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8 Abstract

9 Natural hazards can have a devastating impact on communities, leading to social and economic losses. These
10 effects are particularly severe in multi-hazard contexts, where multiple disruptive events occur simultaneously
11 or consecutively (such as earthquakes and tsunamis). To reduce the impact of such events, it is critical to enhance
12 community resilience and make it more capable of withstanding and recovering from diverse types of damage.
13 In this study, we propose a multi-objective optimization model to determine optimal retrofitting strategies to
14 enhance community resilience under multiple hazards. We used the proposed model to analyze the impact of
15 earthquake and tsunami hazards on the community of Seaside, Oregon. It assesses the effectiveness of different
16 retrofitting strategies at the parcel scale, considering the conflicting objectives of reducing overall economic loss,
17 population dislocation, and building repair times. Our results demonstrate that retrofitting buildings to achieve
18 higher seismic codes can significantly reduce the impact of natural hazards on structural damage, population
19 dislocation, and building repair times. Additionally, our findings reveal the importance of considering
20 geographical location and mitigation measures when optimizing retrofitting strategies. By considering budget
21 constraints and community resilience metrics, our model identifies the most effective retrofitting strategies for
22 individual buildings of Seaside, which ultimately helps the community make informed decisions about
23 investments to reduce the impact of natural hazards. Overall, this study provides valuable insights into the
24 importance of enhancing community resilience in multi-hazard contexts and showcases the use of a multi-
25 objective optimization model to identify optimal retrofitting strategies.
26 Keywords: Multi-hazard; multi-objective optimization; community resilience; building mitigation; population
27 dislocation.
28

29 1. Introduction

30 Community structures, transportation, communication, and power systems across a community or geographic area, the

31 economy, and the accessibility to social services can all suffer severe harm and disruptions due to natural and human-
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caused hazards [1-3]. Additionally, the social capital of a community, which refers to the networks and relationships that
enable effective response and recovery, can also be affected by these hazards [4-8]. Therefore, it is crucial to seek effective
ways to improve the resilience of communities and their structures against such hazards. The impact that these hazards
have on communities can be devastating. Natural hazards threaten life safety, and damage to infrastructure can disrupt
communities. The effects of which can last years following the initial event [9,10]. In light of these hazards, mitigation
strategies that reduce the damage can be employed. These depend on various elements, such as risks, time and budgetary
constraints [11], and community values. Retrofitting structures as a mitigation method against flooding, earthquakes, and
tornadoes involves adjusting existing buildings to withstand these hazards better. On the other hand, mitigating the effects
of tsunamis involves relocating structures from tsunami inundation zones and strengthening buildings to resist the forces

of tsunamis [12].

To improve a community's ability to respond to hazards, the field of resilience planning has gained traction. This area of
study aims to both quantify and reduce the negative impacts of hazards on communities [13—-16]. The concept of
resilience, which was first applied to communities in the context of natural hazards by Bruneau et al. (2003), refers to a
community's ability to adapt and sustain operations during hazardous events [17]. The study of community resilience is
interdisciplinary, involving fields such as ecology, psychology, and economics. As a result, resilience planning should
consider the natural, built, and socioeconomic environments [18-22]. Despite ongoing research in various disciplines, the
integration of all elements of community resilience is still lacking. For example, Guidotti et al. (2019) studied population
dislocation and the ability of a water network to meet demand, while Franchin & Cavalieri (2015) looked at population
dislocation and road damage using a Bayesian network [23,24]. Additionally, Kavvada et al. (2022) presented a novel
model, contemplating the dual aspects of economic and environmental implications of earthquake retrofitting. Using San
Francisco as a reference, it also highlights an original method for equitable resource distribution, underlining the
importance of balancing economic prudence and social fairness in disaster readiness [25]. While this study focuses on
retrofitting strategies for buildings, it is important to acknowledge that social capital also plays a role in overall community
resilience. It encompasses trust, cooperation, and shared norms within a community, which can significantly contribute
to quicker recovery and better adaptation post-disaster. Hence, although our focus is on structural mitigation measures,
the interplay between physical infrastructure and social resources should not be overlooked [26-33].

Decision support systems for natural hazards aim to lower risks and/or boost community resilience. A comprehensive
review of decision support systems for natural hazards [34] evaluated more than a hundred papers and devised a decision
support system classification system. According to Newman et al. (2017), decision support systems can relate to (i)
exploring risks associated with natural hazards under present-day conditions [2,35], (ii) manually evaluating risk-reduction
alternatives via what-if scenarios [35], and (iii) developing models that determine optimal solutions and automatically
develop risk reduction plans [36,37]. Each of these, according to Newman et al. (2017), exhibits increasing levels of
decision support [34]. This study indicates that the field of decision support systems has concentrated chiefly on the first
two domains, evaluating risk and resilience, but less work has been concentrated on optimizing mitigation measures,

despite this areas rising popularity.

Within this subdiscipline of decision support systems applied to natural hazards, optimization can relate to either pre-

emptive mitigation or restoration strategies. Considering the former, Zhang and Nicholson (2016) developed a multi-
Page 2 of 30



69
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87
88

89

90
91
92
93
94
95
96
97

objective optimization model considering the performance of interdependent physical, social, and economic systems
under disruption from earthquake hazards [38], and Wen (2021) extended that work by implementing new objectives to
the optimization model which was applied for tornado hazard [39]. Through this work, Wen (2021) suggested mitigation
measures for building blocks under tornado hazard and, after that, Gupta et al. (2022) formulated an optimization model
for building-level mitigation measures for the community under flooding hazard [40]. On the other hand, considering the
optimization of restoration strategies, Gonzalez et al. (2016) and Gomez et al. (2019) posed the Interdependent Network
Design Problem (INDP), which is concerned with determining the least-cost reconstruction strategy for a partially
destroyed system of interdependent infrastructure networks [37,41]. Similarly, Zhang, Wang, and Nicholson (2017)

considered the post-disaster recovery of road and bridge transportation networks [42].

Given that communities are often prone to multiple hazards, this paper presents an optimization model for enhancing
the community's resilience against multiple natural hazards. Namely, a multi-objective optimization model for building
mitigation strategies subject to multiple hazards is proposed. While multi-objective optimization models for resilience
have been developed by Zhang and Nicholson (2016), Wen (2021), and Gupta et al. (2022), the novelty of this paper lies
in that multiple hazards are considered, and the solutions provided are the individual building level [38,39,43]. As such,
mitigation options that target either both or one of the underlying hazards are included in the model. Further, the multi-
objective aspect of this framework provides avenues to consider the impact that hazards have on buildings and the
population, which was previously not considered by Gupta et al. (2022) [40]. The remainder of this paper is organized as
follows. The approach and formulation of the multi-objective optimization model are covered in Section 2 of the
remaining text. The suggested model is applied to Seaside, Oregon, as a case study in Section 3; the results are then

discussed, and conclusions are presented in Section 4. Section 4 also covers future research directions.
2. Research Methodology

The multi-objective optimization of building mitigation strategies subject to multiple hazards is shown in Figure 1. This
model assumes a community with one or more distinct zones. A community zone is any defined geographic region that
contains structures of interest. Such zones could be based on census tracts, topographically distinct regions, or areas of
relative homogeneity in structure types or purposes. Furthermore, it is believed that the community has information
related to structure type, retail market value, and the population at the parcel level. The framework consists of four
primary steps: (i) defining decision support options, (ii) performing the multi-hazard damage analysis, (iii) extracting
metrics from the multi-hazard damage analysis to be used in the optimization model, and (iv) performing the multi-

objective optimization. The following subsections outline each of these steps in detail.
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Figure 1: Framework demonstrating the detailed research methodology.

2.1. Decision Support Options

The first step in this framework is to define decision support options, which consists of identifying: (i) a suite of mitigation
strategies to consider and (ii) constraints that are employed in the optimization model. In the context of disasters, the
former can consist of either proactive or reactive strategies. The costs of implementing each of the mitigation strategies
should be defined. The latter consists of identifying constraints that are employed in the optimization model and can

consist of items such as budgetary or resource limits.
2.2. Multi-Hazard Damage Analysis

Following the identification of decision support options, a multi-hazard damage analysis is performed to determine the
probability of being in a certain damage state for each parcel. This step involves mapping spatially explicit hazard intensity
measures of the underlying individual hazards to the built environment. This is shown in Figure 1 via the connections
between the multiple hazards and the parcel/building inventory box. Methods to employ a multi-hazard damage analysis
are numerous and can range from using fragility surfaces to assuming the underlying hazards and damages are statistically

independent[44,45]. For a comprehensive review of multi-hazard risk and damage analyses, readers are directed to [2].
2.3. Optimization Model Parameters

One of the key components in constructing an optimization model is the model parameters, which have a significant

impact on the optimization results. In this case, the required parameters are obtained from a multi-hazard damage
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analysis. The important parameters of this multi-objective optimization model include the predicted direct economic loss
due to building damage, the expected displacement of the population due to natural hazards, and the estimated repair
time required to address disaster damage. Let, [;; denote the expected direct economic loss due to a multi-hazard
scenario for building in parcel i € Z and mitigation option k € K. These mitigation measures for buildings for various
natural hazards refer to actions or strategies that aim to reduce the negative impacts of these hazards on the built
environment. These measures can include physical modifications to buildings and infrastructure, such as retrofitting or
reinforcing structures to better withstand specific hazards, as well as non-structural measures, such as land-use planning,
early warning systems, and emergency management plans [46]. The calculation of direct economic loss due to building

damage is presented in equation (1).

(1)
lix = vige Zpds *Tas
ds

In equation (1), v is the retail market value (also known as appraisal value) of the building in parcel i € Z and mitigation
option k € X, rys is the damage ratio associated with the damage state(ds) of the building in parcel i € Z and mitigation
option k € XK. For this study, four damage state probabilities are considered and each of it has a damage factor depending

on a hazard. Probability of damage state is presented by P, in the equation.

The damage state probabilities are additionally used for the calculation of population dislocation which is the second
community resilience metric in our research, was computed by Rosenheim et al. [47]. The human systems response,
household dislocation, was modeled using data and results from housing unit and household surveys conducted in the
aftermath of Hurricane Andrew based on the loss of property value; the model forecasts the likelihood of household
dislocation. Let d;;, be the expected population dislocation due to a multi-hazard scenario for building in parcel i € Z and
mitigation option k € XK. The dislocation is computed from four dislocation probabilities based on a random beta
distribution of the four damage factors provided by Bai et al. [48] . These four damage factors correlate to a loss of value.
The likelihood of dislocation is calculated as the sum of the four probabilities multiplied by the four probabilities of
damage states. In the research article by Rosenheim et al. (2019), the authors aim to calculate the population dislocation
due to the impact of natural hazards on buildings [47]. To do this, they use a logistic regression equation (Equation 2) that
considers the probability of dislocation [49]for each building, denoted by p{’,lc. The equation includes various parameters

that affect the probability of dislocation, such as the expected direct economic loss due to building damage (pil,‘(’ss), the a
binary variable (d,scf), representing single family home (1) or not (0). and the percentage of African American residents in

block group (pp!*e). Additionally, the equation also includes the parameter p;™*? which represents percent Hispanic
residents in block group.

1 (2)

d
Dik = i
loss sf black hisp
1+e—(b0+b1pik +byd}) +b3pBlaK b, pl )
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Once the probability of dislocation is calculated, the authors then multiply it with the number of people living in each
building at parcel n;;, to determine the expected value of population dislocation, d;;. This expected value provides an
estimate of the number of people who may be dislocated due to the impact of natural hazards on the building at parcel

n;, fori € Z and mitigation option k € X, given in equation (3).

dy = ch * N (3)

The final community resilience metric is the amount of time it will take to repair each building. HAZUS provides median
repair time estimates for each building type and damage state. Here it is assumed that the four damage states,
none/insignificant, moderate, heavy, and complete, have median repair times of 0.5, 60, 360, and 720 days, respectively.
Following Kameshwar et al. (2019), it is assumed that these median repair time estimates correspond to a lognormal
distribution, each with a dispersion of 0.5 [35]. The mean associated with each lognormal repair time curve is determined

(ur4s), @and the expected repair time at each parcel is computed as in equation (4) and (5).

4
Rik=zpds*urd5 @
ds

The average repair time of the community will be,

__ Ra (5)

t

2.4. Multi-Objective Optimization Model

To define the optimization problem, let Z denote the set of parcels and K denote the set of mitigation options. The
decision variable gives the information of total number of buildings in parcel and mitigation option and the second
decision variable gives the information of total number of buildings retrofitted from mitigation option to mitigation option,
in parcel. Assuming that no mitigation option is applied to the building at the beginning, we assume that the buildings are
initially at mitigation option k=0. The model determines the quantities of each building to be retrofitted with which

mitigation option.

Once, we have calculated these three metrics/parameters at the parcel level; we convert the information to the
community level by multiplying the number of buildings in each parcel. The number of buildings in each parcel i € Z and

mitigation option k € X can be defined as byy,.
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166 The expected economic loss, population dislocation and repair time of the community is given by equation (6), (7), and

167 (8), respectively,

168

D luhu )

iEZkeXK

> duby 7)

iEZ keX

Z tirbix (&)
i€z ke K

169 Since we want to study the effects of modifying the buildings using diverse mitigation options, we incorporate a decision
170 variable x;,, defined as the number of buildings in each parcel i € Z and mitigation option k € K after the
171 strategy/policy mitigation actions have been implemented. Thus, the mitigation strategy/policy used on the community
172 would result in the difference between x;;, and b;;,. Thereby, the objective functions for the model can be calculated by
173 simply be replacing b;;, with x;;, from the equations (6), (7), (8) and adding whether we want to minimize or maximize the
174 metrics. In this case these metrics need to be minimized to reach optimum values, as the goal is to reduce economic loss,
175 population dislocation, and repair time. The objective functions of the proposed optimization model are as shown in

176 equations (9) — (11).

minz Z LixXix 9)

iEZ keX

minz Z diXi (10)

iEZkeX

minz Z tirXik (11)

iEZ keX

177 Although the current model, we are presenting minimization of economic loss, population dislocation, and building repair
178 time within the community as example, it is designed to be generalizable to accommodate other key metrics, both

179 economic and socio physical. For instance, the objective function could be extended to encompass factors such as possible
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impact of social capital or building functionality [39,50] in the context of natural hazard vulnerability. In this modified
scenario, metrics like 'expected economic losses' could be replaced or complemented by ‘social capital vulnerability' or
'level of post-disaster building functionality’ as objectives to be optimized. More generally, the model can be adapted for
a multi-objective setting, where the aim is to simultaneously maximize or minimize multiple social metrics (as depicted in
Equation 12). This can be accomplished through the formulation of a set of objective functions, denoted asn € N, where

1p’l7k represents the expected value of the chosen metrics (e.g., economic loss, population dislocation, contribution of

social capital, building functionality etc.) for each building i € Z, subjected to the mitigation strategy k € K.

minimize or maximize Z Z Yixi, Vn€EN (12)
€2 keX

The optimization approach, in turn, strategically allocates scarce resources to retrofit as many buildings as possible by
mitigation options while simultaneously attempting to mitigate direct loss, population dislocation, and repair time at the
community level. The other decision variable will help here, y;;.,’ denotes the total number of buildings i € Z, of
archetype j € S, associated with retrofit strategy level k € K to level k' € K. As a result, for each mitigation option,
the model determines the number of buildings that would need to be modified for other mitigation measures. Given the
scarcity of resources to retrofit the buildings, it is considered that we have a total maximum budget of B. The cost of
improving from mitigation option k € X to mitigation option k' € X, in parcel i € Z is c;;,’. The optimization model is

informed with the constraint (13) to maintain the retrofit building to be below the total available budget.

z Z Z Cikk'Yikk' < B (13)

i€EZ keEK k' ek

Another set of constraints is making sure that the total number of buildings after retrofitting from mitigation option k €
X to mitigation option k' € ¥ in parcel i € Z is equal to the total number of buildings before retrofitting, which is

presented by constraints (14).

xik = Zk’:(k’,k)&[ yik’k + bik - Zk’:(k,k’)EL yikk, VL € Z;vk € 17( (14)

Constraints (15) to maintain a balance in the number of buildings in each parcel i € Z before and after retrofitting.

Z Xik = Z by, VieZ (15)

keX keX

Finally, the last set of constraints (16) and (17) are to present the domain of the decision variables which are non-negative

integer variables.
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Y’ € 22°, Vi€ Z, (kk')€E L (17)

3. Case Study: Application to Seaside, Oregon

The present study delves into the impact of a multi-hazard scenario in Seaside, Oregon, which is a vulnerable coastal
community located in the North American Pacific Northwest. The region is prone to the rupture of the Cascadia
Subduction Zone (CSZ), a significant 1,000 km fault line stretching from Cape Mendocino to Vancouver Island, and is
formed by the convergence of Juan de Fuca, Explorer, and Gorda plates beneath the North American Plate [51]. This
rupture can result in a catastrophic earthquake and tsunami, and Seaside, with its high social vulnerability index, has been
estimated to have 87% of its developed land within the inundation zone [52]. Therefore, Seaside was selected as the
testbed community for this study, and it has been the focus of numerous other studies, owing to its susceptibility to the
CSZ [23,35,45,47,53-56]. The city and its location, along with its building attributes, are illustrated in Figure 2, providing
a comprehensive picture of the region’s exposure to the multi-hazard scenario. In addition to the attributes shown in

Figure 2, each building’s structural value is available.

w1

® w2
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Figure 2: A overview of the location of Seaside in United States map (a) and locations of buildings based of various building

archetypes (b), current design level (c), number of stories (d), year build (e) of each individual building.
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The objectives of this optimization model can be determined by selecting any metric that reflects some dimension of
performance (or resilience) of the community in question. The selected metric must be readily available at the building
level. For the purpose of this study, the objectives are based on the scenario in Seaside, Oregon. As reported by Wiebe
and Cox (2014), the economic losses from building damage in Seaside, Oregon after a catastrophe can reach a staggering
$1.2 billion. This estimate was obtained by utilizing a methodology for calculating building damage at a community level
using fragility curves [57]. A fragility curve is a statistical function that reflects the performance (or damage state) of a
given demand. It is typically shaped like an "S" and embodies the uncertainty in the system's ability to withstand a specific
loading condition [58]. Fragility curves can be created through judgmental, empirical, analytical, or hybrid methods [58].
In the case of tsunamis, fragility curves have historically been established empirically through field observations,
laboratory experiments, and numerical simulations. In this paper, the advantage of using fragility curves is that it allows
for the integration of all risks and uncertainties into a single function [57]. This methodology enables the calculation of
damage at the individual building level. In this research, only the direct tangible economic loss, represented by building
damage, was considered. It is important to note that although direct intangible losses, such as death, and indirect tangible
losses are also critical factors in disaster scenarios, they were not taken into account in this study. Nevertheless, the largest

economic losses from hazards like earthquake or tsunami are still sustained by buildings and their contents.

This work employs the results of a Probabilistic Seismic and Tsunami Hazard Analysis (PSTHA) carried out by Park, Cox,
and Barbosa (2017). The PSTHA consisted of defining earthquake fault source models and characteristics, creating a logic
tree for a full-margin rupture of the CSZ, and computing earthquake and tsunami intensity measures. The PSTHA
ultimately resulted in earthquake and tsunami hazard layers for seven different recurrence intervals, including 100, 250,
500, 1000, 2500, 5000, and 10,000-year. Parcel-level data that was initially collected to demonstrate a probabilistic
tsunami damage analysis is used here to represent the building inventory [53,59]40] Building losses are measured in
pylncore by overlaying hazard maps on the structures and assessing site-specific severity measures [60—62]. Pylncore
enables users to access, automate, and analyze various hazard-related data and risk models using Python [63]. With
pylncore, researchers and decision-makers can run risk assessments, execute hazard models, and create custom
workflows for comprehensive risk analysis and mitigation. For the earthquake and tsunami, intensity indices of spectral
displacement and momentum flux are used [35]. Previous studies have shown that the 500-year and 1000-year events
presented the most significant economic risk [55]. In this study we consider these two recurrence intervals for the multi-

objective optimization.

In this work, Interdependent Networked Community Resilience Modeling Environment (IN-CORE), an open-source
community resilience modeling environment, is used to perform structural damage analysis [64]. HAZUS fragility models
were used to determine the probability of being in or exceeding a given damage state [44,65] and are characterized by a

lognormal distribution given in Equation (18).

Plds|D] = @ [é In (%)] (18)
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Where ds is the damage state, D is the demand on the structure, 4 is the lognormal standard deviation, and D is the
median of the lognormal distribution associated with damage state ds. This parameterization of lognormal distributions
is used for both the earthquake and tsunami fragility curves. For earthquake hazards, spectral displacement is employed

as the demand type, whereas momentum flux is employed for the tsunami hazard.

The lognormal fragility parameterization depends on the structure type and seismic code. As previously mentioned,
mitigation option 1 corresponds to retrofitting the structure to the highest seismic code, thus shifting the seismic fragility

curves. Example fragility curves for a reinforced concrete structure under high seismic code is illustrated in Figure 3.
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Figure 3: Example fragility curves for a reinforced concrete structure under high seismic code.

Moreover, pylncore uses three limit states and four damage states (none/insignificant, moderate (M), heavy (H), and
complete (C)). Specific definitions of damage vary by structure type, but can generally be defined as follows: moderate
damage corresponds to small cracks in shear walls or beams and columns; extensive damage corresponds to large cracks,
frame elements have their reached capacity, and braces have failed; complete damage corresponds to significant portion
of structural elements have exceeded capacities or the structure has collapsed. The single hazard analysis results in the
probability of being in each of the four damage states for both earthquake and tsunami hazards as well as provide limit
state probabilities. A cumulative building damage module in pylncore combines the damage and limit state probabilities
of individual hazards to cumulative damage/limit state probabilities assuming statistical independence [62]. The

cumulative limit state probabilities considering both the earthquake and tsunami hazards are given in equations (19-21).

P.omp[DS = C] = P[DS = C|Eqke] + P[DS = C|Tsu] — P[DS = C|Eqke] - P[DS = C|Tsu] (19)
+ (P[DS = H|Eqke] — P[DS = C|Eqke]) - (P[DS = H|Tsu] — P[DS = C|Tsu])

P.oms[DS = H] = P[DS > H|Eqke] + P[DS > H|Tsu] — P[DS > H|Eqke] - P[DS > H|Tsu] (20)
+ (P[DS = M|Eqke] — P[DS = H|Eqke]) - (P[DS = M|Tsu] — P[DS = H|Tsu])
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P.omp[DS = M] = P[DS > M|Eqke] + P[DS = H|Tsu] — P[DS > M|Eqke] - P[DS > H|Tsu] (21)

The Seaside community comprises of 4,453 buildings and a population of 6,457 individuals. The overall real market value
of these buildings amounts to an estimated $829,171,004. Based on the calculations, there is a potential for 25% direct
loss due to a 500-year event and 50% direct loss due to a 1000-year event. The direct economic losses are computed using
damage ratios and each parcel's actual market value. Here it is assumed that the four damage states of none/insignificant,
moderate, heavy, and complete have damage ratios of 0.005, 0.155, 0.55, and 0.90, respectively. The expected economic
loss is a function of the retail market value of the building and the probability of being in a damaged state which is
considering various mitigation measures. For calculating the expected population dislocation, we needed to use
Equations (2) and (3). In equation (2), the following parameters are used: b, = —0.42523,b; = 0.02480, b, =
—0.50166,b; = —0.01826,and b, = —0.01198. It should be noted that the default values of these parameters were
developed for the MAEViz earthquake model (Lin et al., 2008) and have been used in previous studies for Seaside
considering earthquake damage (Rosenheim et al., 2021). We assume that the parameters in equation (2) can be used

as-is because the description of damage states for earthquake and tsunami damage are the same.

Unfortunately, the estimated repair times greatly exceed the target recovery time outlined by the Oregon Seismic Safety
Policy Advisory Commission (OSSPAC) [66]. Moreover, it is estimated that in the event of these hazards, 40-50% of the

population may experience dislocation.

Table 1: Community metrics with no mitigation strategy

Return Period (Years) Economic Loss (Million) Population Dislocation Average Repair Time (Days)
500 $237 2574 220
1000 $405 3157 455

The multi-objective optimization paradigm is applied to Seaside in the sections below, which also show mitigation tactics
for the multiple-hazard earthquake tsunami linked to the CSZ. The following sections are arranged per the flowchart in
Figure 1. The first step consists of defining the decision support options. For the case study, community metrics with no
mitigation strategy are given in Table 1 and four mitigation strategies are considered which are summarized in Table 2.
The mitigation options outlined herein are employed to demonstrate the multi-objective optimization framework applied
to multiple hazards. Costs associated with each strategy are not exact and can be refined in future work. All parcels are
initially considered under status quo conditions (Option 0). Park et al. (2017) classified the buildings into HAZUS typologies

and depend on building construction type (wood, reinforced concrete, etc.) and the seismic code [67].

The present study explores three mitigation options for reducing the risk of earthquake and tsunami damage to buildings
located in the Seaside region. The first option, referred to as Option 1, involves retrofitting the building to the highest
seismic code. This option is assumed to improve the building's resistance to earthquake damage, but it is hypothesized to
have no effect on the damage caused by tsunamis. The cost of retrofitting a building is estimated to be 30% of its market
value. The second option, referred to as Option 2, involves relocating the building outside of the tsunami inundation zone.
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Earthquake intensity measures for each recurrence interval are uniform throughout the Seaside, and we assume that
relocated buildings are outside the inundation zone but within the city boundaries. As such, this option results in no
tsunami damage while also having no effect on the earthquake intensity measures a building is subject to. The cost of
relocating a building is estimated to be 100% of its market value. The final option, referred to as Option 3, involves a
combination of both retrofitting and relocation. This option aims to mitigate both earthquake and tsunami damage and
is hypothesized to be the most effective in reducing risk. The cost of implementing Option 3 is estimated to be 130% of
the building's market value. It is important to note that these estimates are based on the assumptions and hypotheses
mentioned above, and future research may reveal different results. The objective of this study is to explore the relative

efficacy of these three mitigation options and to provide guidance for future risk reduction strategies in the Seaside region.

Table 2: Mitigation options available at each parcel

Option Description Targeted Hazard Cost (%RMV)
0 Do nothing (status quo) - -
1 Retrofit structure to high-seismic code Earthquake 30%
2 Relocate structure Tsunami 100%
3 Relocate and retrofit to high-seismic code Earthquake and Tsunami 130%

Assuming these strategy costs based on the current retail value of the building, we can now quantify the expense of a
mitigation strategy at the building stage. The cost of improving from mitigation option k € X to mitigation option k' €

K, in parcel i € Z is c;,, calculated following Equation (22).
Cikkr = Vik * Wkr (22)

Where, vy is the retail market value (also known as building appraisal value) of the building in parcel i € Z and wy,, is

cost percentage of v;;, to improve from mitigation option k € K to mitigation option k' € K.

The present study evaluates the potential impact of three budget scenarios, with budget amounts of $40 million, $80
million, and $120 million, on the community's overall economic loss, population dislocation, and repair times in two multi-
hazard scenarios, namely the 500-year return period and the 1000-year return period. The evaluation is conducted at the
building level, and the mitigation options analyzed include retrofitting buildings to the highest seismic code, relocating

buildings outside of the tsunami inundation zone, and a combination of both retrofitting and relocation.
4. Results and Discussion

The e-constraint approach was used to handle multi-objective optimization problem here where multiple objectives are
in conflict with each other and there is no single solution that is optimal for all objectives [68,69]. The e-constraint

approach allows for the generation of a set of solutions, called the Pareto front, that are non-dominated by any other
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solution. These solutions represent the trade-off between the conflicting objectives and allow decision makers to select

a solution that is most suitable for their needs based on their specific priorities and constraints [70,71].
4.1. Analysis of Multi-hazard Mitigation

The results of the optimization model, using the e-constraint approach, are presented in Figures 4 (a) and (b) and illustrate
the trade-offs between direct economic loss, population dislocation, and average repair time. The solutions are shown on
the Pareto front with different budget levels, with red, green, and blue representing solutions with budgets of $40 million,
$80 million, and $120 million, respectively. Three points are highlighted on each surface, known as Plan 1, Plan 2, and
Plan 3, which represent the optimal solutions in terms of minimizing economic loss, population dislocation, and repair
time. The results shown in Figures 4 (a) and 4 (b) depict the outcomes for a 500-year and a 1000-year multi-hazard event,
respectively. It is important to note that the repair time estimates presented are optimistic and previous studies have
indicated that repair times may be longer when considering the broader regional context in which a community is located

[56].

In the case study under consideration, a set of feasible strategies was evaluated, and three plans were selected for further
analysis. These plans were characterized based on the direct economic damage they would cause, the population
displacement they would result in, and the estimated repair times. By evaluating these trade-offs at different budget
levels, a more comprehensive understanding of the relative merits of each strategy can be achieved. The results of this
analysis can then inform the selection of the best course of action to prepare for the event. The results of the tradeoff
analysis for three different budget levels (540 million, $80 million, and $120 million) are presented in Table 3, Table 4, and
Table 5 respectively. These tables provide insight into the balance between the three conflicting objective functions and
the most cost-effective mitigation options available for each budget level. The results from the tradeoff analysis enable us
to identify the trade-offs between the different objective functions and make informed decisions about the optimal

mitigation strategies.
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Figure 4: Relationship between economic loss and population dislocation for (a) 500-year event, and (b) 1000-year event

Table 3: Tradeoff Analysis between the objectives at $40M budget

Plans Economic Population Repair Number of Number of buildings mitigated
loss dislocation Time buildings not
(Million) (Days) retrofitted Option -1 Option -2 Option -3

500 years $195 2425 162 3425 1028 0 0
(Plan 1)

500 years $210 2245 167 3005 1366 3 79
(Plan 2)

500 years $197 2338 155 3133 1306 5 6
(Plan 3)

1000 years $355 3083 398 3840 613 0 0
(Plan 1)

1000 years $377 2618 363 3433 684 169 167
(Plan 2)

1000 years $375 2623 362 3420 706 187 140
(Plan 3)

Table 4: Tradeoff Analysis between the objectives at S80M budget
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Plans Economic Population Repair Number of Number of buildings mitigated
loss dislocation Time buildings
Option-1 Option -2 Option -3
(Million) (Days) not
retrofitted
500 years $173 2380 142 2899 1528 26 0
(Plan 1)
500 years $200 2177 152 2482 1705 2 264
(Plan 2)
500 years $176 2246 127 2208 2171 23 51
(Plan 3)
1000 years $321 2947 353 3079 1317 57 0
(Plan 1)
1000 years $352 2419 312 2914 922 237 380
(Plan 2)
1000 years $347 2435 310 2902 955 269 327
(Plan 3)
Table 5: Tradeoff Analysis between the objectives at $120M budget
Plans Economic Population Repair Number of Number of buildings mitigated
loss dislocation Time buildings not
(Million) (Days) retrofitted Option—1 Option -2 Option -3
500 years $157 2261 116 1823 2565 10 55
(Plan 1)
500 years $192 2154 145 2239 1746 4 465
(Plan 2)
500 years S164 2181 113 1759 2453 20 221
(Plan 3)
1000 years $295 2851 313 2808 1317 355 0
(Plan 1)
1000 years $332 2311 279 2581 1042 136 694
(Plan 2)
1000 years $304 2399 270 2412 1363 344 334
(Plan 3)
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The choice of budget level is a crucial factor in determining the most appropriate strategy to be adopted in preparation
for a hazard event. The aim of this study is to analyze the trade-off between different budget levels and the corresponding
outcomes in terms of economic loss, population displacement, and repair time. For the selected case study, three plans
were analyzed with varying budget levels. An analysis of the results for a 500-year event reveals that the minimum
economic loss is achieved with Plan 1, with a return on investment of 105% for a budget of $40 million. This budget level
resulted in a reduction of economic loss from $237 million to $195 million. On the other hand, budget levels of $80 million
and $120 million yield return of 80% and 66%, respectively. In terms of repair time, the $40 million investment results in
a 40% improvement, while the $80 million and $120 million investments yield improvements of 73% and 94%,
respectively. It is important to note that the minimum population dislocation of 2245 households can be reduced by 121
households with an additional $40 million investment, which also results in a reduction of $61.6 million in direct economic

loss.

The tradeoffs are numerous, and the outcomes produced by the optimization model can be used in various analyses,
allowing the decision-maker to choose the best plan for their community based on these insights. This model's capability
ranges from providing an overall optimum value on how much we can save in economic loss, population dislocation, and
repair times to informing the user which building needs to be retrofitted with which strategy to achieve these values

within a variety of budgets.
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Figure 5: Example illustration of retrofitting plan — 1 for (a) a 500-year hazard for Seaside with $120 M budget level, (b) detailed view

of a certain location 500-year hazard for Seaside with $120 M budget level

The results of the spatial analysis indicate the effectiveness of different mitigation strategies based on various budget
levels and different objectives. As the budget increases, more structures are found to be optimal to retrofit to the highest

seismic code, even if they need to be relocated. It is noteworthy that a few structures are only relocated without
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376 retrofitting. The results show that the urban corridor of Seaside remains in its current state regardless of the budget level

377 and objective, as it is not a residential area. However, the surrounding residential areas are either retrofitted or relocated.

Mitigation Option 0
e Mitigstion Option 1
. Mitigation Optian 2
 Mitigation Option 3

378 Figure 6: Example illustration of retrofitting plan — 1 for (a) a 1000-year hazard for Seaside with $120 M budget level, (b) detailed
379 view of a certain location 1000-year hazard for Seaside with $120 M budget level

380 The analysis further reveals that with an increased recurrence interval of a natural hazard, such as a tsunami, a significant

381 number of structures shift from retrofitting to relocating. The objective of minimizing economic losses results in the urban
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corridor beginning to shift from its current state to either retrofitting or relocating. Figure 5 and Figure 6 provide an
overview of the distribution of various mitigation measures. Figure 7 depicts Plan 1 on the top and Plan 2 on the bottom
for the 500-year scenario with a $40M budget. In Plan 1, where we have the least economic loss, the model selects the
coastal area with mitigation strategy 1, which is the region with the most costly buildings used for seasonal and
recreational use. The model's tendency to retrofit the most expensive buildings in order to incur the least economic loss
demonstrates the model's preferences in terms of optimal tradeoffs. In Plan 2 Figure 7, we can see that the spread of
strategies is even around the map to help get the least population dislocation while minimizing the total economic loss

by proposing relocated buildings in coastal regions, i.e., mitigation strategy 3.

The transition in mitigation strategy visible in the three chosen plans represents the model's broader pattern of moving
investments from residential to non-residential structures. When these are compared to the competing repair times, the

decision maker gets a unique perspective.
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Figure 7: Comparing Retrofit Plan 1 (a) and Plan 2 (b) for 500-year Event for budget level of $40 million.
4.2. Comparative Analysis of Seismic and Multi-hazard

In hazard and risk assessment, it's imperative to discern the distinct impacts of individual hazards as well as their combined
effects. This section presents a detailed comparison between scenarios considering solely seismic hazard and those
incorporating both seismic and tsunami hazards. This analytical approach allows for a clearer comprehension of the

inherent complexities and potential compounded effects that can arise from multi-hazard scenarios. By differentiating
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these scenarios, this section seeks to emphasize the significance and practical implications of a multi-hazard approach in

engineering risk assessments, thereby reinforcing the key theme of "multiple hazards" within this study. As we mentioned

earlier in this paper, Seaside, Oregon, located near the Cascadia Subduction Zone, is particularly vulnerable to both

earthquakes and tsunamis [45,55,57,72,73]. This subduction zone, where the Juan de Fuca plate moves beneath the North

American plate, has historically triggered significant seismic events. When stress accumulated between these plates is

suddenly released, it not only causes an earthquake but also leads to the sudden displacement of the seabed. This

underwater movement, in turn, can generate tsunamis, given the direct path between the origin of the seismic activity

and Seaside's coastal location. This is why earthquakes and tsunamis are mostly concurrent unwanted events in Seaside.
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Figure 8: Comparative analysis of the multi-hazard scenario (a) with seismic hazard scenario (b) in various budget level
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Figure 8 presents a comparative study of the scenario of multiple hazard and seismic hazard on Seaside, Oregon for a 500-
year event. As this a multi-objective optimization problem, where are trying to minimize the total direct economic loss
due to building damage, population dislocation, and average repair time of the building, after solving the problem we got
multiple optimal solutions in the solution space. It will be then on the decision maker and based on his/her priority to
trade off among objective functions to choose the correct plan. In the case of both seismic and multi-hazard scenario in
the Figure 8, it is visible that the range of improvement in minimization of economic loss is low compared to the higher
investment scenario as in higher budget level decision makers are getting more options to improve or retrofit building
structures. However, as the buildings are getting impacted more in multi-hazard scenarios, population dislocation is

higher in the case of this scenario compared to seismic hazard.

5. Conclusion

To effectively address the increasing threat of natural hazards, communities must prioritize resilience and preparedness
measures. This study aimed to contribute to the development of resilient communities by presenting a novel multi-
objective optimization model for building retrofit decision-making. This model can support building owners in their
analysis of how investments in retrofit measures can impact community vulnerability. The study was implemented in
Seaside, Oregon, a community subject to seismic-tsunami hazards associated with the Cascadia Subduction Zone. The e-
constraint approach is used to generate a set of non-dominated solutions, known as the Pareto front, which allows for a
trade-off analysis of the different mitigation options. The study evaluates three plans based on their economic loss,
population dislocation, and repair time and presents the trade-offs between these objectives at different budget levels.
The results of the study enable decision-makers to make informed decisions about the most cost-effective mitigation

strategies for their community.

However, in this paper, we considered the uncertainty of the natural hazard in the prediction of model parameters as
natural hazards are always uncertain, but it was not considered inside the optimization modeling techniques. In future
work, it would be valuable to incorporate uncertainty into the current optimization model to improve its accuracy and
applicability. Additionally, considering multiple layers of decision-making in the optimization model can further enhance
its usefulness in real-world applications. This study presents an optimization framework for the optimal allocation of
limited resources for building retrofitting and relocation. While the model assumes a centralized budget, we recognize
that in real-world contexts, funding often comes from individual building owners. Furthermore, the proposed model could
be used to depict a scenario where a centralized entity (say, the local government) is determining how to distribute budget
between building owners, to subsidize their individual mitigation actions. Nonetheless, our model offers valuable insights
that can guide community incentive programs or inform grant applications to federal agencies. Furthermore, while our
model suggests optimal solutions under the assumption of a single, benevolent decision-maker, real-world
implementation is far more complex. Decision-making processes involve multiple stakeholders, each with their own
priorities and constraints. Local governments, community organizations, building owners, and residents all play crucial

roles in such endeavors.
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Furthermore, one of the pivotal assumptions in our model pertains to the retrofitting costs, which we initially set at 30%
of the replacement value. This assumption, while illustrative, has significant implications for the outcomes of our model.
For instance, if retrofitting costs were to increase, the economic constraints could potentially reduce the number of
buildings recommended for retrofitting. It's essential to emphasize that the 30% figure, while based on certain industry
standards and previous studies, is not universally applicable. Different regions, building types, and retrofitting techniques
might have varying costs. Moreover, the complexity of the retrofitting process, the availability of materials and skilled
labor, and the specific requirements of a building can all influence the final cost. The sensitivity of our model to this
parameter underscores the importance of context-specific, accurate, and up-to-date cost estimates. While our model
provides a foundational framework for understanding the trade-offs and benefits of retrofitting versus replacement, it's
crucial for decision-makers to integrate local and current data to make informed decisions. In light of this, we recommend
that future applications of this model incorporate a sensitivity analysis around retrofitting costs. This would allow
stakeholders to understand the range of potential outcomes based on varying cost estimates. Furthermore, collaborating
with industry experts and gathering empirical data can refine these assumptions, enhancing the model's applicability and
robustness. The multi-objective formulation of the model presented herein allows decision-makers the ability to explore
tradeoffs across different priorities. Single-objective models, such as those focused on minimizing economic losses,
inherently prioritize retrofitting high-value properties. This is because these properties contribute more significantly to
overall economic losses in the event of a disaster. While effective for loss reduction, this raises equity concerns, especially
for vulnerable community members in lower-value properties. The multi-objective aspect allows decision-makers to
explore solutions across competing priorities — e.g., minimize losses and population dislocation. This model can be
expanded in future work to further explore equity by considering additional objective functions relevant to socio-
economic metrics, such as the social vulnerability index [21,74,75]. This will ensure a balanced and inclusive approach to

disaster mitigation.

This study has made a significant contribution to the field of multi-hazard resilience and provides a valuable tool for
decision-makers in their efforts to make communities more resilient to natural hazards. By considering multiple objective
functions and presenting multiple retrofit plans, this model allows for a more comprehensive and data-driven approach
to building retrofit decision-making. Although we studied our model effectiveness on physical infrastructure and
economic parameters, the role of social capital in community resilience and disaster risk reduction is noteworthy and
warrants further examination. Social capital can be considered an additional layer that contributes to a community's
ability to prepare for, respond to, and recover from natural hazards. In future work, the optimization model could be
expanded to integrate metrics related to social capital, such as community engagement, trust, and social networks [32,33].
The model can be applied to other communities and serves as a starting point for further research and development in

the field of building resilience and disaster preparedness.
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