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ABSTRACT. In this article we investigate a pair of surjective local ring maps
S1 < R — S2 and their relation to the canonical projection R — S1 Qg Sa,
where S1, Sz are Tor-independent over R. Our main result asserts a structural
connection between the homotopy Lie algebra of S, denoted 7(S), in terms of
those of R,S1 and Sa, where S = S1 ®g S2. Namely, 7(S) is the pullback
of (adjusted) Lie algebras along the maps w(S;) — 7(R) in a wide variety
cases, including when the maps above have residual characteristic zero. Con-
sequences to the main theorem include structural results on André—Quillen
cohomology, stable cohomology, and Tor algebras, as well as an equality relat-
ing the Poincaré series of the common residue field of R, S1,S2 and S.

INTRODUCTION

Given a pair of Tor-independent modules over a commutative ring, there are
strong connections between homological properties of the modules and their tensor

product. Building upon work in [2, 4, 23, 33, 34], we focus on surjective local ring
maps whose targets are Tor-independent over their common source; the minimal
intersection rings introduced in [23] served as the starting place for the present

investigation. The main result of this article establishes an especially strong con-
nection between homotopical aspects of the ring maps and their tensor product.

Let R be a commutative noetherian local ring with residue field k. Let S1, .52 be
quotients of R which are Tor-independent, that is, TorlR(Sl, S3) =0 for i > 0. With
inspiration from [2] and setting S = S} ®g Sa, this paper examines relationships
between R, Sy, S5 and S through the lens of their homotopy Lie algebras. We write
m(R) for the homotopy Lie algebra of R, which is a graded Lie k-algebra naturally
associated to the ring R. We recall its construction in 1.5. These homotopy Lie
algebras have been adopted from rational homotopy theory to local algebra by
Avramov [5], and their importance is, in part, due to the ring-theoretic properties
they encode; see, for example, [6, 10, 11, 15, 16, 17] as well as Corollary 5.2.

Our main result is Theorem A, below; before stating it we set notation and
terminology. We write g Xy g’ for the pullback along Lie algebra maps g — h < g'.
Our theorem applies to surjective local maps of residual characteristic zero, as well
as two large classes of ring maps having slightly technical definitions: almost small
and Gulliksen minimal maps recalled in 3.1 and Definition 4.2, respectively. The
former generalizes the small homomorphisms of Avramov [4] while the latter have
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appeared in some form in [3, 15, 20]; both contain the class of maps whose source
is regular.

Theorem A. Suppose S; <= R 22 S, is a Tor-independent pair of surjective
local ring maps with residue field k, and set S = S1 ®r S3. Consider the following
conditions:

(1) k has characteristic zero;
(2) at least one p; is almost small;
(3) each @, is Gulliksen minimal.

If any of the conditions above hold, then there is a naturally induced isomorphism
of graded Lie algebras
F(S) = 71'(51) XTr(R) W(SQ) .

Under more restrictive hypotheses, the conclusion of Theorem A can be asserted
from two results of Avramov: first, when R is regular and a further assumption is
imposed on the kernels of the ¢; in [2], and second, when one of the ; is assumed
to be small in [1]. Both arguments require a careful analysis of certain spectral
sequences while further relying on celebrated theorems of André, Milnor—Moore,
and Sjodin in [1, 26, 32], respectively. Besides the greater generality of Theorem A,
its proof is a direct, mostly self-contained one given by an examination of certain
DG R-algebra resolutions of S7, Se and S. The arguments of Avramov rely on the
(anti-)equivalence of André, Milnor—Moore, and Sjédin, and invoke machinery that
was developed in [2] and further refined in [4]. We direct the reader to Theorem 3.3
and Theorem 4.7, which in conjunction establish Theorem A; see also Remark 3.4.

The paper is organized as follows. Section 1 recalls preliminaries regarding DG
algebras, especially minimal models and homotopy Lie algebras. In Section 2 we
provide general consequences of Tor-independence and shared properties of the
projections R — S; and S; — S by examining the fibers on the induced maps on
minimal models; see Propositions 2.7, 2.8 and 2.10.

Sections 3 and 4 are the heart of the present article, as they contain the proofs of
the main result above. Section 5 is the final section, which provides several applica-
tions of Theorem A including results regarding the structure of stable cohomology
modules, Tor algebras and André—Quillen cohomology modules for Tor-independent
maps; see Remark 5.4 and Corollaries 5.7 and 5.12, respectively. An application in
a different direction is a numerical relationship on the Poincaré series of R, Sy, So
and S which is presented in Corollary 5.9, and stated below.

Theorem B. Suppose Sy <2~ R 22 Sy is a pair of surjective local ring maps with
residue field k and Tor-independent targets, and let S = S1 ®g So. If at least one
w; 1s almost small, then there is an equality of formal power series
s s
ps(y = PE0) PO
Pyi(t)

This theorem is of particular interest as it generalizes results from [2, 4], while its
conclusion is, interesting enough, only established under one of the three specified
conditions in Theorem A; cf. Question 5.10.
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1. DG ALGEBRAS AND HOMOTOPY LIE ALGEBRAS

Throughout this section, let (R, m, k) be a local ring and fix a surjective local
homomorphism ¢: R — S. We recall the necessary background regarding cer-
tain semifree DG algebra resolutions as well as the homotopy Lie algebra; suitable
references include [5, 7, 15].

By convention all DG algebras will be nonnegatively graded, strictly graded
commutative and local. That last condition means that for a DG algebra A, the
base ring Ay is a commutative noetherian local ring, which we assume also has
residue field k, and each H;(A) is a finitely generated Hy(A)-module; throughout
A will denote such a DG algebra.

1.1. A semifree extension of R is a DG R-algebra R[X] where X = X is a graded
set of variables consisting of exterior variables in each odd degree and polynomial
variables in each even degree. By a slight abuse of notation we write k[X] for
the DG k-algebra k ® g R[X]. We say R[X] is a minimal semifree extension of R
provided there is the containment 9(k[X]) C (X)2.

1.2. A minimal model for ¢ is a semifree extension R[X] fitting into a factorization
of ¢ as R — R[X] % S satisfying the following:

(1) R[X] is a minimal semifree extension of R;

(2) ¢: R[X] — S is a surjective quasi-isomorphism.
Moreover, minimal models always exist and are unique up to homotopy equivalence
of DG R-algebras; see [7, Section 7.2] as well as [15, Section 2.7].

1.3. A semifree I'-extension of Ais a DG algebra A(Y) where Y = Y5, is a graded
set of variables consisting of exterior variables in each odd degree and divided powers
variables in each positive even degree; see, for example, [7, Section 6.1].

Assume there is a surjection A — S and let J = Ker(A — S). Following [7,
Construction 6.3.1], an acyclic closure of S over A is a semifree I'-extension A(Y)
of A with H(A(Y')) = S such that

(1) O(Y1) minimally generates Jy mod 9(4;);
(2) {cls(9(y)) | y € Y41} minimally generates H,,(A(Y<,)) for n > 1.

Existence of an acyclic closure is the content of [20, Proposition 1.9.3], while unique-
ness up to DG T-algebra isomorphism is established in [20, Theorem 1.9.5].

1.4. Let A(Y) be a semifree I'-extension and M be a DG A(Y)-module. An A-
linear map d: A(Y) — M is called an I'-derivation if it satisfies

(1) d(b') = d(b)b" + (—1)P11¥pd(b') for all b, € A(Y);

(2) d(y®) = d(y)y“=Y for all y € Ya; and all i > 1.
We denote the collection of A-linear I'-derivations from A(Y") to M by Der’y (A(Y'), M).
1.5. A graded Lie algebra over k is a graded k-vector space equipped with a k-

bilinear pairing, called its Lie bracket, and a squaring operation satisfying a list of
axioms specified in [7, Remark 10.1.2].
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The homotopy Lie algebra of A, denoted by 7(A), is defined to be
m(A) = H (Dery (A(Y), A(Y))) ,

where A(Y) is an acyclic closure of k over A. The Lie bracket is the graded commu-
tator and the square of an element is the composition of that element with itself.
As any two acyclic closures are isomorphic as semifree I'-extensions, see 1.3, w(A) is
independent of choice of acyclic closure for k over A. Furthermore, m(A) is naturally
identified as a k-subspace of Ext 4 (k, k) with the latter being the universal envelop-
ing algebra of 7(A); see [7, Theorem 10.2.1]. Finally, given a quasi-isomorphism of
local DG algebras A =» B it follows from [7, Lemma 7.2.10] that 7(B) =N m(A) as
graded Lie algebras over k.

When A is the local ring (R, m, k) and R(Y) is an acyclic closure of k over R, it
is well-known that the quasi-isomorphism

R(Y) = R®g R(Y)

induces an isomorphism of graded Lie algebras 7(R) N 7(R), where R denotes the
m-adic completion of R.
Moreover, the surjective map ¢: R — S induces a map of graded Lie algebras
over k:
m(p): m(S) = w(R).
See, for example, [7, Remark 10.2.4] or [20] for more details on the construction of
this map.

1.6. Let B = R[X] be a semifree extension of R. Its indecomposable complex,
denoted indg R[X], is the complex of free R-modules

B

By + (X)?

Minimality of B is detected using indy k[X]. Namely, B is a minimal semifree
extension of R if and only if indy k[X] has trivial differential.

On the other hand, given a semifree I'-extension A(Y") of A with S = Ho(A(Y")),

its complex of I'-indecomposables (with respect to A), denoted ind)y A(Y'), is the
complex

=, ... RX,—-RX, 1—...> RXy— RX; —0.

AfY)
A+JY +(Y)®
where J = Ker(A(Y) — S) and (Y)®) consists of the DG ideal of A(Y") consisting
of all decomposable I'-monomials on the set Y’; see [7, Construction 6.2.5] for more

details. Finally, A(Y) is an acyclic closure of S if and only if ind}; A(Y’) is minimal
as a complex of (free) S-modules; cf. [7, Lemma 6.3.2].

. . .8, —>8Y,1—...=28Y—=5Y] >0

We write X for the shift functor on a graded object. Namely, for a graded object
V, £V is the graded object with (XV),, = V,,_1.

1.7. Given any minimal semifree extensions k[X] and k[X’] over k, a local DG
algebra map v: k[X]| — k[X’] induces a well-defined map on the graded k-vector
spaces

(1) indg ¢: indg k[X] — indy k[X].

Consider the commutative diagram of local rings
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P—Q

|

R—> 5
where the vertical maps are minimal Cohen presentations, with ¢ from above. Fix
minimal models P[X] = R and Q[X'] = S, and let ¢: P[X] — Q[X'] be the
induced map by ¢; cf. [7, Proposition 2.1.9]. Set ¥ to be the map

k® @ k[X] — k[X').

By [13, Theorem 3.4], there is the following commutative diagram of graded k-
spaces:
. My (Zindg )Y . v
(Xindg k[X'])Y ————— (X indy k[X])
= >
7T>2(S) () 7r>2(R)
where (—) denotes graded k-space duality. In particular, we conclude that 722 (y)

is exactly the k-linear dual of indy v, defined in (1), up to a shift.

1.8. We write F? for the (derived) fiber of ¢. Namely, F¥ is the DG k-algebra
k ®r R[X] where R[X] is a minimal model of ¢; it is clear that F¥ ~ k ®% S,
justifying the terminology. As any two minimal models are isomorphic, F¥ is an
invariant of ¢.

In the construction above, if one replaces the minimal model R[X] with an acyclic
closure R(Y) for ¢ one obtains a semifree I'-extension k ® g R(Y), which will be
denoted by F¥.

2. TOR-INDEPENDENT QUOTIENTS
Throughout the rest of the article we fix the following notation.

Notation 2.1. Consider the following diagram of surjective local homomorphisms
with common residue field k:

We denote by m the maximal ideal of R and assume that the kernel of ¢;, denoted
by I;, is a nontrivial proper ideal of R.

Remark 2.2. By a slight abuse of terminology, we will refer to the pair of maps
©1, @2 as being Tor-independent provided their targets are Tor-independent over R.
This is equivalent to requiring that S is both the ordinary and derived pushout in
the category of R-algebras along the maps 7 and ys; the derived pushout condition
simply says that S ~ S; @& S,.

2.3. When R is regular, 1, s are Tor-independent if and only if I11o = 11 N I5.
In this case, if each of the I; are contained in m?, the ring S is referred to as a
minimal intersection ring in [23]. In [34, Definition 5.5.1], the ideals I; and I are
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called transversal; such ideals, and their corresponding surjective ring maps, have
been studied in loc. cit. as well as [2, 4, 22, 33].

Example 2.4. Anytime [ is generated by an R-regular sequence that is also So-
regular the pair ¢1, 2 are Tor-independent. In light of this point, Tor-independent
maps generalize complete intersection maps of codimension at least two.

Lemma 2.5. Whenever I; N Iy C m%, there is the equality

m m m m
dimy 75 = dimg % + dimy, % — dimg 75 .
mg mg, mg, RL)
Proof. Let I be I1 + Iy and
_ I mpg
P — —
14 mpl m%,
be the map induced by ¢: R — S; its codimension is exactly the embedding di-
mension of 9, i.e.,

. mg . mpg _
2 d — =d — —rank@.
(2) imy mZ imy, 2 rankp
We define @; similarly and note the analogous equalities to (2) also hold.
From the commutative diagram

I —
N ‘L;%
mpl my
% %@2

I I

mgpl;y  mgl

and the fact that Im@; and Im@s intersect trivially in mp /m%,—i7 it follows that
(3) rank@ = rank@; + rank@s ;

the vertical isomorphism in the diagram and the fact Img, and Imep, intersect at 0
are the only times the hypothesis I1 N Iy C m% is used. Now substituting (3) into
(2) and using the analogs to (2) for each @;, the desired result follows readily. O

The following lemma will be applied in Theorems 3.3 and 4.7. It is likely well
known but we include the proof here for convenience of the reader. The hypothesis
of Lemma 2.6 is satisfied if ¢1, 9 are Tor-independent, since I1 N Iy = I11s C m?
is forced by the hypothesis that Tor®(S;, S) = 0.

Lemma 2.6. Adopting Notation 2.1, if I N I C m%, then there is the following
isomorphism of k-vector spaces

’/Tl(S) = 7T1(51) Xﬂ.l(R) 7T1(SQ).

Proof. Recall that for a local ring (A, m4, k) there is the following natural isomor-
phism of k-spaces

~ m4
7T1(A) = Homk (n"i’k> .
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Hence, by k-vector space duality it suffices to show the following diagram

mpg @1 mg,
m2 m?2
R S1

|

mg, mg
m? m?
Sa S

is a pushout diagram of k-vector spaces. Let P denote the pushout along ¥; and ©,.
From the commutative diagram above the uniquely induced map ¥: P — mg /m%
is surjective; so it suffices to show their k-space dimensions coincide. From the
assumption I1 NIy C m%, it follows, by Lemma 2.5, that

m m m m
dimy, —5 = dimy —* + dimy, —2 — dimy, —-
My ms, mg, Mg
Moreover,
. . m . m . _ _ m
dimy, P = dimy, % + dimy, % — dimy, {((pl(x), —Py(2)): x € 5}
mg, mg, my
and so to complete the proof it is enough to show

. _ — mg . Mg
i { (1 (2), (o) 7 € T | = i

The left-hand side is exactly the dimension of the image of the following surjective
map

Mpr (P1,—%2) Mg, mg,
— ©—=3

m% m%l mS2
note that z is in the kernel of (@, —%,) if and only if x = y + m% for some
y € I1 N Iz, and so the assumption that I; N Iy C m% implies (;, —,) is injective,
as needed. (]

The rest of this section provides results illustrating how properties of ¢ deter-
mine and are determined by properties of 1 and o, provided the latter pair are
Tor-independent. We also show that in this setting ¢; and ; exhibit properties
simultaneously.

Recall the notions of Golod, Gorenstein, and quasi-complete intersection homo-
morphisms discussed in [6, 8, 12], respectively, the last two generalizing the notions
of Gorenstein and complete intersection local rings. Parts (1) and (2) of the next
result generalize their ring theoretic versions in [23, Proposition 3.3] with simpler
proofs not relying on the celebrated (new) intersection theorem [28, 31].

Proposition 2.7. Suppose ¢;: R — S; is a pair of Tor-independent surjective local
ring maps for i = 1,2, and set p = Y1 @ V3.

(1) ¢ is Gorenstein if and only if each p; is;

(2) ¢ is complete intersection if and only if each @; is;

(3) more generally, ¢ is quasi-complete intersection if and only if each ; is.
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Proof. First, we point out that S has finite projective dimension over R if and only
if each S; does since 1, o are Tor-independent. From this, (2) follows from (3);
see [12, Theorem 2.5].

For the first statement, observe that there is the following isomorphism of DG
k-algebras

F¥ >~ p¥1 ®k F*2 |

From this it follows that the homology of F?¥ is finite dimensional if and only if
each F¥¢ has finite dimensional homology. Now a calculation involving k-duality
and the Kiinneth formula yields the following isomorphism of graded k-spaces

Extpe (k‘, F(’D) = Extpe: (k‘, le) R Extpes (/f, Fsoz)

provided the homology of F¥ is finite. Therefore the desired result holds from [8,
Theorem 4.4], and the observation at the beginning of the proof.

The Tor-independence of @1, s implies that given acyclic closures A; —» S; for
©;, the DG R-algebra A := A; ®pr As is an acyclic closure for ¢. As a direct
consequence we obtain the following isomorphism of k-spaces

ind) (A; ®g k) ®ind} (A2 @p k) = ind) (AQRr k).

Now (3) follows as the quasi-complete intersection property is characterized by the
k-space above being concentrated in degrees one and two. O

Whenever @1, @2 are Tor-independent, we have isomorphisms of DG k-algebras
F#: =2 F¥ for { = 1,2. Thus, whenever a property of a map can be characterized in
terms of the fiber, the parallel map enjoys the same property. This is demonstrated
in Proposition 2.8 below.

Proposition 2.8. When @1, 92 are Tor-independent, with Notation 2.1, the fol-
lowing hold:

(1) @; is Golod if and only v; is Golod;

(2) @y is Gorenstein if and only if 1; is Gorenstein;

(3) i is (quasi-)complete intersection if and only 1; is (quasi-)complete inter-
section.

Proof. First, using that 1, are Tor-independent, the isomorphism of DG k-
algebras F¥: =2 F¥: yields one of graded Lie algebras over k

m(F%1) = m(F¥7).

Now (1) holds as the homotopy Lie algebra of a map being free characterizes the
Golod property of that map; see [6, Theorem 3.4].
The second assertion is immediate from F¥: = F¥i and [3, Theorem 4.4].
Finally, for (3) the assumption that i, 9 are Tor-independent forces A ®p k
to be isomorphic to B ®s; k where A and B are acyclic closures over ¢; and ),
respectively, where i # j. This determines the isomorphism of k-spaces

ind} (A ®g k) = ind}(B ®g, k) .

Now the desired result holds as the quasi-complete intersection property is detected
by these k-spaces being concentrated in degrees one and two. The statement for
complete intersection homomorphisms now follows using that S; has finite projec-
tive dimension over R if and only if S has finite projective dimension over S}, since
©1, 2 are Tor-independent; again one is also appealing to [12, Theorem 2.5]. O
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We end this section by abandoning the local situation of Notation 2.1, and instead
work in the graded setting.

2.9. Let R be a standard graded connected k-algebra. One can adapt the definitions
from Section 1 by requiring all cycles, ideals, maps, etc. to be homogeneous with
respect to the internal degree determined by the grading on R. Furthermore, in
this setting, 7(S) is naturally bigraded with respect to the usual cohomological
degree, as well as the internal degree acquired from R; hence we will write 7**(S)
to indicate that the homotopy Lie algebra of S is being considered as a bigraded
object. Finally, recall that S is a Koszul algebra if k£ has a linear minimal free
resolution over S; this resolution being the acyclic closure forces 79 (S) = 0 for all
1# 7 with i > 2.

Proposition 2.10. Let R be a standard graded polynomial ring over the field k and
consider quotients S1, S by homogeneous ideals of R. If Sy, S2 are Tor-independent
over R, then S is Koszul if and only if each S; is Koszul.

Proof. In the graded setting, as in the proof of Proposition 2.7, it follows directly
from the assumption that Si,S; are Tor-independent that A := A; ®r As is a
minimal model for S where A; is a minimal model for S;. As a consequence there
is an isomorphism of bigraded vector spaces
iIldk(Al ®Rr k) S¥) indk(Az QR k) = indk(A ®R k‘) .
Shifting and taking k-linear dual induces an isomorphism of bigraded k-spaces
722*(S) == 7722’*(51) x 22%(Sy);

this is analogous to the local case explained in 1.7. The desired result now follows
immediately from 2.9. O

3. ALMOST SMALL HOMOMORPHISMS

In this section we still adopt Notation 2.1 and prove the conclusion of Theorem A
holds when at least one (; is almost small.

3.1. A surjective local map ¢: R — S is almost small if the morphism of graded
Lie algebras
2%(p): 72%(S) — 77%(R)

is surjective. In [13] these are defined in terms of Tor algebras. Namely, the map
on Tor algebras

Tor?(k, k): Tor®(k, k) — Tor® (k, k)
has its kernel generated in degree one; these definitions coincide by [13, Proposition
4.3].

We first prove a result that identifies pullbacks, also known as fiber products, of
graded Lie algebras.

Lemma 3.2. Given the following commutative diagram of graded Lie k-algebras

g «— b1

5| [

h?«Tf'
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If a|kery: Kery — Kerf is an isomorphism of Lie ideals, then f = b1 X4 ba.

Proof. The commutative diagram defines a graded Lie k-algebra map o: f — b1 x4
b2 given by = — (a(z),y(x)). We show o is an isomorphism.

Let z € Kero, then a(z) = 0 and v(z) = 0. The latter says = € Kery and so the
former implies = 0 since a|kery is injective by assumption; thus, o is injective.

Let (z1,22) € h1 X4 ba, then by the assumption that v is surjective there exists
y € f such that y(y) = z2. As §(x2) = B(x1) and the diagram above commutes we
conclude that a(y) — x; € Ker. Now using that a(Kery) = Kerf, there exists
y" € Kery such that a(y") = a(y) — z1. Now observe that

oly—y)=(aly—y) vy —9")) = (#1,7(y)) = (21, 22),

as desired, justifying that o is surjective. O

Theorem 3.3. Suppose S1 <~ R 2% S, is a pair of Tor-independent surjective
local ring maps with residue field k, and set S = S1 ®pr S. If at least one ; is
almost small, then w induces the following isomorphism of graded Lie k-algebras

7(S) = w(S1) Xr(r) 7(S2) .

Proof. We assume that ¢; is almost small. As homotopy Lie algebras and the
Tor-independence of the maps are both invariant under completion, see 1.5 for the
former point, we can assume R is complete. Now let p: P — R be a minimal Cohen
presentation of R.

Let P[W] — R be a minimal model of p. Since ¢; is almost small, by [13,
Theorem 4.11], we have the following commutative diagram of differential graded
P-algebras:

PIW] 1 Qu[X, W]

|,

R—— 5

where (1 is a regular quotient of P with ¢J; — S7 a minimal Cohen presentation;
the vertical map on the right Q;[X, W] — S is a minimal model for S; over Qq,
and @1 (w) = w for all w € W. Let @Q2[Y] — S3 be minimal model of Sy where Q2
is a regular quotient of P and Q2 — Ss is a minimal Cohen presentation. Finally,
set @ to be the regular quotient Q1 ®p Q5 of P.

Since ¢1, o are Tor-independent, the canonical map

Q1[X, W] @pmw) Q2[Y] — S

is a quasi-isomorphism where Q3[Y] is regarded as a DG P[W]-module by lifting
2. The following isomorphisms of graded algebras

QX W] @ppw) Q2Y] = Qi [X] @p (P[W] ®@pw) Q2[Y])
~ Q[X,Y]

induce a differential on the semifree extension Q[X,Y]. Moreover, Q[X,Y] — S is
a minimal model over @). Indeed, the isomorphisms above induce an isomorphism

a: k[X, W] @) k[Y] = k[X,Y]
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where a(z ® 1) =z and a(1®y) =y for each z € X,y € Y, and a(W ® 1) is
contained in the DG ideal generated by Y in k[X,Y]. As a consequence the induced
differential on k[X, Y] satisfies

A(k[X,Y]) € (X,Y)?
since k[X, W] and k[Y] are minimal semifree extensions over k. Finally,
REQRQIOpQr—51QpSHr=S

is a minimal Cohen presentation as (); — 5; are each minimal Cohen presentations.
Thus, we have the following commutative diagram of semifree extensions

k[W] — k[X, W]

|

kY] —— k[X,Y]

where the horizontal maps are the canonical inclusions and the vertical map on the
right being the identity when restricted to X.

Since the minimal models were taken with respect to minimal Cohen presen-
tations, by 1.7 there exists the following corresponding commutative diagram of
graded Lie algebras:

(5) 722 (9) 722 (1hy)

where the horizontal maps in (5) are natural projections whose kernels have a
k-basis of derivations indexed by the variables X. Also, as the vertical map on
the right in (4) is the identity when restricted to X, the morphism 722 (1)2) maps
the derivations corresponding to X in 722(S) bijectively to the derivations corre-
sponding to X in 722(S;). Applying Lemma 3.2 we have established the following
isomorphism of graded Lie algebras

(6) 722(8) 2 w22 (S1) X pz2(m) 172 (S2) -
From Lemma 2.6, we obtain the following isomorphism of k-spaces
(7) Wl(S)%’lTl(Sl) X71(R) 7T1(SQ).

The isomorphisms in (6) and (7) are restrictions of the unique map of graded Lie
algebras

7(S) = w(S1) Xr(r) T(S2),
completing the proof of the theorem. O

Remark 3.4. With the stronger assumption that one of the ¢; is assumed to be
small, the assertion of Theorem 3.3 was established in [1]. The argument in loc.
cit. proceeds by establishing a spectral sequence of Hopf algebras whose E%-page
is determined by the Tor Hopf algebras over R and the S;; the E®-page of this
spectral sequence is the Tor algebra over S. Tor-independence of the S; over R,
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forces the spectral sequence to degenerate from which the isomorphism asserted
in Corollary 5.7 can be established. Finally, one can now use a celebrated (anti-
)equivalence of categories of André, Milnor-Moore, and Sjodin in [1, 26, 32] to prove
the assertion of Theorem 3.3 holds—still with the assumption that one of the ¢; is
assumed to be small.

It seems likely that one can follow a similar line of arguing to prove Theorem 3.3;

however, besides involving a wealth of machinery in [2, 4], there are still a few
sticking points we wish to highlight. A hurdle is establishing an analog of the
spectral sequence in [41, Theorem 5.5]. One can use [13, Theorem 4.11] in lieu of

[4, Corollary 5.4] when trying to extend [4, Theorem 5.5] to when one of the ¢; is
small. However it is not clear to the present authors for how to adapt [, Lemma
5.2], and the references therein, to work in this generality.

Remark 3.5. When R is regular the assumption that one of the ¢; is almost small
is vacuous. In particular, the conclusion of Theorem 3.3 holds for any minimal
intersection ring in the terminology of [23]; cf. 2.3. As a consequence, such a ring S
whose completion S can be written as Q/(J1 + J2) where Q is a regular local ring
and J; are nontrivial ideals with Tor®(Q/J;, Q/Ja) & S, has 722(9) decomposable
as
m24(Q/ 1) x 7*(Q/ J2)

where we use the isomorphism 722%(S) & 72 (§), see 1.5. This observation can be
used to deduce the well known fact that the homotopy Lie algebra of a complete
intersection ring of codimension ¢ > 2 in degrees strictly larger than one is an
abelian Lie algebra with ¢ generators in degree two; cf. Example 2.4.

Remark 3.6. Let po: R — S be a not necessarily surjective map of local rings.
Take a Cohen factorization of (the completion of) ¢

R& R 258,
as described in [9]; here ¢ is weakly regular—in the sense it is a flat local homomor-
phism with regular fiber—and ¢’ is surjective. If S can be written as S; ®p/ So = S,

where S1, 5> are Tor-independent quotients of R and at least one of R’ — S; is al-
most small, then from Theorem 3.3 one can deduce

722(8) = w22 (51) X 22y 72 (S2),

using the facts that 722(R) = 722(R’) since ¢ is weakly regular and 722(9) =

722(9).
If ¢ is assumed to be almost small to begin with then, by [13, Proposition 4.8],
the map ¢’ is also almost small. It follows from [13, Corollary 4.5(b)], that when

S is a tensor product of Tor-independent quotients Sp,Ss of R’ that both maps
R/ — S; are always almost small.

4. GULLIKSEN MINIMALITY AND RESIDUAL CHARACTERISTIC ZERO
We keep the notation set in Notation 2.1.

4.1. Given a surjective quasi-isomorphism of DG algebras a: A — B we recall a
lifting property of semifree extensions. For a set of cycles Z in B, upon choosing a
set of lifts Z for Z in A, there exists a surjective quasi-isomorphism

A[X] — B[X]
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extending « and sending each z to the corresponding = where X = {z, : |z,| =
2|+ 1}:ez and
X (z,) =2 and 9PM(z,) = 2.

This will be applied specifically in the following setting:
QLHR5S
is a composition of surjective local maps with minimal models Q[W] and R[X] for
p and ¢, respectively. The surjective quasi-isomorphism Q[W] = R extends to a
surjective quasi-isomorphism

Q[W, X] = R[X]

as described above. Note as the map above is a quasi-isomorphism, we have
Q[W, X] = S. We will freely use this construction in the sequel.

Definition 4.2. Let R % S be a surjective map of local rings. Fix a minimal
Cohen presentation p: P — R, and minimal models P[W] — R and R[Y] — S.
The map ¢ is p- Gulliksen minimal if the semifree extension P[W,Y] satisfies

(8) O (P[W,Y]) C mp[W, Y] + (W, Y)?

for all ¢ > 0, equivalently O, (indg k[W,Y]) = 0 for all ¢ > 0, where (/5) denotes
completion at the maximal ideal.

Remark 4.3. The definition above was introduced in [15, Section 3.5]. In the
case of semifree I'-extensions, a similar condition to (8) is identified in [20, Chapter
3] and notably put to use in the proof of [3, Theorem 1.1]. As any two minimal
models are isomorphic, the definition is independent of choice of minimal models
(yet, explicitly dependent on minimal Cohen presentation).

4.4. There exist Gulliksen minimal maps that are not almost small. For example,
whenever ¢ is a map with finite weak category, as defined in [13, Definition 5.3], ¢ is
Gulliksen minimal; see [15, Theorem 25]. By [13, Theorem 5.6], the weak category
of a map with finite projective dimension is finite and in turn provides a class of
maps that are Gulliksen minimal.

Lemma 4.5. Let p: R — S be a surjective map of local rings. If ¢ is Gulliksen
minimal or k has characteristic zero then there is a commutative diagram

pw] —7
R

] —— Q[U, X]
satisfying the following conditions:

F

—>§

(1) the vertical maps are minimal models with respect to minimal Cohen pre-
sentations P — R and Q — S;
w ifwelU

(2) ¢ extends a surjective map P — Q, withU C W and p(w) = ,
0 otherwise

forw e W.
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Proof. Assume R and S are complete and let P — R be a minimal Cohen presen-
tation. In the case that ¢ is Gulliksen minimal, further assume that (8) is satisfied
where P[W] — R and R[Y] — S are minimal models. There exists a minimal
semifree extension P[U, X'] with U C W and X’ C Y that fit into a commutative
diagram

t teUUX'
where the horizontal map is determined by ¢ — . fort e WUY
0 otherwise

and X3, | = Yz;41 for all nonnegative integers 7. The existence of this diagrams is
contained in the proof of [20, Lemma 3.2.1] in the case that the characteristic of &
is zero, and it holds when ¢ is Gulliksen minimal by [15, Theorem 24].

Next take the ideal J in P generated by the elements in

(mp\m%) Nker(P — S)
and set Q = P/J; note that by construction @ — S is a minimal Cohen presen-

tation. The quotient map P — @ induces the quasi-isomorphism of DG algebras
P[X]] = Q[X1] where X|\X; corresponds to a minimal generating set for .J and

for ' € X| we have
N ¢ Xy
0 o€ Xi.
By 4.1, this extends to a quasi-isomorphism of DG algebras P[U, X'] = Q[U, X]
with X; = X/ for i > 1 satisfying © — x for each € X>,. Setting ¢ to be the
composition of the maps
PIW] = PW,Y] = P[U,X"] = Q[U, X],

where the maps are constructed above, has the desired properties. Finally, by the

construction of P[U, X'] = Q[U, X] it follows that Q[U, X] is a minimal model for
S over @ since P[U, X'] is a minimal model for S over P. O

Lemma 4.6. Let Q 2 R 5 S, be surjective ring maps with residue field k
fori =1,2. Set o, = p;0p and o = @ o p, where ¢ is the canonical quotient
R— S| ®r5Ss.

If p1,p2 are Tor-independent, and in addition the characteristic of k is zero or
each @; is p-Gulliksen minimal, then the functor m induces the following isomor-
phism of graded Lie algebras

m(F7) 2 7(F7) Xp(mey T(F72).
Proof. Let QW] — R, R[X'] — S1 and R[Y'] — S2 be minimal models of p, ¢;
and 9 respectively. They determine quasi-isomorphisms of DG @Q-algebras:
QIW, X' 8, and QW,Y'] = S».

There exist minimal semifree extensions Q[U, X] and Q[V,Y] where U,V C W,
X C X' and Y C Y’ that fit into commutative diagrams
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QW, X' —=» QU X]  QIW,Y'] —— Q[V.Y]

SOl sk

1 Sa

where the horizontal maps are the DG algebra maps determined by

t teUUX t teVuy
t and t+—
{0 te WUXN\(UUX) {0 te ( WUY')\(VUY),

respectively, and the vertical maps are the augmentation maps. The existence of
these diagrams is contained in the proof of [20, Lemma 3.2.1] in the case that
the characteristic of k is zero, and it holds when each ¢; is p-Gulliksen minimal
by [15, Theorem 24]. Because ¢1, @2 are Tor-independent we have the following
quasi-isomorphism
QU, X] @quw) QIV.Y] = 5.
Furthermore, as the kernels of the maps Q[W] — Q[U, X] and QW] — Q[V,Y] are
generated by subsets of W, it follows that the DG algebra Q[U, X|®qmw) Q[V,Y] is
a semifree extension of (). Finally, since Q[U, X] and Q[V,Y] are minimal models,
it follows that Q[U, X] ®qw Q[V,Y] is a minimal model over Q as well.
Therefore, taking indecomposables of the following diagram on the DG fibers

FP ———— Fo

|

Fo2 —— F°

induces the following commutative diagram:

EW kU @ kX

T

KV @& kY ——— (kUNEKV) @ kX & kY

where maps are the identity when restricted to kX or kY and the obvious projection
onto the first component when restricted to kW, kU, or kV. Following 1.7, upon
shifting and taking k-linear duals one obtains the desired pullback diagram of Lie
algebras since (9) is a pushout diagram of k-vector spaces. This finishes the proof
of the theorem. O

The main result of this section, see Theorem 4.7 below, shows the conclusion
of Theorem A is satisfied when the residue field has characteristic zero or when
each ; is Gulliksen minimal. Theorem 4.7 requires a refinement of 1.8 to discuss
the relation between homotopy Lie algebras of the fiber and the target ring of a
not necessarily minimal Cohen presentation; this discussion is what follows directly
below.
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Theorem 4.7. If, in addition to the hypotheses of Lemma 4.6, p is a minimal
Cohen presentation, then there is an isomorphism of graded Lie algebras over k

m(S) = 7(S1) Xn(r) T(S2)-

Proof. We are in the context for which Lemma 4.6 and the observations in 7?7 apply.
Hence, there is the following pullback diagram of graded Lie algebras over k

7(K®) ¢—n— n(K%) x Ly

| [

T(K52) x Ly +—— m(K®) x (L x Lg)

where the L; are Lie algebras over k concentrated in degree two. The diagram
above decomposes as a product of the pullback diagrams

T(K?) «—— m(K5) 0—— Iy
! [ omd ] f
m(K52) «—— 7(K?®) Ly «—— L1 X Ly

Now by referring to 1.8, the first diagram establishes the isomorphism of graded
Lie algebras over k:

(10) 722(8) = 7272(S1) Xpz2(g) 72 (S2) -

Again using that 1, o are Tor-independent we have that Iy NIy = I;I5. Therefore
one can apply Lemma 2.6, finishing the proof of the desired result when combined
with (10). |

By 4.4 and [13, Theorem 5.6], if ; is almost small, then it is Gulliksen minimal.
So in light of this point and Theorem 4.7, the next question is prompted:

Question 4.8. Can one replace the assumption that at least one of ¢; is almost
small with the assumption that at least one p; is Gulliksen minimal in Theorem 3.37

Remark 4.9. Let ¢: R — S be a not necessarily surjective map of local rings.
Consider a Cohen factorization of (the completion of) ¢

RE RS,

Assume there is an isomorphism S| ® g/ Sy S where S, 59 are Tor-independent
quotients of R, and that one of the following hold:

(1) The characteristic of the residue field of S is zero;
(2) The maps R’ — S; are Gulliksen minimal for i = 1, 2.

From 1.5 and Theorem 4.7 it follows that

722(8) 2 w72(S1) X p22(r) 7 7(S2)-
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5. APPLICATIONS

Corollary 5.1. Suppose Si <2~ R 2% S, is a pair of Tor-independent surjective
local Ting maps with residue field k. Then is a natural isomorphism of graded Lie
algebras

7T(F901®s92) o~ W(F‘Dl) X W(Ftpz)
where o1 ® g are the canonical quotient of R whose target is S1 ®p Sa.

Proof. This is an immediate consequence of Lemma 4.6 with p = id”®. (]

Corollary 5.2. Suppose Sy < R — Ss is a pair of Tor-independent quotient maps
of the local ring R with nontrivial kernels. The canonical quotient R — S1 ®p S
is never Golod.

Proof. This follows from Corollary 5.1, [6, Theorem 3.4(4)], and the fact that a
product of nonzero Lie algebras cannot be free; the fact that each R — S; has
nontrivial kernel, forces the Lie algebras in question to be nonzero. O

Before stating the next Corollary, we recall the definition of depth for modules
over a (not necessarily commutative) algebra. Let A be a nonnegatively graded
connected k-algebra and M a graded left A-module. The depth of M over A is

depth 4 M = inf{n > 0 | Ext’; (k, M) # 0}.

Corollary 5.3. Let S1 < R — S be a pair of Tor-independent minimal Cohen
presentations, and set S =51 ®gr Sa. If S1,S2 are singular local rings, then

depth Extg(k,k) = depth Extg, (k, k) + depth Extg, (k, k) > 2.

Proof. For a singular local ring A, the depth of Ext4(k, k) is at least one; see, for
example, [14, Lemma 5.1.7]. Now the desired result follows from the equalities
below

depth Extg(k,k) = depth Ur=2(S)
= depth 722(9)
= depth 72%(S}) + depth 722 (Ss)
= depth Extg, (k, k) + depth Extg,(k, k).

The first equality comes from [14, Lemma 5.1.6] where Ur?2(R) denotes the uni-
versal enveloping algebra of 722(R); the third equality comes from Corollary 5.1—
combined with 1.8—and [18, Proposition 36.2]. The final equality follows again
from [14, Lemma 5.1.6]. Since S; and Sy are both singular, it follows that

depth Extg(k, k) > 2. O

Remark 5.4. An important consequence of Corollary 5.3 is due to [14, Theorem
7.2(3)], which asserts if the depth of the Ext algebra of a local ring is at least two,
then the stable cohomology algebra of that ring has a particularly simple structure.
Namely, the stable cohomology of a local ring is a direct sum of its Ext algebra and
a specific torsion submodule; see the reference above for more details. Furthermore,
if the ring S is also assumed to be Gorenstein then its stable cohomology algebra
is a trivial extension of its Ext algebra and a shift of the k-dual of its Ext algebra;
cf. [19, Theorem 5.2].
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5.5. We denote by H the category of nonnegatively graded cocomutative Hopf
k-algebras with codivided powers. That is, those Hopf algebras A whose dual
Homy (A, k) is a nonnegatively graded commutative Hopf algebra with divided
powers; see [1] for more details. This category becomes relevant to the present
discussion as the universal enveloping algebra functor takes values in H and re-
stricts to an equivalence of categories when specializing to positively graded finite
type (adjusted) Lie algebras over k; cf. [1, 26, 32].

The next result is now an immediate consequence of Theorem A and 5.5.

Corollary 5.6. Let Sy < R — S5 be a pair of Tor-independent surjective local ring
maps, and set S = S1 ®p Sa. If at least one of the conditions in Theorem A, then
Exts(k, k) is the pullback in H along the naturally induced maps Extg, (k, k) —
Extr(k, k) fori=1,2.

Corollary 5.7. With the notation and assumptions in Corollary 5.6, there is an
isomorphism of graded commutative Hopf algebras with divided powers

Tor® (k, k) 2= Tor™ (k, k) ®popr (4 ) Tor™ (k, k) .

Proof. Consider the functor Homy (—, k) from #H to the category of graded commu-
tative Hopf algebras with divided powers. This functor takes pullbacks to pushouts.
Moreover Tor algebras and Ext algebras are Hopf k-dual of each other, see [20, The-
orem 2.3.3]. Therefore the corollary follows from Corollary 5.6. (|

Corollary 5.7 generalizes results of Avramov in [2, Theorem 2] and [4, Corol-
lary 5.6(a)], while the next corollary, which is Theorem B from the introduction,
specializes to [4, Corollary 5.6(b)]. First, a bit of notation.

5.8. For a local ring A with residue field k, recall the Poincaré series of k over A
is the formal power series

Pii(t) = dimy (Ext)y (k, k))t'
=0

The number &;(A) := dimy 7 (A) is called the i*" deviation of A. The sequence of
deviations are encoded in the Poincaré series of k over A according to the equality

1+t2z 1)521 1(A)

H t2z e2:(A) ;

i=1

for the equality see [7, 7.1]

Corollary 5.9. Suppose S; <~ R 224 S, is a pair of Tor-independent surjective
local Ting maps with residue field k, and set S = S1 ®r S2. If at least one ; is
almost small, then

PR (1) - PR (1)

Pi(t) = =—pr

Proof. By Theorem 3.3, there is the following exact sequence of graded Lie algebras
over k:

0*)7‘('22(51) X 7>2(R) 7T/ (SQ) (Sl) X 7T/ (SQ) >2(R)
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where the map on the right is the difference of the induced maps on homotopy Lie
algebras. Under the assumptions of the corollary, we deduce that the map on the
right is surjective and therefore

g:(S) = €i(S2) +€;(S2) —ei(R)

for all ¢ > 2. Combining this with Lemma 2.6 we obtain the desired result on
Poincaré series. O

Notice the conclusion of Corollary 5.9 is only asserted under one of the three
conditions in Theorem A, while other corollaries like Corollary 5.7 hold under any
of the conditions listed in Theorem A. In light of this point we pose the following
question.

Question 5.10. In the notation of Corollary 5.9, does the conclusion of Corol-
lary 5.9 hold if the characteristic of k is zero, or if both @1, p2 are Gulliksen mini-
mal?

Remark 5.11. The conclusion of Corollary 5.9 also holds if at least one of the
maps 1; is large, under the standing assumption that Si, 5o are Tor-independent.

Indeed, if ¢y is large, then the induced map Tor™* (S, k) — Tors(k7 k) is injective;
see [24, Theorem 1.1]. Furthermore, from following commutative diagram

Tor(Sy, k) ———— Tor™ (S, k)

| |

Tor®(k, k) —— Tor™ (k, k),

it follows that the map Tor®(Sy, k) — Tor™(k, k) is injective. Therefore ¢, is also
large. Finally by [24, Theorem 1.1], one has the following equalities on Poincaré
series

Pi(t) =Pg, (1) - PP*(t) and PP (1) =Pg (1) - Pi(t),
from which the desired equality is easily deduced.

We end this paper with one final application generalizing results of Quillen in [29,
Corollary 4.9 & Remark 11.13], which can also be interpreted as a generalized “dual”

statement to a result of Quillen [30, Corollary 7.5] (as well as [30, Theorem 11.10])
involving André—Quillen cohomology. The latter result can also be deduced by an
analogous result from local algebra [27, Theorem AJ.

For a surjective local map ¢: R — S with residue field &, we write D(S/R; k) for
the André—Quillen cohomology module of ¢ with coefficients in k; further details
can be found in [21, 25]. Lemma 4.6 can be recast in the theorem below by applying
[11, Section 6], a result essentially due to Quillen [30, Theorem 9.5], provided k has
charactersitic zero.

Corollary 5.12. Let Q — R — S; be surjective local Ting maps with residue field
k fori=1,2. If 51,55 are Tor-independent over R and k has characteristic zero,
then there is an isomorphism of graded Lie algebras

D(S1 ®r S2/Q; k) = D(S1/Q; k) Xp(r/0sk) D(S2/Q5 k) -
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