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Abstract—Distributed Graph analytics is being widely used in
various domains for analyzing large real-world graphs. There
have been numerous efforts to build distributed frameworks for
graph analytics aimed at improving scalability. These frameworks
enable the processing of huge graphs that do not fit in the memory
of a single machine by imposing message-passing overhead
among a cluster of multiple machines, underutilizing the available
computing resources. To mitigate this, we present Expressway,
a technique to identify important edges, i.e., Highways, that
play a key role in delivering the results for their boundary
vertices. Expressway first runs the queries using only Highways,
reducing the number of edges that needed to be processed during
the execution of a graph query significantly. Thus, it can be
accomplished in each machine separately in the cluster, avoiding
the message-passing overheads. Then Expressway takes the results
from running the query on Highways and initializes the vertices
to these values, enabling faster convergence of graph algorithms.
Our experiments show applying Expressway on the state-of-the-
art frameworks results in up to 4.08× speedup over the single-
query framework and up to 4.04× speedup over the framework
to run a batch of concurrent graph queries.

Index Terms—Distributed Graph Processing, Iterative Queries,
Faster Convergence, Prioritized Edges.

I. INTRODUCTION

Graph analytics has been focused on in both academia and

industry due to its ability to extract valuable insights from high

volumes of connected data by iteratively traversing large real-

world graphs. Various domains such as social networks [9],

web graphs, etc., benefit from graph analytics algorithms.

These iterative graph analytics require repetitive traversals of

the graph until the algorithm converges to a stable solution

demanding a significant amount of computational resources.

In addition, the size and irregularity of real-world graphs,

such as those seen in social networks and web graphs, provide

difficulties for graph analytics workloads.

Therefore, this has led to a great deal of interest in de-

veloping efficient graph analytics systems for shared memory

(e.g., Galois [12], Ligra [13]), GPUs, and custom accelera-

tors [30] [31] [32] as well as platforms in the distributed

environment (e.g., Pregel [11], GraphLab [10], GraphX [6],

PowerGraph [1], PowerLyra [2], ASPIRE [24]). Among these,

systems that are aimed at distributed computing platforms are

the most scalable. In addition, there have been also some

recent works focusing on improving the throughput of these

systems by evaluating multiple simultaneous queries at once

and amortizing the existing overheads across multiple queries

both in shared and distributed environments (e.g. Quegel [27],

MultiLyra [16], [17], SimGQ [19], [20]).

While most of the existing works are focused on making the

platform itself efficient and scalable, one can focus on the input

graph and the running algorithm looking for opportunities to

enhance the computation load. We have observed that when

running graph queries using a specific algorithm, the contri-

bution of certain edges is crucial for achieving convergence

in their boundary vertices. These edges play a vital role in

delivering the converged results to their connected vertices.

In this paper, we present Expressway, a technique to further

improve the efficiency of distributed graph frameworks by

prioritizing important edges of an input graph. First, we begin

by identifying the most important edges in the graph, which

we refer to as ”highways”. Highways contribute to the accurate

calculation of property values of a significant number of

vertices. Therefore, by running the algorithm on the graph

using only these highways, we can obtain precise property

values for most of the vertices. After this initial run, we

execute the algorithm on the graph using all the edges to

obtain precise values for all the vertices. This technique offers

a significant speedup. As our experiments show, the highways

comprise only a small subset of the graph’s edges. Running the

graph initially with just these highways is much faster because

it involves a smaller subset of edges. The second step is also so

fast because most of the vertices already have precise values,

allowing for rapid convergence. By employing the Expressway

technique, we can achieve up to 4.08× speedup compared to a

single-query framework and up to a 4.04× speedup compared

to a framework designed for a batch of concurrent queries.

The key contributions of this paper are as follows:
• Our study demonstrates that we can obtain precise results

for most of the vertices with ease by using only a small

subset of the edges, i.e., highways.

• We introduce a novel algorithm for identifying highways

in a given graph.

• We enhance the performance of distributed graph query

evaluation through a two-step algorithm. The algorithm

first runs on the graph using only the highways, and then

it runs on the graph using all the edges.
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Fig. 1. Communication Pattern in Gemini for Push and Pull Modes. In Push,
the Updated Value of Vertex v is Sent to All Machines No Matter Whether
They Need It Or Not. Gemini Overlaps Communications with Computations
Hiding Message-Passing Overhead.

In Section II we present the background of distributed graph

processing and related work. Section III explains detailed

design of our Expressway approach. Thorough evaluation of

the design will be presented in Section IV. Finally, Section V

offers the concluding remarks.

II. BACKGROUND & RELATED WORK

Now that real-world graphs are huge (e.g., Friendster [14]

has 2 billion edges and 65.6 million vertices), they can

not fit into the memory of a single machine. Also, out-of-

core processing is not efficient enough. Hence, the input

graph is partitioned among a cluster of multiple machines.

Each machine is responsible for carrying out the updates

of vertices that reside locally. The machines communicate

through message-passing to exchange needed vertex values

and synchronize between iterations before continuing to the

next iteration. This whole system is known as distributed

graph processing in which the combined memories of multiple

machines are able to hold large graphs and the large number

of cores made available by multiple machines enhances the

degree of parallelism delivering scalability.

Distributed graph frameworks have been using different

techniques to improve efficiency whether by accelerating the

execution of a single query or maximizing the throughput by

executing a batch of multiple queries at once. Next, we will

discuss the state-of-the-art for each framework that later we

use to implement and evaluate Expressway.

We select Gemini for the former, as it is the most efficient

distributed platform to run a single graph query, thanks to

its NUMA-aware design and its technique to overlap the

communication and computation loads. On the other hand, for

the latter, we choose MultiLyra, which achieves massive scal-

ability and efficiency by amortizing the high communication

and computation costs across multiple queries. Additionally,

its ability to compress data messages by adopting fine-grained

tracking methods to track the status of each query stands out.

A. Single Query: Gemini

Many frameworks have been developed to run a single

graph query efficiently. The most relevant ones include Pow-

erGraph [1], PowerLyra [2], Gemini [3], and Ligra [13]. The

latter is a shared-memory system on a single machine and

TABLE I
RUNNING 10 QUERIES ON THE SINGLE-QUERY BASELINE FRAMEWORK

(GEMINI) USING DIFFERENT MODES

(I.E., PUSH-PULL, PUSH-ONLY, AND PULL-ONLY).

Gemini: Time (seconds)

G Algo. Push Pull Push Only Pull Only

TTW

SSSP 28.71 22.42 83.96

SSWP 21.21 14.39 74.97

SSNP 22.68 14.50 67.16

VT 30.34 20.49 73.68

lacks scalability while the former ones are able to load large

graphs into the combined memory of multiple machines deliv-

ering scalability. PowerGraph introduced the GAS model (i.e.,

Gather, Apply, and Scatter) and benefits the load balancing by

dividing the edges evenly among multiple machines (vertex-

cut) creating vertex replicas. One of the replicas is selected

as the master and the rest become the mirrors. However,

PowerLyra improves PowerGraph by adopting a hybrid-cut

graph partitioning that differentiates the partitioning as well

as the computation of the low-degree versus high-degree

vertices aiming at reducing both computation and communi-

cation loads [18]. These systems mostly focus on minimizing

inter-machine communication and computation load balancing

without paying attention to intra-machine computation load

balancing and locality. In contrast, Gemini tries to achieve

scalability while maintaining the intra-machine efficiency, in-

spired by the shared-memory systems.

Gemini leverages its NUMA-aware design, keeping the

required data (i.e., vertex values, graph edges) close to the

corresponding compute cores in each machine of the cluster.

Therefore, it not only delivers the scalability that any other

distributed framework aims for but also cares about the intra-

machine load balancing and improves the locality within each

single machine. In addition, Gemini utilizes an overlapping

technique to overlap inter-machine communications within the

cluster with intra-machine computations. This makes Gemini

the most efficient distributed framework, delivering up to

39× speedups over other single query systems [3]. Gemini

employs the familiar push-pull modes seen in shared memory

platforms and automatically switches between modes based

on the computation load (i.e., number of active edges). In the

following section, we discuss how Gemini operates in terms

of computation and communication for each of these modes

(see Figure 1).

– Push: In this mode, each master (i.e., a vertex that

resides locally) added to the frontier list after being updated

in the previous iteration will push its value along with its

outgoing edges to their outgoing neighbors. The dashed arrow

in Figure 1 shows the direction of vertex value propagation.

When there are replicas requiring remote value propagation, a

single broadcast message is sent to all other machines in the

cluster. Machines with a vertex replica then push the value
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Fig. 2. Communication Pattern in MultiLyra GAS Model: Five Messages are
Needed for Each Vertex Processing; Two of Them Carry Vertex Values and
Three are Active Messages. MultiLyra Does Not Overlap Communications
with Computations

to their respective outgoing remote neighbors, as depicted in

Figure 1, left. Ultimately, destination vertices are updated with

the aggregated result of all data values pushed toward them.

The aggregating equation for each graph query can be found

in Table III.

– Pull: In this mode, all vertices collect data from their

incoming neighbors through their incoming edges. When a

vertex serves as a mirror (i.e., it’s a replica of a remote

vertex residing on another machine), it sends the aggregated

result of the collected data to the machine hosting the master

vertex, as shown in Figure 1, right. Finally, destination vertices

are updated with aggregated results from both locally and

remotely collected data.

We add a switch in Gemini to control these modes to create

the three modes of Push only which always use the Push

mode, Pull only uses Pull mode all the time, and Push Pull

which is the default version and switches between Pull and

Push automatically in each iteration based on the computation

load. Table I shows the total execution time of running 10

random queries one by one on Gemini for different graph

algorithms on a large graph, i.e., TTW (see Table IV for

information about input graphs). Push only delivers the best

execution time among all modes. Therefore, for the rest of the

experiments in this work, we use mode Push only.

B. Multiple Queries: MultiLyra

The most relevant works for batching systems include

Quegel [27], MultiLyra [16], SimGQ [19], Glign [33], and

Krill [34]. SimGQ, Glign and Krill are limited in their scalabil-

ity due to their shared-memory nature while Quegel and Mul-

tiLyra are distributed systems. Although Quegel was designed

to handle a batch of queries, the expensive precomputations

required to enable indexing impose more overhead on the

system. In addition, Quegel’s applicability is limited to point-

to-point queries [29] as opposed to the more general point-to-

all queries evaluated by MultiLyra and SimGQ. Finally, Quegel

can overlap the evaluation of only a few queries as it employs

pipelined parallelism. [22] evaluates a batch of queries but it

is specialized for BFS and [21] executes different queries in

different processes making it inefficient. While other related

works have considered simultaneous evaluation of multiple

TABLE II
RUNNING 10 QUERIES CONCURRENTLY ON THE BATCHING BASELINE

FRAMEWORK (MULTILYRA) USING DIFFERENT MODES

(I.E., BASIC, FQT, AND IQT).

MultiLyra: Time (seconds)

G Algo. Basic-batch FQT-batch IQT-batch

TTW

SSSP 350.70 411.93 430.56

SSWP 266.25 296.90 313.97

SSNP 229.38 259.10 299.6

VT 390.21. 446.48 476.70

queries, they are limited in their scale. The only system that

evaluates hundreds of queries simultaneously is MultiLyra

which is built upon PowerLyra [2].

MultiLyra follows the GAS model of computing which

divides the distributed computation of batches of concurrent

graph queries into three main phases, i.e., Gather, Apply,

and Scatter (G batch, A batch, and S batch in Figure 2,

respectively). These phases will be done in parallel for all

active vertices in each machine and the message passing

occurs in between phases without any overlapping between

communication and computation loads. First, before G batch

begins, each active vertex sends a signal (i.e., active message)

to their mirrors on other machines to inform them of being

activated at least for one of the queries in the current iteration

of the batch (M1 in Figure 2), asking them to participate in the

Gather phase. Then, in G batch, each vertex whether master

or mirror, goes through its incoming edges and collects data

from its source neighbors. This process is executed for all the

active queries associated with that vertex. Subsequently, the

mirrors transmit their partially gathered data to the machine

where their master is located. This allows the data to be

aggregated and utilized in the Apply phase. This is being

done by sending a compressed data message, based on one of

the modes Basic batch, FQT batch, and IQT batch (explained

in the next paragraph), including the data for all the active

queries (M2 in Figure 2). In A batch phase, all the masters

are being updated with the aggregate result of the received

partially collected remote data combined with their own locally

collected one. Then, another compressed data message which

includes the current values of each active query for the same

vertex will be sent back to the mirrors for the purpose of

coherency as well as a signal message to ask the mirrors to

participate in the final Scatter phase (M3 and M4 in Figure 2).

Finally, in the S batch phase, all the vertices, whether masters

or mirrors are going through their outgoing edges, and add

their destination neighbor to the frontier list if at least for

one of the queries in the batch it needs to be activated. Then,

mirrors that get added to the frontier will send a signal to their

master to assure that the master is aware of being activated

for the next iteration (M5 in Figure 2).

MultiLyra has three different modes (i.e., versions) regard-

ing its level of query status tracking. Basic batch does not



have any knowledge of whether a query is finished or activated

for a vertex in the current iteration. Therefore, it computes

all the phases for all the queries regardless of their status (no

computation reduction). The data messages are not compressed

in Basic batch, and it sends all queries’ data between mirrors

and the master, even if the vertex value is not changed for

some of the queries in the batch. The Basic batch is better

for small batch sizes with multiple queries, where the reduced

computation and communication load cannot hide the over-

head of the query status tracking systems. On the other hand,

FQT batch tracks the already finished queries and reduces

the computation by not doing each phase for the finished

queries. It compresses data messages by excluding data for the

finished queries when communicating between the master and

its mirrors, thereby improving communications. FQT batch

fits better for the midsize batches. Finally, IQT batch leverages

a fine-grained tracking system that, in addition to tracking

the already finished queries, tracks the active queries in each

current iteration for each vertex dynamically. This reduces

both computations by only doing each phase for the active

queries, and communication by omitting vertex values for the

queries that are not active for that current iteration. Hence, it

is suitable for large batch sizes, such as hundreds of queries.

Table II shows that Basic batch offers a better execution time

when running a small batch of 10 random queries, as it avoids

the overhead associated with the query tracking system for

small batches. Thus, we use Basic batch in our experiments.

III. EXPRESSWAY

In this section, we present Expressway by introducing how

to identify Highways and develop an algorithm for it. Then, we

analyze different Expressway policies led to different scenarios

that are proposed aiming at utilizing the most benefit that

Highways can offer. Finally we explain the Expressway setup

in various frameworks with and example and algorithm.

A. Building Highways

Highways are the edges in the graph that most significantly

contribute to the final value of many vertices. We have

developed a heuristic algorithm to identify these crucial edges.

Through our observations, we found that we can determine the

most important edges for nearly all vertices when focusing on

solving the problem for high-degree vertices. The Algorithm

for Building Highways consists of four steps:

– Identifying High-Degree Vertices: The initial step in-

volves identifying the high-degree vertices in the graph. High-

degree vertices are those which have the most incoming and

outgoing edges. As discussed, we only require 20 high-degree

vertices for building the highways. To determine these 20 high-

degree vertices, we can sort all vertices based on their degrees

and select the top 20. As previously mentioned, having more

than 20 high-degree vertices doesn’t significantly improve the

precision of the final reduced graph. Instead, it unnecessarily

increases the number of highways in the reduced graph.

– Forward Query Evaluation: After identifying the 20 high-

degree vertices, we apply our algorithm to these vertices on

Algorithm 1 Identifying Highways on a Given Graph.

1: Input: Graph G(V,E)
2: Output: G(V,Ehighways); Ehighways contains highways
3:

4: ▷ Finding High-Degree vertices
5: D[V ]: array for collecting degree of each vertex
6: H: high-degree vertex set
7: for each v ∈ V do
8: D[v] = OutDegree(v) + InDegree(v)
9: end for

10: H = Index of 20 high values on array D[V ]
11:

12: ▷ Forward Query Evaluation
13: for each h ∈ H do
14: Eforward(h) = SOLVE ( G(V,E), DIRECTION f )
15: Ehighways = Ehighways ∪ Eforward(h)
16: end for
17:

18: ▷ Backward Query Evaluation
19: for each h ∈ H do
20: Ebackward(h) = SOLVE ( G(V,E), DIRECTION b )
21: Ehighways = Ehighways ∪ Ebackward(h)
22: end for
23:

24: ▷ Check for Connectivity of the Highways
25: for all v ∈ V do
26: if (OutDegree(v)̸= 0) ' (OutEdges(v) ∩ Ehighways) = φ

then
27: Add an out edge of v to Ehighways

28: end if
29: end for
30:

31: ▷ Solve Function
32: function SOLVE ( G(V,E), DIRECTION d )
33: Evaluate Query Q(s) on G(V,E)
34: for all e(u, v) ∈ E do
35: if Q(s) updates Q(s).V al(u) then
36: if (Q(s).V al(u)

⊕
w(u, v) = Q(s).V al(v)) then

37: if (d == f ) then
38: Ehighways(h) = Ehighways(h) ∪ { e(u, v) }
39: else ▷ ( d == b )
40: Ehighways(h) = Ehighways(h) ∪ { e(v, u) }
41: end if
42: end if
43: end if
44: end for
45: end function

the graph in a forward direction. We then select the edges

that contribute to the results for these 20 high-degree vertices.

These selected edges become our highways.

– Backward Query Evaluation: This step mirrors the

previous one but with a twist. Here, we perform a backward

query evaluation for the 20 high-degree vertices and select the

contributing edges, marking them as our highways.

– Connectivity of the highways: Once the highways are

identified in the second and third steps, we must ensure the

connectivity of the graph. We examine all the vertices, and

if any vertex lacks an outgoing edge, we select one outgoing

edge for that vertex and include it in our set of highways.

Upon completing the above four steps, we obtain a con-

densed graph. This graph retains the same vertices as the



original but has a significantly reduced number of edges, now

termed highways. In algorithm 1, the procedure for building

highways is detailed. As illustrated in the algorithm, its input

is a graph in the form of G(V,E), where V represents the

number of vertices and E denotes the number of edges in the

graph. The output is G(V,Ehighways), a graph with the same

vertex count but a reduced edge count (Ehighways). Thus, the

output graph only contains highways. Initially, the algorithm

identifies the twenty highest degree vertices in the graph. To

achieve this, we loop over the vertices, calculating the sum

of in and out edges for each vertex. These degrees are stored

in an array named D[V ]. Subsequently, the twenty highest

values in the D[V ] array are identified, and their indexes

are stored in H . According to algorithm 1, after pinpointing

the twenty high-degree vertices, a forward query evaluation

is performed. For each vertex in our high-degree vertex set

H , the Solve function is invoked. This function identifies the

edges contributing to the results for each high-degree vertex.

The identified edges are then added to the Ehighways set.

Following this, a backward query evaluation is conducted.

Again, the Solve function is called to identify edges in the

backward direction, which are then added to Ehighways. The

final step ensures the connectivity of the vertices. We iterate

over the graph’s vertices. If a vertex is connected in the original

graph but not through the edges in the Ehighways set, an

outgoing edge is added to Ehighways to ensure connectivity

using the Ehighways edges. The resulting graph contains all the

highways, enabling accelerated distributed graph processing.

The Solve function identifies edges contributing to our query

results in both forward and backward directions. It accepts

the graph and direction as inputs, evaluates the query on the

graph, and finds all answers. For each edge in the graph,

if it contributes to a vertex’s value, that edge is added to

Ehighways, considering both forward and backward directions.

Let us demonstrate Algorithm 1 using an example. As you

can see in Figure 3(a), we have a full graph, and our goal is to

find the highways on this graph for the single source shortest

path (SSSP) algorithm. For this example, we only want to do

that for one high-degree vertex, which is our highest degree

node, a. As demonstrated in Figure 3(b), first, we should

perform a forward query evaluation. We start from the high-

degree node a, run the SSSP algorithm, and find the shortest

path from vertex a to all other vertices in the forward direction.

We identified the edges selected in this step using a blue color.

Then, as depicted in Figure 3(c), we should evaluate in the

backward direction. Therefore, we will find the shortest paths

from every other vertex to our highest degree vertex, which is

vertex a. We identified the edges selected in this step with a

red color. The final step is to check connectivity. As shown in

Figure 3(d), we should check each vertex, and if the vertex has

at least one outgoing edge on the full graph, it should also have

at least one outgoing edge on the reduced graph. Therefore,

we will examine all the vertices and add two outgoing edges

for the h and j vertices. Finally, in Figure 1(e), you can see

the final graph with only highways.

After identifying highways on a graph, as you can see in
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(b) Forward Query Evaluation for Vertex a.

2

3

5

3

3

43

2

5

5

6

6

6

1

1

78

9

9

9

1

1

1

5

8

2
9

1

�

�

�

�

�

�

�

/

�

�

�

�

�

� �
0 2

� � �

3

�

7

�

6
/ � � � � �

65 7> > >> >

����	������� 2 ��������	���������

(c) Backward Query Evaluation for Vertex a.
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(e) Output Graph with only Highways.

Fig. 3. Example to Show the Steps for Identifying the Highways on a Graph
for the Single Source Shortest Path Algorithm and High-degree Vertex a.
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Fig. 4. Query Evaluation Using the Highways in a Graph.

the Figure 4, we should first run the query using only the

highways, and then run the query using all the edges in the

graph. Since the highways contribute to the final results for

most of the vertices, running the query with just the highways

yields correct results for the majority of the vertices. Given that

the number of edges identified as highways is quite small, this

step is executed quickly. By utilizing this swift step, we obtain

accurate results for most of the vertices. To ensure correct

results for all vertices, we should run the query using all the

edges in the graph after the initial step. This subsequent step is

also efficient, as most of the results are already stable, leading

to rapid convergence.

B. Expressway Policies

We can have four types of policies for using the expressway

in the graph, and we will explore each policy here.

– ExWaySin: ExWaySin stands for single expressway. In

this technique, we run the graph with highways on a single

machine instead of a distributed machine. If our input graph

is small, the edges identified as highways will also be few.

Therefore, we can run the highways on a single machine

(i.e., on each machine in the cluster separately at the same

time), eliminating the communication and barriers between

machines.

– ExWayDis: ExWayDis stands for distributed expressway.

In this approach, if the number of edges identified as highways

is high, they should be run on a distributed machine. This

approach is suitable for large graphs because as the size of the

graph increases, the number of edges identified as highways

also increases. If the graph with the highways becomes too

large, it cannot be run on a single machine, necessitating the

use of a distributed machine.

– ExWayHalf: In this technique, we don’t execute the entire

graph using the identified highways. Instead, if we can achieve

predominantly accurate results with just half the execution

of the highways, we adopt this approach and don’t wait for

all nodes to stabilize. We opt for this method because, in

most graphs, the last iterations exhibit a long tail before

all nodes stabilize. Notably, the first few iterations of the

graph evaluation show a substantial update, but this update

diminishes significantly in the final iteration. As a result,

Algorithm 2 Expressway employed in the Gather and Scatter

phases of the GAS model. Similarly, it applies to the Pull

and Push modes respectively for the single query platform

assuming batch size is 1.

1: ▷ Expressway for gather/pull
2: Input: active vertex v, Expressway Enable
3: Output: the aggregated collected data
4:

5: function G BATCH ( v, Expressway Enable)
6: edge list = in edges of(v)
7: if Expressway Enable then
8: edge list = highways of(v, out edge=false)
9: end if

10: agg results[0:batch size] = INITIAL VALUE
11: for q ∈ active queries for(v) do
12: for e ∈ edge list do
13: agg result[q] = agg(e.src().value[q], e.data())
14: end for
15: end for
16: RETURN agg result
17: end function
18:

19: ▷ Expressway for scatter/push
20: Input: active vertex v, Expressway Enable
21: Output: makes the next frontier
22:

23: function S BATCH ( v, Expressway Enable)
24: edge list = out edges of(vi)
25: if Expressway Enable then
26: edge list = highways of(vi, out edge=true)
27: end if
28: for q ∈ active queries for(vi) do
29: for e ∈ edge list do
30: if (e.dst().value[q]

⊕
agg(v.value[q], e.data())) then

31: active list ← e.dst().id
32: end if
33: end for
34: end for
35: end function
36:

37: ▷ Main loop
38: Input: G, Expressway Enable=true, ExHalf=false, i threshold
39: Output: The final result for the running algorithm
40:

41: function RUN( G, Expressway Enable, ExHalf)
42: i ← 0
43: while !active list.empty() do
44: if Highway.isDone() or (ExHalf and i=i threshold) then
45: Expressway Enable = false
46: active list ← all v.ids visited
47: end if
48: ▷ run in parallel for each active v
49: collected data = G batch(v, Expressway Enable)
50: A batch(v, collected data[v])
51: S batch(v, Expressway Enable)
52: i++;
53: end while
54: end function

there’s limited advantage in executing the concluding iterations

of the graph evaluation. Moreover, as we’ll discuss in the

evaluation section, for all our algorithms and input graphs,

we can secure highly accurate results (exceeding 97 percent)

by solely utilizing the highways in the graph.



– ExWayFull: In this technique, we run the graph entirely

with highways and skip the second step, which involves

running the graph with all the edges. We can employ this

method when our graph doesn’t have a long tail and all the

vertices stabilize quickly.

We create three Scenarios by combining the above policies.

ExFDis combines ExWayDis with ExWayFull and runs the

input graph entirely using highways in a distributed manner

while ExHDis combines it with ExWayHalf and stops the

execution of highways midway to avoid the communication

cost for the iterations that converge fewer vertices. Similarly,

Similarly, ExFSin combines ExWaySin and ExWayFull. Please

note that running graphs fully on highways in a single machine

is fast enough to not impose any communication cost. There-

fore, combining ExWaySin with ExWayHalf is not feasible.

C. Expressway Setup

Algorithm 2 shows the Expressway setup for a batching

system by being applied to the Gather and Scatter phases

in the GAS model. To avoid repetition, we only discuss this

algorithm while one can similarly apply Expressway to the

Pull/Push single query systems since the gather function is

similar to pull function, and the scatter function is similar to

push function (i.e., when batch size is equal to 1).

Throughout the run time of a batch of graph queries,

Expressway Enable flag determines, in the current iteration

i, for each active query q and for an active vertex v, whether

the query runs on highways only or all connected edges (see

Algorithm 2, lines 7-9 for Gather, and line 25-27 for Scatter).

Particularly, when Expressway Enable is set to true during

the Gather phase, the active vertex v for each query q that

is active for v in the current iteration, will select the edges

from highways, line 8, to loop over lines 12-14. It calculates

the aggregated result by using data from the source vertex of

the incoming edge e, as well as the edge data itself, based

on the aggregating equation presented in Table III. Later, this

collected data from the Gather phase will be used to update

the vertex v value in the following Apply phase as seen in

line 50. Scatter will also loop over the highways only when

the Expressway Enable flag is set to true, as shown in

Algorithm 2, lines 25-27. For each vertex v that has been

updated in the Apply phase and for each active query q, scatter

will only propagate the data through highways by adding the

destination of the outgoing edge e to the next active list, as

indicated in line 31.

Finally in Algorithm 2, line 44 - 47 carries out the transition

from running only using highways to the full graph. It manages

the ExWayFull and ExWayHalf policies which is used to create

ExFDis and ExHDis scenarios explained above. If no threshold

to stop early for the highways is specified, (i.e., XHalf is

false), then the highways will be used until all the vertices

converge to their pre-final values. This will be determined by

Highway.isDone(). On the other hand, the highway run can

be interrupted early in iteration equal to i threshold when

XHalf is true. The transition will be complete by adding

all the vertices that have been visited during the highway run

TABLE III
EQUATIONS USED TO AGGREGATE THE DATA TO UPDATE VERTEX v FOR

ANY QUERY WHICH PROPAGATED THROUGH INCOMING EDGE e COMING

FROM THE INCOMING NEIGHBOR u (I.E., ITS SOURCE). ALGORITHMS:
SSSP-SINGLE SOURCE SHORTEST PATH; SSWP-SINGLE SOURCE WIDEST

PATH; SSNP - SINGLE SOURCE NARROWEST PATH; AND VT - VITERBI.

Algorithm Aggregating Equation

SSSP v.vlaue = Min (v.value, u.value + e.data)

SSWP v.vlaue = Max (v.value, Min (u.value , e.data))

SSNP v.vlaue = Min (v.value, Max (u.value , e.data))

VT v.vlaue = Max (v.value, u.value / e.data)

TABLE IV
REAL-WORLD INPUT GRAPHS ALONG WITH THEIR NUMBER OF VERTICES

AND THE NUMBER OF EDGES.

Input Graph #Edges #Vertices

Twitter WWW (TTW) [7] 1.5 B 41.6 M

Twitter MPI (TT) [4] 2.0 B 52.6 M

Friendster (FS) [14] 2.6 B 68.3 M

time to the active list before proceeding to the final run. This

is necessary to ensure the correctness of the vertex values,

making sure that the pre-final values of all vertices propagate

via all edges.

IV. EXPERIMENTS

We implemented Expressway using Gemini [3] which ad-

vances the distributed graph processing via its NUMA-Aware

design for a single query, and MultiLyra [16] which en-

ables scalable and efficient evaluation of multiple concurrent

queries. In our evaluation, we consider four algorithms -

Single Source Shortest Path (SSSP), Single Source Widest

Path (SSWP), Single Source Narrowest Path (SSNP), and

Viterbi (VT) [8] (see Table III). We use three large input graphs

listed in Table IV, with a billion edges named TTW, TT, and

FS. For each input graph and for each algorithm, we ran 10

queries. The sources are unique and were selected randomly.

All experiments were performed on a cluster of four identical

machines. Each machine has 2 NUMA nodes of 32 Intel Xeon

cores (i.e., total number of 64 threads), 256 GB memory, and

runs Rocky Linux release 8.5.

A. Policies Analysis

In this section, we analyze our decision towards the policies

that we propose. We applied Expressway on the baseline

Gemini and ran 10 random SSSP queries on input graph TTW

using a cluster of four machines specified above. Table V

shows the reduction in execution time when we run the queries

on the input graph using only Highways without transition

to the full graph, versus when we ran the queries using all

edges, which is our baseline. It is important to note that the

vertex values obtained from running on highways are not yet

finalized. However, we do obtain mostly precise values for the



TABLE V
SPEEDUP OF RUNNING 10 RANDOM SSSP QUERIES

ON HIGHWAY ONLY VS. FULL EDGES.

Execution Time (seconds)

G All-edges Highways-only Speedup

TTW 21.68 8.57 2.53×

TT 27.43 12.36 2.22×

FS 44.02 19.03 2.31×
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Fig. 5. The Frontier Size Over the Iterations of a SSSP Query on TTW.

vertex when using only highways. The column ”ExWayFull”

on Table VI shows the ratio of vertex values that converges

to their final results only by executing the highways. It shows

that we can achieve the final results for more than 97% of

the vertices by only running an average of 9.11% of the total

number of edges for different algorithms on different graphs,

see Table VI, column ”Highway/Edge”.

Therefore, the speedups displayed in Table V represent

the ideal performance gains that Expressway policies aim

to converge toward. Table VII shows the number of edges

needed to be processed, i.e., the amount of computation, the

number of updates to vertex values and finally the number

of communication that took place for the above experiment.

Table VII indicates that using only the highways significantly

reduces the computation load by 28.35× reduction rate on

TTW and reduces the number of vertex updates by 3.93×

while the number of communications among the machines is

reduced the least by 2.87×. Comparing these numbers with the

ideal speedups from Table V shows that the communication

load is the bottleneck to get closer to the ultimate speedups

in a distributed environment.

This leads us to propose the ExHDis scenario in which we

interrupt the Expressway while running on highways when it

reaches the iteration at which the number of active vertices,

i.e., the frontier size, starts to decrease. Column ”ExWayHalf”

in Table VI shows he ratio of vertices that have converged

to their final value after interrupting the Expressway process

midway. On average, more than 50% of vertices have already

finalized. For example, Figure 5 shows the number of active

vertices throughout the run time of a random SSSP query on

TABLE VI
THE RATIO OF VERTICES THAT GET CONVERGED TO THE FINAL RESULT

BY ONLY RUNNING ON HIGHWAYS. THE AVERAGE RESULTS OF RUNNING

10 RANDOM QUERIES.

G Algo. highway/edge ExWayHalf ExWayFull

TTW

SSSP 7.55% 0.64 0.99

SSWP 10.16% 0.55 0.99

SSNP 10.30% 0.46 0.99

VT 6.24% 0.42 0.99

TT

SSSP 9.36% 0.52 0.99

SSWP 7.71% 0.64 0.99

SSNP 7.71% 0.58 0.99

VT 7.73% 0.43 0.99

FS

SSSP 13.77% 0.35 0.97

SSWP 9.57% 0.44 0.99

SSNP 9.57% 0.58 0.99

VT 9.65% 0.75 0.99

TTW. This indicates that in the initial iterations (e.g., before

iteration 9), the majority of vertices are processed, and the

remaining vertices are addressed in the subsequent iterations

from 9 to 24. By stopping early, we eliminate the need to incur

the synchronization overhead associated with the distributed

platform for those final iterations. These would otherwise

involve processing the smaller remaining set of vertices over

a greater number of iterations.

Finally, as mentioned above, since the highway edges are

only 9.11% of the total number of edges on average (see

Table VI for detailed numbers for each graph and algorithm),

they are small enough to be loaded on each machine in the

cluster leading us to our next scenario ExFSin. Then, each

machine can run the highways independently, avoiding the

communication load before transitioning to using the full set

of edges in a distributed manner.

B. Single Query: Gemini

We applied the three scenarios discussed above, i.e.,

ExFDis, ExHDis, and ExFSin, and implemented Expressway

as discussed in Section III (C) on Gemini, which is the state-

of-the-sate and the current most efficient distributed framework

to run a single graph query. We ran 10 queries for each input

graphs and for each algorithm, following the above scenarios.

We compared their execution times with the baseline Gemini

that does not utilize the highways. Table VIII shows the

execution time in seconds for the baseline (Gemini) as well

as the speedups achieved by the Expressway policies over

the baseline. ExFDis delivers speedups ranging from 1.35×

for SSNP on TTW to 2.46× for VT on the input graph

FS while ExHDis, leveraging its early transition to the full

graph, improves the speedups from 1.57× in SSSP for TTW

to 2.01×. This behavior repeats for all algorithms on all input



TABLE VII
REDUCTION IN NUMBER OF UPDATES, COMMUNICATIONS, AND THE

EDGES PROCESSED IN GEMINI WHEN RUNNING 10 RANDOM SSSP
QUERIES ON THE INPUT GRAPHS USING

ALL THE EDGES VS. HIGHWAYS ONLY.

×109

G # of All-edges Hways-only Reduction

TTW

edge comp. 56.99 2.01 28.35×

updates 2.28 0.58 3.93×

comm. 1.52 0.53 2.87×

TT

edge comp. 69.71 2.85 24.46×

updates 3.02 0.86 3.51×

comm. 1.97 0.81 2.43×

FS

edge comp. 127.20 5.52 23.04×

updates 4.88 1.49 3.27×

comm. 3.18 1.31 2.43×

graphs. It even improves VT on FS, which already showed up

2.46× speedup, further to 2.73×. As a further step to avoid

the bottlenecks and overheads of distributed computation of

highways, since there is a limited number of highways, we

applied ExFSin scenario and runs the highways in a shared-

memory manner on each machine before transitioning to

distributed computation for final convergence. ExFSin obtains

speedups ranging from 1.88× for SSWP on TTW up to 4.08×

for VT on FS boosting the performance for all algorithms on

all three input graphs. Note that among the four algorithms,

VT is the most expensive one in terms of computation load

due to its floating point operation. On the other hand, the

larger the graph, the more computations need to be performed.

Hence, any reduction ratio in amount of computation can

be significant for expensive algorithms and larger graphs.

Therefore, Expressway as shown in Table VIII, delivers better

speedups for VT on FS.

C. Multiple Queries: MultiLyra

We integrated the Expressway approach into the MultiLyra

system to assess its performance when executing a batch of

simultaneous graph queries. For this evaluation, we selected

the ExFDis and ExFSin scenarios. These choices allowed us to

juxtapose both the minimum and maximum speedup delivery

scenarios against a baseline, which involved running a batch of

10 concurrent graph queries. We applied various algorithms,

as outlined in Table III, to the TTW and TT graphs. Table IX

illustrates our results for concurrent run of 10 graph queries.

Expressway delivers speedups ranging from 1.72× for SSWP

to 4.04× for VT on TTW and ranging from 1.55× for SSSP

to 3.49× for VT on TT over MultiLyra and follows the same

direction as seen over the single query framework.

TABLE VIII
EXPRESSWAY SPEEDUP OVER GEMINI

WHEN RUNNING 10 RANDOM QUERIES ONE BY ONE.

Time (s) Expressway: Speedup

G Algo. Gemini ExFDis ExHDis ExFSin

TTW

SSSP 21.98 1.57× 2.01× 2.17×

SSWP 16.72 1.35× 1.67× 1.88×

SSNP 17.38 1.39× 1.74× 1.93×

VT 25.86 1.86× 2.10× 3.03×

TT

SSSP 27.86 1.42× 1.90× 2.44×

SSWP 22.40 1.44× 1.77× 2.22×

SSNP 21.25 1.42× 1.71× 2.11×

VT 32.94 2.01× 2.46× 3.26×

FS

SSSP 44.96 1.48× 1.85× 2.36×

SSWP 30.51 1.52× 1.84× 2.23×

SSNP 30.60 1.56× 1.94× 2.26×

VT 60.75 2.46× 2.73× 4.08×

TABLE IX
EXPRESSWAY SPEEDUP OVER MULTILYRA

WHEN RUNNING A BATCH OF 10 RANDOM QUERIES CONCURRENTLY.

Time (s) Expressway: Speedup

G Algo. MultiLyra ExFDis ExFSin

TTW

SSSP 377.66 2.32× 3.65×

SSWP 274.75 1.72× 2.10×

SSNP 251.70 1.89× 2.53×

VT 391.84 2.53× 4.04×

TT

SSSP 214.69 1.55× 2.23×

SSWP 219.00 1.84× 2.61×

SSNP 218.82 1.93× 3.02×

VT 280.09 2.15× 3.49×

V. CONCLUSION

In this paper, we present Expressway, a technique to deter-

mine the important edges called Highways in a large graph,

aiming at accelerating the distributed evaluation of iterative

graph queries. Highways are selected from those edges that

deliver the aggregated final value between their endpoints.

We evaluated our technique using state-of-the-art distributed

graph processing frameworks. The experiments for evaluating

a single graph query as well as a batch of simultaneous

graph queries show that our technique can be successfully

applied to any framework and speed up their execution times.

Expressway achieves up to 4.08× speedup over Gemini, a

single-query framework, and obtains up to 4.04× speedup

over MultiLyra, a scalable framework to evaluate a batch of

concurrent graph queries.
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