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Abstract 8 

Natural hazards can have a devastating impact on communities, leading to social and economic losses. These 9 

effects are particularly severe in multi-hazard contexts, where multiple disruptive events occur simultaneously 10 

or consecutively (such as earthquakes and tsunamis). To reduce the impact of such events, it is critical to enhance 11 

community resilience and make it more capable of withstanding and recovering from diverse types of damage. 12 

In this study, we propose a multi-objective optimization model to determine optimal retrofitting strategies to 13 

enhance community resilience under multiple hazards. We used the proposed model to analyze the impact of 14 

earthquake and tsunami hazards on the community of Seaside, Oregon. It assesses the effectiveness of different 15 

retrofitting strategies at the parcel scale, considering the conflicting objectives of reducing overall economic loss, 16 

population dislocation, and building repair times. Our results demonstrate that retrofitting buildings to achieve 17 

higher seismic codes can significantly reduce the impact of natural hazards on structural damage, population 18 

dislocation, and building repair times. Additionally, our findings reveal the importance of considering 19 

geographical location and mitigation measures when optimizing retrofitting strategies. By considering budget 20 

constraints and community resilience metrics, our model identifies the most effective retrofitting strategies for 21 

individual buildings of Seaside, which ultimately helps the community make informed decisions about 22 

investments to reduce the impact of natural hazards. Overall, this study provides valuable insights into the 23 

importance of enhancing community resilience in multi-hazard contexts and showcases the use of a multi-24 

objective optimization model to identify optimal retrofitting strategies. 25 

Keywords: Multi-hazard; multi-objective optimization; community resilience; building mitigation; population 26 

dislocation. 27 

 28 

1. Introduction 29 

Community structures, transportation, communication, and power systems across a community or geographic area, the 30 

economy, and the accessibility to social services can all suffer severe harm and disruptions due to natural and human-31 
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caused hazards [1–3]. Additionally, the social capital of a community, which refers to the networks and relationships that 32 

enable effective response and recovery, can also be affected by these hazards [4–8]. Therefore, it is crucial to seek effective 33 

ways to improve the resilience of communities and their structures against such hazards. The impact that these hazards 34 

have on communities can be devastating. Natural hazards threaten life safety, and damage to infrastructure can disrupt 35 

communities. The effects of which can last years following the initial event [9,10]. In light of these hazards, mitigation 36 

strategies that reduce the damage can be employed. These depend on various elements, such as risks, time and budgetary 37 

constraints [11], and community values. Retrofitting structures as a mitigation method against flooding, earthquakes, and 38 

tornadoes involves adjusting existing buildings to withstand these hazards better. On the other hand, mitigating the effects 39 

of tsunamis involves relocating structures from tsunami inundation zones and strengthening buildings to resist the forces 40 

of tsunamis [12].  41 

To improve a community's ability to respond to hazards, the field of resilience planning has gained traction. This area of 42 

study aims to both quantify and reduce the negative impacts of hazards on communities [13–16]. The concept of 43 

resilience, which was first applied to communities in the context of natural hazards by Bruneau et al. (2003), refers to a 44 

community's ability to adapt and sustain operations during hazardous events [17]. The study of community resilience is 45 

interdisciplinary, involving fields such as ecology, psychology, and economics. As a result, resilience planning should 46 

consider the natural, built, and socioeconomic environments [18–22]. Despite ongoing research in various disciplines, the 47 

integration of all elements of community resilience is still lacking. For example, Guidotti et al. (2019) studied population 48 

dislocation and the ability of a water network to meet demand, while Franchin & Cavalieri (2015) looked at population 49 

dislocation and road damage using a Bayesian network [23,24]. Additionally, Kavvada et al. (2022) presented a novel 50 

model, contemplating the dual aspects of economic and environmental implications of earthquake retrofitting. Using San 51 

Francisco as a reference, it also highlights an original method for equitable resource distribution, underlining the 52 

importance of balancing economic prudence and social fairness in disaster readiness [25]. While this study focuses on 53 

retrofitting strategies for buildings, it is important to acknowledge that social capital also plays a role in overall community 54 

resilience. It encompasses trust, cooperation, and shared norms within a community, which can significantly contribute 55 

to quicker recovery and better adaptation post-disaster. Hence, although our focus is on structural mitigation measures, 56 

the interplay between physical infrastructure and social resources should not be overlooked [26–33].  57 

Decision support systems for natural hazards aim to lower risks and/or boost community resilience. A comprehensive 58 

review of decision support systems for natural hazards [34] evaluated more than a hundred papers and devised a decision 59 

support system classification system. According to Newman et al. (2017), decision support systems can relate to (i) 60 

exploring risks associated with natural hazards under present-day conditions [2,35], (ii) manually evaluating risk-reduction 61 

alternatives via what-if scenarios [35], and (iii) developing models that determine optimal solutions and automatically 62 

develop risk reduction plans [36,37]. Each of these, according to Newman et al. (2017), exhibits increasing levels of 63 

decision support [34]. This study indicates that the field of decision support systems has concentrated chiefly on the first 64 

two domains, evaluating risk and resilience, but less work has been concentrated on optimizing mitigation measures, 65 

despite this areas rising popularity. 66 

Within this subdiscipline of decision support systems applied to natural hazards, optimization can relate to either pre-67 

emptive mitigation or restoration strategies. Considering the former, Zhang and Nicholson (2016) developed a multi-68 
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objective optimization model considering the performance of interdependent physical, social, and economic systems 69 

under disruption from earthquake hazards [38], and Wen (2021) extended that work by implementing new objectives to 70 

the optimization model which was applied for tornado hazard [39]. Through this work, Wen (2021) suggested mitigation 71 

measures for building blocks under tornado hazard and, after that, Gupta et al. (2022) formulated an optimization model 72 

for building-level mitigation measures for the community under flooding hazard [40]. On the other hand, considering the 73 

optimization of restoration strategies, González et al. (2016) and Gomez et al. (2019) posed the Interdependent Network 74 

Design Problem (INDP), which is concerned with determining the least-cost reconstruction strategy for a partially 75 

destroyed system of interdependent infrastructure networks [37,41]. Similarly, Zhang, Wang, and Nicholson (2017) 76 

considered the post-disaster recovery of road and bridge transportation networks [42]. 77 

Given that communities are often prone to multiple hazards, this paper presents an optimization model for enhancing 78 

the community's resilience against multiple natural hazards. Namely, a multi-objective optimization model for building 79 

mitigation strategies subject to multiple hazards is proposed. While multi-objective optimization models for resilience 80 

have been developed by Zhang and Nicholson (2016), Wen (2021), and Gupta et al. (2022), the novelty of this paper lies 81 

in that multiple hazards are considered, and the solutions provided are the individual building level [38,39,43]. As such, 82 

mitigation options that target either both or one of the underlying hazards are included in the model. Further, the multi-83 

objective aspect of this framework provides avenues to consider the impact that hazards have on buildings and the 84 

population, which was previously not considered by Gupta et al. (2022) [40]. The remainder of this paper is organized as 85 

follows. The approach and formulation of the multi-objective optimization model are covered in Section 2 of the 86 

remaining text. The suggested model is applied to Seaside, Oregon, as a case study in Section 3; the results are then 87 

discussed, and conclusions are presented in Section 4. Section 4 also covers future research directions. 88 

2.  Research Methodology 89 

The multi-objective optimization of building mitigation strategies subject to multiple hazards is shown in Figure 1. This 90 

model assumes a community with one or more distinct zones. A community zone is any defined geographic region that 91 

contains structures of interest. Such zones could be based on census tracts, topographically distinct regions, or areas of 92 

relative homogeneity in structure types or purposes. Furthermore, it is believed that the community has information 93 

related to structure type, retail market value, and the population at the parcel level. The framework consists of four 94 

primary steps: (i) defining decision support options, (ii) performing the multi-hazard damage analysis, (iii) extracting 95 

metrics from the multi-hazard damage analysis to be used in the optimization model, and (iv) performing the multi-96 

objective optimization. The following subsections outline each of these steps in detail.  97 
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 98 

Figure 1: Framework demonstrating the detailed research methodology. 99 

2.1.  Decision Support Options 100 

The first step in this framework is to define decision support options, which consists of identifying: (i) a suite of mitigation 101 

strategies to consider and (ii) constraints that are employed in the optimization model. In the context of disasters, the 102 

former can consist of either proactive or reactive strategies. The costs of implementing each of the mitigation strategies 103 

should be defined. The latter consists of identifying constraints that are employed in the optimization model and can 104 

consist of items such as budgetary or resource limits.  105 

2.2.  Multi-Hazard Damage Analysis 106 

Following the identification of decision support options, a multi-hazard damage analysis is performed to determine the 107 

probability of being in a certain damage state for each parcel. This step involves mapping spatially explicit hazard intensity 108 

measures of the underlying individual hazards to the built environment. This is shown in Figure 1 via the connections 109 

between the multiple hazards and the parcel/building inventory box. Methods to employ a multi-hazard damage analysis 110 

are numerous and can range from using fragility surfaces to assuming the underlying hazards and damages are statistically 111 

independent[44,45]. For a comprehensive review of multi-hazard risk and damage analyses, readers are directed to [2]. 112 

2.3.  Optimization Model Parameters 113 

One of the key components in constructing an optimization model is the model parameters, which have a significant 114 

impact on the optimization results. In this case, the required parameters are obtained from a multi-hazard damage 115 
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analysis. The important parameters of this multi-objective optimization model include the predicted direct economic loss 116 

due to building damage, the expected displacement of the population due to natural hazards, and the estimated repair 117 

time required to address disaster damage. Let, 𝑙𝑖𝑘  denote the expected direct economic loss due to a multi-hazard 118 

scenario for building in parcel 𝑖 ∈ 𝒵 and mitigation option 𝑘 ∈  𝒦. These mitigation measures for buildings for various 119 

natural hazards refer to actions or strategies that aim to reduce the negative impacts of these hazards on the built 120 

environment. These measures can include physical modifications to buildings and infrastructure, such as retrofitting or 121 

reinforcing structures to better withstand specific hazards, as well as non-structural measures, such as land-use planning, 122 

early warning systems, and emergency management plans [46]. The calculation of direct economic loss due to building 123 

damage is presented in equation (1).  124 

 125 

𝑙𝑖𝑘 = 𝑣𝑖𝑘 (∑ 𝑃𝑑𝑠 ∗ 𝑟𝑑𝑠

𝑑𝑠

) 

 

(1) 

In equation (1),  𝑣𝑖𝑘  is the retail market value (also known as appraisal value) of the building in parcel 𝑖 ∈ 𝒵 and mitigation 126 

option 𝑘 ∈  𝒦, rds is the damage ratio associated with the damage state(ds) of the building in parcel 𝑖 ∈ 𝒵 and mitigation 127 

option 𝑘 ∈  𝒦. For this study, four damage state probabilities are considered and each of it has a damage factor depending 128 

on a hazard. Probability of damage state is presented by 𝑃𝑑𝑠  in the equation.  129 

The damage state probabilities are additionally used for the calculation of population dislocation which is the second 130 

community resilience metric in our research, was computed by Rosenheim et al. [47]. The human systems response, 131 

household dislocation, was modeled using data and results from housing unit and household surveys conducted in the 132 

aftermath of Hurricane Andrew based on the loss of property value; the model forecasts the likelihood of household 133 

dislocation. Let 𝑑𝑖𝑘  be the expected population dislocation due to a multi-hazard scenario for building in parcel 𝑖 ∈ 𝒵 and 134 

mitigation option 𝑘 ∈  𝒦. The dislocation is computed from four dislocation probabilities based on a random beta 135 

distribution of the four damage factors provided by Bai et al. [48] . These four damage factors correlate to a loss of value. 136 

The likelihood of dislocation is calculated as the sum of the four probabilities multiplied by the four probabilities of 137 

damage states. In the research article by Rosenheim et al. (2019), the authors aim to calculate the population dislocation 138 

due to the impact of natural hazards on buildings [47]. To do this, they use a logistic regression equation (Equation 2) that 139 

considers the probability of dislocation [49]for each building, denoted by 𝑝𝑖𝑘
𝑑 . The equation includes various parameters 140 

that affect the probability of dislocation, such as the expected direct economic loss due to building damage (𝑝𝑖𝑘
𝑙𝑜𝑠𝑠), the a 141 

binary variable (𝑑𝑘
𝑠𝑓

), representing single family home (1) or not (0). and the percentage of African American residents in 142 

block group (𝑝𝑘
𝑏𝑙𝑎𝑐𝑘). Additionally, the equation also includes the parameter 𝑝𝑘

ℎ𝑖𝑠𝑝
 which represents percent Hispanic 143 

residents in block group. 144 

𝑝𝑖𝑘
𝑑 =

1

1 + 𝑒−(𝑏0+𝑏1𝑝𝑖𝑘
𝑙𝑜𝑠𝑠+𝑏2𝑑𝑘

𝑠𝑓
+𝑏3𝑝𝑘

𝑏𝑙𝑎𝑐𝑘+𝑏4𝑝𝑘
ℎ𝑖𝑠𝑝

 )
 

(2) 
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Once the probability of dislocation is calculated, the authors then multiply it with the number of people living in each 145 

building at parcel 𝑛𝑖𝑘  to determine the expected value of population dislocation, 𝑑𝑖𝑘. This expected value provides an 146 

estimate of the number of people who may be dislocated due to the impact of natural hazards on the building at parcel 147 

𝑛𝑖𝑘   for 𝑖 ∈ 𝒵 and mitigation option 𝑘 ∈  𝒦, given in equation (3).  148 

𝑑𝑖𝑘 = 𝑝𝑖𝑘
𝑑 ∗ 𝑛𝑖𝑘 

 

 (3) 

The final community resilience metric is the amount of time it will take to repair each building. HAZUS provides median 149 

repair time estimates for each building type and damage state. Here it is assumed that the four damage states, 150 

none/insignificant, moderate, heavy, and complete, have median repair times of 0.5, 60, 360, and 720 days, respectively. 151 

Following Kameshwar et al. (2019), it is assumed that these median repair time estimates correspond to a lognormal 152 

distribution, each with a dispersion of 0.5 [35]. The mean associated with each lognormal repair time curve is determined 153 

(urds
), and the expected repair time at each parcel is computed as in equation (4) and (5).  154 

𝑅𝑖𝑘 =  ∑ 𝑃𝑑𝑠 ∗ 𝑢𝑟𝑑𝑠

𝑑𝑠

 

 

(4) 

The average repair time of the community will be, 155 

𝑡𝑖𝑘 =
𝑅𝑖𝑘

𝛴 𝑏𝑖𝑘

 

 

(5) 

2.4.  Multi-Objective Optimization Model  156 

To define the optimization problem, let 𝒵 denote the set of parcels and 𝒦 denote the set of mitigation options. The 157 

decision variable gives the information of total number of buildings in parcel and mitigation option and the second 158 

decision variable gives the information of total number of buildings retrofitted from mitigation option to mitigation option, 159 

in parcel. Assuming that no mitigation option is applied to the building at the beginning, we assume that the buildings are 160 

initially at mitigation option k=0. The model determines the quantities of each building to be retrofitted with which 161 

mitigation option.  162 

Once, we have calculated these three metrics/parameters at the parcel level; we convert the information to the 163 

community level by multiplying the number of buildings in each parcel. The number of buildings in each parcel 𝑖 ∈ 𝒵 and 164 

mitigation option 𝑘 ∈  𝒦 can be defined as 𝑏𝑖𝑘. 165 
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The expected economic loss, population dislocation and repair time of the community is given by equation (6), (7), and 166 

(8), respectively, 167 

 168 

∑ ∑ 𝑙𝑖𝑘𝑏𝑖𝑘

𝑘 ∈ 𝒦𝑖∈𝒵

 

 

(6) 

∑ ∑ 𝑑𝑖𝑘𝑏𝑖𝑘

𝑘 ∈ 𝒦𝑖∈𝒵

 

 

(7) 

∑ ∑ 𝑡𝑖𝑘𝑏𝑖𝑘

𝑘 ∈ 𝒦𝑖∈𝒵

 

 

(8) 

Since we want to study the effects of modifying the buildings using diverse mitigation options, we incorporate a decision 169 

variable 𝑥𝑖𝑘, defined as the number of buildings in each parcel 𝑖 ∈ 𝒵 and mitigation option 𝑘 ∈  𝒦 after the 170 

strategy/policy mitigation actions have been implemented. Thus, the mitigation strategy/policy used on the community 171 

would result in the difference between 𝑥𝑖𝑘  and 𝑏𝑖𝑘. Thereby, the objective functions for the model can be calculated by 172 

simply be replacing 𝑏𝑖𝑘  with 𝑥𝑖𝑘  from the equations (6), (7), (8) and adding whether we want to minimize or maximize the 173 

metrics. In this case these metrics need to be minimized to reach optimum values, as the goal is to reduce economic loss, 174 

population dislocation, and repair time. The objective functions of the proposed optimization model are as shown in 175 

equations (9) – (11).  176 

𝑚𝑖𝑛 ∑ ∑ 𝑙𝑖𝑘𝑥𝑖𝑘

𝑘 ∈ 𝒦𝑖∈𝒵

 

 

 (9) 

𝑚𝑖𝑛 ∑ ∑ 𝑑𝑖𝑘𝑥𝑖𝑘

𝑘 ∈ 𝒦𝑖∈𝒵

 

 

 (10) 

𝑚𝑖𝑛 ∑ ∑ 𝑡𝑖𝑘𝑥𝑖𝑘

𝑘 ∈ 𝒦𝑖∈𝒵

 

 

(11) 

Although the current model, we are presenting minimization of economic loss, population dislocation, and building repair 177 

time within the community as example, it is designed to be generalizable to accommodate other key metrics, both 178 

economic and socio physical. For instance, the objective function could be extended to encompass factors such as possible 179 
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impact of social capital or building functionality [39,50] in the context of natural hazard vulnerability. In this modified 180 

scenario, metrics like 'expected economic losses' could be replaced or complemented by ‘social capital vulnerability' or 181 

'level of post-disaster building functionality’ as objectives to be optimized. More generally, the model can be adapted for 182 

a multi-objective setting, where the aim is to simultaneously maximize or minimize multiple social metrics (as depicted in 183 

Equation 12). This can be accomplished through the formulation of a set of objective functions, denoted as 𝑛 ∈ 𝑁, where  184 

𝜓
𝑖𝑘
𝑛  represents the expected value of the chosen metrics (e.g., economic loss, population dislocation, contribution of 185 

social capital, building functionality etc.) for each building 𝑖 ∈ 𝑍, subjected to the mitigation strategy 𝑘 ∈ 𝐾. 186 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝜓𝑖𝑘
𝑛 𝑥𝑖𝑘

𝑘 ∈ 𝒦𝑖∈𝒵

,    ∀𝑛 ∈ 𝑁   

 

(12) 

The optimization approach, in turn, strategically allocates scarce resources to retrofit as many buildings as possible by 187 

mitigation options while simultaneously attempting to mitigate direct loss, population dislocation, and repair time at the 188 

community level. The other decision variable will help here, 𝑦𝑖𝑗𝑘𝑘′  denotes the total number of buildings 𝑖 ∈  𝑍, of 189 

archetype 𝑗 ∈  𝑆, associated with retrofit strategy level 𝑘 ∈ 𝐾 to level 𝑘′ ∈  𝐾. As a result, for each mitigation option, 190 

the model determines the number of buildings that would need to be modified for other mitigation measures. Given the 191 

scarcity of resources to retrofit the buildings, it is considered that we have a total maximum budget of B. The cost of 192 

improving from mitigation option 𝑘 ∈  𝒦 to mitigation option 𝑘′ ∈ 𝒦, in parcel 𝑖 ∈ 𝒵 is 𝑐𝑖𝑘𝑘′. The optimization model is 193 

informed with the constraint (13) to maintain the retrofit building to be below the total available budget. 194 

∑ ∑ ∑ 𝑐𝑖𝑘𝑘′𝑦𝑖𝑘𝑘′

 𝑘′ ∈ 𝒦  𝑘 ∈ 𝒦𝑖∈𝒵

≤ 𝐵 (13) 

  

Another set of constraints is making sure that the total number of buildings after retrofitting from mitigation option k ∈195 

𝒦 to mitigation option 𝑘′ ∈ 𝒦 in parcel 𝑖 ∈ 𝒵 is equal to the total number of buildings before retrofitting, which is 196 

presented by constraints (14).  197 

𝑥𝑖𝑘 = ∑ 𝑦𝑖𝑘′𝑘𝑘′:(𝑘′,𝑘)∈ℒ  
+  𝑏𝑖𝑘  −  ∑ 𝑦𝑖𝑘𝑘′

𝑘′:(𝑘,𝑘′)∈ℒ  
 ∀𝑖 ∈ 𝒵, ∀ 𝑘 ∈ 𝒦  

 

(14) 

Constraints (15) to maintain a balance in the number of buildings in each parcel i ∈ 𝒵 before and after retrofitting. 198 

∑ 𝑥𝑖𝑘

𝑘∈𝒦

= ∑ 𝑏𝑖𝑘

𝑘∈𝒦

, ∀𝑖 ∈ 𝒵 

 

(15) 

Finally, the last set of constraints (16) and (17) are to present the domain of the decision variables which are non-negative 199 

integer variables. 200 
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𝑥𝑖𝑘  ∈  ℤ≥0, ∀𝑖 ∈ 𝒵, 𝑘 ∈ 𝒦 (16) 

𝑦𝑖𝑘𝑘′ ∈  ℤ≥0, ∀𝑖 ∈ 𝒵, (𝑘, 𝑘′) ∈  ℒ (17) 

 201 

3. Case Study: Application to Seaside, Oregon 202 

The present study delves into the impact of a multi-hazard scenario in Seaside, Oregon, which is a vulnerable coastal 203 

community located in the North American Pacific Northwest. The region is prone to the rupture of the Cascadia 204 

Subduction Zone (CSZ), a significant 1,000 km fault line stretching from Cape Mendocino to Vancouver Island, and is 205 

formed by the convergence of Juan de Fuca, Explorer, and Gorda plates beneath the North American Plate [51]. This 206 

rupture can result in a catastrophic earthquake and tsunami, and Seaside, with its high social vulnerability index, has been 207 

estimated to have 87% of its developed land within the inundation zone [52]. Therefore, Seaside was selected as the 208 

testbed community for this study, and it has been the focus of numerous other studies, owing to its susceptibility to the 209 

CSZ [23,35,45,47,53–56]. The city and its location, along with its building attributes, are illustrated in Figure 2, providing 210 

a comprehensive picture of the region’s exposure to the multi-hazard scenario. In addition to the attributes shown in 211 

Figure 2, each building’s structural value is available. 212 

 213 

Figure 2: A overview of the location of Seaside in United States map (a) and locations of buildings based of various building 214 

archetypes (b), current design level (c), number of stories (d), year build (e) of each individual building.  215 
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The objectives of this optimization model can be determined by selecting any metric that reflects some dimension of 216 

performance (or resilience) of the community in question. The selected metric must be readily available at the building 217 

level. For the purpose of this study, the objectives are based on the scenario in Seaside, Oregon. As reported by Wiebe 218 

and Cox (2014), the economic losses from building damage in Seaside, Oregon after a catastrophe can reach a staggering 219 

$1.2 billion. This estimate was obtained by utilizing a methodology for calculating building damage at a community level 220 

using fragility curves [57]. A fragility curve is a statistical function that reflects the performance (or damage state) of a 221 

given demand. It is typically shaped like an "S" and embodies the uncertainty in the system's ability to withstand a specific 222 

loading condition  [58]. Fragility curves can be created through judgmental, empirical, analytical, or hybrid methods [58]. 223 

In the case of tsunamis, fragility curves have historically been established empirically through field observations, 224 

laboratory experiments, and numerical simulations. In this paper, the advantage of using fragility curves is that it allows 225 

for the integration of all risks and uncertainties into a single function [57]. This methodology enables the calculation of 226 

damage at the individual building level. In this research, only the direct tangible economic loss, represented by building 227 

damage, was considered. It is important to note that although direct intangible losses, such as death, and indirect tangible 228 

losses are also critical factors in disaster scenarios, they were not taken into account in this study. Nevertheless, the largest 229 

economic losses from hazards like earthquake or tsunami are still sustained by buildings and their contents.  230 

This work employs the results of a Probabilistic Seismic and Tsunami Hazard Analysis (PSTHA) carried out by Park, Cox, 231 

and Barbosa (2017). The PSTHA consisted of defining earthquake fault source models and characteristics, creating a logic 232 

tree for a full-margin rupture of the CSZ, and computing earthquake and tsunami intensity measures. The PSTHA 233 

ultimately resulted in earthquake and tsunami hazard layers for seven different recurrence intervals, including 100, 250, 234 

500, 1000, 2500, 5000, and 10,000-year. Parcel-level data that was initially collected to demonstrate a probabilistic 235 

tsunami damage analysis is used here to represent the building inventory [53,59]40] Building losses are measured in 236 

pyIncore by overlaying hazard maps on the structures and assessing site-specific severity measures [60–62]. PyIncore 237 

enables users to access, automate, and analyze various hazard-related data and risk models using Python [63]. With 238 

pyIncore, researchers and decision-makers can run risk assessments, execute hazard models, and create custom 239 

workflows for comprehensive risk analysis and mitigation. For the earthquake and tsunami, intensity indices of spectral 240 

displacement and momentum flux are used [35]. Previous studies have shown that the 500-year and 1000-year events 241 

presented the most significant economic risk [55]. In this study we consider these two recurrence intervals for the multi-242 

objective optimization.  243 

In this work, Interdependent Networked Community Resilience Modeling Environment (IN-CORE), an open-source 244 

community resilience modeling environment, is used to perform structural damage analysis [64]. HAZUS fragility models 245 

were used to determine the probability of being in or exceeding a given damage state [44,65] and are characterized by a 246 

lognormal distribution given in Equation (18).  247 

𝑃[𝑑𝑠|𝐷] =  𝛷 [
1

𝛽𝑑𝑠

𝑙𝑛 (
𝐷

𝐷̅𝑑𝑠

)] 

 

(18) 
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Where 𝑑𝑠 is the damage state, 𝐷 is the demand on the structure, 𝛽𝑑𝑠 is the lognormal standard deviation, and 𝐷̅𝑑𝑠 is the 248 

median of the lognormal distribution associated with damage state 𝑑𝑠. This parameterization of lognormal distributions 249 

is used for both the earthquake and tsunami fragility curves. For earthquake hazards, spectral displacement is employed 250 

as the demand type, whereas momentum flux is employed for the tsunami hazard.  251 

The lognormal fragility parameterization depends on the structure type and seismic code. As previously mentioned, 252 

mitigation option 1 corresponds to retrofitting the structure to the highest seismic code, thus shifting the seismic fragility 253 

curves. Example fragility curves for a reinforced concrete structure under high seismic code is illustrated in Figure 3.   254 

 255 

Figure 3: Example fragility curves for a reinforced concrete structure under high seismic code. 256 

Moreover, pyIncore uses three limit states and four damage states (none/insignificant, moderate (M), heavy (H), and 257 

complete (C)). Specific definitions of damage vary by structure type, but can generally be defined as follows: moderate 258 

damage corresponds to small cracks in shear walls or beams and columns; extensive damage corresponds to large cracks, 259 

frame elements have their reached capacity, and braces have failed; complete damage corresponds to significant portion 260 

of structural elements have exceeded capacities or the structure has collapsed. The single hazard analysis results in the 261 

probability of being in each of the four damage states for both earthquake and tsunami hazards as well as provide limit 262 

state probabilities. A cumulative building damage module in pyIncore combines the damage and limit state probabilities 263 

of individual hazards to cumulative damage/limit state probabilities assuming statistical independence [62]. The 264 

cumulative limit state probabilities considering both the earthquake and tsunami hazards are given in equations (19-21).  265 

𝑃𝑐𝑜𝑚𝑏[𝐷𝑆 = 𝐶] = 𝑃[𝐷𝑆 = 𝐶|𝐸𝑞𝑘𝑒] + 𝑃[𝐷𝑆 = 𝐶|𝑇𝑠𝑢] − 𝑃[𝐷𝑆 = 𝐶|𝐸𝑞𝑘𝑒] ∙ 𝑃[𝐷𝑆 = 𝐶|𝑇𝑠𝑢]

+ (𝑃[𝐷𝑆 ≥ 𝐻|𝐸𝑞𝑘𝑒] − 𝑃[𝐷𝑆 = 𝐶|𝐸𝑞𝑘𝑒]) ∙ (𝑃[𝐷𝑆 ≥ 𝐻|𝑇𝑠𝑢] − 𝑃[𝐷𝑆 = 𝐶|𝑇𝑠𝑢]) 

(19) 

𝑃𝑐𝑜𝑚𝑏[𝐷𝑆 ≥ 𝐻] = 𝑃[𝐷𝑆 ≥ 𝐻|𝐸𝑞𝑘𝑒] + 𝑃[𝐷𝑆 ≥ 𝐻|𝑇𝑠𝑢] − 𝑃[𝐷𝑆 ≥ 𝐻|𝐸𝑞𝑘𝑒] ∙ 𝑃[𝐷𝑆 ≥ 𝐻|𝑇𝑠𝑢]

+ (𝑃[𝐷𝑆 ≥ 𝑀|𝐸𝑞𝑘𝑒] − 𝑃[𝐷𝑆 ≥ 𝐻|𝐸𝑞𝑘𝑒]) ∙ (𝑃[𝐷𝑆 ≥ 𝑀|𝑇𝑠𝑢] − 𝑃[𝐷𝑆 ≥ 𝐻|𝑇𝑠𝑢]) 

(20) 
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𝑃𝑐𝑜𝑚𝑏[𝐷𝑆 ≥ 𝑀] = 𝑃[𝐷𝑆 ≥ 𝑀|𝐸𝑞𝑘𝑒] + 𝑃[𝐷𝑆 ≥ 𝐻|𝑇𝑠𝑢] − 𝑃[𝐷𝑆 ≥ 𝑀|𝐸𝑞𝑘𝑒] ∙ 𝑃[𝐷𝑆 ≥ 𝐻|𝑇𝑠𝑢] (21) 

The Seaside community comprises of 4,453 buildings and a population of 6,457 individuals. The overall real market value 266 

of these buildings amounts to an estimated $829,171,004. Based on the calculations, there is a potential for 25% direct 267 

loss due to a 500-year event and 50% direct loss due to a 1000-year event. The direct economic losses are computed using 268 

damage ratios and each parcel's actual market value. Here it is assumed that the four damage states of none/insignificant, 269 

moderate, heavy, and complete have damage ratios of 0.005, 0.155, 0.55, and 0.90, respectively. The expected economic 270 

loss is a function of the retail market value of the building and the probability of being in a damaged state which is 271 

considering various mitigation measures.  For calculating the expected population dislocation, we needed to use 272 

Equations (2) and (3). In equation (2), the following parameters are used: 𝑏0 = −0.42523, 𝑏1 = 0.02480, 𝑏2 =273 

−0.50166, 𝑏3 = −0.01826, 𝑎𝑛𝑑 𝑏4 = −0.01198. It should be noted that the default values of these parameters were 274 

developed for the MAEViz earthquake model (Lin et al., 2008) and have been used in previous studies for Seaside 275 

considering earthquake damage (Rosenheim et al., 2021). We assume that the parameters in equation (2) can be used 276 

as-is because the description of damage states for earthquake and tsunami damage are the same. 277 

Unfortunately, the estimated repair times greatly exceed the target recovery time outlined by the Oregon Seismic Safety 278 

Policy Advisory Commission (OSSPAC) [66]. Moreover, it is estimated that in the event of these hazards, 40-50% of the 279 

population may experience dislocation. 280 

Table 1: Community metrics with no mitigation strategy 281 

Return Period (Years) Economic Loss (Million) Population Dislocation Average Repair Time (Days) 

500 $237 2574 220 

1000 $405 3157 455 

 282 

The multi-objective optimization paradigm is applied to Seaside in the sections below, which also show mitigation tactics 283 

for the multiple-hazard earthquake tsunami linked to the CSZ. The following sections are arranged per the flowchart in 284 

Figure 1.  The first step consists of defining the decision support options. For the case study, community metrics with no 285 

mitigation strategy are given in Table 1 and four mitigation strategies are considered which are summarized in Table 2. 286 

The mitigation options outlined herein are employed to demonstrate the multi-objective optimization framework applied 287 

to multiple hazards. Costs associated with each strategy are not exact and can be refined in future work. All parcels are 288 

initially considered under status quo conditions (Option 0). Park et al. (2017) classified the buildings into HAZUS typologies 289 

and depend on building construction type (wood, reinforced concrete, etc.) and the seismic code [67].  290 

The present study explores three mitigation options for reducing the risk of earthquake and tsunami damage to buildings 291 

located in the Seaside region. The first option, referred to as Option 1, involves retrofitting the building to the highest 292 

seismic code. This option is assumed to improve the building's resistance to earthquake damage, but it is hypothesized to 293 

have no effect on the damage caused by tsunamis. The cost of retrofitting a building is estimated to be 30% of its market 294 

value. The second option, referred to as Option 2, involves relocating the building outside of the tsunami inundation zone. 295 
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Earthquake intensity measures for each recurrence interval are uniform throughout the Seaside, and we assume that 296 

relocated buildings are outside the inundation zone but within the city boundaries. As such, this option results in no 297 

tsunami damage while also having no effect on the earthquake intensity measures a building is subject to. The cost of 298 

relocating a building is estimated to be 100% of its market value. The final option, referred to as Option 3, involves a 299 

combination of both retrofitting and relocation. This option aims to mitigate both earthquake and tsunami damage and 300 

is hypothesized to be the most effective in reducing risk. The cost of implementing Option 3 is estimated to be 130% of 301 

the building's market value. It is important to note that these estimates are based on the assumptions and hypotheses 302 

mentioned above, and future research may reveal different results. The objective of this study is to explore the relative 303 

efficacy of these three mitigation options and to provide guidance for future risk reduction strategies in the Seaside region. 304 

Table 2: Mitigation options available at each parcel 305 

Option Description Targeted Hazard Cost (%RMV) 

0 Do nothing (status quo) - - 

1 Retrofit structure to high-seismic code Earthquake 30% 

2 Relocate structure Tsunami 100% 

3 Relocate and retrofit to high-seismic code Earthquake and Tsunami 130% 

 306 

Assuming these strategy costs based on the current retail value of the building, we can now quantify the expense of a 307 

mitigation strategy at the building stage. The cost of improving from mitigation option 𝑘 ∈  𝒦 to mitigation option 𝑘′ ∈308 

𝒦, in parcel 𝑖 ∈ 𝒵 is 𝑐𝑖𝑘𝑘′   calculated following Equation (22). 309 

𝑐𝑖𝑘𝑘′ = 𝑣𝑖𝑘 ∗ 𝑤𝑘𝑘′ (22) 

Where, vik is the retail market value (also known as building appraisal value) of the building in parcel 𝑖 ∈ 𝒵 and 𝑤𝑘𝑘′  is 310 

cost percentage of 𝑣𝑖𝑘  to improve from mitigation option 𝑘 ∈  𝒦 to mitigation option 𝑘′ ∈ 𝒦.  311 

The present study evaluates the potential impact of three budget scenarios, with budget amounts of $40 million, $80 312 

million, and $120 million, on the community's overall economic loss, population dislocation, and repair times in two multi-313 

hazard scenarios, namely the 500-year return period and the 1000-year return period. The evaluation is conducted at the 314 

building level, and the mitigation options analyzed include retrofitting buildings to the highest seismic code, relocating 315 

buildings outside of the tsunami inundation zone, and a combination of both retrofitting and relocation. 316 

4. Results and Discussion 317 

The ϵ-constraint approach was used to handle multi-objective optimization problem here where multiple objectives are 318 

in conflict with each other and there is no single solution that is optimal for all objectives [68,69]. The ϵ-constraint 319 

approach allows for the generation of a set of solutions, called the Pareto front, that are non-dominated by any other 320 
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solution. These solutions represent the trade-off between the conflicting objectives and allow decision makers to select 321 

a solution that is most suitable for their needs based on their specific priorities and constraints [70,71].  322 

4.1. Analysis of Multi-hazard Mitigation  323 

The results of the optimization model, using the ϵ-constraint approach, are presented in Figures 4 (a) and (b) and illustrate 324 

the trade-offs between direct economic loss, population dislocation, and average repair time. The solutions are shown on 325 

the Pareto front with different budget levels, with red, green, and blue representing solutions with budgets of $40 million, 326 

$80 million, and $120 million, respectively. Three points are highlighted on each surface, known as Plan 1, Plan 2, and 327 

Plan 3, which represent the optimal solutions in terms of minimizing economic loss, population dislocation, and repair 328 

time. The results shown in Figures 4 (a) and 4 (b) depict the outcomes for a 500-year and a 1000-year multi-hazard event, 329 

respectively. It is important to note that the repair time estimates presented are optimistic and previous studies have 330 

indicated that repair times may be longer when considering the broader regional context in which a community is located 331 

[56].  332 

In the case study under consideration, a set of feasible strategies was evaluated, and three plans were selected for further 333 

analysis. These plans were characterized based on the direct economic damage they would cause, the population 334 

displacement they would result in, and the estimated repair times. By evaluating these trade-offs at different budget 335 

levels, a more comprehensive understanding of the relative merits of each strategy can be achieved. The results of this 336 

analysis can then inform the selection of the best course of action to prepare for the event. The results of the tradeoff 337 

analysis for three different budget levels ($40 million, $80 million, and $120 million) are presented in Table 3, Table 4, and 338 

Table 5 respectively. These tables provide insight into the balance between the three conflicting objective functions and 339 

the most cost-effective mitigation options available for each budget level. The results from the tradeoff analysis enable us 340 

to identify the trade-offs between the different objective functions and make informed decisions about the optimal 341 

mitigation strategies. 342 

 

(a) 
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Figure 4: Relationship between economic loss and population dislocation for (a) 500-year event, and (b) 1000-year event 343 

 344 

 345 

Table 3: Tradeoff Analysis between the objectives at $40M budget 346 

Plans Economic 

loss 

(Million) 

Population 

dislocation 

Repair 

Time 

(Days) 

Number of 

buildings not 

retrofitted 

Number of buildings mitigated 

Option – 1 Option – 2 Option – 3 

500 years 

(Plan 1) 

$195 2425 162 3425 1028 0 0 

500 years 

(Plan 2) 

$210 2245 167 3005 1366 3 79 

500 years 

(Plan 3) 

$197 2338 155 3133 1306 5 6 

1000 years 

(Plan 1) 

$355 3083 398 3840 613 0 0 

1000 years 

(Plan 2) 

$377 2618 363 3433 684 169 167 

1000 years 

(Plan 3) 

$375 2623 362 3420 706 187 140 

 347 

Table 4: Tradeoff Analysis between the objectives at $80M budget 348 

(b

) 
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Plans Economic 

loss 

(Million) 

Population 

dislocation 

Repair 

Time 

(Days) 

Number of 

buildings 

not 

retrofitted 

Number of buildings mitigated 

Option – 1 Option – 2 Option – 3 

500 years 

(Plan 1) 

$173 2380 142 2899 1528 26 0 

500 years 

(Plan 2) 

$200 2177 152 2482 1705 2 264 

500 years 

(Plan 3) 

$176 2246 127 2208 2171 23 51 

1000 years 

(Plan 1) 

$321 2947 353 3079 1317 57 0 

1000 years 

(Plan 2) 

$352 2419 312 2914 922 237 380 

1000 years 

(Plan 3) 

$347 2435 310 2902 955 269 327 

 349 

Table 5: Tradeoff Analysis between the objectives at $120M budget 350 

Plans Economic 

loss 

(Million) 

Population 

dislocation 

Repair 

Time 

(Days) 

Number of 

buildings not 

retrofitted 

Number of buildings mitigated 

Option – 1 Option – 2 Option – 3 

500 years 

(Plan 1) 

$157 2261 116 1823 2565 10 55 

500 years 

(Plan 2) 

$192 2154 145 2239 1746 4 465 

500 years 

(Plan 3) 

$164 2181 113 1759 2453 20 221 

1000 years 

(Plan 1) 

$295 2851 313 2808 1317 355 0 

1000 years 

(Plan 2) 

$332 2311 279 2581 1042 136 694 

1000 years 

(Plan 3) 

$304 2399 270 2412 1363 344 334 
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 351 

The choice of budget level is a crucial factor in determining the most appropriate strategy to be adopted in preparation 352 

for a hazard event. The aim of this study is to analyze the trade-off between different budget levels and the corresponding 353 

outcomes in terms of economic loss, population displacement, and repair time. For the selected case study, three plans 354 

were analyzed with varying budget levels. An analysis of the results for a 500-year event reveals that the minimum 355 

economic loss is achieved with Plan 1, with a return on investment of 105% for a budget of $40 million. This budget level 356 

resulted in a reduction of economic loss from $237 million to $195 million. On the other hand, budget levels of $80 million 357 

and $120 million yield return of 80% and 66%, respectively. In terms of repair time, the $40 million investment results in 358 

a 40% improvement, while the $80 million and $120 million investments yield improvements of 73% and 94%, 359 

respectively. It is important to note that the minimum population dislocation of 2245 households can be reduced by 121 360 

households with an additional $40 million investment, which also results in a reduction of $61.6 million in direct economic 361 

loss.  362 

The tradeoffs are numerous, and the outcomes produced by the optimization model can be used in various analyses, 363 

allowing the decision-maker to choose the best plan for their community based on these insights. This model's capability 364 

ranges from providing an overall optimum value on how much we can save in economic loss, population dislocation, and 365 

repair times to informing the user which building needs to be retrofitted with which strategy to achieve these values 366 

within a variety of budgets.   367 

 368 

 369 

 370 
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Figure 5:  Example illustration of retrofitting plan – 1 for (a) a 500-year hazard for Seaside with $120 M budget level, (b) detailed view 371 

of a certain location 500-year hazard for Seaside with $120 M budget level 372 

The results of the spatial analysis indicate the effectiveness of different mitigation strategies based on various budget 373 

levels and different objectives. As the budget increases, more structures are found to be optimal to retrofit to the highest 374 

seismic code, even if they need to be relocated. It is noteworthy that a few structures are only relocated without 375 

(a) 

(b) 



Page 19 of 30 

 

retrofitting. The results show that the urban corridor of Seaside remains in its current state regardless of the budget level 376 

and objective, as it is not a residential area. However, the surrounding residential areas are either retrofitted or relocated. 377 

 

 

Figure 6:  Example illustration of retrofitting plan – 1 for (a) a 1000-year hazard for Seaside with $120 M budget level, (b) detailed 378 

view of a certain location 1000-year hazard for Seaside with $120 M budget level 379 

The analysis further reveals that with an increased recurrence interval of a natural hazard, such as a tsunami, a significant 380 

number of structures shift from retrofitting to relocating. The objective of minimizing economic losses results in the urban 381 

(a) 

(b) 
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corridor beginning to shift from its current state to either retrofitting or relocating. Figure 5 and Figure 6 provide an 382 

overview of the distribution of various mitigation measures.  Figure 7 depicts Plan 1 on the top and Plan 2 on the bottom 383 

for the 500-year scenario with a $40M budget. In Plan 1, where we have the least economic loss, the model selects the 384 

coastal area with mitigation strategy 1, which is the region with the most costly buildings used for seasonal and 385 

recreational use. The model's tendency to retrofit the most expensive buildings in order to incur the least economic loss 386 

demonstrates the model's preferences in terms of optimal tradeoffs. In Plan 2 Figure 7, we can see that the spread of 387 

strategies is even around the map to help get the least population dislocation while minimizing the total economic loss 388 

by proposing relocated buildings in coastal regions, i.e., mitigation strategy 3.  389 

The transition in mitigation strategy visible in the three chosen plans represents the model's broader pattern of moving 390 

investments from residential to non-residential structures. When these are compared to the competing repair times, the 391 

decision maker gets a unique perspective.  392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 
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Figure 7: Comparing Retrofit Plan 1 (a) and Plan 2 (b) for 500-year Event for budget level of $40 million. 412 

4.2. Comparative Analysis of Seismic and Multi-hazard  413 

In hazard and risk assessment, it's imperative to discern the distinct impacts of individual hazards as well as their combined 414 

effects. This section presents a detailed comparison between scenarios considering solely seismic hazard and those 415 

incorporating both seismic and tsunami hazards. This analytical approach allows for a clearer comprehension of the 416 

inherent complexities and potential compounded effects that can arise from multi-hazard scenarios. By differentiating 417 

(a) 

(b) 
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these scenarios, this section seeks to emphasize the significance and practical implications of a multi-hazard approach in 418 

engineering risk assessments, thereby reinforcing the key theme of "multiple hazards" within this study. As we mentioned 419 

earlier in this paper, Seaside, Oregon, located near the Cascadia Subduction Zone, is particularly vulnerable to both 420 

earthquakes and tsunamis [45,55,57,72,73]. This subduction zone, where the Juan de Fuca plate moves beneath the North 421 

American plate, has historically triggered significant seismic events. When stress accumulated between these plates is 422 

suddenly released, it not only causes an earthquake but also leads to the sudden displacement of the seabed. This 423 

underwater movement, in turn, can generate tsunamis, given the direct path between the origin of the seismic activity 424 

and Seaside's coastal location. This is why earthquakes and tsunamis are mostly concurrent unwanted events in Seaside.  425 

 

 

 426 

Figure 8: Comparative analysis of the multi-hazard scenario (a) with seismic hazard scenario (b) in various budget level  427 

(a) 

(b

) 
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Figure 8 presents a comparative study of the scenario of multiple hazard and seismic hazard on Seaside, Oregon for a 500-428 

year event. As this a multi-objective optimization problem, where are trying to minimize the total direct economic loss 429 

due to building damage, population dislocation, and average repair time of the building, after solving the problem we got 430 

multiple optimal solutions in the solution space.  It will be then on the decision maker and based on his/her priority to 431 

trade off among objective functions to choose the correct plan. In the case of both seismic and multi-hazard scenario in 432 

the Figure 8, it is visible that the range of improvement in minimization of economic loss is low compared to the higher 433 

investment scenario as in higher budget level decision makers are getting more options to improve or retrofit building 434 

structures.  However, as the buildings are getting impacted more in multi-hazard scenarios, population dislocation is 435 

higher in the case of this scenario compared to seismic hazard.  436 

 437 

5.  Conclusion 438 

To effectively address the increasing threat of natural hazards, communities must prioritize resilience and preparedness 439 

measures. This study aimed to contribute to the development of resilient communities by presenting a novel multi-440 

objective optimization model for building retrofit decision-making. This model can support building owners in their 441 

analysis of how investments in retrofit measures can impact community vulnerability. The study was implemented in 442 

Seaside, Oregon, a community subject to seismic-tsunami hazards associated with the Cascadia Subduction Zone. The ϵ-443 

constraint approach is used to generate a set of non-dominated solutions, known as the Pareto front, which allows for a 444 

trade-off analysis of the different mitigation options. The study evaluates three plans based on their economic loss, 445 

population dislocation, and repair time and presents the trade-offs between these objectives at different budget levels. 446 

The results of the study enable decision-makers to make informed decisions about the most cost-effective mitigation 447 

strategies for their community. 448 

However, in this paper, we considered the uncertainty of the natural hazard in the prediction of model parameters as 449 

natural hazards are always uncertain, but it was not considered inside the optimization modeling techniques. In future 450 

work, it would be valuable to incorporate uncertainty into the current optimization model to improve its accuracy and 451 

applicability. Additionally, considering multiple layers of decision-making in the optimization model can further enhance 452 

its usefulness in real-world applications. This study presents an optimization framework for the optimal allocation of 453 

limited resources for building retrofitting and relocation. While the model assumes a centralized budget, we recognize 454 

that in real-world contexts, funding often comes from individual building owners. Furthermore, the proposed model could 455 

be used to depict a scenario where a centralized entity (say, the local government) is determining how to distribute budget 456 

between building owners, to subsidize their individual mitigation actions. Nonetheless, our model offers valuable insights 457 

that can guide community incentive programs or inform grant applications to federal agencies. Furthermore, while our 458 

model suggests optimal solutions under the assumption of a single, benevolent decision-maker, real-world 459 

implementation is far more complex. Decision-making processes involve multiple stakeholders, each with their own 460 

priorities and constraints. Local governments, community organizations, building owners, and residents all play crucial 461 

roles in such endeavors.  462 
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Furthermore, one of the pivotal assumptions in our model pertains to the retrofitting costs, which we initially set at 30% 463 

of the replacement value. This assumption, while illustrative, has significant implications for the outcomes of our model. 464 

For instance, if retrofitting costs were to increase, the economic constraints could potentially reduce the number of 465 

buildings recommended for retrofitting.  It's essential to emphasize that the 30% figure, while based on certain industry 466 

standards and previous studies, is not universally applicable. Different regions, building types, and retrofitting techniques 467 

might have varying costs. Moreover, the complexity of the retrofitting process, the availability of materials and skilled 468 

labor, and the specific requirements of a building can all influence the final cost.  The sensitivity of our model to this 469 

parameter underscores the importance of context-specific, accurate, and up-to-date cost estimates. While our model 470 

provides a foundational framework for understanding the trade-offs and benefits of retrofitting versus replacement, it's 471 

crucial for decision-makers to integrate local and current data to make informed decisions. In light of this, we recommend 472 

that future applications of this model incorporate a sensitivity analysis around retrofitting costs. This would allow 473 

stakeholders to understand the range of potential outcomes based on varying cost estimates. Furthermore, collaborating 474 

with industry experts and gathering empirical data can refine these assumptions, enhancing the model's applicability and 475 

robustness. The multi-objective formulation of the model presented herein allows decision-makers the ability to explore 476 

tradeoffs across different priorities. Single-objective models, such as those focused on minimizing economic losses, 477 

inherently prioritize retrofitting high-value properties. This is because these properties contribute more significantly to 478 

overall economic losses in the event of a disaster. While effective for loss reduction, this raises equity concerns, especially 479 

for vulnerable community members in lower-value properties. The multi-objective aspect allows decision-makers to 480 

explore solutions across competing priorities – e.g., minimize losses and population dislocation. This model can be 481 

expanded in future work to further explore equity by considering additional objective functions relevant to socio-482 

economic metrics, such as the social vulnerability index [21,74,75]. This will ensure a balanced and inclusive approach to 483 

disaster mitigation.  484 

This study has made a significant contribution to the field of multi-hazard resilience and provides a valuable tool for 485 

decision-makers in their efforts to make communities more resilient to natural hazards. By considering multiple objective 486 

functions and presenting multiple retrofit plans, this model allows for a more comprehensive and data-driven approach 487 

to building retrofit decision-making. Although we studied our model effectiveness on physical infrastructure and 488 

economic parameters, the role of social capital in community resilience and disaster risk reduction is noteworthy and 489 

warrants further examination. Social capital can be considered an additional layer that contributes to a community's 490 

ability to prepare for, respond to, and recover from natural hazards. In future work, the optimization model could be 491 

expanded to integrate metrics related to social capital, such as community engagement, trust, and social networks [32,33]. 492 

The model can be applied to other communities and serves as a starting point for further research and development in 493 

the field of building resilience and disaster preparedness. 494 
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