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Abstract: Every year, flood hazards cause substantial economic losses worldwide with devastating 9 

impacts on buildings and physical infrastructure throughout communities. Techniques are available 10 

to mitigate flood damage and subsequent losses, but the ability to weigh such strategies with respect 11 

to their benefits from a community resilience perspective is limited in the literature. Investing in 12 

flood mitigation is critical for communities to protect the physical and socio-economic systems that 13 

depend on them. While there are multiple mitigation options to implement at the building-level, 14 

this paper focuses on determining the optimal flood mitigation strategy for buildings to minimize 15 

flood losses within a community. In this research, a mixed integer linear programming model is 16 

proposed to study the effects and trade-offs associated with pre-event short-term and long-term 17 

mitigation strategies to minimize the expected economic loss associated with flood hazards. The 18 

capabilities of the proposed model are illustrated for Lumberton, North Carolina, a small, socially 19 

diverse inland community on the Lumber River. The mathematically optimal building-level flood 20 

mitigation plan is provided based on the available budget level, which can significantly minimize 21 

the total expected direct economic loss of the community. The results reveal important correlations 22 

among investment quantity, building-level short- and long-term mitigation measures, flood depths 23 

of various locations, and buildings’ structure. Besides, this study shows the trade-in between short- 24 

and long-term mitigation measures based on available budget level by providing decision support 25 

to the building owners regarding mitigation measures for their buildings.   26 
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Loss 28 

 29 

1. Introduction 30 

Community resilience is defined as a community's ability to withstand disruptions and 31 

rapidly recover functionality following a hazard such as a flood [1]. When a natural haz- 32 

ard strikes a community, there is a wide range of potential consequences, and a commu- 33 

nity may suffer significant losses as a result of damage to the built environment, with the 34 

effects cascading into the economy and social institutions. Although it is better to avoid 35 

building in flood-prone areas to reduce those risks [2,3], this is not always a viable option 36 

due to other factors such as community cohesion and social norms. Climate change and 37 

socio-economic growth exacerbate the consequences of natural hazards such as floods as 38 

a result of sea-level rise and changes in intensity and frequency of storms [2]. Therefore, 39 

communities need more robust solutions to reduce economic and social losses. Research- 40 

ers from different disciplines, including social science, economics, civil engineering, and 41 

industrial engineering, are working to identify effective methods to enhance community 42 

Citation: Lastname, F.; Lastname, F.; 

Lastname, F. Title. Sustainability 

2021, 13, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor: Firstname Last-

name 

Received: date 

Accepted: date 

Published: date 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 

mailto:andres.gonzalez@ou.edu


Sustainability 2021, 13, x FOR PEER REVIEW 2 of 24 
 

resilience. Social scientists are trying to improve community resilience by considering so- 43 

cial responsibility [3]. Moreover, diverse studies analyzed a wide range of effects of natu- 44 

ral hazards, including social, psychological, socio-economic, socio-demographic, and po- 45 

litical impacts [4]. Additionally, engineering studies focused on building resilient commu- 46 

nities by improving infrastructure systems [5]. Other advanced methods to enhance com- 47 

munity resilience have also been developed [6]. 48 

In recent years, research in community resilience has significantly increased [7] where re- 49 

searchers are using computational tools such as probabilistic modeling in uncertain envi- 50 

ronments, rating models for community resilience assessment, optimization-based mod- 51 

eling for resilient community design, game theory, agent-based, and probabilistic dynam- 52 

ical modeling [8]. Lio et al. [9] used optimization techniques to study the resilience of 53 

transportation networks in the face of natural and man-made hazards, and they sought to 54 

determine how to employ multi-objective optimization after weighting each objective 55 

function. After that, Nozhati et al. [10] employed dynamic programming with reinforce- 56 

ment learning approaches, followed by multi-objective optimization to increase resilience. 57 

This method was used to reduce the number of days it takes a community to restore elec- 58 

tricity to a given level of functionality and to increase the number of individuals who have 59 

power throughout a series of repairs. Furthermore, when a community is affected by a 60 

water-induced natural catastrophe like floods, the buildings and infrastructure are se- 61 

verely affected since they are destroyed and rendered useless. For addressing this issue, 62 

Sen et al. [11,12] developed a model using the Bayesian Belief Network (BBN) to increase 63 

flood resilience for residential buildings within a community in India. Also, Gudipati and 64 

Cha [13] used artificial neural networks to create community-level optimization of func- 65 

tionally interdependent structures, and they worked with office and hospital buildings to 66 

execute seismic hazard mitigation. However, in their analysis, the selection of building- 67 

level mitigation measures was not studied, which is also vital to minimize the loss of a 68 

community. 69 

Furthermore, the preparedness of a community to withstand and recover from a natural 70 

hazard depends on the type of event. For example, we must examine the modification of 71 

the roof structure for the tornado hazard and the basement structure modification for 72 

flooding, thus, the appropriate mitigation analysis methods for each one of these hazards 73 

is unique. This study mainly focuses on flood hazards to identify the most critical compo- 74 

nents that have the most substantial effect on flood losses. There are different approaches 75 

that account for flood damage/losses for buildings and infrastructure, including determin- 76 

istic approaches that use stage-damage functions [14–17] and probabilistic approaches 77 

that use fragility functions [18–20]. Marvi [21] reviewed the developed flood vulnerability 78 

functions and identified that the flood-related data scarcity and the inability to propagate 79 

uncertainty in the flood damage models are the main challenges to develop a robust flood 80 

vulnerability model. Recently, component-based flood fragility functions were intro- 81 

duced to propagate uncertainty in flood damage models and inform building probabilistic 82 

safety margins [14,22,23]. For community-level flood damage and loss analysis, Nofal and 83 

van de Lindt developed a portfolio of 15 building archetypes to model flood vulnerability 84 

for the different building typologies within the community [24]. This approach depends 85 

on dividing the building into components and investigates the flood susceptibility of each 86 

component using a Monte Carlo simulation framework to propagate uncertainty in the 87 

flood depth and flood duration resistance along with the replacement cost of each com- 88 

ponent. Afterward, a set of damage states (DSs) was developed to characterize the build- 89 

ing performance during flooding. The exceedance probability of each DS was calculated 90 

based on the failure of the components contributing to each DS. Such an approach pro- 91 

vided a systematic mechanism to model different types of mitigation measures at the 92 

building- and community-level [14,19,23].  93 
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Based on the damage states (DSs) of a building, we can analyze the direct economic loss 94 

of a building due to building damage by any natural hazard. To minimize economic loss, 95 

a community must invest in its infrastructure, but if the investment exceeds the monetary 96 

loss, it has historically not been considered viable; hence, a trade-off between investment 97 

and economic loss is critical. It is noted here that accounting for non-monetary benefits is 98 

critical in resilience studies and is not addressed herein but will be included in forthcom- 99 

ing work by the authors.  Ideally, investments should not exceed their planned budgets 100 

nor result in a financial loss [25]. There are many studies in the literature that use a variety 101 

of methods and strategies to determine the ideal balance between investment and eco- 102 

nomic loss. Najarian and Lim [26] proposed a mathematical model for natural and human- 103 

made disasters to optimize resilience with budgetary constraints in terms of developing a 104 

budget allocation approach to any infrastructure component. To improve community re- 105 

silience and reduce the overall cost associated with the restoration process, a multi-objec- 106 

tive optimization framework with numerous constraints was presented by Almoghathawi 107 

et al. [27]. Recently, Wen [28] presented her multi-objective tornado mitigation model, 108 

where she sought to minimize the total economic loss and population dislocation due to 109 

the impact of a tornado and then applied their model to Joplin, Missouri. Then, Adluri   110 

[29] also created an optimization model to decrease overall direct economic loss due to 111 

building damage in a multi-hazard scenario and applied their model in Seaside, Oregon. 112 

Previously, Zhang and Nicholson [24] formulated an optimization model for retrofitting 113 

buildings with different mitigation strategies while minimizing the total economic loss of 114 

a community for a natural disaster and implemented the earthquake model in Centerville, 115 

a virtual community designed to test resilience models. Also, Wiebe and Cox [30] ana- 116 

lyzed the direct economic loss of the community of Oregon by applying fragility curves 117 

for the Tsunami hazard though they did not consider the indirect tangible losses of that 118 

community. Onan et al. [31] also worked on the bi-objective model for minimizing the 119 

economic loss for a natural hazard along with another objective function of reduction of 120 

hazardous waste exposure to transportation risk. Though few researchers [25,28,29] pre- 121 

sented their natural hazard mitigation optimization models for minimizing the direct eco- 122 

nomic loss of a community, they mainly focused on mitigation strategies based on altering 123 

existing building structure and design, which may not always be ideal or applicable when 124 

also considering community-level changing mitigation strategies and adaptation, as more 125 

temporal building-level mitigation strategies would provide more flexibility and adapta- 126 

bility.  127 

In this research, we used mixed-integer linear programming techniques to minimize the 128 

community-level economic losses due to building damage by flood hazards. Decision- 129 

makers can benefit from optimization techniques while deciding on the optimal option 130 

that can achieve community resilience. The main focus of this study was minimizing 131 

building damage caused by flood hazards. Previously, Nofal et al. [32] worked on the 132 

analysis of strategies for making the individual building more resilient, but they did not 133 

suggest any separate mitigation strategy for each building or building archetype. It is crit- 134 

ical to choose the proper mitigation techniques for decreasing flood damage while deter- 135 

mining which mitigation approach is suitable for specific infrastructure. 136 

Furthermore, the study separated mitigation actions into two categories, including short- 137 

term and long-term mitigation methods. Depending on the kind of their structure, the 138 

model will assist building owners in deciding whether to take short- or long-term miti- 139 

gating measures. However, this research contributes to the formulated optimization 140 

model, which can help the building owner in their decision-making processing regarding 141 

mitigating their building from flooding hazards. The proposed model can inform the de- 142 

cision-maker regarding the optimal mitigation strategy for each building in a community. 143 

The flood risk and mitigation model, as well as the optimization model, are discussed in 144 

Section two of the article. In section three, the proposed model is applied to Lumberton, 145 
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North Carolina, and key findings are described. Section four contains concluding 146 

thoughts and recommendations for further study.  147 

2. Research Methodology 148 

A novel optimization model was developed to minimize the total direct economic loss 149 

due to building damage in a community with an optimal building-level mitigation plan. 150 

The proposed model considers several mitigation strategies as an input to choose the mit- 151 

igation plan that minimizes the total losses with an associated investment within a given 152 

budget. Figure (1) shows a schematic representation of the required models and inputs 153 

for this optimization model. This approach uses a high-resolution flood loss analysis that 154 

combines detailed information about the flood hazard and the impacted community to 155 

identify the exposed buildings. The flood hazard intensity at each building location was 156 

calculated to be used in a probabilistic fragility-based flood loss analysis at the building- 157 

level. An algorithm was then developed to use the hazard, exposure, and vulnerability 158 

information for each building to calculate the amount of flood losses. This algorithm was 159 

then modified to include the impact of different types of mitigation strategies on the 160 

amount of flood loss reduction at the building-level. Afterward, an optimization model 161 

was developed to optimally allocate these mitigation measures such that the total eco- 162 

nomic loss can be reduced. The model is designed to inform the decision-makers regard- 163 

ing resources and funds allocation for the possible mitigation enhancements/modifica- 164 

tions to buildings. The main inputs of this optimization model are the mitigation inter- 165 

ventions, their corresponding losses, and the total available budget of the decision-maker 166 

to retrofit buildings.  167 
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 168 

Figure 1: Schematic representation for the needed models and inputs for the optimization model 169 

2.1. Flood Risk and Mitigation Model: 170 

The flood risk components, including hazard, exposure, and vulnerability models, were 171 

developed using high-resolution models based on the concept developed herein [32]. The 172 

hazard model is based on a 2D hydrodynamic model that can capture the extent and in- 173 

tensity of flood inundation across the community. This hydrodynamic model uses HEC- 174 

RAS to solve the Saint Venunt shallow water equation, which has been calibrated and val- 175 

idated in this study [19] The community model was developed using a portfolio of 15 176 

building archetypes that can populate the building stock within the community [14]. The 177 

flood hazard model in terms of a raster map of the flood hazard scenario of interest was 178 

overlaid on the GIS community model in terms of a shapefile of the buildings’ location. 179 

This allowed extracting the flood hazard intensity at each exposed building to be used as 180 

input for the vulnerability analysis. Then, the concept of fragility analysis was used to 181 

model the flood vulnerability of buildings. A fragility function is a probabilistic vulnera- 182 

bility model that can inform the marginal safety of a system in terms of the exceedance 183 
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probability of prescribed damage states. For this study, a component-based fragility func- 184 

tion corresponding to each building archetype was used to account for building damage 185 

in terms of the exceedance probability of a set of five damage states (DSs). Figure (2a and 186 

2b) shows component and total building fragility functions for an example building arche- 187 

type for one-story residential buildings on a slab-on-grade foundation. Similar fragility 188 

functions for a portfolio of 15 building archetypes were developed by Nofal and van de 189 

Lindt [14]. Since there are no fragility functions in the literature to be used for verification 190 

and validation, these fragility functions were converted into loss functions and validated 191 

with the HAZUS-stage-damage functions, which show excellent match up to flood depth 192 

3.0m. This validation process was applied to all the 15 building archetypes, which are fully 193 

presented herein. Table 1 provides a brief description of these DSs along with their damage 194 

scale, loss ratio (percent loss from the building replacement value), and the anticipated 195 

building functionality, and more details about each DS can be found herein [13]. Also, it 196 

should be noted that the loss ratios corresponding to each DS are based on the average 197 

calculated loss for a portfolio of 15 building archetypes developed in this publication [14]. 198 

However, the exact loss values corresponding to each DS associated with each building 199 

archetype were used to conduct the global loss analysis in this study.  200 

A fragility-based flood loss analysis was conducted using Eq. (1), which multiplies the 201 

probability of being in each DS by the replacement cost of each DS. The loss analysis for 202 

each building was calculated by determining the building archetype and then using the 203 

corresponding fragility functions. The calculated probabilities from these fragilities are 204 

then transformed into loss analysis based on Eq. (1). The analysis resolution used in this 205 

approach allowed the investigation of different types of mitigation strategies ranging from 206 

the component-level to building-level and community-level. These strategies include pre- 207 

event, short-term flood mitigation measures for buildings, such as using flood barriers 208 

with different elevations. Additionally, pre-event, long-term flood mitigation measures 209 

(e.g., increasing building elevation) are also modeled, such as increasing building eleva- 210 

tion. A set of flood mitigation scenarios associated with each mitigation strategy is inves- 211 

tigated, and the flood loss for each building corresponding to each mitigation scenario is 212 

then calculated to be used as an input for the optimization model.  213 
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 214 

Figure 2: Total building and Component flood fragility and loss functions for one-story residential building on a slab-on-grade 215 

foundation. 216 

 217 

𝐿𝑓  (𝐼𝑀 = 𝑥) =  ∑[ 𝑃 (𝐷𝑆𝑖|𝐼𝑀 = 𝑥) − 𝑃(𝐷𝑆𝑖+1|𝐼𝑀 = 𝑥)] ∗  𝐿𝑟𝑐𝑖 ∗  𝑉𝑡 

𝑛

𝑖=0 

 (1)  

where Lf (IM = x) =is the total building fragility-based flood losses in monetary terms at 218 

intensity measure IM = x (replacement or repair cost), P(DSi|IM = x) =is the exceedance 219 

probability of DSi at IM = x, P(DSi+1) =is the exceedance probability of DSi+1 at IM = x, Lrci =is 220 

the cumulative replacement cost ratio corresponding to DSi, and Vt= is the total building 221 

cost (replacement cost). 222 

 223 
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Table 1: Building Damage State Description 224 

Damage 

State Level 

Functionality Damage Scale Loss Ratio 

DS-0 Operational Insignificant 0.00-0.03 

DS-1 Limited Occupancy Slight 0.03-0.15 

DS-2 Restricted Occupancy Moderate 0.15-0.50 

DS-3 Restricted Use Extensive 0.50-0.70 

DS-4 Restricted Entry Complete 0.70-1.00 

2.2. Optimization Model: 225 

Mathematical optimization is the science of finding the best solutions to mathemati- 226 

cally described problems, which may be models of physical reality [33]. Optimization 227 

helps to identify the best feasible solution among several feasible or infeasible solutions. 228 

In this paper, a mathematical optimization model is developed to enhance the resilience 229 

of buildings by reducing the total direct economic loss from a flood hazard. The set 𝑍 230 

denotes the set of all buildings in the community, and the set 𝑆 denotes the set of all 231 

building archetypes. Each building 𝑖 ∈ 𝑍 is associated with precisely one archetype 𝑗 ∈ 232 

 𝑆. The set K denotes all possible building mitigation intervention levels available across 233 

the community. The mitigation alternative k = 0 𝑘 ∈  𝐾 implies that no retrofits have been 234 

implemented (i.e., the status quo). All buildings are assumed to be in this state prior to the 235 

modeling. Additionally, a set of valid strategy level changes from strategy level 𝑘 ∈  𝐾 236 

to level 𝑘’ ∈  𝐾 is presented by L. 237 

This optimization model can help inform building owners for decision-making regarding 238 

building retrofit to minimize their economic loss during flooding hazards. Mathemati- 239 

cally, this decision is taken using two different decision variables in the optimization 240 

model. The first decision variable of this model is 𝑥𝑖𝑗𝑘   that denotes the total number of 241 

buildings 𝑖 ∈  𝑍, of archetype 𝑗 ∈  𝑆 for mitigation strategy level 𝑘 ∈ 𝐾. The other deci- 242 

sion variable 𝑦𝑖𝑗𝑘𝑘′  denotes the total number of buildings 𝑖 ∈  𝑍, of archetype 𝑗 ∈  𝑆, as- 243 

sociated with retrofit strategy level 𝑘 ∈ 𝐾 to level 𝑘′ ∈  𝐾. As a result, for each mitigation 244 

option, the model determines the number of buildings that would need to be modified for 245 

other mitigation measures. This model may be used to identify the best mitigation strate- 246 

gies for individual buildings, or it can be used when the decision-maker is considering a 247 

small number of buildings in a block and selecting single mitigation methods for each 248 

block.  249 

 250 

2.2.1. Objective of the Optimization Model 251 

In most cases, budget is an essential factor, and analysts restrict their mathematical model 252 

with budgetary constraints, which can significantly affect the subsequent decisions re- 253 

garding retrofitting [34]. In this model, the mitigation budget is also considered a signifi- 254 

cant factor which is presented by B (the total amount of budget will be used for retrofitting 255 

purposes). It is crucial for the model to identify the 𝑏𝑖𝑗𝑘  which is the initial number of 256 

buildings at a certain mitigation strategy level  𝑘 ∈  𝐾. To make an investment decision, 257 

we needed to know the cost of implementing any building mitigation measure. Thus, we 258 

need another parameter called strategy cost 𝑐𝑖𝑗𝑘𝑘′  which mainly presents retrofitting 259 

costs corresponding to each strategy level associated with changing a building 𝑖 ∈  𝑍, of 260 

archetype 𝑗 ∈  𝑆, from strategy level 𝑘 ∈  𝐾 to level 𝑘′ ∈  𝐾, given that 𝑘 ≤  𝑘′. Again, 261 
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in this model, economic loss is a vitally important factor that is directly related to one of 262 

the multiple objective functions. Economic loss is presented as 𝑙𝑖𝑗𝑘  in this optimization 263 

mode which is the expected direct economic losses for building 𝑖 ∈  𝑍, of archetype 𝑗 ∈ 264 

 𝑆, which are at the mitigation strategy level 𝑘 ∈  𝐾.  265 

After obtaining the value of the direct expected economic losses (𝑙𝑖𝑗𝑘), multiplying with a 266 

total number of buildings 𝑖 ∈  𝑍, of archetype 𝑗 ∈  𝑆, which are at strategy level 𝑘 ∈ 𝐾, 267 

over all the buildings, all the archetypes and all strategy, we can easily find the total direct 268 

economic loss of the community. Moreover, the main objective is to minimize this amount 269 

of losses which is presented by equation (2).   270 

 271 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝑙𝑖𝑗𝑘

𝑘 ∈𝐾

𝑥𝑖𝑗𝑘

𝑗 ∈ 𝑆𝑖 ∈ 𝑍

 

 

(2)  

Though this model is currently focusing on the financial aspect of the community, the 272 

objective function can be extended to address any other social contexts like population 273 

dislocation [25,35]. In that case, in equation (2), we need to replace the expected economic 274 

loss with the expected population dislocation. If we create a set of objective functions, 𝑁, 275 

then a more generalized view of equation (2) can be presented by formulating equation 276 

(3) where 𝜙𝑖𝑗𝑘
𝑛  where objective number 𝑛 ∈ 𝑁.  277 

 278 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝜙𝑖𝑗𝑘
𝑛

𝑘 ∈𝐾

𝑥𝑖𝑗𝑘

𝑗 ∈ 𝑆𝑖 ∈ 𝑍

, ∀ 𝑛 ∈ 𝑁 (3) 

 279 

In equation (3), we can allocate any other social matrices we want to minimize with the 280 

same set of constraints in the optimization model. Nevertheless, in this research, we only 281 

focused on minimizing the total direct economic loss of the community due to building 282 

damage.  283 

 284 

2.2.2. Constraints of the Optimization Model 285 

The first constraint presented in equation (4) is a budgetary constraint, which is making 286 

sure that the costs associated with all suggested building-level mitigation strategies are 287 

within the available budget level. The total cost of mitigation can be calculated by multi- 288 

plying the strategy cost  𝑐𝑖𝑗𝑘𝑘′ with  𝑦𝑖𝑗𝑘𝑘′ , the total number of buildings 𝑖 ∈  𝑍, of ar- 289 

chetype 𝑗 ∈  𝑆 , which are retrofitted from strategy level 𝑘 ∈  𝐾 to level 𝑘′ ∈  𝐾 . This 290 

amount has to be less than or equal to the total available budget, B.  291 

 292 

∑ ∑ ∑ ∑ 𝑐𝑖𝑗𝑘𝑘′ ∗ 

𝑘′:(𝑘′,𝑘) ∈ 𝐿 𝑘 ∈𝐾 𝑗 ∈ 𝑆𝑖 ∈ 𝑍

𝑦𝑖𝑗𝑘𝑘′ ≤ 𝐵 (4) 

The second constraint of this optimization model is shown in equation (5) which ties the 293 

total number of buildings 𝑖 ∈  𝑍, of archetype 𝑗 ∈  𝑆, which are at strategy level 𝑘 ∈ 𝐾 294 

with the total number of buildings 𝑖 ∈  𝑍, of archetype 𝑗 ∈  𝑆, which are to be retrofitted 295 

from strategy level 𝑘 ∈ 𝐾 to level 𝑘 ∈ 𝑘′ logically. Furthermore, this equation ensures 296 

that only (𝑘, 𝑘′) interventions are allowed. The model will suggest any specific mitigation 297 

measures that can help to reduce the direct economic loss of the buildings. If any buildings 298 
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of the community are already following one mitigation strategy, i.e., elevated building 299 

structure or having flood barrier, then the model will not suggest dismissing that by sug- 300 

gesting a “do nothing strategy”. Another logical constraint of this model is that the total 301 

number of buildings 𝒊 ∈  𝒁 of archetype 𝒋 ∈  𝑺 must be the same before and after any 302 

retrofitting efforts, as shown in equation (6) which is also known as flow balance con- 303 

straint of the formulated optimization model. Equations (7) and (8) are presenting the do- 304 

main of the decision variables and all the decision variables are non-negative integer var- 305 

iables.  306 

 307 

𝑥𝑖𝑗𝑘 =  ∑ 𝑦𝑖𝑗𝑘′𝑘 +  𝑏𝑖𝑗𝑘

𝑘′:(𝑘′,𝑘) ∈ 𝐿 

−   ∑ 𝑦𝑖𝑗𝑘𝑘′   ,             ∀ 𝑖 ∈ 𝑍, ∀ 𝑗 ∈ 𝑆, ∀ 𝑘 ∈ 𝐾 

𝑘′:(𝑘,𝑘′) ∈ 𝐿 

  

 

(5) 

∑ 𝑥𝑖𝑗𝑘

𝑘 ∈ 𝐾

=  ∑ 𝑏𝑖𝑗𝑘

𝑘 ∈ 𝐾

 , ∀ 𝑖 ∈ 𝑍, ∀ 𝑗 ∈ 𝑆 

 

(6) 

𝑥𝑖𝑗𝑘 ∈ ℤ≥0, ∀ 𝑖 ∈ 𝑍, ∀ 𝑗 ∈ 𝑆, ∀ 𝑘 ∈ 𝐾 

 

(7) 

 𝑦𝑖𝑗𝑘𝑘′ ∈ ℤ≥0, ∀ 𝑖 ∈ 𝑍, ∀ 𝑗 ∈ 𝑆, ∀ (𝑘, 𝑘′)  ∈ 𝐿 

 

(8) 

3. Illustrative Example of Lumberton, NC 308 

The approach described above is applied to Lumberton, NC, to illustrate the applicability 309 

of the developed methodology at the community-level. Lumberton is a small city within 310 

Robeson County in southern North Carolina with a population of 20,000 people who live 311 

on the banks of the Lumber River, as shown in Figure (2). The cascading flooding events 312 

following severe hurricanes made Lumberton an ideal location for investigating flood 313 

damage and identifying the applicability of the developed optimization model. Also, the 314 

availability of data about the buildings of North Carolina makes it a perfect example to 315 

apply the used high-resolution flood risk model. Therefore, many researchers have used 316 

Lumberton as a testbed for flood risk, mitigation, and recovery analysis [19,36–38]. There 317 

are 9,000 buildings within the physical boundary of Lumberton, but, in this study, the 318 

buildings around Lumberton that share the city facilities are included in the analysis as 319 

well. As a result, the number of buildings in the considered community is around 20,000, 320 

among which 2857 buildings were impacted by flooding.  321 

The concept of a building portfolio was used to model the different building typologies 322 

within the community. A portfolio of 15 building archetypes developed by Nofal and van 323 

de Lindt [14] was mapped to each building. This was done using a mapping algorithm 324 

that uses detailed building information to map specific archetypes to each building. More 325 

information about the mapping process and the mapping algorithm can be found herein 326 

[19,32]. Figure (2b) shows the spatial location of each building within Lumberton, with 327 

the buildings color-coded based on their archetypes (e.g., occupancy). Table 2 provides a 328 
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brief description of each one of these archetypes. The flooding event after Hurricane Mat- 329 

thew in 2016 was used as a flood hazard scenario to investigate the developed approach.   330 

 331 

 332 

3.1.  Flood Hazard and Damage Analysis Results 333 

A detailed hydrologic analysis was conducted using the rainfall, land use, and soil 334 

information to account for the water flow in the main streams that deliver the water to the 335 

study area. This water flow (flow hydrograph) was used as a boundary condition for a 336 

hydrodynamic analysis along with a LiDAR-based digital elevation map (DEM) of a 337 

resolution of 0.75m. HEC-RAS was used for the hydrodynamic analysis for the study area 338 

using the flow information at upstream. In this hydrodynamic model, the Saint-Venanunt 339 

shallow water equation is solved using finite volume by dividing the analysis domain 340 

(study area) into 50ftx50ft mesh sizes. The final analysis results are the flood hazard 341 

characteristics in terms of flood depth, flood velocity, and flood duration. Readers are 342 

referred to [19] for more details about the flood hazard analysis. Figure (3a) shows the 343 

simulated flood hazard map for the flooding event after Hurricane Matthew in 2016, 344 

which shows the flood inundation intensity and extent with respect to Lumberton, NC. 345 

The exposure analysis results revealed that there are 2857 buildings exposed to flooding. 346 

(c) 

(a) 

(b) 

North Carolina 

Lumberton 

Red Springs 

Creek

Lumber River 

Figure 2: The spatial location of Lumberton city and its buildings with respect to the State of 

North Carolina: (a) The physical boundary of North Carolina State; (b) The spatial location of 

the buildings within Lumberton color-coded based on their archetypes; (c) The spatial location 

of Lumberton city with respect to the state of North Carolina. 
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Figure (3b) shows the spatial location of the flooded buildings color-coded based on their 347 

archetypes. Detailed information about the buildings within Lumberton, NC, was 348 

retrieved from the North Carolina OneMap which includes building occupancy, 349 

foundation type, number of stories, and building value. This data allowed us to do 350 

detailed loss analysis at the building-level and then aggregate them to be at the 351 

community-level. Table 2 provides information about the number of buildings exposed 352 

to flooding by archetype, along with their replacement value and the amount of flood losses. 353 

Table 3 shows the fragility analysis results in terms of the exceedance probability of each 354 

DS corresponding to five ranges from 0% up to 100% and the number of buildings within 355 

each of these ranges. So, the flood-exposed buildings within the community were 356 

categorized based on the exceedance probability of each DS. For example, there are 144 357 

buildings with an exceedance probability of DS2 between 40% and 60%. 358 

 359 

Table 2: The number of exposed buildings by archetype along with their current 360 

replacement value and base flood loss 361 

Archetype 
Number of 

Buildings 

Total Current Apprised 

Value 

Total Base 

Flood Losses 

F1: One-Story Single-Family 

Residential Building 
665 $37,527,864 $10,097,519 

F2: One-Story Multi-Family 

Residential Building 
1741 $194,990,289 $80,651,358 

F3: Two-Story Single-Family 

Residential Building The 
7 $1,059,617 $316,074 

F4: Two-Story Multi-Family 

Residential Building 
96 $21,174,848 $5,548,556 

F5: Small Grocery Store/Gas 

Station with a Convenience 

Store 

157 $62,855,685 $7,921,982 

(a) (b) 

Figure 3: The simulated flood hazard for the flooding event in Lumberton, NC after Hurri-

cane Matthew in 2016 and the exposed buildings: (a) Flood hazard map in terms of the 

flood extent and flood inundation measured from ground elevation (m); (b) The flood ex-

posed buildings color-coded based on their archetypes. 
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F6: Multi-Unit Retail Building 

(Strip Mall) 
1 $7,195,517 $0 

F7: Small Multi-Unit Commer-

cial Building 
1 $256,600 $157,864 

F8: Super Retail Center The 2 $408,318 $176,194 

F9: Industrial Building 62 $124,562,628 $12,002,943 

F10: One-Story School 8 $7,429,091 $2,495,461 

F11: Two-Story School 3 $23,456,627 $3,621,603 

F12: Hospital/Clinic The 0 $0 $0 

F13: Community Center (Place 

of Worship) 
44 $23,381,452 $6,720,040 

F14: Office Building 17 $8,782,066 $2,565,452 

F15: Warehouse (Small/Large 

Box) 
53 $40,975,016 $860,940 

 362 

Table 3: fragility analysis results in terms of the exceedance probability 363 

Exceedance Probability of a 

DS (Fragility) 

Number of buildings (Total=2858) 

DS0 DS1 DS2 DS3 DS4 

0% < P_DS < 20% 2201 396 567 2071 2822 

20% < P_DS < 40% 5 72 115 355 25 

40% < P_DS < 60% 7 72 144 293 7 

60% < P_DS < 80% 30 108 290 121 3 

80% < P_DS < 100% 614 2209 1741 17 0 

 364 

3.2.  Comparative Analysis of Short- and long-term Mitigation Strategies 365 

The initial analysis results showed that Lumberton’s total economic loss is predicted 366 

to be more than $133 million if the community does not invest in mitigation. However, the 367 

choice of various optimal implementation of mitigation techniques has a significant impact 368 

on reducing overall direct economic loss. This study performed three distinct methods of 369 

mitigation modes: (i) long-term methods, (ii) short-term methods, and (iii) a combination 370 

of both long- and short-term interventions. A long-term mitigation measure can be defined 371 

as a building retrofitting method that can protect a building from the subsequent few nat- 372 

ural hazards and help reduce the loss in the long run. On the other hand, short-term miti- 373 

gation measures have the ability to save a building from any natural hazard for once. 374 

Short-term mitigations can be easily applicable for most buildings, and the cost will be 375 

significantly cheaper than long-term mitigation measures. Nofal and van de Lindt 376 

[19,23]described various flood mitigation measures which can help to reduce the impact 377 

of flooding. According to their analysis, flood water pumping can be a suitable mitigation 378 

measure which can reduce the flood water from a building. Furthermore, they also men- 379 

tioned flood barrier systems as an effective flood mitigation measure. Water pumping or 380 

flood barriers system can be two examples of short-term flood mitigation measures. On 381 

the contrary, building buyout or building elevation can be two examples of long-term mit- 382 

igation measures where that will help the building owner to be safe and successive several 383 

natural disasters. Although building elevation is one of the costliest mitigation measures, 384 

it is still one of the most effective direct flood mitigation measures. Sometimes homeown- 385 

ers get federal funding for such mitigation measures to cover a percentage of the total cost. 386 
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Also, homeowners could get mitigation loans in front of more equity on their building 387 

value. For implementing the optimization model with various mitigation measures, we 388 

need to make sure to have the respective expected economic loss if any certain mitigation 389 

measure is chosen. Furthermore, we need to know the cost of adopting any specific miti- 390 

gation measures for a building. Firstly, this study was done by employing mitigation tech- 391 

niques to eliminate flood threats, such as elevating structures to a specific height. Second, 392 

flood barriers of various sizes, ranging from 0.4 to 1.5 meters, were employed in the miti- 393 

gation approach. Due to a scarcity of cost information for flood barriers of over 1.5 meters, 394 

a limit on the height of the flood barrier to 1.5 meters was put in place in this study. Finally, 395 

all of the strategies (long- and short-term) were combined in the model to provide a diverse 396 

set of results.  397 

 398 

Building owners who want to retrofit their buildings with a specific mitigation meas- 399 

ure must invest a particular amount of money based on their chosen mitigation method. 400 

This linked expense is referred to as strategy cost in this model and is funded from the 401 

model’s budget. Based on the type of mitigation measures, we needed to calculate that. For 402 

instance, the cost of putting a flood barrier is dependent on the building area. On the other 403 

hand, the cost of elevating buildings depends on required materials, labor, and equipment. 404 

The user can specify any budget level for retrofitting the buildings while using the model, 405 

and the program will only offer mitigation methods based on the available budget. For 406 

example, if a user wants to spend $3.5 million retrofitting all the buildings of a community 407 

with long-term mitigation measures, the user may not be able to advise building elevations 408 

for all of the structures. As a result, the model will suggest “No Intervention” for the rest 409 

of the building where the model could not invest. The formulated model was tested with 410 

various budget levels to test the model’s workability for different budget levels.  411 

 412 

Long-term mitigation strategies include increasing building elevations from 5 ft (1.5 413 

m) to 10 ft (3 m) to reduce the flood losses for each building. Table 4 summarizes the 414 

optimization model’s findings in terms of a specific building and in terms of different 415 

mitigation strategies. The base flood loss analysis without any mitigation results in a di- 416 

rect economic loss of over $133 million. The optimization model was tested with an initial 417 

budget of 3.5 million dollars, and the model showed an economic loss reduction of more 418 

than 4 million dollars. On the other hand, for a budget of $280 million, 1738 buildings can 419 

be retrofitted to reduce the economic loss by more than $118 million. This is because long- 420 

term measures such as increasing building elevation have a significantly high retrofit cost, 421 

but such mitigation intervention can decrease the overall building damage in the long- 422 

term. Furthermore, the implementation of long-term mitigation will help the building 423 

owners to save their buildings from any future flooding events by a one-time investment. 424 

So, by investing 280 million dollars, it will be possible to save $118 Million in each flooding 425 

event.  426 

 427 

Table 4: Result Summary for Long-term Mitigation Strategy 428 

 Number of buildings retrofitted  

Budget No inter-

vention 

Elevate 5ft (1.5m) Elevate 10ft (3m) Total # of Retrofitted 

Buildings 

Economic Loss 

$0M 2,857 0 0 0 $133,135,992 

$3.5M 2,836 17 4 21 $127,398,555 

$7M 2,817 33 7 40 $124,164,674 
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$10.5M 2,786 57 14 71 $121,268,774 

$14M 2,761 81 16 97 $118,517,884 

$ 20M 2717 123 18 141 $114,017,769 

$50M 2523 288 46 334 $94,973,886 

$150M 1796 726 335 1061 $52,520,789 

$280M 1119 1329 409 1738 $14,704,547 

 429 

For long-term mitigation, the model sought to identify the optimal mitigation option for 430 

a specific building based on the cost of the mitigation strategy.  Although 10 feet (3 me- 431 

ters) of elevation can make a structure safer than 5 feet (1.5 meters), the financial loss will 432 

be zero with 3 meters of elevation. However, some industrial buildings in Lumberton will 433 

not be able to achieve this building elevation since it would require substantial funds for 434 

mitigation. At various budget levels, Figure 4 depicts the selected buildings for long-term 435 

mitigation solutions for individual structures in Lumberton, NC, at various budget levels. 436 

The figure shows that red and dark pink dots increase when a larger budget is used, im- 437 

plying that more community structures would be mitigated/retrofitted. The model 438 

showed how resources were optimally allocated across buildings in terms of mitigation 439 

funds that can minimize the economic losses.   440 

Flood barriers were also investigated and implemented in the optimization model in Lum- 441 

berton as an example of a short-term mitigation strategy. Table 5 shows the investigated 442 

budget levels along with the number of flood barriers that are selected from 0.4 meters to 443 

1.5 meters in height to mitigate flood impacts on buildings, as well as the resulting esti- 444 

mated direct economic loss. The main objective of the developed optimization model is to 445 

minimize the total economic loss within a given budget level. The developed optimization 446 

model is designed to select buildings that can minimize the total economic loss.  The anal- 447 

ysis results showed that investing $50M in a long-term mitigation strategy can mitigate 448 

the flood impacts on 334 buildings. On the contrary, investing the same amount of miti- 449 

gation funds ($50M) on short-term mitigation can increase the number of mitigated build- 450 

ings to 832. This is because of the lower cost of short-term mitigation, which can only be 451 

implemented for buildings during a single flooding event. Using a flood barrier of 1.5 m 452 

is the costliest option among all the short-term strategies, and as the model gets more 453 

money to invest, it is giving more money to use the mitigation strategy. If flood barriers 454 

are used of more height, then they can get better results, but, in this case, due to the lack 455 

of pricing information for higher flood barriers, we need to stop at 1.5 m. The location of 456 

the buildings and the distribution of various short-term mitigation strategies are pre- 457 

sented in Figure 5 for different budget levels, respectively.  458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 
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 470 

 471 

 472 

  

  

 473 

Figure 4: Location of buildings based on long-term strategy implementation while the total investment is $20 Million (a), $50 Mil- 474 

lion (b), $150 Million (c), and $280 Million (d) 475 

 476 

Table 5: Result Summary for Short-term Mitigation Strategy 477 

 Number of buildings surrounded by a barrier of height (Hb)   

Budget No interven-

tion 

Hb= 

0.4m 

Hb= 

0.5m 

Hb= 

0.7m 

Hb= 

1.0m 

Hb= 

1.3m 

Hb= 

1.5m 

Total # of 

Retrofitted 

Buildings 

Economic 

Loss 

$0M 2857 0 0 0 0 0 0 0 $133,135,992 

$3.5M 2826 0 0 5 4 7 15 31 $124,118,022 

$7M 2766 1 0 9 16 26 39 91 $119,675,195 

(a) (b) 

(c) (d) 
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 478 

 479 

The analysis showed that the developed optimization model could be used efficiently for 480 

both short- and long-term mitigation options. Also, the developed optimization model has 481 

the essential features needed to recommend the optimal mitigation strategy for buildings 482 

in terms of short-term (flood barriers) and long-term (building elevation). Flood barriers 483 

may not be advantageous for some buildings after being used and need to be installed 484 

before each event and do not add to the building equity. On the other hand, increasing 485 

building elevation as a long-term plan is much better since they are permanent mitigation, 486 

and the value invested is added to the building equity. Though it is a costly alternative, it 487 

can help significantly reduce the amount of flood losses for the community. 488 

At the highest budget level of $280 M, the model allows mitigating more than 2000 build- 489 

ings. At the other budget level, the model suggests elevating the building by 5 ft because 490 

of two main reasons. Firstly, it is cheaper than elevating 10ft. Secondly, it allows reducing 491 

the economic loss significantly. However, building elevation is highly dependent on the 492 

area of each building. Typically, commercial buildings hold large areas, which makes the 493 

cost of building elevation very high for them. Figure 6 depicts the mitigation strategies in 494 

the Lumberton map based on the budget level while implementing both short- and long- 495 

term strategies together.  496 

 497 

Table 6: Result Summary for Short and Long-Term Mitigation Strategy 498 

 Number of Buildings Retrofitted    

  Using flood barrier     

Budget No interven-

tion 

Hb= 

0.4m 

Hb= 

0.5m 

Hb= 

0.7m 

Hb= 

1.0m 

Hb= 

1.3m 

 Hb= 

1.5m 

Elevate 

5ft 

Elevate 

10ft 

Total # of 

Retrofitted 

Buildings 

Economic 

Loss 

$0M 2,857 0 0 0 0 0 0 0 0 0 $133,135,992 

$3.5M 2833 0 0 4 3 4 9 3 1 24 $ 123,380,846 

$7M 2787 1 0 7 8 15 28 8 3 70 $ 118,059,178 

$10.5M 2745 1 0 9 16 28 39 15 4 112 $ 114,175,819 

$14M 2715 1 0 10 22 34 44 24 7 142 $ 110,893,178 

$20M 2649 1 0 10 27 45 60 51 14 208 $ 105,849,491 

$50M 2377 2 1 14 39 80 106 212 26 480 $ 84,368,342 

$150M 1538 2 1 18 53 131 184 601 329 1319 $ 39,452,522 

$280M 787 5 3 23 75 185 239 1091 446 2067 $ 4,539,084 

 499 

 500 

$10.5M 2706 1 0 12 29 47 62 151 $116,597,842 

$14M 2637 1 0 14 37 74 94 220 $114,059,986 

$20M 2513 2 1 16 47 116 162 344 $110,680,315 

$50M 2026 33 8 70 146 264 311 832 $107,224,597 

$150M 2026 33 8 70 146 264 311 832 $107,224,597 

$280M 2026 33 8 70 146 264 311 832 $107,224,597 
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Figure 5: Location of buildings based on short-term strategy implementation while the total investment is $20 Million (a), $50 Mil- 502 

lion (b), $150 Million (c), and $280 Million (d) 503 

 504 

 505 

 506 

 507 

 508 

 

 

(a) (b) 

(c) (d) 



Sustainability 2021, 13, x FOR PEER REVIEW 19 of 24 
 

  

  

 509 

Figure 6: Location of buildings based on short and long-term strategy implementation while the total investment is $20 Million (a), 510 

$50 Million (b), $150 Million (c), and $280 Million (d) 511 

 512 

(a) (b) 

(c) (d) 
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 513 

Figure 7: Relationship Between Investment and Corresponding Economic Loss 514 
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Figure 8: Relationship Between Investment and Corresponding Economic Loss (Close-up View) 
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Figure 7 and Figure 8 (close-up view) show the total direct economic loss and the invested 516 

budget, which show the decreasing rate of economic loss corresponding to the amount of 517 

invested mitigation funds. These graphs depict how the economic loss decreases as the 518 

budget level increases for different strategies. When long-term mitigation is used, the 519 

model seeks to identify a mitigation option for a specific building based on the strategy 520 

cost of that mitigation approach. It is noticed that till a specific budget (nearly $25 Million), 521 

short-term mitigation measures can help the community reduce the amount of direct eco- 522 

nomic losses due to building damage, but after that, long-term strategies showed much 523 

better performance after that. Since short-term strategies are not much costly as long-term 524 

ones, the model suggests short-term mitigation measures for lower budget levels. Build- 525 

ings with a 10 ft (3m) elevation have higher mitigation plan costs than those with a 5 ft 526 

height. However, 10 feet (3m) of elevation can make a structure safer than 5 feet (1.5m), 527 

and in some circumstances, the financial loss will be nil if the owner chooses 10 feet (3m) 528 

of elevation. However, some industrial buildings in Lumberton will not be able to achieve 529 

this building elevation since it would require them to invest substantially more money. 530 

                    531 

4. Conclusions 532 

Previous researchers worked on various building-level mitigation measures analysis for 533 

different natural hazards, but this research mainly focuses on finding optimal mitigation 534 

strategies for buildings threatened by flooding. The contribution of this research is to de- 535 

velop this optimization model, which can determine optimal building-level mitigation 536 

measures for each and every building in a community to minimize the total direct ex- 537 

pected economic loss due to building damage. The model detailed in this paper is formu- 538 

lated in such a way that it can be used in any community subjected to flood hazards. Alt- 539 

hough the optimization model provides decisions at the building-level, the model can also 540 

be employed when stakeholders at the community-level seek to look at a block of build- 541 

ings as a whole.  542 

 543 

The optimization model was applied to Lumberton, North Carolina, which is subjected to 544 

recurrent flooding, and was used to test the performance of the model. Two different types 545 

of mitigation techniques were investigated in this case study. Firstly, building elevation 546 

was investigated using two elevation values of 1.5 and 3 meters as a long-term mitigation 547 

measure, and secondly, flood barriers, as a short-term mitigation measure, were then in- 548 

vestigated. It was demonstrated that long-term mitigation measures could help the com- 549 

munity reduce the expected economic loss significantly. On the other hand, short-term 550 

mitigation measures for some buildings will not help reduce their loss due to the high 551 

flood depth in that region. According to this study, it is preferable to implement long-term 552 

building mitigation measures if the budget allows due to the high flood depth in most of 553 

the areas. Furthermore, this long-term mitigation will protect a structure from several nat- 554 

ural hazards. The optimization approach can be expanded to use other mitigation tech- 555 

niques to efficiently reduce the total direct economic loss at the building- and community- 556 

level. It is noted here that one of the study’s limitations is that the optimization model 557 

only has one objective, which is minimizing the expected economic loss, despite the fact 558 

that it may be expanded to include several objectives.  559 

 560 

The current model does not consider community-level decisions prior to determining 561 

building-level mitigation strategies for individual building owners. The developed model 562 

can be extended so that the model addresses community-level decisions along with build- 563 

ing-level mitigation measures. Additionally, some machine learning algorithms can help 564 

to predict the mitigations for both community- and building-level.  565 

 566 
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