> 1− ε.

Propositions A·2 and A·3 together enable us to establish the consistency of ĥ and

subsequently ξ̂.

Proof of Theorem 3·1: By Proposition A·3, given any 0 < ε < 1, there exists some

Cε, such that

P

(
inf

h∈Ω̄(Cε)
⋃

Ωc(Cε)
T1(h) > 1

)
> 1− ε.

Under the event {infh∈Ω̄(Cε)
⋃

Ωc(Cε)
T1(h) > 1}, we claim that there exists a local

minimizer of T (h), ĥ, which satisfies ĥ ∈ Ω(Cε) but ĥ /∈ Ω̄(Cε). Suppose the claim is

not true. We can find a ha ∈ Ω̄(Cε), such that T (ha) = minh∈Ω(Cε) T (h).

By Proposition A·2, for any C > 0, suph∈Ω(C) |T1(h)− T (h)| →p 0. Choose C

as Cε. Then 0 ≥ T (ha) − T (0) →p T1(ha) − T1(0) = T1(ha) > 1. Contradiction!

Therefore, for any 0 < ε < 1, there exists Cε, such that ĥ ∈ Ω(Cε) with probability at

least 1− ε.

Given any h ∈ Ω(Cε), E
[
hT
1 WtW

T
t h1

]
≤ λmaxJ

−1
(
C2
εJ

2n−1
)
= λmaxC

2
ϵ Jn

−1.

Noting that ξ̂ = ξ∗ + ĥ, with probability at least 1− ε,

E
[(
ĝ(Xt)− g0(Xt)

)2] ≤ 2E
[(
ĝ(Xt)− g∗(Xt)

)2]
+ 2E

[(
g∗(Xt)− g0(Xt)

)2]
= E

[
ĥT
1 WtW

T
t ĥ1

]
+ 2C2

0J
−2α ≤ 2λmaxC

2
ϵ Jn

−1 + 2C2
0J

−2α.

Thus, E
[(
ĝ(Xt)− g0(Xt)

)2]
= Op(Jn

−1 + J−2α) = Op

(
n−2α/(2α+1)

)
. This com-

pletes the proof of Theorem 3·1. □
Proof of Theorem 3·2: In the proof of Theorem 3·1, we have shown that for any

0 < ε < 1, there exists Cε, such that ĥ ∈ Ω(Cε) with probability at least 1− ε. Thus,

we restrict our attention to the event that ĥ ∈ Ω(Cε).
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We consider that S(b2,b3) := T1((ĥ
T
1 ,b

T
2 /

√
n,bT

3 /
√
n)T)−T1((ĥ

T
1 ,0

T,0T)T). It

is easily seen that

S(b2,b3) =

n∑
t=1

(
bT
2 Qt2√
n

+
bT
3 Qt3√
n

)2

− 2

n∑
t=1

ζt

(
bT
2 Qt2√
n

+
bT
3 Qt3√
n

)

− 2

n∑
t=1

ϕ∗(B)

θ∗(B)
Rt

(
bT
2 Qt2√
n

+
bT
3 Qt3√
n

)

+ 2

n∑
t=1

ĥT
1 Qt1

(
bT
2 Qt2√
n

+
bT
3 Qt3√
n

)
By Lemma B·3, we obtain that

n∑
t=1

[(
bT
2 Qt2√
n

+
bT
3 Qt3√
n

)2

− 2ζt

(
bT
2 Qt2√
n

+
bT
3 Qt3√
n

)]
→d σ2

(
bT
2 ,b

T
3

)
Σ (b2,b3)− 2

(
bT
2 ,b

T
3

)
N(0, σ2Σ), (4)

over ∥(bT
2 ,b

T
3 )∥ ≤ C for any C > 0.

According to Condition (C3), {ζt} and {Xt} are independent. Hence, {Rt} and

{(Qt2,Qt3)} are independent. As |Rt| ≤ ∆ ≤ C0J
−α and hence |ϕ∗(B)θ−1

∗ (B)Rt| ≤
C0C2J

−α → 0, by the same arguments as used for Lemma B·3, we can show that

sup
∥(bT

2 ,bT
3 )∥≤C

2

∣∣∣∣∣
n∑

t=1

ϕ∗(B)

θ∗(B)
Rt

(
bT
2 Qt2√
n

+
bT
3 Qt3√
n

)∣∣∣∣∣ = op(1). (5)

The independence between {ζt} and {Xt} again implies the independence between

Qt1 and (Qt2,Qt3), b
T
1 Qt1. Thus, E

[
hT
1 Qt1

(
bT
2 Qt2 + bT

3 Qt3

)]
= 0, as E [Qt2] =

E [Qt3] = 0. Noting that ∥ĥ1∥ ≤ CεJn
−1/2, it follows from Lemma B·2 that

2

∣∣∣∣∣
n∑

t=1

ĥT
1 Qt1

(
bT
2 Qt2√
n

+
bT
3 Qt3√
n

)∣∣∣∣∣ = CεJn
−1/2Op

(
7(p1/2 + q1/2)

√
C4J logn

)
= op(1). (6)

Combining (4), (5), and (6) together yield that

S(b2,b3) →d σ2
(
bT
2 ,b

T
3

)
Σ (b2,b3)− 2

(
bT
2 ,b

T
3

)
N(0, σ2Σ).

over ∥(bT
2 ,b

T
3 )∥ ≤ C for any C > 0.

Following from Lemmas B·4– B·6, we have uniformly over ∥(bT
2 ,b

T
3 )∥ ≤ C for any

C > 0.

T ((ĥT
1 ,b

T
2 /

√
n,bT

3 /
√
n)T)− T ((ĥT

1 ,0
T,0T)T) →p S(b2,b3).

Noting that N(0, σ2Σ−1) is the minimizer of the random process which S(b2,b3) con-

verges to, by Lemma 2.2 and Remark 1 in ?, there exists (b̂T
2 , b̂

T
2 ), a local minimizer of

T ((ĥT
1 ,b

T
2 /

√
n,bT

3 /
√
n)T)−T ((ĥT

1 ,0
T,0T)T), such that (b̂T

2 , b̂
T
3 )

T →d N(0, σ2Σ−1).

Since ĥ is the minimizer of T (h), (ĥT
2 , ĥ

T
2 ) must also be the minimizer of

T ((ĥT
1 ,h

T
2 ,h

T
3 )

T)− T ((ĥT
1 ,0

T,0T)T).

We thus have
√
n(ĥT

2 , ĥ
T
2 ) = (b̂T

2 , b̂
T
2 ) and

√
n(ĥT

2 , ĥ
T
3 )

T →d N(0, σ2Σ−1). This com-

pletes the proof of Theorem 3·2. □
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B. Preliminary proposition and lemmas

Next, we present the technical proposition and lemmas that are used in the proofs of

our theorems and corollaries. The proofs of the proposition and lemmas are relegated

to supplementary materials.

Proposition B·4 If Condition (C4) is satisfied,

sup
∥h1∥=1,∥(ϕT,θT)−(ϕT

∗ ,θT
∗ )∥≤δ2

hT
1 E

[(
ϕ(B)

θ(B)
Wt

)(
ϕ(B)

θ(B)
WT

t

)]
h1 ≤ λmaxJ

−1C2
2 ,

where δ2 is chosen as in Proposition A·1.

Lemma B·1 Suppose Condition (C3) holds. Then

(i) P (|ζt| > v) ≤ 2 exp
(

−v2

2(C2
B+CBv)

)
and

(ii) E[
∣∣∑∞

i=0 aiζt−i

∣∣k] ≤
(∑∞

i=0 |ai|
)k

k!Ck
B/2, for any a sequence {at, t ≥ 0} and

k ≥ 1.

Lemma B·2 Suppose Conditions (C1) – (C4) hold. There exists some constant C4 > 0

that does not depend on n, such that if J = O(n1/(2α+1)),

(i)

P

(
sup

∥h1∥≤1

∣∣∣∣Gn

[(
hT
1 Qt1

)2
ζ2t

]∣∣∣∣ > 7C2

√
C4J logn

)
≤ 2 exp(−6J logn).

(ii)

sup
∥h1∥≤1,h1 ̸=0

∣∣∣∣∣
(
σ2E

[(
hT
1 Qt1

)2])−1

En

[(
hT
1 Qt1

)2
ζ2t

]∣∣∣∣∣ = 1 + op(1).

(iii)

P

(
sup

∥h1∥≤1,∥h2∥≤1
n−1/2

∣∣∣Gn

[
hT
1 Qt1Q

T
t2h2

]∣∣∣ > 7p1/2
√

C4Jn−1 logn

)
≤2p exp(−6J logn).

P

(
sup

∥h1∥≤1,∥h3∥≤1
n−1/2

∣∣∣Gn

[
hT
1 Qt1Q

T
t3h3

]∣∣∣ > 7q1/2
√

C4Jn−1 logn

)
≤2q exp(−6J logn).

Lemma B·3 Suppose Conditions (C1) – (C4) hold. Then,

(i): sup∥(hT
2 ,hT

3 )∥≤1

∣∣∣∣En

[
(hT

2 Qt2 + hT
3 Qt3)

2ζ2t

]
− σ2

(
hT
2 ,h

T
3

)
Σ
(
hT
2 ,h

T
3

)T∣∣∣∣→a.s. 0,

(ii): Gn

[
(hT

2 Qt2 + hT
3 Qt3)ζt

]
→d

(
hT
2 ,h

T
3

)
N(0, σ2Σ), given any (hT

2 ,h
T
3 ) such that

∥(hT
2 ,h

T
3 )∥ ≤ C, for any C > 0.

(iii): Gn

[
(hT

2 Qt2 + hT
3 Qt3)ζt

]
→d

(
hT
2 ,h

T
3

)
N(0, σ2Σ) on ∥(hT

2 ,h
T
3 )∥ ≤ C, for any

C > 0.
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Lemmas B·4– B·6 follow from the steps in ? and ?.

According to Proposition A·1, |ζt| ≤ ηt, ∥Qt∥∞ ≤ ∥Qt−Dt(ξ∗)∥∞+∥Dt(ξ∗)∥∞ ≤
rtη0 + C2∆+ ωt =: χt, and similarly ∥Vt∥max ≤ χt. Thus,∣∣∣hTQt

∣∣∣ ≤ ∥h1Qt1∥+ ∥hT
2 Qt2 + hT

3 Qt3∥ ≤ C2∥h1∥+ χt(
√
p∥h2∥+

√
q∥h3∥), (7)∣∣∣hTVth

∣∣∣ = ∣∣∣2hT
2 Vt,21h1 + 2hT

3 Vt,31h1 + 2hT
3 Vt,32h2 + hT

3 Vt,33h3

∣∣∣
≤ 2C2(

√
p∥h2∥+

√
q∥h3∥)∥h1∥+ 2

√
pqχt∥h2∥∥h3∥+ qχt∥h3∥2. (8)

Let

T2(h) =

n∑
t=1

[(
ζt +

ϕ∗(B)

θ∗(B)
Rt − hTQt −

1

2
hTVth

)2

−
(
ζt +

ϕ∗(B)

θ∗(B)
Rt

)2
]
, and

T3(h) =

n∑
t=1

[(
ζt(ξ∗)− hTDt(ξ∗)−

1

2
hTHt(ξ∗)h

)2
− ζ2t (ξ∗)

]
,

Lemma B·4 Suppose Conditions (C1) – (C4) hold. If J2 logn = o(n1/2), then for

any C > 0, suph∈Ω(C) |T1(h)− T2(h)| →p 0.

Lemma B·5 Suppose Conditions (C1) – (C4) hold. If J−2α+1/2 = o(n−1/2), then for

any C > 0, suph∈Ω(C) |T2(h)− T3(h)| →p 0.

Lemma B·6 Suppose Conditions (C1) – (C4) hold. If J2 logn = o(n1/2), then for

any C > 0, suph∈Ω(C) |T3(h)− T (h)| →p 0.

Lemma B·7 Under the same conditions as in Proposition A·1, for any sequence {at}, t ≥
1, there exists some constant C3 such that∣∣∣∣(ϕ(B)

θ(B)
− ϕ∗(B)

θ∗(B)

)
at

∣∣∣∣ ≤ C3δ2

∞∑
i=0

ri|at−i|,

where δ2 and r are defined in Proposition A·1.
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Table 1 Estimation of the parameters of ARMA(1, 1) process, when Xt’s are serially correlated and satisfy the
conditions of Theorem 3.1, and innovations ζt’s have a t distribution with degrees of freedom ν.

(ϕ, θ) = (0.6, 0.3) ν = 3 g0(Xt) = f1(Xt)

n = 500 n = 1000 n = 2000

ϕ̂ θ̂ ϕ̂ θ̂ ϕ̂ θ̂
mean 0.5907 0.3160 0.5991 0.3058 0.5989 0.3024
s.d. 0.0489 0.0583 0.0325 0.0386 0.0232 0.0272

(0.0469) (0.0559) (0.0332) (0.0396) (0.0235) (0.0280)

(ϕ, θ) = (0.6, 0.3) ν = 3 g0(Xt) = f2(Xt)

n = 500 n = 1000 n = 2000

ϕ̂ θ̂ ϕ̂ θ̂ ϕ̂ θ̂
mean 0.5934 0.3182 0.5957 0.3081 0.5987 0.3026
s.d. 0.0505 0.0621 0.0327 0.0393 0.0238 0.0285

(0.0469) (0.0559) (0.0332) (0.0396) (0.0235) (0.0280)

(ϕ, θ) = (0.6, 0.3) ν = 3 g0(Xt) = f3(Xt)

n = 500 n = 1000 n = 2000

ϕ̂ θ̂ ϕ̂ θ̂ ϕ̂ θ̂
mean 0.5911 0.3151 0.5969 0.3061 0.5983 0.3045
s.d. 0.0478 0.0585 0.0327 0.0407 0.0240 0.0290

(0.0469) (0.0559) (0.0332) (0.0396) (0.0235) (0.0280)

(ϕ, θ) = (0.2,−0.5) ν = 3 g0(Xt) = f1(Xt)

n = 500 n = 1000 n = 2000

ϕ̂ θ̂ ϕ̂ θ̂ ϕ̂ θ̂
mean 0.2064 -0.5230 0.2048 -0.5123 0.2001 -0.5041
s.d. 0.1428 0.1273 0.0922 0.0814 0.0675 0.0606

(0.1315) (0.1162) (0.0930) (0.0822) (0.0657) (0.0581)

(ϕ, θ) = (0.2,−0.5) ν = 3 g0(Xt) = f2(Xt)

n = 500 n = 1000 n = 2000

ϕ̂ θ̂ ϕ̂ θ̂ ϕ̂ θ̂
mean 0.2185 -0.5320 0.2025 -0.5113 0.2026 -0.5057
s.d. 0.1388 0.1256 0.0956 0.0859 0.0660 0.0581

(0.1315) (0.1162) (0.0930) (0.0822) (0.0657) (0.0581)

(ϕ, θ) = (0.2,−0.5) ν = 3 g0(Xt) = f3(Xt)

n = 500 n = 1000 n = 2000

ϕ̂ θ̂ ϕ̂ θ̂ ϕ̂ θ̂
mean 0.2022 -0.5165 0.2035 -0.5098 0.2062 -0.5099
s.d. 0.1444 0.1300 0.1009 0.0901 0.0646 0.0562

(0.1315) (0.1162) (0.0930) (0.0822) (0.0657) (0.0581)

Table 2 Estimation of the parameters of AR(2) process, when Xt’s are serially correlated and satisfy the condi-
tions of Theorem 3.1, and innovations ζt’s have a t distribution with degrees of freedom ν.

(ϕ1, ϕ2) = (0.4, 0.2) ν = 3 g0(Xt) = f1(Xt)

n = 500 n = 1000 n = 2000

ϕ̂1 ϕ̂2 ϕ̂1 ϕ̂2 ϕ̂1 ϕ̂2
mean 0.4002 0.1948 0.3996 0.1965 0.3992 0.1986
s.d. 0.0451 0.4610 0.03144 0.0337 0.0234 0.0237

(0.0438) (0.0438) (0.0310) (0.0310) (0.0219) (0.0219)

(ϕ1, ϕ2) = (0.4, 0.2) ν = 3 g0(Xt) = f2(Xt)

n = 500 n = 1000 n = 2000

ϕ̂1 ϕ̂2 ϕ̂1 ϕ̂2 ϕ̂1 ϕ̂2
mean 0.4007 0.1935 0.3980 0.1969 0.3990 0.1988
s.d. 0.0451 0.0461 0.0309 0.0307 0.0219 0.0222

(0.0438) (0.0438) (0.0310) (0.0310) (0.0219) (0.0219)

(ϕ1, ϕ2) = (0.4, 0.2) ν = 3 g0(Xt) = f3(Xt)

n = 500 n = 1000 n = 2000

ϕ̂1 ϕ̂2 ϕ̂1 ϕ̂2 ϕ̂1 ϕ̂2
mean 0.4007 0.1936 0.3993 0.1995 0.3963 0.1991
s.d. 0.0448 0.0450 0.0311 0.0312 0.0226 0.0225

(0.0438) (0.0438) (0.0310) (0.0310) (0.0219) (0.0219)

(ϕ1, ϕ2) = (0.5, 0.1) ν = 3 g0(Xt) = f1(Xt)

n = 500 n = 1000 n = 2000

ϕ̂1 ϕ̂2 ϕ̂1 ϕ̂2 ϕ̂1 ϕ̂2
mean 0.4827 0.0976 0.4995 0.0965 0.4990 0.0989
s.d. 0.0458 0.0467 0.0321 0.0316 0.0227 0.0229

(0.0445) (0.0445) (0.0314) (0.0314) (0.0222) (0.0222)

(ϕ1, ϕ2) = (0.5, 0.1) ν = 3 g0(Xt) = f2(Xt)

n = 500 n = 1000 n = 2000

ϕ̂1 ϕ̂2 ϕ̂1 ϕ̂2 ϕ̂1 ϕ̂2
mean 0.5002 0.0958 0.4992 0.0977 0.4991 0.0979
s.d. 0.0451 0.0473 0.0331 0.0324 0.0232 0.0237

(0.0445) (0.0445) (0.0314) (0.0314) (0.0222) (0.0222)

(ϕ1, ϕ2) = (0.5, 0.1) ν = 3 g0(Xt) = f3(Xt)

n = 500 n = 1000 n = 2000

ϕ̂1 ϕ̂2 ϕ̂1 ϕ̂2 ϕ̂1 ϕ̂2
mean 0.4987 0.0924 0.5009 0.0961 0.4995 0.0987
s.d. 0.0453 0.0461 0.0324 0.0318 0.0234 0.0230

(0.0445) (0.0445) (0.0314) (0.0314) (0.0222) (0.0222)
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Table 3 Estimation of the parameters of MA(2) process, when Xt’s are serially correlated and satisfy the condi-
tions of Theorem 3.1, and innovations ζt’s have a t distribution with degrees of freedom ν.

(θ1, θ2) = (0.4, 0.2) ν = 3 g0(Xt) = f1(Xt)

n = 500 n = 1000 n = 2000

θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2
mean 0.4046 0.2025 0.4030 0.2031 0.4014 0.2014
s.d. 0.0439 0.0457 0.0322 0.0317 0.0227 0.0208

(0.0438) (0.0438) (0.0310) (0.0310) (0.0219) (0.0219)

(θ1, θ2) = (0.4, 0.2) ν = 3 g0(Xt) = f2(Xt)

n = 500 n = 1000 n = 2000

θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2
mean 0.4028 0.2026 0.4021 0.2002 0.4010 0.2007
s.d. 0.0452 0.0453 0.0312 0.0315 0.0216 0.0222

(0.0438) (0.0438) (0.0310) (0.0310) (0.0219) (0.0219)

(θ1, θ2) = (0.4, 0.2) ν = 3 g0(Xt) = f3(Xt)

n = 500 n = 1000 n = 2000

θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2
mean 0.4046 0.2025 0.4029 0.2010 0.4020 0.2009
s.d. 0.0455 0.0465 0.0312 0.0316 0.0222 0.0218

(0.0438) (0.0438) (0.0310) (0.0310) (0.0219) (0.0219)

(θ1, θ2) = (−0.2,−0.4) ν = 3 g0(Xt) = f1(Xt)

n = 500 n = 1000 n = 2000

θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2
mean -0.2140 -0.4155 -0.2072 -0.4071 -0.2036 -0.4034
s.d. 0.0470 0.0454 0.0305 0.0300 0.0201 0.0207

(0.0410) (0.0410) (0.0290) (0.0290) (0.0205) (0.0205)

(θ1, θ2) = (−0.2,−0.4) ν = 3 g0(Xt) = f2(Xt)

n = 500 n = 1000 n = 2000

θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2
mean -0.2163 -0.4160 -0.2073 -0.4092 -0.2042 -0.4030
s.d. 0.0470 0.0436 0.0307 0.0296 0.0210 0.0207

(0.0410) (0.0410) (0.0290) (0.0290) (0.0205) (0.0205)

(θ1, θ2) = (−0.2,−0.4) ν = 3 g0(Xt) = f3(Xt)

n = 500 n = 1000 n = 2000

θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2
mean -0.2150 -0.4158 -0.2083 -0.4070 -0.2034 -0.4032
s.d. 0.0450 0.0457 0.0300 0.0295 0.0207 0.0206

(0.0410) (0.0410) (0.0290) (0.0290) (0.0205) (0.0205)

Table 4 Comparing ĝ(·) and g0(·), when ϵt’s follow an ARMA(1, 1) process, Xt’s are serially correlated and
satisfy the conditions of Theorem 3.1, and innovations ζt’s have a t distribution with degrees of freedom ν.

(ϕ, θ) = (0.6, 0.3) ν = 3 g0(Xt) = f1(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.3193 0.1550 0.2056 0.0798 0.1608 0.0447
sequential 0.7797 0.3345 0.5655 0.1867 0.4633 0.1193

(ϕ, θ) = (0.6, 0.3) ν = 3 g0(Xt) = f2(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.3018 0.1387 0.2584 0.0959 0.1326 0.0462
sequential 0.7461 0.3255 0.7346 0.2885 0.4343 0.1303

(ϕ, θ) = (0.6, 0.3) ν = 3 g0(Xt) = f3(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.3003 0.1370 0.2106 0.0770 0.1628 0.0482
sequential 0.8628 0.3414 0.5499 0.1940 0.4890 0.1214

(ϕ, θ) = (0.2,−0.5) ν = 3 g0(Xt) = f1(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.2079 0.0719 0.1440 0.0401 0.1133 0.0232
sequential 0.2365 0.0820 0.1710 0.0489 0.1342 0.0285

(ϕ, θ) = (0.2,−0.5) ν = 3 g0(Xt) = f2(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.2033 0.0727 0.1804 0.0527 0.1056 0.0237
sequential 0.2329 0.0838 0.2067 0.0545 0.1261 0.0283

(ϕ, θ) = (0.2,−0.5) ν = 3 g0(Xt) = f3(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.2022 0.0679 0.1478 0.0422 0.1403 0.0270
sequential 0.2444 0.0843 0.1715 0.0513 0.1667 0.0314
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Table 5 Comparing ĝ(·) and g0(·), when ϵt’s follow an AR(2) process, Xt’s are serially correlated and satisfy
the conditions of Theorem 3.1, and innovations ζt’s have a t distribution with degrees of freedom ν.

(ϕ1, ϕ2) = (0.4, 0.2) ν = 3 g0(Xt) = f1(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.2215 0.1044 0.2028 0.0878 0.1983 0.0751
sequential 0.4083 0.1532 0.3086 0.0996 0.2429 0.0538

(ϕ1, ϕ2) = (0.4, 0.2) ν = 3 g0(Xt) = f2(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.1848 0.0919 0.1478 0.0534 0.1395 0.0381
sequential 0.4028 0.1590 0.3173 0.0899 0.2500 0.0556

(ϕ1, ϕ2) = (0.4, 0.2) ν = 3 g0(Xt) = f3(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.1873 0.0965 0.1534 0.0706 0.1575 0.0593
sequential 0.3782 0.1455 0.3234 0.0913 0.2811 0.0594

(ϕ1, ϕ2) = (0.5, 0.1) ν = 3 g0(Xt) = f1(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.2279 0.1096 0.2248 0.0936 0.2057 0.0617
sequential 0.4556 0.1734 0.3723 0.1240 0.2798 0.0436

(ϕ1, ϕ2) = (0.5, 0.1) ν = 3 g0(Xt) = f2(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.1877 0.0892 0.1514 0.0539 0.1417 0.0413
sequential 0.4290 0.1688 0.3150 0.1027 0.2789 0.0623

(ϕ1, ϕ2) = (0.5, 0.1) ν = 3 g0(Xt) = f3(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.2016 0.1035 0.1710 0.0792 0.1625 0.0574
sequential 0.4633 0.1848 0.3252 0.1011 0.3475 0.0396

Table 6 Comparing ĝ(·) and g0(·), when ϵt’s follow an MA(2) process, Xt’s are serially correlated and satisfy
the conditions of Theorem 3.1, and innovations ζt’s have a t distribution with degrees of freedom ν.

(θ1, θ2) = (0.4, 0.2) ν = 3 g0(Xt) = f1(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.2328 0.0884 0.1837 0.0515 0.1612 0.0297
sequential 0.3109 0.1141 0.2489 0.0687 0.2234 0.0400

(θ1, θ2) = (0.4, 0.2) ν = 3 g0(Xt) = f2(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.2471 0.0916 0.1918 0.0598 0.1371 0.0317
sequential 0.3262 0.1171 0.2548 0.0763 0.1990 0.0427

(θ1, θ2) = (0.4, 0.2) ν = 3 g0(Xt) = f3(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.2520 0.0931 0.2124 0.0549 0.1465 0.0328
sequential 0.3296 0.1199 0.2788 0.0717 0.1966 0.0435

(θ1, θ2) = (−0.2,−0.4) ν = 3 g0(Xt) = f1(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.1877 0.0536 0.1185 0.0316 0.1032 0.0182
sequential 0.2760 0.0825 0.1963 0.0522 0.1640 0.0302

(θ1, θ2) = (−0.2,−0.4) ν = 3 g0(Xt) = f2(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.1605 0.0536 0.1389 0.0325 0.1017 0.0183
sequential 0.2459 0.0850 0.2189 0.0325 0.1670 0.0302

(θ1, θ2) = (−0.2,−0.4) ν = 3 g0(Xt) = f3(Xt)

n = 500 n = 1000 n = 2000
ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ) ρ(g0, ĝ) ρ19(g0, ĝ)

one step 0.1801 0.0530 0.1349 0.0339 0.1056 0.0178
sequential 0.2791 0.0827 0.2187 0.0564 0.1796 0.0295
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Regression Two-step Two-step AR(1) One-step AR(1)

Jn = 5
MAD 177517.3 130700.2 127577.3 110803.0
MAPE 0.0734 0.0558 0.0541 0.0481
max AD 733710.5 535115.6 503171.3 644047.8
RMSD 245891.7 186652.6 182356.9 156313.5

Jn = 7
MAD 174353.2 131383.8 128225 110215.1
MAPE 0.07140065 0.0546 0.0540 0.0478
max AD 762511.9 622775.3 553074.1 658089.4
RMSD 246153.2 192506.8 186318.0 155665.3

Jn = 8
MAD 174298.9 131607.2 129235.5 109312.5
MAPE 0.0712 0.0547 0.0543 0.0472
max AD 770422.2 621101.3 547000.3 642692.5
RMSD 246971.2 191983.1 187598.5 154919.0

Jn = 11
MAD 175420.4 138837.7 133504.9 115376.8
MAPE 0.0717 0.0583 0.0560 0.0499
max AD 759285.9 655971.6 579935.8 604635.9
RMSD 250072.8 200472.2 193994.1 162019.7

Jn = 14
MAD 181497.5 141109.2 143740.2 114578.4
MAPE 0.0755 0.0599 0.0619 0.0482
max AD 755049.7 674575.4 588503.0 694568
RMSD 254529.6 201237.5 200988.8 164707.3

Jn = 17
MAD 184547.3 143267.8 147126.7 113950.1
MAPE 0.0762 0.0602 0.0626 0.0485
max AD 786012.7 655668.4 572125.8 719067.2
RMSD 256977.5 206435.5 205303.8 164544.7

Table 7 Forecast accuracy for different models; Regression refers to spline approximation
without addressing the serial correlation issue; Two-step refers to sequential method with
auto.arima being used to choose ARMA order; Two-step AR(1) refers to sequential method
with AR(1); and One-step AR(1) refers to the proposed method wtih AR(1).
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Fig. 1 Left: the solid line represents the fitted spline approximation function g̃(Xt), and
the dashed line represents the fitted spline approximation function ĝ(Xt); Right: the circles
represent fitted values by the sequential method, and the solid diamonds represent the fitted
values by the proposed method; the dashed straight line is the 45◦ degree line going through
the origin.
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Fig. 2 The circles represent the total sum of squared residuals for the sequential method;
the solid dots represent the total sum of squared residuals for the proposed method.
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Fig. 3 Top: the ACF for Yt − g̃(Xt) values which are the estimates for ϵt in (1) given by the
sequential method; Bottom: the ACF for Yt − ĝ(Xt) values which are the estimates for ϵt in
(1) given by the proposed method.
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Fig. 4 Top: the ACF for residuals, estimates for ζt in (2), given by the sequential method;
Bottom: the ACF for residuals, estimates for ζt in (2), given by the proposed method.
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Fig. 5 The plot for the ordered absolute deviations: the circles represent the sequential
method, and the solid diamonds represent the one-step method.
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