Expressway: Prioritizing Edges for Distributed
Evaluation of Graph Queries

Abbas Mazloumi
Computer Science and Engineering
University of California, Riverside
Riverside, USA
amazl001 @ucr.edu

Abstract—Distributed Graph analytics is being widely used in
various domains for analyzing large real-world graphs. There
have been numerous efforts to build distributed frameworks for
graph analytics aimed at improving scalability. These frameworks
enable the processing of huge graphs that do not fit in the memory
of a single machine by imposing message-passing overhead
among a cluster of multiple machines, underutilizing the available
computing resources. To mitigate this, we present Expressway,
a technique to identify important edges, i.e., Highways, that
play a key role in delivering the results for their boundary
vertices. Expressway first runs the queries using only Highways,
reducing the number of edges that needed to be processed during
the execution of a graph query significantly. Thus, it can be
accomplished in each machine separately in the cluster, avoiding
the message-passing overheads. Then Expressway takes the results
from running the query on Highways and initializes the vertices
to these values, enabling faster convergence of graph algorithms.
Our experiments show applying Expressway on the state-of-the-
art frameworks results in up to 4.08 X speedup over the single-
query framework and up to 4.04 X speedup over the framework
to run a batch of concurrent graph queries.

Index Terms—Distributed Graph Processing, Iterative Queries,
Faster Convergence, Prioritized Edges.

I. INTRODUCTION

Graph analytics has been focused on in both academia and
industry due to its ability to extract valuable insights from high
volumes of connected data by iteratively traversing large real-
world graphs. Various domains such as social networks [9],
web graphs, etc., benefit from graph analytics algorithms.
These iterative graph analytics require repetitive traversals of
the graph until the algorithm converges to a stable solution
demanding a significant amount of computational resources.
In addition, the size and irregularity of real-world graphs,
such as those seen in social networks and web graphs, provide
difficulties for graph analytics workloads.

Therefore, this has led to a great deal of interest in de-
veloping efficient graph analytics systems for shared memory
(e.g., Galois [12], Ligra [13]), GPUs, and custom accelera-
tors [30] [31] [32] as well as platforms in the distributed
environment (e.g., Pregel [11], GraphLab [10], GraphX [6],
PowerGraph [1], PowerLyra [2], ASPIRE [24]). Among these,
systems that are aimed at distributed computing platforms are
the most scalable. In addition, there have been also some
recent works focusing on improving the throughput of these

Mahbod Afarin
Computer Science and Engineering
University of California, Riverside
Riverside, USA
mafar001 @ucr.edu

Rajiv Gupta
Computer Science and Engineering
University of California, Riverside
Riverside, USA
rajivg@ucr.edu

systems by evaluating multiple simultaneous queries at once
and amortizing the existing overheads across multiple queries
both in shared and distributed environments (e.g. Quegel [27],
MultiLyra [16], [17], SimGQ [19], [20]).

While most of the existing works are focused on making the
platform itself efficient and scalable, one can focus on the input
graph and the running algorithm looking for opportunities to
enhance the computation load. We have observed that when
running graph queries using a specific algorithm, the contri-
bution of certain edges is crucial for achieving convergence
in their boundary vertices. These edges play a vital role in
delivering the converged results to their connected vertices.

In this paper, we present Expressway, a technique to further
improve the efficiency of distributed graph frameworks by
prioritizing important edges of an input graph. First, we begin
by identifying the most important edges in the graph, which
we refer to as “highways”. Highways contribute to the accurate
calculation of property values of a significant number of
vertices. Therefore, by running the algorithm on the graph
using only these highways, we can obtain precise property
values for most of the vertices. After this initial run, we
execute the algorithm on the graph using all the edges to
obtain precise values for all the vertices. This technique offers
a significant speedup. As our experiments show, the highways
comprise only a small subset of the graph’s edges. Running the
graph initially with just these highways is much faster because
it involves a smaller subset of edges. The second step is also so
fast because most of the vertices already have precise values,
allowing for rapid convergence. By employing the Expressway
technique, we can achieve up to 4.08 x speedup compared to a
single-query framework and up to a 4.04x speedup compared
to a framework designed for a batch of concurrent queries.

The key contributions of this paper are as follows:

o Our study demonstrates that we can obtain precise results
for most of the vertices with ease by using only a small
subset of the edges, i.e., highways.

« We introduce a novel algorithm for identifying highways
in a given graph.

o We enhance the performance of distributed graph query
evaluation through a two-step algorithm. The algorithm
first runs on the graph using only the highways, and then
it runs on the graph using all the edges.

Push Pull

Machine A Machine B Machine A Machine B

Bq: Data Broadcast Msg

M : Data Unicast Msg
-—

O Master . Mirror

Fig. 1. Communication Pattern in Gemini for Push and Pull Modes. In Push,
the Updated Value of Vertex v is Sent to All Machines No Matter Whether
They Need It Or Not. Gemini Overlaps Communications with Computations
Hiding Message-Passing Overhead.

----% Process edges — Communication

In Section II we present the background of distributed graph
processing and related work. Section III explains detailed
design of our Expressway approach. Thorough evaluation of
the design will be presented in Section IV. Finally, Section V
offers the concluding remarks.

II. BACKGROUND & RELATED WORK

Now that real-world graphs are huge (e.g., Friendster [14]
has 2 billion edges and 65.6 million vertices), they can
not fit into the memory of a single machine. Also, out-of-
core processing is not efficient enough. Hence, the input
graph is partitioned among a cluster of multiple machines.
Each machine is responsible for carrying out the updates
of vertices that reside locally. The machines communicate
through message-passing to exchange needed vertex values
and synchronize between iterations before continuing to the
next iteration. This whole system is known as distributed
graph processing in which the combined memories of multiple
machines are able to hold large graphs and the large number
of cores made available by multiple machines enhances the
degree of parallelism delivering scalability.

Distributed graph frameworks have been using different
techniques to improve efficiency whether by accelerating the
execution of a single query or maximizing the throughput by
executing a batch of multiple queries at once. Next, we will
discuss the state-of-the-art for each framework that later we
use to implement and evaluate Expressway.

We select Gemini for the former, as it is the most efficient
distributed platform to run a single graph query, thanks to
its NUMA-aware design and its technique to overlap the
communication and computation loads. On the other hand, for
the latter, we choose MultiLyra, which achieves massive scal-
ability and efficiency by amortizing the high communication
and computation costs across multiple queries. Additionally,
its ability to compress data messages by adopting fine-grained
tracking methods to track the status of each query stands out.

A. Single Query: Gemini

Many frameworks have been developed to run a single
graph query efficiently. The most relevant ones include Pow-
erGraph [1], PowerLyra [2], Gemini [3], and Ligra [13]. The
latter is a shared-memory system on a single machine and

TABLE I
RUNNING 10 QUERIES ON THE SINGLE-QUERY BASELINE FRAMEWORK
(GEMINI) USING DIFFERENT MODES
(I.E., PUSH-PULL, PUSH-ONLY, AND PULL-ONLY).

Gemini: Time (seconds)
| G | Algo. | Push_Pull | Push_Only | Pull_Only
SSSP 28.71 242 83.96
SSWP || 2121 14.39 74.97
TTW
SSNP 22.68 14.50 67.16
VT 30.34 20.49 73.68

lacks scalability while the former ones are able to load large
graphs into the combined memory of multiple machines deliv-
ering scalability. PowerGraph introduced the GAS model (i.e.,
Gather, Apply, and Scatter) and benefits the load balancing by
dividing the edges evenly among multiple machines (vertex-
cut) creating vertex replicas. One of the replicas is selected
as the master and the rest become the mirrors. However,
PowerLyra improves PowerGraph by adopting a hybrid-cut
graph partitioning that differentiates the partitioning as well
as the computation of the low-degree versus high-degree
vertices aiming at reducing both computation and communi-
cation loads [18]. These systems mostly focus on minimizing
inter-machine communication and computation load balancing
without paying attention to intra-machine computation load
balancing and locality. In contrast, Gemini tries to achieve
scalability while maintaining the intra-machine efficiency, in-
spired by the shared-memory systems.

Gemini leverages its NUMA-aware design, keeping the
required data (i.e., vertex values, graph edges) close to the
corresponding compute cores in each machine of the cluster.
Therefore, it not only delivers the scalability that any other
distributed framework aims for but also cares about the intra-
machine load balancing and improves the locality within each
single machine. In addition, Gemini utilizes an overlapping
technique to overlap inter-machine communications within the
cluster with intra-machine computations. This makes Gemini
the most efficient distributed framework, delivering up to
39x speedups over other single query systems [3]. Gemini
employs the familiar push-pull modes seen in shared memory
platforms and automatically switches between modes based
on the computation load (i.e., number of active edges). In the
following section, we discuss how Gemini operates in terms
of computation and communication for each of these modes
(see Figure 1).

— Push: In this mode, each master (i.e., a vertex that
resides locally) added to the frontier list after being updated
in the previous iteration will push its value along with its
outgoing edges to their outgoing neighbors. The dashed arrow
in Figure 1 shows the direction of vertex value propagation.
When there are replicas requiring remote value propagation, a
single broadcast message is sent to all other machines in the
cluster. Machines with a vertex replica then push the value

Machine A Machine B

M : Single Active Msg

v

M,: Aggregated Data Msg

A_Batch
M3: Aggregated Data Msg
M, : Single Active Msg "

<

) M s: Single Active Msg

O Master . Mirror

Fig. 2. Communication Pattern in MultiLyra GAS Model: Five Messages are
Needed for Each Vertex Processing; Two of Them Carry Vertex Values and
Three are Active Messages. MultiLyra Does Not Overlap Communications
with Computations

----% Process edges = —» Communication

to their respective outgoing remote neighbors, as depicted in
Figure 1, left. Ultimately, destination vertices are updated with
the aggregated result of all data values pushed toward them.
The aggregating equation for each graph query can be found
in Table III.

— Pull: In this mode, all vertices collect data from their
incoming neighbors through their incoming edges. When a
vertex serves as a mirror (i.e., it’s a replica of a remote
vertex residing on another machine), it sends the aggregated
result of the collected data to the machine hosting the master
vertex, as shown in Figure 1, right. Finally, destination vertices
are updated with aggregated results from both locally and
remotely collected data.

We add a switch in Gemini to control these modes to create
the three modes of Push_only which always use the Push
mode, Pull_only uses Pull mode all the time, and Push_Pull
which is the default version and switches between Pull and
Push automatically in each iteration based on the computation
load. Table I shows the total execution time of running 10
random queries one by one on Gemini for different graph
algorithms on a large graph, i.e., TTW (see Table IV for
information about input graphs). Push_only delivers the best
execution time among all modes. Therefore, for the rest of the
experiments in this work, we use mode Push_only.

B. Multiple Queries: MultiLyra

The most relevant works for batching systems include
Quegel [27], MultiLyra [16], SimGQ [19], Glign [33], and
Krill [34]. SimGQ, Glign and Krill are limited in their scalabil-
ity due to their shared-memory nature while Quegel and Mul-
tiLyra are distributed systems. Although Quegel was designed
to handle a batch of queries, the expensive precomputations
required to enable indexing impose more overhead on the
system. In addition, Quegel’s applicability is limited to point-
to-point queries [29] as opposed to the more general point-to-
all queries evaluated by MultiLyra and SimGQ. Finally, Quegel
can overlap the evaluation of only a few queries as it employs
pipelined parallelism. [22] evaluates a batch of queries but it
is specialized for BFS and [21] executes different queries in
different processes making it inefficient. While other related
works have considered simultaneous evaluation of multiple

TABLE II
RUNNING 10 QUERIES CONCURRENTLY ON THE BATCHING BASELINE
FRAMEWORK (MULTILYRA) USING DIFFERENT MODES
(I.E., BAsic, FQT, AND IQT).

MultiLyra: Time (seconds)
| G | Algo. | Basic-batch | FQT-batch | IQT-batch
SSSP 350.70 411.93 430.56
SSWP | 266.25 296.90 313.97
TTW
SSNP 22938 259.10 299.6
VT 390.21. 446.48 476.70

queries, they are limited in their scale. The only system that
evaluates hundreds of queries simultaneously is MultiLyra
which is built upon PowerLyra [2].

MultiLyra follows the GAS model of computing which
divides the distributed computation of batches of concurrent
graph queries into three main phases, i.e., Gather, Apply,
and Scatter (G_batch, A_batch, and S_batch in Figure 2,
respectively). These phases will be done in parallel for all
active vertices in each machine and the message passing
occurs in between phases without any overlapping between
communication and computation loads. First, before G_batch
begins, each active vertex sends a signal (i.e., active message)
to their mirrors on other machines to inform them of being
activated at least for one of the queries in the current iteration
of the batch (M1 in Figure 2), asking them to participate in the
Gather phase. Then, in G_batch, each vertex whether master
or mirror, goes through its incoming edges and collects data
from its source neighbors. This process is executed for all the
active queries associated with that vertex. Subsequently, the
mirrors transmit their partially gathered data to the machine
where their master is located. This allows the data to be
aggregated and utilized in the Apply phase. This is being
done by sending a compressed data message, based on one of
the modes Basic_batch, FQT_batch, and IQT_batch (explained
in the next paragraph), including the data for all the active
queries (M2 in Figure 2). In A_batch phase, all the masters
are being updated with the aggregate result of the received
partially collected remote data combined with their own locally
collected one. Then, another compressed data message which
includes the current values of each active query for the same
vertex will be sent back to the mirrors for the purpose of
coherency as well as a signal message to ask the mirrors to
participate in the final Scatter phase (M3 and M4 in Figure 2).
Finally, in the S_batch phase, all the vertices, whether masters
or mirrors are going through their outgoing edges, and add
their destination neighbor to the frontier list if at least for
one of the queries in the batch it needs to be activated. Then,
mirrors that get added to the frontier will send a signal to their
master to assure that the master is aware of being activated
for the next iteration (M5 in Figure 2).

MultiLyra has three different modes (i.e., versions) regard-
ing its level of query status tracking. Basic_batch does not

have any knowledge of whether a query is finished or activated
for a vertex in the current iteration. Therefore, it computes
all the phases for all the queries regardless of their status (no
computation reduction). The data messages are not compressed
in Basic_batch, and it sends all queries’ data between mirrors
and the master, even if the vertex value is not changed for
some of the queries in the batch. The Basic_batch is better
for small batch sizes with multiple queries, where the reduced
computation and communication load cannot hide the over-
head of the query status tracking systems. On the other hand,
FQT batch tracks the already finished queries and reduces
the computation by not doing each phase for the finished
queries. It compresses data messages by excluding data for the
finished queries when communicating between the master and
its mirrors, thereby improving communications. FQT _batch
fits better for the midsize batches. Finally, IQT_batch leverages
a fine-grained tracking system that, in addition to tracking
the already finished queries, tracks the active queries in each
current iteration for each vertex dynamically. This reduces
both computations by only doing each phase for the active
queries, and communication by omitting vertex values for the
queries that are not active for that current iteration. Hence, it
is suitable for large batch sizes, such as hundreds of queries.
Table II shows that Basic_batch offers a better execution time
when running a small batch of 10 random queries, as it avoids
the overhead associated with the query tracking system for
small batches. Thus, we use Basic_batch in our experiments.

III. EXPRESSWAY

In this section, we present Expressway by introducing how
to identify Highways and develop an algorithm for it. Then, we
analyze different Expressway policies led to different scenarios
that are proposed aiming at utilizing the most benefit that
Highways can offer. Finally we explain the Expressway setup
in various frameworks with and example and algorithm.

A. Building Highways

Highways are the edges in the graph that most significantly
contribute to the final value of many vertices. We have
developed a heuristic algorithm to identify these crucial edges.
Through our observations, we found that we can determine the
most important edges for nearly all vertices when focusing on
solving the problem for high-degree vertices. The Algorithm
for Building Highways consists of four steps:

— Identifying High-Degree Vertices: The initial step in-
volves identifying the high-degree vertices in the graph. High-
degree vertices are those which have the most incoming and
outgoing edges. As discussed, we only require 20 high-degree
vertices for building the highways. To determine these 20 high-
degree vertices, we can sort all vertices based on their degrees
and select the top 20. As previously mentioned, having more
than 20 high-degree vertices doesn’t significantly improve the
precision of the final reduced graph. Instead, it unnecessarily
increases the number of highways in the reduced graph.

— Forward Query Evaluation: After identifying the 20 high-
degree vertices, we apply our algorithm to these vertices on

Algorithm 1 Identifying Highways on a Given Graph.

: Input: Graph G(V, E)
: Output: G(V, Enighways); Enighways contains highways

: > Finding High-Degree vertices

D[V]: array for collecting degree of each vertex
: H: high-degree vertex set

: for each v € V do

DJv] = OutDegree(v) + InDegree(v)

: end for

: H = Index of 20 high values on array D[V]

—— =
N = O 0

: > Forward Query Evaluation

: for each h € H do

Eforward(h) = SOLVE (G(V, E), DIRECTION f)
Ehighways = Ehighways U Eforward(h)

: end for

— e
A AN AN

: > Backward Query Evaluation

: for each h € H do

Epgckwarda(h) = SOLVE (G(V, E), DIRECTION b)
Ehighways = Ehighwa,ys U Ebackward(h)

: end for

o

NN D

o
L..

: > Check for Connectivity of the Highways
:forallv eV do

if (OutDegree(v)# 0) A (OutEdges(v) N Ehighways) = ¢
then
27: Add an out edge of v t0 Epighways
28: end if
29: end for
30:
31: > Solve Function
32: function SOLVE (G(V, E), DIRECTION d)
33: Evaluate Query Q(s) on G(V, E)
34: for all e(u,v) € E do

[\ IS}
‘CZ\YJI

35: if Q(s) updates Q(s).Val(u) then

36: if (Q(s).Val(u) @ w(u,v) = Q(s).Val(v)) then
37 if (d == f) then

38: Ehighways(h) = Enighways(h) U { e(u,v) }
39: else > (d==10)

40: Ehighways(h) = Enighways(h) U{ e(v,u) }
41: end if

42: end if

43: end if

44: end for
45: end function

the graph in a forward direction. We then select the edges
that contribute to the results for these 20 high-degree vertices.
These selected edges become our highways.

— Backward Query Evaluation: This step mirrors the
previous one but with a twist. Here, we perform a backward
query evaluation for the 20 high-degree vertices and select the
contributing edges, marking them as our highways.

— Connectivity of the highways: Once the highways are
identified in the second and third steps, we must ensure the
connectivity of the graph. We examine all the vertices, and
if any vertex lacks an outgoing edge, we select one outgoing
edge for that vertex and include it in our set of highways.

Upon completing the above four steps, we obtain a con-
densed graph. This graph retains the same vertices as the

original but has a significantly reduced number of edges, now
termed highways. In algorithm 1, the procedure for building
highways is detailed. As illustrated in the algorithm, its input
is a graph in the form of G(V, E), where V represents the
number of vertices and E denotes the number of edges in the
graph. The output is G(V, Epighways). a graph with the same
vertex count but a reduced edge count (Epx;ghways)- Thus, the
output graph only contains highways. Initially, the algorithm
identifies the twenty highest degree vertices in the graph. To
achieve this, we loop over the vertices, calculating the sum
of in and out edges for each vertex. These degrees are stored
in an array named D[V]. Subsequently, the twenty highest
values in the D[V] array are identified, and their indexes
are stored in H. According to algorithm 1, after pinpointing
the twenty high-degree vertices, a forward query evaluation
is performed. For each vertex in our high-degree vertex set
H, the Solve function is invoked. This function identifies the
edges contributing to the results for each high-degree vertex.
The identified edges are then added to the Ej;ghways Set.
Following this, a backward query evaluation is conducted.
Again, the Solve function is called to identify edges in the
backward direction, which are then added to Ep;ghways- The
final step ensures the connectivity of the vertices. We iterate
over the graph’s vertices. If a vertex is connected in the original
graph but not through the edges in the Ej;gnways S€t, an
outgoing edge is added to Ep;ghways tO €nsure connectivity
using the Fy;ghways €dges. The resulting graph contains all the
highways, enabling accelerated distributed graph processing.
The Solve function identifies edges contributing to our query
results in both forward and backward directions. It accepts
the graph and direction as inputs, evaluates the query on the
graph, and finds all answers. For each edge in the graph,
if it contributes to a vertex’s value, that edge is added to
Ehighways> considering both forward and backward directions.

Let us demonstrate Algorithm 1 using an example. As you
can see in Figure 3(a), we have a full graph, and our goal is to
find the highways on this graph for the single source shortest
path (SSSP) algorithm. For this example, we only want to do
that for one high-degree vertex, which is our highest degree
node, a. As demonstrated in Figure 3(b), first, we should
perform a forward query evaluation. We start from the high-
degree node a, run the SSSP algorithm, and find the shortest
path from vertex a to all other vertices in the forward direction.
We identified the edges selected in this step using a blue color.
Then, as depicted in Figure 3(c), we should evaluate in the
backward direction. Therefore, we will find the shortest paths
from every other vertex to our highest degree vertex, which is
vertex a. We identified the edges selected in this step with a
red color. The final step is to check connectivity. As shown in
Figure 3(d), we should check each vertex, and if the vertex has
at least one outgoing edge on the full graph, it should also have
at least one outgoing edge on the reduced graph. Therefore,
we will examine all the vertices and add two outgoing edges
for the h and j vertices. Finally, in Figure 1(e), you can see
the final graph with only highways.

After identifying highways on a graph, as you can see in

SSSP Results — Forward Direction
alblcldle|f|9|nliljlk|l|m

0|o0|5([2|co|oofo]|12[1] 7 [co|oo]|co

(b) Forward Query Evaluation for Vertex a.

SSSP Results — Backward Direction
alb|cld|e|f|9|n|ilj|k|l|m
0]|2]oofoo| 3|76 |0|o|o|5[7]6

(c) Backward Query Evaluation for Vertex a.

(e) Output Graph with only Highways.

Fig. 3. Example to Show the Steps for Identifying the Highways on a Graph
for the Single Source Shortest Path Algorithm and High-degree Vertex a.

mostly precise results

Y
imprecise

fully precise results
l_%
~~highway ITTTTTd

precise

(b) Running the query (c) Running the query
using only highways using all the edges

(@) Full graph

Fig. 4. Query Evaluation Using the Highways in a Graph.

the Figure 4, we should first run the query using only the
highways, and then run the query using all the edges in the
graph. Since the highways contribute to the final results for
most of the vertices, running the query with just the highways
yields correct results for the majority of the vertices. Given that
the number of edges identified as highways is quite small, this
step is executed quickly. By utilizing this swift step, we obtain
accurate results for most of the vertices. To ensure correct
results for all vertices, we should run the query using all the
edges in the graph after the initial step. This subsequent step is
also efficient, as most of the results are already stable, leading
to rapid convergence.

B. Expressway Policies

We can have four types of policies for using the expressway
in the graph, and we will explore each policy here.

— ExWaySin: ExWaySin stands for single expressway. In
this technique, we run the graph with highways on a single
machine instead of a distributed machine. If our input graph
is small, the edges identified as highways will also be few.
Therefore, we can run the highways on a single machine
(i.e., on each machine in the cluster separately at the same
time), eliminating the communication and barriers between
machines.

— ExWayDis: ExWayDis stands for distributed expressway.
In this approach, if the number of edges identified as highways
is high, they should be run on a distributed machine. This
approach is suitable for large graphs because as the size of the
graph increases, the number of edges identified as highways
also increases. If the graph with the highways becomes too
large, it cannot be run on a single machine, necessitating the
use of a distributed machine.

— ExWayHalf: In this technique, we don’t execute the entire
graph using the identified highways. Instead, if we can achieve
predominantly accurate results with just half the execution
of the highways, we adopt this approach and don’t wait for
all nodes to stabilize. We opt for this method because, in
most graphs, the last iterations exhibit a long tail before
all nodes stabilize. Notably, the first few iterations of the
graph evaluation show a substantial update, but this update
diminishes significantly in the final iteration. As a result,

Algorithm 2 Expressway employed in the Gather and Scatter
phases of the GAS model. Similarly, it applies to the Pull
and Push modes respectively for the single query platform
assuming batch_size is 1.

1: > Expressway for gather/pull

2: Input: active vertex v, Expressway_Enable

3: Output: the aggregated collected data

4:

5. function G_BATCH (v, Expressway_Enable)
6: edge_list = in_edges_of(v)
7.
8

if Expressway_Enable then
: edge_list = highways_of(v, out_edge=false)
9: end if
10: agg_results[O:batch_size] = INITIAL_VALUE

11: for ¢ € active_queries_for(v) do

12: for e € edge_list do

13: agg_result[q] = agg(e.src().value[q], e.data())
14: end for

15: end for

16: RETURN agg_result

17: end function

18:

19: > Expressway for scatter/push

20: Input: active vertex v, Expressway_Enable
21: Output: makes the next frontier

22:

23: function S_BATCH (v, Expressway_Enable)
24: edge_list = out_edges_of(v;)

25: if Expressway_Enable then

26: edge_list = highways_of(v;, out_edge=true)

27: end if

28: for ¢ € active_queries_for(v;) do

20: for e € edge_list do

30: if (e.dst().value[q] € agg(v.value[q], e.data())) then
31: active_list < e.dst().id

32: end if

33: end for

34: end for

35: end function

36:

37: > Main loop

38: Input: G, Expressway_Enable=true, ExHalf=false, i_threshold
39: Output: The final result for the running algorithm

40:

41: function RUN(G, Expressway_Enable, ExHalf)

42: i+ 0

43: while !active_list.empty() do

44: if Highway.isDone() or (ExHalf and i=i_threshold) then
45: Expressway_Enable = false

46: active_list <— all v.ids visited

47: end if

48: > run in parallel for each active v

49: collected_data = G_batch(v, Expressway_Enable)

50: A_batch(v, collected_data[v])

51: S_batch(v, Expressway_Enable)

52: i++;

53: end while
54: end function

there’s limited advantage in executing the concluding iterations
of the graph evaluation. Moreover, as we’ll discuss in the
evaluation section, for all our algorithms and input graphs,
we can secure highly accurate results (exceeding 97 percent)
by solely utilizing the highways in the graph.

— ExWayFull: In this technique, we run the graph entirely
with highways and skip the second step, which involves
running the graph with all the edges. We can employ this
method when our graph doesn’t have a long tail and all the
vertices stabilize quickly.

We create three Scenarios by combining the above policies.
ExFDis combines ExWayDis with ExWayFull and runs the
input graph entirely using highways in a distributed manner
while ExHDis combines it with ExWayHalf and stops the
execution of highways midway to avoid the communication
cost for the iterations that converge fewer vertices. Similarly,
Similarly, ExFSin combines ExWaySin and ExWayFull. Please
note that running graphs fully on highways in a single machine
is fast enough to not impose any communication cost. There-
fore, combining ExWaySin with ExWayHalf is not feasible.

C. Expressway Setup

Algorithm 2 shows the Expressway setup for a batching
system by being applied to the Gather and Scatter phases
in the GAS model. To avoid repetition, we only discuss this
algorithm while one can similarly apply Expressway to the
Pull/Push single query systems since the gather function is
similar to pull function, and the scatter function is similar to
push function (i.e., when batch size is equal to 1).

Throughout the run time of a batch of graph queries,
FExpressway_FEnable flag determines, in the current iteration
i, for each active query q and for an active vertex v, whether
the query runs on highways only or all connected edges (see
Algorithm 2, lines 7-9 for Gather, and line 25-27 for Scatter).
Particularly, when Expressway_FEnable is set to true during
the Gather phase, the active vertex v for each query ¢ that
is active for v in the current iteration, will select the edges
from highways, line 8, to loop over lines 12-14. It calculates
the aggregated result by using data from the source vertex of
the incoming edge e, as well as the edge data itself, based
on the aggregating equation presented in Table III. Later, this
collected data from the Gather phase will be used to update
the vertex v value in the following Apply phase as seen in
line 50. Scatter will also loop over the highways only when
the Ezpressway_FEnable flag is set to true, as shown in
Algorithm 2, lines 25-27. For each vertex v that has been
updated in the Apply phase and for each active query g, scatter
will only propagate the data through highways by adding the
destination of the outgoing edge e to the next active list, as
indicated in line 31.

Finally in Algorithm 2, line 44 - 47 carries out the transition
from running only using highways to the full graph. It manages
the ExWayFull and ExWayHalf policies which is used to create
ExFDis and ExHDis scenarios explained above. If no threshold
to stop early for the highways is specified, (i.e., X Half is
false), then the highways will be used until all the vertices
converge to their pre-final values. This will be determined by
Highway.isDone(). On the other hand, the highway run can
be interrupted early in iteration equal to ¢_threshold when
XHalf is true. The transition will be complete by adding
all the vertices that have been visited during the highway run

TABLE 111
EQUATIONS USED TO AGGREGATE THE DATA TO UPDATE VERTEX v FOR
ANY QUERY WHICH PROPAGATED THROUGH INCOMING EDGE ¢ COMING
FROM THE INCOMING NEIGHBOR u (I.E., ITS SOURCE). ALGORITHMS:
SSSP-SINGLE SOURCE SHORTEST PATH; SSWP-SINGLE SOURCE WIDEST
PATH; SSNP - SINGLE SOURCE NARROWEST PATH; AND VT - VITERBI.

Algorithm H Aggregating Equation
SSSP v.vlaue = Min (v.value, u.value + e.data)
SSwWp v.vlaue = Max (v.value, Min (u.value , e.data))
SSNP v.vlaue = Min (v.value, Max (u.value , e.data))
VT v.vlaue = Max (v.value, u.value / e.data)

TABLE IV
REAL-WORLD INPUT GRAPHS ALONG WITH THEIR NUMBER OF VERTICES
AND THE NUMBER OF EDGES.

Input Graph H #Edges ‘ #Vertices

Twitter WWW (TTW) [7] 1.5B 41.6 M
Twitter MPI (TT) [4] 20B 52.6 M
Friendster (FS) [14] 2.6 B 68.3 M

time to the active_list before proceeding to the final run. This
is necessary to ensure the correctness of the vertex values,
making sure that the pre-final values of all vertices propagate
via all edges.

IV. EXPERIMENTS

We implemented Expressway using Gemini [3] which ad-
vances the distributed graph processing via its NUMA-Aware
design for a single query, and MultiLyra [16] which en-
ables scalable and efficient evaluation of multiple concurrent
queries. In our evaluation, we consider four algorithms -
Single Source Shortest Path (SSSP), Single Source Widest
Path (SSWP), Single Source Narrowest Path (SSNP), and
Viterbi (VT) [8] (see Table III). We use three large input graphs
listed in Table IV, with a billion edges named TTW, TT, and
FS. For each input graph and for each algorithm, we ran 10
queries. The sources are unique and were selected randomly.
All experiments were performed on a cluster of four identical
machines. Each machine has 2 NUMA nodes of 32 Intel Xeon
cores (i.e., total number of 64 threads), 256 GB memory, and
runs Rocky Linux release 8.5.

A. Policies Analysis

In this section, we analyze our decision towards the policies
that we propose. We applied Expressway on the baseline
Gemini and ran 10 random SSSP queries on input graph TTW
using a cluster of four machines specified above. Table V
shows the reduction in execution time when we run the queries
on the input graph using only Highways without transition
to the full graph, versus when we ran the queries using all
edges, which is our baseline. It is important to note that the
vertex values obtained from running on highways are not yet
finalized. However, we do obtain mostly precise values for the

TABLE V
SPEEDUP OF RUNNING 10 RANDOM SSSP QUERIES
ON HIGHWAY ONLY VS. FULL EDGES.

Execution Time (seconds)

’ G ‘ All-edges ‘ Highways-only | Speedup ‘
ESErE 8.57 | 253x |
Lot || 2743 | 236 | 202x |
| Fs || 4402 | 1903 | 231x |

o
o

<]
o

'S
o

w
o

N
o

N
o

Number of Active Vertices (million)

o

1 3 5 7 9 11 13 15 17 19 21
Number of Iterations

Fig. 5. The Frontier Size Over the Iterations of a SSSP Query on TTW.

vertex when using only highways. The column "ExWayFull”
on Table VI shows the ratio of vertex values that converges
to their final results only by executing the highways. It shows
that we can achieve the final results for more than 97% of
the vertices by only running an average of 9.11% of the total
number of edges for different algorithms on different graphs,
see Table VI, column "Highway/Edge”.

Therefore, the speedups displayed in Table V represent
the ideal performance gains that Expressway policies aim
to converge toward. Table VII shows the number of edges
needed to be processed, i.e., the amount of computation, the
number of updates to vertex values and finally the number
of communication that took place for the above experiment.
Table VII indicates that using only the highways significantly
reduces the computation load by 28.35x reduction rate on
TTW and reduces the number of vertex updates by 3.93x
while the number of communications among the machines is
reduced the least by 2.87x. Comparing these numbers with the
ideal speedups from Table V shows that the communication
load is the bottleneck to get closer to the ultimate speedups
in a distributed environment.

This leads us to propose the ExHDis scenario in which we
interrupt the Expressway while running on highways when it
reaches the iteration at which the number of active vertices,
i.e., the frontier size, starts to decrease. Column "ExWayHalf”
in Table VI shows he ratio of vertices that have converged
to their final value after interrupting the Expressway process
midway. On average, more than 50% of vertices have already
finalized. For example, Figure 5 shows the number of active
vertices throughout the run time of a random SSSP query on

TABLE VI
THE RATIO OF VERTICES THAT GET CONVERGED TO THE FINAL RESULT
BY ONLY RUNNING ON HIGHWAYS. THE AVERAGE RESULTS OF RUNNING
10 RANDOM QUERIES.

| G | Algo. | highwayledge || ExWayHalf | ExWayFull
SSSP 7.55% 0.64 0.99
prw | SSWP | 10.16% 0.55 0.99
SSNP | 10.30% 0.46 0.99
VT 6.24% 0.42 0.99
sSSP 9.36% 0.52 0.99
pr | SSWP | 7T% 0.64 0.99
SSNP 7.71% 0.58 0.99
VT 7.73% 0.43 0.99
sssp | 1377% 0.35 0.97
e | SSWP | 957% 0.4 0.99
SSNP 9.57% 0.58 0.99
VT 9.65% 0.75 0.99

TTW. This indicates that in the initial iterations (e.g., before
iteration 9), the majority of vertices are processed, and the
remaining vertices are addressed in the subsequent iterations
from 9 to 24. By stopping early, we eliminate the need to incur
the synchronization overhead associated with the distributed
platform for those final iterations. These would otherwise
involve processing the smaller remaining set of vertices over
a greater number of iterations.

Finally, as mentioned above, since the highway edges are
only 9.11% of the total number of edges on average (see
Table VI for detailed numbers for each graph and algorithm),
they are small enough to be loaded on each machine in the
cluster leading us to our next scenario ExFSin. Then, each
machine can run the highways independently, avoiding the
communication load before transitioning to using the full set
of edges in a distributed manner.

B. Single Query: Gemini

We applied the three scenarios discussed above, i.e.,
ExFDis, ExHDis, and ExFSin, and implemented Expressway
as discussed in Section IIT (C) on Gemini, which is the state-
of-the-sate and the current most efficient distributed framework
to run a single graph query. We ran 10 queries for each input
graphs and for each algorithm, following the above scenarios.
We compared their execution times with the baseline Gemini
that does not utilize the highways. Table VIII shows the
execution time in seconds for the baseline (Gemini) as well
as the speedups achieved by the Expressway policies over
the baseline. ExFDis delivers speedups ranging from 1.35x
for SSNP on TTW to 2.46x for VT on the input graph
FS while ExHDis, leveraging its early transition to the full
graph, improves the speedups from 1.57x in SSSP for TTW
to 2.01x. This behavior repeats for all algorithms on all input

TABLE VII
REDUCTION IN NUMBER OF UPDATES, COMMUNICATIONS, AND THE
EDGES PROCESSED IN GEMINI WHEN RUNNING 10 RANDOM SSSP
QUERIES ON THE INPUT GRAPHS USING
ALL THE EDGES VS. HIGHWAYS ONLY.

TABLE VIII
EXPRESSWAY SPEEDUP OVER GEMINI
WHEN RUNNING 10 RANDOM QUERIES ONE BY ONE.

Time (s) Expressway: Speedup
<10° | G | Algo. | Gemini || ExFDis | ExHDis | ExFSin
’ G ‘ # of All-edges | Hways-only | Reduction ‘ SSsp 21.98 1.57x 2.01x 2.17x
edge comp. || 56.99 501 2835 Trw | SSWP | 1672 135x | 1.67x | 1.88x
TTW | updates 528 058 303 SSNP | 17.38 139x | 1.74x | 1.93x
VT 25.86 1.86x | 2.10x | 3.03x
comm. 1.52 0.53 2.87%
SSSp 27.86 1.42x 1.90x 2.44 x
edge comp. 69.71 2.85 24.46 X
T op | SSWP | 2240 l4d4x | 1.77x | 2.22x
dat 3.02 0.86 3.51
updates X SSNP | 2125 || 142x | 171x | 2.11x
comm. 197 081 243 VT 32.94 201x | 246x | 3.26x
edge comp. || 12720 3.52 23.04x SSSP | 4496 | 148x | 185x | 2.36x
ES | updates 4.8 1.49 3.27x ps | SSWP | 3051 | 1s2x | 184x | 223
comm. 3.18 1.31 2.43x SSNP | 30.60 1.56x | 1.94x | 2.26x
VT 60.75 246% | 2.73x | 4.08x
graphs. It even improves VT on FS, which already showed up TABLE IX

2.46x speedup, further to 2.73x. As a further step to avoid
the bottlenecks and overheads of distributed computation of
highways, since there is a limited number of highways, we
applied ExFSin scenario and runs the highways in a shared-
memory manner on each machine before transitioning to
distributed computation for final convergence. ExFSin obtains
speedups ranging from 1.88x for SSWP on TTW up to 4.08 x
for VT on FS boosting the performance for all algorithms on
all three input graphs. Note that among the four algorithms,
VT is the most expensive one in terms of computation load
due to its floating point operation. On the other hand, the
larger the graph, the more computations need to be performed.
Hence, any reduction ratio in amount of computation can
be significant for expensive algorithms and larger graphs.
Therefore, Expressway as shown in Table VIII, delivers better
speedups for VT on FS.

C. Multiple Queries: MultiLyra

We integrated the Expressway approach into the MultiLyra
system to assess its performance when executing a batch of
simultaneous graph queries. For this evaluation, we selected
the ExFDis and ExFSin scenarios. These choices allowed us to
juxtapose both the minimum and maximum speedup delivery
scenarios against a baseline, which involved running a batch of
10 concurrent graph queries. We applied various algorithms,
as outlined in Table III, to the TTW and TT graphs. Table IX
illustrates our results for concurrent run of 10 graph queries.
Expressway delivers speedups ranging from 1.72x for SSWP
to 4.04x for VT on TTW and ranging from 1.55x for SSSP
to 3.49x for VT on TT over MultiLyra and follows the same
direction as seen over the single query framework.

EXPRESSWAY SPEEDUP OVER MULTILYRA
WHEN RUNNING A BATCH OF 10 RANDOM QUERIES CONCURRENTLY.

Time (s) Expressway: Speedup
| G | Algo. | MultiLyra | ExFDis | ExFSin
SSSpP 377.66 2.32% 3.65%
TTW SSwp 274.75 1.72x 2.10x
SSNP 251.70 1.89% 2.53x
VT 391.84 2.53x% 4.04 %
SSSpP 214.69 1.55x% 2.23x
TT SSwp 219.00 1.84x 2.61x
SSNP 218.82 1.93x% 3.02x%
VT 280.09 2.15% 3.49x

V. CONCLUSION

In this paper, we present Expressway, a technique to deter-
mine the important edges called Highways in a large graph,
aiming at accelerating the distributed evaluation of iterative
graph queries. Highways are selected from those edges that
deliver the aggregated final value between their endpoints.
We evaluated our technique using state-of-the-art distributed
graph processing frameworks. The experiments for evaluating
a single graph query as well as a batch of simultaneous
graph queries show that our technique can be successfully
applied to any framework and speed up their execution times.
Expressway achieves up to 4.08x speedup over Gemini, a
single-query framework, and obtains up to 4.04x speedup
over MultiLyra, a scalable framework to evaluate a batch of
concurrent graph queries.

ACKNOWLEDGEMENTS

This work is supported in part by National Science Founda-
tion grants CCF-2226448, CCF-2028714, CCF-2002554, and
CCF-1813173 to the University of California Riverside.

[1]

[2]

[3]

[4]

[5

=

[6]

[7]

[8

=

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Pow-
ergraph: Distributed graph-parallel computation on natural graphs. In
Proceedings of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 17-30, 2012.

R. Chen, J. Shi, Y. Chen, B. Zang, H. Guan, and H. Chen. Powerlyra:
Differentiated graph computation and partitioning on skewed graphs. In
ACM Transactions on Parallel Computing (TOPC), 5(3), 13, 2019.

X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A Computation-
Centric Distributed Graph Processing System. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 301-316, 2016.

M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi. Measuring
user influence in twitter: The million follower fallacy. In Proceedings

of the 4th international AAAI conference on weblogs and social media,
2010.

L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group
formation in large social networks: membership, growth, and evolution.
In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 44-54, 2006.

J.E. Gonzalez, R.S. Xin, A. Dave, D. Crankshaw, M.J. Franklin, and 1.
Stoica. GraphX: Graph processing in a distributed dataflow framework.
In Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 599-613, 2014.

H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social
network or a news media? In Proceedings of the WWW Conference,
pages 591-600, 2010.

J. Lember, D. Gasbarra, A. Koloydenko, and K. Kuljus. Estimation of
Viterbi Path in Bayesian Hidden Markov Models. arXiv:1802.01630,
pages 1-27, Feb. 2018.

J. Leskovec. Stanford large network dataset
http://snap.stanford.edu/data/index.html, 2011.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed GraphLab: A framework for machine learning
and data mining in the cloud. Proceedings of the VLDB Endowment 5,
8 (2012), 716-727.

G. Malewicz, M.H. Austern, A.J.C Bik, J.C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph processing.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 135-146, 2010.

D. Nguyen, A. Lenharth, and K. Pingali. A Lightweight Infrastructure
for Graph Analytics. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 456-471, 2013.

J. Shun and G. Blelloch. Ligra: a lightweight graph processing frame-
work for shared memory. In Proceedings of the ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP),
pages 135-146, 2013.

J. Yang and J. Leskovec. Defining and Evaluating Network Communities
based on Ground-truth. In Proceedings of the IEEE 12th International
Conference on Data Mining (ICDM), pages 745-754, 2012.

collection.

L. Takac and M. Zabovsky. Data analysis in public social networks. In
Proceedings of the International Scientific Conference and International
Workshop Present Day Trends of Innovations, pages 1-6, 2012.

A. Mazloumi, X. Jiang, and R. Gupta. MultiLyra: Scalable Distributed
Evaluation of Batches of Iterative Graph Queries. In Proceedings of the
IEEE Big Data Conference, pages 349-358, 2019.

A. Mazloumi, C. Xu, Z. Zhao, and R. Gupta. BEAD: Batched Evaluation
of Iterative Graph Queries with Evolving Analytics Demands. In
Proceedings of the IEEE Big Data Conference, pages 461-468, 2020.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

A. Mazloumi and R. Gupta. Enabling Faster Convergence in Distributed
Irregular Graph Processing. In Proceedings of the IEEE Big Data
Conference, pages 6151-6153, 2019.

C. Xu, A. Mazloumi, X. Jiang, and R. Gupta. SimGQ: Simultaneously
Evaluating Iterative Graph Queries. In Proceedings of the IEEE HiPC
Conference, pages 1-10, 2020.

C. Xu, A. Mazloumi, X. Jiang, and R. Gupta. SimGQ+: Simultaneously
evaluating iterative point-to-all and point-to-point graph queries. In
Journal of Parallel and Distributed Computing, volume 164, pages 12-
27, 2022.

P. Pan and C. Li. Congra: Towards Efficient Processing of Concurrent
Graph Queries on Shared-Memory Machines. In Proceedings of the
IEEE ICCD Conference, pages 217-224, 2017.

M. Then, M. Kaufmann, F. Chirigati, T-A. Hoang-Vu, K. Pham, A.
Kemper, T. Neumann, and H.T. Vo. The More the Merrier: Efficient
Multi-Source Graph Traversal. In Proceedings of the VLDB Endowment,
2015.

L. G. Valiant. A bridging model for parallel computation. In Commu-
nications of the ACM (CACM), 33(8):103-111, 1990.

K. Vora, S-C. Koduru, and R. Gupta. ASPIRE: Exploiting Asynchronous
Parallelism in Iterative Algorithms using a Relaxed Consistency based
DSM. In Proceedings of the SIGPLAN International Conference on
Object Oriented Programming Systems, Languages and Applications
(OOPSLA), pages 861-878, October 2014.

K. Vora, C. Tian, R. Gupta, and Z. Hu. CoRAL: Confined Recovery in
Distributed Asynchronous Graph Processing. Proceedings of the ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 223-236, April
2017.

G. Wang, W. Xie, A. Demers, and J. Gehrke. Asynchronous large-
scale graph processing made easy. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR), pages 3-6, 2013.

D. Yan, J. Cheng, M.T. Ozsu, F. Yang, Y. Lu, J.C.S. Lui, Q. Zheng and
W. Ng. A General-Purpose Query-Centric Framework for Querying Big
Graphs. In Proceedings of the VLDB Endowment, Vol. 9, No. 7, pages
564-575, 2016.

C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen. SYNC or ASYNC:
time to fuse for distributed graph-parallel computation. In Proceedings
of the SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 194-204, 2015.

C. Xu, K. Vora, and R. Gupta. PnP: Pruning and Prediction for Point-
To-Point Iterative Graph Analytics. In Proceedings of the ACM 24nd
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 587-600, 2019.

S Rahman, M Afarin, N Abu-Ghazaleh, R Gupta. JetStream: Graph
Analytics on Streaming Data with Event-Driven Hardware Accelerator.
In MICRO-54: Proceedings of the 54th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1091-1105, 2021.

M Afarin, C Gao, S Rahman, N Abu-Ghazaleh, R Gupta. Com-
monGraph: Graph Analytics on Evolving Data. In Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (ASPLOS),
pages 133-145, 2023.

M Afarin, C Gao, S Rahman, N Abu-Ghazaleh, R Gupta. Common-
Graph: Graph Analytics on Evolving Data (Abstract). In Proceedings of
the 2023 ACM Workshop on Highlights of Parallel Computing (HOPC),
pages 1-2, 2023.

X. Yin, Z. Zhao, and R Gupta. Glign: Taming Misaligned Graph Traver-
sals in Concurrent Graph Processing. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1 (ASPLOS), pages 78-92,
2023.

H. Chen, M. Shen, N. Xiao, and Y. Lu. Kirill: a compiler and
runtime system for concurrent graph processing. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), Article 51, pages 1-16, Nov. 2021.

