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Mohammad Javad Sobouti
Amirhossein Mohajerzadeh ", Mehdi Sookhak
Abedin Vahedian

Abstract—The need for continuous coverage, as well as low-
latency, and ultrareliable communication in 5G and beyond cellular
networks encouraged the deployment of high-altitude platforms
and low-altitude drones as flying base stations (FBSs) to provide
last-mile communication where high cost or geographical restric-
tions hinder the installation of terrestrial base stations (BSs) or
during the disasters where the BSs are damaged. The performance
of unmanned aerial vehicle (UAV)-assisted cellular systems in terms
of coverage and quality of service offered for terrestrial users
depends on the number of deployed FBSs, their 3-D location as
well as trajectory. While several recent works have studied the 3-D
positioning in UAV-assisted 5G networks, the problem of jointly
addressing coverage and user data rate has not been addressed yet.
In this article, we propose a solution for joint 3-D positioning and
trajectory planning of FBSs with the objectives of the total distance
between users and FBSs and minimizing the sum of FBSs flight
distance by developing a fuzzy candidate points selection method.

Index Terms—3-D positioning, flying base station (FBS), fuzzy
candidate point selection (FCPS), trajectory planning, unmanned
aerial vehicle (UAV)-assisted 5G.
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I. INTRODUCTION

EW-generation cellular networks deliver higher data
N transmission rates, better quality of service (QoS), and
more energy efficiency. Significant improvement in 5G perfor-
mance in terms of ultrareliability, low latency, high throughput,
and secure communication compared with the previous gen-
erations of cellular networks has paved the way for various
emerging use cases, such as augmented and virtual reality,
smart healthcare, smart cities, and smart transportation [1], [2].
According to an international telecommunication union study,
mobile traffic would surge to 5016 exabytes per month by 2030.
In addition, it was anticipated that the worldwide mobile user
base will grow to 13.8 billion by 2025 and 17.1 billion by
2030 [3], [4].

A. Unmanned Aerial Vehicle (UAV)-Assisted Solutions

The drone industry has been remarkably enhanced over re-
cent years and new applications of drones have appeared [5],
[6]. In recent years, UAVs have been deployed as flying base
stations (FBSs) to extend the coverage of cellular networks and
enhance QoS [7]. Exploiting FBSs to provide network users
with wider network coverage is a major application of UAVs
in cellular networks. The main idea behind employing UAVs
as FBSs is to achieve immediate and relatively reliable services
while encountering unwanted happenings and situations, e.g.,
earthquakes, floods, and damaged or broken base transceiver
stations. A key application of FBSs is to provide agile and
reliable communication services during man-made and natural
disasters, e.g., earthquakes and floods where the terrestrial base
stations (BSs) are damaged [8], [9]. Another motivation for the
installment of FBSs is where the positioning of terrestrial BSs
becomes uneconomical or impractical owing to mountainous,
rugged, and rocky terrain, and also when the cellular network
is suffering from high traffic loads, such as sports or cultural
events [10], [11]. Easy and low-cost deployment and the high
chance of line-of-sight (LoS) communication are amongst the
unique features offered by aerial BSs [12]. In addition, due to the
mobility capability of UAVs, in the case that the network status
deteriorates, UAVs can increase the QoS and decrease the im-
pairments by changing their positions. The mobility feature may
also increase the number of covered network users if required.

1937-9234 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A & M University - Corpus Christi. Downloaded on July 03,2024 at 14:33:21 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-6454-8911
https://orcid.org/0000-0002-8004-0111
https://orcid.org/0000-0001-7998-1283
https://orcid.org/0009-0002-6211-5180
https://orcid.org/0000-0002-2630-0429
https://orcid.org/0000-0001-5822-3432
https://orcid.org/0000-0002-0838-1800
https://orcid.org/0000-0002-8495-640X
https://orcid.org/0000-0002-2315-1173
mailto:javad.sobouti@mail.um.ac.ir
mailto:alaghehband@mail.um.ac.ir
mailto:alaghehband@mail.um.ac.ir
mailto:h.chitsaz@mail.um.ac.ir
mailto:hosseini@um.ac.ir
mailto:vahedian@um.ac.ir
mailto:vahedian@um.ac.ir
mailto:amirhossein@su.edu.om
mailto:haitham.adarbah@gulfcollege.edu.om
mailto:mehdi.sookhak@tamucc.edu
mailto:mehdi.sookhak@tamucc.edu
mailto:fafghah@clemson.edu

SOBOUTI et al.: EFFICIENT FUZZY-BASED 3-D FLYING BASE STATION POSITIONING AND TRAJECTORY FOR EMERGENCY MANAGEMENT IN 5G 815

Furthermore, network users may be also provided with upper
data rates by expanding the coverage and quantity of FBSs [13].

The implications for the FBS solution arise from the as-
sumption that the BS should have multiple antennas and analog
beamforming capabilities. Analog beamforming facilitates the
use of larger arrays and enhances spectral efficiency by steering
beams toward multiple users with different frequencies or time
slots. The FBS can enhance coverage and capacity, particularly
in mmWave bands with high path loss and LoS communication
needs. It can decrease hardware complexity and power usage in
FBS by using just one radio frequency chain per antenna array,
rather than one per antenna element like digital beamforming.
The FBS’s battery life and flight time can be extended while
reducing equipment cost and weight [14].

Analog beamforming may also pose limitations and chal-
lenges for the FBS solution. The lacks of spatial multiplexing
support, preventing it from transmitting multiple data streams to
one or multiple users simultaneously. Therefore, high-demand
applications like video streaming or virtual reality can be limited
by the data rate and throughput of the FBS. The user equipment
(UE) with analog beam former faces another challenge: fast and
accurate beam tracking. To maintain a reliable link with the UE,
the FBS must constantly adjust its beam direction and width. In
order to optimize its beamforming strategy, the UE must relay
its channel state information back to the drone BS. The feedback
process may cause slower response times and increased system
load, leading to decreased performance [15].

It is worth noting that new releases of the 3rd Generation Part-
nership Project included basic features for new radio to support
satellite communications; however, there are several issues yet
to be addressed for satellite-assisted communication, such as
long delay and high Doppler shifts [16]. UAV-assisted 5G com-
munication offers several advantages compared with satellites
to extend the coverage of 5G and beyond as summarized below.

1) Lower latency: Since UAVs are closer to the ground and
have shorter communication lines, UAV networks have
substantially less latency. This is crucial for real-time
applications that demand lower latency. Due to the longer
distance that signals must travel, satellites have substan-
tially higher delays.

2) Increased Flexibility: UAV networks are more flexible
since drones can be deployed and repositioned more
quickly and easily than satellites as needed. Satellites are
fixed in orbit once deployed.

B. Challenges of UAV-Based Networks

Since UAVs are usually battery-powered and have limited
energy resources, their deployment as aerial relays or BSs
requires optimal position and effective path planning strategies
to achieve the expected performance in terms of coverage
extension and QoS-improvement while extending the UAVs’
lifetime. Besides the 3-D positioning and the trajectory of UAVs,
the impact of interference caused by UAVs to neighbor BSs due
to strong LoS ray and channel modeling has been investigated
in developing UAV-assisted 5G networks. Numerous studies
have been undertaken on the 2-D and 3-D deployment of drones
and stations in various wireless networks [17], [18], [19]. In

addition, several studies have been conducted on the movement
of drones across wireless networks, the Internet of Things, and
sensor networks [20], [21]. We will review these works in the
next section in detail. We have conducted several studies on
routing challenges as well, which will be addressed in future
works [22], [23].

C. Contributions of This Article

In this article, we consider a disaster occurrence in the target
area. As mentioned, one of the applications of FBSs in cellular
networks is when disasters occur. With a disaster, first aid teams
start assisting and cooperating quickly, and communication be-
comes one of their most essential needs, particularly when the
disaster has destroyed terrestrial BSs. In such conditions, we
will need a fast deployment structure to make communication
available. Therefore, the target area is considered as free space
for attenuation.

We introduce an efficient fuzzy-based approach for position-
ing and trajectory of FBSs in emergency situations to overcome
QoS and network coverage challenges. Existing positioning and
trajectory approaches in the FBS domain are categorized based
on 2-D and 3-D operational altitudes. Most 2-D positioning
works overlook the ability of UAVs to change altitude on demand
and consider a small number of users and UAVs, while 3-D
positioning works have considered fewer limitations in solving
the problem in a reasonable time. Trajectory optimization works
have focused on both 2-D and 3-D trajectories, but most have not
considered user movement and have used traditional clustering
algorithms that are location-aware and do not consider data rate
and user-requested QoS.

Unlike the majority of earlier research, this article addresses
both coverage and data rate limits concurrently. The mathemati-
cal model provided in this article determines the UAV altitudes,
and we solve the problem using an accurate manner. In contrast
to existing commonly used methods, we describe a fuzzy candi-
date point selection (FCPS) approach that takes users’ locations
and their desired data rate into account. In addition, we present
a 3-D trajectory solution, whereas the majority of the literature
examines 2-D space. To sum up, the main contributions of this
article are as follows.

1) Proposing a fuzzy algorithm to find candidate points,
which significantly improves the performance of the pro-
posed positioning model.

2) Finding the minimum number of required FBSs to cover
and serve users using a heuristic method.

3) Considering the positioning and trajectory of FBSs to
improve not only the QoS but also minimize the number
of required FBSs.

The rest of this article is organized as follows. In Section II
we review the literature. Section III presents the system model
of the problem. In Section IV, the mathematical models and
formulation of positioning and trajectory problem are discussed.
In Section V, the performance of our proposed infrastructure is
evaluated. Finally, Section VI concludes this article.

II. RELATED WORKS

This article introduces an efficient fuzzy-based FBSs posi-
tioning and trajectory approach to overcome the QoS and the
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network coverage challenges in an emergency. This section
makes an overview of the existing positioning and trajectory
approaches in the FBS domain while categorizing them based
on 2-D and 3-D operational altitudes.

A. Positioning

Sobouti et al. [24] presented a multi-UAV efficient 2-D
placement algorithm covering IoT nodes. They exploited an
algorithm to obtain the least number of possible drones. A
mathematical model was also proposed to obtain suitable places,
where all drones on a 2-D plane lie at the same elevation. Since
the mathematical model needed candidate points to obtain a
suitable place for drones, a smart mesh method was presented.
Rahimi et al. [25] goal was to leverage the 5G cellular network
to supply the traffic required by participants of a sporting event
held in a rural region. An efficient approach to obtaining the
minimum number of necessary UAVs and the best 3-D location
for them was presented. In addition, they proposed an efficient
technique for finding candidate points and scoring points, named
MergCells. Wang and Yang [26] investigated a drone-enabled
cellular network with drones flying at a very lower elevation
and offering services to terrestrial users. The problem of finding
the optimal 3-D locations for drones was formulated more prac-
tically, considering the restrictions of 3-D space and terrestrial
obstacles. This article was aimed at improving the security of
wireless networks using UAVs. Zhong et al. [27] maximized the
overall number of the individuals covered while satisfying the
QoS requirements. They optimized the 3-D placement of drones
to address the individuals’ expected services. In this work, the
A2G path loss model was taken into account, and drones were
initially deployed horizontally by exploiting a genetic algorithm
and then vertically in order to maximize the coverage while
considering the data distribution rate. Their work, similar to
our proposed solution, addresses both coverage and data rate
limits concurrently; however, it does not take into account the
trajectory of UAVs. Our method covers both the placement and
trajectory of UAVs.

The primary flaw with 2-D positioning works is that they
overlooked the most significant characteristic of UAVs: the abil-
ity to change altitude on demand. In addition, most positioning
works consider a small number of users to service and a few
UAVs to deploy (often one or two UAVs). Moreover, to the best
of our knowledge, most of the works on UAV 3-D positioning
have considered a relatively small set of constraints to solve the
problemin areasonable time. As aresult, the developed solutions
are not practical and scalable for real scenarios. In addition, the
early works of literature often have solved optimization models
using heuristic or metaheuristic algorithms, which directly affect
the precision of the findings and are time-intensive.

B. Trajectory

Khamidehi and Sousa [21] optimized the path traveled by
multiple FBSs, maximizing the bit rate of mobile users. The
formulated problem constrains the strength of FBS, taking into
account the signal power, backhaul capacity, and interference.
The problem exploits a new algorithm on the basis of a sequential
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convex approximation method. Wang et al. [28] provided relay
drones with a SAG-LoRT architecture to load data from smart-
phones to the satellites located at low-Earth orbit. In order to
maximize network capacity, this work jointly optimized the con-
nection time of smartphones, power management, and drone tra-
jectory. The problem was modeled as nonlinear integer program-
ming. Zhang et al. [29] examined the drone-enabled emergency
networks, where drones serve as FBSs in order to gather data
from terrestrial individuals in disaster-affected regions. Owing
to the failure of the terrestrial power supply caused by disasters,
the accessible energy is insufficient for influenced user devices.
In addition, due to post-disaster environmental circumstances,
drone flight is influenced by terrestrial barriers. To tackle the
problem, the authors of this work modeled the drone trajectory
optimization problem with limits on user-device energy and the
position of terrestrial barriers to maximize the uplink efficiency
of drone networks within the flying period. As the user-device
energy limitation was dynamic, they turned the problem into a
constrained Markov decision-making process (CMDP) with the
drone as an agent. To solve CMDP, they presented a drone path
planning algorithm, based on safe deep Q-network, in which the
drone learns to do the best action based on sensible policies. UAV
paths for serving IoT devices were chosen based on a connected
graph in [30]. To find the shortest-path energy for conserva-
tive planning to meet the nodes dynamically, their suggested
technique, known as semidynamic mobile anchor guidance,
employed a weighted search algorithm. Wu etal. [31] proposed a
learning-based approach for optimal UAV caching and trajectory
in aerial-assisted vehicular networks. They formulated a joint
caching and trajectory optimization problem to maximize the
overall network throughput and proposed a deep supervised
learning scheme to enable real-time decision-making.

To jointly optimize the 3-D trajectory of the UAV and
the phase-shift of the reconfigurable intelligent surface,
Mei et al. [32] suggested the double deep Q-network and deep
deterministic policy gradient-based methods. The suggested
method has been demonstrated to be successful in increasing
the UAV’s energy efficiency while meeting ground terminals’
demands for data transfer. Cai et al. [33] introduced an IRS to
support NOMA-based UAV communication systems for numer-
ous ground users. By collaboratively constructing the resource
allocation plan, the UAV’s 3-D trajectory, and the phase control
at the IRS, they could reduce the average overall system energy
consumption. Liang et al. [34] looked at a real-world energy ef-
ficiency optimization challenge in a cognitive UAV communica-
tion system. By reusing the spectrum of the ground primary user,
the moving following UAV communicates data acquired to the
leading UAV. For this situation, a combined UAV trajectory and
resource allocation optimization approach is suggested. They
aimed to increase the cognitive UAV communication systems’
energy efficiency while considering speed, collision avoidance,
smallest step size, and interference.

According to Qian et al. [35], a single UAV might operate
as a mobile server, outsourcing computation-intensive tasks
to a group of mobile users moving along a random waypoint
model on the ground. Their proposed time-saving Monte Carlo
tree search algorithm was able to help them reach their goal
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of maximizing average throughput while considering energy
consumption and customer fairness. Ding et al. [36] addressed
the issue of 3-D drone trajectory and spectrum allocation, taking
into account the power consumption of drones and the fairness
regarding terrestrial users. To this end, they initially formu-
lated the power consumption of a drone as a function of 3-D
movement. After that, the fair throughput was maximized con-
sidering the limited energy. They proposed a new algorithm
based on deep reinforcement learning (DRL). The new method
enables the drone to, first, regulate the speed and direction in
order to improve energy efficiency and arrive at the desired
endpoint while still having energy, and second, allocate a spec-
trum band to realize fairness. Nguyen et al. [37] developed a
novel UAV-assisted [oT system that relies on the UAVs’ shortest
flight route to maximize the quantity of data collected from IoT
devices. The best trajectory and throughput in a specific coverage
region are then discovered using a DRL-based method. Follow-
ing training, the UAV can independently gather all the data from
user nodes with a marked increase in the total sum rate while
using the least amount of resources possible. Wang et al. [38] ex-
amined a drone-aided secure network with two types of drones,
where one drone travels around to transmit confidential data to
a moving user, and the other supportive drone, simultaneously,
sends fake noises to distract the attackers. The objective of the
authors was to maximize the worst-case secrecy rate of moving
users, considering the mobility of drones and users. The problem
was solved by jointly optimizing the 3-D trajectory of drones and
the time allocation, constrained by maximum drone speed, drone
collision avoidance, drone placement error, and drone energy
harvesting. To cope with nonconvexity issues arising from con-
straints, they divided the main problem into three subproblems
and developed an iterative algorithm to obtain the suboptimal
solution, exploiting the block coordinate descent method. To
solve the subproblems, they leveraged mathematical tools, in-
cluding integer relaxation, S-procedure, and successive convex
approximation.

Previous research in path optimization has concentrated
chiefly on the 2-D trajectory segment. As previously said, the
primary benefit of employing UAVs is to utilize their capac-
ity to change altitude. In addition, the majority of these re-
searches did not account for user movement. In the real world,
particularly in cellular network applications, users are always
on the move, which is critical for determining the future lo-
cation and trajectory of the FBSs. In addition, past research
frequently makes use of traditional clustering algorithms. These
clustering algorithms are location-aware and do not consider
data rate and user-requested QoS. In contrast, service to users
should be tailored to their location and the kind of service they
demand.

III. SYSTEM MODEL

In this article, a network of multiple FBSs is proposed to serve
cellular users during a disaster. In this scenario, we assume that
a disaster, such as a flood or an earthquake, has occurred in a
residential area. As a result of this event, ground BSs are out of
order and we are trying to provide the service users need with

Possible scenario of FBS service.

Fig. 1.

the help of FBSs for emergency management. Fig. 1 presents a
possible situation of using FBSs in a disaster.

In such situations, not only user coverage is crucial; but also
it is essential to employ the fewest feasible FBSs and deploy
them in the most effective positions and altitudes to efficiently
cover users. In addition, we consider orthogonal frequency reuse
to prevent interference with the operation of other UAVs in
the network. We present a mathematical model for efficient
UAV placement as FBSs to cover 5G users. Our suggested
methodology reduces the number of UAVs necessary to cover
all users while maintaining the desired QoS. In addition, our
approach finds the most appropriate positions to minimize the
overall distance between users and FBSs, which causes the
minimization of total path loss in LoS situations.

To determine the ideal FBS positions, the model requires a set
of candidate points from which to pick. As people congregate
in specific locations throughout the disaster, we may categorize
them into groups. Each group’s center will serve as a candidate
point for the mathematical model used to deploy the FBSs.
To locate the appropriate candidate points, we employ a fuzzy
technique considering different numbers of groups. The pro-
posed FCPS will help us to the discretization of the continuous
space of the problem and get the output in a reasonable time,
without losing generality. In what follows, the performance of
the proposed technique to several groups of candidate points to
choose the best one is evaluated.

We also plan to build an FBS infrastructure to serve the users
caught in an area. After determining the optimal placements
of FBSs in various snapshots, to find the optimal trajectory for
FBSs, we offer a mathematical model based on the transportation
problem to minimize the overall distance traveled by FBSs. We
solve the mathematical model for transiting FBSs between two
snapshots.

We aim to obtain the appropriate 3-D FBSs locations, as
well as the optimal path for each of them within the operation
period. To this end, we first decouple the problem into multiple
snapshots. We solve the positioning problem in each snapshot,
taking into account the data rate of network users, limited
backhaul, and the range of the area covered. For this purpose, by
obtaining the backhaul at different altitudes and path loss states,
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we have obtained the minimum backhaul available for FBSs
to serve users. Taking this into account, we have chosen the
minimum backhaul available at different altitudes to serve FBS
users. To solve the positioning problem, we give a mathematical
model to obtain the optimal FBS location, minimizing the overall
distance between users and FBSs. As we assume a free space
environment, minimizing the distance between users and FBSs
has a direct relationship with link quality. The proposed model
requires candidate points, based on which decides on an FBS
location. To obtain the candidate points, we employ an FCPS
algorithm, considering user places and necessary data rates.
To this end, we consider an SDN-based infrastructure that is
almost aware of users’ positions and their data rate demanded.
We also employ the bisection method to minimize the number
of necessary FBSs. To this end, we initially consider a fixed
number of FBSs (P), formulate the problem of obtaining an
optimum position for all P FBSs and solve it accurately in each
iteration of the bisection method, by exploiting a solver. Through
this, we decrease a biobjective optimization problem to bisection
and then solve a single-objective optimization problem in each
iteration. We will discuss how to obtain optimum P, later in
Section IV-C.

After obtaining the appropriate position for each FBS in each
snapshot, in the next step, we have to decide upon the destination
and traveling path of each FBS. We propose a mathematical
model to minimize the total distance traveled by FBSs. It is
worth noting that the number of necessary FBSs may change
at different snapshots. To cope with this challenge, in the case
that we require more FBSs in the next snapshot, more required
FBSs will fly from the base to the desired destinations. On the
other hand, if fewer FBSs are going to be needed, extra FBSs
land on the nest to recharge. Fig. 2 shows the frame diagram of
the model.

IV. PROBLEM FORMULATION

In this section, the mathematical models and formulation of
positioning and trajectory problem are discussed. Section IV-A
discusses the mathematical model of the positioning problem.
Section I'V-B focuses on how to obtain candidate points through
the proposed FCPS technique. Section IV-C talks about ob-
taining the optimal number of required FBSs for the proposed
deploying mathematical model, and Section IV-D discusses the
mathematical model of the trajectory problem.

A. Mathematical Model of Positioning Problem

In the positioning problem, we aim to obtain the appropriate
positions of FBSs, covering users of the network. We have
two options to address this non-polnomial (NP)-hard problem:
heuristic or meta-heuristic methods, and mathematical program-
ming. In a mathematical programming with small dimensions,
we may utilize methods, such as branch-and-bound or cutting
plane, to obtain the optimum solution within a reasonable time.
To decrease the problem dimensions, we discretize the continu-
ous space.

Obtaining P optimal locations to deploy P FBSs in discrete
space is an example of a P-median problem, widely known

IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

Users positions

Ny

s RN
8 onu!é‘ T ) & ) [
Vo !ll. T i

) &, l‘. =

»»

Y

Finding candidate points using FCSP

A

Finding FBSs proper positions

Moving FBSs to new positions

Fig.2. Complete frame diagram of the model.

among positioning problems [39]. In a P-median problem, we
locate P facilities to minimize the demand-weighted average
distance between demanding customers and the closest facility
out of chosen ones. A P-median problem can be a capacitated or
uncapacitated facility location problem. Because each FBS has a
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TABLE I
PARAMETERS USED IN THE MATHEMATICAL MODEL

Parameters Description

I Candidate points set for deploying FBSs
J Users set

B The backhaul of each small cell (Mbps)
®; Required data rate of user j (Mbps)

dij The distance of FBS ¢ from user j (m)
R Coverage radius of each small cell (m)
K;

P

D

U

Candidate Point ¢

The number of FBSs that should be deployed

The number of candidate points for FBS positioning
The total number of users

Tij Decision variable. If user j covers by FBS i, the variable
is set to 1; otherwise, 0.

certain capacity, thus we formulate the problem as a capacitated
P-median problem.

In the P-median problem, the position of candidate points for
locating facilities is already known. We consider the points ob-
tained from discretizing 3-D space as candidate points, whereas
by applying a discrete setting on the 2-D space, we still encounter
an NP-hard problem, we can solve it more efficiently through an
intelligent discretization of 3-D space [25]. To avoid the impact
of noises and measurement errors on the locations, we assume
a normal distribution noise for the user position errors. Hence,
in general, the distance between FBSs and users will not be
impacted. We also presume that FBSs take advantage of dynamic
channel allocation or dynamic frequency selection techniques to
avoid interference. To formulate the positioning problem as an
optimization problem, our goal is to obtain the optimal location
for P FBSs so that the overall distance between users and their
covering FBSs is minimized, ensuring that all users are covered.
Here, we presume that the user coordinates, candidate points
(K;), the backhaul (B), and each user’s data rate (¢;) are known
as described in Table I. The sets of candidate points (I) are found
using FCPS and D is the number of candidate points. .J is the
parameter of users set, U is the number of users, and d;; is the
distance between FBS i from user j. Also, R is the coverage
radius of each FBS.

The objective function (1) aims to minimize the overall dis-
tance between users and FBSs, for placing FBSs in optimal
locations. Therefore, we need to determine, which FBS should
serve which users. In other words, we need to map each user
to an FBS. This is accomplished by x;;, which equals to 1 if
user j is served by FBS i, otherwise is 0. As mentioned earlier,
we discretized the search space. Therefore, the FBSs are placed
on a collection of finite candidate points. In our optimization
problem, we denote the candidate points by K;, which equals 1
if the 7th candidate point is chosen for FBS positioning.

In the proposed optimization model, (2) specifies that each
user may only receive service from one single FBS. Because
245 18 a binary variable, this constraint permits at most one FBS
to take the value 1. Constraint (3) considers each small cell’s
limited data rate. It indicates that the overall data rate of users
served by ith FBS may not exceed that of the small cell itself.
Constraint (4) allows to place only P FBSs. The Section IV-C
elaborates on how to determine the P, considering the demanded
QoS of the network users. Constraint (5) indicates that the

proportion of covered users to total users is one. This constraint
ensures that all users can access the services. Constraint (6)
indicates that user j may only be served by candidate point ¢,
if that point is chosen for FBS positioning. It is obvious that if
candidate point ¢ is not chosen, it cannot serve any of the users.
Constraint (7) prevents users who are outside the coverage area
of a single small cell from receiving service provided by that cell.
In addition, (3) and (5) ensure that each FBS provides service at
maximum data rate capacity

miny Y diji; M

el jeJ
S.t.
D
dowy <1l VieJ @
i=1
U
> i <B  Viel 3)
j=1
D
Z K,=P 4)

U D
ZZ%:U. )

j=1 =1
il?ijzo Vie],jEJ,dij>R. (7)

Equations (7) and (5) do not exist in original P-median prob-
lem. As these limitations are similar to those of the covering
problem, our model thus consists of two NP-hard problems, i.e.,
P-median and covering. As a result, determining the optimal
location belongs to NP-hard. Since we may not find the optimal
point in a polynomial time regarding NP-hard problems, we
can utilize heuristic and metaheuristic algorithms to achieve a
reasonable problem solution. Another technique we can employ
is to decrease the problem size to a small-sized one to obtain
the optimum solution. Because the quantity of candidate points
influences the problem’s complexity, we strive to decrease the
size of our NP-hard problem by intelligently determining the
collection of candidate points and then solving it to achieve an
exact solution.

After formulating our problem, we need to address the best
set of candidate points to place FBSs. The candidate points
set (/) must be given to the proposed mathematical model for
deploying the FBSs. Also, we need to determine the optimum
value regarding the number of required FBSs (P).

B. Fuzzy Candidate Points Selection

In the proposed mathematical model the points where the
FBSs may potentially be located has to be determined. With this
model and designating a limited number of points in the 3-D
plane, we may simplify the main optimization problem. Accord-
ingly, we select P points from a limited number of determined
locations rather than choosing them from an unlimited number
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of points. Now we carry on the discussion with the elaboration
of the approach to determining the candidate points through the
FCPS technique.

Fuzzy C-means (FCM) is a technique based on fuzzy logic,
which specifies the degree of an object’s membership belonging
to a cluster. In 1981, Bezdek [40] developed this technique as a
generalization of previous clustering techniques. The following
objective function is minimized in FCM:

D N
T = D> it s — ;12

i=1 j=1

®)

where D and N denote the number of data points and clusters,
respectively. x; is ith object and ¢; is the center of cluster j. In
addition, y;; indicates the membership degree of x; in the jth
cluster, and m is the fuzzy partition matrix exponent parameter
to adjust the fuzzy overlap degree and has to be higher than one.
FCM makes fuzzy boundaries and overlap size refers to how
many objects are shared among clusters.

To cluster the data by FCM, at first, membership values are
specified randomly and then cluster centers are obtained by the
formula (9) based on 1;; and then ;5 is updated using formula
(10) [41].

Sl
Ezpzl NZ‘L
1

Sl (k7=

The parameter m is a critical exponential parameter in de-
ciding where to place the centers of clusters and how much
overlap exists between them. If m equals one, FCM behaves like
the k-means method, otherwise when m is greater than one the
cluster overlaps grows and centers get close together. The value
of the parameter is determined by problem and data distribution,
as described in [42].

The FCM’s drawback is that it clusters users based on their
locations; however, the clustering itself is not satisfactory in the
FBS positioning and the user coverage problems. the required
data rate, like the users’ locations, is also a significant factor in
determining the FBSs’ locations. Leaving the clustering alone,
we tweaked the fuzzy technique to find the candidate points that
are more precise and relevant to the FBS positioning problem
in 5G networks and beyond. To this end, for each data rate of
1 Mbps demanded by each user, we consider another user in the
same location. For example, if the demanded data rate of a user
equals 10 Mbps, we assume that there are 10 users in the same
position, each demanding 1 Mbps data rate. In this approach, by
expanding the user density in the locations, where the demanded
user data rate is larger, the shortage of FCM can be compensated
and the data rate impact can also emerge in the candidate point
selection. Consequently, the candidate point selection technique
will operate more effectively.

The primary objective of this article is to solve the FBS
3-D positioning and trajectory problems. To address the 3-D
positioning problem, the candidate points, as the inputs of the
proposed mathematical model have to be 3-D too. Hence, after

C))

Cj:

(10)

Mg
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Fig. 3. Users positions and selected candidate point.

obtaining the candidate points using the proposed method, which
determines candidate points based on the features of drones
employed in the problem, these points need to be converted
into 3-D candidate points. To this end, the elevation parameter
is applied to the 2-D candidate points’ positions. This parameter
can be obtained discretely, considering particular distances (de-
termined based on the problem) between the FBS’s lowest and
highest elevation.

Fig. 3 depicts the location of users and 2-D candidate points.
In addition, the radius of the user circle specifies the necessary
data rate for each user. The higher the required data rate is, the
larger the circle gets.

C. Finding Optimal P

Before solving the mathematical model, we require an appro-
priate P. This article’s proposal for determining the optimum
P is as follows. First, the maximum number of FBSs (Pp,ax)
that can be placed in the area is known, because of the restricted
number of FBSs employed. Second, the range of [1, Pyax] is
explored using the bisection algorithm with the computation
complexity of logg =< _Finally, we may narrow the search space
down t0 [Prin, Pmax), where Py, comes from the following:

(1)

where P,;, is the lower bound for the number of FBSs needed,
N is the number of users, ¢ is the mean of users’ demanded data
rate, and B is the backhaul limitation. Suppose we assume that all
users are concentrated on one point. According to the backhaul
limit of the FBSs, the minimum number of FBSs required to
cover the desired data rate of users is equal to the product of the
number of users in their average requested data rate divided by
the amount of backhaul limit [24].
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We compute P,;,, after obtaining 3-D candidate points. Given
the P ax, we solve the problem of deploying P = W
FBSs, according to the mathematical model, by utilizing Cplex,
which is acommercially available solver software [43]. If we can
satisfy all constraints and provide at least one FBS to each user,
the problem has a feasible solution with P FBSs. Otherwise, the
answer space of the problem will be empty, and we consider it
infeasible. We update P,,,x = P if the mathematical model has
both a feasible solution and also all users are covered, otherwise
update Pi, = P, and then again solve the problem by letting
P= % We carry on this procedure as long as Py, 1S
greater than P, .

D. Mathematical Model of Trajectory Problem

We aim to obtain the optimal path for each FBS in the trajec-
tory phase. To this end, we have to obtain the optimal destination
for each FBS in each snapshot. We present a mathematical model
based on the transportation problem to obtain the appropriate
destination for each FBS. The goal of the mathematical model
is to minimize the total distance of moving from one location
to another. In this article, we intend to move some FBSs from
the location (z,,, ¥, ) at snapshot ¢ to the location (,, y,,) at
snapshot ¢ 4+ 1 with the minimum total distance

InSin Z Z Smn * diStmn (12)
meM neN
S.t.

> Spn<1 VneN (13)
meM

> S <1 VmeM (14)
nenN

M N

> Spn = max(M, N). (15)
m=1n=1

The (12), shows the objective function of the problem. The
sets M and N denote the points at snapshot ¢ and ¢ + 1 re-
spectively. dist,,,, is the distance between the point m and n.
We want to minimize the total dist,, if the FBS moves from
point m to n. Sy, is a 2-D array of binary variables indicating
if drone moves from point m at snapshot ¢ to the point n at
snapshot ¢ + 1. According to the constraint (13), the sum of the
values of each row of the 2-D array (S,,,,,) must be less than or
equal to one. Therefore, each FBS at time ¢ can only move to
the one point at snapshot ¢ + 1. Constraint (14) indicates that
sum of the values of each column of the 2-D array (S,,,) must
be less than or equal to one. Therefore, each point at snapshot
t + 1 can only maintain one FBS. Constraint (15) states that the
number of determined routes between points at snapshot ¢ and
points at snapshot ¢ 4 1 has to be equivalent to the points at
snapshot ¢ + 1. This restriction prevents the number of routes
from approaching zero during the minimization.

After solving the trajectory problem, each FBS’s path is
specified between two snapshots. We may require more or fewer
FBSs in the following snapshot. Moreover, if we require fewer

Algorithm 1: Fuzzy-Based Trajectory Algorithm.

Inputs: Number of candidate points, Number of users,
Fuzzy exponent parameter, FBS’s minimum height,
FBS’s bandwidth, Users’ required data rate, and users’
location in each snapshot

Outputs: number of required FBSs in each snapshot,
FBSs’ location in each snapshot, Assign users to FBSs,
and Optimal FBSs’ 3-D trajectory between snapshots

1- Divide the operation time into several snapshots

2- while snapshot remains

3- Determine candidate points using FCPS Section IV-B

4- Calculate P,,;, Section IV-C

5- while (Pmax - Pmin > 1)

6- P+ Lip‘“axgpm‘“J

7-  Solve the proposed positioning model with P

FBSs IV-A
8- if (positioning model is feasible)
9- Prax < P

10- else
11- Prnin —~ P
12-  endif

13- end while

14- Solve the proposed trajectory model Section IV-D
15- if (more FBSs are needed than the last snapshot)
16- move FBSs to the destinations to cover users

17- else if (fewer FBS is needed than the last snapshot)
18- land extra FBSs on the nest to recharge

19- end while

FBSs, they may hover at their positions or land on the nest to be
recharged and prepared for future snapshots.

Algorithm 1 describes the whole approach of the proposed
model. To review, we divide the operation time into several snap-
shots. Then, while there is a remaining snapshot, the following
process continues; first, we find the appropriate candidate points
using FCPS. Then, we find the minimum number of required
FBS using (11). After that, while Pyax — Pmin > 1, we solve
the proposed positioning model. If the positioning model had a
feasible solution, we replace P,,,x With P, otherwise; we replace
Phin with P. This loop is called bisection. After finding the
best positions of FBSs in each snapshot, we solve the proposed
trajectory problem. Then, if more FBSs are needed than in the
previous snapshot, the FBSs fly to the determined destinations
to cover users. Otherwise, if fewer FBS is needed, each FBS
lands on the nest to recharge.

V. NUMERICAL RESULTS
A. Experiment Setup

In this section, the implementation results of the optimization
models for the FBSs deployment and trajectory are evaluated
in an example scenario utilizing the given methods. For sim-
ulation, as shown in Table II, we uses a 3000 x 3000 m area
including 1000 users dispersed around the center of 15 random
spots through the Poisson point process. In the deployment
optimization model, we intend to obtain the minimum number
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TABLE I
TEST PARAMETERS TO EVALUATE THE PROBLEM MODEL

| Parameters | Description |
Region 3000 x 3000 m
Number of users (U) 1000
FBS’s backhaul (B) 100 Mbps
Users’ required data rate (¢;) 500-1500 kbps
Minimum altitude (Hpin) 100 m
Fuzzy exponent parameters 1.1, 1.8, 2.4
Number of candidate points (K) 100, 120, 140
500 . e
€ 300 * * * * -
100 *> X
0
3500 -500
Fig. 4. Optimal FBS 3-D positioning with exponent parameter 1.1 and 120

candidate points.

of FBSs needed to cover more than 99.5% of users, considering
the backhaul limits. A maximum of 0.5% of users, which means
5 out of 1000 users, will be considered outlier data and will not
be served if located far from other users. However, the system
will try to serve 100% of the users.

We assume that each FBS’s data rate is 100 Mbps similar to a
5G picocell, with necessary user data rate following the uniform
distribution and random between 500 and 1500 kbps. The FBS
coverage radius is proportional to its elevation. We considered
eight elevation levels for each candidate point determined to
achieve the 3-D model. The first elevation is adjusted at 100 m
and each subsequent level is planned to expand the coverage area
by 1.5 times. The Cplex software is employed for solving the
optimization model. Furthermore, we perform runs of the given
method for three different fuzzy exponent parameters (1.1, 1.8,
and 2.4) and three different numbers of candidate points (100,
120, and 140) to obtain a good average result and determine
the effects of the considered parameters. Fig. 4 illustrates the
output of the proposed model with fuzzy-based candidate point
selection focused on users’ required data rate. It shows the
positions of users as blue points. The red points are the 3-D
location of FBSs gathered from the proposed model. The circles
are the coverage range of each FBS. In this run, the exponent
parameter is set to 1.1, and 120 candidate points are assumed.
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Fig. 6.  Average number of FBSs required in each exponent parameter and
number of candidate points.

As it shows, all users are covered by FBSs. Also, each FBS has
a specific altitude due to the proposed positioning model.

To provide service to users at different time slots, we need to
move the FBSs through the target area. The destination point of
each FBS will be determined with the help of transportation
theory. The proposed trajectory model ensures that the total
distance traveled by the FBSs is minimized. Fig. 5 shows the
trajectory obtained for FBSs through six consecutive time slots.
The red point shows the start point in the first time slot and
the direction is shown by an arrow. As it is shown, the FBS’s
altitude will change during the operation time to cover users
more efficiently.

To evaluate the proposed model, we ran the simulations 90
times. In these evaluations, three exponent parameters (1.1, 1.8,
and 2.4) and three different numbers of candidate points (100,
120, and 140) are run for ten different locations of users. Fig. 6
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Fig. 7. Candidate points presented in fuzzy algorithm with 2.4 exponent

parameter.

illustrates the average number of FBSs deployments achieved
by solving the optimization problem.

B. Simulations and Experiments Results

In comparison, as it is shown in Fig. 6, increasing the fuzzy
exponent parameter will increment the number of required
FBSs in a certain number of candidate points. The number
of necessary FBSs must increase because increasing the fuzzy
exponent parameter will bring the candidate points closer to the
center of the users’ cluster. Therefore, serving distant users will
necessitate a separate FBS. This problem increases to such an
extent that it will not be possible to optimize with the help of the
candidate points produced by the fuzzy exponent parameter 2.4;
the problem with this parameter will not be feasible because the
candidate points are very close to each other and users further
away are never covered by FBSs. Fig. 7 shows the candidate
points provided by the fuzzy exponent parameter 2.4, and it
shows the candidate points are located in the center of the users’
cluster, which will cause a large part of the users not to be served.
Hence, in the following result comparisons, we emit the fuzzy
exponent parameter 2.4.

Moreover, Fig. 6 displays a comparison of various candidate
points numbers. This figure shows that increasing the number
of candidate points can reduce the required FBSs because, with
more candidate points, the proposed mathematical model can
select better positions for FBSs.

To evaluate the proposed algorithm, we compare it with the
algorithms in [18]. As considered in [18], we ran the proposed
algorithm in 6 km x 6 km area where 500 or 600 users are ran-
domly distributed. Also, we considered elevation in 9 levels from
100 to 500 m, as we explained earlier. Since in [18], all users are
not covered, and path loss is considered, we covered all users, but
instead of path loss factor, we minimize the sum of the distance

80 1
70+ 1
60 1
e 1
E
=
g 40 1
€
=)
Z st L 1
I Proposed Algorithm
I FCM-based
20+ [JOrdered ABC-based ||
Edge-Prior Placement
I K-means-based
10 F [ Ordered PSO-based |-
I Unordered ABC-based
T Standard Deviation
0
Number of Users
Fig. 8. Number of FBSs required in different algorithms.

between users and FBSs, which can be assumed as an alternate
for path loss in a free space area. We compare our proposed
model with traditional FCM clustering, ordered artificial bee
colony (ABC)-based, edge-prior placement, K-means-based,
ordered partial swarm optimization (PSO)-based, and unordered
ABC-based approaches, which were proposed and compared
in [18]. The simulation result in Fig. 8 shows that the proposed
algorithm can solve the problem with the least number of FBSs
compared with traditional FCM and other methods.

In the trajectory part, the values of the proposed model’s
objective function are compared in Fig. 9. This comparison con-
siders the total distance traveled by FBSs among six consecutive
time slots, equivalent to five moves. This comparison reveals
that utilizing the 140 candidate points produces more sum of
distances than other cases. This comes from the fact that the
number of required FBSs with this parameter is fewer, so on
average FBSs must navigate more distance to meet the point in
the next time slot.

The efficiency of the backhaul is directly influenced by the
number of FBSs. In Fig. 10, the average data rate served by
each FBS is depicted across 90 simulation instances, considering
different exponent parameters and numbers of candidate points.
The results demonstrate that increasing the number of FBSs with
an exponent parameter of 1.8 leads to a decrease in the average
data rate provided by each FBS. Conversely, reducing the num-
ber of FBSs with an exponent parameter of 1.1 results in higher
data rate utilization per FBS. Moreover, increasing the number
of candidate points yields better FBS placements, ultimately
enhancing backhaul efficiency. Thus, the careful selection of
the appropriate number of FBSs holds significant potential to
enhance backhaul efficiency within the system.

The experiments have shown that the coefficient of the expo-
nent parameter and the number of candidate points directly affect
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Fig. 10.  Average data rate that each FBS must serve.

the running time of our proposed trajectory model. As shown in
Fig. 11, in the scenario of fuzzy exponent parameter 1.1, with
the increase of candidate points number, the overall optimization
time increases. Contrariwise, in the 1.8 parameter scenario, the
overall optimization time decreases with the increase in the
number of candidate points. Therefore, if we must quickly obtain
the optimal trajectory and our exponent parameters are small, we
must choose fewer candidate points. However, if our exponent
parameters are large enough, we must use more candidate points.
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Overall, choosing the right exponent parameter and the opti-
mal number of candidate points is crucial for solving this opti-
mization problem. Comparing different scenarios of candidate
point selection reveals some key insights. Using an exponent
value of 1.1 and 140 candidate points results in fewer required
FBSs to cover all users. However, if minimizing the trajectory
objective function is more important, using 100 candidate points
generally leads to lower objective function values. Among the
cases with 100 exponent parameters, the objective function value
is minimized when using 100 candidate points. Therefore, the
selection of exponent parameters and candidate points depends
on the specific optimization goals. To minimize the number
of required FBSs, it is recommended to use an exponent of
1.1 and a higher number of candidate points (e.g., 140). Con-
versely, if minimizing the trajectory objective function is the
priority, a lower number of candidate points (e.g., 100) should be
considered.

VI. CONCLUSION

In this study, a FBS infrastructure was proposed to guarantee
the required QoS and coverage for terrestrial cellular users that
suffer from communication outages due to damages to cellular
infrastructure during a disaster. The mathematical optimization
model and algorithms were presented to perform positioning and
trajectory for FBSs. Moreover, we have used a FCPS algorithm
to help us to solve the optimization model in a reasonable time.
Simulation results confirm that the proposed model and FCPS
algorithm could be an efficient method to perform positioning
and trajectory in 5G and beyond cellular networks. For future
works, we can predict users’ positions, or we can estimate
users’ distribution to find FBSs positions more efficiently. Also,
deploying the digital twin of the problem is another future work.
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We aim to develop more extensive and accurate datasets for
analysis and experimentation by using digital twin models. The
other concept that can be considered in future works is stochastic
constraints. The constraints, such as users’ positions, and their
required data rate are stochastic. Therefore, we can solve the
problem using stochastic approaches.
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