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Given the importance of climate in shaping species’ geographic distributions, climate
change poses an existential threat to biodiversity. Climate envelope modeling, the pre-
dominant approach used to quantify this threat, presumes that individuals in populations
respond to climate variability and change according to species-level responses inferred
from spatial occurrence data—such that individuals at the cool edge of a species’ dis-
tribution should benefit from warming (the “leading edge”), whereas individuals at the
warm edge should suffer (the “trailing edge”). Using 1,558 tree-ring time series of an
aridland pine (Pinus edulis) collected at 977 locations across the species’ distribution, we
found that trees everywhere grow less in warmer-than-average and drier-than-average
years. Ubiquitous negative temperature sensitivity indicates that individuals across the
entire distribution should suffer with warming—the entire distribution is a trailing edge.
Species-level responses to spatial climate variation are opposite in sign to individual-scale
responses to time-varying climate for approximately half the species’ distribution with
respect to temperature and the majority of the species’ distribution with respect to
precipitation. These findings, added to evidence from the literature for scale-dependent
climate responses in hundreds of species, suggest that correlative, equilibrium-based
range forecasts may fail to accurately represent how individuals in populations will be
impacted by changing climate. A scale-dependent view of the impact of climate change
on biodiversity highlights the transient risk of extinction hidden inside climate envelope
forecasts and the importance of evolution in rescuing species from extinction whenever
local climate variability and change exceeds individual-scale climate tolerances.

biodiversity | climate change | scale | species distribution modeling | time-series data

Climate is understood to be fundamental in determining species’ geographic distributions
(1-3); thus, it is expected that climate change will exacerbate the loss of biodiversity (4, 5).
‘The most prevalent approach used to predict how species will respond to climate change is
species distribution modeling, which infers a “climate envelope”—the range of climatic
conditions expected to allow a species to persist—Dbased on the climatic conditions where
the species is present (or present vs. absent). Climate envelope models are then used to project
a species’ geographic distribution under future climate scenarios (4, 6; SI Appendix, Fig. S1
and Biodiversity Forecasting with Occurrence Data). Based on this approach, it is estimated
that 18 to 37% of species are “committed to extinction” by climate change (4, 6).

However, ecologists know that in addition to climate, species” distributions are influ-
enced by biotic interactions, dispersal, ecological disturbances, and evolution, among
other processes (7, 8). Climate envelope forecasting relies on correlations between climate
and any other range-limiting processes, and the assumption that species’ distributions are
at equilibrium with climate (or other range-limiting processes), both with respect to model
calibration and forward projection (3, 9—11). In reality, the processes influencing species’
abundances and geographic distributions operate on time scales ranging from short to
long and spatial scales ranging from small to large (4, 8, 12—14). Near-term (transient)
range dynamics are influenced by fast ecological processes (phenotypic plasticity and its
demographic consequences), whereas long-term (equilibrium) range dynamics are also
influenced by slow processes (evolution, dispersal, community sorting; 12—14). This is
recognized in the biodiversity forecasting literature in that many studies include alternative
scenarios of “no-dispersal” vs. “full dispersal,” i.e., to account for the fact that a species’
rate of dispersal may be slow relative to the rate of changing climate (12, 15).

Perhaps less well appreciated is that the correlative, equilibrium nature of climate enve-
lope forecasting presumes that individuals will respond to temporal variation in climate
according to species-level responses to spatial variation in climate (inferred from occurrence
data). For example, with respect to changing temperature, a species’ distribution will track
the movement of its thermal envelope poleward or upward in elevation with warming if
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Significance

The great majority of studies
estimating the impact of climate
change on biodiversity rely on
spatial occurrence data and
climate envelope modeling. A
range-wide network of tree-ring
time series data for an aridland
pine shows that individual-scale
responses to time-varying
climate are opposite in sign to
species-scale responses to spatial
climate variation for half or more
of the species’ distribution.
Instead of half the distribution
benefiting from warming, the
entire distribution suffers with
warming, making the trailing
edge everywhere. Time series
data reveal a transient risk of
extinction, which requires
evolutionary change of
individual-scale climate
tolerances for a species to persist
(evolutionary rescue). Scale-
dependent climate responses are
reported for hundreds of species
in the literature, questioning the
climate envelope approach.
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individuals in populations at the cool edge of the species’ distribu-
tion respond positively to warming whereas those at the warm edge
respond negatively (Fig. 1/). This is the leading edge-trailing edge
paradigm for range dynamics (12, 15). In other words, climate
envelope forecasting presumes that climate responses are invariant,
both across biological scales (species vs. individual) and across space
vs. time (Fig. 1, hypothesis 1; 16-19). This assumption is justified,
with respect to biological scale, by the abundant center hypothesis
(20) and center-periphery hypothesis (21; ST Appendix, Fig. S2 and
“Climate Responses across Scales”), and with respect to space vs. time
as an example of space-for-time substitution, a widespread practice
in ecology. These assumptions underpinning climate envelope fore-
casting have been criticized both on conceptual and empirical
grounds (9-11, 16, 18, 19, 21-23, and citations in S/ Appendix,
Table S1), yet the practice remains dominant.

An alternative possibility is that individual- or population-level
climate responses differ from species-level climate responses
(Fig. 1, hypothesis 2; 24-28), i.e., that transient responses reflect-
ing fast processes like individual-scale plasticity differ from equi-
librium responses reflecting slow processes like evolution and
dispersal. Instead of changing in sign from positive to negative
across a species’ distribution (Fig. 1F), individual-level responses
to time-varying climate may be similar throughout a species” geo-
graphic distribution if the same limiting factor constrains physi-
ology and hence performance everywhere (Fig. 1 G and H).
Consider the climatic factors that limit performance in plants:
they include inadequate temperature and inadequate soil moisture
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(29-31). Plants found in cold places might be expected to respond
positively to warmer-than-average conditions, within the range
of temperature variation they have historically been exposed to and
are therefore adapted to, whereas plants in a soil moisture-limited
context would be expected to respond negatively to warmer-than-
average temperatures (32, 33; see SI Appendix, Climate Responses
across Scales—Individual Scale). Hence, all individuals in all popu-
lations of a moisture-limited species should suffer with warming
(Fig. 1)) and all individuals in all populations of a temperature-
limited species should benefit from warming (Fig. 1K). We describe
predictions with respect to temperature because it is changing rel-
atively predictably compared to precipitation (34), with conse-
quences that include large-scale mortality events (35, 36). Parallel
predictions apply to any other nonstationary climate variables, and
how they might interact with one another, affecting individual
performance. If transient vs. equilibrium responses to climate differ,
species-level climate response curves, which result from the net
effect of fast and slow processes influencing the geographic distri-
bution, may not be predictive of how individuals within popula-
tions across the distribution will respond to time-varying climate.
The space-for-time substitution that underlies climate envelope
forecasting may not be reliable if spatial patterns are driven by
additional processes, operating on longer time scales, than those
generating patterns through time.

It is important to understand which of these hypotheses better
reflects real-world patterns of variation in individual performance,
particularly because they lead to contrasting predictions about
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Fig. 1. Hypotheses about climate responses at the species vs. individual scale (A-E) and corresponding predictions about climate-growth relationships (F-H)
and range dynamics with warming (/-K). Under hypothesis 1, species-scale climate responses, inferred from occurrence data (A), match individual-scale climate
responses, inferred from performance data (C); under hypothesis 2, species- and individual-scale climate responses do not match (B vs. D and E), individual-scale
performance is either negatively sensitive to temperature variation across time and space (water-limited performance, D) or positively temperature sensitive
(temperature-limited performance, E), with solid lines indicating the response to interannual temperature variability within its historical range, to which the
organism is adapted, and dashed lines indicating the response to more extreme temperature variability. Panels (F-H) show the predicted sensitivity of tree
growth-ring width to time-varying temperature (rescaled as local temperature anomalies) reflecting the local slope in panels (C-£) at warm (red) to average
(purple) to cool (blue) locations across the species’ distribution. Panels (/-K) show three contrasting predicted responses (+/-) of individual-level performance
to warming across species’ geographic distributions, also derived from panels (C-E), with the size of the symbol indicating the magnitude (slope) of individual-
level sensitivity to temperature variation. A temperature-limited species may experience declining performance (-) at its low-latitude edge (panel K), if warming

exceeds individual-scale thermal tolerances.
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how species” geographic distributions will be affected at near-term
(transient) time scales by changing climate (Fig. 1 /-K). Assessing
climate responses at the individual vs. species scale, and in
response to spatial vs. temporal climate variation, has thus far
been difficult because the data needs are high: long-term, annually
resolved records of individual performance in response to climate
variability throughout a species’ geographic distribution, in addi-
tion to the occurrence data that are much more available and
commonly used. Spatial networks of biogenic time series from
naturally occurring individuals are a special kind of data that
make it possible to infer the plastic capacity of genotypes to
tolerate different conditions in different years, as those genotypes
are currently distributed across a species’ range (37). Past empir-
ical studies that have compared individual- or population-level
responses to climate against species-level responses instead have
tended to focus on spatial variation in average performance with
climate (17, 38-40) or performance measured at single point in
time (41), not individual-scale plastic responses to time-varying
climate, or they have been relatively limited in spatial and tem-
poral scope (21, 42, 43).

Here, we evaluate climate responses across scales, where scale
refers both to the species-level geographic distribution vs. individual
organism, and to space vs. time. We compare a species’ occurrence
against its individual-level performance with respect to climate and
we investigate how individual-level performance varies with climate
across space vs. time. We focus on a tree species because trees are
positioned at the nexus of the biodiversity and climate crises—for-
ests harbor a great deal of Earth’s biodiversity at the same time that
they play an important role in the feedback between Earth’s terres-
trial biosphere and its climate via carbon cycling (44, 45). In addi-
tion, many tree species form annual growth rings that can be
sampled to generate time series data encompassing individuals’
lifespans (46). Specifically, we studied Pinus edulis, a tree at the dry
edge of the temperate coniferous forest biome that is found under
a wide range of temperature conditions [mean annual temperature
(MAT) of 4 to 17 °C; SI Appendix, Fig. S3]. We used a tree-ring
collection that is more unbiased and representative of this species
than any other available to quantify individual-level responses to
temporal variation in climate, spatial variation in average climate
conditions, and their interactions. These climate responses based
on tree-ring time series data were compared to separately inferred
species-level climate responses based on occurrence data, i.e., the
presence vs. absence of 2 edulis in forest inventory plots across its
distribution. If climate responses are the same at the individual and
species scale, the slope of the response to time-varying temperature
should change in sign across P edulis’ distribution: from positive at
cold locations to negative at warm locations (Fig. 1F). If instead
climate responses differ between the individual and species scale,
the sign of the slope of the response to time-varying climate could
be the same throughout the species’ distribution. A priori, we expect
P edulis performance (growth) to be soil moisture limited; hence,
we expect to see lower-than-average growth in warmer-than-average
years—a negative response to time-varying temperature (Fig. 1 D
and G). We also considered spatial variation in the response to
precipitation variability, and how precipitation modifies the
response to variation in temperature, since soil moisture limitation
is influenced by their combination.

Results

Tree-ring data confirm the a priori expectation that P edulis’ per-
formance is soil moisture-limited. Growth rings of 22 edulis are wider
in a wetter-than-average year and at wetter locations: We found
positive effects of interannual variation in winter precipitation
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[Buinter precip = 0-2045, 95% CI = (0.1942 - 0.2149)] and monsoon
precipitation [B,,ns0n precip = 0-0451, 95% CI = (0.0348 - 0.0533)],
as well as mean annual precipitation (MAP) on growth-ring width
[Buap = 0.2355, 95% CI = (0.194 - 0.2771); SI Appendix, Fig. S4].
In addition, year-to-year variation in fall and spring temperatures
negatively affects growth-ring width [Fig. 2; B e, = -0.0723,
95% CI = (<0.0826 — ~0.0618), Byng conp = ~0-0965, 95% CI =
(-0.1076 - -0.0857)].

Of particular interest, with respect to the hypotheses and pre-
dictions in Fig. 1, is how P edulis responses to time-varying climate
shift across gradients of mean annual temperature (MAT) and MAP.
Five of the eight interactions between spatially varying MAT and
MAP and time-varying climate predictors are significantly different
from zero (SI Appendix, Fig. S4), but these interactions do not
change the sign of the effect across the geographic distribution. The
sensitivity of P edulis growth to spring and fall temperature varia-
bility is negative essentially everywhere, from cool to warm sites,
and dry to wet sites (Fig. 2 A—D and SI Appendix, Fig. S5; see his-
tograms of tree-level climate sensitivities in S/ Appendix, Fig. S6 A
and B). R edulis model-predicted sensitivity to year-to-year precip-
itation variability is also (nearly) uniformly positive (Fig. 3 A-D
and SI Appendix, Fig. S7; see histograms in SI Appendix, Fig. S6 C
and D). The statistically significant interaction effects do however
indicate there is variation across 2 edulis distribution in how sen-
sitive its performance is to time-varying climate: Lower growth in
response to a warmer-than-average spring is especially pronounced
at the wet and warm edge of the species” distribution (blue lines,
Fig. 2D), and lower growth in response to a drier-than-average
winter is especially pronounced at the dry and warm edge of the
species’ distribution (red lines, Fig. 3D).

For five of the six climate variables, species-level climate
response curves based on presence—absence data were very differ-
ent from the individual tree-scale climate responses detected using
tree-ring data. Probability of occurrence of 2 edulis increases then
decreases with each of the temperature variables (mean annual
temperature, mean spring temperature, and mean fall tempera-
ture), i.e., in a unimodal, symmetric pattern (Fig. 2 £-G). P edulis
occurrence in response to spatial variation in mean annual pre-
cipitation and average winter precipitation peaks at relatively low
values (dry locations) and declines across most of the range of each
of these precipitation variables in the study domain, leading to
right-skewed responses (Fig. 3 £ and 7). Only one climate response
was qualitatively similar at the species vs. individual scale: Both prob-
ability of occurrence (Fig. 3G) and tree-scale growth (SI Appendix,
Fig. S7) increase with monsoon precipitation. Counter to the a priori
expectation that growth should be lower at the warm edge of the
distribution of a soil moisture-limited species, growth increased with
mean annual temperature across P edulis distribution [Byr =
0.2083, 95% CI = (0.1661 — 0.2506), SI Appendix, Fig. S4], a result
that we interpret in terms of Liebigs Law of the Minimum
(ST Appendix, Climate Responses and Fig. S8). That s, the sign of the
response of individual tree-scale growth to spatial variation in tem-
perature (positive) is the opposite of its response to in situ time-varying
temperature (negative).

Discussion

This analysis of tree-ring and occurrence data for P edulis demon-
strates that its climate responses are scale dependent—different
patterns are observed at the species vs. individual scale, and in
response to spatial vs. temporal climate variability. Across the
entire geographic distribution of P edulis, trees respond negatively
to warmer-than-average spring and fall temperatures (Fig. 2 A-D
and S/ Appendix, Fig. S5, respectively), whereas species-scale
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Fig. 2. Responses to temperature variation. (A-D) The model-predicted responses to spring (April-June) temperature anomalies of all 1,558 P. edulis trees in the
dataset, at locations that vary from cool to warm [panels (A-D) show individual tree responses grouped by quantiles of mean annual temperature (MAT), averaged
over the period 1895 to 2018], with each response colored by the mean annual precipitation (MAP) at that location, from dry (red) to wet (blue). Responses are
plotted for a constant tree size of 20 cm. (E-G) Species-scale climate responses to spatial variation in temperature—the probability of occurrence of P. edulis
as a function of average climate conditions at FIA plot locations. Shading in (D-F) indicates that part of the species’ climate envelope where the individual-level

response in (A-D) is opposite in sign.

temperature tolerances, inferred across space from occurrence
data, are unimodal and symmetric (Fig. 2 £~G). Further, instead
of observing peak performance at climatically average locations
(i.e., average MAT), average growth-ring width increases with
MAT. Trees grow faster at warmer-than-average locations, even
though they grow less in warmer-than-average years across the
entire distribution. The contrast between species-level and
individual-level responses to variation in precipitation is also
striking: Individuals respond positively to more precipitation,
across both time and space (Fig. 3 A-D and SI Appendix,
Fig. §7), as would be expected for a soil moisture-limited spe-
cies, whereas the species-level probability of occurrence is
mostly a declining function of spatial variation in precipitation
(Fig. 3 Eand F).

Individual growth rate is but one part of the life cycle; hence,
the mismatch between climate responses inferred from tree-ring
vs. occurrence data might be caused by vital rates other than
growth (survival, recruitment) responding to climate variability
in a compensatory manner (“demographic compensation”; 47).
However, demographic analyses of forest inventory data have
shown that P edulis population growth rate is lowest at warm and
dry sites, particularly because of a negative effect of spatial varia-
tion in temperature on survival, which is by far the strongest driver
of variation in population growth rate across this species” distri-
bution (3). In addition, there is a large literature showing that
warm drought events cause tree mortality (36, 48, 49), with
well-documented physiological causes (cavitation, hydraulic fail-
ure; 50-52). Because the response of 2 edulis’ survival to both
spatial and temporal variation in temperature is negative, and
because the sensitivity of population growth rate to recruitment
is so weak in a long-lived organism, demographic compensation
is not a plausible explanation for the observed mismatch between

https://doi.org/10.1073/pnas.2315700121

the responses of individual-scale growth vs. species-scale occur-
rence to climate variability.

An alternative explanation for contrasting responses of individual-
and population-level demographic rates vs. species-level occurrence
to climate variation is that climate is not the only factor influencing
P edulis’ geographic distribution. Demographic analyses have shown
that the wet and cool limits of 2 edulis’ distribution, where climatic
conditions are good both for individual-level performance and
population-level fitness, result from the influence of climate on veg-
etation and fire regime (3), combined with the fact that P2 edulis is
fire-intolerant. With increasing mean annual precipitation and
decreasing mean annual temperature, hence increased productivity
of herbaceous fine fuels, P edulis is replaced by its congener Pinus
ponderosa, a species that is fire-tolerant (53, 54). That is, climate does
not limit the wet and cool edge of P edulis distribution directly, it
does so indirectly through its influence on an ecological disturbance
process (fire). Fire suppression in the 20th century and concomitant
expansion of fire-intolerant 12 edulis further demonstrates that climate
is not the only factor shaping this species’ abundance and geographic
distribution (3). The case of 2 edulis highlights the much more general
(and well-known) problem of causality embedded in space-for-time
substitution and climate envelope forecasting (22, 23)—just because
climate can be correlated with occurrence does not mean that it
(directly) is the causal factor that determines range limits.

We have shown that in P edulis, individual-scale climate
responses (based on time-series data) are the opposite of species-scale
climate responses (based on occurrence data) for approximately
half the species’ distribution with respect to MAT (shading, Fig. 2E)
and the majority of the distribution with respect to MAP (shading,
Fig. 3E). The broader implications of this are troubling: The organ-
ism—environment relationships that are central to forecasting the
impact of climate change on biodiversity are scale dependent,

pnas.org
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is the cumulative total from November of the previous year through March of the current year. Responses are plotted for a constant tree size of 20 cm. (E-G)
Species-scale climate responses to spatial variation in precipitation—the probability of occurrence of P. edulis as a function of average climate conditions at FIA
plot locations. Shading in (£ and F) indicates that part of the species’ climate envelope where the individual-level response in (A-D) is opposite in sign.

compromising the assumption that climate responses at the species
scale are predictive of climate responses at the individual scale. This
begs the question, how widespread are the patterns observed in
P edulis?

Previous studies of tree-ring data offer some insight, even if they
were not designed to address this question. Canham et al. (55) found
ubiquitous negative temperature sensitivity using >23,000 tree-ring
time series sampled from 14 dominant tree species of temperate
deciduous forests across the northeastern United States. Ubiquitous
negative temperature sensitivity was also found by Klesse et al. (56),
based on >30,000 tree-ring time series for Douglas-fir (Pseudotsuga
menziesii), a species with a geographic distribution spanning 36
degrees of latitude in western North America. Climate sensitivities
consistent with soil moisture-limitation of tree growth (negative
temperature sensitivity, positive precipitation sensitivity) were also
found across the geographic distribution of 2 ponderosa, another
widely distributed tree of western North America (57). Northern
hemisphere and global analyses of tree-ring data show that tree
growth is negatively sensitive to summer temperature variability
across the midlatitudes and positively sensitive to summer temper-
ature variability at high-latitude and high-elevation sites (30, 31). In
other words, there is a striking contrast between what is well-
established in dendrochronology (and ecosystem ecology, earth sys-
tem sciences)—that climate limitation of tree growth (and terrestrial
ecosystem productivity) is consistent, or largely so, across broad
geographic extents—vs. the expectation embedded in occurrence-
based forecasting that climate limitations should switch in sign across
every species’ distribution.

Other tree-ring studies also found contrasting responses to spatial
vs. temporal variation in temperature as we did. Canham et al. (55)
found that 14 species of temperate deciduous trees grow at a higher
rate at more southerly (warmer) locations, in contrast to their

PNAS 2024 Vol.121 No.24 2315700121

ubiquitous negative sensitivity to interannual temperature variabil-
ity. Klesse et al. (56) also found this pattern, across the very large
distribution of Douglas-fir. Because of this switch in sign, forecasts
made based on the relationship between time-averaged tree growth
and spatial variation in temperature would suggest these forests
should benefit from warming, whereas forecasts based on the rela-
tionship between time-varying performance and temperature would
suggest the opposite. A unique study of P ponderosa demonstrated
just this: Forecasts based on the species’ response to spatial variation
in temperature predict increased tree growth, whereas forecasts
made based on population-level responses to time-varying temper-
ature predict reduced growth (58; and for an example from grass-
lands, see ref. 59). Further, model validation via hindcasting showed
that ponderosa pine’s observed responses to climate variability and
change in the recent past were much better predicted by its statis-
tically inferred response to time-varying temperature (58). This
suggests forecasts of increased forest productivity based on spatial
patterns of climate variability should be viewed with caution (e.g.,
refs. 60 and 61). The larger point is to be aware, when making
ecological forecasts of any kind, that organism-environment rela-
tionships are likely to be scale-dependent (13, 62, 63).

Beyond tree-ring time series data, there is a growing body of
evidence of contrasting climate responses at different biological scales
or across space vs. time, including mismatches between a species’
peak occurrence compared to its peak abundance, population
growth rate, or individual-level performance, detailed in S Appendix,
Table S1. This evidence comes from multispecies surveys of the lit-
erature as well as original studies contradicting the abundant center
and center-periphery hypotheses (17, 21, 38—40), along with more
detailed studies of demographic variation across space and time
showing that individual- and population-scale responses to climate
variation do not match occurrence-based, species-scale climate
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responses (64, 65). This emerging body of work suggests that our
findings are not a pattern unique to a single aridland pine species.

At the same time, it should be expected that some species’
distributions do span conditions under which performance is neg-
atively vs. positively sensitive to time-varying temperature (or
other performance-limiting and nonstationary aspects of climate).
While we dichotomized the possibilities in Fig. 1 for the sake of
clarity, in fact, a continuum of patterns between these extremes is
possible. Spatial variation in the response to interannual variation
in temperature was found in Artemisia tridentata (a dominant
shrub in a shrub-steppe ecosystem) based on time series data at
131 monitoring sites across its distribution—negative responses
at warm locations and positive responses at cold locations (66). A
similar pattern was found with respect to some climate variables
but not others, based on repeat censuses of 746 populations of
wood frogs (Lithobates sylvaticus) at 27 locations across its distri-
bution—a switch from positive to negative sensitivity of demo-
graphic performance to interannual variation in climate (18). We
suggest that a key knowledge gap to be filled is the characterization
of individual- and population-scale responses to time-varying cli-
mate as opposed to species-scale “climate envelopes,” with a focus
on the biogeography of limiting factors, to better anticipate the
near-term impact of climate change on biodiversity.

A Critical Transition: From Near-Term to Long-Term Dynamics.
For P edulis and other species in which performance is consistently
lower in warmer-than-average years, the entire distribution is a
“trailing edge” when faced with warming: All populations should
experience decreased performance. The risk, hidden by the correlative,

equilibrium nature of climate envelope forecasting, is that this short-
term (negative) response is not replaced by the long-term (positive)
response at what the occurrence-based approach identifies as the
“leading edge,” as illustrated in Fig. 4. Whether negative transient vs.
positive equilibrium dynamics prevail at the “leading edge” should be
expected to depend on the breadth of plasticity (i.e., reaction norms,
thermal performance curves) relative to the pace of climate change, the
pace of in situ evolution of reaction norms, and the pace of migration of
genotypes with better-adapted reaction norms from elsewhere (Fig. 4;
11,13, 14, 24, 67-70). If rates of evolution and/or dispersal keep pace
with climate change, a smooth transition from negative transient to
positive equilibrium dynamics is possible (Fig. 44). If evolution and/
or dispersal are slower than climate change, but not too much slower,
there may be range contraction to leading-edge refugia, but potentially
recovery (Fig. 4B). In P edulis, for example, population growth rate
is least sensitive to change in temperature and precipitation at the
climatically benign, cool, wet (high-elevation) edge of its distribution
(3)—i.c., the “leading edge.” There, climate change-driven decline
should be less rapid, and there is the potential for evolutionary rescue.
If in situ evolution and/or dispersal of better-adapted genotypes are
too slow compared to climate change, extinction may be the outcome,
rather than the equilibrium expectation of persistence and expansion
at the leading edge (Fig. 40).

We conclude that occurrence-based models can underestimate the
threat to biodiversity posed by changing climate, in that species-scale
climate tolerances can be a poor proxy for individual- and population-
scale climate responses, and fail to capture the transient risk of extinc-
tion arising from the actual responses of individuals and populations
to climate variability and change. A strong reliance in the biodiversity

| near-term

long-term

plasticity,
demography |

OUTCOME

“leading edge”
range expansion
via evolution
and/or dispersal
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geographic
distribution B plasticity, |
demography !

“leading edge”

evolutio
dispers
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to “leading edge”
refugia
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w E
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Fig. 4. Three possible outcomes, in response to warming, for a northern hemisphere species in which individual-level performance is negatively sensitive to
time-varying temperature (indicated with negative symbols throughout the geographic distribution). The species is more strongly negatively impacted by warming
toward its warm, southern (trailing) edge, indicated by the size of the symbols. The (A) best-case, (B) middle-case, and (C) worst-case scenarios differ with respect
to how fast evolution and/or dispersal (green shading) are relative to the rate of changing climate, leading to outcomes that reflect little to strong influence of
transient dynamics, respectively. Evolution and dispersal do not necessarily operate on the same time scale but are grouped here as “slow” processes compared

to “fast” processes (plasticity and demography).
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forecasting community on occurrence-based approaches may create
ablind spot regarding the possibility that performance and suitability
may actually decrease with changing climate at the so-called “leading
edge” of a species’ distribution. The expectation of expansion at the
“leading edge” can be a false one, at least in the near term, and failure
to expand there may not be caused by dispersal limitation, rather, it
can be limited by the evolution of individual-scale climate tolerances.
At the same time, there may be other ways in which occurrence-based
approaches overestimate extinction risk—for example, by overfitting
to occurrence data using many climate predictors and very flexible
models.

For biodiversity forecasting to improve, i.c., address potential
under- and overestimation of extinction risk, there is a need to char-
acterize and better understand responses of individuals and popula-
tions to time-varying climate. This includes, for example, expanding
studies of thermal performance curves to encompass genotypes
sampled across species’ distributions (26, 37, 71), quantifying how
climate-performance relationships are modified by the intensity and
duration of acute exposures such as heat waves (72-74), and lever-
aging transplant experiments to parse the genetic vs. plastic basis of
responses to climate variability and extremes (28, 75-77). Studies
of demography in the wild across time and space also are a powerful
source of information (64, 65, 78, 79), because they can reveal
trade-offs between fitness in different parts of the life cycle (e.g.,
competitiveness and hence individual growth rate vs. stress-tolerance
and hence survival rate) and the impact of shifting biotic interactions,
community composition, and ecosystem processes. These data will
provide the grounding in physiology and demography needed to
more reliably scale the impact of climate change from individuals to
species (33, 63, 80—84). With the accumulation of such data across
species and environments, patterns may emerge that further facilitate
prediction. For example, it's been suggested that individual- vs.
species-scale thermal tolerances are more closely equivalent in marine
ectotherms than terrestrial ectotherms (85), and that individual-scale
thermal tolerances are narrow in tropical terrestrial ectotherms,
heightening their vulnerability to climate change (86-88). In addi-
tion, there is a need to better characterize rates of evolution and
dispersal compared to changing climate, and how these interact with
other global change drivers (e.g., land transformation and fragmen-
tation), to gauge the timescales at which range dynamics may shift
from transient, individual-scale responses to equilibrium, species-scale
responses. Thirty years ago, Levin (89) remarked that “the problem
of pattern and scale is the central problem in ecology.” Addressing
this central problem in ecology is key to better assessing the risk of
biodiversity loss posed by climate change, the disruption of ecosys-
tem services associated with that loss, and acting to prevent it.

Materials and Methods

P edulis Engelm. is a stress-tolerant pine endemic to the Colorado Plateau of
the southwestern United States, where the climate is semiarid and continental
(90; SI Appendix, Fig. S3). Our study is based on tree-ring samples collected
from 1,558 trees located in 977 plots in the U.S. Forest Service's probabilistically
designed Forest Inventory and Analysis (FIA) plot network, which fully encom-
passes P edulis' geographic distribution (91). We processed these samples to
generate annually resolved time series of growth-ring widths following stand-
ard protocols of dendrochronology (S/ Appendix, Tree-Ring Data). We then used
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Bayesian hierarchical regression to model variation in growth-ring widths as
a function of climate variability across space and time. Climate variables were
derived from 4-km resolution PRISM monthly data (92), i.e., aggregated to cli-
mate normals (MAT, MAP; years 1895 to 2018), which vary strictly across space,
and time-varying seasonal climate variables (monsoon and winter precipitation,
falland spring temperature). The seasonal climate time series were locally scaled
and centered; hence, they represent site-specific anomalies of precipitation and
temperature. Tree size (stem diameterat root collar) was also included as a predic-
tor because growth-ring widths are known to change with tree size. We included
all 2-way interactions between fixed effects, including interactions between
spatially varying climate normals (cold vs. warm locations) and time-varying
climate(e.g., spring temperature), which we use to distinguish between hypotheses
1 vs. 2 of Fig. 1. Additional details about the regression modeling are available
in S Appendix, including Bayesian model implementation, evaluation of model
convergence, and comparison of the fit to data of nine alternative regression
models (S/ Appendix, Table S2 and Fig. S9).

Using generalized additive models (GAMs), we quantified the probability of
occurrence of P edulis as a function of the same climate variables used to predict
individual tree growth variability. We used data on the presence vs. absence of
P edulis derived from the FIA plot network in Arizona, Colorado, New Mexico,
and Utah. Hence, the occurrence of P edulis was assessed relative to the forested
portion of the study domain (defined by FIAas 10% tree cover). We tested GAMs
with 3, 4, and 5 knots to evaluate the influence of model flexibility on climate
response curves (S Appendix, Table S3). Scripts for all data analysis are found in
a public GitHub repository (93).

Data, Materials, and Software Availability. Tree-ring time series data have
been deposited in CyVerse (DOI: 10.25739/7¢3a-2340) (91). Previously pub-
lished PRISM climate data were used in this work (92). Scripts for conducting all
aspects of the data analysis are available in the GitHub repository (https://github.
com/dey3434/PIED-Project) (93).
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