Check for
Updates

MEGA Evolving Graph Accelerator

Chao Gao®
cgao037@ucr.edu
CSE Department, UC Riverside
USA

Nael Abu-Ghazaleh
nael@cs.ucr.edu
CSE Department, UC Riverside
USA

ABSTRACT

Graph Processing is an emerging workload for applications working
with unstructured data, such as social network analysis, transporta-
tion networks, bioinformatics and operations research. We examine
the problem of graph analytics over evolving graphs, which are
graphs that change over time. The problem is challenging because
it requires evaluation of a graph query on a sequence of graph
snapshots over a time window, typically to track the progression
of a property over time. In this paper, we introduce MEGA, a hard-
ware accelerator designed for efficiently evaluating queries over
evolving graphs. MEGA leverages CommonGraph, a recently pro-
posed software approach for incrementally processing evolving
graphs that gains efficiency by avoiding the need to process expen-
sive deletions by converting them into additions. MEGA supports
incremental event-based streaming of edge additions as well as
execution of multiple snapshots concurrently to support evolv-
ing graphs. We propose Batch-Oriented-Execution (BOE), a novel
batch-update scheduling technique that activates snapshots that
share batches simultaneously to achieve both computation and data
reuse. We introduce optimizations that pack compatible batches
together, and pipeline batch processing. To the best of our knowl-
edge, MEGA is the first graph accelerator for evolving graphs that
evaluates graph queries over multiple snapshots simultaneously.
MEGA achieves 24X-120x speedup over CommonGraph. It also
achieves speedups ranging from 4.08X to 5.98x over JetStream, a
state-of-the-art streaming graph accelerator.

CCS CONCEPTS

« Computer systems organization — Data flow architectures.

KEYWORDS

evolving graphs, iterative graph algorithms, common graph, redun-
dancy removal, temporal locality, batch oriented execution

“Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO °23, October 28—November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614260

Mahbod Afarin®
mafar001@ucr.edu
CSE Department, UC Riverside
USA

310

Shafiur Rahman
mrahm008@ucr.edu
CSE Department, UC Riverside
USA

Rajiv Gupta
rajivg@ucr.edu
CSE Department, UC Riverside
USA

ACM Reference Format:

Chao Gao, Mahbod Afarin, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv
Gupta. 2023. MEGA Evolving Graph Accelerator. In 56th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO °23), October 28—
November 01, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3613424.3614260

1 INTRODUCTION

Graphs are fundamental data structures used to represent unstruc-
tured data, with objects as vertices and relationships as edges.
Graphs arise across numerous application domains. Real-world
graphs such as social networks and web graphs, are large and
irregular, posing challenges for graph analytics workloads. Sig-
nificant research has been conducted to create high-performance
graph analytics frameworks for different platforms including CPUs,
GPUs and custom accelerators to enhance performance and scala-
bility [3, 4, 9, 16, 19, 23, 25, 26, 29-31, 37-39, 45, 50, 52, 58].

In real-world scenarios, graphs are frequently dynamic, as the
data represented by the graph continues to change [43]. There are
two primary categories of analyses for dynamic graphs: streaming
graphs analytics and evolving graphs analytics. Streaming graph
analytics continuously update query results as the graph changes
due to incoming updates arriving in real-time. For example, one
might want to maintain shortest paths to destinations as traffic
conditions vary. We consider changes represented as edges being
added or deleted from the graph (other changes such as adding
and removing vertices can be modeled using edge additions and
deletions as well). Incremental algorithms are typically utilized to
update query results in response to the streaming graph changes,
thereby avoiding the need to recompute the query from scratch
with every update.

Our focus is the second type of analysis, evolving graph analytics,
which aims to evaluate a query over a sequence of snapshots of
the graph captured over an extended time period. In this case,
the batches of changes were received in the past, and are already
known. Generally, an evolving graph computation executes a query
over a long time scale by analyzing different snapshots within the
specified time window. For example, Covid-19 contact tracing data,
represented as a graph of people that came in contact with each
other, changes continuously as new contacts are reported, infection
status of patients changes, and so on. Recent work exploits this
temporal graph data to study characteristics such as number of
contacts and infections over a time window, for example, after
a certain variant appeared, or when a mitigation action such as

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

limiting mobility is introduced [53]. Having to evaluate the query
on many snapshots makes the problem computationally expensive.

A number of algorithms and software systems have been pro-
posed to support dynamic graphs. A simple approach is to evaluate
the query independently on each snapshot; however, in the com-
mon case where the changes between snapshots represent a small
fraction of the size of the graph and recomputing the full query is
wasteful. Streaming uses incremental computation, starting from
a fully computed graph snapshot, we move to a subsequent snap-
shot by streaming the edge additions and deletions incrementally
updating the state of the graph [49]. Tegra [20] proposes to use
these streaming algorithms, which are known to be substantially
faster than redoing the computation from scratch, to support evolv-
ing graph computation by computing the initial graph, then using
streaming/incremental computation to reach each snapshot in turn.
Aspen [14] provides a data structure for storing dynamic graphs to
support incremental computation.

In this paper, we propose MEGA, the first evolving graph ac-
celerator. Algorithmically, MEGA starts from a recently proposed
representation and processing model for evolving graph process-
ing called CommonGraph [2]. For each group of snapshots, Com-
monGraph keeps an initial graph representing the edges that are
common across all the snapshots (i.e., removing all edges that are
either added or deleted). Starting from the CommonGraph, we can
reach any snapshot simply by adding the set of edges that are
missing. This approach has two primary advantages: (1) It gets rid
of expensive edge deletion operations; and (2) It exposes signifi-
cant parallelism by removing the sequential streaming dependency
present in the streaming approach.

In terms of architecture, MEGA builds on a prior event-driven
streaming graph accelerator, Jetstream [40], which employs event-
driven asynchronous processing to support streaming. We show
that directly implementing the two execution flows mentioned in
the CommonGraph, namely Direct-Hop and Work-Sharing [2] us-
ing JetStream leaves significant opportunities for improving perfor-
mance: we are unable to execute multiple snapshots concurrently;
and we are unable to exploit reuse among the different snapshots.
MEGA supports execution of multiple snapshots concurrently using
a space efficient representation. We derive schedules to maximize
data reuse using a data representation that supports all snapshots
within the same graph. We also implement a number of other opti-
mizations such as pipelining the execution of different snapshots,
and support for operation on larger graphs, to further improve
performance. MEGA outperforms the software implementation of
CommonGraph by 12.3X-51.2x. It also achieves up to 4.08X-5.98x
improvement in performance over JetStream.

The key contributions of our work are as follows:

e We present MEGA: the first accelerator for evolving graph
workloads. MEGA provides support for multiple snapshots
executing at the same time.

e We propose a new processing workflow for batch-oriented
execution of identical batches across all snapshots. Batch-
oriented execution exploits the similarity of the graph across
snapshots to reuse similar edge-fetches and minimize redun-
dant execution of batches compared to the Direct-hop and
Work-sharing execution flows from CommonGraph.

311

Chao Gao, Mahbod Afarin, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

e We explore optimizations to the workflow to improve concur-
rency such as allowing multiple concurrent batches, and us-
ing pipelining across batches to achieve additional speedups.

e We develop an event-driven datapath to support the over-
all execution flow. MEGA achieves 24-120x speedup over
Software CommonGraph. It also achieves 4-6x improvement
over JetStream.

2 BACKGROUND AND MOTIVATION

In this section, we describe the evolving graph problem and present
the CommonGraph framework which we use as our starting im-
plementation. We also present some motivating results to show
opportunities for an accelerator to improve on CommonGraph.

2.1 Evolving Graphs and CommonGraph

Most real-world graphs change over time, leading to dynamic
graphs [43]. Dynamic graph queries can be divided into two cate-
gories, streaming graph and evolving graphs. Streaming graph
systems apply a query to the latest version of the graph as dynami-
cally it evolves. They initially solve the query on the current graph,
but perform incremental computation to update the solution as
added and deleted edges stream in. On the other hand, evolving
graph queries typically extract information from historical versions
of the graph (called snapshots), for example tracking a property
(e.g., the shortest path between two points) as the graph evolves.

A naive approach to processing evolving graphs is to execute the
query on each instance independently, which can be inefficient since
the snapshots can be substantially similar. Alternatively, its possible
to leverage streaming, solving the query on the earliest snapshot
and then use using streaming to compute subsequent snapshots one
by one, leveraging known incremental streaming algorithms [15,
49]. Thus, existing evolving graph support has primarily focused on
graph representations. For example, GraphOne[27] and Aspen[14]
build representations to improve graph mutation (changing of the
graph when new addition or deletions are introduced) to facilitate
the construction and retrieval of multiple snapshots using one of
the two approaches above.

Recently, a new abstraction for representing and processing
evolving graphs called the CommonGraph[2] was introduced. Com-
monGraph provides new opportunities for parallelism, as well as
more efficient execution workflows. For a group of snapshots to be
processed, a CommonGraph represents the set of edges that will not
be affected by either additions or deletions across all snapshots, and
is therefore shared among all the snapshots. Consider ICG; in Fig-
ure 1(a) which is the common graph across snapshots G; and Gj41.
To move from G; to Gj;+1 using conventional streaming algorithms
we have to add edges A% and delete edges A~. The common graph,
ICGj has all the edges common to both G; and Gj41 (for example,
all edges G; excluding the deleted edges AL, or alternatively all
edges Giy1 excluding the added edges A%). As a result, we can go
from ICG; to either G; or Gj41 by adding the missing set of edges
(AL or AL respectively).

CommonGraph offers a number of advantages [2]: (1) It elimi-
nates the expensive deletion operations which require backpropa-
gation and recomputation for many algorithms; and (2) It breaks
the sequential dependency between snapshots present in streaming

MEGA Evolving Graph Accelerator

o o o A,
) — =) @

(a) Triangular Grid Structure

Al+1
—
—

(b) Direct Hop

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

A‘“ AiF2

— (> @ — @

AY AY
EW\ A.z

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

. A2 4 piF A+ A
1

1

1

1
| O,
1
1

(c) Work Sharing

AL AL+1

AL+ AP+ A+

1l

Al+l

#
@\

AL+ A+ A2

Figure 1: CommonGraph: Triangular Grid representation and alternative processing workflows.

= Deletion = Addition

Time (ms)

Figure 2: High cost of deletions in JetStream.

implementation of evolving graphs; we can go from the Common-
Graph to any snapshot directly. We in Finding the common set
of edges can be done recursively to create CommonGraphs that
cover multiple snapshots. This recursive construction, which is
called the Triangle-Grid structure (shown in Figure 1 (a) further
provides parallel query opportunities. The paper considers two
processing workflows: (1) Direct hop (Figure 1(b)) goes from the
CommonGraph to each individual snapshot directly (potentially
in parallel) and; (2) Work sharing (Figure 1(c) where intermedi-
ate CommonGraphs are used to avoid processing the same edge
additions independently for each snapshot resulting higher work
efficiency.

2.2 Motivating MEGA

CommonGraph represents the state of the art with respect to soft-
ware evolving graph analytics, outperforming streaming imple-
mentations by up to 8x [2]. First, we verify whether one of the
primary reasons behind CommonGraph’s performance advantage,
turning deletions into additions to avoid the high cost of deletion,
also translates to streaming accelerators. Figure 2 shows the cost
of processing a batch of edge additions vs. a batch of the same
size of deletions when executed on the JetStream streaming ac-
celerator [40]. Across many algorithms and graphs, deletions are
substantially more expensive than additions, making it likely that
CommonGraph will provide superior performance to streaming by
replacing additions with deletions.

312

EDirect-Hop BWork-Sharing B Streaming

PK LJ OR DL UK

Figure 3: Number of additions in SSSP.

Number of Additions
(millions)
N w » o
=3 =3 o =3
8 8 &8 8

=
=)

0

We next present some data to motivate some of the opportuni-
ties that are exploited by MEGA. We consider an evolving graph
scenario with 16 snapshots. The size of the batch of edges additions
or deletions to move from one snapshot to the next consists of
0.5 percent of the total edges in the graph, with an equal number
of additions and deletions. Figure 3 shows the number of addi-
tions for direct hop, and work sharing CommonGraph processing
strategies, as well as additions and deletions for baseline stream-
ing for five different graphs and SSSP algorithm. Direct hop has 8
times more additions than streaming (scaling with % the number
of snapshots). While work sharing reuses edge operations across
snapshots, the number of operations remains approximately double
that of streaming. The reason is that some edge additions need to
be repeated across different branches of the triangular grid. For
example, note that in Figure 1 Ai is processed only once in stream-
ing (from G; to Gj41), but since these added edges are part of all
but the leftmost snapshot, it is processed twice in work sharing to
cover all the snapshots (from G, to ICG3 and from ICGj to Gj41). In
conclusion, CommonGraph execution strategies, while eliminating
expensive deletes, also increase the overall number of operations
needed across all snapshots.

Finally, we show that CommonGraph results in poor locality as it
processes snapshot by snapshot. Incremental graph processing used
in streaming results in poorer memory locality than full evaluation
of a query on a graph; only a small subset of edges are typically
modified, resulting in poor spatial locality [8, 40]. CommonGraph
processing workflows also lead to poor reuse as we apply different
batches to a snapshot before moving on to the next (as can be

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Figure 4: Edge reuse: different batches, same snapshot.

o
® =

e
o

Reused Edge Fraction
o o
N »

o

Figure 5: Edge reuse: same batch, different snapshots.

seen in Figure 4, there is very little edge reuse between fetched
edges for different batches within the same snapshot. This low
reuse motivated us to propose a batch-oriented execution workflow
applying each batch to all the snapshots that need it. Since batches
add the same edges to substantially similar graph instances, the
execution workflow will result in high reuse in fetched edges. As
can be seen in Figure 5, for the same batch applied to different
snapshots the reuse is extremely high, on average, exceeding 98%.

3 MEGA DESIGN

MEGA uses the asynchronous execution model that has proven
to be highly effective for static and streaming graph processing.
As opposed to the Bulk Synchronous Parallel model, it achieves
faster convergence and eliminates synchronization overhead at
iteration boundaries. Additionally, its ability to reorder messages
is leveraged to optimize utilization of memory bandwidth. MEGA
builds upon Jetstream that implements event-driven asynchronous
execution based on delta-accumulative incremental computation
(DAIC), where delta-events arriving from different edges can be
independently applied without any fixed order to compute the
vertex state. In this model, lightweight messages known as events
carry the deltas to their intended vertices. A vertex recomputes its
state once receives an event (delta).

Consider an initial graph Gy (V, E) obtained by solving the query
on an initial graph snapshot. A streaming algorithm takes an in-
cremental edge-batch E < src, dst, wt,add/del >, and incremen-
tally updates the solution in Gy (V, E) resulting in a modified graph
G1(V,E). A straightforward strategy for using Jetstream in the
evolving graph scenario is to use streaming to solve the query one
snapshot at a time in sequence. This approach has a number of
limitations: (i) we are restricted to solving one snapshot at a time;
(ii) deletions that are considerably more resource-intensive and

313

Chao Gao, Mahbod Afarin, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

H—0 &G—0O | GO G0
0 B | TP G
| B—©)
©—@®

A[B[c]p]E A[B[c]p]E
[T S~
B[c[p[a[a[e]c] [B]EJAa]A]E]C
—_— common
==> addition /l\ ? C|D|E
—=> deletion
[e]cofe[alalElc]
ENnnEEES

Figure 6: Unified Evolving Graph CSR Representation.

computationally expensive must be processed; and (iii) streaming
algorithms are known to have poor locality [8, 40].

By building our work on CommonGraph we achieve deletion-
free processing. However, straightforward use of CommonGraph
on Jetstream still leaves two unresolved issues: serial processing of
snapshots; and poor graph locality. To overcome these issues we
introduce batch-oriented-execution (BOE). BOE employs a compact
and unified evolving graph representation that allows query evalua-
tion on multiple snapshots in a memory locality aware fashion.

An example of this representation is shown in the Figure 6. The
left half of the figure shows two snapshots (G; and G;41) and their
CSR representations. The right half shows the CSR representation
of the union of edges in G; and G;41 and an additional array which
for each edge contains: "-" if it belongs to the CommonGraph G¢;
"i" if it belongs to the additions batch resulting in snapshot G;; and
"i+1" if it belongs to the additions batch resulting in snapshot Gj41.
In other words, this unified graph representation contains G, Gi,
and Gj41.

Creating the common graph representation is straightforward;
it involves removing the deleted edges present in all batches from
the initial graph. We measured this cost to be around 10% of the
average SSSP query execution time in Risgraph [15]. However, we
assume that the unified graph representation is the default storage
format for our system, making this an offline cost.

3.1 Batch-Oriented-Execution

Consider a series of snapshots Gj, Gi+1, Git+2, Gi+3, created by addi-
tions and deletions as shown in Figure 7(a). To solve a query on
Jetsream, first the query is solved on G; and then its results are incre-
mentally updated to obtain results for G;11 and so on till results for
evaluations have been computed. Figure 7(b) shows deletion-free
query evaluation by first evaluating it on the CommonGraph G,
and then incrementally applying batches of additions till results for
G; are obtained. Starting from G, and repeating the above process
with appropriate batches of additions, we can also obtain results for
Gi+1, Gis+2, and Gj13. We observe that even though this approach
eliminates the processing of expensive deletions, it computes re-
sults for one snapshot at a time, which causes two inefficiencies:
redundant computation; and poor locality. Consider the incremental
update of results for G, following the red batch of additions repre-
sented by A2 In Figure 7(b), this computation is performed three
times, resulting in redundant work. Consider the use of the orange

MEGA Evolving Graph Accelerator

(

i+1
Ay

A /TN VN
| Giyq] 4G,] [G;
AL \ A+l O A2 '9

a) Query Evaluation in Sequence (Kickstater).

1 1 1 1
1 1 1 1 1
> A+] G al A2 sl G
I M AY g BTS2 B + i 43
1 1 1
_______ R Pt el LTt EEEEEE Sttt
i i |
G \ i+2 Ge . 'S |G + a2 i+1 G;
| c [M AT T2 a2 [g VY AY i+2

i T
1 1
i Ge G4 a2 i
Lo o o o o
' ' - H
________ :________:________.:_______T________:________,I._______
! . ! G, | . ' G+ a2 I .
AL_+2|--A'é| +au NAT{ ! +Alf_1 1 AL] Gl
1 1 1 1

1
1
1
1
=TT yo—————- R By B gl -———oooo-
i H ' i
1 1 G. 1
: | i) .
PR RIS L. \ eyt o —Tooo--
1 1 1 1
i - : i :
G,
|GC H Al,+2|—‘,9|+£{+2 | !
i 1 i :
Common™~"""[""~ {""r'"": """" H eSS
Graph | o I T |I—>| G; |
1 1 1 1
! : : ! : :
1 1
o IoO0m Sl om
g24 o5 8784 o§F 7588 °F
528 o £738 % =338 %
e < T 1D K S 3 S
Son t® S 3o £ 8 Sdarc £ @
T elF - e o3BT L@ S s L@
=30 a3 382 L oz %89y o
238 IS 885, F% o533 :S
382 ® oS3k 5 :g%o. S
T 3 @
o8 9 I3l o o £ o
o~ + o ¥ =~ 0, +
Qv @ D¢ © S w
S [2 o =Z
=9 [SE=IS)
3D S
‘<Q3

(c) Batch-Oriented-Execution using CommonGraph.

Figure 7: Strategies for Incremental Query Evaluation.

batch of additions A% that also takes place three times ~ first for
Gi43, then for Gjy2, and finally for Gj41. Since the three uses take
place at different times, their accesses lack of temporal locality.
Batch-oriented-execution (BOE) shown in Figure 7(c), eliminates
redundant work and poor temporal locality, while maximizing par-
allelism by simultaneously computing the results of all four snap-
shots. First, let us consider the removal of redundant work via BOE.
The first step computes the query on G, and these results are used
as the starting point for all snapshots. Next, we see that additions
batch A*? is used by three snapshots — G;, Gi+1, and Gjy2. There-
fore, we incrementally update the results of query for G, using
A2 once and then use the results of this shared computation to
up_)date the results of three snapshots Gj, Gi4+1, and Gj42. The results
computed in the preceding step are then incrementally updated
using additions batch A1 and used to update results of snapshots
G; and Gjy41, resulting in further elimination of redundant work.
Second, let us observe how poor locality is eliminated by BOE.
Note that at each incremental update in the schedule representing
BOE, whenever an addition batch is to be used by more than one

314

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Algorithm 1 Generating MEGA Execution Schedule

1: Inputs: Common Graph (G.);

2: Addition Edges Batches: AT, A;, A;, A;_l;
3: Deletion Edges Batches: AT A AL LA
4

: Output: Schedule for Computing Results for Gy, Gy, ..., Gp-1.

5. function MEGA-EXECUTION-SCHEDULE
6: for i in range of [N — 2, 0] do

7: parallel for (A} and A7) do

8: UPDATE-QUERY (A}, add)

9 UPDATE-QUERY (A7, del)

10: end for

11: end for

12: end function

13: function UPDATE-QUERY(Aj, batch_type)
4 if batch_type == add then

—_

15: parallel for i in range of [N — 1, j + 1] do

16: GEN [val-array[i] = INCREMENTAL-QUERY (i, Aj)]
17: end for

18: else if batch_type == del then

19: GEN [temp_val = INCREMENTAL-QUERY (i, Aj)]

20: parallel for i in range of [j, 0] do

21 GEN [val_array[i] = temp_val]

22 end for

23: end if

24: end function

snapshot, the computation for the snapshots are performed at the
same time. That is, multiple users of an additions batch access the
batch simultaneously creating temporal locality.

Therefore, BOE delivers maximal parallelism, minimal redun-
dant work, and maximal temporal locality. We have developed a
general algorithm for the offline generation of the BOE schedule
for N snapshots as shown in Figure 8. In Algorithm 1, GEN [...]
statements generate the calls to incremental update of query re-
sults following addition of a batch of edges. For simplicity, we have
not explicitly identified the graphs but rather only identified the
incremental query updates that are performed. Note that in some
cases, incremental updates on different versions of a graph can be
performed in parallel. Additionally, in Figure 8, for N snapshots
there are N-1 stages in the schedule, and each stage has exactly two
addition batches. The loop in function MEGA-EXECUTION-SCHEDULE
iterates N-1 times handling a pair of addition and deletion batches
for which incremental-Query evaluations are generated by func-
tion update-Query. Lines 14-17 handle addition batches, while
lines 18-23 handle deletion batches.

3.2 Other Optimizations

Locality for Partitioned Graphs. We have shown how BOE ac-
commodates multiple snapshots along with a value array that holds
values for all snapshots corresponding to each vertex. We map
the on-chip memory in MEGA to node properties using a direct-
mapping format. However, as the graph sizes increase, eventually
graph partitioning becomes necessary. As demonstrated in Figure 5,

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Chao Gao, Mahbod Afarin, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

N Snapshots

A
4) N\
A} A TN e A
Gl) ((GZ) :(G3 _______
AL A2 7 AN-1
N-—4 N
N-1 Ge N-2 Ge + A1 9/_-:5 Al G
—> A+ —> +AN-1 rd A+ g —> + —> N
1) -
> a1 A2 > >l AL PGy
N\
Ge SIAV > +G£E*1 > = > AL P Gn-2
N
Common . . ;
N-1 1 1
Graph N i | oA - >
! L (—s :
a I e 3
sl G S — |G +av1] N-3 _—— 1
g W rd AIX 2 /G++A§72 a AY —> —_> A_ —> Gl)
J J

Figure 8: BOE: (Left) Offline Schedule Generation Algorithm; (Right) BOE Schedule for N Snapshots.

L+3

_ Ao _ g _ ai,
=\ ==

Figure 9: The top part illustrates CommonGraph execution
as it transitions from one snapshot to the next. The bottom
illustrates scheduling in MEGA where we execute the same
batch on all the snapshots that need it at the same time,
resulting in high locality. In this example, we cannot fit all
4 snapshots on the accelerator so we apply the batches to
the same partition of the graph across different snapshot
concurrently.

with BOE around 98% of edges fetched across different snapshots are
the same. To capitalize on this observation, we propose a partition-
scheduling approach, as depicted in Figure 9, to enhance locality
in presence of partitioning. Assuming we have four snapshots and
only one snapshot can fit on-chip at a time, we divide the snap-
shots into four separate partitions. At the start of the computation
process, we will retrieve partition 1 for all four snapshots and store
it in the on-chip memory. Once the first partition’s computation is
complete, we move to the next partition and so on. This approach
exploits temporal locality of BOE even when the graph requires
partitioning to fit multiple snapshots.

315

£ 500 250
o _’8‘400 SSSP 200 SSWP
% § 300 150
(2}
% 3 200 100
Qo Cc
EE 100 50
z 0 0
0 10 20 30 40 50 0 10 20 30 40 50
Rounds Rounds

% 30 250
ik 53 200 SSNP
G & 150
53 15
22 10 100
EE L 50
P4

0 0

0 10 20 30 40 50 0 10 20 30 40 50
Rounds Rounds

Figure 10: Number of events for each round for four algo-
rithms (Wen graph using JetStream); number of events drops
rapidly during the initial rounds.

Batch Pipelining (BP). We define one round of computation (also
referred to as one hop incremental computation in the previous
Figure 1(a)) as an execution, which comprises multiple iterations
of computation. The illustration in Figure 10 clearly demonstrates
that the number of events occurring during a single execution
decreases as the number of rounds increases, creating long tails
where the capacity to manage more events is available. As we
approach the "long-tails" of a single execution, we can introduce
another execution into the accelerator. Rounds in the asynchronous

MEGA Evolving Graph Accelerator

Starting the gtarting the
Finishing the Finishing the First Batch
First Batch Second Batch) Secont[i Batch
1 \
\ > Sy

Processing the
Second Batch

Processing the
First Batch

Number of Events
Number of Events

1
]

|

|

\

| €-
|\ <

1

1

I

L

ey

Number of Rounds Number of Rounds

Figure 11: The figure shows Batch Pipelining for two addition
batches in Batch-Oriented-Execution scenario.

model correspond to iterations in synchronous graph processing,
and the set of active events correspond to the frontier. Note that the
later rounds have fewer events and therefore are processed quickly;
however, there remains an opportunity to overlap the execution
time of the "tails" with initial rounds from another batch execution,
to improve parallelism as shown in Figure 11. The initiation of a
new execution fed to the hardware accelerator is triggered when
the events number decreases to a specific threshold. Note that this
trigger can be easily supported in hardware. This process effectively
eliminates the extended tail.

Generality: Although we demonstrate BOE in the context of an
asynchronous accelerator, the observation that applying a batch
to all the instances together improves locality is independent of
the execution model. In addition, the order of applying the batches
does not affect the correctness of the final result provided that the
incremental update algorithm is correct since the final graph is the
same regardless of the order of edge additions. Algorithm 1 is also
independent of the execution model.

4 MEGA ARCHITECTURE

MEGA uses an event-driven execution to support operations on
dynamic graphs, similar to the GraphPulse and Jetstream accelera-
tors [39, 40]. Event driven execution offers a number of advantages
over bulk-synchronous processing, and is especially suited for dy-
namic graphs where graph changes can be expressed as events.
At a high level, MEGA incorporates a number of ideas to support
efficient processing of evolving graphs: (1) Operation on multi-
ple versions of the graph concurrently to improve parallelism and
data reuse; (2) Batch-oriented execution to reuse computation and
memory, and optimize scheduling of the graph processing; and (3)
Pipelining between different versions of the graph, enabling one
dependent version to start before the snapshot it depends on has
fully stabilized.

4.1 MEGA Architecture Overview

Figure 12 shows an overview of the datapath. The primary datapath
components include Event Queues, Event Scheduler, Processors,
and the on-chip routing network that interconnects these elements.
During full operation on a graph, all computation is represented as
events represented as lightweight event messages. An event triggers
computation at the destination vertex and multiple events targeted
towards the same vertex are coalesced in the event queues. Events

316

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

messages are tuples consisting of a target vertex identifier, a payload,
and specific flags used to indicate special purpose events, such as
those used to support edge deletion. The event queue is composed
of multiple individual bins, each containing events for a subset
of vertices, to improve both queuing and dequeuing bandwidth.
Event processors use parallel event generation streams to assist in
generating outgoing events, considering that some vertices may
have a large number of outgoing edges in a power-law graph.

MEGA’s computational model follows the event based process-
ing model introduced by GraphPulse [39] and later adapted for
processing streaming graphs in Jetstream [40]. We first carry out
the computation on the common graph, which is shared among all
the snapshots. For each batch, the batch reader reads the edges for
the batch and creates corresponding events for each of the active
snapshots for this batch and inserts them into the event queues for
execution as described next.

4.2 Execution and Datapath

MEGA supports multiple active snapshots: events are marked with
a version tag to allows separation of events destined to different
snapshots. We also add a batch tag, in order to be able to detect
when a batch is over to support batch scheduling. The event queue
is a central structure in MEGA, holding all active events within
the system. This queue is designed with multiple sub-queues (or
bins) to improve the bandwidth of queuing and dequeuing, and
to support partitioning. Changing active partitions/snapshots is
carried out at the granularity of bins, partitions being swapped out
can be streamed from their bin to memory, and newly activated
partitions are streamed from memory to available bins. Each bin
is organized as a direct mapped matrix of rows and columns, with
each cell representing a vertex for a specific graph snapshot, like a
direct-mapped cache.

When inserting events in the event queue, the decoder in Fig-
ure 13 identifies the location of the event based on its version id.
The queue is dual-ported and pipelined, allowing for one read and
one insertion per cycle. During insertion, if an existing event is
detected in the target cell, the events are coalesced using a reduc-
tion operation such that each vertex has at most one active event
(coalescing is part of the insertion pipeline and does not cause
additional delays). This design gains efficiencies by reducing the
storage and processing for events and also removes the need for
synchronization with at most one event for each vertex.

Since MEGA supports multiple active graph versions concur-
rently, it is important to schedule execution in a way that promotes
data reuse. The different versions share most of the graph struc-
ture (Figure 6), benefiting from data reuse when they are accessing
similar parts of the graph. However, their active state, consisting
of events and vertex values, must be maintained separately once
the snapshots diverge, causing the events to be stored in different
parts of the event queue enabled by the decoder logic in Figure 13.

To accommodate multiple batches, all instances on which the
batches operate must be resident in the accelerator (which is en-
sured by the Batch Scheduler). Once the execution starts, the imple-
mentation is straightforward since the snapshots are independent
and events/snapshots are isolated by version tags. Note that it is
possible that multiple events for the same vertex/snapshot would

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Chao Gao, Mahbod Afarin, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

(2)

(0) P
—— e R

)

@Apply

Queue Batch | Vertex Buffer
5 Controller !
@, Q® =
| Scheduler N €)
@ | OIII10 !

| Scratchpad Memory |

U |

Batch Reader | DRAM

Figure 12: MEGA datapath: blue lines indicate data-flow; red represent control signals; and green/yellow signify on-chip and

off-chip memory transfers respectively.

be generated from different batches that are concurrently active,
for example due to batch pipelining. However, since the events
target the same snapshot, they can safely be coalesced. The asyn-
chronous execution model ensures correct execution regardless of
event order.

The overall event execution proceeds as shown in Figure 12.
When a new batch is scheduled, the batch reader brings the batch
in from off chip and generates corresponding update events to
all the snapshots needing that batch. These events are inserted
into the event queue. MEGA’s processing engines first pull events
from their queues after the event scheduler places them there. The
Batch-Reader first reads one batch of additions and generates their
corresponding events (Step (0)). Next, the scheduler will pull events
from the Queue, and the Queue emits events in Step (I), and places
them in the vertex buffers in Step (2). Event execution requires
reading the vertex state (which is prefetched) in 3. In Step @, the
edge computation representing the algorithm is executed to update
the vertex state (see Table 1 for the computation function corre-
sponding to the different algorithms). The PE fetches the output
edges from the edge cache for generating output events in Step
®. If the outgoing edge set is not cached, it is prefetched prior to
event execution in Step (6. Outgoing events are generated in Step
(@ to the respective snapshots using 4 parallel event generation
units for each processing element to reduce delays associated with
executing events on high out-degree vertices.

4.3 Batch Scheduling and Version Control

The batch scheduling logic implements the execution workflow
of the accelerator. It controls which batches are active on which
instances/partitions of each instance of the graph. Along with the
event scheduler, this ensures that the batch processing for all the
instances proceed at an even pace. This logic also manages the
allocation of event bins to implement workflow schedules such
as that shown in Figure 9. The schedule of these allocations is
pre-determined as described in Section 3.1.

As illustrated in Fig 7, all snapshots are composed of a com-
mon graph and a sequence of addition-only batches. To manage
these snapshots, MEGA’s computation scheduler includes a hard-
ware version table: a look-up-table containing information about
the composition of different snapshots and their processing status.
When a computation batch begins, the scheduler marks its entry in

317

Event with Version Tag
r ! 1
Computation Event

Index Index Payload
Version id | [) | [] |1 | []
Version Register °® .0\
% Decoder / [I \\
— I
Row
— e

Bank —
—>e

Figure 13: Queue support for multiple snapshots.

the version table as active (Step @ in Figure 12) The version table
broadcasts updates to all processing elements (PE) and event-queue
banks (Step B) and Step ©), updating the version register in the PEs.
To support the Batch Oriented Execution workflow, we schedule
all the active snapshots for each batch together to promote spatial
locality. Once the scheduler identifies that a batch is entering the
long-tail phase based on event queue occupancy, the version table
updates other batches and notifies the scheduler through Step O
to initiate a new computation batch.When events from different
instances are destined for the same vertex, edge prefetching is done
by the first event destined to the vertex, but is reused by subsequent
snapshots. The event generation streams are interconnected with
the queues via a network on a chip implemented as a 16x16 crossbar
with each port shared among two of the 32 event generators (four
per PE). On the other side, output ports of the NoC lead to the
event bins where the newly generated events get queued for future
execution (Steps (8 and (9) in Figure 12).

The MEGA datapath is based on that of the JetStream streaming
accelerator; the components in grey in Figure 12 are either new or
modified. Specifically, JetStream works on a single graph at a time

MEGA Evolving Graph Accelerator

and supports both edge additions and deletions. MEGA supports
the unified graph representation, BOE scheduling, and multiple
active graph instances (reflected in queue design, prefetcher design,
event generation and propagation, as well as the NoC). Moreover,
since MEGA uses CommonGraph to eliminate the need for edge
deletions, we remove the expensive event deletion logic.

5 PERFORMANCE EVALUATION

In this section, we evaluate MEGA’s performance and overheads.
We first describe our experimental setup.

Table 1: Benchmarks and their edge functions.

Algorithm ‘ EdgeFunction (e(u,v)) ‘

BFS CASMIN (Val(v), min(Val(u) + 1,val(v)))
SSWP CASMAX (Val(v), min(Val(u), wt(u,v)))
SSNP CASMIN (Val(v), max(Val(u), wt(u,v)))
SSSP CASMIN (Val(v), Val(u) + wt(u,0))
Viterbi CASMAX (Val(v), Val(u) /wt(u,v))

Table 2: Edges and Vertices of the Input Graphs and the Batch
Size for Motivation Data.

’ Input Graph ‘ Edges ‘ Vertices ‘ Batch Size
Pokec (PK) [47] 30M | 1.6M 0.3M
LiveJournal (LJ) [6] 70M M 0.7M
Orkut (OR) [33] 117M | 3M 240K
DBpediaLinks (DL) [5] 170M 18M 1.7M
UK-2002 (UK) [10] 260M | 18M 2.6M
WikipediaLinks (Wen) [28]| 400M 13M M

Table 3: Experimental Configurations.
CPU MEGA
Compute 60x Intel(R) Xeon(R) 8x MEGA
Unit @3.1GHz Processor @ 1GHz

On-chip 495MBL3 64MB eDRAM @22nm
memory Cache 1GHz, 0.8ns latency

Off-chip 14x DDR4 4x DDR4
Bandwidth 17GB/s Channel 17GB/s Channel

5.1 Experimental Setup

System Modeling: We implemented the MEGA accelerator on a
cycle-accurate microarchitectural simulator built using the Struc-
tural Simulation Toolkit (SST) [46]. The off-chip memory is modeled
using DRAMSim2 [41]. The simulator incorporates a cycle accu-
rate model of the NoC, scratchpad memory, cache hierarchy, event
queues and other components of the data path.

318

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Workloads We evaluate accelerator performance using five com-
monly used graph algorithms listed in Table 1 and six real-world
input graphs listed in the Table 2. We synthesize 16 snapshots of
all the datasets by randomly creating batches consisting of 1% of
the edges (half additions and half deletions) to mimic the evolution
of the graph. We validated the final results of MEGA executions
against those of the software baselines.

Software and Hardware Baselines: For the Software baseline,
we choose the streaming systems Kickstarter [49] and Risgraph[15].
We also compare against a GPU system system, Subway [42], which
uses an asynchronous execution model similar to our accelerator.
We implement CommonGraph within each of these baselines [2].
We execute these on a shared memory system on Google Cloud
with C2-standard-60 compute node which has 60 Intel(R) Xeon(R)
CPU processors and 240GB of memory. For the hardware baseline
design, we use the same configuration outlined in the Jetstream
paper [40], and we configure MEGA to support two execution flows:
Direct-Hop and Work-sharing from CommonGraph [2]. For GPU
experiments, we used NVIDIA Tesla K80 GPUs with 12 GB GDDR5
memory, and code was compiled with CUDA 10.2, utilizing the
highest optimization level.

5.2 Performance and Characteristics

Overall Performance. Figure 14 shows the overall speedup
achieved by MEGA over software implementations of Common-
Graph (work sharing) implemented within different streaming sys-
tems, Kickstater, RisGraph and Subway (GPU) [15, 42, 49]. The
scenario consists of executing 16 snapshots, each involving a 1%
change in the graph with an equal distribution of 50% edge additions
and 50% edge deletions. MEGA with BOE outperforms Common-
Graph on Kickstarter and RisGraph by 51x and 29x respectively.
The results from Table 4 and Figure 14 include all the partitioned
graph overheads to move partitions on/off chip as discussed in
Section 3.2. MEGA requires more graph partitions compared to
Jetstream to support BOE on multiple snapshots concurrently. For
example, with Live Journal, Jetstream does not require graph parti-
tioning while MEGA needs to partition the graph into four parts.
MEGA outperforms Subway, the GPU baseline, by an average of 12x.
It is important to note that we configured MEGA with conserva-
tive memory settings with total memory bandwidth of 68GBytes/s,
which is less than a third of the bandwidth available on the K80
GPUs (240 GBytes/s). To show the performance improvements from
BOE in software, we implemented a version of it on the top of Ris-
Graph as shown in Figure 14. The software version of BOE exploits
parallelism from concurrent snapshots execution, but uses different
processors and is not able to exploit memory locality effectively.

Table 4 compares the performance of MEGA to Jetstream as well
as to different execution workflows. The first line for each graph
shows the run time on the JetStream processor using streaming.
The next two lines show the speedup obtained in MEGA when im-
plementing the CommonGraph Direct-hop (DH) and Work-sharing
(WS) execution flows. The final three lines show the speedup

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Chao Gao, Mahbod Afarin, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

Speedup

mKickStarter (WS) mRisGraph (WS) SRisGraph (BOE) BSubway (WS)

a

»

. N
3 by 5 S o
9 3| 8 §] . 2| b 3 o5

2| 3 8= - B & = 2] 7 .| - B h By =

i e BPm W8 PSS (P B BEom e B2 AN HANE BANS EENN Hasd Ne [N 80N BARe R MPse Mins HGRA A7Re HANE 07N, Wen BN 00N HAs. HARE
5 ¢ ¢ & Blp & £ & Blp & £ & Bl§ S £ OBl S B S OE|G LD O OB|S

2 2 2 2 2 2
g%mg39,5'333g§m33$%m33$503335m32§
@ n > @ n > @ w > @ - @ I @ w 2|0

Wen UK OR DL LJ PK

Figure 14: MEGA (BOE+BP) speedup over CommonGraph Work-Sharing implemented on top of KickStarter (software) [49],
RisGraph (software, both WS and BOE) [15], and Work-Sharing on Subway (GPU) [42].

Table 4: Average Execution Time for JetStream, and the speedup of CommonGraph Direct-Hop, CommonGraph Work-Sharing,
Batch-Oriented-Execution with Batch Pipelining optimizations over JetStream for 16 Snapshots.

| Graph | Query Evaluation Algorithm || BFS Sssp SSWP SSNP Viterbi
JETSTREAM TIME 21.31ms 77.02ms 21.52ms 24.75ms 73.81ms
Direct-Hop SPEEDUP 2.14% 1.70% 2.11x 1.66% 1.44%
PK WORK-SHARING SPEEDUP 2.26X 1.88% 2.17% 1.86X 1.75%
BOE SpeeDUP 4.95% 4.93% 4.68% 4.94% 4.94%
BOE + BP SpeEDUP 5.03%x 5.66X 4.94% 5.64X 5.98%
JETSTREAM TIME 58.574ms | 262.425ms | 115.725ms | 101.171ms | 156.522ms
DirecT-HoOP SPEEDUP 2.11x 1.91% 1.86% 1.31% 1.24%
L) WORK-SHARING SPEEDUP 2.17% 1.96x 1.94% 1.68% 1.64%
BOE SpeeDUP 4.16X 4.67% 4.63% 4.47% 4.5%
BOE + BP SpeepUP 4.43% 4.99% 5.13% 5.01%x 5.17%
JETSTREAM TIME 71.401ms | 211.725ms | 136.821ms | 133.275ms | 223.501ms
DirecT-Hopr SPEEDUP 1.09% 1.21x 1.04x 1.05% 1.24%
DL WORK-SHARING SPEEDUP 1.55% 1.62% 1.52% 1.52% 1.73%
BOE SpeeEDpUP 4.36X 4.56X 4.48% 4.46X 4.54%
BOE + BP SpEepUP 4.63% 5.7X 4.98% 4.96x 5.83%
JETSTREAM TIME 39.451ms | 107.475ms | 114.015ms | 67.875ms 79.275ms
DirecT-HoP SPEEDUP 1.59% 1.41X 1.30x 1.07x 1.21%
OR WORK-SHARING SPEEDUP 1.83% 1.74% 1.67X 1.53% 1.69%
BOE SpeeDUP 4.14% 4.36X 4.45% 4.25% 4.36X
BOE + BP SpeepuP 4.25% 5.3% 5.08% 5.02X% 5.03x
JETSTREAM TIME 248.852ms | 246.151ms | 250.125ms | 255.901ms | 248.625ms
DirecT-Hopr SPEEDUP 2.05% 1.92x 2.01x 1.31x 1.98%
UK WORK-SHARING SPEEDUP 2.15%x 1.98% 2.11% 1.61X 2.11x
BOE SpeeDUP 4.85% 4.83% 4.84% 4.82% 4.81X%
BOE + BP SpeEpUP 5.19% 5.08% 5.22X 4.96X 4.95%
JETSTREAM TIME 170.252ms | 418.651ms | 282.075ms | 277.052ms | 320.925ms
Direct-Hop SPEEDUP 1.73% 1.09% 1.34% 1.27% 1.30%
Wen WORK-SHARING SPEEDUP 2.01x 1.66X 1.88% 1.85X% 1.87X%
BOE SpeeDUP 3.74% 4.2% 4.07x 4.03%x 4.05%
BOE + BP SpeEDUP 4.08% 4.53% 4.61X% 4.48% 4.47x

319

MEGA Evolving Graph Accelerator

E16 MB =32MB ©m64MB 0128 MB =256 MB

&
g 4
9
33
¢
a2
E]
S
1
o
)
0
SSSP SSWP BFS SSNP Viterbi

Figure 15: Effect of on-chip memory size (Wen Graph)

mDirect Hop EWork Sharing @BOE

of Edge Reads
o o o
2 ® © =

Normalized Number
o
N

SSSP SSwpP BFS SSNP Viterbi

Figure 16: Normalized edge reads (Wen Graph).

achieved by BOE, with single-batch, multiple-batch, and multiple-
batch with pipelining respectively. For all workflows, MEGA sub-
stantially outperforms Jetstream because of the advantage of elimi-
nating expensive deletions. WS outperforms DH, as was also ob-
served in software, because it reduces the overall number of exe-
cuted events. BOE outperforms WS because it is able to achieve
significantly better memory reuse, gain from concurrent execution
of batches, while also achieving work sharing.

Sensitivity to on-chip memory size: Since MEGA executes
multiple instances of the graph at the same time, when on-chip
memory is limited, it must partition each instance of the graph. This
incurs additional overheads as events for inactive partitions are
saved to memory and later brought in when the target partition is
loaded. Figure 15 shows that as the on-chip memory size increases,
performance improves since larger graph partitions can fit on chip.
We configured MEGA with 8 PEs; adding additional PEs did not
improve performance without increasing the memory bandwidth
as well as internal bandwidth of the NoC and event queues.

Memory reuse: Figure 16 shows the number of edge reads dur-
ing run time for the different execution workflows. Edge reads
increase with the number of events processed, but go down when
there is significant reuse of the edges. Direct hop executes a very
high number of events, resulting in a high number of edge reads.

320

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

mDirect Hop @mWork Sharing @BOE

1
)
_gmo.s
ED®
ER)
Z X 0.6
T X
g2
"_;gOA
ES
S %0.2
z

0

SSSP SSwWP BFS SSNP Viterbi

Figure 17: Normalized vertex reads (Wen Graph).

mDirect Hop @Work Sharing BBOE

of Vertex Write
e o o
- [-;] -]

Normalized Number
o
N

SSSP SSWP BFS SSNP Viterbi

Figure 18: Normalized vertex writes (Wen Graph).

EDH @WS ©BOE

N W A O

-

Speedup vs. Jetstream

o

0.2 0.5 0.8 1
Percent of the Batch Size

0.1

Figure 19: Effect of batch size (Wen/SSWP).

While work sharing executes less events, there is low locality be-
tween events. BOE has the lowest number of edge reads, due to
the high reuse achieved by the batch oriented scheduling. We see
similar trends also for the vertex reads (Figure 17) and the vertex
writes (Figure 18). Since batch oriented scheduling applies the same
batch to slightly different versions of the graph, it can achieve high
reuse in both vertex and edge operations.

MEGA Scalability Analysis: The next experiment provides
insights into how well the system can handle changes in workload,

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

EDH @WS ©BOE

dda

8-09 12-0.7 16-0.5 20-0.3 24-0.1
Number of Snapshots - Percent of the Batch Size

N W A~ O

-

Speedup vs. Jetstream

o

Figure 20: Effect of number of snapshots (Wen/SSWP).

0 I I I
1x

1.5x 4x
Figure 21: Effect of imbalance batches (Wen/SSWP).

-
o

-
N

Normalized Speedup vs.
S

RisGraph (Work Sharing)
©

Degree of Imabalance

with respect to the batch size and the number of snapshots. We
vary the batch size from 0.1% to 1%. Figure 19 shows that MEGA
consistently outperforms CommonGraph across the range of batch
size, with the advantage increasing for larger batches.

Next, we vary the number of snapshots within the fixed time
window. The results, as shown in the Figure 20, indicate that when
there are fewer than 20 snapshots, MEGA achieves a higher speedup.
However, when the number of snapshots increases to 24, MEGA’s
performance slows down compared to the other execution flows.
This slowdown occurs because, as more snapshots are processed in
MEGA, the overhead of graph partitioning becomes higher, nega-
tively impacting performance. Finally, we study the effect of batch
size imbalance on the performance of BOE in Figure 21. The first
value represents the speedup when the batches are identical in size.
An imbalance of 1.5x (or 4x) means that the largest batch is 1.5
times (or respectively 4 times) the size of the smallest batch. We see
that speedup dips slightly, by about 10% even when large imbalance
is present.

5.3 Hardware Cost and Power Analysis

We build a model of the primary MEGA resources sized similar to
Jetstream, with 64MB on-chip memory for the queues and eight pro-
cessing elements, each equipped with a 2KB scratchpad and a 1KB
edge-cache. For power and area estimates for memory components,
we use CACTI 7[7]. The queue memory is designed using 22nm

321

Chao Gao, Mahbod Afarin, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

ITRS-HP SRAM technology. We also model the communication
network, the scheduler, and other logic components. A breakdown
of power and area estimates are in Table 5. MEGA incorporates
a majority of the architectural elements from Jetstream, such as
the event queue, prefetcher, and cache. However, MEGA also in-
cludes additional version registers, a batch scheduler, and decoders
within the event queue, which leads to some hardware overhead.
The overall area and power are slightly higher than JetStream for
the queues and network due to expanded event sizes with instance
and batch ids. Consuming only 10 Watts, MEGA is substantially
more power-efficient than our baseline GPU and CPU systems.

Table 5: Power and area of MEGA components

P \W
ower(mW) Area(mm?)
Static Dynamic Total

Queue 64 123 (+5%) 235 (+13%) 9389 (~6%) 195 (+1.5%)
Scratchpad 8 0.35 (~0%) 1.3 (+8%) 13.2 (+9%) 0.25 (~4%)
Network 120 (+31%) 7.5 (+39%) 127.5 (+31%) 10.0 (+43%)
Proc. Logic - - 1.9 (+6%) 1.2 (+34%)
Total - - 9532 (+6.8%) 203(+2%)

6 RELATED WORK

Among the most recent works on rapid analysis of evolving graphs
are RisGraph [15] and Tegra [20]. RisGraph targets at achieving
real-time qurey by developing a new data structure for fast edge
insertion and deletions. However, this is achieved at the trade-off
of memory size of 3.25x to 3.38x. Tegra provides a novel API for
performance ad-hoc queries on arbitrary time windows of the graph
by using a compact in-memory representation for both graph and
intermeidate computation state. Both RisGraph and Tegra leverage
existing algorithms developed for streaming systems to support
incremental computation for handling edge additions and deletions.
Other storage systems to support evolving and streaming graphs
include GraphOne and Aspen while systems that amortize the
cost of memory accesses and computation include Chronos [18]
and FA+PA [48]. However, these frameworks are limited in the
types of graph updates they can handle. In particular, they do not
support edge deletions. Another category of systems that exploit
graph sharing are the systems that concurrently evaluate multiple
(different) queries on a single version of a graph [11, 54, 57].
Single version streaming graph system has been proposed also,
the algorithms maintain a single graph and a standing query’s
results that are incrementally added up when a new batch of up-
dates are applied to the graph. The target of these works is on
incremental computation, i.e. how to efficiently update query re-
sults. Early streaming systems (such as Kineograph [12], Naiad [36],
Tornado [44] and Tripoline [24]) only support incremental com-
putations for edge additions while more recent systems (such as
Kickstarter [49] and GraphBolt [32]) also support edge deletions.
Although many of the above dynamic graph system support both
version control and incremental computation, none of them exploit
parallelism and data reuse among different snapshots. MEGA is the
first accelerator that supports parallel computation across different
snapshots thus accelerating the execution time significantly.

MEGA Evolving Graph Accelerator

A number of hardware accelerators target acceleration of queries
on static graphs (e.g., [1, 13, 17, 21, 22, 39]). Several architectural
approaches have been developed to enhance graph traversal perfor-
mance, such as Coup[55], which minimizes read and write traffic,
PHI[35], which decreases on-chip traffic,and HATS[34], a hardware-
assisted scheduler that promotes locality. A few recent works ex-
plore dynamic graph processing. GraSU[51] provides the first FPGA-
based graph update library for dynamic graphs. Jetstream[40] is
the first streaming graph accelerator supporting incremental algo-
rithms. TDGraph[56] augments many-core processors to support
both graph mutation (changing the graph) and graph computation.
Basak et. al. [8] provide an accelerator to sort streaming edges to
improve locality and make their execution faster on a conventional
graph accelerator. None of these works support evolving graph
processing and it is not simple to extend them to track processing
of multiple concurrent versions of the graph.

7 CONCLUDING REMARKS

In this paper we introduced MEGA, the first evolving graph ac-
celerator. The evolving graph problem is compute- and memory-
intensive as it evaluates a query on many snapshots of a graph. The
snapshots may be quite similar in their graph structure since the
changes to the graph tend to be small relative to the overall size.
MEGA uses the CommonGraph approach to eliminate the need
to handle expensive edge deletions. We develop a new scheduling
and execution model, Batch-oriented execution, that applies update
batches concurrently when possible, and with high graph reuse.
Overall MEGA achieves 24X-120Xx speedup over CommonGraph. It
also achieves 4.08%-5.98% speedup compared to JetStream, a recent
streaming graph accelerator.

ACKNOWLEDGMENTS

We thank all the reviewers for their valuable feedback. This
work is supported in part by National Science Foundation Grants
CNS-1955650, CNS-2053383, CCF-2028714, CCF-2002554 and CCF-
2226448 to the University of California, Riverside.

REFERENCES

[1] Maleen Abeydeera and Daniel Sanchez. 2020. Chronos: Efficient Speculative
Parallelism for Accelerators. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS °20). Association for Computing Machinery, New York, NY,
USA, 1247-1262. https://doi.org/10.1145/3373376.3378454

Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta.
2023. CommonGraph: Graph Analytics on Evolving Data. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA, 133-145.
https://doi.org/10.1145/3575693.3575713

Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta.
2023. CommonGraph: Graph Analytics on Evolving Data (Abstract). In Proceed-
ings of the 2023 ACM Workshop on Highlights of Parallel Computing (Orlando, FL,
USA) (HOPC °23). Association for Computing Machinery, New York, NY, USA,
1-2. https://doi.org/10.1145/3597635.3598022

Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv
Gupta. 2023. Graph Analytics on Evolving Data (Abstract). In arXiv preprint
arXiv:2308.14834. https://doi.org/10.48550/arXiv.2308.14834

Soéren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. DBpedia: A Nucleus for a Web of Open Data. In The
Semantic Web, Karl Aberer, Key-Sun Choi, Natasha Noy, Dean Allemang, Kyung-
1 Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro
Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 722-735.

[2

=

=

(5

=

322

[10

[11

=
)

[13

[14

[15

[16

(17

(18

[19

[20]

[21

~
o

[23

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.
Group Formation in Large Social Networks: Membership, Growth, and Evolution.
In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Philadelphia, PA, USA) (KDD °06). ACM, New York,
NY, USA, 44-54. https://doi.org/10.1145/1150402.1150412

Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New tools for interconnect exploration
in innovative off-chip memories. ACM Transactions on Architecture and Code
Optimization (TACO) 14, 2 (2017), 1-25.

Abanti Basak, Zheng Qu, Jilan Lin, Alaa R Alameldeen, Zeshan Chishti, Yufei Ding,
and Yuan Xie. 2021. Improving streaming graph processing performance using
input knowledge. In MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture. 1036-1050.

Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017. Groute:
An Asynchronous Multi-GPU Programming Model for Irregular Computations.
In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’17). 235-248.

Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. 2004.
Ubicrawler: A scalable fully distributed web crawler. Software: Practice and
Experience 34, 8 (2004), 711-726.

Hongzheng Chen, Minghua Shen, Nong Xiao, and Yutong Lu. 2021. Krill: A
Compiler and Runtime System for Concurrent Graph Processing. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (St. Louis, Missouri) (SC "21). Association for Computing Machinery,
New York, NY, USA, Article 51, 16 pages. https://doi.org/10.1145/3458817.3476159
Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming
Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012. Kineograph:
Taking the Pulse of a Fast-Changing and Connected World. In Proceedings of the
7th ACM European Conference on Computer Systems (Bern, Switzerland) (EuroSys
’12). Association for Computing Machinery, New York, NY, USA, 85-98. https:
//doi.org/10.1145/2168836.2168846

Vidushi Dadu, Sihao Liu, and Tony Nowatzki. 2021. PolyGraph: Exposing the
Value of Flexibility for Graph Processing Accelerators. IEEE Press, 595-608. https:
//doi.org/10.1109/ISCA52012.2021.00053

Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2019. Low-latency graph
streaming using compressed purely-functional trees. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
918-934.

Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao
Han, and Wenguang Chen. 2021. RisGraph: A Real-Time Streaming System for
Evolving Graphs to Support Sub-Millisecond Per-Update Analysis at Millions
Ops/s (SIGMOD °21). Association for Computing Machinery, New York, NY, USA,
513-527. https://doi.org/10.1145/3448016.3457263

Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: Distributed graph-parallel computation on natural graphs. In
Proceedings of the USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI). 17-30.

Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret
Martonosi. 2016. Graphicionado: A high-performance and energy-efficient accel-
erator for graph analytics. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 1-13.

Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vi-
jayan Prabhakaran, Wenguang Chen, and Enhong Chen. 2014. Chronos: A
Graph Engine for Temporal Graph Analysis. In Proceedings of the Ninth European
Conference on Computer Systems (Amsterdam, The Netherlands) (EuroSys ’14).
Association for Computing Machinery, New York, NY, USA, Article 1, 14 pages.
https://doi.org/10.1145/2592798.2592799

Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, and P. Sadayappan.
2017. MultiGraph: Efficient Graph Processing on GPUs. In Proceedings of the 26th
International Conference on Parallel Architectures and Compilation Techniques
(PACT °17). 27-40. https://doi.org/10.1109/PACT.2017.48

Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E. Gonzalez, and Ion
Stoica. 2021. TEGRA: Efficient Ad-Hoc Analytics on Evolving Graphs. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
21). USENIX Association, 337-355. https://www.usenix.org/conference/nsdi21/
presentation/iyer

Mark C Jeffrey, Suvinay Subramanian, Maleen Abeydeera, Joel Emer, and Daniel
Sanchez. 2016. Data-centric execution of speculative parallel programs. In 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 1-13.

Mark C Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez.
2015. A scalable architecture for ordered parallelism. In Proceedings of the 48th
international symposium on microarchitecture. 228-241.

Xiaolin Jiang, Mahbod Afarin, Zhijia Zhao, Nael Abu-Ghazaleh, and Rajiv Gupta.
2024. Core Graph: Exploiting Edge Centrality to Speedup the Evaluation of
Iterative Graph Queries. In 2024 Proceedings of the Nineteen European Conference
on Computer Systems (EuroSys’24).

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

[24]

[25]

[26

[27

[28]

[29

[30

[31]

[32]

[33]

[34

[35

[36

[37

[38

[39]

[40

[41]

Xiaolin Jiang, Chengshuo Xu, Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. 2021.
Tripoline: Generalized Incremental Graph Processing via Graph Triangle Inequal-
ity. In Proceedings of the Sixteenth European Conference on Computer Systems
(Online Event, United Kingdom) (EuroSys °21). Association for Computing Ma-
chinery, New York, NY, USA, 17-32. https://doi.org/10.1145/3447786.3456226
Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. 2015. Scalable SIMD-
Efficient Graph Processing on GPUs. In Proceedings of the International Conference
on Parallel Architectures and Compilation (PACT °15). 39-50. https://doi.org/10.
1109/PACT.2015.15

Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. 2014. CuSha:
vertex-centric graph processing on GPUs. In Proceedings of the 23rd International
Symposium on High-Performance Parallel and Distributed Computing (HPDC ’14).
ACM, 239-252. https://doi.org/10.1145/2600212.2600227

Pradeep Kumar and H Howie Huang. 2020. Graphone: A data store for real-time
analytics on evolving graphs. ACM Transactions on Storage (TOS) 15, 4 (2020),
1-40.

Jérome Kunegis. 2013. KONECT - The Koblenz Network Collection. In In Proceed-
ings of International Conference on World Wide Web Companion, May 13-17, 2013,
Rio de Janeiro, Brazil. ACM, 1343-1350. https://doi.org/10.1145/3575693.3575713
Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-
Scale Graph Computation on Just a PC. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI). USENIX Association, 31-46. https:
//www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,
and Joseph Hellerstein. 2014. Graphlab: A new framework for parallel machine
learning. arXiv preprint arXiv:1408.2041 (2014).

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135-146.

Mugilan Mariappan and Keval Vora. 2019. Graphbolt: Dependency-driven syn-
chronous processing of streaming graphs. In Proceedings of the Fourteenth EuroSys
Conference 2019. 1-16.

Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and
Bobby Bhattacharjee. 2007. Measurement and analysis of online social networks.
In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement.
29-42.

Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and
Daniel Sanchez. 2018. Exploiting Locality in Graph Analytics through Hardware-
Accelerated Traversal Scheduling. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1-14. https://doi.org/10.1109/MICRO.
2018.00010

Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2019. PHI: Architec-
tural support for synchronization-and bandwidth-efficient commutative scatter
updates. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture. 1009-1022.

Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martin Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 439-455. https://doi.org/10.1145/2517349.2522738

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight
Infrastructure for Graph Analytics. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13).
456-471. https://doi.org/10.1145/2517349.2522739

Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr: Transform-
ing irregular graphs for gpu-friendly graph processing. ACM SIGPLAN Notices
53,2 (2018), 622-636.

Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta. 2020. GraphPulse: An
Event-Driven Hardware Accelerator for Asynchronous Graph Processing. In 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
908-921. https://doi.org/10.1109/MICRO50266.2020.00078

Shafiur Rahman, Mahbod Afarin, Nael Abu-Ghazaleh, and Rajiv Gupta. 2021.
JetStream: Graph Analytics on Streaming Data with Event-Driven Hardware
Accelerator. In MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture (Virtual Event, Greece) (MICRO °21). Association for Computing
Machinery, New York, NY, USA, 1091-1105. https://doi.org/10.1145/3466752.
3480126

Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A cycle
accurate memory system simulator. IEEE computer architecture letters 10, 1 (2011),

323

Chao Gao, Mahbod Afarin, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

[42]

[43

[44

[45

[46

[47

(48

[49]

[51

(52

(53]

o
=

[55

[56]

[57]

[58

16-19.

Amir Hossein Nodehi Sabet, Zhijia Zhao, and Rajiv Gupta. 2020. Subway: min-
imizing data transfer during out-of-GPU-memory graph processing. In Pro-
ceedings of the Fifteenth EuroSys Conference (EuroSys "20). 12:1-12:16. https:
//doi.org/10.1145/3342195.3387537

Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,
Renzo Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Peter A Boncz, et al.

2021. The future is big graphs: a community view on graph processing systems.
Commun. ACM 64, 9 5;2021 , 62-71.

Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tornado: A Sys-
tem For Real-Time Iterative Analysis Over Evolving Data. In Proceedings of the
2016 International Conference on Management of Data (San Francisco, California,
USA) (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA,
417-430. https://doi.org/10.1145/2882903.2882950

Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In Proceedings of the 18th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming. 135-146.

SST-toolkit. 2023. http://sst-simulator.org/. http://sst-simulator.org/ Accessed:
2023-02-20.

Lubos Takac and Michal Zabovsky. 2012. Data analysis in public social networks.
In International scientific conference and international workshop present day trends
of innovations, Vol. 1. Present Day Trends of Innovations Lamza Poland.

Keval Vora, Rajiv Gupta, and Guoging Xu. 2016. Synergistic Analysis of Evolving
Graphs. ACM Trans. Archit. Code Optim. 13, 4, Article 32 (oct 2016), 27 pages.
https://doi.org/10.1145/2992784

Keval Vora, Rajiv Gupta, and Guoging Xu. 2017. Kickstarter: Fast and accurate
computations on streaming graphs via trimmed approximations. In Proceed-
ings of the twenty-second international conference on architectural support for
programming languages and operating systems. 237-251.

Keval Vora, Chen Tian, Rajiv Gupta, and Ziang Hu. 2017. CoRAL: Confined
Recovery in Distributed Asynchronous Graph Processing. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS °17). 223-236. https://doi.org/10.
1145/3037697.3037747

Qinggang Wang, Long Zheng, Yu Huang, Pengcheng Yao, Chuangyi Gui, Xiaofei
Liao, Hai Jin, Wenbin Jiang, and Fubing Mao. 2021. GraSU: A fast graph update
library for FPGA-based dynamic graph processing. In The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 149-159.
Yangzihao Wang, Yuechao Pan, Andrew A. Davidson, Yuduo Wu, Carl Yang,
Leyuan Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T. Riffel,
and John D. Owens. 2017. Gunrock: GPU Graph Analytics. ACM Transactions on
Parallel Computing 4, 1 (2017), 3:1-3:49. https://doi.org/10.1145/3108140

M. Wu, C. Li, and Z. et al. Shen. 2022. Use of temporal contact graphs to under-
stand the evolution of COVID-19 through contact tracing data. Communication
Physics (2022). Available from https://doi.org/10.1038/s42005-022-01045-4.
Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. 2022. Glign: Taming Misaligned Graph
Traversals in Concurrent Graph Processing. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1(Vancouver, BC, Canada) (ASPLOS 2023). Association
for Computing Machinery, New York, NY, USA, 78-92. https://doi.org/10.1145/
3567955.3567963

Guowei Zhang, Webb Horn, and Daniel Sanchez. 2015. Exploiting commutativ-
ity to reduce the cost of updates to shared data in cache-coherent systems. In
Proceedings of the 48th International Symposium on Microarchitecture. 13-25.
Jin Zhao, Yun Yang, Yu Zhang, Xiaofei Liao, Lin Gu, Ligang He, Bingsheng He, Hai
Jin, Haikun Liu, Xinyu Jiang, et al. 2022. TDGraph: a topology-driven accelerator
for high-performance streaming graph processing. In Proceedings of the 49th
Annual International Symposium on Computer Architecture. 116—129.

Jin Zhao, Yu Zhang, Xiaofei Liao, Ligang He, Bingsheng He, Hai Jin, Haikun
Liu, and Yicheng Chen. 2019. GraphM: An Efficient Storage System for High
Throughput of Concurrent Graph Processing. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’19). Association for Computing Machinery, New York,
NY, USA, Article 3, 14 pages. https://doi.org/10.1145/3295500.3356143

Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale
Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning.
In USENIX Annual Technical Conference (USENIX ATC), July 8-10, Santa Clara,
CA, USA. USENIX Association, 375-386. https://www.usenix.org/conference/
atc15/technical-session/presentation/zhu

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Evolving Graphs and CommonGraph
	2.2 Motivating MEGA

	3 MEGA Design
	3.1 Batch-Oriented-Execution
	3.2 Other Optimizations

	4 MEGA Architecture
	4.1 MEGA Architecture Overview
	4.2 Execution and Datapath
	4.3 Batch Scheduling and Version Control

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Performance and Characteristics
	5.3 Hardware Cost and Power Analysis

	6 Related Work
	7 CONCLUDING REMARKS
	Acknowledgments
	References

