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Abstract

When evaluating an iterative graph query over a large graph,
systems incur significant overheads due to repeated graph
transfer across the memory hierarchy coupled with repeated
(redundant) propagation of values over the edges in the
graph. An approach for reducing these overheads combines
the use of a small proxy graph and the large original graph in
a two phase query evaluation. The first phase evaluates the
query on the proxy graph incurring low overheads and pro-
ducing mostly precise results. The second phase uses these
mostly precise results to bootstrap query evaluation on the
larger original graph producing fully precise results. The
effectiveness of this approach depends upon the quality of
the proxy graph. Prior methods find proxy graphs that are
either large or produce highly imprecise results.

We present a new form of proxy graph named the Core
Graph (CG) that is not only small, it also produces highly
precise results. A CG is a subgraph of the larger input graph
that contains all vertices but on average contains only 10.7%
of edges and yet produces precise results for 94.5-99.9% ver-
tices in the graph for different queries. The finding of such
an effective CG is based on our key new insight, namely, a
small subset of non-zero centrality edges are responsible for
determining the converged results of nearly all the vertices
across different queries. We develop techniques to identify
a CG that produces precise results for most vertices and
optimizations to efficiently compute precise results of re-
maining vertices. Across six kinds of graph queries and four
input graphs, CGs improved the performance of GPU-based
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Subway system by up to 4.48X%, of out-of-core disk-based
GridGraph system by up to 13.62%, and of Ligra in-memory
graph processing system by up to 9.31x.
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1 Introduction

Graph analytics is employed in many domains (e.g., social
networks, web graphs) to uncover insights from connected
data. There has been much work resulting in scalable graph
analytics systems for GPUs, multicore servers, and clus-
ters [3-6, 9, 11, 13, 15, 16, 20, 23, 25, 27, 28, 30, 34, 36, 38, 43].
Real world graphs are irregular and large. Thus, significant
overheads are incurred due to movement of graph across the
memory hierarchy and repeated propagation of values over
the edges in the graph. These overheads are exacerbated due
to the iterative nature of graph analytics. Thus, in spite of
the numerous advances, efficient processing of large and
irregular graphs remains a challenge.

One approach [18, 42] for dealing with the above challenge
employs a two-phase (2Phase) query evaluation as shown
in Figure 1. Here a small proxy graph corresponding to the
large original graph is identified once and then the combina-
tion of the proxy graph and original graph is used to evaluate
all future queries. Note that for graphs with a large number
of vertices, there is an equally large number of vertex-specific
queries (e.g., each vertex can serve as a source of a shortest
path query). The first phase evaluates the query on the proxy
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graph incurring low overheads and producing mostly pre-
cise results (mostly green and some red values in Figure 1).
Then, the second phase uses these mostly precise results
to bootstrap query evaluation on the larger original graph
producing fully precise results (all green values in Figure 1).
Resuming query evaluation in the second phase from ver-
tices whose property values are impacted in the first phase,
guarantees that the 2Phase algorithm will produce correct
results for 100% of vertices [18, 42]. Given its generality, this
approach is applicable to different kinds of systems — GPU-
based Subway, in-memory Ligra, out-of-core GridGraph - as
shown in Figure 2. Moreover, the improvements are largely
complimentary to other platform specific optimizations in-
corporated in different graph processing systems. However,
for the above approach to be effective, the proxy graph must
fulfill two key requirements:

e RQ1: The proxy graph should be much smaller than
the original so that the first phase incurs substantially
reduced graph transfer overhead and performs little
redundant propagation of values over edges; and

e RQ2: Convergence over the proxy graph should pro-
duce query results that have mostly precise, i.e. most
have converged to the same values that are obtained
upon convergence over the original graph. Thus, the
second phase requires little effort to reach full conver-
gence (i.e., convergence for all vertices).

Prior methods [18, 42], Reduced Graph [18] and Abstrac-
tion Graph [42], are proxy graphs with significant limitations.
The first method by Kusum et al. [18] collapses parts of the
graph eliminating many vertices that cannot be queried and
produces a proxy graph that is too large (roughly 50% of
original size [18]). Although the Abstraction Graph [42] over-
comes the limitations of Reduced Graph and produces a small
proxy graph, it yields query results that are imprecise — it pro-
duces imprecise results for over 53% of the vertices. Similar
lack of precision is observed when graph sampling is used
to to produce a small proxy graph [21, 29, 41]. Query-by-
sketch [39] identifies a self-contained subgraph (meta-graph).
However, it is limited to queries that find the shortest path
between two vertices. Our approach handles other kind of
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Figure 1. Proxy Graph based 2Phase Evaluation.
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Figure 2. Speedups with CG over without CG for
Friendster (FR) [1] input graph with 2.586 billion edges.
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Figure 3. # of Non-Zero Centrality Edges identified with
increasing number of queries for Twitter (TT) [7] graph.

Table 1. Average number of queries out of a total of 20
forward queries that select an edge added to CG.

[ G [ SSSP[SSNP | Viterbi [ SSWP [REACH |
[ TT [ 13011949 ] 2000 [ 19.99 | 17.50 |

queries beside shortest paths and it finds property values
from a source vertex to all destination vertices.

In this paper we develop a new approach for identifying
a proxy graph, called the Core Graph (CG), that satisfies
both the aforementioned requirements. That is, Core Graph
is both small and produces highly precise results. The CG
includes all the vertices from the original graph so that any
vertex-specific query can be evaluated and it contains only a
subset of edges. Which edges to include in the CG, and how to
identify these edges efficiently, is one of our key contribution.

Consider finding the CG for use by single-source shortest-
path (SSSP) queries. We note that the edge betweenness cen-
trality (ebc), which is defined as the number of the shortest
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paths that contain an edge in a graph [24], can be used to
identify edges that are important to SSSP queries. Each edge
that has non-zero ebc value should be included in the CG
as it plays a role in establishing a shortest path between at
least a pair of vertices. If all non-zero centrality edges are
included in the CG, the graph remains well connected via
shortest paths, i.e. if there is a path between a pair of vertices
in the original graph, then the shortest path is also present
in the CG. However, identifying all edges with non-zero
ebc values is extremely expensive — it requires computing
shortest paths from every vertex to every other vertex.

Our key insight is that most edges with non-zero between-
ness centrality can be identified by evaluating a small number
of queries corresponding to the highest degree vertices in the
graph. We can identify edges that lie along shortest paths
found via these queries. That is, each edge u — v such that
value of vertex v equals value of vertex u plus the weight
of edge u — v, lies along some shortest path. This simple
approach is not only inexpensive, since it selects edges along
shortest paths, it selects edges with non-zero centrality and
edges that provide well connectedness. Figure 3 shows that
as we solve increasing number of queries, inclusion of newly
discovered edges found to fall on shortest paths causes the
number of edges in the CG grow very slowly. That is, vast
majority of edges included play an important role in the eval-
uation of many different queries. Moreover, the data for TT
graph in Figure 3 shows that this observation is true across
many graph algorithms to a very large degree. Table 1 shows
that, when edges are identified using 20 forward queries
on TT, most edges are frequently selected for inclusion by
majority of the queries — similar behavior was also observed
for other input graphs. Therefore, in rest of the paper we limit
the number of vertices queried for identifying CG edges to 20.

Core graphs are useful for efficiently solving queries over
large graphs on different systems as they reduce the follow-
ing overhead costs: on a GPU where the full graph cannot be
held in GPU memory, the overhead of repeated graph trans-
fers between host and GPU memory is substantial; and on
a shared-memory out-of-core system where the full graph
cannot be held in the memory, the overhead of repeated
graph transfers from disk and memory is substantial. Re-
cent research has led to systems with reduced graph transfer
overheads for GPU-based [12, 17, 22, 32, 33] and Out-of-
Core [20, 31, 37, 42, 43] systems. Nevertheless, Core Graphs
can substantially improve performance of Subway [32] for
GPUs and GridGraph [43] for out-of-core processing. Even
for Ligra [34] where the entire graph is held in memory,
Core Graph can significantly reduce graph transfer to on-
chip caches. Our experiments show that, in all of the above
systems, CG also reduces value propagation over edges yield-
ing reductions in computation performed.

The key contributions of our work are as follows:
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e Core Graph Identification and Exploitation: We
present algorithms for finding a core graph by solving
a small set of queries to identify most non-zero cen-
trality edges (§2.1). We exploit CG and present a new
optimization that improves the efficiency of the 2phase
evaluation while producing 100% precise results (§2.2).

e Experimental Results (§3): For the 2.586 billion FR
graph, across six kinds of queries, our approach yielded
CGs containing 5.42% to 10.45% edges and precise
results for 97.1-99.9% vertices. Across six kinds of
queries and four large input graphs our approach out-
performs Subway [32] by up to 4.48X, GridGraph [43]
by up to 13.62X, and Ligra [34] by up to 9.31x for
computing precise results for all vertices.

2 Core Graph Identification & Exploitation

In this section we introduce the notion of Core Graph and
present an algorithm for its identification. We analyze its
effectiveness in terms of its precision and sizes. We also de-
velop algorithms and optimizations to evaluate fully precise
results for a given query while also benefiting from Core
Graphs to speedup query evaluation.

2.1 Identifying a Core Graph

Consider an input graph, G(V, E), where the edges in E are
directed and weighted. An edge from vertex u to vertex v is
denoted by e(u, v) and w(u, v) denotes its weight. A directed
path from u to v is denoted by p(u, v).

Vertex-Specific Queries. The graph algorithms we con-
sider solve different kinds of vertex-specific queries. A vertex
query Q(s) originates at the source vertex s € V and upon
its evaluation has computed the property values Q(s).Val(v)
for all other verticesv € V — {s}.

Given a source vertex s and a path p(s,v), the property
value of v along the path, denoted as p(s,v).Val(v) is com-
puted from Val(s) and the weights of edges along path
p(s,v) using a propagation operator (. For example, given
the path p(s,v) = s = u — o, p(s,0).Val(v) is given by
Val(s) P w(s,u) P w(u,0).

For the class of graph queries we consider, given mul-
tiple paths py, pa, - - - pn from s to o, the property value of
v corresponding to query Q(s), denoted as Q(s).Val(v), is
computed from p;(s,v).Val(v) values for all p;’s using a se-
lection operator, viz., one of:

MIN;(pi(s,0).Val(v)) or MAX;(pi(s,0).Val(v)).

Many graph algorithms fall in this category including the
six graph algorithms used in our evaluation.

Edge Centrality and Complete Core Graph. As a conse-
quence of evaluating a query Q(s), it is possible to identify
all edges belonging to solution paths (e.g., shortest paths).
That is, we can identify every edge that belongs to some so-

lution path p(s, v) such that p(s,v).Val(v) == Q(s).Val(v).
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This is because for any edge e(a, b) belonging to a solution
path p(s,v), property values of a and b are related as follows:

Q(s).Val(b) == Q(s).Val(a) P w(a,b).

All edges that belong to a solution path have non-zero
centrality values, i.e. they belong to at least one solution
path. For a given graph G(V, E), we introduce the notion
of the Complete Core Graph that is defined as follows.
Given a graph G(V, E), the corresponding Complete Core
Graph c¢CG(V,, E,) is a subgraph of G which contains all
vertices from G and all non-zero centrality edges in G, i.e.,

Ve=V; E.={e(ab) | Centrality of e(a,b) >0}

Since the above definition states that any edge with non-
zero centrality is included in ¢CG, it implies that any path
p(x,y) for which p(x,y).Val(y) is equal to Q(x).Val(y) in
G, is also present in ¢cCG. Thus, the evaluation of any query
on ¢CG produces results that are identical to those produced
by evaluating the query on G.

Note that finding the ¢CG does not require computing
the exact centrality value of each edge e(a, b) but rather it
simply requires identifying edges with non-zero centrality.
If upon solving some query Q(s) we observe that

Q(s).Val(a) € w(a,b) =Q(s).Val(b)

then edge e(a, b) definitely has non-zero centrality. Never-
theless we observe that it is not practical to identify the
Complete Core Graph. By solving a single query Q(s), we
can identify only the subset of non-zero centrality edges that
play arole in computing the solution of query Q(s). However,
to identify all non-zero centrality edges, in general all queries
must be evaluated. Therefore, next we present a heuristic
for finding an incomplete core graph that is nevertheless very
effective in producing highly precise results.

Our Core Graph Algorithm. Since our goal is to accel-
erate the solving of queries in the first place, we settle on
building an incomplete Core Graph that is computed by
solving a small set of selected queries (we found 20 vertices
are adequate) and use this graph to speedup the evaluation
of all future queries. Henceforth we refer to this incomplete
core graph simply as the Core Graph (CG) which contains a
subset of all non-zero centrality edges. As shown in earlier in
Figure 3, when we identify sets of non-zero centrality edges
of different queries, there is very large overlap in these sets
which implies that most of the non-zero centrality edges
being found belong to many soultion paths. We will soon
show that our approach for building the CG produces exact
results for most vertices, further confirming the inclusion of
most non-zero centrality edges in CG, while the exact results
for remainder of vertices require further computation using
the original full graph to account for the non-zero centrality
edges that are missing from CG and belong to some solution
path for the query being evaluated.
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Algorithm 1 Finding CG wrt high degree vertices in H.

1: Input: Graph G(V, E) and High-Degree Vertex Set H
2: Output: CG(V, E.), E. contains edges chosen from E
3: for each h € H do

4 E{(h) = IDENTIFY ( G(V, E), DIRECTION f')

5: Eﬁ'(h) = IpenTIFy ( GR(V, ER), DirecTiON b)
6

7

8

9

E = Ec UEL (h) UED(h)
: end for
: forallv € V do
if OutDegree(v)# 0 A OutEdges(v) NE.(h) = ¢ then

10: Add an out edge of v to E.(h)
11: end if
12: end for

13: function IDENTIFY ( G(V, E), DIRECTION d )
14: Evaluate Query Q(s) on G(V,E)
15: for all e(u,v) € E do

16: if Q(s) updates Q(s).Val(u) then

17: if (Q(s).Val(u) @B w(u,v) = Q(s).Val(v)) then
18: if (d == f) then

19: Ec.(h) = Ec(h) U {e(u,v)}

20: else > (d==0)

21: Ec.(h) = E.(h) U {e(v,u)}

22: end if

23: end if

24: end if

25: end for
26: end function

— Forward and Backward Queries. Our work is aimed at
large graphs with power law degree distribution. For such
graphs, it is known that high degree vertices are good prox-
ies for high centrality vertices [10]. Thus, a small number of
highest degree vertices are used to identify edges with non-
zero centrality. Given a chosen high-degree vertex h, we can
find high centrality edges by solving query Q(h) and then
testing each edge for non-zero centrality. In a directed graph,
we actually solve two queries corresponding to each chosen
high-degree vertex h: Q(h, forward) and Q(h, backward).
The forward query identifies non-zero centrality edges that
lie along paths originating at h and leading to some other ver-
tex. The backward query identifies non-zero centrality edges
that lie along paths originating at some other vertex and
leading to h. By computing both forward and backward
queries we are able to preserve pairwise reachability
among vertices, via h, to a very large extent and thus
producing a well connected CG.

- Additional Connectivity Edges. Once non-zero centrality
edges corresponding to a small set of high degree vertices
have been found, we ensure that every vertex with non-zero
out-degree has at least one edge included in the core graph
to make the graph well connected. If no outgoing edge is
included, we add one. For SSSP (SSWP) lowest (highest)
weight edges are chosen as they are more likely to belong
to shortest (widest) paths. This approach ensures that each
vertex is connected to the CG.
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Table 2. All Shortest Paths Found: Using the G with 17
Edges (Top) vs. Core Graph CG with 8 Edges (Bottom).

G| 1 2 3 4 5 6 7 8 9
1 0 15 20 23 27 21 18 7
2 | o 0 5 8 12 6 3 0o 00
3|00 o 0 3 7 [e) 0o 00 00
4 | o0 o0 0 4 0 00 00 0
5|00 o0 o000 o0 0 0 00 00 00
6 |0 o0 o0 25 27 0 o000 00 o
7 |00 o0 2 5 9 3 0 oo oo
8 6 21 26 29 32 5 24 0 13
9 |0 8 13 16 20 14 11 oo 0
CG| 1 2 3 4 5 6 7 8 9
1 0 15 20 23 27 21 18 oo 7
2 (o] 0 5 8 12 6 3 o0 o
3 oo 00 0 3 7 [e) 00 00 o0
4 0o 00 0 4 0 00 00 o
5 o 00 00 0 0 0o 00 00 0
6 oo 00 [e) [e) [e) 0 00 00 0
7 o o0 2 5 9 3 0 o oo
8 6 21 26 29 33 27 24 0 13
9 o 8 13 16 20 14 11 oo 0

Algorithm 1 shows the above computation. The algorithm
repeatedly uses different high degree vertices in H to find
additional non-zero centrality edges. Finally, it ensures that
at least one out edge of each vertex with non-zero out degree
is added to E.. Note that, when the incomplete Core Graph
as constructed above is used to solve a new query, it will
produce exact results for some vertices but not for all vertices.
Next we illustrate the above algorithm and observations.

Example of Finding Core Graph. We build a core graph
for the shortest path problem for the example graph in
Figure 4(a). The red and blue edges in Figures 4(b) and
(c) are non-zero centrality edges found by solving queries
SSSP(7,forward) and SSSP(7,backward). The core graph ob-
tained by combining the two is shown in Figure 4(d). The
two tables in Table 2 show results of all shortest path queries
computed using the original graph (G) and the core graph
(CG). Note that most of the results in the two tables are
identical. Only four results shown in red do not match.

First, the reachability for vertex pairs (6,4) and (6, 5) is
present in G but not in CG causing the query SSSP(6), when
computed using CG, to result in values of vertices 4 and 5 to
be co. However, since no outgoing edge for vertex 6 is present,
we will add the lowest weight outgoing edge from 6 to 4 to the
core graph. This will cause the values for vertices 4 and 5 to
change to 25 (precise) and 29 (imprecise).

Second, though reachability for pairs (8,5) and (8, 6) is
satisfied by both graphs, in CG the lengths of the paths is
longer than the shortest paths in G. Since CG contains a
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(a) Full Graph (G).
7—% |1 2 3 4 5 6 7 8 9
7 o o0 2 5 9 3 0 o o

(b) Non-Zero Centrality Edges for SSSP(7, forward).

~
~

© X NG W]

(d) Core Graph derived from (b) and (c).

Figure 4. lllustration of Alg. 1 Starting from Full Graph.

subset of G’s edges, shortest path length for a vertex pair
computed using G can only be shorter than for CG.
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Table 3. #Edges, #Vertices, and In-Memory Size of Graphs from SNAP [2]: Friendster — FR; Twitter — TT; Twitter - TTW;
PokeC - PK. Algorithms: SSSP-single source shortest path; SSNP-single source narrowest path; Viterbi; SSWP-single source
widest path; REACH-reachability from a single source; and WCC-weakly connected component which uses CG as REACH.

G | E| |V | G Size CG Size (MB)

(MB) || SSSP | SSNP | Viterbi | SSWP |[REACH
FR [1] 2,586,147,869 | 68,349,467 | 20,963 || 2,436 | 1,777 1,789 | 1,777 834
TT[7] 1,963,263,821 | 52,579,683 | 15916 || 1,680 | 1,421 1425 | 1425 762
TTW [19] || 1,468,365,182 | 41,652,231 | 11,914 || 1,353 | 1,784 | 1,146 | 1,762 656
PK [35] 30,622,564 | 1,632,804 | 252 60 51 36 51 21

Algorithm 2 Finding CG for an Unweighted Graph.

1: Input: Original Graph G(V, E) and Query Set S
2: Output: High Centrality Edges E,

: QIp[*] « 0 for each vertex

E Bt ¢

: for seS do

Ef = Ef U Traverse (s, G(V.E) )
Ef = Ef U TRAVERSE ( s, GR(V, ER) )
: end for

. Ec = E{ U REVERSE ( Ef )

10: function TRAVERSE (s, G(V,E))

11: CGE=¢

12: Firo.PUsH(s);

13: while ! Firo.EmpTY() do

14: u <« Frro.Pop()

15: for all e(u,v) € Graph.Outedges(u) do
16: if Qmip(v) #s then

17: > add e(u,v) to CGE

18: CGE =CGE U { e(u,0) }
19: if QiD(v)=0 then

20: F1ro.PUsH(V)

21: QID(V) s

22: end if

23: end if

24: end for

25: end while

26: return (CGE)
27: end function

Table 4. % of Total Edges in the Specialized and General
Core Graphs Computed from 20 High-degree Vertices.
Overall average is 10.7%.

[ CG || SSSP [ SSNP [ Viterbi | SSWP [REACH |
FR [ 1045% | 7.27% | 733% | 727% | 542%
TT 936% | 771% | 7.73% | 171% | 7.02%
TTW [ 1010% | 13.77% | 8.34% | 13.58% | 8.34%
PK [ 21.85% | 18.05% | 12.14% | 18.18% | 12.13%

CG for Unweighted Graphs Next we present a heuris-
tic for building a core graph for evaluating queries on un-
weighted graphs. Examples of queries that fall in this cate-
gory include Reachability—~-REACH and Weakly Connected

23

Table 5. Average % of Vertices for which CG Produces
Precise Results for 10 Queries.

(G [[SSSP[SSNP | Viterbi | SSWP [[REACH | WCC |
FR [[97.1%] 99.9% | 99.9%| 99.9% [ 99.9% [ 99.4%
TT  [[99.6% | 99.9% | 99.9% | 99.9% | 99.9% [ 99.9%
TTW([[99.4% | 99.9% | 99.9% | 99.9% | 99.9% [ 98.7%
PK [[945%] 99.9% | 99.9%| 99.9% | 99.9% | 99.3%

Components-WCC. Since such queries rely on reachability,
we can identify non-zero centrality edges via forward and
backward breadth-first-trees corresponding to a set of high-
degree vertices. Next, we describe an algorithm for finding a
small core graph that captures reachability characteristics of
an unweighted graph.

When constructing a core graph that captures reachability
via forward and backward BFS-traversals, same edges can
be chosen by traversals originating at different high-degree
vertices to the extent possible in order to produce smaller
core graphs. Algorithm 2 takes advantage of this sharing in
identifying core graph edges. It maintains QIp(v) containing
the id of the high-degree query vertex that is the first to
add an incoming CG edge of v in the set of core graph edges
CGE. When an edge e(u, v) is encountered whose source and
destination vertex QIp’s are different, the edge is added to
the graph but all core graph edges emanating from v onward
are reused by queries labeling vertices u and v.

Studying the Precision and Sizes of Core Graphs. We
carried out a study based upon five different kinds of queries
and four graphs to evaluate the effectiveness of core graphs.
The kinds of queries include SSSP-shortest path, SSNP-
narrowest path, Viterbi, SSWP-widest path, and REACH-
reachability. The graphs are described in Table 3.

— Core Graph Sizes. In Table 4 we present the percentage
of all edges that are present in specialized core graphs for
SSSP, SSNP, Viterbi (where lower weight edges are more
important), and SSWP where higher weight edges are more
important. Finally in REACH, weights play no role. For the
three large input graphs — FR, TT, TTW - the core graphs
contain 7.27% to 13.77% of total edges. For the smaller PK
graph this number is higher. The average over all core
graphs found is 10.7%.
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— Precision of Results. Though the core graph contains a
very small fraction of edges from the full graph, it truly cap-
tures its essence. When we evaluated ten random queries
for every combination of graph algorithm and input graph,
we found that on average for 94.5-99.9% of the vertices
the core graph produces precise results (i.e., same result
as the one produced by the full graph). This data is given in
Table 5. Across four kinds of queries (SSNP, Viterbi, SSWP,
REACH) CG generated imprecise results for only a tiny num-
ber of vertices — a maximum of 310, 40, 36, and 79 vertices
for FR, TT, TTW, and PK respectively. For SSSP the fraction
of vertices with imprecise results is the highest with average
percentage errors in the values for these vertex values being
2.27%, 6.35%, 5.71%, and 3.79% for FR, TT, TTW, and PK. Fi-
nally, note that we also provide precision of WCC which is
computed using the REACH’s CG.

Limitations. The above observations hold for irregu-
lar graphs with power-law distribution. For other kinds of
graphs, core graphs may have different forms and differ-
ent degree of precision. Also, we have examined six graph
properties, there may be other properties for which high pre-
cision may be difficult to attain. Finally, as mentioned earlier,
our work considers monotonic algorithms for vertex-specific
queries. In the remainder of the paper we present an algo-
rithm that exploits core graphs to speedup performance of
multiple graph processing systems. However, this algorithm
was applied to monotonic graph algorithms. Successful use
of core graphs in context of non-monotonic algorithms such
as PageRank remains an open problem.

2.2 Exploiting Core Graphs in Query Evaluation

The exact evaluation of a query results requires a two phase
approach where the first phase evaluates the query on the
small in-memory core graph (CG) and then uses the results
obtained to bootstrap the evaluation of the query on the
full graph (G). Starting from all vertices whose values are
impacted in the first phase, the second phase resumes propa-
gation of values over the full graph to obtain precise results
for all vertices. Since most results are computed precisely
in the first phase efficiently using the small CG, the work
performed during the second phase is greatly reduced.
Next we present a new optimization over the above ap-
proach to improve the efficiency of the second phase. The
key idea behind this optimization is as follows. After the
first phase has completed, we introduce a step that is able
to identify some (but not all) of the vertices whose values
are already precise and hence will not change in the second
phase. For each such vertex v, the incoming edges of v are
removed from the full graph G because any propagation via
these edges will not change the value of vertex v and hence
would be wasteful. Next we present a theorem that allows
us to identify some (but not all) vertices with stable values
following first phase. We first present the above results in
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context of the shortest path problem and later show that
these results apply to many other graph algorithms.

Given a full graph G(V,E) and a high degree vertex h
in V such that forward and backward shortest path queries
SSSPf(h,G) and SSSPy(h, G) are evaluated to identify the
corresponding core graph CG(V, E..). Now consider the first
phase evaluation of user query SSSP¢(s, CG) on CG(V, E,)
that computes, for each vertex v reachable from s, the short-
est path length dist(s,v).CG. The following theorem pro-
vides the condition under which dist(s,v).CG is precise.

Theorem 1: The computed value dist(s,v).CG is precise if
one of the following conditions is true:

(a) dist(s,v).CG == dist(s,h).G — dist(v,h).G

(b) dist(s,0).CG == dist(h,0).G — dist(h,s).G

Proof: To prove the above, we rely on the triangle inequality
over the shortest path property as given in [14].

dist(s,v) dist(v,h)
@l

According to the triangle quality for shortest path property:
dist(s,0).G + dist(v,h).G > dist(s,h).G

dist(s,h)

or dist(s,0).G > dist(s,h).G — dist(v,h).G (1)
Since CG is a subgraph of G:
dist(s,v).CG > dist(s,0).G (2)
Therefore from (1) and (2) we conclude that:
dist(s,0v).CG > dist(s,h).G — dist(v,h).G
Thus, if we observe that
dist(s,0).CG == dist(s,h).G — dist(v,h).G (a)

then dist (s, v).CG must be precise.

disths) " gists,v)

dist(h,v)

Similarly, we use another triangle inequality as follows:
dist(h,s).G + dist(s,0).G > dist(h,0).G
or dist(s,0).G > dist(h,v).G — dist(h,s).G
Since CG is a subgraph of G:
dist(s,v).CG > dist(s,0).G
From (1) and (2) we conclude that if:
dist(s,0).CG > dist(h,v).G — dist(h,s).G
Therefore, if we observe that
dist(s,0).CG == dist(h,v).G — dist(h,s).G
then dist(s,v).CG must be precise. O

(1)
@)

(b)

As shown in [14], the graph triangle inequality abstraction
given below applies to many different graph properties.

property(vy,vz) ® property(vs, vs) = property(vy, vs)
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Algorithm 3 2Phase Algorithm for evaluating query for
source vertex s in input graph G(V, E).

1: Input: s, G(V, E), and CG(V, =V, E;)
2: Output: Query Result — Valg ()
3: > Initialization: Initialize Val Array on Host
4: Valg(s) < SourcelnitVal
5: Yo € OutNeighbors(s), Vals(v) « Vals(s) € w(s,0)
6: Yo € V — OutNeighbors(s), Valg(v) « InitVal
7: Transfer from Host to GPU:
8: Vals(*), OutNeighbors(s), & CG(V,, E.)
9: > Core Phase: Process Core Graph on GPU
10: ACTIVE «— OutNeighbors(s)
11: while AcTIvE # ¢ do
12: AcTIVE «— PrOCESS ( ACTIVE, CG(V,, E.) )
13: end while
14: > Completion Phase: Process Full Graph on GPU+Host
15: ACTIVE « Impacted Vertices in V
16: while AcTIVE # ¢ do
17: AcCTIVE < PRroCESS ( ACTIVE, G(V, Reduced(E)) )
18: end while
19:
20: > Push Val’s of Vertices in AcTIVE Over outEdges
21: function PrRocess ( ACTIVE , Graph)
22: NEWACT < ¢
23: for all u € AcTIvE do
24: for all e(u,v) € Graph.outEdges(u) do
25: if Needed(u,v) then
26: change «— EDGEFUNCTION ( e(u,0) )
27: if change V FIRSTPHASE2VIsIT(v) then
28: NEWACT « NEWAcT U {0 }
29: end if
30: end if
31: end for
32: end for
33: return NEWACT

34: end function

Here & depicts an abstract addition and > represents an ab-
stract greater than or equal operator. While operators vary
across the different algorithms, the proposed optimization
applies many graph algorithms such as widest path, narrow-
est path, breadth-first search, and others.

Algorithm 3 shows the 2Phase evaluation of a query on a
GPU. In the initialization step (lines 3 to 8) of this algorithm,
the host receives the query vertex and initializes the vertex
values such that the values of the outgoing neighbors are
computed using the source vertex value and these outgoing
neighbors form the initial frontier. Next the host transfers
the initial value array, the frontier, and the core graph to the
GPU to begin query evaluation.

On the GPU, the two phases of query evaluation are: Core
Phase (lines 9 to 13) and Completion Phase (lines 14 to 18).
During the Core phase, the query evaluation is carried on the
much smaller CG and when this phase stabilizes, the second
phase begins. In the Completion phase, starting from the
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Table 6. Push Operations for Four Algorithms. Here,
CASMIN(a; b) sets a = b if b < a atomically using
compare-and-swap; CASMAX is similarly defined.

NEEDED (e(u,0))
Alg EpGeFuncTioN (e(u,v))
Val(v) < min(Val(u), wt(u,0))
SSwe CASMAX (Val(v), min(Val(u), wt(u,0)))
SSNP Val(v) > max(Val(u), wt(u,0))
CASMIN (Val(v), max(Val(u), wt(u,v)))
SSSP Val(v) > Val(u) + wt(u,v)
CASMIN (Val(v), Val(u) + wt(u,v))
. .|| Val(v) < Val(u)/wt(u,0)
Viterbi CASMAX (Val(v), Val(u) /wt(u,0))
Val(v) < Val(u)
REACH || cASMAX (Val(v), Val(u)
Val(v) > Val(u)
WEC |l CASMIN (Val(v), Val(u)

vertices that are impacted in first phase, and this time using
G, with incoming edges of all the precise vertices removed by
Reduced(E), once query is evaluated till the values stabilize
and the final result of the query becomes available.

In the completion phase, all reachable vertices must be
visited at least once to ensure that their values are push along
outgoing edges in FG that were excluded from CG. This is
achieved by ensuring that upon first visit to a vertex in this
phase, it is always added to the frontier even if its property
value has not changed (call to FIRSTPHASE2VISIT(), line 27).

The first phase is fast and effective as it is an in-memory
phase which produces precise results for over 94% of the
vertices. The second phase is efficient because most needed
computations have already been completed and the edge
function with atomic operation to propagate values is applied
for incoming edges of a small number of vertices.

Note that the 2Phase algorithm is general and can be used
to enhance the performance of range of existing systems
including out-of-core systems like GridGraph [43] and even
in-memory systems like Ligra [34]. In context of in-memory
system like Ligra, the Core Phase reduces overall computa-
tion performed while in the context of an out-of-core system
like GridGraph an in-memory Core Phase reduces the cost
of both computation and I/O performed during the second
out-of-core phase. For simplicity, we maintain separate core
graph and full graph representations and simply switch from
core graph to full graph when we transition to second phase.

3 Experimental Evaluation
We evaluate the benefits of core graphs in improving the

performance of query evaluation for the following systems:

e Subway [32] system’s synchronous algorithm for eval-
uating queries with reduced data transfer on a GPU;
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Figure 5. Benefit of CG to Subway [32] - 2Phase Values Normalized to Subway: Graph Generation Time - GEN; Data
Transfer Time - TRANS; Computation Time - COMP; and # of Push Atomic Updates - ATOMIC.

e GridGraph [43] disk-based out-of-core graph process-
ing system with 8GB available memory exceeded by
all graph sizes and 4x4 grid partitioning; and

e Ligra [34] in-memory graph processing system with
push-based algorithms.

The evaluation employs Specialized CGs for SSSP, SSNP,
Viterbi, and SSWP while General CG is used to evaluate
reachability (REACH) and Weakly Connected Components
(WCC). The CGs were derived from evaluation of queries
for 20 highest degree vertices in each graph. The choice
of 20 was made after it was observed that evaluation of
additional queries contributed very few new edges to the
CG. This behavior is shown in Figure 3. Four input graphs
from Table 3 are used. The default weight generation tool
from Ligra is used to generate weights ranging from 1 to the
log(n) + 1 (where, n = |V|).

Experiments were run on NVIDIA Tesla K80 GPU and a
16-core server with AMD Opteron(tm) Processor 6376 and
256GB memory, running on CentOS 7.9. The baselines are the
original Subway, GridGraph, and Ligra systems and same
settings are used for CG-based 2Phase runs. We perform
in-memory evaluation of the query on the core graph in
the first phase. The in-memory evaluation on a GPU can be
carried out using any of the existing algorithms [6, 13, 15, 16,
28, 38], in our experiments we use [28]. For GridGraph first
phase is performed over unpartitioned graph. Data presented
represents averages based upon execution of ten random
queries for each graph and algorithm combination.

For the largest FR graph the one time cost of identify-
ing the core graphs using Subway [32] for the most (least)
expensive Viterbi (REACH) queries is around 14 (7) minutes.

3.1 Speedups over Subway on a GPU

Table 7 and Figure 6 present the executions times of the
2Phase and corresponding speedups over Subway respec-
tively. The time for first phase is no more that 8% of the total
query evaluation time. Our 2Phase approach enabled by use
of core graphs delivers consistent speedups across all input
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Table 7. Average Execution Times in Seconds for Core
Graph based 2Phase Subway [32] across 10 Queries.

G Specialized CGs General CG
SSSP | SSNP | Viterbi |[SSWP |REACH | wCC
FR 9.77s 6.89s 10.54s 8.68s 2.12s 5.79s
TT 9.55s | 5.54s 6.85s | 6.97s 2.22s | 4.01s
TTW|| 991s 8.03s 16.3s 8.25s 1.40s 5.61s
PK 0.19s | 0.14s 0.24s | 0.16s 0.03s | 0.09s

graphs and all algorithms. For first four benchmarks that
depend upon edge weights speedups range from 4.48% to
1.79x% and for the last two that do not use edge weights the
speedups range from 4.35X to 2.47X. We would also like to
point out that when we ran a 2Phase Subway using the Ab-
straction Graphs [42], as Figure 6 shows, significantly smaller
small speedups or even small slowdowns are observed due
to AGs low precision.

These performance benefits are due to reductions in graph
generation (GEN), data transfer (TRANS), and computation
(COMP) - percentage reductions are given in Figure 5. Since
the first phase involves in-memory processing, it does not
incur graph generation cost and only one time cost of load-
ing the small CG. Because the first phase produces precise
results for most of vertices (recall Table 5), the processing
of edges in the second phase is reduced. For the first four
benchmarks we observe substantial reductions (over 50%
in most cases) in all three categories and hence consistent
speedups, 4.48—1.79% (2.51X mean), are observed across all
benchmarks and graphs. For the last two benchmarks, since
most edges are processed once, the reductions in the costs
of graph generation and data transfer is typically smaller in
comparison to reduction in computation cost. Thus, lower
speedups of 2.89-1.31% (2.02X mean) are observed. Although
our primary objective was to demonstrate the effectiveness
of core graphs in reducing GEN and TRANS overheads, we
observe that atomic updates are also reduced significantly
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Figure 6. Speedups Over Subway Due To Bootstrapping
Initial Result from CG and AG.

(ATOMIC in Figure 5). The reason for these reductions is as
follows. In the first phase fewer atomic updates are needed
because CG has fewer edges. In the second phase fewer edges
function updates are performed because values at nearly all
vertices are already precise (recall data in Table 5).

3.2 Speedups over GridGraph and Ligra

We also evaluated the benefits of core graph based 2Phase ap-
proach on a non-GPU shared-memory platform. In particular,
we considered the GridGraph [43] out-of-core system where
a partitioned graph is held on disk and Ligra [34] in-memory
system where the entire graph is held in memory.

For GridGraph, the first phase of computation is per-
formed in-memory after loading the CG from disk and then
the second phase performs partition-based processing. The
active frontier for second phase is set to all the vertices
whose values have been changed by the first phase. This
ensures that maximal amount of updates are performed in
the first iteration. This policy generally leads to fewer itera-
tions. During the second phase disk IO savings come due to
two reasons: fewer iterations may be performed compared
to baseline GridGraph; and during an iteration blocks with
no active edges may arise more frequently and hence their
fetch from disk will be skipped due to the selective scheduling
optimization in GridGraph.

For GridGraph, we specified 4x4 grid for partitioning the
graphs and 8 GB of available memory which is less than all
graph sizes (except PK). Since same memory configuration
was used for all graphs, larger graphs experienced more 10
and hence greater benefits from use of CGs. Figure 7 shows
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Bootstrapping Initial Result from CG and AG.

Table 8. Average Execution Times in Seconds for Core
Graph based 2Phase GridGraph [43] across 10 Queries.

G Specialized CGs General CG
SSSP | SSNP | Viterbi |[SSWP|[REACH | wCC

FR 274.4s 39.0s 200.5s | 39.1s 11.0s | 98.8s
TT 116.3s | 24.8s 163.5s | 23.2s 7.1s | 24.2s
TTW| 78.5s 27.4s 108.2s | 29.8s 6.5s | 34.4s
PK 3.2s 1.5s 3.0s | 1.5s 0.3s | 0.8s

speedups observed for larger graphs are greater than for
smaller ones. Note, speedups for FR>TT>TTW>PK due to
higher disk IO savings. Fewer iterations in second phase
are shown in percentage reduction terms in Table 9. The
speedups for queries with high precision (SSNP, Viterbi,
SSWP, REACH) speedups range from 13.62X to 1.35X. The
speedups for SSSP and WCC are modest because the number
of iterations in second phase is closer to number of iterations
performed by the baseline GridGraph. Note that for WCC on
FR there is no change in the number of iterations yet there is
no slow down because fetches of more blocks of edges can be
skipped in the second phase. For SSSP on PK there is a slight
slow down because cost of first phase offsets the benefits to
second. Finally, we observe that speedups achieved when
AGs are used are relatively small ranging from 1.58% to a
slowdown of 0.57Xx. We also note that bootstrapping initial
result from CG is superior to AG. Note that higher speedups
for AGs in [42] are due to additional optimizations besides
"bootstrapping an initial result" from AG.
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Table 9. Benefit of CG to GridGraph [43]: Average %
reduction in the # of iterations requiring disk IO.

| G | sssp | sSNP |Viterbi | SSWP [[REACH| wcC |

FR 23.5% | 96.4% | 44.4% | 97.1% 95.6% 0%
TT || 29.3% | 94.8% | 33.3% | 94.1% 93.1% | 42.0%
TTW|| 36.7% | 94.7% | 36.1% | 94.5% 93.8% 0%
PK || 27.5% | 96.5% | 47.0% | 96.8% 92.4% | 28.6%
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Figure 8. Speedups Over Ligra Due To Bootstrapping
Initial Result from CG and AG.

Ligra [34] runs on a server where the graph fits in mem-
ory and thus gains from CGs can be expected from reduced
computation, and enhanced locality in the caches due to the
smaller CG. For weighted graphs, as shown in Figure 8, the
2Phase approach delivers speedups of 4.42-2.71x for SSWP
queries (with highest first phase precision) and for SSSP
queries (with lowest first phase precision) speedups of 1.44-
1.08x were observed. For REACH speedups are even higher.
Average speedups across all queries are higher for larger
graphs (e.g., FR) and least for the smallest graph (PK). Note
that to save memory needed for CG and FG, while preserving
efficiency, the edge lists can be organized to separate critical
and non-critical edges so that latter can be easily skipped
during the first phase. We observe that in comparison to CGs,
AGs deliver significantly lower speedups over Ligra: high-
est speedup of 1.70x for AGs vs. 9.31x for CGs. As we can
see, AGs frequently result in slowdowns over Ligra. Finally,
Table 11 shows that significant reduction in computation
(dynamic edges processed) causes the Ligra performance to
improve due to CGs.
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Table 10. Average Execution Times in Seconds for Core
Graph based 2Phase Ligra [34] across 10 Queries.

G Specialized CGs General CG
SSSP | SSNP | Viterbi | SSWP||REACH| WcCC

FR || 926.6s | 358.1s | 677.5s | 405.1s || 59.6s | 377.7s
TT || 137.7s | 151.8s | 186.4s | 84.1s || 28.3s | 10255
TTW| 2354s | 111.1s | 130.5s | 98.6s || 25.2s | 425.7s
PK 3.6s 1.8s 2.2s 2.4s 0.5s 1.2s

Table 11. Benefit of CG to Ligra [34]: Average % Reduction
in Edges Processed (EDGES-RED).

| G || sssP | SSNP |Viterbi| SSWP|[REACH|wcCC]

FR 10.2% | 26.1% | 56.0% | 50.4% 94.8% |40.9%
TT 46.2% | 29.6% | 36.4% | 19.0% 93.1% |42.5%
TTW|| 52.5% | 35.2% | 51.9% | 39.7% 92.1% |41.0%
PK 52.7% | 39.1% | 75.0% | 44.3% 88.2% |36.8%

Table 12. Impact of Triangle Inequality on Ligra Speedups.

G | SSNP | viterbi | SSWP |
e | SPEEDUP || 424x | adox | 7.30x
EDGES-RED || 70.95% | 78.71% | 93.23%
17 | SPEEDUP [l 606x | 452x | 6.01x
EDGES-RED || 89.95% | 80.48% | 88.80%
77w | SPEEDUP [l 286x [ 278x [ 3.20x
EDGES-RED || 84.29% | 80.75% | 83.40%
b | SPEEDUP | 179x | 183x | 187
EDGES-RED || 85.67% | 86.71% | 83.72%

The data presented thus far did not make use of the trian-
gle inequality optimization thus requiring no major changes
to existing systems. We added the optimization to Ligra and
reevaluated performance for the two largest input graphs,
FR and TT. We consider the three algorithms identified in
[14] for which the triangle inequality is the most effective.
The new speedups shown in Table 12 for SSWP, Viterbi, and
SSNP are substantial improvements over prior speedups for
the two largest graphs.

3.3 Results for R-MAT Graphs

In addition to real data sets, we also used three generated
R-MAT [8] graphs shown in Table 13(a).

e RMAT]1 uses the same (a,b,c,d) parameters as used by
Graph500 [26] and randomly generated edge weights
with uniform distribution between 0 and 1 of single
precision floats.
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Table 13. R-MAT Graphs with 2.72 billion edges
and 71.8 million vertices.

(a) Parameters and In-Memory Graph Size.

’ G H Parameters (a, b, ¢, d) ‘ Size (GB) ‘
RMAT1 || (0.57,0.19, 0.19, 0.05) 22.0
RMAT2 || (0.67, 0.14, 0.14, 0.05) 22.0
RMATS3 || (0.47, 0.24, 0.24, 0.05) 22.0

(b) % Edges in CGs.

G || sSSP [ SSNP | Viterbi | SSWP |[REACH
RMAT1 || 2.78% | 2.70% 12.61% 2.70% 3.95%
RMAT2 || 1.68% | 1.65% 7.82% 1.65% 3.17%
RMAT3 || 3.05% | 2.98% | 21.29% | 2.89% 5.17%

(c) Precision of Queries Results.

G || SSSP| SSNP|Viterbi| SSWP [REACH| WCC |
RMATT1 || 96.5% | 99.9% | 95.3% | 99.9% | 99.9% | 99.9%
RMAT2 || 97.8% | 99.9% | 91.4% | 99.9% | 99.9% | 99.9%
RMAT3 || 95.2% | 99.9% | 99.4% | 99.9% | 99.9% | 99.9%

e RMAT?2 is more dense, more locally connected, and
with fewer long-range connections than RMAT1. This
leads to smaller CGs than for RMAT1.

e RMATS3 is less dense, more globally connected, and
with more long-range connections than RMAT]1. This
leads to larger CGs than for RMAT1.

Because these three R-MAT graphs are large (larger than FR
data set), we used PaRMAT [15], a multi-threaded R-MAT
graph generator, to generate them. Table 13 (b) and (c) show
the small CG size and high precision of query results obtained
from CG respectively. We observe that CGs sizes for R-MAT
graphs are small, in fact even smaller than those for graphs
considered earlier. The CGs for R-MAT graphs also deliver
high precision ranging from 91.4% to 99.9%. Table 14 shows
the speedups we obtained for Subway, Ligra, and GridGraph.
As we can see for these graphs with different characteristics,
we also observed significant speedups. The only exception
is Viterbi algorithm for which, due to lower precision and/or
larger CG sizes, the costs of using core graphs often exceeds
the benefits of using them.

3.4 Abstraction Graphs & Sampled Graphs vs. CGs

We also studied the precision of Abstraction Graph (AG) con-
structed according to the algorithm in [42]. The algorithm
orders the edges according to increasing edge weights. First,
pass over the edges adds those edges to the AG that connect
two weakly connected components. Next pass includes ad-
ditional edges till upper limit on number of allowed edges
is reached - once again preference is given to lower weight
edges. For fair comparison, we constructed AGs with equal
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Table 14. Speedups for R-MAT graphs.

G |/ SSSP | SSNP |Viterbi| SSWP|REACH| WCC
Subway
RMAT1 || 232x | 3.94x | 1.02x | 3.07x | 2.81x | 2.74X
RMAT2 [| 2.51x | 3.99x | 0.97x | 351x | 2.28x [ 2.31x
RMAT3 || 2.42x | 2.97x [ 0.89x | 3.55x | 4.46x | 3.83x
Ligra
RMATT || 1.27X | 1.47x | 0.80x | 3.52X | 155X | 1.50X
RMAT2 || 1.64x | 130x | 0.96x | 276x | 12.2x | 2.32x
RMATS3 || 125x | 135x | 0.77x | 1.98x | 15.6x | 1.61X
GridGraph
RMAT1 || 141x | 5.24x | 1.00x | 5.22x | 17.2x_| 2.55X
RMAT2 || 1.40x | 472x | 0.95x | 5.17x | 20.7x | 1.90x
RMAT3 [| 1.31x | 3.81x | 0.97x | 4.55x | 12.4x [1.62X

Table 15. Precision of AGs of sizes: (AG) equal to CG; (2AG)
double of CG. % Vertices with Precise Results for 10 Queries.

[ G [|sSSP[SSNP|Viterbi| SSWP|REACH[WCC]
R | AGP[[2237[52.4% ] 35.9% [52.7% | 25.5% [ 9.4%
2AG-P|[36.2% | 63.9% | 62.7% |63.9% | 44.6% |58.1%
11 | AGP[344% (4327 | 27.97 [4327 | 2697 | 6.1%
2AG-P||50.6%|61.6% | 55.0% |63.4% | 55.7% | 6.2%
Trw| AGP[[29.0%(603% | 23.7% [55.47 | 435% |54.0%
2AG-P||46.0%|77.9% | 46.9% | 77.7% | 531% |67.8%
pi | AGP[46.8%[69.9% | 14.4% |71.8% | 49.5% [59.6%
2AG-P||73.5%|83.9% | 44.7% | 85.6% | 62.3% |75.5%

Table 16. Precision of SGs of sizes: (SG) equal to CG; (2SG)
double of CG. % Vertices with Precise Results for 10 Queries.

[ G |[SSSP|SSNP|Viterbi|SSWPREACH| WCC |
rr | SGP[l 987 [ 1529 [ 118% [ 12.7% [ 35.2% [ 38.1%
25G-P|| 11.2%| 19.7% | 15.1% | 17.2% | 39.7% | 42.5%
o1 | SGP[ 872 ] 105% | 1557 | 637 | 4187 | 335%
2SG-P|| 11.8%| 14.1% | 17.1% | 10.1% | 49.2% | 35.3%
Trw| SGP[ 1047 1127 | 1887 [ 1597 | 3487 | 47.9%
2SG-P|| 12.8%| 14.8% | 21.5% | 18.1% | 38.2% | 51.7%
pi | SGP[ 11.1%| 14.9% [ 14.6% | 17.8% | 30.6% | 48.5%
2SG-P|| 15.0%| 17.6% | 19.5% | 21.5% | 32.7% | 58.4%

number of edges as corresponding CGs and then compared
their precision. The precision of AGs is given in Table 15. As
we can see, the precision of AGs ranges from 6.1% to 69.9%
while the precision of CGs ranges from 94.5% to 99.9%. We
also doubled the size of AGs (relative to CGs) to see study
how the precision improves. However, as shown by the rows
labeled 2AG in Table 15, though precision improves to 6.2%
to 83.9%, it is still far lower than that of CGs. The reason for
high precision of CGs is preservation of key characteristics:
power-law degree distribution and relative vertex degrees.
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Figure 9. Power Law Degree Distribution of Full Graph vs.
Core Graph: FR for SSSP.

Table 17. Degree of Overlap in Sets of Topmost 100,000
Highest Degree Vertices between FGs and CGs for SSSP.

G Common High Degree Vertices
Top 1,000 | Top 10,000 | Top 100,000
FR 1,000 9,997 99,931
TT 1,000 10,000 99,997
TTW 1,000 10,000 99,988
PK 1,000 10,000 98,988

Sampling techniques have been developed to scale down
graph size [21, 29, 41]. We generated Sampled Graphs (SGs)
using random walks [41] and used them in place of CGs for
two phase evaluation of queries. The precision data of this
approach is given in Table 16. We observe that overall the
precision of SGs is even lower than AGs. This is because sam-
pling does not guarantee creation of well-connected graphs.

In contrast, CGs provide highly precise results for the
following reasons. First, since CGs are built from query re-
sults, they include paths formed by non-zero centrality edges
giving us good connectivity. Second, as shown by a repre-
sentative plot in Figure 9, the degree distributions of FG and
CG are similarly power law. Third, as shown in Table 17,
although the degrees of high degree vertices in CG are re-
duced, their relative degrees remain unchanged (e.g., the top
1000 vertices in CG and full graph are exactly the same).

4 Related Work

A Proxy Graph used for evaluating all future queries.
We discuss relevant works that derive a smaller graph for
a large graph to speedup evaluation of queries. Input reduc-
tion [18] employs property preserving graph transformations
to reduce graph size and then uses 2Phase processing. How-
ever, transformations eliminate vertices and graph size re-
ductions are limited. Smallest reduced graph had around 50%
of the edges and it can only be used to evaluate queries for
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subset of vertices in the full graph. Abstraction Graph [42]
delivers a small proxy graph; however, it lacks precision as
shown in Table 15. In contrast, core graphs are much smaller
(5.42-10.45% for FR) and yet produce accurate results for over
94% vertices, and leaving less work for the second phase. Graph
Sampling scales down the size of a graph [21, 29, 41] while
preserving global graph characteristics. However, our ex-
perimental results in Table 16 show that the ability to solve
arbitrary queries with high precision is lost as the sampled
graph may not be well-connected thus eliminating paths
between vertices.

Query specific pruning for Point-to-Point queries. Our
work focuses on evaluating vertex queries that originate at a
source vertex and then compute property values for all other
vertices that are reachable from it. Another class of queries,
point-to-point queries, compute a property value between
a source and destination vertex pair. As the first step graph
pruning is performed and then the query is evaluated on the
pruned graph [39, 40]. Unlike Core Graph, pruned graph must
be recomputed for each new query. Due to limited scope of
a point-to-point query, pruning parts of the graph that do
not fall on paths from source to destination significantly
reduces graph size. However, since our work is for point-
to-all queries, pruning would only reduce the graph size
minimally. Next we provide comparison with two specific
point-to-point query algorithms.

Query-by-Sketch (Qbs) [39] is a three-phase (offline la-
belling, query specific online sketching, and searching) al-
gorithm for finding shortest path between two vertices
(i.e., shortest path point-to-point query). Though core graph
and Qbs speedup query evaluation over large graphs, Qbs
has major limitations. First, a sketch is query specific and
thus must be computed online for each query while the core
graph is found once and used for all queries. Second, core
graph is general as it solves many kinds of queries as op-
posed Qbs that is for only shortest path query. Third, we
evaluate demanding queries that compute property values
from one source vertex to all other reachable vertices while Qbs
evaluates a single point-to-point query. For the queries we
evaluate, a sketch is expected to be very large fraction of the
graph. Finally, not only is online sketching expensive, if the
sketch produced is large in size, then computation of short-
est path takes a long time. For TTW labelling and sketching
takes 1,345 seconds and the sketch is large (0.76GB). However,
core graph construction is relatively efficient and done once.

Pruning and Prediction (PnP) [40] is another method for
evaluating point-to-point queries. This algorithm employs
bidirectional BFS originating from source (forward) and des-
tination (backward) to first prune the graph for a given query
and then perform remainder of the query evaluation. The
pruning is query specific like the query sketch used by Qbs.
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Query specific transient graphs generated on-the-fly.
Transient graphs are generated to minimize data transfer
cost multiple times during the evaluation of a query. There
are two contexts in which such work has been done: works
considering graphs that do not fit in GPU memory; and out-
of-core systems for graphs that do not fit in the memory of
a single machine. Both these approaches can benefit from
Core Graphs to reduce data transfers — between host and
GPU-memory vs. disk and machine memory.

A number of approaches have been developed to reduce
data transfer in context of a GPU [12, 17, 22, 32, 33]. Among
them Subway is the most promising - it on-the-fly generates
and loads transient active subgraphs covering the frontier
from one iteration to next. Across iterations, the reachable
graph is loaded at least once. In contrast, a core graph is loaded
in its entirety once and computes precise results for over 94%
of vertices without requiring graph transfers.

On shared-memory machines when graphs cannot fit in
memory, out-of-core partition-based processing is used [20,
31, 37, 42, 43]. Partitions are loaded from disk one at a time
and processed. Typically the disk IO represents 70% of the
runtime cost [37]. To reduce disk IO, [37] maximizes the work
performed on one partition before loading the next partition.
Wonderland [42] organizes edges across partitions according
to their weights so fewer passes, and faster convergence, can
be obtained. Nevertheless, the cost of disk IO is high. Out-of-
core systems benefit from our approach since first phase loads
the core graph and computes precise results for over 94% of
vertices without additional IO.

5 Concluding Remarks

We identified core graphs with 10.7% of edges on average that
rapidly yield precise results for 94.5-99.9% of vertices. An op-
timized second pass efficiently computes the precise results
for rest of the vertices. The generality of the CG based ap-
proach allows it to be applied across existing systems without
requiring any major modifications to them. We demonstrated
this by enhancing three different systems. Significant perfor-
mance improvements for these systems were observed — up
to 4.48x in Subway [32], up to 13.62% in GridGraph [43], and
up to 4.97X in Ligra [34]. Applying the triangle inequality
optimization gave additional speedups. While these results
were for real data sets corresponding to power law graphs,
we also observed performance improvements for generated
R-MAT graphs with varying charateristics.
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