A PARTIAL CONVERSE GHOST LEMMA FOR THE DERIVED
CATEGORY OF A COMMUTATIVE NOETHERIAN RING

JIAN LIU AND JOSH POLLITZ

ABSTRACT. In this article a condition is given to detect the containment among
thick subcategories of the bounded derived category of a commutative noether-
ian ring. More precisely, for a commutative noetherian ring R and complexes
of R-modules with finitely generated homology M and N, we show N is in the
thick subcategory generated by M if and only if the ghost index of Ny, with
respect to M, is finite for each prime p of R. To do so, we establish a “converse
coghost lemma” for the bounded derived category of a non-negatively graded
DG algebra with noetherian homology.

INTRODUCTION

This article is concerned with certain numerical invariants and thick subcate-
gories in the bounded derived category of a commutative noetherian ring. Let R be
a commutative noetherian ring, D(R) will denote its derived category, and D{: (R)
will be the full subcategory of D(R) consisting of objects with finitely generated
homology.

An object N of D(R) is in the thick subcategory generated by M, denoted
thickp(g) (M), provided that N can be inductively built from M using the triangu-
lated structure of D(R) (see 2.1 for more details). There are cases where a notion
of support reports on whether N is in thickp(g)(M). For example, there is the
celebrated theorem of Hopkins [13, Theorem 11] and Neeman [19, Theorem 1.5]
that applies when M and N are perfect complexes. Another instance is when R is
locally complete intersection by using support varieties; this was proved by Steven-
son for thick subcategories containing R when R is a quotient of a regular ring [22,
Corollary 10.5], and in general in [18, Theorem 3.1]. However, in general, detecting
containment among thick subcategories can be an intractable task.

In this article, we give a new criterion to determine the containment among thick
subcategories of D{: (R) based on certain numerical invariants being locally finite.
We quickly define these below; see 2.1, 2.3, and 2.10 for precise definitions.

For a triangulated category T, fix objects G and X. The level of X with respect
to G counts the minimal number of cones needed to generate X, up to suspensions
and direct summand, starting from G. We denote this by Ievelg (X) and note that
this is finite exactly when X is in thickt(G). The coghost index of X with respect
to GG, denoted cogin? (X), is the minimal number n satisfying that any composition
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where each Homt(f?, ¥/G) = 0, must be zero in T. Switching the variance in
the definition above determines the ghost index of X with respect to GG, denoted
ginf (X).
These invariants are of independent interest and have been studied in [2, 3, 5, 7,

, 10, 16, 17, 21]. In general, they are related by the following well-known (co)ghost

lemma:
max{cogin§ (X), gin¥(X)} < Ievel-? (X).

Oppermann and Sfovicek proved a so-called converse coghost lemma: Namely,
coging?(R)(N) and Ievelgé(R) (N) agree whenever M and N are objects of DZJ:(R), see
[20, Theorem 24]. Letz extracted a notable consequence from the converse co-ghost
lemma in [17, Theorem 3.6]: for M and N in Dg(R),

Ievelg/{c N) < oo <— Ievelg/[fp(R )(Np) < oo for all prime ideals p of R.
b [

(R)(

In this article we ask whether finiteness of certain ghost indices can determine
finiteness of level, and hence containment among thick subcategories. The main
result in this direction is the following which is contained in Theorem 3.1.

Theorem A. Let R be a commutative noetherian ring. For M and N in D{f(R),
the following are equivalent:

M .
(1) IeveIDZ{(R)(N) < 00;

(2) ging?’(Rp)(Np) < 0o for all prime ideals p of R.

One of the main steps in the proof of Theorem A is establishing a converse
coghost lemma for graded-commutative, bounded below DG algebras A with H(A)
a noetherian Hy(A)-module (cf. Theorem 2.6). We follow the proof of [20, Theo-
rem 24] closely, however, extra care is needed when working with such DG algebras.
Namely, we make use of certain ascending semifree filtrations, see 1.6, as the trun-
cations used by Oppermann and Sfovicek are no longer available in this setting.
It is also worth mentioning this recovers [20, Theorem 2] for noetherian rings, and
more generally for the noetherian DG algebras discussed above (see Corollary 2.7).
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reading of the manuscript, and their helpful comments and suggestions. The second
author was supported by NSF grant numbers 1840190 and 2002173.

1. DERIVED CATEGORY OF A DG ALGEBRA AND SEMIFREE DG MODULES

Much of this section is devoted to setting notation and reviewing the necessary
background regarding the topics from the title of the section. Proposition 1.8 is the
main technical result of the section and will be put to use in the next section.

Throughout this article objects will be graded homologically. By a DG algebra
we will implicitly assume A is non-negatively graded and graded-commutative. For
the rest of the section fix a DG algebra A.

1.1. Let D(A) denote the derived category of (left) DG A-modules (see, for example,
[3, Sections 2 & 3] or [15, Section 4]). We use X to denote the suspension functor
on the triangulated category D(A) where ¥ is the autoequivalence defined by

(EM); == M;_1, a-(Em) = (=1)%am, and 8*M = —9M.
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For a DG A-module M, its homology H(M) = {H;(M)}.cz is naturally a graded
H(A)-module. Also, define the infimum of M to be inf(M) := inf{n | H,,(M) # 0};
its supremum is sup(M) = sup{n | H,(M) # 0}.

1.2. The following triangulated subcategories of D(A) will be of interest in the
sequel. First, let Df(A) denote the full subcategory of D(A) consisting of DG A-
modules M such that each H;(M) is a noetherian Hy(A)-module. We let Dﬂcr(A)
be the full subcategory of objects M of Df(A) such that inf(M) > —oc. Finally,
D{;(A) consists of those objects M of Df (A) satisfying H;(M) = 0 for all |i| > 0.
When H(A) is noetherian as a module over Ho(A) and Hy(A) is noetherian, DI{(A)
is exactly the full subcategory of D(A) whose objects M are those with H(M ) being
finitely generated as a graded H(A)-module.

1.3. A DG A-module F is semifree if it admits a filtration of DG A-submodules
..CF(-)CFOCF1C...

where F(i) = 0 for i < 0, F' = UF(i) and each F(i)/F(i — 1) is a direct sum of
shifts of A. The filtration above is called a semifree filtration of F.! By [15, Section

3], F is homotopy colimit of the F(i) and so there is the following exact triangle in
D(4)
(1) [Tre) = F6) - F—<]]F6),

i€Z i€Z i€Z
where s is induced by the canonical inclusions F(j) < F(j + 1) < [ F(4).
1.4. For the following background on semifree resolutions see [11, Chapter 6] (or
[1, Section 1.3]). Let M be a DG A-module. There exists a surjective quasi-

isomorphism of DG A-modules e¢: F = M where F is a semifree DG A-module,
see [11, Proposition 6.6]; the map e is called a semifree resolution of M over A.
Semifree resolutions of M are unique up to homotopy equivalence.

1.5. Fix a DG A-module M with semifree resolution e¢: F = M. For any DG
A-module N, it is clear that

Hompa)(M, N) = Hompa)(F, N)
and the right-hand side is computed as the degree zero homology of the DG A-
module Hom 4 (F, N). That is,
(2) HomD(A)(M, —) = Ho(Homy (F, —)).
In particular, Homp(4)(M, N) naturally inherits an Ho(A)-module structure and
since A is non-negatively graded, Homp(4)(M, V) inherits an Ag-module structure.

As semifree resolutions are homotopy equivalent, this Hy(A)-module is independent
of choice of semifree resolution.

1.6. Assume each H;(A) is finitely generated over Hyo(A4) and Hy(A) is itself noe-
therian. Let M be an object of Di (A). By [4, Appendix B.2], there exists a semifree
resolution F' = M with F; = 0 for all i < inf(M) and F admits a semifree filtration
{F (%) }iez equipped with exact sequences of DG A-modules

0= F(i—1)— F(i) = X'A% -0

IThe choice to allow arbitrary indices for the start of the filtration is a non-standard one, but
this simplifies notation in the proof of Theorem 2.6.
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for some non-negative integer 5; > 0.

Lemma 1.7. Assume Ho(A) is noetherian and that each H;(A) is finitely generated
over it. Let N be an object of D(A) such that sup(N) < co. For an object M in
D(A) with inf(M) > sup(N), Hompay(M,N) = 0.

Proof. Fix a semifree resolution F = M as in 1.6. By (2) in 1.5,
Homp4)(X'A%, N) = H;(N)* =0

for each i > inf(M). Combining these isomorphisms with the exact sequences
0= F(i—1) = F(i) » 'A% -0

yields by induction that Hompa)(F(i), N) = 0 for all # > inf(M). Finally, (1) in
1.3 implies Homp(4)(F, N) = 0, and hence Homp (M, N) =0 (cf. 1.5). O

Proposition 1.8. Assume Hy(A) is noetherian and each H;(A) is a finitely gen-
erated Ho(A)-module. Let M be in Dfr(A) and N be an object in D(A) such that

sup(N) < oo. Suppose F = M is a semifree resolution of M as in 1.6, then for
all i > sup(N) the natural map below is an isomorphism

Homp 4y (M, N) =+ Homp ) (F (i), N).
Proof. For each ¢ > inf(M), there is an exact sequence of DG A-modules
(3) 0—F@G@)—F—F —0

where by choice of F' we have that inf(F”) > i. Applying Homp(4)(—, N) to (3) and
appealing to Lemma 1.7 yields the desired isomorphisms whenever ¢ > sup(N). O

2. LEVELS AND COGHOST INDEX

We begin by briefly recalling the notion of level. For more details, see [3, Section
2], [8, Section 2] or [21, Section 3].

2.1. Let T be a triangulated category and C be a full subcategory of T. We say
C is thick if it is closed under suspensions, retracts and cones. The smallest thick
subcategory of T containing an object X is denoted thickt(X); this consists of all
objects Y such that one can obtain Y from X using finitely many suspensions,
retracts and cones.

We set |eve|1)—( (Y) to be smallest non-negative integer n such that Y can be built
starting from X using finitely many suspensions, finitely many retracts and exactly
n—1 cones in T. If no such n exists, we set levely (Y') = oo. Note Y is in thicky(X)
if and only if Ievel?(Y) < 00. Also, if C is a thick subcategory of T containing X
and Y, then levely (V) = levelg (V).

Example 2.2. Let A be a DG algebra. A DG A-module M is perfect if M is an
object of thickp(4)(A). In this case, M is a retract of a semifree DG A-module F

with finite semifree filtration
0OCFO)CF(1)C...CF(n)=F.

If n is the minimal such value, then Ievelé(A)(M) =n+ 1, see [3, Theorem 4.2].
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2.3. Let T be a triangulated category with suspension functor . A morphism
f: X =Y in T is called G-coghost if

Homt(f, £'G): Homt(Y,X'G) — Homt(X,Z'G)

is zero for all ¢ € Z. Following [17, Defnition 2.4], we define the coghost index of X
with respect to G in T, denoted coging(X ), to be the smallest non-negative integer
n such that any composition of G-coghost maps

fr _1 1 f! 0
Xt X" s X X=X

is zero in T.
2.4. Let T be a triangulated category with objects G and X. In this generality,
level bounds cogin from above. That is,

cogin$ (X) < level¥ (X),
see [5, Lemma 2.2(1)] (see also [21, Lemma 4.11]). However, there are known in-
stances when equality holds. For example, level¥ (—) and cogin§ (—) agree provided
every object in T has an appropriate left approximation by G, see [5, Lemma 2.2(2)]

for more details. Another instance is when R is a commutative noetherian ring (or
more generally, a noether algebra)

e el
X) = level
COg'an(R)( ) = leve D! (R)

for each G and X in Dl’: (R); this has been coined the converse coghost lemma (see
[20, Theorem 24]).

Example 2.5. Let A be the ring Z/(4) and consider the complex

(X)

X=0-A23 42 40,

It is straightforward to see that 2 -id” is A-coghost yet it is nonzero in Dl{ (A). In
fact, it is also A-ghost; cf. 2.10.

We now get to the main result of the section which generalizes a particular case
of [20, Theorem 24| mentioned above. It is worth noting that [20, Theorem 24|
was proved for derived categories satisfying certain finiteness conditions; however,
it does not apply directly to the case considered in the theorem below. The proof
of [20, Theorem 24] is suitably adapted to the setting under consideration with the
main observation being that truncations need to be replaced with the ascending
filtrations discussed in 1.6. We have indicated the necessary changes below, while
attempting to not recast the parts of the proof of [20, Theorem 24| that carry over
with only minor changes.

Theorem 2.6. Let A be a DG algebra with H(A) noetherian as an Ho(A)-module.
If M and N are in D{:(A), then

(N) = level™ (N).

cogin D/ (4)

M
D] (4)
Recall that a triangulated category T is called strongly finitely generated if there
exists G in T and d € N such that level¥(X) < d for all X in T, see [21, 3.1.1].
For example, let A be an artinian ring, then D{: (A) is strongly finitely generated
by G = A/J where J is the Jacobson radical of A; see [21, Proposition 7.38].
Using Theorem 2.6 the same argument in [20, Theorem 7] yields a DG version of
Oppermann and Stovicek’s result recorded below.
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Corollary 2.7. Let A be as in Theorem 2.6 and T be a thick subcategory of Dg(A)
containing thiCkDf(A) (A). If T is strongly finitely generated, then T = Dg(A).
b

Before beginning the proof of Theorem 2.6, we record the following remark and
lemma; both are easy but important pieces in establishing Theorem 2.6.

Remark 2.8. For M and N in D{:(R),

- M _ M
coglnDi(A)(N) = IeveIDi(A)(N).

Indeed, one can directly apply the argument from [20, Theorem 24| once it is noted
that, by restricting scalars along the map of commutative rings Ay — Hp(R),
HomDi(A)(X7 YiN) is finitely generated over Ay for X in Di(A) and i € Z.

To see the latter holds, such an X admits a resolution with a semifree filtration
whose subquotients are perfect DG A-modules. Also, since N is in D{; (A) we can
apply Proposition 1.8 to get

Hompy (4 (X, T'N) Homp, (4 (P, 'N)
where P a perfect DG A-module with a finite semifree filtration as in Example 2.2.

Therefore, induction on the length of this filtration finishes the proof of the claim,
where we are again using that N is in D{: (A).

Lemma 2.9. Let A be a DG algebra. Assume a: F' = F? is a morphism of
bounded below semifree DG A-modules with F = 0 for i < inf(F7) and semifree
filtrations {F(i)}icz for j = 1,2 satisfying
0 FI(i —1) = Fi(i) —» [[=f4%® — 0
£<i
for non-negative integers 5@(@) and j = 1,2. For each i € Z, « restricts to a
morphism of DG A-modules (i): F1(i) — F2(i).

Proof. Indeed, F*(i) = 0 for all i < inf(F') and so there is nothing to show for such
values of i. Now for i > inf(F?'), the DG A-module F''(i) is generated in degrees
at most i and since « is degree preserving a(F(i)) is generated in degrees at most
i. However, the assumption on the filtration {F2(5)} also implies

a(F'(i)) C F2(q).
Hence, setting a(i) := a |p1(;) proves the claim by induction. O
Proof of Theorem 2.6. First, by 2.1 and Remark 2.8

IevelDM(A)(N) = Ievelg/[i(A)(N) = cogingg(A)(N),

while the inequality
- M - M
(4) COgIND/ (4) (N) > coglan(A)(N)
is standard. So it suffices to prove the reverse inequality of (4) holds.
Set n = cogingft(A)(N) and consider a composition
b

n fn n—1 f"71 f2 1 fl 07
N" — N — ...—> N =— N° =N,

where each f? is a M-coghost map in Df:_(A). Using the assumptions on H(A)
and that each N® is in Dﬂc_(A)7 there exist semifree resolution F? =» N’ with
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corresponding semifree filtrations {F(j)};ez as in 1.6. Moreover, by 1.5(2), each
f* determines a morphism of DG A-modules o' : F* — F*~! such that the following
diagram commutes in D(A)

Fi o Fifl

® Lok

Ni L N1

Furthermore, by Lemma 2.9 there are the following commutative diagrams of DG
A-modules

s () i
Fi(j) =5 Fi=1(j)

(6) [ \ j

Fi

whenever j’ > j. Moreover, since each F(j) is a perfect DG A-module and M is
in Dl{ (A), the commutativity of the diagrams in (5) and the assumption that each
f*is M-coghost imply the compositions along the top of (6) are M-coghost for all
j' > j > 0; the same argument as in proof of [20, Theorem 24] works in this setting.
Combining this with Proposition 1.8 there exists integers ¢; such that

n n—1 1
Fr(in) ——s Fr=(in_y) 2 ... —Ls FOip)

/ [ J

Fro—o' L pnot o, el RO
l_ ) lg - 1 l:
ICEE AN (5 R AN AN '
commutes in D(A), the natural map
(7) HomDi(A)(F",N) i>HomDi(A)(F"(in),N)

is an isomorphism and each 8° is M-coghost. Now since each 5 is an M-coghost
map between perfect DG A-modules then by choice of n the composition along
the top and then down to N, denoted 3, must be zero. It is worth noting that
the previous step needs the assumption that H(A) is finitely generated over Ho(A)
since, in this case, each map in the composition defining 8 must be in D{: (4).

Finally, the isomorphism in (7) identifies 8 with fo where f = f1f?... f" and
o is the quasi-isomorphism F™ = N™ defined in (5). Hence, f = 0 and so

cogin™,  (N) < n=cogin, (N),

D% (4)

as needed. O

Df (4)

2.10. Let T be a triangulated category and fix G and X in T. The ghost index of
X with respect to G in T, denoted gin%(X), to be the least non-negative integer n
such that any composition of G-ghost maps

n fn n—1 f"71 1 fl 0
X=X"—X — ... X — X
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is zero in T, where a map g is G-ghost provided Homt(X!G,g) = 0 for all i € Z.
That is, gin§ (X) = cogin$., (X). In general, gin§ (X) < level¥ (X) and it is unknown
whether equality holds when R is a commutative noetherian ring and T = Dbf (R).
The point of the next section is to provide a partial “converse.”

3. A ParTIAL CONVERSE GHOST LEMMA

In this section R is a commutative noetherian ring. As localization defines an
exact functor D(R) — D(R,), level cannot increase upon localization. Hence, for
M and N in D{(R), if N is in thickp(gy (M), then

. M,
ng{(Rp)(Np) < oo for all p € Spec R.
The converse and an evident corollary are established below.

Theorem 3.1. Let R be a commutative noetherian ring and fir M and N in Dbf(R).

If ging/[g‘“(Rp)(Np) < 00 for all p € Spec R, then N is an object of thickpgry(M).

My

Corollary 3.2. If BNos (1,

(Np) < oo for all p € Spec R, then ging{{(R)(N) < o0.

To prove Theorem 3.1, there are essentially two steps. We first go to derived
categories of certain Koszul complexes where it is shown that cogin, gin and level all
agree using Theorem 2.6. Second, we apply a local-to-global principle to conclude
the desired result. We explain this below and give the proof of the theorem at the
end of the section.

3.3. Assume R is local with maximal ideal m, we let K’ be the Koszul complex
on a minimal generating set for m. It is regarded as a DG algebra in the usual way
and is well-defined up to an isomorphism of DG R-algebras, see [9, Section 1.6].
For any p € Spec R, let M be an object of D(R). We set

M(p) = My @5, K"

which is a DG K f*-module. Restricting scalars along the morphism of DG algebras
R, — K we may regard M (p) as an object of D(R,). In [6, Theorem 5.10], Ben-
son, Iyengar and Krause proved the following local-to-global principle: For objects
M and N in Dl{(R), N is in thickp(g) (M) if and only if N(p) is in thickp g, (M (p))
for all p € Spec R.

Lemma 3.4. Let R be a commutative noetherian local ring. For M and N in
D/ (KR)
’ ; M M M
levelp gry (V) = coglan(KR)(N) = ng{:(KR)(N)'

Proof. The natural map K — K is a quasi-isomorphism of DG algebras and so
it induces an exact equivalence

DI (k%) = D (K™).
Since cogin, gin and level are invariant under exact equivalences we can assume R
is complete and set K = K.
As R is complete, it is well known that R admits a dualizing DG module w; see,

for example, [14, Corollay 1.4]. Now applying [12, Theorem 2.1], Homg(K,w) is
a dualizing DG K-module. In particular, setting (=)' := Hom (—, Homg(K,w))
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then for any M in D{:(K), Mtisin D{: (K) and the natural biduality map M = Mt
is an isomoprhism in D{: (K). Hence, (—)T restricts to an exact auto-equivalence of

D{ (K).
Finally, as (—)' is an exact auto-equivalence of Dg (K) interchanging coghost and
ghost maps, from Theorem 2.6 the desired equality follows. (]

Remark 3.5. The lemma holds for any DG algebra A satisfying the hypotheses of
Theorem 2.6 which admits a dualizing DG module as defined in [12, 1.8]. Another
example, generalizing the Koszul complex above, would be the DG fiber of any local
ring map of finite flat dimension whose target ring admits a dualizing complex [12,
Theorem VIJ.

Lemma 3.6. Let R be a commutative noetherian local ring and let t: D(R) —
D(K%) denote — @ K. If M and N are objects of D{;(R), then

ging(xcny (tN) < ging gy ().

Proof. We set K = K. For X in D(R) and Y in D(K), there is an adjunction
isomorphism

(8) HOHID(K) (tX, Y) = HomD(R) (X, Y),

which is induced by the natural map nx: X — tX given by = +— x ® 1. Moreover,
when f:Y — Z is a tM-ghost map in D{(K), then (8) implies that f is a M-ghost
map in D{: (R).

Assume n := gin (N) < o0 and suppose g: tN — Y in D{: (K) factors as the

M

D] (R)
composition of n maps in Dl{ (K) which are tM-ghost. By the adjunction above
any tM-ghost is M-ghost. Hence, g is the composition of n maps in Dbf (R) which
are M-ghost, and thus so is g o ny. Therefore, by assumption g o ny = 0 and so
from (8) we conclude that g = 0 in Dg(K), completing the proof. O
M,

Proof of Theorem 3.1. Let p € Spec R. Hence, by assumption gian"(R )
p Up

Also,

(Ny) < o0.

. M, . M
ging (Vo) > ging' L, (N (1))

b

_ . M(p)
= coging (") s, (N (p))

M
= |eve|D(§g;F)(N(p))

where the inequality is from Lemma 3.6 and the equalities are from Lemma 3.4.

Thus |eve|g4((]§3qp)(1v(p)) < o, and so N(p) is in thickp g, (M(p)) for all p €

Spec R. Now by restricting scalars along R, — K% we conclude that N(p) is in
thickp(r,)(M(p)) for all p € Spec R. Finally, we apply 3.3 to obtain the desired
result. ([l
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