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The feasibility of extracting generalized parton distributions (GPDs) from deeply virtual Compton
scattering (DVCS) data has recently been questioned because of the existence of an infinite set of so-called
“shadow GPDs” (SGPDs). These SGPDs depend on the process and manifest as multiple solutions (at a
fixed scale Q?) to the inverse problem that needs to be solved to infer GPDs from DVCS data. SGPDs
therefore pose a significant challenge for extracting GPDs from DVCS data. With this motivation we study
the extent to which QCD evolution can provide constraints on SGPDs. This is possible because the known
classes of SGPDs begin to contribute to observables after evolution, and can then be constrained (at the
input scale Qé) by data that has a finite Q2 range. The impact that SGPDs could have on determining the
total angular momentum, pressure and sheer force distributions, and tomography is also discussed. We find
that Q? evolution, given empirical data over a wide range of skewness (§) and Q? scales, constrains the
SGPDs studied at low x and low &, If this finding generalizes to all SGPDs—and we have not been able to
find any SGPDs with qualitatively different behavior—then this potentially makes extraction of GPDs from

DVCS possible over a limited range of x and §.
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I. INTRODUCTION

The three-dimensional imaging of the quarks and gluons
(collectively called partons) confined inside hadrons and
nuclei is a key motivation for several particle accelerator
facilities around the world, including Jefferson Lab [1,2],
COMPASS at CERN [3], J-PARC [4], the forthcoming
Electron-Ion Collider (EIC) in the U.S. [5,6], and the
planned Electron-Ion Collider in China (EicC) [7]. The
spatial imaging of partons is provided through Fourier
transforms of generalized parton distributions (GPDs).
GPDs are formally defined by bilocal light cone correlators
of quark and gluon fields [8-13] and contain a wealth of
information on the momentum and spin distributions
of the partons (for some comprehensive reviews see
Refs. [14-18]). For example, the first and second Mellin
moments of the leading twist spin-independent GPDs give
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the electromagnetic and energy-momentum tensor (or
gravitational) form factors, respectively, and in the forward
limit a subset of the GPDs reduce to the familiar one-
dimensional collinear parton distribution functions (PDFs).

The archetypal process for inferring information on GPDs
is deeply virtual Compton scattering (DVCS) [11,19], which
contributes to reactions like ep - e°p%. The differential
cross section for DVCS can be expressed in terms of
complex-valued Compton form factors (CFFs) that charac-
terize the target hadron or nucleus. In kinematic domains
where quantum chromodynamics (QCD) factorization the-
orems apply, these CFFs can be expressed as convolutions
of complex-valued hard-scattering coefficient functions (C)
with the real-valued GPDs. Inferring GPDs from DVCS
data therefore entails an inverse problem, which in this case
is particularly challenging because one of the GPD variables
(the average parton momentum fraction x) is completely
integrated out and does not appear as a kinematic variable for
the CFFs.

In Refs. [20,21], it has been shown that the inverse
problem associated with inferring GPDs from DVCS data
can yield an infinite set of solutions or “possible GPDs” at a
fixed value of the scale of the reaction Q* % -q?, which is
minus the square of the four-momentum transfer from the
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incident lepton. These multiple solutions are characterized
by what have been called shadow GPDs (SGPDs), which
are infinite classes of functions that are orthogonal to the
various hard-scattering coefficient functions and therefore
do not contribute to the CFFs. The various classes of
SGPDs are process dependent and are also subject to the
constraints associated with the formal properties of GPDs,
such as polynominality, correct support, and sum rules.
Nevertheless, SGPDs can still be very large and could
render impossible the extraction of GPDs from DVCS data.

To adequately constrain SGPDs and fully infer GPDs
from data will likely require a multifaceted approach,
which in addition to DVCS will include data from
other processes that are sensitive to GPDs, such as deeply
virtual meson production (DVMP) [14,15,22], double
DVCS [15,23], and other processes directly sensitive to
the x dependence of GPDs [24-27]. A complementary
approach is to also exploit the correlation between x and Q?
that is provided by the QCD evolution of GPDs and hence
SGPDs. This is made possible because the known classes
of SGPDs at a particular Q% do evolve with scale, and in
so doing are no longer orthogonal to the hard-scattering
coefficients and thereby begin to contribute to the CFFs
upon evolution. This implies that, in principle, it is likely
possible to completely constrain the SGPDs with perfect
CFF data over a finite Q? range.

In this work we study the impact that QCD evolution can
have on constraining SGPDs when inferring GPDs from
DVCS data that has kinematics similar to those at Jefferson
Lab, COMPASS, and the EIC. This paper is organized as
follows: Section II reviews the formalism associated with
CFFs, GPDs, and SGPDs. Section III introduces a proxy
model for the GPDs that is needed for our analysis. In
Sec. IV we use simulated CFF data to study the impact
that scale evolution can have on constraining the SGPDs.
Section V presents our findings regarding the impact
SGPDs could have on determining the total angular
momentum, pressure and shear force distributions, and
tomography. Finally, we summarize our results and provide
conclusions in Sec. VL.

II. CFFs, GPDs, AND SGPDs

For spin-half targets such as the nucleon, there are
four complex-valued CFFs (H, E, B, €) that enter the
DVCS cross section at leading twist, which are related to
several quark and gluon leading-twist GPDs (H?, E3, H?,
g2) by [19]

z 1 X
FOE t; Q%b % dx C29x; §; Q?; u?bF23dx; §; t; u’b; olp

-1 a

where F % H; E are associated with the leading-twist
spin-independent GPDs F % H?; E@, respectively, the sum
is over all active parton flavors (a % g, g), and C? is a

hard-scattering coefficient function. An analogous relation
holds between the @ and € CFFs and the leading-twist
spin-dependent GPDs 8% and €7, where in this case
different hard-scattering coefficient functions G€°p enter
(see Appendix A) [19]. The GPDs are formally defined
through matrix elements of quark and gluon operators at a
lightlike separation. For a spin-half target like the nucleon
the leading twist unpolarized quark and gluon GPDs are
defined by [14,28]'
z P

‘nA 0,0 1 q 1
n méij’ p°Y? - Anlape Anlp

nA

% a0pPp HIBx; & t; u2ba b E98X; E; t; uzblgv udpb;

a2p
Z a ] 1 nyn,
ixP-n OGHa
2T[e 2 p°G 2)\n G~ z}m p =
ian
% 00p°P xHEdx; §; t; u>bn b xE8DX; €; t; HZDZM udpb;
oa3b

where n is a lightlike vector (n?% 0) and analogous
expressions hold for the polarized GPDs B® and €° (see
Appendix B) [14,29]. For legibility we do not display the
polarization dependence of the hadron states and spinors
nor the color degrees of freedom in the field operators
(which should be implicitly understood as containing gauge
links and color sums). We use the notation 6"* = ¢*'n A,
M is the target mass, P % 18p°p pb is the average of the
initial and final target moménta, A % p°- p is the momen-
tum transferred to the target, t % A%, x % k - n=P - n is the
average light cone momentum fraction of the active parton
where k is the average of the initial and final parton
momenta, and § % —A -n=02P -nb is a measure of the
longitudinal momentum transfer to the target (skewness).
The GPDs also depend on the renormalization scale u?in
accordance with the renormalization group equations
[11,30,31]. GPDs have support in the region -1 < x< 1
and -1 < § < 1, with the constraint that for a given § the
maximal value of t< t,, < 0 for a physical process
st % -4€2M2=51 - €2b.

The GPDs exhibit several interesting properties, such as
polynomiality [14], which is a consequence of Lorentz
covariance and implies the x-weighted moments of GPDs
are even polynomials in § (see Appendix B for more
details). GPDs also formally satisfy numerous positivity
conditions [32—41], with an example for the nucleon
including [35]

—We-use the Ji convention [28] for the gluon GPDs, which
differs from the Diehl convention [14] by F§,., % 2xF .
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where qdx; u2p are the familiar collinear PDFs, x;, % 0xp €p=01p &P, X, % Ox— &P=31- &b, and this positivity constraint
applies in the region jxj > j&j. In the forward limit (§ - 0;t - 0) the H® and ¥* GPDs reduce to [19]

H99x; 0; 0P % qdxPOOXP - G6-xPOJ-xb; 1890x; 0; Op % AqdxPOdXP b AqO-xPOJ—xP; a5p

2Hedx; 0; 0b % gOxbPOdxP — gd—xPOJ—xPb; 218%9x; 0; 0b % AgOXPOIXP b Agd-xPOI-xb; a6b
where we have dropped the p? dependence, the factor 2 for gluons avoids double counting because gluons are their own
antiparticle, © is the Heaviside step function, and q, g, and g are the PDFs for the quarks, antiquarks, and gluons,
respectively. The first moments of quark GPDs are related to the quark contributions to the Dirac, Pauli, axial, and

pseudoscalar form factors:
Z

1
dx¥%H9; E%; BY; B0x; §; t; u2P % Y4F 0tb; F5th; G* gtb; G Gtb: d7p

-1

An important reason for the interest in GPDs, is that their second moments are related to the quark and gluon gravitational

form factors. For the nucleon this implies [42]
L4 1
dxxH2dx; €; t; u?b % A0t u?b b €2C26t; u?b;

-1

Z
1

dxxE28x; €; t; u2b % B2dt; u2b — E2C36t; p2b; a8p
1

where the form factors are defined with respect to matrix elements of the energy-momentum tensor as

£

h 0.)\0' UV in:\i 1 0.720 a VHPVg a P
p% A% TS dxPjp; Ai %4 wdp’;A°p A éthb B20tp

We have introduced the notation af*bv8 % a*b¥ p avbM.
The total quark and gluon angular moment is then given by
the Ji sum rule [10] as J36u2b % 1 1%A%30;°b b B360; u2p
and J % 1% P _J26u2p. The C2 Form factors are related
to internazl stresses within the nucleon [42-47], with D %
EGOD %, C200;p?p known as the nucleon D-term, and

, C38t; u?p % 0.

It is made clear by Eq. (1) that inferring GPDs from
DVCS data involves solving several inverse problems,
subject to some or all of the constraints given by
Eqgs. (4)—(8) [17,48-50]. The first step in this procedure
is to obtain the CFFs from DVCS data, which even at
leading twist is a challenging problem [19], and several
leading-twist CFF extractions have been reported in the
literature [51-56]. The challenge of extracting GPDs from
the CFFs lies in the fact that the x dependence of the GPDs
is completely integrated out and does not appear in the
CFFs. Nevertheless, GPD extractions from DVCS data
have been performed; see, for instance, Refs. [50,57-59].

In Refs. [20,21], it has recently been shown that, at a
fixed value of p?% Q? in Eq. (1) and subject to the
forward-limit and form factor constraints of Eqs. (5)—(7),
it is not possible to uniquely extract the H? GPDs from

\

M. vgh K _ 2 _uv )
#p caatp%p MC?8tbgh udp;Ab: &9

|
DVCS data. This is because there are multiple solutions to
the inverse problem of Eq. (1), that each satisfy the forward
limit and electromagnetic form factor constraints. The
analysis in Refs. [20,21] was conducted at leading order
(LO) and next-to-leading order (NLO) in the hard scatter-
ing coefficients and also straightforwardly applies to the
E2, 8%, and B® GPDs. We label these multiple solutions
as F?: dx; & t; u?P, with the subscript F indicating a “false”
GPD which, nevertheless, satisfies all requirements of a
GPD, e.g., polynominality, forward limit, etc. Then, with-
out loss of generality, these false GPDs can be expressed as
Faox; &t b % F0x; &t u2P b F30x; §;t; u?p;  G10p
where the unique GPD associated with its matrix element
definition, such as those given in Egs. (2) and (3), is labeled
by F28x; &; t; u?p with the subscript T indicating the “true”
GPD, and Faséx; & t;u’b are the so-called SGPDs that
characterize the difference between the true and false
GPDs. The SGPDs, by construction, do not contribute to
any experimentally accessible observable, which implies,
e.g., that HZ and I8¢ must vanish in the forward limit in
accordance with Egs. (5) and (6) and the first moments of
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H& E& 183, and B must vanish so that Eq. (7) remain
valid. In addition, SGPDs do not contribute to the CFFs,
which implies

X
C20x; & Q%; W2PF2@x; & t; u?p % O; al1p
a

where the specific hard-scattering coefficient function
C? depends on the process and type of GPD. Therefore,
SGPDs make it impossible to distinguish the “true” GPDs,
F3, from the sum of the “true” GPDs and SGPDs, F2 b FZ,
using only DVCS data at a fixed scale Q%. As shown in
Refs. [20,21], the shape and size of F? % F3 p FZ may
differ significantly from F%.

An important caveat is that the known classes of SGPDs
do not satisfy Eq. (11) after QCD evolution, and therefore
begin to contribute to CFFs upon evolution to a different
scale. Therefore, a SGPD at an initial scale p is no longer
a SGPD when evolved to a new scale p?. It is therefore
plausible that QCD evolution of the GPDs has the potential
to help constrain SGPDs and make viable the extraction of
GPDs from DVCS data with a sufficiently large Q? range.
We note that using QCD evolution to help infer GPDs from
data was first suggested by Freund [48].

The original SGPD analysis presented in Refs. [20,21]
suggested that the impact of evolution should be very small.
We extend this analysis in two ways. We will explore
the impact of evolution on a larger sampling of possible
SGPDs and conduct this exploration at multiple values of
Q? and €. By explicitly solving the evolution equations for
the GPDs over a range of kinematics, we can better study
whether QCD evolution may be capable of providing
constraints on SGPDs and render the extraction of GPDs
from DVCS data practical.

III. GPD PROXY MODEL AND A CLASS
OF SGPDs

To investigate the ability of QCD evolution to constrain
the SGPDs, and thereby extract information on the true
GPDs from DVCS data, it is necessary to adopt a proxy
model for these true GPDs. We chose the widely used
phenomenological model from Vanderhaeghen, Guichon,
and Guidal (VGG) [60-63]; however, the outcome of our
analysis does not directly depend on this choice as the
SGPDs are independent of the proxy model. To ensure the
polynomiality property of the GPDs it is common to work
at the level of double distributions [30]. Our analysis will
focus on the leading-twist spin-independent nucleon GPDs,
which in terms of double distributions are given by [14]

z

Haox; & t; P % dBdaddx — B - ab%iH,,0B; o; t; u2p

b 68BPED?da; t; u2POBGjEj — jxjb; a12p

A
E20x; &t u?P % dBdaddx - B - EapliE3 ,0B; a; t; p?b

— 60BPEDd; t; L2POJE] — jxip;  B13P

where joj b jBj < 1, the functions H3 ; and EJ, are the
double distributions which must be even in a to preserve
polynomiality, and D38a; t; pu?p is called the D-term [64].
The function D?3dq; t; u2b shares the same “D-term” name
s the value of the gravitational form factor Cot;u’b %
,C?0t;u’p at t % 0, and they are related by C26t; p?p %
1, daaD?8a; t; p?p.
In the VGG model, and other models such as those from
Goloskokov and Kroll [65—67], the double distributions are

parametrized at the input scale as
Hob0B; o; t; udp % hop; o; th1:qdp; uPOIRP
- G0-B; ugPOI-BP; Hpp0B; a; t; u2b
1
%8 hop;a; tbs(gnéﬁtﬁgajﬁj; u’p; 0 d14b
EppOB; o; t; u2p % hdp; a; th14e0p; p2pOOBP
- e90-B; uipOs-pb;
1
ESp0B; a; t; Wip % EhéB; o; tbsgndPPetdjpj; pap;  815p

where hdp;a;tb is often called the profile function for
which we take a standard form [62,63,68]:

r62bp 20 ¥Al- jBjb? - o2
22b1[25b p 1p 61— jBjp2obt

hop; a;th % B--wél-jﬁjbt:

alep

For the q, g, and g PDFs we take results from the JAM20-
SIDIS global analysis [69] and in the profile function
take the standard VGG parameters of b % 1 [62] and w %
1.105 [63], which provide a good fit to the nucleon’s
electromagnetic form factors. The forward limits of the E®
GPDs do not correspond to any accessible collinear PDF;
nevertheless, we use a common parametrization introduced
in Ref. [63] for EJ, where
evdx; W2p % :T”él— xPu, 8x; p2p;

u

K
edox; u2p % N—dél— xped, Bx; u2p: 817p
d

The empirical quark anomalous magnetic moments have
the values k, % 1.673 and k4 % —2.033. For the u, and d,

PDFs we again use those from Ref. [69], and the normali-
zation constants N, are fixed by requiring that the first

moment of the associated e? functions give k4. This is
necessary to reproduce the Pauli form factors of the nucleon
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FIG. 1.  Our VGG model results for the HU%" (blue) and EY9PP (orange) GPDs, with t % -1.2 GeV?, and from left to right the

skewness values are § % 0.01;0.1;0.5. The input scale results (solid lines) correspond to g % 1.27 GeV, taken from the JAM-SIDIS
analysis [69], and the dotted lines are these results evolved at LO to the scale u? % 100 GeV?2.

att % 0. Following the VGG model we use n, % 1.713 and
ng % 0.566, and set the remaining edx;u?p functions to
zero.” In our proxy model for the true GPDs we will omit
the D-term because the known classes of SGPDs derived in
Ref. [20] have no D-term. This choice does not impact the
results of our SGPD analysis, and is also motivated by the
observable CFFs which can directly constrain the D-term
via dispersion relations [20,71,72]. See Appendix A for
further details.

In this analysis we focus on the H and E CFFs and
associated spin-independent GPDs and SGPDs. For these
CFFs the hard-scattering coefficient functions [see Eq. (1)]
for the associated GPDs are odd under x = —x, and there-
fore only the singlet combination F?2 opp 4 FPOX; &P ~

F2d-x; €; tb contributes to the CFFs. In Fig. 1, we present
our VGG model results for the u quark singlet HY%P" and
EUSPP GPDs, where we take t % -1.2 GeV? in Eq. (16)
which accommodates the illustrated skewness values of
€ % 0.01;0.1;0.5. Similar results are easily obtained for
the other H2%? and E2%P* GPDs. Since the GPD singlet
combination is antisymmetric in X we just present proxy
model GPDs for 0 < x < 1. In Fig. 1 the GPDs are shown
at the input scale of py % 1.27 GeV associated with the
JAM20-SIDIS PDFs and after LO evolution to u? %
100 GeV?2. Details on the implementation of the GPD
evolution are given in Appendix C.

To construct our SGPDs we will generally follow the
same method as Ref. [20]. Firstly, the class of SGPDs that
we consider will be assumed separable such that

Fadx; & t; u?p > F39x; §; p2pfagtp: a18p
To construct a general class of singlet SGPDs, we begin

with a double distribution parametrization of the polyno-
mial form [20]

’The functions e? defined in Eq. (15) should not be confused
with the twist-3 PDFs that use the same symbol [70].

anSN

F29PP 5B; o; t; Wip %

$;DD C?na,fpauépamﬁnfséﬁtb;

m%0;2;...;n%1;3;...

o19p

which holds at an initial scale u2. Polynomiality requires m
to be even, while n is taken as odd to give SGPDs that are
antisymmetric in x so that they contribute to the singlet
GPD combination. This choice also guarantees that the
SGPDs do not contribute to the form factors via Eq. (7).
The t dependence of the shadow double distributions, and
therefore the SGPDs, is represented by f30tP and for this
analysis is left undefined. The exception is in the forward
limit where we will consider two cases, corresponding
to f500Pp # 0 and f300p % 0. The positive odd integer
N gives the order of the double distribution that has
ON p 1PN b 3p=8 unknown coefficients c,,,. The SGPDs
associated with Fa%R'0B; a;t; u2p are then obtained by
inserting Eq. (19) into either Eq. (12) or (13) to obtain
Fasabpéx; & t; ugp.

The key relation for the SGPDs is Eq. (11), which is a set
of homogeneous equations that place constraints on the
coefficients c,, in Eq. (19), up to an overall normalization.
For the known classes of SGPDs, Eq. (11) can only be
implemented at a fixed scale p3 and is no longer satisfied
after evolution of the GPDs. Additional constraints on the
SGPDs for H® and B? are given by the forward limit
(§ > 0;t > 0) results of Egs. (5) and (6). This means the
SGPDs for H® and B? must vanish in the forward limit,
which can be implemented in two ways: (i) via constraints
on the c,, coefficients which means these SGPDs vanish
when § = 0; or (ii) choose the t dependence of these
SGPDs such that f80P % 0. We will investigate both of
these scenarios, which we refer to as type A and type B
SGPDs, respectively. As we will see, the type B SGPDs are
less constrained which has implications for inferring GPDs
from DVCS data. To satisfy the SGPD constraints a
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FIG. 2.

Results for NLO SGPDs in the spin-independent quark sector. The top row shows three examples of type A SGPDs where the

forward limit is maintained via constraints on the c.,,’s so that the SGPDs vanish as § - 0. In the second row, three type B SGPDs are
illustrated where any forward-limit constraint is imposed via the unspecified t dependence. In each case, SGPDs with skewness & %
0.01;0.1; 0.5 are shown in the panels from left to right. The SGPDs are defined at the input scale py % 1.27 GeV (solid lines). These
results are evolved at LO to p? % 100 GeV? (dotted lines), where these evolved results no longer satisfy the requirements for a

SGPD.

minimum order N in Eq. (19) is required, where in general
there are more coefficients c,,, than constraints making this
an underdetermined problem. Therefore, for a sufficiently
large N there are in general an infinite number of SGPDs.
To generate examples of SGPDs of order N, we need
to reduce the number of unknown coefficients c,, to equal
the number of constraint equations. This is done by
assigning random values to the surplus coefficients, which
are themselves randomly selected from the full set. The
constraint equations are then solved to obtain the remaining
coefficients.

Figure 2 presents example SGPDs F‘;ébpéx; & u2b [see
Eq. (18)] appropriate for the H3%" and E9%** GPDs, where
in Eq. (19) we have taken N % 27, which is the same order
as the example SGPDs discussed in Ref. [20]. The top row
in Fig. 2 gives results for type A SGPDs. (Note that in
Ref. [20] only type A SGPDs were explored.) In the second
row of Fig. 2 this constraint on the c,,,’s is relaxed, and we
illustrate results for type B SGPDs. These type B SGPDs

are also appropriate for the GPD E“, as in this case there is
no forward-limit constraint. For each type of SGPD we give
results for three values of skewness, € % 0.01;0.1;0.5, and
the input scale is py % 1.27 GeV. We also show results
where these SGPDs are evolved at LO to p? % 100 GeV?,
where importantly, these results no longer satisfy Eq. (11)
and are therefore not SGPDs and can in principle be
constrained by DVCS data.

Since Eq. (11) is homogeneous, the SGPDs can have an
arbitrary normalization, so for the results in Fig. 2 and in
the following analysis we fixed the normalization of the

SGPDs such that max‘/szsqabp(’ix;E % 0.1; pozbj 1. From
Fig. 2, it is clear that the type A SGPDs in the top row get
very small as § - 0, because of how the forward limit is
imposed, whereas for large § these SGPDs tend to grow
rapidly. Results for the type B SGPDs in the second row,
tend to be of similar size independent of §. Analogous
results for gluon and spin-dependent SGPDs are easily
obtained using procedures similar to those described above.
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IV. SIMULATED CFF DATA, SHADOW GPDs,
AND QCD EVOLUTION

To replicate the inference of GPDs from DVCS data, we
create simulated CFF data by taking the VGG model of
Sec. I1I as a set of “true” GPDs. Then setting p? % Q? we
use QCD evolution of these GPDs, together with Eq. (1)
and the hard-scattering coefficients given in Appendix A,
to construct simulated results for ImHOE;t; Q%bp and
ImESE; t; Q%b. Results for these CFFs, which include all
active quark flavors and the gluons, are illustrated in the
bottom rows of Figs. 3 and 4. In particular, we have
generated 50 data points for Q2 values between the input
scale of Q(Z) % 81.27 GeVP? and Q? % 100 GeV?, and
assigned a 1% error to this simulated CFF data. We note
that this choice of uncertainty is very optimistic but a larger
value would not affect the overall trends we observe. These
results were obtained by takingt % -1.2 GeV? in the VGG
model, which is an arbitrary choice and does not impact the
conclusions drawn from our analysis but does accommo-
date the skewness values € % 0.01;0.1;0.5. Note that we
have neglected -t=Q? corrections despite this value of t
being significant relative to the lowest values of Q? in the
simulated data. Since these points are at or near the input
scale where the SGPDs give zero contribution to the CFF
by construction, we do not expect such corrections to
significantly change our overall conclusions.

The goal of this analysis is to assess the impact that QCD
evolution can have on constraining the contribution of the
SGPDs, given simulated data for the imaginary parts of
the CFFs H and E over a wide range of kinematics. To
implement this we will consider SGPDs in the u-quark
singlet sector for the HU%PP and EY®PP GPDs. In this case the
false GPDs are given by

HYP 8% & 4 W2 AP % HYP O € 1u2P b A FYy 0 € P
b AFY 0 & Wb

b AFP8x; € u2p;

o 320p

EY™0x; &t W3 NP % ETP0X &t 2P b AFY 0 & u2p
b AFY 0 € u2b

b AFIPPax; & W2p; 821p
3% s3

where H"Tabpéx; &t u2p and E‘fb"éx; & t; u2p are the true
u-quark GPDs from the VGG model that is discussed in

Sec. III, the A;,.3 are arbitrary scaling parameters, and the

FI%® are the three example SGPDs illustrated in Fig. 2

which can be either type A or type B. We do not specify any
t dependence for the SGPDs but for t < 0 are basically
assuming fasétb % 1. However, any explicit t dependence
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E 00 0.0 0t
= Ity + 6H.
_ = ! ! 54 _ ., . 2
0.5 fh 4 Hap 0.5 0.5
—Lo) T -1.0 1.0
1073 10 0] 100 1073 10 2 10! 100 103 10 2 10 10"
x x T
o e 0.50 IHAHERTT TR
.......... 15 it
............ .
0.dar |
EE 10 i 0.43
z Lop - !
.
! 0.0
. .51, |
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FIG. 3. Top row: results for the true GPD I-Jruabp (blue lines) and the range of I;J”abp 8Hs (orange bands) at the input scale for three

different values of §. The darker orange bands show the results for the three type A SGPDs in Fig. 2, while the lighter orange bands show the
results for the type B SGPDs in Fig. 2. The gray hashed region shows the area that would be excluded by the positivity constraint for H
given in Eq. (23). Bottom row: simulated data (blue points) for the CFF ImH obtained using the VGG model GPDs with error bars
showing 1% uncertainty, as a function of Q?, for fixed t, and three values of €. The dark orange bands illustrate the 10000 sample CFFs

associated with type A SGPDs.
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FIG. 4. Top row: results for the true GPD ﬁ”abb (blue lines) and the range of {E”abp 8E (orange bands) at the input scale for three

different values of §. The orange bands show the results for the three type B SGPDs in Fig. 2, appropriate for E9 GPDs because this is no
forward limit constrain. The gray hashed region shows the area that would be excluded by the positivity constraint for E9 given in Eq.
(23). Bottom row: simulated data (blue points) for the CFF ImE obtained using the VGG model GPDs with error bars showing 1%
uncertainty, as a function of Q?, for fixed t, and three values of §. The light orange bands illustrate the 10000 sample CFFs associated

with type B SGPDs.

could be absorbed into the A;,.3, so our analysis can be

considered general for any t < 0. For H‘;abp

both type A and type B shadow GPDs, whereas for E
we just consider type B as there is no forward-limit
constraint for this GPD.

The SGPDs in Egs. (20) and (21) give zero contribution
to CFFs at the input scale of Q¢ % §1.27 GeVp?; however,
upon evolution to a new scale Q2 they do contribute to the
CFFs. Therefore, having data over a finite Q2 range makes
it possible to constrain the SGPDs by putting limits on
the values of A;, and with perfect CFF data over a large
kinematic range it would in principle be possible to
completely constrain the SGPDs. We have assumed 1%
error on our simulated CFF data and we wish to explore the
range of SGPDs (A;’s) that cannot be constrained by this
data. To achieve this we generate replica SGPDs by
randomly generating the three scaling parameters (A;,.3)
in the range -10* < A; < 10%, and use these in Egs. (20)
and (21) to generate replica false GPDs. These false GPDs
are then combined with the true GPDs for the other flavors
and the gluons to create sample CFFs for ImH3€; t; Q2P and
ImEQJE; t; Q2p. If these sample CFFs are within the 1%
errors of the simulated CFF data, across all considered
kinematics, then the associated replica cannot be ruled out
by the data. We then repeat this process until we have
10000 sample SGPDs that cannot be ruled out by the CFF
data, and from these SGPDs we define the quantity

we will study
udpp

8FOx; € u2b % max¥jA FeoPox; & u2b p A, FUPPox; €; u2p

S1 S2
b ASF'r8x; & u2bj; 622p
which indicates how well the simulated CFF data can
constrain the SGPDs, and therefore provides a measure for
how accurately the true GPDs can be inferred from CFF
data with 1% uncertainties.
Results for the inferred HY%Pdx;&;t;u2p GPD are
illustrated in the top row of Fig. 3, for § % 0.01;0.1;0.5.

The solid line illustrates the true GPD, H”Tabpéx; & t; uzcb,

and the shaded areas represent I-Iruabp 8Hs. For HUPP we

consider both type A and type B SGPDs, where the dark
orange shaded regions represent the constraints on the type
A SGPDs which vanish in the limit § - 0, while the light
orange regions correspond to constraints on the type B
SGPDs from the simulated CFF data. Analogous results for

the true GPD, E”Tabp(’ix; & t; udp, and results for E”Tfpr 8Es

are presented in the top row of Fig. 4. However, here only
type B SGPDs are shown for EY9P? as this GPD has no
forward limit constraint. For the HY3" GPD, we see that at
§ % 0.5 both type A and type B SGPDs are only con-
strained at x B § and elsewhere the uncertainties are large.
As skewness is decreased to § % 0.1 both type A and B
SGPDs become well constrained for x @ 0.1, while for
larger x the uncertainities remain large. Finally, for § %
0.01 type A become well constrained over the entire x
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range, but type B SGPDs are still largely unconstrained for
x [ 0.2. The constraints on type B SGPDs for EY9PP as a
function of x and § are similar to those for type B SGPDs
for the GPD HY9PP, This is because the SGPDs are largely
independent of the underlying proxy model.

To better understand how the simulated CFF data
provides constraints on the SGPDs, in the bottom rows
of Figs. 3 and 4 we illustrate as an orange band the 10000
sample CFFs that contain SGPDs that cannot be con-
strained by the simulated data. In Fig. 3 we do this for type
A SGPDs and in Fig. 4 for type B GPDs. For both
ImH&¢; t; Q2P and ImESE; t; Q%P we notice that the orange
band in the rightmost panel (§ % 0.5) is as wide as the
uncertainty of the simulated CFF data; however, for the
panels corresponding to § % 0.01; 0.1 the orange bands are
generally narrower. This indicates that the simulated data at
the largest skewness value is playing an important role in
constraining the SGPDs for the smaller skewness values
€% 0.01;0.1. This is particularly the case for the type A
SGPDs in Fig. 3, which suggests that type A SGPDs can be
well constrained at lower values of § by evolution provided
data is available at higher skewness values.

The results presented in Fig. 5 further illustrate these
observations, where the top row corresponds to constraints

(7 < 100 Gev?
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FIG. 5.

on 6H; for type A SGPDs and the bottom row corresponds
to constraints on §Hg for type B SGPDs. In each case,
various cuts are made to the simulated data to illustrate the
impact of changes in the § and Q? range of the simulated
data. In all four plots, results are shown as a function of §
for three values of x % 0.01;0.1; 0.5. In the left two panels,
the entire Q? range of simulated data is included, the solid
lines then show the constraint on §Hs when the entire §
range of the simulated data is also included, and the dashed
lines illustrate the case when a cut is made on the simulated
data so that § < 0.1. We see that for type A SGPDs the large
§ data constrains §Hg by several orders of magnitude
relative to only having data for § < 0.1 (difference between
solid and dashed lines), and this remains true for all x in the
studied domain x & %0.01;0.5. Note that by construction
8Hs % 0 when x % &, which explains the dips in §Hg at
these points. In the bottom left panel we see that large §
data also provides important constraints on type B SGPDs,
however, not to the extent as for type A, and the
dependence on § is mild. These findings reflect the features
of the SGPDs illustrated in the bottom row of Fig. 2.
The right panels in Fig. 5 illustrate how 6H is impacted
by varying the range of Q? spanned by the simulated CFF
data. The solid lines in these plots are identical results to

<0
10h)
— Q¥ <100 CicV?
1wl == Qf <20 Cev?
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103,
100
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Top row: results for §Hs from Eq. (22) for type A SGPDs as a function of §, for three values of x % 0.01;0.1; 0.5. Bottom row:

Results for §Hs from Eq. (22) for type B SGPDs as a function of §, for three values of x % 0.01;0.1; 0.5. In both cases, the left panels
indicate results for cuts in the simulated CFF data in &, and the results in the right panels illustrate constraints on the SGPDs associated
with cuts in Q? on the simulated CFF data. In each row the solid lines are the same and represent constraints from the full simulated

dataset.
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those in the left panels; however, in this case the dashed and
dotted lines represent the results when the simulated CFF
data is restricted to Q2 < 20 GeV? and Q? £ 4 GeV?,
respectively. Notice that in the top right panel of Fig. 5
the solid and dashed lines are fairly close together indicat-
ing the additional data between 20 GeV? and 100 GeV?
does not provide substantially more constraint on the
SGPDs than was already gained from the Q% < 20 GeV?
data. In the bottom right panel of Fig. 5, the results do not
seem to change significantly even from Q2 < 4 GeV? to
Q? < 20 GeV?2. Therefore, while some lever arm in Q2 is
necessary for evolution to constrain the SGPDs, having a
large lever arm in Q2 does not seem as important as having
data with a large lever arm in & This can be attributed to
how the CFFs change with Q2. In the bottom rows of
Figs. 3 and 4 we can see that the data changes most rapidly
at smaller Q2 and levels off as Q2 gets larger. The CFF
contributions from the SGPDs exhibit similar behavior. The
results presented in Fig. 5 reflect the various attributes of
the type A and type B SGPDs, and are independent of the
choice of proxy model for the “true” GPDs. Our results for
the SGPDs associated with the EY9P" GPDs which are of
type B are similar to those in the bottom row of Fig. 5.

In Ref. [73], it was demonstrated that imposing a
positivity constraint can help to significantly constrain
SGPDs. Going back to Figs. 3 and 4, we have illustrated
as the hashed areas the regions for the SGPDs that would be
excluded by the need to satisfy positivity constraints on the
HUu%kP and EY9PP GPDs, which read [36]

5 b
JHY x; &t j< 1-

tmin - t

i

B0t 2] < SRR 0, 2P0 2P

a23p

min

It is clear that these positivity constraints can place
significant constraints on the SGPDs, and could therefore
play an important role in a global analysis of DVCS data
to infer the GPDs. While this is an attractive method of
constraining the SGPDs, it is important to note that these
inequalities can be violated by regularization and renorm-
alization effects in QCD [74].

V. SHADOW GPDs AND PHENOMENOLOGY

A driving motivation for DVCS experiments and the
extraction of GPDs from this data is to determine key
properties of the nucleon. An important example is the
quark and gluon total angular momentum, which is related
to the second moments of the helicity-independent GPDs
by the Ji sum rule [10]:

Z
11
126u%b % > dxx¥:H36x; 0; 0; u2b b E28x; 0; 0; u2p

-1

1
Y EVzAa(iO; Wb p B230; u?b; 824b

where %% P . J20u2p, and A28t; u?p and B28t; u2p are the
gravitational form factors defined in Egs. (8) and (9).
In light of the discussion in the previous section, where
simulated CFF data with 1% errors were used to put
constraints on the SGPDs, we can take these results and
infer the impact of SGPDs on determining the u-quark
contribution to the Ji sum rule. The SGPDs for
H28x;0; 0; u2b vanish in the forward limit and therefore
do not contribute to the Ji sum rule, where A%60;u?p is
completely determined by the parton momentum fractions
which are obtained from the collinear PDFs. However, the
SGPDs for E23x;0;0;pu2p are of type B and do not
necessarily vanish in the forward limit and will impact
the Ji sum rule. Taking our results for the true and shadow
GPDs we find that AY60;u?p % 0.389 and BY30; u%p %
0.219 0.009, where the momentum fraction has no %ITOI‘
from the SGPDs because they vanish in the forward limit,
while the error in B280; u?b is associated with the con-
tribution of & E [see Eq. (22)] to the second moment of the
E? GPDs from the type B SGPDs. We therefore find that
with accurate data over a wide range of € and Q? it is
possible to sufficiently constrain the SGPDs for an accurate
determination of the Ji sum rule.

The pressure and shear force distributions within the
nucleon are also of great interest. These mechanical
properties of the nucleon can be obtained from the
C306t; u2p gravitational form factors which are associated
with the &€ term from the second moment of both the
H? and E? helicity-independent GPDs [see Eq. (8)]. As
discussed in Sec. III and Appendix A, these form factors
come entirely from the D-term of the GPDs. The SGPDs
studied in this work have no D-term and so would not
contribute to the pressure and shear forces. However, the
relation between the subtraction constant and the D-term
[see Eq. (A10)] involves integrating out one degree of
freedom (a), and so one could derive multiple functions
that would give the same subtraction constant. These
functions would differ by shadow D-terms. Though not
specifically exploring shadow D-terms, the work in
Ref. [46] demonstrated that different D-term parametriza-
tions that fit the data equally well can give significantly
different results for the pressure and shear force distribu-
tions. Thus shadow D-terms could significantly impact
studies of these distributions.

The GPDs provide a 3-dimensional spatial tomo-
graphy of the nucleon, which is obtained by taking the
2-dimensional Fourier transform in the transverse plane of
the GPDs at zero skewness (§ % 0). This procedure gives
the impact-parameter dependent PDFs [75]. To perform this
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Fourier transform accurate knowledge of the t dependence
of the GPDs is required at § % 0. However, t-dependent
data at § % 0 is not experimentally accessible, so one has to
extract the t dependence from data at nonzero skewness
and extrapolate to § % 0. The type A SGPDs vanish when
€% 0, and our analysis in Sec. IV also shows that these
SGPDs can be very well constrained at small §. Therefore,
the impact of type A SGPD on nucleon tomography would
be minimal if CFF data over a large § and Q? range can be
obtained. The type B SGPDs can also be well constrained for
small § and small x (see bottom panels of Fig. 5). On the
other hand, at higher x these type B SGPDs are not well
constrained, and their impact on nucleon tomography could
be substantial. This scenario will need to be explored in a
more complete global analysis of real and simulated CFFs.
In addition, it is necessary to explore SGPDs whose x, &, and
t dependence is not separable. If the t dependence of these
SGPDs in the limit § = 0 is substantially different from that
of the true GPD, they would have a significant impact on
nucleon tomography. A quantitative analysis of the potential
impact of SGPDs on tomography requires a thorough
exploration of the possible t-dependencies of SGPDs.

VI. CONCLUSION

We have explored the ability of QCD evolution to help
limit uncertainties in GPD extractions due to the presence
of multiple solutions of the inverse problem by using
simulated CFF data over a large range in § and Q2. This was
achieved by comparing the sample CFFs obtained from a
Monte Carlo sampling of linear combinations of three
example SGPDs and VGG model GPDs, the latter being a
proxy for the “true” GPDs. We separately conduct this
analysis for two types of SGPDs, called type A and type B,
the former of which vanish at zero skewness and the latter
of which only vanish when t is zero. This study demon-
strates that evolution can provide important constraints on
at least the class of SGPDs represented by this sampling.
Specifically, for type A SGPDs, having data at large
skewness leads to these SGPDs being very well constrained
at smaller values of § over the full range of x. We also find
that such a level of constraint for type A SGPDs is not
reliant on a very large lever arm in Q?, with the data up to
Q? @20 GeV? proving to be sufficient. For type B SGPDs
we find that having data at larger values of § only leads to
these SGPDs being well constrained in the region where
both € and x are small.

These findings are independent of the proxy model used
for the “true” GPDs because the results are driven by the
skewness dependence of the explored SGPDs rather than
features of the proxy model. However, it is important to
note that the SGPDs explored in this work are only a small
representation of all possible SGPDs. We have so far been
unable to find higher-order SGPDs for which the trends we
have shown do not hold. However, this does not constitute a
proof, and the possibility of SGPDs with qualitatively

different behavior cannot definitively be ruled out. There-
fore, while we have seen the potential of QCD evolution to
constrain the class of SGPD under study, we currently cannot
conclude that this is true for all SGPDs. We have therefore
demonstrated that QCD evolution is a necessary but poten-
tially not a sufficient means of constraining SGPDs. A path
forward would be to use more flexible parametrizations for
the SGPDs, coupled with simulated CFF data over a large
range in § and Q?, and perform closure tests that provide
robust uncertainty quantification.

We also explored the potential impact SGPDs could
have on extracting information on key physical properties
of the nucleon, such as the total quark and gluon angular
momentum, and the pressure and shear force distributions.
We find that shadow H GPDs are not relevant to the total
angular momentum because of the forward limit constraint.
However, shadow E GPDs could lead to significant
contributions which depend on the uncertainty of the data
and kinematics covered. Though not specifically explored
in this work, shadow D-terms could have a significant
impact on studies of the pressure and shear forces in the
nucleon. We find the type A SGPDs would not have a
significant impact on nucleon spatial tomography provided
that data is available at large enough § to impose adequate
constraint in the small § region. This remains true for the
type B SGPDs in the region of small x. But the lack of
constraint at small § and large x would lead to a significant
impact on tomography in that region. A more quantitative
analysis of the potential impact of SGPDs on tomography
would require a detailed exploration of the possible t
dependence of SGPDs.
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APPENDIX A: COMPTON FORM FACTORS,
HARD-SCATTERING COEFFICIENTS,
AND THE D-TERM

When QCD factorization theorems apply, CFFs can be
expressed as convolutions of hard-scattering coefficient
functions with the GPDs, as expressed in Eq. (1). At
leading order in o, the coefficient functions associated

where eq is the quark electric charge and we see that the
gluon GPD does not contribute to the CFFs at LO. The
next-to-leading order coefficient functions read [76—82]

a.e%C
Cox; € Q% u2b % %Vz@léx; &b - ¢18-x; €p;

. . p .. 2
with the helicity-independent .(Ha, E?) and helicity- CEX; € Q2 12b Y% Qs qTF.yz &,0% Ep— CE-x;ED;  GA3D
dependent (i8?; B*) GPDs are given by [76]
1 1
C¥x; € Q% u’p % —ed - ; 2 ¢
Smxbe gbx-e €5 € Q% 7P %o 2 148, 0, P P 20, €
CBx; €, Q2% u2b % 0; dA1pP Tt ,
H H EAy.C. 21,2 % s eqTF12 . 83—x: Eb; 4
%méx;ﬁ;QZ;uzb% _ef g i b 1_I ; €50x;§ Q% b % —a /“qgéx,ﬁbbclé x;Ep;  OASP
€50x; €, Q% P % 0; dA2pb
where
|
x £ . x €& Q2 &
Y 1 . 9-3x In - ie- In? -pe-1n 3 21n -ie; OASPc, %
Gl _ P 2§b 2& b b ?ZE Aﬁ 1 Xb E,_
. x & . 2 x &
In - je - In? -ie-In 3p2hn - ig; dA6P
.1 b€ b x-E" 2% 2% P 2
X xp 3§ xb§ xp & xb§ o Q* xp € xb & !
c6>Vb£—+eD6>Hé|w€P—X2£—1@E - jex=8&—1 - e -Wax=-& 2—28In -ie ;
0A7p
x &
% ot icf— b zsgan ich gdlinz)%&-llﬂbln PLISRLLIY.

We see that the C? are antisymmetric in x, and therefore
only the antisymmetric quark singlet and gluon combina-
tions of H2and E? give nonzero contributions to the CFFs.
Similarly, the C* are symmetric in x so that only the
symmetric quark nonsinglet and gluon combinations of H?®
and E® give nonzero contributions to the associated CFFs.
CFFs are complex-valued functions where the real and
imaginary parts obey dispersion relations [71,72]. A IO
exan%ple reads

de0 w 1. b
-1*ImF6£”tQ£ © epe

Sat; Q%p;

ReFdE;t; Q%P %

0A9p

where F % H; E, and the plus sign is for the CFF H.
Therefore, the subtraction constant S&t; Q2p is the same for

O0A10p

1
Sot; Q%P % 2 da

This dispersion relation implies that the D-term can be
directly determined from CFF data, which justifies exclud-
ing the D-term in our SGPDs.

APPENDIX B: GPD POLYNOMIALITY
RELATIONS

A remarkable property of GPDs is known as polyno-
miality, which means that the Mellin moments of the GPDs
are even polynomials in §. For the nucleon GPDs, poly-
nomiality states that moments of the quark and gluon GPDs
satisfy [14]
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v4 Xs

1
dxx®H30x; & t; u?b % 62§DiA§bll_i6t; u2b b mod 6s; ZDGZEDS*’]Cgblat; u2b; dBlap
-1 i%08evenp
Z 1 Xs
dxx®E20x; §; t; p2b % GZED‘Bibl;iét; u?b - mod 6s; 2b62£b5b1C§b16t; u2b; dB1bb
-1 i%00evenhp
Z, Xs '
dxxc18?ox; & t; u2b % 82Ep'd,, ;0t; u2b; dBlcb
-1 i%400evenp
z X
1 S )
dxxSE'0x; §; t; u2b % 82Ep'83,,,0t; u2b; dB1dp
-1 i%08evenb

where modds; 2P gives 1 if s is odd and zero otherwise. Note, because we use the Ji definition of the gluon GPDs, the
polynomiality relations for the quarks and gluons take the same form. The quark and gluon total angular momentum is
related to the second moments of the GPDs by the Ji sum rule [10]:
1 1 z 1
126u%b % 51/2@2060; w2p b B230; u2p % 5 dxx%:H36x; 0; 0; w2bP b E28x; 0; 0; u2b; dB2pb
-1
where A3, and B, arethe s % 1,i % 0 terms from Eqgs. (B1la) and (B1b). For completeness, we include the definition for the
leading-twist quark and gluon helicity-dependent GPDs for a spin-half target:

Z
dn 1 1 A -
P-n —elPmp0ay }\nn¥5¢q Anp % udp®PHIOX; & t; u2Pe@s b E%0x; & t; u?p € nVSU(’SpD; - dB3p
2n 2 2M
z dA 1 1 A-n
-in,n, z—eixp'”ApOG“"— Anﬁza" Ao %fépobegax;E;t; Wb b xEBOX; & t; u2p € vsuépb; %
n

where the gluon dual field strength tensor is given by @™ % le“"“BGaB. We again use the Ji convention [28] for the gluon
GPDs, which differs from the Diehl convention [14] by BS,.,, % 2xBE.

APPENDIX C: QCD EVOLUTION OF GPDs

We compute the LO evolution of the helicity-independent GPDs following Ref. [11]. For the quark non-singlet GPDs
Fls % FI0x; € tb b FI0-x; &; th, when x > € the evolution is given by
VA VA o] b Z 1
dFg.0x; & t; p2b du2p3 x d 1d
ReOGE LD, a.0u b Y dJ;Fy xs XE U b qu;(;EFNgéy;E;tﬂuzb; oC p
dlnp? 2n 2 ¢ Y X gy X x y y vy

where F % H, E, C¢ % 4=3, and the splitting function P,, at LO is given by

PaqOx;EP % Cp Bl xb 1— E,Zb: aC2p

R R

In the region x < -§, the evolution is given by Eq. (C1) with the replacement of ' - - * . Finally, in the region
-§& < x £ § the non-singlet evolution equation is

dr3.6x; & t; u2b . o b3 Z, dy z dy

NS %= = —CFFNSGX,'E;'E,' Hzp

dlnp? Zzn 2¢Y % Z-gy *-

1d xd

b Wpg XE Ty X 8 FI OV & 6P ; 8C3p
x Y yy -1y y 'y
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where

( ’g(bf, 3
Paq0X; EP Y4 CFE 1p & 1p 1oy

: oC4p

. P
The quark singlet [FS % =, F3°P, where F9,
when x > § their evolution is given by

% FA9x; §;th — F0-x; §; tP] and gluon GPDs mix under evolution, and
z Z C p
dFSéx; €; t; u2p owp3 d
VP, GBI, X dy Y st
dlnp? ZZT[ 26 Y X= gy X z
1d 1d
b —yP aq i;§ FSay; &t WP b 2ng —yP ag f,ﬁ Fedy; & t; 2P ; aCsb
x Y Y VY x Y Yy

V4 v4 )
dFedx; & t; up | o, 0pb 11 x dy dy . 5
- b —p- —GxFE X &P
dInp? ) Zn 63Cx e Y X Y X ShH .
1d 1d
b 1 Yo X8 wreygtee- Booyig e e, 5% Royguue ;oo
2 x vy yy x Yy yy

with n; the number of active quark flavors and C, % 3. The additional splitting functions are

2

X b aj _ }(DZ — EZ
Pog0X; EP 7% T 51— €212 0C7ab
1p 61- xb? - €
P,,0x;EP % C ; dC7bb
w0 &P Ce s g
x2 - & 201- xbd1lp x?p 1p x- 2€
8ox; Ep % C" xd1—EP2 1p x2-€ p—1-x

8C7ch
where T % 1=2. When x £ -§ the quark singlet and gluon GPD evolution is given by the replacement of * > - * in
Egs. (C5) and (C6). In the region jxj < §, the quark singlet and gluon GPD evolution equations are

Z y4 C b
dFSax; €; t; u2b du2p 3 d
% 2u hEE T TN d<yﬁcﬁsc"ix;«i;t;uz
dinp 2n 2¢ Y X X—
7
ld xd
b g, X5 - ~pg, -5 meyguwe
x, ¥ yv vy y v
ldy 3 xdy 3
b 2ng qu(, ——= qil ;& Fﬂéy,ét w2b; 3C8p
x Y AR -1 y
dFedx; & t; u?b . abp’b11 j# x dy z 0
151 Y 1 g X Et p
dlnp? R 63Ca Y s
ya
1 1d d
p- e, 5,5 - le"gq 5;—5 HFSOY; 6 12P - FS8-y; € t; w2
22 y yy , y y vy
1d xd
b lpig LY e X5 Fedy; &4, 2P oC9p
x Y yy -1y y vy
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where

Oxb €OL- 2xp &

0C10abp

PO EP % T¢

Oxp &p062- xp &

€91p &po1- &p '

PLOXEP % Cr

XZ_ EZ

PEESXEP Y% —C  xE81—€b 1- 1 - x - 81b Epdx— &b :

xE31p &

; dC10bp

£ 251p x2b
3C10ch

To calculate the evolution in our analysis, we have implemented these expressions and utilized the technique developed by
Vinnikov [31] to make these calculations numerically more efficient.
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