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Abstract—The need for continuous coverage, as well as low-
latency, and ultrareliable communication in 5G and beyond cellular
networks encouraged the deployment of high-altitude platforms
and low-altitude drones as flying base stations (FBSs) to provide
last-mile communication where high cost or geographical restric-
tions hinder the installation of terrestrial base stations (BSs) or
during the disasters where the BSs are damaged. The performance
of unmanned aerial vehicle (UAV)-assisted cellular systems in terms
of coverage and quality of service offered for terrestrial users
depends on the number of deployed FBSs, their 3-D location as
well as trajectory. While several recent works have studied the 3-D
positioning in UAV-assisted 5G networks, the problem of jointly
addressing coverage and user data rate has not been addressed yet.
In this article, we propose a solution for joint 3-D positioning and
trajectory planning of FBSs with the objectives of the total distance
between users and FBSs and minimizing the sum of FBSs flight
distance by developing a fuzzy candidate points selection method.

Index Terms—3-D positioning, flying base station (FBS), fuzzy
candidate point selection (FCPS), trajectory planning, unmanned
aerial vehicle (UAV)-assisted 5G.
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I. INTRODUCTION

N
EW-generation cellular networks deliver higher data

transmission rates, better quality of service (QoS), and

more energy efficiency. Significant improvement in 5G perfor-

mance in terms of ultrareliability, low latency, high throughput,

and secure communication compared with the previous gen-

erations of cellular networks has paved the way for various

emerging use cases, such as augmented and virtual reality,

smart healthcare, smart cities, and smart transportation [1], [2].

According to an international telecommunication union study,

mobile traffic would surge to 5016 exabytes per month by 2030.

In addition, it was anticipated that the worldwide mobile user

base will grow to 13.8 billion by 2025 and 17.1 billion by

2030 [3], [4].

A. Unmanned Aerial Vehicle (UAV)-Assisted Solutions

The drone industry has been remarkably enhanced over re-

cent years and new applications of drones have appeared [5],

[6]. In recent years, UAVs have been deployed as flying base

stations (FBSs) to extend the coverage of cellular networks and

enhance QoS [7]. Exploiting FBSs to provide network users

with wider network coverage is a major application of UAVs

in cellular networks. The main idea behind employing UAVs

as FBSs is to achieve immediate and relatively reliable services

while encountering unwanted happenings and situations, e.g.,

earthquakes, floods, and damaged or broken base transceiver

stations. A key application of FBSs is to provide agile and

reliable communication services during man-made and natural

disasters, e.g., earthquakes and floods where the terrestrial base

stations (BSs) are damaged [8], [9]. Another motivation for the

installment of FBSs is where the positioning of terrestrial BSs

becomes uneconomical or impractical owing to mountainous,

rugged, and rocky terrain, and also when the cellular network

is suffering from high traffic loads, such as sports or cultural

events [10], [11]. Easy and low-cost deployment and the high

chance of line-of-sight (LoS) communication are amongst the

unique features offered by aerial BSs [12]. In addition, due to the

mobility capability of UAVs, in the case that the network status

deteriorates, UAVs can increase the QoS and decrease the im-

pairments by changing their positions. The mobility feature may

also increase the number of covered network users if required.

1937-9234 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A & M University - Corpus Christi. Downloaded on July 03,2024 at 14:33:21 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-6454-8911
https://orcid.org/0000-0002-8004-0111
https://orcid.org/0000-0001-7998-1283
https://orcid.org/0009-0002-6211-5180
https://orcid.org/0000-0002-2630-0429
https://orcid.org/0000-0001-5822-3432
https://orcid.org/0000-0002-0838-1800
https://orcid.org/0000-0002-8495-640X
https://orcid.org/0000-0002-2315-1173
mailto:javad.sobouti@mail.um.ac.ir
mailto:alaghehband@mail.um.ac.ir
mailto:alaghehband@mail.um.ac.ir
mailto:h.chitsaz@mail.um.ac.ir
mailto:hosseini@um.ac.ir
mailto:vahedian@um.ac.ir
mailto:vahedian@um.ac.ir
mailto:amirhossein@su.edu.om
mailto:haitham.adarbah@gulfcollege.edu.om
mailto:mehdi.sookhak@tamucc.edu
mailto:mehdi.sookhak@tamucc.edu
mailto:fafghah@clemson.edu


SOBOUTI et al.: EFFICIENT FUZZY-BASED 3-D FLYING BASE STATION POSITIONING AND TRAJECTORY FOR EMERGENCY MANAGEMENT IN 5G 815

Furthermore, network users may be also provided with upper

data rates by expanding the coverage and quantity of FBSs [13].

The implications for the FBS solution arise from the as-

sumption that the BS should have multiple antennas and analog

beamforming capabilities. Analog beamforming facilitates the

use of larger arrays and enhances spectral efficiency by steering

beams toward multiple users with different frequencies or time

slots. The FBS can enhance coverage and capacity, particularly

in mmWave bands with high path loss and LoS communication

needs. It can decrease hardware complexity and power usage in

FBS by using just one radio frequency chain per antenna array,

rather than one per antenna element like digital beamforming.

The FBS’s battery life and flight time can be extended while

reducing equipment cost and weight [14].

Analog beamforming may also pose limitations and chal-

lenges for the FBS solution. The lacks of spatial multiplexing

support, preventing it from transmitting multiple data streams to

one or multiple users simultaneously. Therefore, high-demand

applications like video streaming or virtual reality can be limited

by the data rate and throughput of the FBS. The user equipment

(UE) with analog beam former faces another challenge: fast and

accurate beam tracking. To maintain a reliable link with the UE,

the FBS must constantly adjust its beam direction and width. In

order to optimize its beamforming strategy, the UE must relay

its channel state information back to the drone BS. The feedback

process may cause slower response times and increased system

load, leading to decreased performance [15].

It is worth noting that new releases of the 3rd Generation Part-

nership Project included basic features for new radio to support

satellite communications; however, there are several issues yet

to be addressed for satellite-assisted communication, such as

long delay and high Doppler shifts [16]. UAV-assisted 5G com-

munication offers several advantages compared with satellites

to extend the coverage of 5G and beyond as summarized below.

1) Lower latency: Since UAVs are closer to the ground and

have shorter communication lines, UAV networks have

substantially less latency. This is crucial for real-time

applications that demand lower latency. Due to the longer

distance that signals must travel, satellites have substan-

tially higher delays.

2) Increased Flexibility: UAV networks are more flexible

since drones can be deployed and repositioned more

quickly and easily than satellites as needed. Satellites are

fixed in orbit once deployed.

B. Challenges of UAV-Based Networks

Since UAVs are usually battery-powered and have limited

energy resources, their deployment as aerial relays or BSs

requires optimal position and effective path planning strategies

to achieve the expected performance in terms of coverage

extension and QoS-improvement while extending the UAVs’

lifetime. Besides the 3-D positioning and the trajectory of UAVs,

the impact of interference caused by UAVs to neighbor BSs due

to strong LoS ray and channel modeling has been investigated

in developing UAV-assisted 5G networks. Numerous studies

have been undertaken on the 2-D and 3-D deployment of drones

and stations in various wireless networks [17], [18], [19]. In

addition, several studies have been conducted on the movement

of drones across wireless networks, the Internet of Things, and

sensor networks [20], [21]. We will review these works in the

next section in detail. We have conducted several studies on

routing challenges as well, which will be addressed in future

works [22], [23].

C. Contributions of This Article

In this article, we consider a disaster occurrence in the target

area. As mentioned, one of the applications of FBSs in cellular

networks is when disasters occur. With a disaster, first aid teams

start assisting and cooperating quickly, and communication be-

comes one of their most essential needs, particularly when the

disaster has destroyed terrestrial BSs. In such conditions, we

will need a fast deployment structure to make communication

available. Therefore, the target area is considered as free space

for attenuation.

We introduce an efficient fuzzy-based approach for position-

ing and trajectory of FBSs in emergency situations to overcome

QoS and network coverage challenges. Existing positioning and

trajectory approaches in the FBS domain are categorized based

on 2-D and 3-D operational altitudes. Most 2-D positioning

works overlook the ability of UAVs to change altitude on demand

and consider a small number of users and UAVs, while 3-D

positioning works have considered fewer limitations in solving

the problem in a reasonable time. Trajectory optimization works

have focused on both 2-D and 3-D trajectories, but most have not

considered user movement and have used traditional clustering

algorithms that are location-aware and do not consider data rate

and user-requested QoS.

Unlike the majority of earlier research, this article addresses

both coverage and data rate limits concurrently. The mathemati-

cal model provided in this article determines the UAV altitudes,

and we solve the problem using an accurate manner. In contrast

to existing commonly used methods, we describe a fuzzy candi-

date point selection (FCPS) approach that takes users’ locations

and their desired data rate into account. In addition, we present

a 3-D trajectory solution, whereas the majority of the literature

examines 2-D space. To sum up, the main contributions of this

article are as follows.

1) Proposing a fuzzy algorithm to find candidate points,

which significantly improves the performance of the pro-

posed positioning model.

2) Finding the minimum number of required FBSs to cover

and serve users using a heuristic method.

3) Considering the positioning and trajectory of FBSs to

improve not only the QoS but also minimize the number

of required FBSs.

The rest of this article is organized as follows. In Section II

we review the literature. Section III presents the system model

of the problem. In Section IV, the mathematical models and

formulation of positioning and trajectory problem are discussed.

In Section V, the performance of our proposed infrastructure is

evaluated. Finally, Section VI concludes this article.

II. RELATED WORKS

This article introduces an efficient fuzzy-based FBSs posi-

tioning and trajectory approach to overcome the QoS and the
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network coverage challenges in an emergency. This section

makes an overview of the existing positioning and trajectory

approaches in the FBS domain while categorizing them based

on 2-D and 3-D operational altitudes.

A. Positioning

Sobouti et al. [24] presented a multi-UAV efficient 2-D

placement algorithm covering IoT nodes. They exploited an

algorithm to obtain the least number of possible drones. A

mathematical model was also proposed to obtain suitable places,

where all drones on a 2-D plane lie at the same elevation. Since

the mathematical model needed candidate points to obtain a

suitable place for drones, a smart mesh method was presented.

Rahimi et al. [25] goal was to leverage the 5G cellular network

to supply the traffic required by participants of a sporting event

held in a rural region. An efficient approach to obtaining the

minimum number of necessary UAVs and the best 3-D location

for them was presented. In addition, they proposed an efficient

technique for finding candidate points and scoring points, named

MergCells. Wang and Yang [26] investigated a drone-enabled

cellular network with drones flying at a very lower elevation

and offering services to terrestrial users. The problem of finding

the optimal 3-D locations for drones was formulated more prac-

tically, considering the restrictions of 3-D space and terrestrial

obstacles. This article was aimed at improving the security of

wireless networks using UAVs. Zhong et al. [27] maximized the

overall number of the individuals covered while satisfying the

QoS requirements. They optimized the 3-D placement of drones

to address the individuals’ expected services. In this work, the

A2G path loss model was taken into account, and drones were

initially deployed horizontally by exploiting a genetic algorithm

and then vertically in order to maximize the coverage while

considering the data distribution rate. Their work, similar to

our proposed solution, addresses both coverage and data rate

limits concurrently; however, it does not take into account the

trajectory of UAVs. Our method covers both the placement and

trajectory of UAVs.

The primary flaw with 2-D positioning works is that they

overlooked the most significant characteristic of UAVs: the abil-

ity to change altitude on demand. In addition, most positioning

works consider a small number of users to service and a few

UAVs to deploy (often one or two UAVs). Moreover, to the best

of our knowledge, most of the works on UAV 3-D positioning

have considered a relatively small set of constraints to solve the

problem in a reasonable time. As a result, the developed solutions

are not practical and scalable for real scenarios. In addition, the

early works of literature often have solved optimization models

using heuristic or metaheuristic algorithms, which directly affect

the precision of the findings and are time-intensive.

B. Trajectory

Khamidehi and Sousa [21] optimized the path traveled by

multiple FBSs, maximizing the bit rate of mobile users. The

formulated problem constrains the strength of FBS, taking into

account the signal power, backhaul capacity, and interference.

The problem exploits a new algorithm on the basis of a sequential

convex approximation method. Wang et al. [28] provided relay

drones with a SAG-LoRT architecture to load data from smart-

phones to the satellites located at low-Earth orbit. In order to

maximize network capacity, this work jointly optimized the con-

nection time of smartphones, power management, and drone tra-

jectory. The problem was modeled as nonlinear integer program-

ming. Zhang et al. [29] examined the drone-enabled emergency

networks, where drones serve as FBSs in order to gather data

from terrestrial individuals in disaster-affected regions. Owing

to the failure of the terrestrial power supply caused by disasters,

the accessible energy is insufficient for influenced user devices.

In addition, due to post-disaster environmental circumstances,

drone flight is influenced by terrestrial barriers. To tackle the

problem, the authors of this work modeled the drone trajectory

optimization problem with limits on user-device energy and the

position of terrestrial barriers to maximize the uplink efficiency

of drone networks within the flying period. As the user-device

energy limitation was dynamic, they turned the problem into a

constrained Markov decision-making process (CMDP) with the

drone as an agent. To solve CMDP, they presented a drone path

planning algorithm, based on safe deep Q-network, in which the

drone learns to do the best action based on sensible policies. UAV

paths for serving IoT devices were chosen based on a connected

graph in [30]. To find the shortest-path energy for conserva-

tive planning to meet the nodes dynamically, their suggested

technique, known as semidynamic mobile anchor guidance,

employed a weighted search algorithm. Wu et al. [31] proposed a

learning-based approach for optimal UAV caching and trajectory

in aerial-assisted vehicular networks. They formulated a joint

caching and trajectory optimization problem to maximize the

overall network throughput and proposed a deep supervised

learning scheme to enable real-time decision-making.

To jointly optimize the 3-D trajectory of the UAV and

the phase-shift of the reconfigurable intelligent surface,

Mei et al. [32] suggested the double deep Q-network and deep

deterministic policy gradient-based methods. The suggested

method has been demonstrated to be successful in increasing

the UAV’s energy efficiency while meeting ground terminals’

demands for data transfer. Cai et al. [33] introduced an IRS to

support NOMA-based UAV communication systems for numer-

ous ground users. By collaboratively constructing the resource

allocation plan, the UAV’s 3-D trajectory, and the phase control

at the IRS, they could reduce the average overall system energy

consumption. Liang et al. [34] looked at a real-world energy ef-

ficiency optimization challenge in a cognitive UAV communica-

tion system. By reusing the spectrum of the ground primary user,

the moving following UAV communicates data acquired to the

leading UAV. For this situation, a combined UAV trajectory and

resource allocation optimization approach is suggested. They

aimed to increase the cognitive UAV communication systems’

energy efficiency while considering speed, collision avoidance,

smallest step size, and interference.

According to Qian et al. [35], a single UAV might operate

as a mobile server, outsourcing computation-intensive tasks

to a group of mobile users moving along a random waypoint

model on the ground. Their proposed time-saving Monte Carlo

tree search algorithm was able to help them reach their goal
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of maximizing average throughput while considering energy

consumption and customer fairness. Ding et al. [36] addressed

the issue of 3-D drone trajectory and spectrum allocation, taking

into account the power consumption of drones and the fairness

regarding terrestrial users. To this end, they initially formu-

lated the power consumption of a drone as a function of 3-D

movement. After that, the fair throughput was maximized con-

sidering the limited energy. They proposed a new algorithm

based on deep reinforcement learning (DRL). The new method

enables the drone to, first, regulate the speed and direction in

order to improve energy efficiency and arrive at the desired

endpoint while still having energy, and second, allocate a spec-

trum band to realize fairness. Nguyen et al. [37] developed a

novel UAV-assisted IoT system that relies on the UAVs’ shortest

flight route to maximize the quantity of data collected from IoT

devices. The best trajectory and throughput in a specific coverage

region are then discovered using a DRL-based method. Follow-

ing training, the UAV can independently gather all the data from

user nodes with a marked increase in the total sum rate while

using the least amount of resources possible. Wang et al. [38] ex-

amined a drone-aided secure network with two types of drones,

where one drone travels around to transmit confidential data to

a moving user, and the other supportive drone, simultaneously,

sends fake noises to distract the attackers. The objective of the

authors was to maximize the worst-case secrecy rate of moving

users, considering the mobility of drones and users. The problem

was solved by jointly optimizing the 3-D trajectory of drones and

the time allocation, constrained by maximum drone speed, drone

collision avoidance, drone placement error, and drone energy

harvesting. To cope with nonconvexity issues arising from con-

straints, they divided the main problem into three subproblems

and developed an iterative algorithm to obtain the suboptimal

solution, exploiting the block coordinate descent method. To

solve the subproblems, they leveraged mathematical tools, in-

cluding integer relaxation, S-procedure, and successive convex

approximation.

Previous research in path optimization has concentrated

chiefly on the 2-D trajectory segment. As previously said, the

primary benefit of employing UAVs is to utilize their capac-

ity to change altitude. In addition, the majority of these re-

searches did not account for user movement. In the real world,

particularly in cellular network applications, users are always

on the move, which is critical for determining the future lo-

cation and trajectory of the FBSs. In addition, past research

frequently makes use of traditional clustering algorithms. These

clustering algorithms are location-aware and do not consider

data rate and user-requested QoS. In contrast, service to users

should be tailored to their location and the kind of service they

demand.

III. SYSTEM MODEL

In this article, a network of multiple FBSs is proposed to serve

cellular users during a disaster. In this scenario, we assume that

a disaster, such as a flood or an earthquake, has occurred in a

residential area. As a result of this event, ground BSs are out of

order and we are trying to provide the service users need with

Fig. 1. Possible scenario of FBS service.

the help of FBSs for emergency management. Fig. 1 presents a

possible situation of using FBSs in a disaster.

In such situations, not only user coverage is crucial; but also

it is essential to employ the fewest feasible FBSs and deploy

them in the most effective positions and altitudes to efficiently

cover users. In addition, we consider orthogonal frequency reuse

to prevent interference with the operation of other UAVs in

the network. We present a mathematical model for efficient

UAV placement as FBSs to cover 5G users. Our suggested

methodology reduces the number of UAVs necessary to cover

all users while maintaining the desired QoS. In addition, our

approach finds the most appropriate positions to minimize the

overall distance between users and FBSs, which causes the

minimization of total path loss in LoS situations.

To determine the ideal FBS positions, the model requires a set

of candidate points from which to pick. As people congregate

in specific locations throughout the disaster, we may categorize

them into groups. Each group’s center will serve as a candidate

point for the mathematical model used to deploy the FBSs.

To locate the appropriate candidate points, we employ a fuzzy

technique considering different numbers of groups. The pro-

posed FCPS will help us to the discretization of the continuous

space of the problem and get the output in a reasonable time,

without losing generality. In what follows, the performance of

the proposed technique to several groups of candidate points to

choose the best one is evaluated.

We also plan to build an FBS infrastructure to serve the users

caught in an area. After determining the optimal placements

of FBSs in various snapshots, to find the optimal trajectory for

FBSs, we offer a mathematical model based on the transportation

problem to minimize the overall distance traveled by FBSs. We

solve the mathematical model for transiting FBSs between two

snapshots.

We aim to obtain the appropriate 3-D FBSs locations, as

well as the optimal path for each of them within the operation

period. To this end, we first decouple the problem into multiple

snapshots. We solve the positioning problem in each snapshot,

taking into account the data rate of network users, limited

backhaul, and the range of the area covered. For this purpose, by

obtaining the backhaul at different altitudes and path loss states,
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we have obtained the minimum backhaul available for FBSs

to serve users. Taking this into account, we have chosen the

minimum backhaul available at different altitudes to serve FBS

users. To solve the positioning problem, we give a mathematical

model to obtain the optimal FBS location, minimizing the overall

distance between users and FBSs. As we assume a free space

environment, minimizing the distance between users and FBSs

has a direct relationship with link quality. The proposed model

requires candidate points, based on which decides on an FBS

location. To obtain the candidate points, we employ an FCPS

algorithm, considering user places and necessary data rates.

To this end, we consider an SDN-based infrastructure that is

almost aware of users’ positions and their data rate demanded.

We also employ the bisection method to minimize the number

of necessary FBSs. To this end, we initially consider a fixed

number of FBSs (P ), formulate the problem of obtaining an

optimum position for all P FBSs and solve it accurately in each

iteration of the bisection method, by exploiting a solver. Through

this, we decrease a biobjective optimization problem to bisection

and then solve a single-objective optimization problem in each

iteration. We will discuss how to obtain optimum P , later in

Section IV-C.

After obtaining the appropriate position for each FBS in each

snapshot, in the next step, we have to decide upon the destination

and traveling path of each FBS. We propose a mathematical

model to minimize the total distance traveled by FBSs. It is

worth noting that the number of necessary FBSs may change

at different snapshots. To cope with this challenge, in the case

that we require more FBSs in the next snapshot, more required

FBSs will fly from the base to the desired destinations. On the

other hand, if fewer FBSs are going to be needed, extra FBSs

land on the nest to recharge. Fig. 2 shows the frame diagram of

the model.

IV. PROBLEM FORMULATION

In this section, the mathematical models and formulation of

positioning and trajectory problem are discussed. Section IV-A

discusses the mathematical model of the positioning problem.

Section IV-B focuses on how to obtain candidate points through

the proposed FCPS technique. Section IV-C talks about ob-

taining the optimal number of required FBSs for the proposed

deploying mathematical model, and Section IV-D discusses the

mathematical model of the trajectory problem.

A. Mathematical Model of Positioning Problem

In the positioning problem, we aim to obtain the appropriate

positions of FBSs, covering users of the network. We have

two options to address this non-polnomial (NP)-hard problem:

heuristic or meta-heuristic methods, and mathematical program-

ming. In a mathematical programming with small dimensions,

we may utilize methods, such as branch-and-bound or cutting

plane, to obtain the optimum solution within a reasonable time.

To decrease the problem dimensions, we discretize the continu-

ous space.

Obtaining P optimal locations to deploy P FBSs in discrete

space is an example of a P-median problem, widely known

Fig. 2. Complete frame diagram of the model.

among positioning problems [39]. In a P-median problem, we

locate P facilities to minimize the demand-weighted average

distance between demanding customers and the closest facility

out of chosen ones. A P-median problem can be a capacitated or

uncapacitated facility location problem. Because each FBS has a
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TABLE I
PARAMETERS USED IN THE MATHEMATICAL MODEL

certain capacity, thus we formulate the problem as a capacitated

P-median problem.

In the P-median problem, the position of candidate points for

locating facilities is already known. We consider the points ob-

tained from discretizing 3-D space as candidate points, whereas

by applying a discrete setting on the 2-D space, we still encounter

an NP-hard problem, we can solve it more efficiently through an

intelligent discretization of 3-D space [25]. To avoid the impact

of noises and measurement errors on the locations, we assume

a normal distribution noise for the user position errors. Hence,

in general, the distance between FBSs and users will not be

impacted. We also presume that FBSs take advantage of dynamic

channel allocation or dynamic frequency selection techniques to

avoid interference. To formulate the positioning problem as an

optimization problem, our goal is to obtain the optimal location

for P FBSs so that the overall distance between users and their

covering FBSs is minimized, ensuring that all users are covered.

Here, we presume that the user coordinates, candidate points

(Ki), the backhaul (B), and each user’s data rate (ϕj) are known

as described in Table I. The sets of candidate points (I) are found

using FCPS and D is the number of candidate points. J is the

parameter of users set, U is the number of users, and dij is the

distance between FBS i from user j. Also, R is the coverage

radius of each FBS.

The objective function (1) aims to minimize the overall dis-

tance between users and FBSs, for placing FBSs in optimal

locations. Therefore, we need to determine, which FBS should

serve which users. In other words, we need to map each user

to an FBS. This is accomplished by xij , which equals to 1 if

user j is served by FBS i, otherwise is 0. As mentioned earlier,

we discretized the search space. Therefore, the FBSs are placed

on a collection of finite candidate points. In our optimization

problem, we denote the candidate points by Ki, which equals 1

if the ith candidate point is chosen for FBS positioning.

In the proposed optimization model, (2) specifies that each

user may only receive service from one single FBS. Because

xij is a binary variable, this constraint permits at most one FBS

to take the value 1. Constraint (3) considers each small cell’s

limited data rate. It indicates that the overall data rate of users

served by ith FBS may not exceed that of the small cell itself.

Constraint (4) allows to place only P FBSs. The Section IV-C

elaborates on how to determine theP , considering the demanded

QoS of the network users. Constraint (5) indicates that the

proportion of covered users to total users is one. This constraint

ensures that all users can access the services. Constraint (6)

indicates that user j may only be served by candidate point i,

if that point is chosen for FBS positioning. It is obvious that if

candidate point i is not chosen, it cannot serve any of the users.

Constraint (7) prevents users who are outside the coverage area

of a single small cell from receiving service provided by that cell.

In addition, (3) and (5) ensure that each FBS provides service at

maximum data rate capacity

min
x

∑

i∈I

∑

j∈J

dijxij (1)

s.t.

D∑

i=1

xij ≤ 1 ∀j ∈ J (2)

U∑

j=1

ϕjxij ≤ B ∀i ∈ I (3)

D∑

i=1

Ki = P (4)

U∑

j=1

D∑

i=1

xij = U. (5)

xij ≤ Ki ∀i ∈ I ∀j ∈ J (6)

xij = 0 ∀i ∈ I, j ∈ J, dij > R. (7)

Equations (7) and (5) do not exist in original P-median prob-

lem. As these limitations are similar to those of the covering

problem, our model thus consists of two NP-hard problems, i.e.,

P-median and covering. As a result, determining the optimal

location belongs to NP-hard. Since we may not find the optimal

point in a polynomial time regarding NP-hard problems, we

can utilize heuristic and metaheuristic algorithms to achieve a

reasonable problem solution. Another technique we can employ

is to decrease the problem size to a small-sized one to obtain

the optimum solution. Because the quantity of candidate points

influences the problem’s complexity, we strive to decrease the

size of our NP-hard problem by intelligently determining the

collection of candidate points and then solving it to achieve an

exact solution.

After formulating our problem, we need to address the best

set of candidate points to place FBSs. The candidate points

set (I) must be given to the proposed mathematical model for

deploying the FBSs. Also, we need to determine the optimum

value regarding the number of required FBSs (P ).

B. Fuzzy Candidate Points Selection

In the proposed mathematical model the points where the

FBSs may potentially be located has to be determined. With this

model and designating a limited number of points in the 3-D

plane, we may simplify the main optimization problem. Accord-

ingly, we select P points from a limited number of determined

locations rather than choosing them from an unlimited number
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of points. Now we carry on the discussion with the elaboration

of the approach to determining the candidate points through the

FCPS technique.

Fuzzy C-means (FCM) is a technique based on fuzzy logic,

which specifies the degree of an object’s membership belonging

to a cluster. In 1981, Bezdek [40] developed this technique as a

generalization of previous clustering techniques. The following

objective function is minimized in FCM:

Jm =

D∑

i=1

N∑

j=1

μm
ij ‖xi − cj‖

2
(8)

where D and N denote the number of data points and clusters,

respectively. xi is ith object and cj is the center of cluster j. In

addition, μij indicates the membership degree of xi in the jth

cluster, and m is the fuzzy partition matrix exponent parameter

to adjust the fuzzy overlap degree and has to be higher than one.

FCM makes fuzzy boundaries and overlap size refers to how

many objects are shared among clusters.

To cluster the data by FCM, at first, membership values are

specified randomly and then cluster centers are obtained by the

formula (9) based on μij and then μij is updated using formula

(10) [41].

cj =

∑D
i=1

μm
ijxij

∑D
i=1

μm
ij

(9)

μij =
1

∑N
k=1

( ‖xi−ci‖
‖xi−ck‖

)
2

m−1

(10)

The parameter m is a critical exponential parameter in de-

ciding where to place the centers of clusters and how much

overlap exists between them. If m equals one, FCM behaves like

the k-means method, otherwise when m is greater than one the

cluster overlaps grows and centers get close together. The value

of the parameter is determined by problem and data distribution,

as described in [42].

The FCM’s drawback is that it clusters users based on their

locations; however, the clustering itself is not satisfactory in the

FBS positioning and the user coverage problems. the required

data rate, like the users’ locations, is also a significant factor in

determining the FBSs’ locations. Leaving the clustering alone,

we tweaked the fuzzy technique to find the candidate points that

are more precise and relevant to the FBS positioning problem

in 5G networks and beyond. To this end, for each data rate of

1 Mbps demanded by each user, we consider another user in the

same location. For example, if the demanded data rate of a user

equals 10 Mbps, we assume that there are 10 users in the same

position, each demanding 1 Mbps data rate. In this approach, by

expanding the user density in the locations, where the demanded

user data rate is larger, the shortage of FCM can be compensated

and the data rate impact can also emerge in the candidate point

selection. Consequently, the candidate point selection technique

will operate more effectively.

The primary objective of this article is to solve the FBS

3-D positioning and trajectory problems. To address the 3-D

positioning problem, the candidate points, as the inputs of the

proposed mathematical model have to be 3-D too. Hence, after

Fig. 3. Users positions and selected candidate point.

obtaining the candidate points using the proposed method, which

determines candidate points based on the features of drones

employed in the problem, these points need to be converted

into 3-D candidate points. To this end, the elevation parameter

is applied to the 2-D candidate points’ positions. This parameter

can be obtained discretely, considering particular distances (de-

termined based on the problem) between the FBS’s lowest and

highest elevation.

Fig. 3 depicts the location of users and 2-D candidate points.

In addition, the radius of the user circle specifies the necessary

data rate for each user. The higher the required data rate is, the

larger the circle gets.

C. Finding Optimal P

Before solving the mathematical model, we require an appro-

priate P . This article’s proposal for determining the optimum

P is as follows. First, the maximum number of FBSs (Pmax)

that can be placed in the area is known, because of the restricted

number of FBSs employed. Second, the range of [1, Pmax] is

explored using the bisection algorithm with the computation

complexity of logPmax

2 . Finally, we may narrow the search space

down to [Pmin, Pmax], where Pmin comes from the following:

Pmin =
N ∗ ψ

B
(11)

where Pmin is the lower bound for the number of FBSs needed,

N is the number of users, ψ is the mean of users’ demanded data

rate, andB is the backhaul limitation. Suppose we assume that all

users are concentrated on one point. According to the backhaul

limit of the FBSs, the minimum number of FBSs required to

cover the desired data rate of users is equal to the product of the

number of users in their average requested data rate divided by

the amount of backhaul limit [24].
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We computePmin after obtaining 3-D candidate points. Given

the Pmax, we solve the problem of deploying P = Pmin+Pmax

2

FBSs, according to the mathematical model, by utilizing Cplex,

which is a commercially available solver software [43]. If we can

satisfy all constraints and provide at least one FBS to each user,

the problem has a feasible solution with P FBSs. Otherwise, the

answer space of the problem will be empty, and we consider it

infeasible. We update Pmax = P if the mathematical model has

both a feasible solution and also all users are covered, otherwise

update Pmin = P , and then again solve the problem by letting

P = Pmin+Pmax

2
. We carry on this procedure as long as Pmax is

greater than Pmin.

D. Mathematical Model of Trajectory Problem

We aim to obtain the optimal path for each FBS in the trajec-

tory phase. To this end, we have to obtain the optimal destination

for each FBS in each snapshot. We present a mathematical model

based on the transportation problem to obtain the appropriate

destination for each FBS. The goal of the mathematical model

is to minimize the total distance of moving from one location

to another. In this article, we intend to move some FBSs from

the location (xn, yn) at snapshot t to the location (xm, ym) at

snapshot t+ 1 with the minimum total distance

min
S

∑

m∈M

∑

n∈N

Smn ∗ distmn (12)

s.t.

∑

m∈M

Smn ≤ 1 ∀n ∈ N (13)

∑

n∈N

Smn ≤ 1 ∀m ∈ M (14)

M∑

m=1

N∑

n=1

Smn = max(M,N ). (15)

The (12), shows the objective function of the problem. The

sets M and N denote the points at snapshot t and t+ 1 re-

spectively. distmn is the distance between the point m and n.

We want to minimize the total distmn if the FBS moves from

point m to n. Smn is a 2-D array of binary variables indicating

if drone moves from point m at snapshot t to the point n at

snapshot t+ 1. According to the constraint (13), the sum of the

values of each row of the 2-D array (Smn) must be less than or

equal to one. Therefore, each FBS at time t can only move to

the one point at snapshot t+ 1. Constraint (14) indicates that

sum of the values of each column of the 2-D array (Smn) must

be less than or equal to one. Therefore, each point at snapshot

t+ 1 can only maintain one FBS. Constraint (15) states that the

number of determined routes between points at snapshot t and

points at snapshot t+ 1 has to be equivalent to the points at

snapshot t+ 1. This restriction prevents the number of routes

from approaching zero during the minimization.

After solving the trajectory problem, each FBS’s path is

specified between two snapshots. We may require more or fewer

FBSs in the following snapshot. Moreover, if we require fewer

Algorithm 1: Fuzzy-Based Trajectory Algorithm.

Inputs: Number of candidate points, Number of users,

Fuzzy exponent parameter, FBS’s minimum height,

FBS’s bandwidth, Users’ required data rate, and users’

location in each snapshot

Outputs: number of required FBSs in each snapshot,

FBSs’ location in each snapshot, Assign users to FBSs,

and Optimal FBSs’ 3-D trajectory between snapshots

1- Divide the operation time into several snapshots

2- while snapshot remains

3- Determine candidate points using FCPS Section IV-B

4- Calculate Pmin Section IV-C

5- while (Pmax − Pmin ≥ 1)

6- P ← 	Pmax+Pmin

2



7- Solve the proposed positioning model with P

FBSs IV-A

8- if (positioning model is feasible)

9- Pmax ← P

10- else

11- Pmin ← P

12- end if

13- end while

14- Solve the proposed trajectory model Section IV-D

15- if (more FBSs are needed than the last snapshot)

16- move FBSs to the destinations to cover users

17- else if (fewer FBS is needed than the last snapshot)

18- land extra FBSs on the nest to recharge

19- end while

FBSs, they may hover at their positions or land on the nest to be

recharged and prepared for future snapshots.

Algorithm 1 describes the whole approach of the proposed

model. To review, we divide the operation time into several snap-

shots. Then, while there is a remaining snapshot, the following

process continues; first, we find the appropriate candidate points

using FCPS. Then, we find the minimum number of required

FBS using (11). After that, while Pmax − Pmin ≥ 1, we solve

the proposed positioning model. If the positioning model had a

feasible solution, we replacePmax withP , otherwise; we replace

Pmin with P . This loop is called bisection. After finding the

best positions of FBSs in each snapshot, we solve the proposed

trajectory problem. Then, if more FBSs are needed than in the

previous snapshot, the FBSs fly to the determined destinations

to cover users. Otherwise, if fewer FBS is needed, each FBS

lands on the nest to recharge.

V. NUMERICAL RESULTS

A. Experiment Setup

In this section, the implementation results of the optimization

models for the FBSs deployment and trajectory are evaluated

in an example scenario utilizing the given methods. For sim-

ulation, as shown in Table II, we uses a 3000× 3000 m area

including 1000 users dispersed around the center of 15 random

spots through the Poisson point process. In the deployment

optimization model, we intend to obtain the minimum number
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TABLE II
TEST PARAMETERS TO EVALUATE THE PROBLEM MODEL

Fig. 4. Optimal FBS 3-D positioning with exponent parameter 1.1 and 120
candidate points.

of FBSs needed to cover more than 99.5% of users, considering

the backhaul limits. A maximum of 0.5% of users, which means

5 out of 1000 users, will be considered outlier data and will not

be served if located far from other users. However, the system

will try to serve 100% of the users.

We assume that each FBS’s data rate is 100 Mbps similar to a

5G picocell, with necessary user data rate following the uniform

distribution and random between 500 and 1500 kbps. The FBS

coverage radius is proportional to its elevation. We considered

eight elevation levels for each candidate point determined to

achieve the 3-D model. The first elevation is adjusted at 100 m

and each subsequent level is planned to expand the coverage area

by 1.5 times. The Cplex software is employed for solving the

optimization model. Furthermore, we perform runs of the given

method for three different fuzzy exponent parameters (1.1, 1.8,

and 2.4) and three different numbers of candidate points (100,

120, and 140) to obtain a good average result and determine

the effects of the considered parameters. Fig. 4 illustrates the

output of the proposed model with fuzzy-based candidate point

selection focused on users’ required data rate. It shows the

positions of users as blue points. The red points are the 3-D

location of FBSs gathered from the proposed model. The circles

are the coverage range of each FBS. In this run, the exponent

parameter is set to 1.1, and 120 candidate points are assumed.

Fig. 5. Optimal FBS 3-D Trajectory in 6 time slots.

Fig. 6. Average number of FBSs required in each exponent parameter and
number of candidate points.

As it shows, all users are covered by FBSs. Also, each FBS has

a specific altitude due to the proposed positioning model.

To provide service to users at different time slots, we need to

move the FBSs through the target area. The destination point of

each FBS will be determined with the help of transportation

theory. The proposed trajectory model ensures that the total

distance traveled by the FBSs is minimized. Fig. 5 shows the

trajectory obtained for FBSs through six consecutive time slots.

The red point shows the start point in the first time slot and

the direction is shown by an arrow. As it is shown, the FBS’s

altitude will change during the operation time to cover users

more efficiently.

To evaluate the proposed model, we ran the simulations 90

times. In these evaluations, three exponent parameters (1.1, 1.8,

and 2.4) and three different numbers of candidate points (100,

120, and 140) are run for ten different locations of users. Fig. 6
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Fig. 7. Candidate points presented in fuzzy algorithm with 2.4 exponent
parameter.

illustrates the average number of FBSs deployments achieved

by solving the optimization problem.

B. Simulations and Experiments Results

In comparison, as it is shown in Fig. 6, increasing the fuzzy

exponent parameter will increment the number of required

FBSs in a certain number of candidate points. The number

of necessary FBSs must increase because increasing the fuzzy

exponent parameter will bring the candidate points closer to the

center of the users’ cluster. Therefore, serving distant users will

necessitate a separate FBS. This problem increases to such an

extent that it will not be possible to optimize with the help of the

candidate points produced by the fuzzy exponent parameter 2.4;

the problem with this parameter will not be feasible because the

candidate points are very close to each other and users further

away are never covered by FBSs. Fig. 7 shows the candidate

points provided by the fuzzy exponent parameter 2.4, and it

shows the candidate points are located in the center of the users’

cluster, which will cause a large part of the users not to be served.

Hence, in the following result comparisons, we emit the fuzzy

exponent parameter 2.4.

Moreover, Fig. 6 displays a comparison of various candidate

points numbers. This figure shows that increasing the number

of candidate points can reduce the required FBSs because, with

more candidate points, the proposed mathematical model can

select better positions for FBSs.

To evaluate the proposed algorithm, we compare it with the

algorithms in [18]. As considered in [18], we ran the proposed

algorithm in 6 km × 6 km area where 500 or 600 users are ran-

domly distributed. Also, we considered elevation in 9 levels from

100 to 500 m, as we explained earlier. Since in [18], all users are

not covered, and path loss is considered, we covered all users, but

instead of path loss factor, we minimize the sum of the distance

Fig. 8. Number of FBSs required in different algorithms.

between users and FBSs, which can be assumed as an alternate

for path loss in a free space area. We compare our proposed

model with traditional FCM clustering, ordered artificial bee

colony (ABC)-based, edge-prior placement, K-means-based,

ordered partial swarm optimization (PSO)-based, and unordered

ABC-based approaches, which were proposed and compared

in [18]. The simulation result in Fig. 8 shows that the proposed

algorithm can solve the problem with the least number of FBSs

compared with traditional FCM and other methods.

In the trajectory part, the values of the proposed model’s

objective function are compared in Fig. 9. This comparison con-

siders the total distance traveled by FBSs among six consecutive

time slots, equivalent to five moves. This comparison reveals

that utilizing the 140 candidate points produces more sum of

distances than other cases. This comes from the fact that the

number of required FBSs with this parameter is fewer, so on

average FBSs must navigate more distance to meet the point in

the next time slot.

The efficiency of the backhaul is directly influenced by the

number of FBSs. In Fig. 10, the average data rate served by

each FBS is depicted across 90 simulation instances, considering

different exponent parameters and numbers of candidate points.

The results demonstrate that increasing the number of FBSs with

an exponent parameter of 1.8 leads to a decrease in the average

data rate provided by each FBS. Conversely, reducing the num-

ber of FBSs with an exponent parameter of 1.1 results in higher

data rate utilization per FBS. Moreover, increasing the number

of candidate points yields better FBS placements, ultimately

enhancing backhaul efficiency. Thus, the careful selection of

the appropriate number of FBSs holds significant potential to

enhance backhaul efficiency within the system.

The experiments have shown that the coefficient of the expo-

nent parameter and the number of candidate points directly affect
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Fig. 9. Summation of distances passed by FBSs considering different exponent
parameters and the number of candidate points.

Fig. 10. Average data rate that each FBS must serve.

the running time of our proposed trajectory model. As shown in

Fig. 11, in the scenario of fuzzy exponent parameter 1.1, with

the increase of candidate points number, the overall optimization

time increases. Contrariwise, in the 1.8 parameter scenario, the

overall optimization time decreases with the increase in the

number of candidate points. Therefore, if we must quickly obtain

the optimal trajectory and our exponent parameters are small, we

must choose fewer candidate points. However, if our exponent

parameters are large enough, we must use more candidate points.

Fig. 11. Overall optimization time considering different exponent parameters
and the number of candidate points.

Overall, choosing the right exponent parameter and the opti-

mal number of candidate points is crucial for solving this opti-

mization problem. Comparing different scenarios of candidate

point selection reveals some key insights. Using an exponent

value of 1.1 and 140 candidate points results in fewer required

FBSs to cover all users. However, if minimizing the trajectory

objective function is more important, using 100 candidate points

generally leads to lower objective function values. Among the

cases with 100 exponent parameters, the objective function value

is minimized when using 100 candidate points. Therefore, the

selection of exponent parameters and candidate points depends

on the specific optimization goals. To minimize the number

of required FBSs, it is recommended to use an exponent of

1.1 and a higher number of candidate points (e.g., 140). Con-

versely, if minimizing the trajectory objective function is the

priority, a lower number of candidate points (e.g., 100) should be

considered.

VI. CONCLUSION

In this study, a FBS infrastructure was proposed to guarantee

the required QoS and coverage for terrestrial cellular users that

suffer from communication outages due to damages to cellular

infrastructure during a disaster. The mathematical optimization

model and algorithms were presented to perform positioning and

trajectory for FBSs. Moreover, we have used a FCPS algorithm

to help us to solve the optimization model in a reasonable time.

Simulation results confirm that the proposed model and FCPS

algorithm could be an efficient method to perform positioning

and trajectory in 5G and beyond cellular networks. For future

works, we can predict users’ positions, or we can estimate

users’ distribution to find FBSs positions more efficiently. Also,

deploying the digital twin of the problem is another future work.
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We aim to develop more extensive and accurate datasets for

analysis and experimentation by using digital twin models. The

other concept that can be considered in future works is stochastic

constraints. The constraints, such as users’ positions, and their

required data rate are stochastic. Therefore, we can solve the

problem using stochastic approaches.
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