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Abstract

The estimation of demographic parameters is a key component of evolutionary de-
mography and conservation biology. Capture-mark-recapture methods have served
as a fundamental tool for estimating demographic parameters. The accurate estima-
tion of demographic parameters in capture-mark-recapture studies depends on ac-
curate modeling of the observation process. Classic capture-mark-recapture models
typically model the observation process as a Bernoulli or categorical trial with detec-
tion probability conditional on a marked individual's availability for detection (e.g.,
alive, or alive and present in a study area). Alternatives to this approach are under-
used, but may have great utility in capture-recapture studies. In this paper, we explore
a simple concept: in the same way that counts contain more information about abundance
than simple detection/non-detection data, the number of encounters of individuals during
observation occasions contains more information about the observation process than de-
tection/non-detection data for individuals during the same occasion. Rather than using
Bernoulli or categorical distributions to estimate detection probability, we demon-
strate the application of zero-inflated Poisson and gamma-Poisson distributions. The
use of count distributions allows for inference on availability for encounter, as well as
a wide variety of parameterizations for heterogeneity in the observation process. We
demonstrate that this approach can accurately recover demographic and observation
parameters in the presence of individual heterogeneity in detection probability and

discuss some potential future extensions of this method.
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1 | INTRODUCTION

The estimation of demographic parameters is fundamental to suc-
cessful conservation and evolutionary ecology. Since their initial
development, capture-mark-recapture (hereafter, CMR) models
have been used to estimate demographic parameters such as appar-
ent survival (Cormack, 1964; Jolly, 1965; Seber, 1965), true survival
and site fidelity (Burnham, 1993), transitions among discrete strata
(Brownie et al., 1993), temporary emigration or breeding probability
(Kendall etal., 1995, 1997), recruitment (Pradel, 1996), and the spatial
distribution of organisms (Royle et al., 2013; Royle & Young, 2008).
Parameter estimates from CMR models are often used as vital com-
ponents of population models (Caswell, 2000; Schaub & Kéry, 2021)
and to develop a more complete understanding of individual fitness
(Cam et al., 2002; Stearns, 1992). CMR models typically consist of
two primary components: (1) a model of latent biological processes
(i.e., survival, movement among populations, emigration, disease dy-
namics), and (2) a model of the observation of uniquely identifiable
individuals. Models of both latent biological and observation pro-
cesses typically take the form of categorical or Bernoulli distribu-
tions, and individuals are grouped into discrete groups or states (e.g.,
alive or dead, observed or not observed).

Heterogeneity among “uniquely identifiable” (hereafter, marked)
organisms in both biological processes (e.g., Cam et al., 2002; Pledger
& Schwarz, 2002) and observation probability (e.g., Pledger, 2005;
Pollock, 1982) has long been recognized as a central challenge in
CMR modeling (Otis et al., 1978). In a seminal paper, Pollock (1982)
proposed that heterogeneity in detection might be accounted for
by subdividing primary occasions into multiple secondary occasions.
Similarly, Fletcher (1994) developed a method for modeling the
probability of encounter of individuals as a function of the number
of unique resights of that individual during the previous occasion.
Shortly thereafter, Kendall and others (Kendall et al., 1995, 1997)
expanded the method developed by Pollock (1982) to estimate avail-
ability for encounter (i.e., zero-inflation) by partitioning primary oc-
casions into shorter secondary occasions, assuming closure among
secondary occasions within a primary occasion, and estimating
probabilities of temporary emigration from the study area. Since
that time, methods have been developed to estimate individual de-
tection probabilities using random effects (Clark et al., 2005; Royle
& Dorazio, 2008) or mixtures (Pledger, 2000; Pledger et al., 2003).
More recent efforts have simultaneously used information about
marked organism location and the locations of sampling efforts to
model spatial variation in reencounter probability (Royle et al., 2013;
Royle & Young, 2008). However, the estimation of heterogeneity in
the observation process remains a key challenge in CMR studies, and
the continued development of alternative approaches is critical for
improved parameter estimation.

Heterogeneity in the detection of marked organisms is often
driven by two primary processes. The first is whether or not an indi-
vidual is even present within the bounds of the study area (i.e., tem-
porary emigration as a source of zero-inflation; Kendall et al., 1995;
Schaub et al.,, 2004). The second is variation among the latent

encounter probabilities of individuals that are present. This latent
heterogeneity can be affected by factors such as variation in indi-
vidual behavior, life stage, and location relative to sampling effort
(Royle & Young, 2008). When primary occasions extend over multi-
ple days, weeks, or months, this can lead to some individuals being
encountered many times while others are rarely, if ever, detected.
The key concept in this paper is that in the same way that counts con-
tain more information about the abundance of a population than sim-
ple detection/non-detection data, the number of encounters of marked
individuals may contain more information about the observation pro-
cess than detection/non-detection data (e.g., McClintock et al., 2009,
2019; McClintock & White, 2009). Thus, rather than summarizing
capture-reencounter data using ones (encountered) and zeroes (not
encountered) during a primary occasion or multiple secondary occa-
sions, capture-reencounter data can also be summarized as counts
of the number of times each marked individual was encountered
during a primary occasion (McClintock et al., 2019; McClintock &
White, 2009). The number of encounters can then be modeled using
a variety of discrete distributions, such as the Poisson or negative
binomial distributions. If model assumptions are met, this approach
provides a flexible and useful approach to modeling the observation
process and may improve upon existing tools to estimate heteroge-
neity in encounter probability among individuals. Notably, improved
estimates of heterogeneity in the observation process lead to im-
proved estimates of demographic parameters. In this paper, we (1)
demonstrate the use of this approach with simulated data, (2) de-
scribe potential benefits relative to more traditional approaches, (3)
demonstrate several approaches for modeling individual heteroge-
neity in encounter probability, and (4) discuss possible future exten-

sions and uses of this parameterization.

2 | METHODS

We simulated 250 CMR datasets, each with 10 primary occasions
(T =10). For each simulation, we released 25 marked individu-
als in the first through ninth primary occasions, for a total of 225
released individuals (I = 225). We simulated the latent state of
each individual (z;;; 1: alive, 0: dead) from occasion to occasion as,
z;; ~ Bernoulli(z;,_¢), given a survival probability generated from a
beta distribution, ¢ ~ beta(40, 10). If an individual was alive in occa-
sion t, we simulated its availability for encounter (a;; 1: available, O:
unavailable) given simulated Markovian (Kendall et al., 1997) prob-
abilities of availability for encounter (y),

a;¢ ~Bernoulli(z;; Xyy X (1=a;,_1 ) +2;: X72 X 0j¢_1),
71 ~beta(10, 20), (1)
v, ~beta(20, 10).

These probabilities are directly analogous to parameters de-
scribed by Kendall et al. (2013), such that y, in this study is equal
to the probability of availability given availability in t — 1, or a” as
defined by Kendall et al. (2013), and 7, in this study is equal to the
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probability of availability given absence int — 1, or @’ as defined by
Kendall et al. (2013). During each primary occasion, we sampled in-
dividuals that were available for detection for 21 consecutive days
(J =21, that is, 3weeks) given simulated individual random varia-
tion in daily detection probability (d;; Dorazio et al., 2013; Gomez
et al., 2018). Thus, the simulated capture-recapture data form a

>> @

3-dimensional array (Y) with dimensions I x T x J,

¥itj~ Bernoulli(a;, xd;),

di~beta<y5x<6—12>, (1—;45)><<

8

us~beta(10, 90),
o5 ~gamma(5, 50),

an'\)l =

where y; is the simulated mean daily detection probability of an aver-
age individual, and o is the amount of among-individual heterogeneity
in detection. We then summarized the daily CMR data for analysis with
four different model types: (1) a Cormack-Jolly-Seber model where
the secondary captures are ignored (CJS; Cormack, 1964; Jolly, 1965;
Seber, 1965), (2) a robust design model (RD; Kendall et al., 1995, 1997),
and two capture-recapture models with count-based observation
likelihoods, (3) a zero-inflated Poisson (ZIP), and (4) a zero-inflated
gamma-Poisson with heterogeneity in the number of encounters per
individual (ZIGP). To summarize the CMR data (M) for a CJS model,
we constructed an I x T matrix and filled the matrix as a function of
whether or not an individual was observed on any day during a primary

occasion,

21
1, if Z],:l Yitj =1

0, otherwise

m;¢ ~ @)

To summarize the robust design encounter data (R) for the ro-
bust design capture-reencounter model, we subdivided each 21-day
long primary occasion into three one-week long secondary occa-
sions (K = 3). If an individual was observed on any day of a week in
a secondary occasion, then that secondary occasion (r;;,) equaled
one. If an individual was not observed on any day during a specific
secondary occasion, thenr;;, = 0. Finally, we summarized the counts
of reencounters by individual and primary occasion by simply sum-
ming the total number of encounters of each individual during each
primary occasion, ¢;; = 2;2:1 Yitjr

In the same way that the data were generated, all four capture-
recapture models share acommon likelihood for the survival process.
The latent state of each individual during each occasion (z;;) was mod-
eled as a function of the individual's latent state in the previous occa-
sion (z;;_4) and a survival probability (¢), z;; ~ Bernoulli(z;;_, x ¢). A
vague prior was used for survival, ¢ ~ beta(1, 1). For the CJS model,
we then simply modeled the primary occasions encounter data (M)
as a function of the individual's latent state and a detection probabil-
ity (p), m;; ~ Bernoulli(z;; x p). We specified a vague prior for detec-
tion probability p ~ Beta(1, 1). For the remaining three models, we
also estimated whether an individual was available for detection (g;,)
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given its previous state (a;,_;) and vague priors for Markovian proba-

bilities of availability for encounter (y; Kendall et al., 1997).

a;;~Bernoulli(z;; Xyy X (1=a;;_1) +2; X7 Xaj4_1),
y1~beta(1, 1), (4)
v, ~beta(l, 1).

For the robust design model, we modeled whether or not each
individual was detected during each secondary occasion as a func-
tion of its latent availability for detection during the primary occa-
sion (a;;) and a secondary occasion detection probability (p). We then
derived primary occasion detection probability (p*) from the second-
ary occasion detection probabilities for comparison of parameter es-

timates among models,

r;; ~Bernoulli(a;; xp),
p~Beta(1, 1), (5)
p*=1-(1-p)°.

For the zero-inflated Poisson model, we model the total number
of encounters of each individual during each primary occasion (c;;)
given availability for detection (a;;) an expected mean number of en-

counters per individual per primary occasion (g),

¢;¢ ~Poisson(a;; x¢), ©
e~Gamma(1, 1).

For the zero-inflated Gamma-Poisson model with heterogeneity
in the number of expected observations per individual, we modeled
the number of encounters of each individual during each primary
occasion (c;,) given availability for detection (g;,), the mean expected
number of encounters per individual (), and individual encounter

heterogeneity (h,) estimated using an overdispersion parameter (9),

¢;¢ ~Poisson(a;; xexh;),
e~gamma(l, 1),
h; ~gamma(9, 9),
0 ~uniform(0, 250).

This parameterization is similar to Gamma-Poisson formula-
tions of the negative binomial distribution (Greene, 2008); however,
here we assume heterogeneity among individuals, not observa-
tions. Fitting these models in a Bayesian framework allows users
to easily customize existing described count distributions for use in
these model types. We called JAGS (Plummer, 2003) from R (R Core
Team, 2018) using the jagsUI package (Kellner, 2016). For each
simulated dataset, we sampled three MCMC chains of 50,000 iter-
ations with an adaptive phase of 1000 iterations. We discarded the
first 10,000 iterations and retained every tenth saved iteration. We
assessed convergence visually, and chains converged acceptably.
We calculated mean signed difference (MSD) as the mean of the dif-
ferences between the median of the posterior distribution and the
true parameter value used to simulate the data, and we calculated
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coverage as the proportion of simulations in which the 95% sym-
metric credible intervals included the true parameter value used to
simulate the data.

3 | RESULTS

Estimates of survival (¢) were low relative to truth for CJS models
(MSD = -0.047; Coverage = 0.464), but constant (i.e., equivalent to
truth) and calibrated (i.e., exhibited appropriate coverage near 0.95)
for RD (MSD = -0.003; Coverage = 0.940), ZIP (MSD = -0.002;
Coverage = 0.948), and ZIGP (MSD = 0.001; Coverage = 0.948) CMR
models (Figure 1; Table 2). Estimates of availability for encounter
given previous availability for encounter (y, | a;;_; = 1) were slightly
underestimated by RD (MSD = -0.020; Coverage = 0.892) and
ZIP (MSD = -0.013; Coverage = 0.896) models, but near truth for
the ZIGP (MSD = 0.006; Coverage = 0.936) CMR model (Figure 2;
Table 2). Estimates of availability for encounter given previous
unavailability for encounter (y4 | a;;_1 = 0) were slightly overesti-
mated by RD (MSD = 0.018; Coverage = 0.956), ZIP (MSD = 0.015;
Coverage = 0.964), and ZIGP (MSD = 0.019; Coverage = 0.976) CMR
models, but coverage was adequate. Estimates of detection prob-
ability (p) exhibited poor coverage (Figure 3; Table 2) for the RD
(MSD = 0.009; Coverage = 0.832) CMR model. Estimates of the av-
erage number of reencounters per individual (¢) were overestimated
with poor coverage with the ZIP (MSD = 0.078; Coverage = 0.764)

1.0 1.0
0.9 - 0.9
~
© 0.8 A 08
5 2
L &
0.7 0.7
F=9 <
0.6 0.6
L] ’
0.5 0.5
T T T T T T T T T T T T
05 06 07 08 09 1.0 05 06 07 08 09 1.0
1.0 K 1.0
0.9 - 0.9
~ -
o 0.8 A 0.8
— @)
N Pt
~ 0.7 N 7
'e- .e_
0.6 0.6
05—/~ 05"
T T T T T T T T T T T T
05 06 07 08 09 1.0 05 06 07 08 09 1.0

Simulated survival (¢)

FIGURE 1 Scatter and density plots of the medians of posterior
distributions for apparent survival relative to truth (¢) from
Cormack-Jolly-Seber (CJS; upper left), robust design (RD; upper
right), zero-inflated Poisson (ZIP, lower left), and zero-inflated
gamma-Poisson with individual heterogeneity (ZIGP; lower right),
capture-mark-reencounter models used to analyze 250 simulated
capture-mark-reencounter datasets.

CMR model, and near truth with the ZIGP (MSD = 0.002;
0.928) CMR model. The simulated individual het-
erogeneity in encounter probability (o) in the data was positively

Coverage =

correlated with dispersion in the count data (D; Figure 4). The over-
dispersion parameter (6) in the ZIGP model accounted for some of
this overdispersion (Figure 4), improving coverage and constancy for
ZIGP models relative to other model types. ZIP and ZIGP models
were computationally less expensive than RD models (Figure 4) to
sample the same number of iterations.

4 | DISCUSSION

We demonstrate that CMR models parameterized with zero-inflated
count distributions can function much like robust design CMR mod-
els. Estimates of survival probability from RD, ZIP, and ZIGP mod-
els were centered around truth, while estimates of survival from
the CJS model were consistently low relative to truth. Further, the
use of these model types may allow for improved estimation of
heterogeneity in encounter probability among individuals and im-
prove computational efficiency (Figure 4). We see substantial utility
for these parameterizations in a variety of scenarios. For instance,
non-breeding resights of individuals at wintering or stopover sites
may provide an excellent system to model the total number of en-
counters rather than simple detection/non-detection data. Further,
existing and emerging data types such as camera traps, PIT tags,
and automated telemetry may provide large number of detections
in discrete time blocks, providing excellent data for the models we
describe in this paper.

As we demonstrate, this approach may be particularly useful
when unobservable states exist, as counts of reencounters allow
for the estimation of a zero-inflation parameter (i.e., availability for
detection), which may be biologically analogous to breeding prob-
ability or presence at a stopover or wintering site. Count parame-
terizations might also be used to model secondary occasions within
a robust design model; one or more secondary occasions may be
estimated from some count distribution and others from a more
typical Bernoulli distribution. The inherent flexibility of programs
such as JAGS (Plummer, 2003), NIMBLE (de Valpine et al., 2017),
and Stan (Carpenter et al., 2017), and ample literature on capture-
reencounter parameterizations should lead to a wide array of ex-
tensions of these model types, and their incorporation into joint
likelihood models, such as integrated population models (Schaub &
Kéry, 2021).

Critically, the use of these model types also has advantages for
estimating heterogeneity in detection probability among individuals
that are observable, as some individuals may be seen more often than
others. Estimating heterogeneity in probabilities from a small number
of Bernoulli trials can be challenging (Fay et al., 2022). Summarizing
mark-reencounter data as counts of encounters may provide ad-
ditional information for estimating latent heterogeneity among
individuals or estimating mixtures (e.g., Pledger et al., 2003). For ex-
ample, rather than the heterogeneity parameterization explored in

9suUa2IT suowwo) anneal) ajqesijdde ayy Aq paultanob ase sa|d11de YO ‘9sh Jo sa|nJ 10y Aueuaqi] auljuQ A3]IM UO (SUOIIPUOI-pue-swIdl/wod As|im Alelqijauljuo//:sdiy)
suonipuo) pue swis] a8y} 89S ‘[#202/£0/€0] uo Ateiqiq sunuo AsIM 1818X3 3O ANsienun Ag ‘7/£26°€898/Z00L 0L/Iop/wod Ae|im Aseiqijauljuo//:sdly woly papeojumoq ‘6 ‘2Z0Z '8GLLG70T



RIECKE ET AL.

Ecology and Evolution

FIGURE 2 Scatter and density plots of 1.0 1.0
the medians of posterior distributions for 08 08
availability for encounter relative to truth ~y Ba s . 2 oe
(y) from robust design (RD; left), zero- a R £ 7 S |
inflated Poisson (ZIP, center), and zero- ; 0.4+ K- AY ; 0.4
inflated gamma-Poisson with individual 024 ‘ 024
heterogeneity (ZIGP; right), capture- ool e ool
mark-reencounter models used to analyze T T —
. 00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0
250 simulated capture-mark-reencounter imul
datasets. Simulated v,
1.0 1.0 1.0
0.8 5 0.8 22t 0.8
—~ o —~ ’g? 3
a 0.6 o B 064 0. B 061 .
o N . = o68°
= 044 A = 041 e Y 4] e
> . > . =
0.2 - 0.2 0.2
00" 00" 00l
T T T T T T T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0
Simulated y,
1.0 1.0 o o observation likelihood can be useful for helping to address “false-
0.8 08 o positives” in reencounter data (Rakhimberdiev et al., 2022). Thus, we
—_ —_ P suggest that continued extension of these methods may have broad
w2 0.6 06 - & . . .
B utility moving forward for capture-reencounter modeling.
N
: 0.4 - % 04 - As with the use of any model, violations of model assumptions
o
02 02 will lead to inaccurate parameter estimates. We caution against the
use of these models when encounters are conditional on previous
0.0 1, T T T T 00 1 T T T T encounters within a season (i.e., trap happiness). As a particularly
0.00 0.05 0.10 0.15 020 0.00 0.05 0.10 0.15 0.20 problematic example, if the nest of a marked animal is discovered
and the animal is then observed repeatedly while visiting the nest,
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s —~ 3 ing in the study area is a Bernoulli trial, the discovery of the nest is
~~~ n Qo 7
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51 2 S 2 design and nest monitoring protocols, not a random encounter pro-
w . w . cess). We expect that other types of heterogeneity are common in
B CMR data. For example, the number of encounters might be right
0 (U truncated if observers cease recording reencounters of individu-

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

Simulated mean daily detection probability (us)

FIGURE 3 Scatter and density plots of the medians of posterior
distributions for primary occasion detection probability (p) or the
expected number of encounters per individual (¢) from Cormack-
Jolly-Seber (CJS; upper left), robust design (RD; upper right),
zero-inflated Poisson (ZIP, lower left), and zero-inflated Poisson
with individual heterogeneity (ZIGP; lower right), capture-mark-
reencounter models used to analyze 250 simulated capture-mark-
reencounter datasets.

this paper, one might specify a mixture distribution for the number
of encounters per individual. Individual covariates can be incorpo-
rated simply by modeling the expected number of encounters with a
log-link function. We anticipate a variety of other parameterizations
might be useful as well (Table 1) and that simulation work may re-
veal more effective parameterizations than those described herein.
For instance, recent research has demonstrated that a count-based

als that have already been encountered multiple times. Thus, we
strongly encourage careful thought about how previous monitoring
protocols might affect the distribution of encounters of each indi-
vidual when applying these models to data and discourage using this
approach without explicit information about monitoring protocols.
The use of the Poisson distribution requires the assumption
that the mean and the variance are equal. When the encounter
data are under or overdispersed, this can lead to respective under
or overestimation of the expected number of encounters per in-
dividual. Similarly, the probability of availability for encounter
will be over or underestimated given under or overdispersion of
the encounter data (Figure 4). While overdispersion can be mod-
eled simply using gamma-Poisson mixture (demonstrated herein)
or negative binomial distributions (Table 1), underdispersion re-
quires the use of more complex distributions such as the Conway-
Maxwell-Poisson (Conway & Maxwell, 1962; Lynch et al., 2014).
We suggest that additional simulation work is required to fully un-
derstand the benefits and costs associated with using alternative
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robust design (RD; Kendall et al., 1995, 1997), zero-inflated Poisson (ZIP; this study) and zero-inflated gamma-Poisson (ZIGP; this study)
capture-mark-recapture models (left), scatter plots of the index of dispersion (D; Var(C)/Mean(C)) for the capture-mark-reencounter
count data relative to the simulated heterogeneity in detection probability among individuals (c;), and scatterplots of the mean of posterior
distributions of the overdispersion parameter (9) regressed against the index of dispersion for each capture-mark-recapture dataset.

TABLE 1 Potential parameterizations for zero-inflated count distribution-based capture-reencounter models, where c;, is the number
of encounters of individual i during occasion t, a;, is an individual's availability for encounter (a;; = 1 indicates available; g;; = O indicates

unavailable), and ¢ is the number of expected encounters of an individual.

Parameterization

1. Poisson

2. Gamma-Poisson with individual heterogeneity

3. Poisson with two categorical mixtures (x;)

4. Alternative Gamma-Poisson with individual heterogeneity (e;)

5. Lognormal with individual covariates (X) and heterogeneity ()

Model and priors

¢;t ~ Poisson(a; x €)

e ~gamma(l, 1)

cit ~ Poisson(ay x e x h;)
e ~gamma(l, 1)

h; ~ gamma(é, 9)

0 ~ uniform(0, 250)

¢ ~ Poisson(a; x ¢, )
e ~gamma(l, 1)

m; ~ categorical(9,1 — 6)
6 ~ beta(1,1)

c;t ~ Poisson(a;, X ;)
€; ~ gamma(a, f)

a ~ gamma(l, 1)

B ~ gamma(l, 1)

¢t ~ Poisson(a; X €;)
€; ~ lognormal (pX, o)
B ~ normal(0, 10)

o ~gamma(l, 1)

Note: We explicitly test parameterizations 1 and 2 in this paper. Parameterization 3 allows for mixtures in encounter probability, where @ is the
proportion of individuals in group one, and = is an categorical variable defining the mixture of each individual. Parameterization 4 is similar to
parameterization 2, but with a slightly different model for each individual's encounter probability with shape (a) and rate (8) hyperpriors. Finally,
parameterization 5 allows for the inclusion of individual covariates (X), associated regression parameters (), and individual heterogeneity (). Please
note that a much larger number of potential parameterizations exists, and see Pledger et al. (2003), Greene (2008), Lynch et al. (2014), Kéry and

Royle (2015), and McClintock et al. (2009, 2019) for further reading.

TABLE 2 Mean difference between the medians of the posterior distributions and truth and parameter coverage (in parentheses)

for estimates of apparent survival (¢), availability for encounter given a;;_, = 0 (y4), availability for encounter given a;;_y = 1 (y,), primary
occasion detection probability (p [CJS] or p* [RD]), and the expected number of encounters per individual (¢) from 250 simulated capture-
mark-recapture datasets analyzed using Cormack-Jolly-Seber (CJS; Cormack, 1964; Jolly, 1965; Seber, 1965), robust design (RD; Kendall
et al.,, 1997), zero-inflated Poisson (ZIP; this study), and zero-inflated Gamma-Poisson (ZIGP; this study) capture-recapture models.

Parameter CJS RD

] -0.047 (0.464) -0.003 (0.940)
71 - 0.018 (0.956)
Y2 - -0.020 (0.892)
p (CJS) or p* (RD) -0.306 (0.004) 0.010(0.832)

€ - -

ZIP ZIGP

-0.002 (0.948) 0.001 (0.948)
0.015 (0.964) 0.019 (0.976)
-0.013(0.896) 0.006 (0.936)
0.078 (0.764) 0.002(0.928)
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distributions. Notably, while the authors have not yet developed
goodness-of-fit tests for these model types, the use of these
parameterizations might simplify goodness-of-fit testing for
capture-reencounter models due to the use of counts rather than
Bernoulli trials.

While we have demonstrated in this paper that count-based
observation parameterizations can be useful for capture-mark-
reencounter studies, much remains to be learned. For example,
careful thought will be required for developing appropriate priors
(e.g., Northrup & Gerber, 2018), and empirical research may reveal
unforeseen problems. Future simulation work might assess the im-
pacts of priors on inference, further examine the impacts of over-
and under-dispersion, and explore various other capture-recapture

parameterizations and count distributions.
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