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ABSTRACT

Graph Processing is an emergingworkload for applications working

with unstructured data, such as social network analysis, transporta-

tion networks, bioinformatics and operations research. We examine

the problem of graph analytics over evolving graphs, which are

graphs that change over time. The problem is challenging because

it requires evaluation of a graph query on a sequence of graph

snapshots over a time window, typically to track the progression

of a property over time. In this paper, we introduce MEGA, a hard-

ware accelerator designed for e�ciently evaluating queries over

evolving graphs. MEGA leverages CommonGraph, a recently pro-

posed software approach for incrementally processing evolving

graphs that gains e�ciency by avoiding the need to process expen-

sive deletions by converting them into additions.MEGA supports

incremental event-based streaming of edge additions as well as

execution of multiple snapshots concurrently to support evolv-

ing graphs. We propose Batch-Oriented-Execution (BOE), a novel

batch-update scheduling technique that activates snapshots that

share batches simultaneously to achieve both computation and data

reuse. We introduce optimizations that pack compatible batches

together, and pipeline batch processing. To the best of our knowl-

edge, MEGA is the �rst graph accelerator for evolving graphs that

evaluates graph queries over multiple snapshots simultaneously.

MEGA achieves 24×-120× speedup over CommonGraph. It also

achieves speedups ranging from 4.08× to 5.98× over JetStream, a

state-of-the-art streaming graph accelerator.
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1 INTRODUCTION

Graphs are fundamental data structures used to represent unstruc-

tured data, with objects as vertices and relationships as edges.

Graphs arise across numerous application domains. Real-world

graphs such as social networks and web graphs, are large and

irregular, posing challenges for graph analytics workloads. Sig-

ni�cant research has been conducted to create high-performance

graph analytics frameworks for di�erent platforms including CPUs,

GPUs and custom accelerators to enhance performance and scala-

bility [3, 4, 9, 16, 19, 23, 25, 26, 29–31, 37–39, 45, 50, 52, 58].

In real-world scenarios, graphs are frequently dynamic, as the

data represented by the graph continues to change [43]. There are

two primary categories of analyses for dynamic graphs: streaming

graphs analytics and evolving graphs analytics. Streaming graph

analytics continuously update query results as the graph changes

due to incoming updates arriving in real-time. For example, one

might want to maintain shortest paths to destinations as tra�c

conditions vary. We consider changes represented as edges being

added or deleted from the graph (other changes such as adding

and removing vertices can be modeled using edge additions and

deletions as well). Incremental algorithms are typically utilized to

update query results in response to the streaming graph changes,

thereby avoiding the need to recompute the query from scratch

with every update.

Our focus is the second type of analysis, evolving graph analytics,

which aims to evaluate a query over a sequence of snapshots of

the graph captured over an extended time period. In this case,

the batches of changes were received in the past, and are already

known. Generally, an evolving graph computation executes a query

over a long time scale by analyzing di�erent snapshots within the

speci�ed time window. For example, Covid-19 contact tracing data,

represented as a graph of people that came in contact with each

other, changes continuously as new contacts are reported, infection

status of patients changes, and so on. Recent work exploits this

temporal graph data to study characteristics such as number of

contacts and infections over a time window, for example, after

a certain variant appeared, or when a mitigation action such as

310



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Chao Gao, Mahbod Afarin, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

limiting mobility is introduced [53]. Having to evaluate the query

on many snapshots makes the problem computationally expensive.

A number of algorithms and software systems have been pro-

posed to support dynamic graphs. A simple approach is to evaluate

the query independently on each snapshot; however, in the com-

mon case where the changes between snapshots represent a small

fraction of the size of the graph and recomputing the full query is

wasteful. Streaming uses incremental computation, starting from

a fully computed graph snapshot, we move to a subsequent snap-

shot by streaming the edge additions and deletions incrementally

updating the state of the graph [49]. Tegra [20] proposes to use

these streaming algorithms, which are known to be substantially

faster than redoing the computation from scratch, to support evolv-

ing graph computation by computing the initial graph, then using

streaming/incremental computation to reach each snapshot in turn.

Aspen [14] provides a data structure for storing dynamic graphs to

support incremental computation.

In this paper, we propose MEGA, the �rst evolving graph ac-

celerator. Algorithmically, MEGA starts from a recently proposed

representation and processing model for evolving graph process-

ing called CommonGraph [2]. For each group of snapshots, Com-

monGraph keeps an initial graph representing the edges that are

common across all the snapshots (i.e., removing all edges that are

either added or deleted). Starting from the CommonGraph, we can

reach any snapshot simply by adding the set of edges that are

missing. This approach has two primary advantages: (1) It gets rid

of expensive edge deletion operations; and (2) It exposes signi�-

cant parallelism by removing the sequential streaming dependency

present in the streaming approach.

In terms of architecture, MEGA builds on a prior event-driven

streaming graph accelerator, Jetstream [40], which employs event-

driven asynchronous processing to support streaming. We show

that directly implementing the two execution �ows mentioned in

the CommonGraph, namely Direct-Hop and Work-Sharing [2] us-

ing JetStream leaves signi�cant opportunities for improving perfor-

mance: we are unable to execute multiple snapshots concurrently;

and we are unable to exploit reuse among the di�erent snapshots.

MEGA supports execution of multiple snapshots concurrently using

a space e�cient representation. We derive schedules to maximize

data reuse using a data representation that supports all snapshots

within the same graph. We also implement a number of other opti-

mizations such as pipelining the execution of di�erent snapshots,

and support for operation on larger graphs, to further improve

performance. MEGA outperforms the software implementation of

CommonGraph by 12.3×-51.2×. It also achieves up to 4.08×-5.98×

improvement in performance over JetStream.

The key contributions of our work are as follows:

• We present MEGA: the �rst accelerator for evolving graph

workloads. MEGA provides support for multiple snapshots

executing at the same time.

• We propose a new processing work�ow for batch-oriented

execution of identical batches across all snapshots. Batch-

oriented execution exploits the similarity of the graph across

snapshots to reuse similar edge-fetches and minimize redun-

dant execution of batches compared to the Direct-hop and

Work-sharing execution �ows from CommonGraph.

• We explore optimizations to the work�ow to improve concur-

rency such as allowing multiple concurrent batches, and us-

ing pipelining across batches to achieve additional speedups.

• We develop an event-driven datapath to support the over-

all execution �ow. MEGA achieves 24-120x speedup over

Software CommonGraph. It also achieves 4-6x improvement

over JetStream.

2 BACKGROUND AND MOTIVATION

In this section, we describe the evolving graph problem and present

the CommonGraph framework which we use as our starting im-

plementation. We also present some motivating results to show

opportunities for an accelerator to improve on CommonGraph.

2.1 Evolving Graphs and CommonGraph

Most real-world graphs change over time, leading to dynamic

graphs [43]. Dynamic graph queries can be divided into two cate-

gories, streaming graph and evolving graphs. Streaming graph

systems apply a query to the latest version of the graph as dynami-

cally it evolves. They initially solve the query on the current graph,

but perform incremental computation to update the solution as

added and deleted edges stream in. On the other hand, evolving

graph queries typically extract information from historical versions

of the graph (called snapshots), for example tracking a property

(e.g., the shortest path between two points) as the graph evolves.

A naive approach to processing evolving graphs is to execute the

query on each instance independently, which can be ine�cient since

the snapshots can be substantially similar. Alternatively, its possible

to leverage streaming, solving the query on the earliest snapshot

and then use using streaming to compute subsequent snapshots one

by one, leveraging known incremental streaming algorithms [15,

49]. Thus, existing evolving graph support has primarily focused on

graph representations. For example, GraphOne[27] and Aspen[14]

build representations to improve graph mutation (changing of the

graph when new addition or deletions are introduced) to facilitate

the construction and retrieval of multiple snapshots using one of

the two approaches above.

Recently, a new abstraction for representing and processing

evolving graphs called the CommonGraph[2] was introduced. Com-

monGraph provides new opportunities for parallelism, as well as

more e�cient execution work�ows. For a group of snapshots to be

processed, a CommonGraph represents the set of edges that will not

be a�ected by either additions or deletions across all snapshots, and

is therefore shared among all the snapshots. Consider ąÿă1 in Fig-

ure 1(a) which is the common graph across snapshots ăğ and ăğ+1.

To move from ăğ to ăğ+1 using conventional streaming algorithms

we have to add edges �ğ+ and delete edges �ğ− . The common graph,

ąÿă1 has all the edges common to both ăğ and ăğ+1 (for example,

all edges ăğ excluding the deleted edges �ğ− , or alternatively all

edges ăğ+1 excluding the added edges �ğ+). As a result, we can go

from ąÿă1 to either ăğ or ăğ+1 by adding the missing set of edges

(�ğ− or �ğ+ respectively).

CommonGraph o�ers a number of advantages [2]: (1) It elimi-

nates the expensive deletion operations which require backpropa-

gation and recomputation for many algorithms; and (2) It breaks

the sequential dependency between snapshots present in streaming
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Figure 1: CommonGraph: Triangular Grid representation and alternative processing work�ows.
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Figure 2: High cost of deletions in JetStream.

implementation of evolving graphs; we can go from the Common-

Graph to any snapshot directly. We in Finding the common set

of edges can be done recursively to create CommonGraphs that

cover multiple snapshots. This recursive construction, which is

called the Triangle-Grid structure (shown in Figure 1 (a) further

provides parallel query opportunities. The paper considers two

processing work�ows: (1) Direct hop (Figure 1(b)) goes from the

CommonGraph to each individual snapshot directly (potentially

in parallel) and; (2) Work sharing (Figure 1(c) where intermedi-

ate CommonGraphs are used to avoid processing the same edge

additions independently for each snapshot resulting higher work

e�ciency.

2.2 Motivating MEGA

CommonGraph represents the state of the art with respect to soft-

ware evolving graph analytics, outperforming streaming imple-

mentations by up to 8x [2]. First, we verify whether one of the

primary reasons behind CommonGraph’s performance advantage,

turning deletions into additions to avoid the high cost of deletion,

also translates to streaming accelerators. Figure 2 shows the cost

of processing a batch of edge additions vs. a batch of the same

size of deletions when executed on the JetStream streaming ac-

celerator [40]. Across many algorithms and graphs, deletions are

substantially more expensive than additions, making it likely that

CommonGraph will provide superior performance to streaming by

replacing additions with deletions.
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Figure 3: Number of additions in SSSP.

We next present some data to motivate some of the opportuni-

ties that are exploited by MEGA. We consider an evolving graph

scenario with 16 snapshots. The size of the batch of edges additions

or deletions to move from one snapshot to the next consists of

0.5 percent of the total edges in the graph, with an equal number

of additions and deletions. Figure 3 shows the number of addi-

tions for direct hop, and work sharing CommonGraph processing

strategies, as well as additions and deletions for baseline stream-

ing for �ve di�erent graphs and SSSP algorithm. Direct hop has 8

times more additions than streaming (scaling with 1

2
the number

of snapshots). While work sharing reuses edge operations across

snapshots, the number of operations remains approximately double

that of streaming. The reason is that some edge additions need to

be repeated across di�erent branches of the triangular grid. For

example, note that in Figure 1 �ğ+ is processed only once in stream-

ing (from ăğ to ăğ+1), but since these added edges are part of all

but the leftmost snapshot, it is processed twice in work sharing to

cover all the snapshots (fromăę to ąÿă3 and from ąÿă1 toăğ+1). In

conclusion, CommonGraph execution strategies, while eliminating

expensive deletes, also increase the overall number of operations

needed across all snapshots.

Finally, we show that CommonGraph results in poor locality as it

processes snapshot by snapshot. Incremental graph processing used

in streaming results in poorer memory locality than full evaluation

of a query on a graph; only a small subset of edges are typically

modi�ed, resulting in poor spatial locality [8, 40]. CommonGraph

processing work�ows also lead to poor reuse as we apply di�erent

batches to a snapshot before moving on to the next (as can be
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Figure 4: Edge reuse: di�erent batches, same snapshot.
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Figure 5: Edge reuse: same batch, di�erent snapshots.

seen in Figure 4, there is very little edge reuse between fetched

edges for di�erent batches within the same snapshot. This low

reuse motivated us to propose a batch-oriented execution work�ow

applying each batch to all the snapshots that need it. Since batches

add the same edges to substantially similar graph instances, the

execution work�ow will result in high reuse in fetched edges. As

can be seen in Figure 5, for the same batch applied to di�erent

snapshots the reuse is extremely high, on average, exceeding 98%.

3 MEGA DESIGN

MEGA uses the asynchronous execution model that has proven

to be highly e�ective for static and streaming graph processing.

As opposed to the Bulk Synchronous Parallel model, it achieves

faster convergence and eliminates synchronization overhead at

iteration boundaries. Additionally, its ability to reorder messages

is leveraged to optimize utilization of memory bandwidth. MEGA

builds upon Jetstream that implements event-driven asynchronous

execution based on delta-accumulative incremental computation

(DAIC), where delta-events arriving from di�erent edges can be

independently applied without any �xed order to compute the

vertex state. In this model, lightweight messages known as events

carry the deltas to their intended vertices. A vertex recomputes its

state once receives an event (delta).

Consider an initial graphă0 (Ē , ā) obtained by solving the query

on an initial graph snapshot. A streaming algorithm takes an in-

cremental edge-batch ā < ĩĨę, ĚĩĪ,ĭĪ, ėĚĚ/ĚěĢ >, and incremen-

tally updates the solution ină0 (Ē , ā) resulting in a modi�ed graph

ă1 (Ē , ā). A straightforward strategy for using Jetstream in the

evolving graph scenario is to use streaming to solve the query one

snapshot at a time in sequence. This approach has a number of

limitations: (i) we are restricted to solving one snapshot at a time;

(ii) deletions that are considerably more resource-intensive and
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Figure 6: Uni�ed Evolving Graph CSR Representation.

computationally expensive must be processed; and (iii) streaming

algorithms are known to have poor locality [8, 40].

By building our work on CommonGraph we achieve deletion-

free processing. However, straightforward use of CommonGraph

on Jetstream still leaves two unresolved issues: serial processing of

snapshots; and poor graph locality. To overcome these issues we

introduce batch-oriented-execution (BOE). BOE employs a compact

and uni�ed evolving graph representation that allows query evalua-

tion on multiple snapshots in a memory locality aware fashion.

An example of this representation is shown in the Figure 6. The

left half of the �gure shows two snapshots (ăğ and ăğ+1) and their

CSR representations. The right half shows the CSR representation

of the union of edges inăğ andăğ+1 and an additional array which

for each edge contains: "-" if it belongs to the CommonGraph ăę ;

"i" if it belongs to the additions batch resulting in snapshot ăğ ; and

"i+1" if it belongs to the additions batch resulting in snapshot ăğ+1.

In other words, this uni�ed graph representation contains ăę ,ăğ ,

and ăğ+1.

Creating the common graph representation is straightforward;

it involves removing the deleted edges present in all batches from

the initial graph. We measured this cost to be around 10% of the

average SSSP query execution time in Risgraph [15]. However, we

assume that the uni�ed graph representation is the default storage

format for our system, making this an o�ine cost.

3.1 Batch-Oriented-Execution

Consider a series of snapshotsăğ ,ăğ+1,ăğ+2,ăğ+3, created by addi-

tions and deletions as shown in Figure 7(a). To solve a query on

Jetsream, �rst the query is solved onăğ and then its results are incre-

mentally updated to obtain results forăğ+1 and so on till results for

evaluations have been computed. Figure 7(b) shows deletion-free

query evaluation by �rst evaluating it on the CommonGraph ăę

and then incrementally applying batches of additions till results for

ăğ are obtained. Starting from ăę and repeating the above process

with appropriate batches of additions, we can also obtain results for

ăğ+1, ăğ+2, and ăğ+3. We observe that even though this approach

eliminates the processing of expensive deletions, it computes re-

sults for one snapshot at a time, which causes two ine�ciencies:

redundant computation; and poor locality. Consider the incremental

update of results for ăę following the red batch of additions repre-

sented by �
ğ+2
_ . In Figure 7(b), this computation is performed three

times, resulting in redundant work. Consider the use of the orange
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(c) Batch-Oriented-Execution using CommonGraph.

Figure 7: Strategies for Incremental Query Evaluation.

batch of additions �ğ+ that also takes place three times – �rst for

ăğ+3, then for ăğ+2, and �nally for ăğ+1. Since the three uses take

place at di�erent times, their accesses lack of temporal locality.

Batch-oriented-execution (BOE) shown in Figure 7(c), eliminates

redundant work and poor temporal locality, while maximizing par-

allelism by simultaneously computing the results of all four snap-

shots. First, let us consider the removal of redundant work via BOE.

The �rst step computes the query on ăę and these results are used

as the starting point for all snapshots. Next, we see that additions

batch �
ğ+2
_ is used by three snapshots – ăğ , ăğ+1, and ăğ+2. There-

fore, we incrementally update the results of query for ăę using

�
ğ+2
_ once and then use the results of this shared computation to

update the results of three snapshotsăğ ,ăğ+1, andăğ+2. The results

computed in the preceding step are then incrementally updated

using additions batch �
ğ+1
_ and used to update results of snapshots

ăğ and ăğ+1, resulting in further elimination of redundant work.

Second, let us observe how poor locality is eliminated by BOE.

Note that at each incremental update in the schedule representing

BOE, whenever an addition batch is to be used by more than one

Algorithm 1 Generating MEGA Execution Schedule

1: Inputs: Common Graph (ăę );

2: Addition Edges Batches: �+
1
, �+

2
, �+

3
, ..., �+

Ĥ−1;

3: Deletion Edges Batches: �−
1
, �−

2
, �−

3
, ..., �−

Ĥ−1.

4: Output: Schedule for Computing Results for ă0, ă1, ..., ăĤ−1.

5: functionMEGA-EXECUTION-SCHEDULE

6: for ğ in range of [Ċ − 2, 0] do

7: parallel for (�+
ğ
and �

−
ğ
) do

8: update-�ery (�+
ğ
, add)

9: update-�ery (�−
ğ
, del)

10: end for

11: end for

12: end function

13: function update-�ery(� Ġ , batch_type)

14: if batch_type == add then

15: parallel for ğ in range of [Ċ − 1, Ġ + 1] do

16: GEN [val-array[ğ] = incremental-�ery (ğ , � Ġ )]

17: end for

18: else if batch_type == del then

19: GEN [temp_val = incremental-�ery (ğ , � Ġ )]

20: parallel for ğ in range of [ Ġ , 0] do

21: GEN [val_array[ğ] = temp_val]

22: end for

23: end if

24: end function

snapshot, the computation for the snapshots are performed at the

same time. That is, multiple users of an additions batch access the

batch simultaneously creating temporal locality.

Therefore, BOE delivers maximal parallelism, minimal redun-

dant work, and maximal temporal locality. We have developed a

general algorithm for the o�ine generation of the BOE schedule

for Ċ snapshots as shown in Figure 8. In Algorithm 1, GEN [...]

statements generate the calls to incremental update of query re-

sults following addition of a batch of edges. For simplicity, we have

not explicitly identi�ed the graphs but rather only identi�ed the

incremental query updates that are performed. Note that in some

cases, incremental updates on di�erent versions of a graph can be

performed in parallel. Additionally, in Figure 8, for N snapshots

there are N-1 stages in the schedule, and each stage has exactly two

addition batches. The loop in function MEGA-EXECUTION-SCHEDULE

iterates N-1 times handling a pair of addition and deletion batches

for which incremental-Query evaluations are generated by func-

tion update-Query. Lines 14-17 handle addition batches, while

lines 18-23 handle deletion batches.

3.2 Other Optimizations

Locality for Partitioned Graphs. We have shown how BOE ac-

commodates multiple snapshots along with a value array that holds

values for all snapshots corresponding to each vertex. We map

the on-chip memory in MEGA to node properties using a direct-

mapping format. However, as the graph sizes increase, eventually

graph partitioning becomes necessary. As demonstrated in Figure 5,
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Figure 9: The top part illustrates CommonGraph execution

as it transitions from one snapshot to the next. The bottom

illustrates scheduling in MEGA where we execute the same

batch on all the snapshots that need it at the same time,

resulting in high locality. In this example, we cannot �t all

4 snapshots on the accelerator so we apply the batches to

the same partition of the graph across di�erent snapshot

concurrently.

with BOE around 98% of edges fetched across di�erent snapshots are

the same. To capitalize on this observation, we propose a partition-

scheduling approach, as depicted in Figure 9, to enhance locality

in presence of partitioning. Assuming we have four snapshots and

only one snapshot can �t on-chip at a time, we divide the snap-

shots into four separate partitions. At the start of the computation

process, we will retrieve partition 1 for all four snapshots and store

it in the on-chip memory. Once the �rst partition’s computation is

complete, we move to the next partition and so on. This approach

exploits temporal locality of BOE even when the graph requires

partitioning to �t multiple snapshots.
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Figure 10: Number of events for each round for four algo-

rithms (Wen graph using JetStream); number of events drops

rapidly during the initial rounds.

Batch Pipelining (BP). We de�ne one round of computation (also

referred to as one hop incremental computation in the previous

Figure 1(a)) as an execution, which comprises multiple iterations

of computation. The illustration in Figure 10 clearly demonstrates

that the number of events occurring during a single execution

decreases as the number of rounds increases, creating long tails

where the capacity to manage more events is available. As we

approach the "long-tails" of a single execution, we can introduce

another execution into the accelerator. Rounds in the asynchronous
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batches in Batch-Oriented-Execution scenario.

model correspond to iterations in synchronous graph processing,

and the set of active events correspond to the frontier. Note that the

later rounds have fewer events and therefore are processed quickly;

however, there remains an opportunity to overlap the execution

time of the "tails" with initial rounds from another batch execution,

to improve parallelism as shown in Figure 11. The initiation of a

new execution fed to the hardware accelerator is triggered when

the events number decreases to a speci�c threshold. Note that this

trigger can be easily supported in hardware. This process e�ectively

eliminates the extended tail.

Generality: Although we demonstrate BOE in the context of an

asynchronous accelerator, the observation that applying a batch

to all the instances together improves locality is independent of

the execution model. In addition, the order of applying the batches

does not a�ect the correctness of the �nal result provided that the

incremental update algorithm is correct since the �nal graph is the

same regardless of the order of edge additions. Algorithm 1 is also

independent of the execution model.

4 MEGA ARCHITECTURE

MEGA uses an event-driven execution to support operations on

dynamic graphs, similar to the GraphPulse and Jetstream accelera-

tors [39, 40]. Event driven execution o�ers a number of advantages

over bulk-synchronous processing, and is especially suited for dy-

namic graphs where graph changes can be expressed as events.

At a high level, MEGA incorporates a number of ideas to support

e�cient processing of evolving graphs: (1) Operation on multi-

ple versions of the graph concurrently to improve parallelism and

data reuse; (2) Batch-oriented execution to reuse computation and

memory, and optimize scheduling of the graph processing; and (3)

Pipelining between di�erent versions of the graph, enabling one

dependent version to start before the snapshot it depends on has

fully stabilized.

4.1 MEGA Architecture Overview

Figure 12 shows an overview of the datapath. The primary datapath

components include Event Queues, Event Scheduler, Processors,

and the on-chip routing network that interconnects these elements.

During full operation on a graph, all computation is represented as

events represented as lightweight event messages. An event triggers

computation at the destination vertex and multiple events targeted

towards the same vertex are coalesced in the event queues. Events

messages are tuples consisting of a target vertex identi�er, a payload,

and speci�c �ags used to indicate special purpose events, such as

those used to support edge deletion. The event queue is composed

of multiple individual bins, each containing events for a subset

of vertices, to improve both queuing and dequeuing bandwidth.

Event processors use parallel event generation streams to assist in

generating outgoing events, considering that some vertices may

have a large number of outgoing edges in a power-law graph.

MEGA’s computational model follows the event based process-

ing model introduced by GraphPulse [39] and later adapted for

processing streaming graphs in Jetstream [40]. We �rst carry out

the computation on the common graph, which is shared among all

the snapshots. For each batch, the batch reader reads the edges for

the batch and creates corresponding events for each of the active

snapshots for this batch and inserts them into the event queues for

execution as described next.

4.2 Execution and Datapath

MEGA supports multiple active snapshots: events are marked with

a version tag to allows separation of events destined to di�erent

snapshots. We also add a batch tag, in order to be able to detect

when a batch is over to support batch scheduling. The event queue

is a central structure in MEGA, holding all active events within

the system. This queue is designed with multiple sub-queues (or

bins) to improve the bandwidth of queuing and dequeuing, and

to support partitioning. Changing active partitions/snapshots is

carried out at the granularity of bins, partitions being swapped out

can be streamed from their bin to memory, and newly activated

partitions are streamed from memory to available bins. Each bin

is organized as a direct mapped matrix of rows and columns, with

each cell representing a vertex for a speci�c graph snapshot, like a

direct-mapped cache.

When inserting events in the event queue, the decoder in Fig-

ure 13 identi�es the location of the event based on its version id.

The queue is dual-ported and pipelined, allowing for one read and

one insertion per cycle. During insertion, if an existing event is

detected in the target cell, the events are coalesced using a reduc-

tion operation such that each vertex has at most one active event

(coalescing is part of the insertion pipeline and does not cause

additional delays). This design gains e�ciencies by reducing the

storage and processing for events and also removes the need for

synchronization with at most one event for each vertex.

Since MEGA supports multiple active graph versions concur-

rently, it is important to schedule execution in a way that promotes

data reuse. The di�erent versions share most of the graph struc-

ture (Figure 6), bene�ting from data reuse when they are accessing

similar parts of the graph. However, their active state, consisting

of events and vertex values, must be maintained separately once

the snapshots diverge, causing the events to be stored in di�erent

parts of the event queue enabled by the decoder logic in Figure 13.

To accommodate multiple batches, all instances on which the

batches operate must be resident in the accelerator (which is en-

sured by the Batch Scheduler). Once the execution starts, the imple-

mentation is straightforward since the snapshots are independent

and events/snapshots are isolated by version tags. Note that it is

possible that multiple events for the same vertex/snapshot would

316



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Chao Gao, Mahbod Afarin, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

Processing Engine x8

Batch Reader

SchedulerC
o
a

le
s
c
e
r

Queue
Batch 

Controller

NoC

Scratchpad Memory Edge Cache

Apply

Prefetcher

Vertex Buffer

Prefetcher

Edge ID Buffer

Propagate

1′
Figure 12: MEGA datapath: blue lines indicate data-�ow; red represent control signals; and green/yellow signify on-chip and

o�-chip memory transfers respectively.

be generated from di�erent batches that are concurrently active,

for example due to batch pipelining. However, since the events

target the same snapshot, they can safely be coalesced. The asyn-

chronous execution model ensures correct execution regardless of

event order.

The overall event execution proceeds as shown in Figure 12.

When a new batch is scheduled, the batch reader brings the batch

in from o� chip and generates corresponding update events to

all the snapshots needing that batch. These events are inserted

into the event queue. MEGA’s processing engines �rst pull events

from their queues after the event scheduler places them there. The

Batch-Reader �rst reads one batch of additions and generates their

corresponding events (Step 0©). Next, the scheduler will pull events

from the Queue, and the Queue emits events in Step 1©, and places

them in the vertex bu�ers in Step 2©. Event execution requires

reading the vertex state (which is prefetched) in 3©. In Step 4©, the

edge computation representing the algorithm is executed to update

the vertex state (see Table 1 for the computation function corre-

sponding to the di�erent algorithms). The PE fetches the output

edges from the edge cache for generating output events in Step

5©. If the outgoing edge set is not cached, it is prefetched prior to

event execution in Step 6©. Outgoing events are generated in Step

7© to the respective snapshots using 4 parallel event generation

units for each processing element to reduce delays associated with

executing events on high out-degree vertices.

4.3 Batch Scheduling and Version Control

The batch scheduling logic implements the execution work�ow

of the accelerator. It controls which batches are active on which

instances/partitions of each instance of the graph. Along with the

event scheduler, this ensures that the batch processing for all the

instances proceed at an even pace. This logic also manages the

allocation of event bins to implement work�ow schedules such

as that shown in Figure 9. The schedule of these allocations is

pre-determined as described in Section 3.1.

As illustrated in Fig 7, all snapshots are composed of a com-

mon graph and a sequence of addition-only batches. To manage

these snapshots, MEGA’s computation scheduler includes a hard-

ware version table: a look-up-table containing information about

the composition of di�erent snapshots and their processing status.

When a computation batch begins, the scheduler marks its entry in

Event with Version Tag

Payload
Computation 

Index
Event 

Index

Version id

Version Register

Decoder

Column

Row

Bank

Figure 13: Queue support for multiple snapshots.

the version table as active (Step A© in Figure 12) The version table

broadcasts updates to all processing elements (PE) and event-queue

banks (Step B© and Step C©), updating the version register in the PEs.

To support the Batch Oriented Execution work�ow, we schedule

all the active snapshots for each batch together to promote spatial

locality. Once the scheduler identi�es that a batch is entering the

long-tail phase based on event queue occupancy, the version table

updates other batches and noti�es the scheduler through Step D©

to initiate a new computation batch.When events from di�erent

instances are destined for the same vertex, edge prefetching is done

by the �rst event destined to the vertex, but is reused by subsequent

snapshots. The event generation streams are interconnected with

the queues via a network on a chip implemented as a 16x16 crossbar

with each port shared among two of the 32 event generators (four

per PE). On the other side, output ports of the NoC lead to the

event bins where the newly generated events get queued for future

execution (Steps 8© and 9© in Figure 12).

The MEGA datapath is based on that of the JetStream streaming

accelerator; the components in grey in Figure 12 are either new or

modi�ed. Speci�cally, JetStream works on a single graph at a time
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and supports both edge additions and deletions. MEGA supports

the uni�ed graph representation, BOE scheduling, and multiple

active graph instances (re�ected in queue design, prefetcher design,

event generation and propagation, as well as the NoC). Moreover,

since MEGA uses CommonGraph to eliminate the need for edge

deletions, we remove the expensive event deletion logic.

5 PERFORMANCE EVALUATION

In this section, we evaluate MEGA’s performance and overheads.

We �rst describe our experimental setup.

Table 1: Benchmarks and their edge functions.

Algorithm EdgeFunction (ě (ī, Ĭ))

BFS ÿýďĉąĊ (ĒėĢ (Ĭ),ģğĤ(ĒėĢ (ī) + 1, ĬėĢ (Ĭ)))

SSWP ÿýďĉýĔ (ĒėĢ (Ĭ),ģğĤ(ĒėĢ (ī),ĭĪ (ī, Ĭ)))

SSNP ÿýďĉąĊ (ĒėĢ (Ĭ),ģėĮ (ĒėĢ (ī),ĭĪ (ī, Ĭ)))

SSSP ÿýďĉąĊ (ĒėĢ (Ĭ),ĒėĢ (ī) +ĭĪ (ī, Ĭ))

Viterbi ÿýďĉýĔ (ĒėĢ (Ĭ),ĒėĢ (ī)/ĭĪ (ī, Ĭ))

Table 2: Edges and Vertices of the Input Graphs and the Batch

Size for Motivation Data.

Input Graph Edges Vertices Batch Size

Pokec (PK) [47] 30M 1.6M 0.3M

LiveJournal (LJ) [6] 70M 4M 0.7M

Orkut (OR) [33] 117M 3M 240K

DBpediaLinks (DL) [5] 170M 18M 1.7M

UK-2002 (UK) [10] 260M 18M 2.6M

WikipediaLinks (Wen) [28] 400M 13M 4M

Table 3: Experimental Con�gurations.

CPU MEGA

Compute

Unit

60× Intel(R) Xeon(R)

@3.1GHz

8×MEGA

Processor @ 1GHz

On-chip

memory

49.5MB L3

Cache

64MB eDRAM @22nm

1GHz, 0.8ns latency

O�-chip

Bandwidth

14x DDR4

17GB/s Channel

4x DDR4

17GB/s Channel

5.1 Experimental Setup

System Modeling:We implemented the MEGA accelerator on a

cycle-accurate microarchitectural simulator built using the Struc-

tural Simulation Toolkit (SST) [46]. The o�-chip memory is modeled

using DRAMSim2 [41]. The simulator incorporates a cycle accu-

rate model of the NoC, scratchpad memory, cache hierarchy, event

queues and other components of the data path.

WorkloadsWe evaluate accelerator performance using �ve com-

monly used graph algorithms listed in Table 1 and six real-world

input graphs listed in the Table 2. We synthesize 16 snapshots of

all the datasets by randomly creating batches consisting of 1% of

the edges (half additions and half deletions) to mimic the evolution

of the graph. We validated the �nal results of MEGA executions

against those of the software baselines.

Software and Hardware Baselines: For the Software baseline,

we choose the streaming systems Kickstarter [49] and Risgraph[15].

We also compare against a GPU system system, Subway [42], which

uses an asynchronous execution model similar to our accelerator.

We implement CommonGraph within each of these baselines [2].

We execute these on a shared memory system on Google Cloud

with C2-standard-60 compute node which has 60 Intel(R) Xeon(R)

CPU processors and 240GB of memory. For the hardware baseline

design, we use the same con�guration outlined in the Jetstream

paper [40], and we con�gure MEGA to support two execution �ows:

Direct-Hop and Work-sharing from CommonGraph [2]. For GPU

experiments, we used NVIDIA Tesla K80 GPUs with 12 GB GDDR5

memory, and code was compiled with CUDA 10.2, utilizing the

highest optimization level.

5.2 Performance and Characteristics

Overall Performance. Figure 14 shows the overall speedup

achieved by MEGA over software implementations of Common-

Graph (work sharing) implemented within di�erent streaming sys-

tems, Kickstater, RisGraph and Subway (GPU) [15, 42, 49]. The

scenario consists of executing 16 snapshots, each involving a 1%

change in the graphwith an equal distribution of 50% edge additions

and 50% edge deletions. MEGA with BOE outperforms Common-

Graph on Kickstarter and RisGraph by 51x and 29x respectively.

The results from Table 4 and Figure 14 include all the partitioned

graph overheads to move partitions on/o� chip as discussed in

Section 3.2. MEGA requires more graph partitions compared to

Jetstream to support BOE on multiple snapshots concurrently. For

example, with Live Journal, Jetstream does not require graph parti-

tioning while MEGA needs to partition the graph into four parts.

MEGA outperforms Subway, the GPU baseline, by an average of 12x.

It is important to note that we con�gured MEGA with conserva-

tive memory settings with total memory bandwidth of 68GBytes/s,

which is less than a third of the bandwidth available on the K80

GPUs (240 GBytes/s). To show the performance improvements from

BOE in software, we implemented a version of it on the top of Ris-

Graph as shown in Figure 14. The software version of BOE exploits

parallelism from concurrent snapshots execution, but uses di�erent

processors and is not able to exploit memory locality e�ectively.

Table 4 compares the performance of MEGA to Jetstream as well

as to di�erent execution work�ows. The �rst line for each graph

shows the run time on the JetStream processor using streaming.

The next two lines show the speedup obtained in MEGA when im-

plementing the CommonGraph Direct-hop (DH) and Work-sharing

(WS) execution �ows. The �nal three lines show the speedup
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Figure 14: MEGA (BOE+BP) speedup over CommonGraph Work-Sharing implemented on top of KickStarter (software) [49],

RisGraph (software, both WS and BOE) [15], and Work-Sharing on Subway (GPU) [42].

Table 4: Average Execution Time for JetStream, and the speedup of CommonGraph Direct-Hop, CommonGraph Work-Sharing,

Batch-Oriented-Execution with Batch Pipelining optimizations over JetStream for 16 Snapshots.

Graph �ery Evaluation Algorithm BFS SSSP SSWP SSNP Viterbi

PK

JetStream Time 21.31ms 77.02ms 21.52ms 24.75ms 73.81ms

Direct-Hop Speedup 2.14× 1.70× 2.11× 1.66× 1.44×

Work-Sharing Speedup 2.26× 1.88× 2.17× 1.86× 1.75×

BOE Speedup 4.95× 4.93× 4.68× 4.94× 4.94×

BOE + BP Speedup 5.03× 5.66× 4.94× 5.64× 5.98×

LJ

JetStream Time 58.574ms 262.425ms 115.725ms 101.171ms 156.522ms

Direct-Hop Speedup 2.11× 1.91× 1.86× 1.31× 1.24×

Work-Sharing Speedup 2.17× 1.96× 1.94× 1.68× 1.64×

BOE Speedup 4.16× 4.67× 4.63× 4.47× 4.5×

BOE + BP Speedup 4.43× 4.99× 5.13× 5.01× 5.17×

DL

JetStream Time 71.401ms 211.725ms 136.821ms 133.275ms 223.501ms

Direct-Hop Speedup 1.09× 1.21× 1.04× 1.05× 1.24×

Work-Sharing Speedup 1.55× 1.62× 1.52× 1.52× 1.73×

BOE Speedup 4.36× 4.56× 4.48× 4.46× 4.54×

BOE + BP Speedup 4.63× 5.7× 4.98× 4.96× 5.83×

OR

JetStream Time 39.451ms 107.475ms 114.015ms 67.875ms 79.275ms

Direct-Hop Speedup 1.59× 1.41× 1.30× 1.07× 1.21×

Work-Sharing Speedup 1.83× 1.74× 1.67× 1.53× 1.69×

BOE Speedup 4.14× 4.36× 4.45× 4.25× 4.36×

BOE + BP Speedup 4.25× 5.3× 5.08× 5.02× 5.03×

UK

JetStream Time 248.852ms 246.151ms 250.125ms 255.901ms 248.625ms

Direct-Hop Speedup 2.05× 1.92× 2.01× 1.31× 1.98×

Work-Sharing Speedup 2.15× 1.98× 2.11× 1.61× 2.11×

BOE Speedup 4.85× 4.83× 4.84× 4.82× 4.81×

BOE + BP Speedup 5.19× 5.08× 5.22× 4.96× 4.95×

Wen

JetStream Time 170.252ms 418.651ms 282.075ms 277.052ms 320.925ms

Direct-Hop Speedup 1.73× 1.09× 1.34× 1.27× 1.30×

Work-Sharing Speedup 2.01× 1.66× 1.88× 1.85× 1.87×

BOE Speedup 3.74× 4.2× 4.07× 4.03× 4.05×

BOE + BP Speedup 4.08× 4.53× 4.61× 4.48× 4.47×
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Figure 15: E�ect of on-chip memory size (Wen Graph)
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Figure 16: Normalized edge reads (Wen Graph).

achieved by BOE, with single-batch, multiple-batch, and multiple-

batch with pipelining respectively. For all work�ows, MEGA sub-

stantially outperforms Jetstream because of the advantage of elimi-

nating expensive deletions. WS outperforms DH, as was also ob-

served in software, because it reduces the overall number of exe-

cuted events. BOE outperforms WS because it is able to achieve

signi�cantly better memory reuse, gain from concurrent execution

of batches, while also achieving work sharing.

Sensitivity to on-chip memory size: Since MEGA executes

multiple instances of the graph at the same time, when on-chip

memory is limited, it must partition each instance of the graph. This

incurs additional overheads as events for inactive partitions are

saved to memory and later brought in when the target partition is

loaded. Figure 15 shows that as the on-chip memory size increases,

performance improves since larger graph partitions can �t on chip.

We con�gured MEGA with 8 PEs; adding additional PEs did not

improve performance without increasing the memory bandwidth

as well as internal bandwidth of the NoC and event queues.

Memory reuse: Figure 16 shows the number of edge reads dur-

ing run time for the di�erent execution work�ows. Edge reads

increase with the number of events processed, but go down when

there is signi�cant reuse of the edges. Direct hop executes a very

high number of events, resulting in a high number of edge reads.
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Figure 17: Normalized vertex reads (Wen Graph).
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Figure 18: Normalized vertex writes (Wen Graph).
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Figure 19: E�ect of batch size (Wen/SSWP).

While work sharing executes less events, there is low locality be-

tween events. BOE has the lowest number of edge reads, due to

the high reuse achieved by the batch oriented scheduling. We see

similar trends also for the vertex reads (Figure 17) and the vertex

writes (Figure 18). Since batch oriented scheduling applies the same

batch to slightly di�erent versions of the graph, it can achieve high

reuse in both vertex and edge operations.

MEGA Scalability Analysis: The next experiment provides

insights into how well the system can handle changes in workload,
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Figure 20: E�ect of number of snapshots (Wen/SSWP).
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Figure 21: E�ect of imbalance batches (Wen/SSWP).

with respect to the batch size and the number of snapshots. We

vary the batch size from 0.1% to 1%. Figure 19 shows that MEGA

consistently outperforms CommonGraph across the range of batch

size, with the advantage increasing for larger batches.

Next, we vary the number of snapshots within the �xed time

window. The results, as shown in the Figure 20, indicate that when

there are fewer than 20 snapshots, MEGA achieves a higher speedup.

However, when the number of snapshots increases to 24, MEGA’s

performance slows down compared to the other execution �ows.

This slowdown occurs because, as more snapshots are processed in

MEGA, the overhead of graph partitioning becomes higher, nega-

tively impacting performance. Finally, we study the e�ect of batch

size imbalance on the performance of BOE in Figure 21. The �rst

value represents the speedup when the batches are identical in size.

An imbalance of 1.5x (or 4x) means that the largest batch is 1.5

times (or respectively 4 times) the size of the smallest batch. We see

that speedup dips slightly, by about 10% even when large imbalance

is present.

5.3 Hardware Cost and Power Analysis

We build a model of the primary MEGA resources sized similar to

Jetstream, with 64MB on-chip memory for the queues and eight pro-

cessing elements, each equipped with a 2KB scratchpad and a 1KB

edge-cache. For power and area estimates for memory components,

we use CACTI 7[7]. The queue memory is designed using 22nm

ITRS-HP SRAM technology. We also model the communication

network, the scheduler, and other logic components. A breakdown

of power and area estimates are in Table 5. MEGA incorporates

a majority of the architectural elements from Jetstream, such as

the event queue, prefetcher, and cache. However, MEGA also in-

cludes additional version registers, a batch scheduler, and decoders

within the event queue, which leads to some hardware overhead.

The overall area and power are slightly higher than JetStream for

the queues and network due to expanded event sizes with instance

and batch ids. Consuming only 10 Watts, MEGA is substantially

more power-e�cient than our baseline GPU and CPU systems.

Table 5: Power and area of MEGA components

Power(mW)
Area(ģģ

2)
Static Dynamic Total

Queue 64 123 (+5%) 23.5 (+13%) 9389 (∼6%) 195 (+1.5%)

Scratchpad 8 0.35 (∼0%) 1.3 (+8%) 13.2 (+9%) 0.25 (∼4%)

Network 120 (+31%) 7.5 (+39%) 127.5 (+31%) 10.0 (+43%)

Proc. Logic - - 1.9 (+6%) 1.2 (+34%)

Total - - 9532 (+6.8%) 203(+2%)

6 RELATED WORK

Among the most recent works on rapid analysis of evolving graphs

are RisGraph [15] and Tegra [20]. RisGraph targets at achieving

real-time qurey by developing a new data structure for fast edge

insertion and deletions. However, this is achieved at the trade-o�

of memory size of 3.25x to 3.38x. Tegra provides a novel API for

performance ad-hoc queries on arbitrary time windows of the graph

by using a compact in-memory representation for both graph and

intermeidate computation state. Both RisGraph and Tegra leverage

existing algorithms developed for streaming systems to support

incremental computation for handling edge additions and deletions.

Other storage systems to support evolving and streaming graphs

include GraphOne and Aspen while systems that amortize the

cost of memory accesses and computation include Chronos [18]

and FA+PA [48]. However, these frameworks are limited in the

types of graph updates they can handle. In particular, they do not

support edge deletions. Another category of systems that exploit

graph sharing are the systems that concurrently evaluate multiple

(di�erent) queries on a single version of a graph [11, 54, 57].

Single version streaming graph system has been proposed also,

the algorithms maintain a single graph and a standing query’s

results that are incrementally added up when a new batch of up-

dates are applied to the graph. The target of these works is on

incremental computation, i.e. how to e�ciently update query re-

sults. Early streaming systems (such as Kineograph [12], Naiad [36],

Tornado [44] and Tripoline [24]) only support incremental com-

putations for edge additions while more recent systems (such as

Kickstarter [49] and GraphBolt [32]) also support edge deletions.

Although many of the above dynamic graph system support both

version control and incremental computation, none of them exploit

parallelism and data reuse among di�erent snapshots. MEGA is the

�rst accelerator that supports parallel computation across di�erent

snapshots thus accelerating the execution time signi�cantly.
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A number of hardware accelerators target acceleration of queries

on static graphs (e.g., [1, 13, 17, 21, 22, 39]). Several architectural

approaches have been developed to enhance graph traversal perfor-

mance, such as Coup[55], which minimizes read and write tra�c,

PHI[35], which decreases on-chip tra�c, andHATS[34], a hardware-

assisted scheduler that promotes locality. A few recent works ex-

plore dynamic graph processing. GraSU[51] provides the �rst FPGA-

based graph update library for dynamic graphs. Jetstream[40] is

the �rst streaming graph accelerator supporting incremental algo-

rithms. TDGraph[56] augments many-core processors to support

both graph mutation (changing the graph) and graph computation.

Basak et. al. [8] provide an accelerator to sort streaming edges to

improve locality and make their execution faster on a conventional

graph accelerator. None of these works support evolving graph

processing and it is not simple to extend them to track processing

of multiple concurrent versions of the graph.

7 CONCLUDING REMARKS

In this paper we introduced MEGA, the �rst evolving graph ac-

celerator. The evolving graph problem is compute- and memory-

intensive as it evaluates a query on many snapshots of a graph. The

snapshots may be quite similar in their graph structure since the

changes to the graph tend to be small relative to the overall size.

MEGA uses the CommonGraph approach to eliminate the need

to handle expensive edge deletions. We develop a new scheduling

and execution model, Batch-oriented execution, that applies update

batches concurrently when possible, and with high graph reuse.

Overall MEGA achieves 24×-120× speedup over CommonGraph. It

also achieves 4.08×-5.98× speedup compared to JetStream, a recent

streaming graph accelerator.
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