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ABSTRACT. In this article we study a theory of support varieties over a skew
complete intersection R, i.e. a skew polynomial ring modulo an ideal generated
by a sequence of regular normal elements. We compute the derived braided
Hochschild cohomology of R relative to the skew polynomial ring and show
its action on Extr(M, N) is noetherian for finitely generated R-modules M
and N respecting the braiding of R. When the parameters defining the skew
polynomial ring are roots of unity we use this action to define a support theory.
In this setting applications include a proof of the Generalized Auslander-Reiten
Conjecture and that R possesses symmetric complexity.

INTRODUCTION

The use of the cohomological spectrum has had a tremendous impact on modular
representation theory; two notable works are those of Carlson [17] and Quillen [32].
Inspired by these successes, similar theories of support have been developed and
successfully applied for different kinds of algebras. For example, for restricted Lie
algebras [23], finite-dimensional graded connected cocommutative Hopf algebras
[28], commutative complete intersections [4], and quantum complete intersections
[12).

In this paper we define and study a support variety theory for skew complete
intersections, a class of rings first studied in [22] by the first and second author;
skew complete intersections contain the class of commutative graded complete in-
tersections and the class of quantum complete intersections. Let k be a field and let
Q = kq[z1,...,2,] be a skew polynomial ring, i.e., a polynomial ring such that the
variables skew commute x;x; = ¢; ;2;%;, with ¢;; € k*, ¢;; =1 and ¢; ; = q;il for
all 7, j. A skew complete intersection R is quotient of @) by an ideal generated by a
regular sequence of normal elements. To define these support varieties we use color
DG homological algebra, a theory that was developed in [22]. The support theory
itself is inspired by ideas present in [3] and further developed in [30], to transfer the
well behaved homological properties over ) to homological properties over R. In
particular, we prescribe the graded Ext modules over R with a ring of cohomology
operators for which the action is noetherian.

We arrive at this ring of cohomological operators in two ways. First, we realize
these operators as the derived braided Hochschild cohomology of R over Q. It is
worth contrasting this with the approach of Bergh and Erdmann in [12] who use
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classical Hochschild cohomology to define support varieties over quantum complete
intersections; classical Hochschild cohomology can be difficult to calculate and typi-
cally possesses a complicated structure. This is even the case for quantum complete
intersections (cf. [11, 14, 19, 29]). The calculation of derived braided Hochschild
cohomology of R over @, found in Section 3, leads to an easier calculation of a ring
of cohomology operators that has a particularly simple structure, see Section 3.

Second, these operators are realized at the chain level by following the strategies
in [3, 30]. This is the perspective that allows us to define a support theory when
each ¢; ; is aroot of unity. Moreover, this approach is in line with the support theory
for commutative complete intersections (cf. [1, 4, 5, 16, 25, 30]), and generalizes
the support variety theory for graded complete intersections.

Our main applications are in Section 8 and Section 9. First, as the Ext modules
over R are noetherian over this ring of cohomology operators we generalize results
from [22] which pertain to the Poincaré series of color R-modules. Further assuming
each of the ¢; ; defining R is a root of unity, we can apply our theory of supports
and obtain other interesting results. For example, in Section 8, we prove that color
modules over such skew complete intersections satisfy the Generalized Auslander-
Reiten Conjecture. Also, in Section 9, we prove complexity for pairs of finitely
generated color R-modules is symmetric in the module arguments for such skew
complete intersections; therefore we deduce that if M and N are finitely generated
color modules over a skew complete intersection R, then Extz%(M, N) = 0 if and
only if Ext>R>O(N , M) = 0. The latter result should be compared with the analogous
result from [10] for modules over quantum complete intersections, with the same
assumption on the g; ;’s.

The paper is organized as follows. In Section 1 we recall background informa-
tion on color commutative rings and DG algebras that can be found in [22], and we
provide the definition of the derived braided Hochschild cohomology of a ring. In
Section 2 we recall the definition of skew complete intersection and make the neces-
sary constructions needed to compute the derived braided Hochschild cohomology
of a skew complete intersection in Section 3. In Section 4 we show that two natural
products on the derived braided Hochschild cohomology coincide. Section 5 and
Section 6 are dedicated to defining our ring of cohomological operators at the chain
level and showing that Ext modules are finitely generated modules over this ring.
In Section 7 we assume that the parameters g; ; are roots of unity, this allows us to
work with a subring of cohomological operators that is a commutative polynomial
ring. We use this smaller ring to define support varieties. The rest of Section 7
is dedicated to the study of the properties of these support varieties and to sev-
eral consequences. As discussed above, the main applications are in Section 8 and
Section 9.

1. BACKGROUND AND CONVENTIONS

Color commutative rings. Let G be an abelian group and k a field. An alter-
nating bicharacter on G is a function k : G x G — k* such that for all o, 8,0 € G

r(0; af) = r(0, a)k(o, B),
r(af,0) = k(a,0)k(B,0),

k(o,0) = 1.
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Let A be a G-graded k-algebra with decomposition A = @, . Ay, and let x be
an alternating bicharacter defined on G. We say that A is k-color commutative (or
simply color commutative if k is understood) if for every z € A, and y € A,, one
has zy = k(o,7)yz. An element z € A, is said to be G-homogeneous. We call
the G-degree of a G-homogeneous element = the color of x, and we denote this by
@ (x). We also refer to G as the group of colors of A. If x and y are G-homogeneous
we abuse notation and use x(x,y) to denote x(¥(x),¥4(y)).

Color DG algebras. Let @ be a color commutative connected graded k-algebra
and denote by G its group of colors. Let A be a DG @Q-algebra. We say that A is a
k-color DG Q-algebra provided A is G-graded with a grading compatible with the
homological and internal grading of A, and the differential on A is G-homogeneous
of color eg.

We also assume that a color DG Q-algebra A is graded color commutative. That
is, for all z,y € A, homogeneous with respect to all gradings, we assume that
zy = (—=1)*I¥ (2, y)yz, and that 22 = 0 when z is of odd homological degree.

1.1. The color opposite of A is the DG algebra A°P with the same underlying
complex as A and product given by

a - b= (1)l (a,b)ba,

where a,b are elements of A homogeneous with respect to all the gradings of A.
By the color commutativity of A it follows that a -°P b = ab, therefore A°P is just
A. The enveloping algebra of A, denoted by A°, is the color DG @Q-algebra with
underlying complex A ®g A and product given by

(a@b)(c®d) = (=1)IPlelk(b, ¢)ac @ bd.

where a, b, ¢, d are elements of A homogeneous with respect to all the gradings of
A.

Color DG modules. Let A be a graded color commutative DG Q-algebra, where
Q@ is a color commutative connected graded k-algebra. In this section we review
conventions and terminology regarding color DG A-(bi)modules; see [22, Section
4] for details. Throughout this article, a left (right) color DG A-module is a left
(right) DG A-module equipped with a G-grading, where G is the group of colors of
A, compatible with respect to the homological and internal gradings.

1.2. As usual a color DG A-bimodule is a left and right color DG A-module where
the two actions are compatible; equivalently, it is a left color DG A®-module. We
say that a DG A-bimodule M is symmetric provided am = (—1)l*l™lk(a, m)ma
for all m € M,a € A homogeneous with respect to all gradings. Each right color
DG A-module M can be canonically made into a symmetric color bimodule by
prescribing a left DG A-module with the following action:

a-m:= (=)™ g (a, m)ma

for each @ € A and m € M. Similarly, we can switch from left color DG A-modules
to right color DG A-modules according to the following rule:

m-a:= (=)™ g(m, a)am

for each @ € A and m € M. Hence, each left color (or right) DG A-module
can naturally be viewed as a symmetric color DG A-bimodule according to this



4 L. FERRARO, W. F. MOORE, AND J. POLLITZ

convention; therefore, we will not specify a side for color DG modules over color
commutative algebras.

1.3. Let M, N be color DG A-modules. The color DG A-modules M ®4 N and
Homy (M, N) are defined in the standard way, see [22, Definition 4.6 and Definition
4.8]. The suspension of M, denoted by XM, is the color DG A-module with

(XM); := M;_q, M = M and a-m = (71)|a‘am.

The homology of M, denoted by H(M), is a color H(A)-module over the color
commutative Ho(A)-algebra H(A). We say M is finite provided that the color mod-
ule M"Y is finitely generated over A® where (—)% is the forgetful functor to the
category of color A-modules. In particular, any bounded complex of finitely gen-
erated color Hyp(A)-modules is a finite color DG A-module via restricting scalars
along the augmentation A — Hy(A).

1.4. The diagonal is the multiplication map A® — A, which is a morphism of color
DG Q-algebras. In the sequel, it is through the diagonal that A will always be
regarded as a color DG A°-module.

Color DG homological algebra. Let A be a graded color commutative DG
algebra.

1.5. Let F be a color DG A-module. We say that F' is semifree if there exists a
chain of color DG A-modules

0=F(-1)C F(0)C F(1) C F(2) C ...

satisfying | J F(n) = F and for each n > 0 there is an isomorphism of color DG
A-modules
F(n)/F(n—1) =P AX)
i€Z
for some (possibly infinite) sets X ,,.

1.6. A color DG A-module P is said to be semiprojective provided Hom 4 (P, —)
preserves surjections and quasi-isomorphisms. Below are standard properties when
A has trivial color, so we leave the proofs to the reader (cf. [20, Chapter 6] or [2,
Chapter 1]).

From the definition it follows easily that a quasi-isomorphism between semipro-
jectives is in fact a homotopy equivalence. Also, any semifree DG A module is
semiprojective. Finally, if P is semiprojective P ® 4 — preserves injections and
quasi-isomorphisms.

1.7. Let P be a color DG A-module. We say that P is perfect over @) provided
that P is quasi-isomorphic to a bounded complex of finitely generated projective
@-modules; here we are regarding P as a color DG @-module via restriction of
scalars along the structure map Q — A. We say P is strongly perfect over @ if it is
itself a bounded complex of finitely generated projective @Q-modules.

1.8. For each DG A-module M there exists a surjective quasi-isomorphism of DG
A-modules F =5 M where F is semifree. We call F =» M a semifree resolution
of M over A, and any two semifree resolutions of M are homotopy equivalent.
Furthermore, when A is a nonnegatively graded DG algebra with H(A) noetherian
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and H(M) a noetherian graded H(A)-module, there exists a semifree resolution
F = M such that

P~ @zj(Aﬁj)h

j=i
for a some fixed integer ¢ and nonnegative integers 5, (see [7, Proposition B.2]).
Mimicking the proofs in [20, Proposition 6.6] one can show the existence and

uniqueness, up to homotopy, of semifree resolutons; one only need to mind the
colors while adapting the arguments there.

Let M, N be color DG A-modules, and let F' be a semifree resolution of M. It
follows from the previous properties that the homology of Homa(F, N) and F®4 N
does not depend on the choice of the resolution F. We define

Exta(M, N) := H(Hom(F, N)) and Tor(M,N)=H(F ®4 N)

for each color DG A-module N. These are naturally graded color modules over
H(A) (see 1.3 for the H(A)-structures).

1.9. Let A be a color DG algebra over a color commutative ring. Let z be a
cycle of A homogeneous with respect to all gradings. There is a semifree extension
of A, denoted by A(y | Oy = z), where z becomes a boundary. This extension is
constructed by adjoining the variable y which is an skew exterior variable when
z has even homological degree or a skew divided power variable when z has odd
homological degree; in either case, the variable y color commutes with A. It is
straightforward to see that A is a DG subalgebra of A(y). Hence, we can inductively
adjoin variables to kill cycles:

Ay, Ym | 0y = zi) = Aly1, -+ Ym—1 | 0Yi = 2i)(Ym | OYm = 2m) -
See [22, Proposition 2.5 and Proposition 2.7] for further details.

The final two subsections provide context for the the calculations in Section 3,
and explain the choice of terminology regarding the operators discussed in Section 4.

Braided tensor categories, general case. In this subsection we recall some
constructions from [8]. A monoidal category (C,®) is said to be braided if for all
objects U and V of C there exist functorial isomorphisms

Ryv: UV Ve,

satisfying the hexagon azioms, see [3, Section 2]. If, furthermore, Ry vRyvy =
idygu for all objects in C, then C is called a symmetric monoidal category.

In [8], Baez defines braided tensor categories using commutative rings, we work
with the more general notion of color commutative rings; the proofs of the state-
ments below remain unchanged under this more general hypothesis. Given a color
commutative ring I, we define a braided (symmetric) tensor category of F-modules
to be a braided (symmetric) monoidal category C equipped with a faithful functor
F' to the category of color IF-modules, satisfying a list of axioms that the interested
reader can find in loc. cit.. Therefore for the remainder of this subsection, we will
work in a fixed braided tensor category ¥ of [F-modules, where IF is some color
commutative ring. As in [8], we will identify objects and morphisms in ¥ with
their images under F'.

Let A be an algebra object in ¥/, with an associative multiplication given by m 4.
Let A°P denote A with the multiplication map maRa, 4. It is proved in [8, Lemma
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1], that A°P is an algebra in ¥. Let B be another algebra in ¥ with product mp,

then A® B is an algebra in ¥ with multiplication given by (ma®mp)(ida@Rp 4 ®

idg) (cf. [3, Lemma 2]). The enveloping algebra of A, denoted by A°, is A ® A°P.
Assume that ¥ is a symmetric tensor category.

(1) [8, Lemma 4] If A is an algebra object in ¥, then A is a left A°-module in
¥ with action given by m4(ida ® maR4 ).
(2) [8, Lemma 5] If A is an algebra object in ¥, then A is a right A°-module
in ¥ with action given by maRa a(ma ®idy).
These facts are applied in [8, Section 3] to define the braided Hochschild homology
of an algebra object A in ¥, whenever A is flat over IF. We define a dual notion
below.

Definition 1.10. Let IF be a color commutative ring, and let ¥ be a symmetric
tensor category of IF-modules. Let A be an algebra object in ¥ which is projective
over F. The braided Hochschild cohomology of A with respect to F is

HH(A[F) = Ext (A, A),

where the right-hand side is the homology of the Hom complex of right linear
maps Hom 4¢ (B, B); here B is the bar resolution constructed in [8, Theorem 1] and
Ext 4¢(A, A) has the composition product.

Symmetric tensor categories, color commutative case. Let Q be a color
commutative ring, and let C be the category of color DG @-modules. The tensor
product ®q, defined in [22, Definition 4.6], gives C the structure of a monoidal
category. Let k be the bicharacter associated to ). For every pair of objects
U,V € C, we define maps Ry,y : U ®qV — V ®q U by

u@ v (=) g (u, v)o @ u,

for all w € U and v € V homogeneous elements with respect to all gradings.
These maps give C the structure of a symmetric monoidal category. The natural
embedding of C into the category of color @-modules gives C the structure of a
symmetric tensor category, we denote it by 7.

Let A be a color commutative DG @Q-algebra in #". The product on A°P, defined
by maR 4, 4, simplifies to

a-? b= (=1l (a, b)ba = ab,

where a,b are homogeneous elements with respect to all the gradings. This shows
that A°P is isomorphic to A as a color DG Q-algebra.

Let A and B be color commutative algebras in #". The multiplication on the

tensor product A ® B simplifies to
(a@b)(d @) = (=) k(b,a) (ad") @ (BV),
where a,b,a’, b’ are homogeneous elements with respect to all the gradings.

The enveloping algebra A® is the tensor product A ®g AP = A®qg A. It follows
from [8, Lemma 3], or from a straightforward check, that A® is a color commutative
DG Q-algebra.

The left and right A° action on A, given by [8, Lemma 4 & Lemma 5], simplify
to

(a®b)-c=(=1)Plelkb, c)ach, ¢-(a®b) = (=D)Nk(c, a)ach,
for a, b, c € A, homogeneous elements with respect to all gradings.
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Therefore, the braided Hochschild cohomology of A relative to @ is
HH(A|Q) = Extac(A, A),

provided that A is semiprojective over Q.

If @ is a skew polynomial ring and R a quotient of ) by an ideal generated by
normal elements, then there exists a color DG @-algebra resolution of R, obtained
via the process of killing cycles illustrated in 1.9, see also [22, Section 2]. We denote
this DG algebra resolution by E. As in [0, Remark 3.3] we make the following

Definition 1.11. Let @ be a skew polynomial ring and R a quotient of @) by an
ideal generated by normal elements. Let E be a color DG Q-algebra resolution of
R. The derived braided Hochschild cohomology of R relative to @ is

HH(R|Q) = HH(E|Q).

Observe that
HH(R|Q) = Ext oy, n(R. ),

which justifies the use of the adjective derived in the definition of HH(R|Q).

Remark 1.12. Braided Hochschild homology was first introduced in [8] by Baez.
Derived Hochschild cohomology was defined by MacLane in [20] for Z-algebras and
later generalized by Shukla in [34] for algebras over general commutative noetherian
rings. Quillen, in [31], recognized it as a derived version of Hochschild cohomology;
[6] notes that derived Hochschild cohomology is also known as Shukla cohomology.
For a comparison of Hochschild cohomology and derived Hochschild cohomology
see [9].

2. SEMIFREE RESOLUTION OF THE DIAGONAL

Throughout this paper we fix the following notation. Let Q = kq[z1,...,2,] be
a skew polynomial ring, where k is a field and q = (¢; ;) is a matrix with invertible
entries such that ¢; ; = qj_’i1 for all 7,5 and ¢;; = 1 for all i. The ring @ can be
regarded as a color commutative ring in the standard way, see [22, Example 3.2,
denote by G its group of colors. We fix a sequence of normal elements f = f1,..., fc
in (z1,...,2,)% and set R to be the quotient R = Q/(f) where we regard R as a
color commutative ring with the same group of colors as @. Finally, let

E = Q<€1,. ..y €Ec | 8(60 = f1>
be the (skew) Koszul complex on f over @ (cf. 1.9).

2.1. Recall from 1.4, F is regarded as a color DG FE°-algebra via the diagonal
E°¢ — E given by

a® b+ ab.
There is an isomorphism of color DG Q-algebras
E°=Qley,...,ec,€),...,e.|d(e;) =d(e}) = fi),

that identifies 1 ® e; and e; ® 1 with e; and e}, respectively. Hence, we will freely
identify these models without further mention in the rest of the article.
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Construction 2.2. Notice that the elements e} — e; are G-homogeneous cycles in
the color DG Q-algebra E°. Moreover, they pairwise skew commute and square to
zero and so by [22, Proposition 2.9], they are killable. Therefore, we introduce a
set of (skew) divided power variables Y = {y1,...,y.} of homological degree 2 and
define
E(Y):=E*(Y |0y; =€} —e;) .

Note that E¢(Y) is a color DG E®-algebra and is equipped with a morphism of
color DG Q-algebras € : E°(Y) — E given by

0 ifany h; >0

h1) (h
(a®b)y§ )yg 2) ...yghc) — )
ab otherwise

Moreover, the morphism is compatible with the E°-actions meaning that we have
the following commutative diagram of color DG FE°-algebras where the unlabeled
maps are the canonical ones

EC(Y)
E*° E

Theorem 2.3. The morphism of DG E°-algebras € : E¢(Y) — E defined in Con-
struction 2.2 is a semifree resolution of E over E°.

Proof. Clearly E°(Y) is a semifree DG E°-algebra. So it suffices to check that € is
a quasi-isomorphism.

First, let @ = x1, ..., z. be (skew) exterior variables of homological degree 1 and
such that ¢ (x;) = ¥(e;). Set

Q{x) = Q(x | dz; = 0);

that is, the (skew) exterior algebra on @;_; Qz; and let 7 : Q(z) — Q be the
canonical augmentation map. There is an evident isomorphism of color DG Q-
algebras ¢ : E° — Q(x) ®¢g E determined by

eVl 1Re and1Qe; —1RQe; —a; ® 1.

Furthermore ¢ is compatible with the augmentation maps to E, meaning the fol-
lowing diagram of color DG Q-algebras commutes

EC 25 Qx)oo E

| e

E—— FE.

By [22, Lemma 6.4], ¢ extends to an morphism of color DG Q-algebras
@: ENY) = (Qx) @q E)Y | Oyi = p(e; @1 = 1® €;));

as ¢ maps a graded Q-basis of E° to a graded Q-basis of Q(x) ®¢g E, we conclude
that ¢ is an isomorphism of color DG @Q-algebras. Now note ¢(e; ®1—1®¢;) = 2;®1
and hence, there is an isomorphism

(Q(z) ®q E)Y |0y = (e, @1 —1®¢;)) = E®@q Q@,Y | 0x; =0, Oy; = x;)



SUPPORT VARIETIES OVER SKEW COMPLETE INTERSECTIONS 9

as augmented, to F, DG Q-algebras. Finally, it follows from [22, Theorem 2.15]
that

Qz,Y | 0z; =0, dy; = x;) — Q

and so the commutative diagram

Ee(Y) 225 E®g Qla,Y)
E

completes the proof. Il

— F

Notation 2.4. For the rest of the paper E°(Y) will denote the resolution of E
from Construction 2.2.

3. DERIVED BRAIDED HOCHSCHILD COHOMOLOGY
Directly from Theorem 2.3,
Tor? (E,E) =~ H(E*(Y) ®p- E).
It is clear that there is an isomorphism of color DG @-algebras
EYY)®pe E= E(Y | 0y; = 0).

Therefore, the braided Hochschild homology of E over @ is the graded color Q-
algebra

H(E) ©q Q(Y).
This section is devoted to the calculation of Hochschild cohomology, HH(E|Q) =
Extge(E, E), as a graded color Q-algebra.

3.1. Let A be a DG R-algebra and let A(Y) be a semifree extension of A. We
let D := Derys(A(Y),A(Y)) denote the subset of Hom(A(Y), A(Y)) consisting
of A-linear color derivations, see [22, Definition 5.1]. Tt is straightforward to check
that D is a subcomplex of Hom4(A(Y), A(Y)). Equipping it with the following
bracket and squaring operations

[0,€] = 0¢ — (—1)1°11¢1 (0, £)¢0

=

where 0,£,¢ € Dera(A(Y), A(Y)) are homogeneous with respect to all the gradings
and ¢ has odd homological degree, makes D a color DG Lie Af-algebra, see [22,
Definition 7.1 and 7.9] for the definition of color DG Lie algebra. The proof is
essentially contained in [22, Lemma 7.10], where it is proved when A = R. The same
proof works in this more general case; we show that the bracket is A%-bilinear. Let
a € A, 0,€ €Dera(AY),A(Y)) be homogeneous with respect to all the gradings,
then

(a0, €] = abg — (—1)! "l (a0, €)&(a0)
= af¢ — (—1)lelEH1ONE s, €)(0, €) (—1) ¢k (¢, a)agh
= al,&].

The remaining checks are similar.
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3.2. Let A be a color DG algebra. Let g1,...,g. be elements of the group of colors
of A, let nq,...,n. be integers, and let z1, ..., z. be indeterminates, we denote by

Alz1,y oy 20 | 9(21) = gy |21l = niyi=1,... ]

the Ore extension obtained by adding the indeterminates 21, ..., z. to A, satisfying
the following commuting relations:

zis = (—=1)"*lk(gi, 5)s2;, foralls € A,
zizg = (—1)"" k(gi, gj) 22, foralli,j=1,... ¢,
where s is homogeneous with respect to all the gradings of A.

We use E°(Y) to compute the derived braided Hochschild cohomology of E
relative to @ (cf. Definition 1.11).

Theorem 3.3. There is an isomorphism of graded color H(E®)-algebras
HH(E|Q) = H(E)[le <o Xe | g(Xl) = g(fi)ila |X1| =2i=1,... vC]'

Moreover the variables x1, ..., Xc correspond to the homology classes of derivations
01,...,0c € Derge(E*(Y) , E¢(Y)), satisfying 0;(y;) = d; ;.

Proof. We consider the following diagram

Derge (E*(Y) , B*(Y)) Hom e (B*(Y) , B*(Y')
[22, Corollary 5.3] [22, Proposition 4.12]
Derpe (E(Y) , E) Hompe (E°(Y) , E)
[22, Proposition 5.2] [22, Proposition 4.9]
Hom gegyy (Diff ge E°(Y) , E) Hompg(E*(Y) ®p- E,E)

[22, Proposition 4.9]

HomE((lefEe E6<Y>) ®Ee(y> .E7 E)

Hompg(EY, E) Hompg(E(Y | 0y, = 0 Vi), E)

EXI D --- @EXC E[Xla"'axc | g(XZ) :g(fi)715 |X’L‘ = 2]

where the horizontal maps are inclusions, the vertical maps are quasi-isomorphisms,
Ex1 & -+ ® Ex. is the free DG E-module with basis x1, ..., X and such that the
differential of the elements x1,...,xc is zero and the differential on the indeter-
minates of E[x1,...,Xc | (x:) = 9(f:)~L,|xi| = 2] is trivial. The isomorphism
(Diffge E°(Y)) @peyy £ = EY, where EY is the free E-module with basis ¥ and
trivial differential on the elements of Y, follows directly from the construction of
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the module of differentials. The isomorphism E°(Y) ®ge F = E(Y | dy; = 0 Vi)
follows from the construction of the resolution E°(Y). The bottom left vertical
map is the map 6 — > 7 | 6(y;)x; and similarly for the bottom right vertical
map. It is straightforward to check that this is a commutative diagram and that
Xi € Ex1@---@® Ex. corresponds to the derivation 6 € Derge(E(Y), E°(Y')) such
that H(yj) = 5,‘7j.

For the remainder of the proof L will denote the homology of the complex
Derge(E°(Y),E°(Y)); from 3.1 it follows that L is a graded color Lie H(E®)-
algebra. The map induced in homology by the bottom map is the inclusion of
H(E®)-modules H(E)x, @ --OH(E)xe - H(E)[x1,- - xe | 9 (i) = 9(fi) 1, il =
2]. Therefore the top map induces, in homology, an injection of graded color Lie
H(E®)-algebras ¢ : L — Lie(HH(E|Q)). Let // : UL — HH(E|Q) be the universal
extension of ¢, where UL is the universal enveloping algebra of L (see [22, Def-
inition 7.6 and Remark 7.7]), we claim that ¢/ is an isomorphism of associative
H(E®)-algebras. Indeed, since L = H(E)x; @ --- ® H(E)x. and 9(x;) = 9(f;)~*
for all 4, it follows that UL = H(E)[x1,---,Xe | 9(xi) = 9(f:)~ %, |xi] = 2]. The
computations performed at the beginning of this proof show that HH(E|Q) is iso-
morphic to H(E)[x1,---,Xe | (xi) = 9(f))7 1, |xi] = 2] as a H(E)-module, and
they also show that the map +/ is surjective. In each homological degree ¢’ is a sur-
jective map of free H(E)-modules of the same rank, and since H(F) is noetherian
it follows that +/ must be injective in each homological degree, and therefore it is
itself injective. ]

Corollary 3.4. When f is a reqular sequence, there is an isomorphism of graded
color R-algebras

HH(R|Q) = R[Xla - Xe | g(Xl) = g(fi)ilv |X1| = 272. = la . ~aC]'

Proof. This follows from the previous theorem since
HH(E|Q) =HH(R|Q) and H(E) = R;

therefore the isomorphism claimed in the Corollary is one of H(E®) = Tor? (R, R)-
algebras, and therefore one of R-algebras. (|

Remark 3.5. As a consequence of Theorem 3.3,
k(xi, =) = Ky, —) " = r(fi, =)~

In the sequel we will make use of this fact in Section 5 to define a color DG S-module
whose homology computes Ext over a skew complete intersection where

S=0Q[x1,---,Xe |9 (xi) = g(fi)_l, Ixil=2,i=1,...,¢.
4. PRODUCTS ON THE DERIVED BRAIDED HOCHSCHILD COHOMOLOGY

In this section we clarify that for a skew complete intersection R = Q/(f) the
composition action of HH(R| Q) on Extg(M, N) can be computed at the chain level
with the so-called “cup product,” see Definition 4.2. The first action establishes
properties expected from a well-posed support theory, see Proposition 7.8; the latter
allows us to prove the intersection formula in Theorem 7.12.

We fix the following notation. Let A be a color DG Q-algebra. Let ¢ : P = A
be a semiprojective resolution of A over A°.
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Recall that for any color DG A®-module X, Hom 4. (P, X) is naturally a right DG
Hom 4¢ (P, P)-module via right composition of maps. This action induces a graded
right HH(A|Q)-module structure on Ext e (A, X). First, we define a different right
DG Hom e (P, P)-module structure on Hom 4.(P, X), provided that P admits a
diagonal approximation; furthermore, we show that these two structures are the
same in homology. This will be a slight generalization of [15, Proposition 4.5].
Namely, we adapt [15, Proposition 4.5] to the color setting, while also discussing
actions on certain Ext-modules.

Definition 4.1. A co-unital diagonal approzimation for e : P = A is a morphism
®: P — P®a P of left color DG A°-modules so that

I

P<—P®AP*>P

commutes, where we have identified P®4 A = P =2 A ®4 P with the appropriate
multiplication maps.

Definition 4.2. Given a co-unital diagonal approximation ® : P — P ®4 P for €
we define a right cup action Ug (or simply U) of Hom ae (P, P) on Hom 4. (P, X) as

o®(eT)

cUrT=puo@E)®: P Po,P 2L Xo,48 X,

where 0 € Homge(P, X),7 € Homye(P, P), and p is the right multiplication in-
duced from the A°-module structure of X.

4.3. Since P is semiprojective, the surjective quasi-isomorphism ¢ : P — A induces
a surjective quasi-isomorphism

£, : Hom e (P, P) = Homu (P, A),
and so e, prescribes a right action of Hom g (P, A) on Hom 4 (P, X). Indeed, for o €
Hom e (P, X) and 7 € Hom e (P, A) we first lift 7 to 7 in Hom 4 (P, P) satisfying
eT = 7. Now we define
o-T:=0UT.

From the definition of U, it follows immediately that this action is independent of
the choice of lifting 7.

Proposition 4.4. Let A be a color DG Q-algebra, let e : P — A be a semiprojective
resolution of A over A®, let X be a color DG A®-module. If P admits a co-unital
diagonal approximation then, the cup and composition actions of Extae(A, A) on
Ext e (A, X) coincide.

Proof. First, we claim that 1 ® € and € ® 1 are homotopic in Hom 4-(P ® 4 P, P).
Indeed, as P ® 4 P is semiprojective over A°, ¢ induces a quasi-isomorphism

Hom e (P ®4 P, P) = Homue(P ®4 P, A)

given by ¢ — ). Note that e o (1®¢e) =eco (¢ ® 1) and so the quasi-isomorphism
above implies that 1 ® e — e ® 1 is a boundary in Hom 4(P ® 4 P, P), as needed.

Now by the claim above, the square below commutes up to homotopy and hence,
we have the following homotopy commutative diagram of DG A°®-modules:



SUPPORT VARIETIES OVER SKEW COMPLETE INTERSECTIONS 13

P-2.pPo,P 9 Po,P 2L Xo.P 22 Xo.A

\ | 1o

T

P———P "

X

where o € Hom4e (P, X) and 7 € Hom 4¢ (P, P). Hence o U7, which is given by the
composition of the four horizontal maps at the top, is homotopic to o7. O

Now we specialize and return to the setting of Section 2. In the proof of the
following proposition we will make use of the divided powers DG E°-structure on
E¢{Y); see [22, Section 6] or [24, Chapter 1] for more details regarding DG algebras
with divided powers.

Proposition 4.5. The resolution E°(Y") =5 E admits a co-unital diagonal approa-
imation ® : E¢(Y) — E(Y) ®g E¢(Y), determined by y —» y®@ 1+ 1Ry for all
yeyY.

Proof. Let ¢ : E° — E° ®p E° be the color DG @Q-algebra map given by
a®br (a®@1) @ (10).
Notice that ¢ is compatible with the system of divided powers on F° and E°® g E°.
Let y € Y and let e € E be such that 9(y) =e®1 —1®e in E*(Y). Observe that
in E¢(Y) ®g E°(Y) the following holds:
P(0(y) =ple®l-1xe)
=el)e(lel)—(1l)®(1lxe)
=(e)e(1el)—-(1®e)®(1®1)
+(Ie)eEel)-(1d1)(1xe)
—(e®1-10e)0(1)+(1o)®(cal-1xe¢)
=0y)e1lel)+(1l)®d(y).

By [22, Lemma 6.4], ¢ uniquely extends to a morphism of color DG E°-algebras
with divided powers

®: ENY) = EYY)®p E(Y)
given by y — y ® 1 + 1 ® y. Finally, the co-unital approximation condition is
immediate. O

4.6. It follows from Proposition 4.4 and Proposition 4.5 that the composition action
of HH(R|Q) on Extge(F, X) is the same as the cup action for any color DG E°-
module X.

4.7. Since ® is a map of divided powers algebras, for any y € Y we have that
e(y") = e(y) ") .. (y) ")
where H = (hq,...,h.) € N°. Now a computation shows that

(1) o(yMy= N | ]swiy)"" |y @y,
HAH'=H \i<j

where H' = (K},... h.), H" = (B{,... k) and H' + H" = (W, + B}, ... b+ R").
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5. CHAIN LEVEL COHOMOLOGY OPERATORS

Adopting the usual notation we also fix

S = Q[le'-'7XC | g(XZ) :g(fi)71’|xi| = 277’ = 17""6]

for the remainder of the article. We will regard S as a color DG @Q-algebra with
trivial differential.

5.1. We notice that S can be realized as Homg (Q(Y") , Q) by Proposition A.3 where
X is the @-linear dual of y;. We recall that the algebra structure on S is induced
by the coalgebra structure on Q(Y). That is, the product x;y; is identified with
the composition

QYY) 2 Q)20 QYY) X% Qe Q@ 4 Q

where the isomorphism is the multiplication map and A is defined as ® in (1),
namely

Ay = 3 | TLswn )™ | ™) @y™,
H/'+H"=H \i<j
where H' = (h},...,h.) and H" = (h{,..., hl).
Construction 5.2. Let X be a color DG E°-module. Define £x to be the DG
S-module with underlying graded )-module S ®¢g X and differential
X =1205+) xi® (A — )
i=1

where )\; and \; are left multiplication by 1 ®e; and e; ® 1, respectively. Explicitly,
as a graded S-module Ex is

& = PrH(seg X,
JEZ

and on elements its differential is prescribed by

85"(5®x):s®c'9X(x)+Zﬂ(1®eifei®1,s)xis®(1®eifel-®1)x
i=1

=s® 0% () + Zﬁ(fu s)xis®(1®e; —e;®1)z.

i=1

Proposition 5.3. Ex is a color DG S-module.
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Proof. Note that 0 := 9% is (color) S-linear. Indeed, continuing from the compu-
tation in Construction 5.2

Is@x)=5%0%(x) +Zﬂ(fi,5))(¢5® (I®e —e;@1)x
i=1

=s®0%(z) + Z K(fiy$)k(xi, $)sxi @ (1®e; —e; @ 1)x
i=1

:s®8X(a:)+sti®(l®ei—ei®1)x
i=1
=s0(1®x)

where the third equality holds because x(x;, —) := x(f;, —) L.
It remains to show 9% = 0, but since 9 is (color) S-linear it suffices to check
0%*(1® x) = 0 for each = in X. Consider

82(1@)1')a(l@aX($)+ZXi®(1®€i€i®1)'$>
i=1
=100%0 @) +) xi®o(1l®e—ee1) 0% (2)
=1
+ZXi®aX((1®€i_ei®1)'$)

i=1

+ Z Z (fi, xg)xix; @ (1@e —e;®@1)(1®e; —e; @ 1)z,
i=1 j=1

The first summand in the last expression above is evidently zero. Also, as X is a
DG E°-module

(e —e,@)z) =0 10e;—e, @)z — (1Qe; —e; ®1)0% ()
= (1®e —e; ®1)0% (),

and so

(2) 82(1 X $) = ZZH(fi,Xj)Xin X (1 Xe —e; X 1)(1 X € — €5 X l)x
i=1 j=1

For ¢ = 3,

K(fixi)xix; ®(1©®e;—e,®1)(1®e; —e; ® 1)z =0.
For i # j, we show that the two terms on the right-hand side of (2) involving ¢ and

j cancel. Indeed, set f:=f;, [/ :=fj,e:=1Qe —€e;®1, ¢ :=1Qe¢; —e; ®1,
x =x; and ¥’ := x; for ease of notation. Since

(XXX = 6(F, )7 = 606 ) TR XX = XX
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the first equality below follows
(X Ixx' @ee + Kk(f,x )X x ®@ee=xx@ee’ + k(f, x)x'x @ €e
=xX'x ® (ee + r(f', e'e)

nNt
=X'x® (e’ = k(f', /)" K(f', f)ee’)
=0.

!

X)X

Combining these calculations with (2) it follows that 9* = 0, finishing the proof
that £x is a color DG S-module. O

Theorem 5.4. For any bounded above DG E°®-module X, the map

nx : Ex Hompge (E°(Y), X)

Xi © & ——— (yH) = w2,y )xa (y )
is an isomorphism color DG Q-modules. Moreover, nx satisfies
(3) nx(xi @z - x;) =nx(xi ©z) - ne(x; ©1),

where x € X (cf. 4.3). That is, the isomorphism nx is equivariant with respect to
the DG algebra map

S = S®g E 2 Homp(ES(Y) , E).

Proof. Consider the following isomorphisms of graded S-modules

(4) Homge (E°(Y), X)* = Homg(Q(Y), X )*
(5) =~ Homg (Q(Y), Q) ®¢o X*
(6) = S®q X

where (4) is adjunction, (5) follows as Q(Y) consists of degreewise finite rank free
@-modules and X is bounded above, and (6) is discussed in the appendix (cf.
Proposition A.3).

Now we check that the isomorphisms above send gHomee (E°(Y),X) t6 9€x  Indeed,

c
gHomee (B°1X) — Hom(E®(Y),0%) — Hom(0”" @ 14> (X = X)) ® x4, X)
i=1
and so (4) maps this differential to

C

Hom(Q(Y),0%) = Y w(fi, Aj = \i) ™ Hom(xs, \j — Ai)

i=1
which, using that x(—, A, — A\;) = &(—, f;), is simply

Hom (Q(Y), %) — Z Hom(x;, X, — A;) = Hom(Q(Y),0%) + > Hom(y;, Ai — X}).

i=1
Next, (5) maps the differential to

Homg(Q(Y), Q) ® 0¥ + )~ Hom(x:, Q) @ (A; — X))

i=1
and so (6) gives us exactly 9°X, as claimed. Finally, the composition of the isomor-
phisms (4), (5), and (6) is exactly nx.
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Now we prove (3) holds by showing both sides agree after evaluating at 3*) and
using the E°-linearity. Let x € X and H € N°¢. First, observe that

nx (i @ 2 - x;) (") = k(@ x5 ) xix; (v

where the product x;x; is interpreted as in 5.1.

Assuming that ¢ < j (the other cases are similar), by the definition of x;x; it
follows that the previous display is zero unless H has a 1 in position ¢ and j, and
zero everywhere else. Hence, the display above is equal to

k(z,y;)z.
Similarly, using (1), we see that if H has 1 in position ¢ and j and zero everywhere
else, then
(nx (xi ® ) Une(x; © D)) (y") = sz, i)z,
otherwise (nx(x; ® ) Ung(x; ®1))(y"*)) = 0. O

Remark 5.5. Let X be a bounded above color DG E°-module. Combining 4.6 and
Theorem 5.4, in homology nx induces an equivariant isomorphism

H(Ex) 2%, Bt pe (B, X)

that respects the canonical projection 7 : S — S ®g R = HH(R | Q); the left-
hand side is regarded with the obvious S-action from Construction 5.2 while the
right-hand side has the composition action; see the beginning of Section 4.

Viewing Extge(F,X) as an S-module via restriction of scalars along , the
previous observation states that H(nx) is an isomorphism of graded S-modules.
Because of this we identify these S-actions on Extge(E, X).

5.6. Let F and G be color DG E-modules. Then Homg(F, G) naturally inherits
the structure of a DG E°-module. Namely, given a € Homg(F, G) (homogeneous
with respect to all gradings) define

1®e - a:=(—D%k(e;, a)ale; - —) and e, @1 a:=e; - a(-).

Hence, Exomg(F,c) can be regarded as a DG S-module via Construction 5.2. We
will write Ep ¢ in lieu of Exomg (F,q)- Moreover, when F% and G* are free as graded
@-modules, it follows that Siﬂ,c is a free graded S-module.

6. COHOMOLOGY OPERATORS ON EXT MODULES

Definition 6.1. Let M be a color DG E-module. A surjective quasi-isomorphism
of color DG E-modules ' = M is called a Koszul resolution of M provided that F
is semifree over () via restriction of scalars along the structure map @ — E. When
F'is a finite DG E-module we say the Koszul resolution is finite. In this case, F is
strongly perfect over Q.

Proposition 6.2. For each finite color DG E-module M, there exists a finite
Koszul resolution P = M.

Proof. By 1.8, there exists a semifree resolution € : F' = M of M over E where

J R~ @Zj(Eﬁj)h

j=i
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for some fixed 7 € Z and nonnegative integers 3;. In particular, when F' is regarded
as a complex of @)-modules via the structure map Q — F, F is a bounded below
complex of finite rank free Q-modules. As @ has finite global dimension and M is
finite, coker 9% | is free over @ for each n > 0.

Now consider F’ defined as

oi = Fpgo = Foyy im0 — 0;

it is straightforward to see, simply by degree considerations, F’ is a DG E-submodule
of F'. Furthermore, by possibly increasing n one can assume that F’ is acyclic and
concentrated in degrees strictly larger than max{i : M; # 0}.

Next, we take P to be the quotient DG E-module F/F’

F
81',+1

ar_
0—>coker85+1 S F,_ —5% . 25 F 0.

As P is the quotient of F' by an acyclic DG E-submodule F such that €| = 0, there
is a canonically induced quasi-isomorphism P = M of DG E-modules. Finally, we
remark that by construction P is strongly perfect over Q. O

6.3. Let M and N be finite color DG R-modules and fix F' a Koszul resolution of
M. The quasi-isomorphism E — R induces the first isomorphism of graded color
R-modules below (see [20, Proposition 6.7] for a proof in the case that E has trivial
color), while the second isomorphism follows from Proposition B.3(1)

(7) Extz(M, N) =5 Extp(M, N) = Extpge(E, Homg(F, N)).

The isomorphism in (7) provides Extg (M, N) the structure of a HH(R|Q)-module
(and hence, via restriction of scalars, an S-module structure).

Theorem 6.4. Let M and N be finite color DG R-modules. There exist the fol-
lowing isomorphisms of graded S-modules
Extrp(M,N) = H(EF,N) = H(SF,G)

where F = M and G =» N are any bounded below Koszul resolutions. Moreover,
Extr(M,N) is a finitely generated graded S-module.

Proof. The isomorphisms follow from Theorem 5.4 and the discussion in 6.3.
For the moreover statement, let F' be a finite Koszul resolution of M, which
exists by Proposition 6.2. Since F is strongly perfect over @,

&5y = S ©q Homg(F, N)?

is a noetherian graded S-module. Any subquotient of a noetherian module is again
noetherian and so the already established isomorphism of graded S-modules, above,
implies that Extr(M, N) is a noetherian over S. O

Proposition 6.5. The following hold for color DG R-modules L, M, N :
(1) The natural isomorphisms of graded color Q-modules
Extr(L,M & N) 2 Extr(L, M) ® Extr(L, N)
Extr(L @ M,N) = Extr(L, N) & Extr(M, N)
Extr(M,X"N) 2 Y"Extr(M,N) 2 Extg(X "M, N)

are isomorphisms of graded S-modules;
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(2) For any exact sequence of color DG R-modules 0 — M — M? — M3 — 0,
the exact sequences of graded (Q-modules

Extr(M?3,N) — Extg(M? N) — Extg(M', N) — ¥ Extr(M?3, N)
Extr(L, M') — Extg(L, M?) — Extp(L, M®) = ¥ Extr(L, M")
are exact sequences of graded S-modules.

Proof. All of these follow directly from Remark 5.5; we will prove the first isomor-
phism in (1) while the rest are left to the reader. Fix a Koszul resolution F' =» L,
the claim follows from the commutativity of the following diagram where all arrows
are isomorphisms of graded color @Q-modules

Extz(L, M & N) Extg(L, M) @ Extz(L, N)

Extg(L,M @& N) Extg(L, M) ® Extg(L,N)

Extge (B, Homg(F, M & N)) — Extge(E,Homg(F, N)) ® Extg.(E, Homg(F, N)).

Both vertical maps at the top of the diagram are induced by the quasi-isomorphism
E — R, see 6.3. The second set of vertical maps are those from Proposition B.3(1).
The bottom horizontal map is clearly HH(R | @)-linear, and so the desired result
follows from Remark 5.5. ]

7. SUPPORT VARIETIES

Let A be a commutative noetherian graded k-algebra that is concentrated in
even nonnegative cohomological degrees. We let D (A) denote the bounded derived
category of finite DG A-modules which is obtained in the standard way of formally
inverting quasi-isomorphisms between DG A-modules. FExplicitly, the objects of
Df(A) are DG A-modules whose homology is a finitely generated graded A-module.

7.1. Let Proj A denote the topological space consisting of homogeneous prime ideals
not containing A>° equipped with the Zariski topology. The closed subsets of
Proj A are of the form

V(g1,---,9:) = {p € ProjA: g; € p for all i}

for some homogeneous elements g1,...,9: € A. For a graded A-module Y and
p € ProjA, we let Y, denote the homogeneous localization of ¥ at p. Also, for
p € Proj A define k(p) to be Ay/pA,.

7.2. For a DG A-module X, its (small) support is
supp4 X = {p € Proj A : X ®@% k(p) 2 0}.
By [18, Theorem 2.4], if X € Df(A) then
suppy X = {p € Proj A : H(X), # 0}.
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Furthermore, as H(X) is a finitely generated graded A-module, the support of
X over A is exactly V(¢1,...,9:) where g1,...,g; is some list of homogeneous
generators for annyg H(X). Thus, supp, X is a closed subset of Proj A whenever
X € Df(A).

7.3. We recall the following well known property of cohomological support (see, for
example, [30, 2.1.5]). For DG A-modules X and X',
supp 4 (X @4 X') = supp4 X Nsupp, X'
In particular, when X is semiprojective over 4, X ®4 X’ ~ X ®4 X’ and so
supp s X Nsuppy X' = suppy (X @4 X').
7.4. For the rest of the section we add to our fixed notation from Section 2 the
assumption that the group of colors of @ is finite. We point out that this hypothesis

is equivalent to saying that the skew commuting parameters of Q are roots of unity.
In particular, there exists ¢ > 0 such that the graded subalgebra

A=Q'xi, - xi
of S is commutative where @' is the subalgebra on the generators for @ raised to
the t*® power. Moreover, it is clear that A C S is a module finite extension and A
has finite global dimension.

With 7.4 in place, we have a way to study graded Ext-modules over R as modules
over a commutative polynomial ring in variables of cohomological degree 2¢ with
coefficients in @’. This allows us to introduce a theory of support varieties analo-
gous to the ones over commutative complete intersections as well as more general
(commutative) settings (cf. [1, 4, 5, 16, 25, 30]).

Definition 7.5. If M and N are color DG R-modules, we define the support variety
of (M,N) to be

Vr(M,N) = supp4(Extr(M, N)).
7.6. Assume that M and N are finite color DG R-modules. In this case, Extg(M, N)
is a finitely generated graded A-module. Indeed, by Theorem 6.4, Extr(M, N) is
a finitely generated graded color S-module. Since A — S is module finite, the

claim holds. That is, £y is an object of Df(A) where F = M is a finite Koszul
resolution of M. Hence,

Vr(M,N) = {p € Proj A : Extg(M, N), # 0}
={peProjA: &N ®ﬁ k(p) # 0}
= {p e ProjA: Epc @Y k(p) 0}

where G =5 N is a finite Koszul resolution of N the first and second equalities
hold by 7.2, and the third equality is justified by Theorem 6.4.

From 7.2 and 7.6, the support variety of a pair of finite color DG R-modules is
in fact a closed subset of Proj A. This is recorded in the first proposition below.

Proposition 7.7. If M and N are finite color DG R-modules, then Vg(M,N) is
a closed subset of Proj A.
Proposition 7.8. The following hold for DG R-modules L, M, N :

(1) VR(L® M,N)=Vg(L,N)UVg(M,N).
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(3) Foranyn € Z, VR(M,X"N) =Vi(M,N)=Vr(X"M,N).
(4) For 0 — M — M? — M3 — 0 an ezact sequence of color DG R-modules

VR(MhaN) g VR(Ml,N) U VR(MJ,N)
Vr(N,M") C VR(N, M) UVg(N, M7)

whenever {h,i,j} = {1,2,3}.
(5) If Extp(M,N) =0 for alln > 0, then Vr(M,N) = 0; the converse holds
when both M and N are finite DG R-modules.

Proof. The first four statements are clear from 6.5 and standard facts for homo-
geneous supports of graded modules over commutative noetherian graded rings (as
A is); for these facts see, for example, [5, 2.2]. For (5), the forward implication is
elementary. For the converse, the assumption on M and N imply that Extr(M, N)
is a finitely generated graded A-module, see 7.6, and so we can apply [5, 2.2(5)]
directly. ([

Example 7.9. We show that Vg (k,k) = Proj(A ®¢ k). We first notice that by
[22, Theorem 10.7] it follows that Extg(k,k) is isomorphic as a S-module, and
hence as a A-module, to S ®g N(kei & - - - G ke,,), see [22, Definition 10.3] for the
definition of skew exterior algebra. This tensor product is isomorphic to a direct
sum of copies of A ®¢ k, therefore Vg (k,k) = Proj(4 ®@¢ k).

Example 7.10. Let Q = Ci[z,y], R = % and let M = (—f), in this example we

are going to calculate Vg (M,C). A @Q-resolution of M is given by the skew Koszul

complex of the sequence z, 3>
<y2> ?
x Ty
Q? ( ) Q—0.

Let E be the skew Koszul complex over the ring Q of the sequence z2,y?, and let
e1, ez be the basis elements that differentiate to x2,y? respectively. The complex
F admits a structure of color DG E-module by defining the action in the following

)

F:0—Q

(© =)
€12F0—)F1, 612F1—)F2,
0
1 (1 0)
622F0—)F1, 62:F1—)F2.

We calculate Extg(M, C) by calculating the homology of the complex Epc. As F
is minimal, the differential given in 5.2 reduces to left multiplication by xs ® Aq,
using the actions given in 5.6.

For the rest of the computation let (—)* := Homg(—, C). It is directly observed
the DG S-module £ ¢ can be regarded as the skew Koszul complex over S ®¢g C

of the sequence (x2,0):
X2
0

0= Y *S®g Fy — Y 2S®q Fy

(0 x2)

S®QF§%O.
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Therefore, Extg(M, C) is free over % Furthermore, A = C[x?, x3] and hence,

Vr(M,C) = suppy (W} =Vr(x3)-

Example 7.11. A finite color DG R-module M is perfect over R if and only if
V(M,k) =0 (cf. Proposition 7.8(5)). In fact, for a perfect color DG R-module M,
Vr(M,N) = 0 for all finite color DG R-modules N. In particular, it follows from
this remark and Proposition 7.8(4) that if M is a finitely generated color R-module
then
Vr(M,N) = Vg(QR(M),N)

for any finite color DG R-module N and any i > 0 where Q% (M) denotes the i*®
syzygy module of M over R.

The following proof is adapated from [30, Theorem 4.3.1] by working over the
smaller commutative ring A, rather than S. We sketch the argument for the con-
venience of the reader.

Theorem 7.12. For finite color DG R-modules M, M’, N, N',
Vr(M,N)NVr(M',N')=Vr(M,N')NVg(M' N).
Proof. By 7.6, we can replace M, M’, N, N’ with their finite Koszul resolutions and

so in the sequel we assume these are all strongly perfect over (). In particular,
SE(,Y is a finite rank free graded S-module for X = M, M’ and Y = N,N’. As

A — S is a finite free extension of graded A-modules, 5&(71/ is a finite rank free
graded A-module for X = M, M’ and Y = N, N’. By applying [30, Proposition
1.2.8], £x,y is a semiprojective DG A-module; here the fact that A has finite global
dimension is essential (cf. 7.4). Thus,
(8) Exy % Exiyr =Exy @a Exryr
whenever {X, X'} = {M, M’} and {Y, Y’} = {N, N'}. Also, we have the following
isomorphisms of graded A-modules
5X’y ®A 5X/’y/ = (S ®q HomQ(X, Y)) ®A (S ®Xq HOIHQ(XI7Y/))

> (S®49) ®q HOHlQ(X, Y) ®q HOHlQ(X/, Y/)

~ (S®4 S) ®g Homg(X,Y') ®g Homg (X', Y)

= (S (276 HOI’IlQ(X, Y’)) XA (S (%) HOHIQ(X/, Y))

=Exy Q@alxy

where the third isomorphism is induced from the natural evaluation map
Homg(P,Q) ®¢q V = Homg(P,V)

being an isomorphism for a strongly perfect Q-complex P and for any complex V.
Tracing the differentials through the isomorphisms above verifies that this in fact
establishes an isomorphism of DG A-modules

Exy ®@alx yr Z2Exy ®a€xry.
Combining this with (8) establishes the following isomorphim of DG A-modules

EvN @5 Evr v = Evr v % Enpr v
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Thus, by 7.3

supp 4 En,n Nsupp g Env N7 = supp 4 Enr,nv Nsuppy Enrr, N
and so 7.6 yields the desired result. [

We obtain the following corollary from the symmetry of supports satisfied in
Theorem 7.12. Namely, Corollary 7.13 is a consequence of Theorem 7.12; since the
argument is the same as in [30, 4.3.1] we omit its proof here.

Corollary 7.13. For any pair of finite color DG R-modules M, N, Vr(M,N) =
Vr(N,M). Moreover, the following closed subsets of Proj A coincide

(1) suppag,, i (Extr(M, N) @q k);

(2) suPP ag i (Bxtr(N, M) @ K);

(3) VR(M’ N) N VR(k7 k)

(4) VR(M, ]k) N VR(H{, N),'

(5) Vr(M,k)NVg(N,k);

(6) Vr(k, M)NVg(k,N).
In particular, VR(M, M) N Vg(k k) = VR(M,k) = Vr(k, M).

8. VANISHING OF EXT MODULES

We continue with the usual hypothesis that R is a skew complete intersection
as in Section 2 and the hypothesis used in the last section that the group of colors
of () is finite. We apply the facts from the previous section to obtain the following
results over such skew complete intersections.

Proposition 8.1. Let R be a skew complete intersection with a finite group of
colors. For a finite color DG R-module M, the following are equivalent:

(1) M is perfect over R;

(2) Extz°(M, M) =0.
In particular, if M is a finitely generated color R-module, then M has finite pro-
jective dimension over R if and only if Ext>R>O(M, M) =0.

Proof. The implication “(1) implies (2)” is trivial, so we assume Ext7 (M, M) = 0.
By Proposition 7.8(5), it follows that Vg (M, M) = . It follows from Corollary 7.13
that

0 =Vr(M,M)=Vr(M,M)NVg(k k) =Vr(M k).

Now the desired result is obtained from Example 7.11. (I

Proposition 8.2. Let R be a skew hypersurface with finite group of colors. If M
and N are finite color DG R-modules such that Extz®(M,N) = 0, then M or N
is a perfect DG R-module. In particular, if M and N are finitely generated color
R-modules such that Ext3°(M,N) =0, then pdp M < 0o or pdg N < co.

Proof. By Corollary 7.13 it follows that
(9) 0= VR(Ma N) = VR(M7 N) N VR(kv k) = VR(M7 k) N VR(Na k)

The assumption that R is a hypersurface implies Projk[x!] = {(0)} and so V g(M, k)
and Vg(N,k) are naturally identified with subsets of {(0)}. Therefore, from (9) it
follows that one of Vg (M, k) or Vi(N, k) must be empty. Hence, M or N is perfect
over R (cf. Example 7.11). O
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Theorem 8.3 (Generalized Auslander-Reiten Conjecture). Let R be a skew com-
plete intersection with finite group of colors and let M be a finitely generated color
R-module. If Extp(M, M & R) =0 for alli > r, then pdg M <.

Proof. 1t follows from Proposition 8.1 that M has finite projective dimension. The
theorem now follows from the following

(10) pdp M = sup{i | Exti(M, R) # 0},

as the right hand side is clearly at most r by assumption. Hence, we prove that
(10) holds.
First, by the graded version of Nakayama’s Lemma

pdr M = sup{i | Exth (M, k) # 0}.

Since M has finite projective dimension (10) holds by the fact above and by using
the exact sequence 0 -+ Ry — R — k — 0, where R, is the ideal generated by the
elements of R of positive internal degree. O

Remark 8.4. 1t is proved in [33] that the ring kq[z1,22]/(2%,23) does not satisfy
the Generalized Auslander-Reiten Conjecture whenever g; » is not a root of unity.
We point out that the module considered in [33] is (21 + x2), which is not a color
module. It is unknown whether a skew complete intersection with infinite group of
colors satisfies the Generalized Auslander-Reiten Conjecture on color modules.

9. SYMMETRY IN COMPLEXITY

We continue with the usual assumption that R = Q/(f1,..., f.) is a skew com-
plete intersection.

9.1. Let {b;} be a sequence of nonnegative integers. Recall that the complexity of
{b;}, denoted by cx{b;}, is the least integer d such that there exists a > 0 satisfying
b; < ai®"! for all i > 0.

Let M and N be finite color DG R-modules. The complezity of the pair (M, N)
is defined as

exr(M, N) = ex{dimy (Ext% (M, N) @g k)}.

In [22, Corollary 10.10] the first two authors show cxgr(k,k) = ¢. In fact, a
stronger statement about the Poincaré series of k is determined. To elaborate on
this we introduce the following notation.

9.2. Let M and N be finite color R-modules. The Poincaré series of (M,N) is
Pl n(t) = dimy(Exty (M, N) @g k)t'.
i>0

Also, we define the Poincaré series of M to be P (t) := Pﬁk(t). Finally, for a
(cohomologically) graded k-module M we let its Hilbert series be

Hp(t) =) dimy Mt
i€Z.
The stronger statement from [22, Corollary 10.8], mentioned above, says
(1+t)"

P (1) -y



SUPPORT VARIETIES OVER SKEW COMPLETE INTERSECTIONS 25

and so there exists a polynomial p of degree ¢ — 1 such that
p(i) = dimy Ext’, (k, k)

for all 4 > 0. The following theorem generalizes the facts above to arbitrary pairs
of modules over a skew complete intersection. We emphasize that Theorem 9.3,
and its corollaries, do not require the assumption from the previous section that
the parameters g; ; should be roots of unity.

Theorem 9.3. Let R be a skew complete intersection of codimension ¢ and M and
N be finite color R-modules. If Extp(M,N)®grk # 0, then the formal power
series

(1- tQ)CXR(M’N)Pﬁl,N(t)
is a polynomial with integer coefficients that has no root at t = 1. In particular,
cxp(M,N) <ec.

Proof. By Theorem 6.4, Extg(M, N) is a finitely generated color module over S =
Qlx1,---sXe | 9(xi) = 9(f:)~ L, |xi] = 2], a color commutative polynomial ring.
Hence, M := Extr(M, N)®¢k is a finitely generated color module over S := S®gk.
As each y; has cohomological degree 2, M decomposes as a direct sum of finitely
generated color S-modules
M = Meven @Modd.
Also, we have the equalities
PRy (1) = Ha(t) = Hpgeven (£) + Hpgoaa (1),
and
exp(M, N) = max (cx{dimy M?'}, ex{dimy M>*1}).

By the previous two displays, it suffices to prove the desired result when M is
concentrated solely even degrees or solely in odd degrees; so we assume, without
loss of generality, M is concentrated in even degrees. Therefore, for the rest of the
proof we can regrade S by assigning each x; cohomological degree 1, and M will
be a finitely generated S-module.

Next, as S has finite global dimension it follows that M admits a bounded
resolution by finite rank free color S-modules. Now using that the Hilbert series is
additive along exact sequences and Hg(t) = (1 — )¢ it follows that

q(t)
(1—1)°
for some polynomial ¢(t) with integer coefficients. By canceling the common factors
of (1 —t) we can write

Hum(t) =

p(t)
Ha(t) = —22
for some polynomial with integer coefficients p(t), where p(1) # 0 and ¢’ < c. Now
a direct calculation shows that ¢’ is exactly cx{dimy M"}, as needed. O

Corollary 9.4. Every finitely generated color R-module over a skew complete in-
tersection has rational Poincaré series.

Corollary 9.5. Let M be a finite color R-module with a minimal free resolution
F = M over R. Then cx{rankgzF;} < c.

Proof. This follows immediately from Theorem 9.3 with N = k. (]
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Remark 9.6. More can be said about specific resolutions over R. Namely, let M
be a finite color DG R-module and fix a Koszul resolution F =» M. The same
argument as in [3, Theorem 2.4] shows that the resolution of the diagonal in The-
orem 2.3 determines an R-semifree resolution of M, depending on the choice of
F. In particular, M will admit a semifree R-resolution whose underlying graded
R-module is
R ®¢g Homg (S, Q) ®@q F.

From this one obtains a second proof of Corollary 9.5 since F' can be taken to be a
strongly perfect Q-complex (cf. 6.3).

For the remainder of the section we assume @ is a skew polynomial ring with
each g; ; a root of unity.

Theorem 9.7. Let R be a skew complete insersection with finite group of colors.
If M and N are finite color DG R-modules, then cxg(M, N) = cxr(N, M).

Proof. Adopting the notation set from 7.4, Extr(M, N) is a finitely generated mod-
ule over the S-subalgebra A. The upshot is that we may instead compute complexity
using A rather than S. Also, since ' — @ is a module finite extension we have

(11) exr(M, N) = ex{dimy (Ext’ (M, N) ®¢ k)}.
Therefore,
exr(M, N) = ex{dimy (Ext’ (M, N) @¢ k)}
=dima Extp(M,N) ®¢g k
= dimsuppy Extr(M,N) ®¢g k
= dimsupp 4 Extr(N, M) ®¢ k
= dima Extp(N, M) ¢ k
= cx{dimy (Ext’y (N, M) @¢ k)}
= cxp(N, M);
where the first and last equalities are justified by (11), the fourth equality is from

Corollary 7.13, and the rest are standard since we are working over the graded
commutative ring A (see, for example, [13, Section 4.1]). O

Corollary 9.8. Let R be a skew complete intersection with finite group of colors.
Let M and N be finite color DG R-modules, then

Extp%(M,N) =0 <= Extz°(N,M)=0.
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APPENDIX A. SKEW DIVIDED POWERS ALGEBRA

In this appendix, we show that the dual of a color polynomial ring under the
convolution product is isomorphic (as an algebra) to a color divided powers algebra
and vice versa. For background regarding skew divided powers algebras, see [22,
Section 6].
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Let @ be a color commutative k-algebra. That is, we assume that (Q admits a G-
grading where G is an abelian group, and that ab = k(o, 7)ba for all G-homogeneous
elements a € Q, and b € Q,, where x : G x G — k* is an alternating bicharacter of
G. This bicharacter « is fixed throughout. When necessary, we denote the G-degree
of a homogeneous element by ¢(z), and we will abuse notation and write x(a,b)
for k(¥ (a),¥9(D)).

Next, we let A = Qlz1,...,xn | Y(x;) = oy, |xs| = diyi = 1,...,n], with
o; € G and d; positive integers. We denote a monomial in A by x® where
a = (ay,...,a,) € N" is an exponent vector.

Let A : A - A®qg A be the coproduct defined by setting A(x;) = z; ® 1 +
1 ® z; and extending by products and linearity. For a general element of A, we
use Sweedler’s notation and let A(a) = > a1y ® a(2y. Note that this coproduct is
bihomogeneous for the canonical bigrading on A ®g A. Using the definition of A,
a straightforward calculation shows that

(12) A= Y C(xﬁ,x")_1<a>x5®x"’,

By=a p
where (g) = (‘;I) . (g:), and C(xP,x7) is the element of k* that satisfies xAxY =
C(xP,x7)xP*Y. Note that C(—,—) is a bicharacter defined on the monoid of
monomials (but is not alternating), and satisfies

(13) r(xP,x7) = C(xP,x")C(x7,xP)~1.

See [21] for more details regarding the C(—, —) pairing.

Let A* = Homg(A4, Q), note that A* is a free left and right @-module, and is
spanned by the dual basis of monomials (x®)*; we denote the element (x*)* by
£€%. Further, if the bidegree of x* is (o, d), then the bidegree of (x*)* is (¢!, —d).

We may now define a product on A* using the coproduct on A. Indeed, for any
v, € A* and a € A bihomogeneous:

(14) (o) (a) = kW, aq))elany)d(ac)).

The reason for the appearance of the k factor is due to its presence in the
canonical isomorphism V*®¢q W* = (V®gW)* in the category of color @Q-modules.

Before continuing, we prove a lemma regarding this product, as it demonstrates
some of the ideas needed to justify claims which follow.

Lemma A.1. Let B and ~ be exponent vectors, and let €5, €7 be the duals of xP
and X7, respectively. Then one has

gﬁsv _ C(x”, Xﬁ)fl ('B g 7) €B+7_

Proof. The binomial coefficient present on the right hand side comes from the
binomial coefficient present in the coproduct formula (12) above. By the coproduct
formula and the definition of the convolution product (14), the additional unit
factor is equal to k(£7,x%)C(x?,x7)~1. Since

k(€Y,xP)C(xP, x7) 7! = k(xP,x7)C(xP,x7) 71 = C(x7,xP) 7!,

the result follows. O
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The algebra A* also carries a system of skew divided powers. These are defined
by using divided power binomial expansion and the following definition of divided
power of a monomial:

(€)M = (x>, x*)~ () m ghe

hk)!
where for i and k integers, one has Z = k('(h'>)’€’ and for a an exponent vector,
al || oy
one has [k} i kz]
The proof that A* satisfies the axioms of a skew divided powers algebra follows
from careful use of the fact that C(—, —) and k(—, —) are bicharacters, together

with identities involving binomial coefficients and the bracket notation introduced
above. We provide here a proof of the following equality as an example.

Proposition A.2. Let x and y be elements of A* that are homogeneous with respect
to all gradings. Then one has

()™ = w(y, z) (B aky®.

Proof. Using divided powers binomial expansion, it is enough to prove this formula
for z = £€P and y = &Y. In this case, it is clear that both sides of the claimed
equality evaluate to a scalar multiple of €¥(B+7). The scalar on the left hand side

is made up of a constant involving C(—, —), and combinatorial constants:
k
v Bk Bt B —(5) (BT B+
C(x7,xP)""C (%", xPT7) 2<,3 JAE

By induction, it follows that

_(* (28 kB
Eﬁk:C’xﬁ,Xﬁ (2)( >( >£ﬁ
(€7) ( ) 3 3
Therefore, the scalar on the right hand side is therefore the product of
k k k
2 2 2

n(x”,xﬁ)( )C’(xﬁ,xﬁ)f( )C’(X'V,xﬁ)f( )C’(x’“’,xwf1

and the combinatorial constant

() (M)

It is a straightforward matter to check that the combinatorial constants on either
side of the equality agree. To check that that the constants involving x(—,—) and
C(—,—) agree, one uses that C(—, —) is a bicharacter (13). O

We may use the product on A to define a coproduct on A* as well, by declaring
A(&) = 6014+1®¢E; and extending A to all of A* as in (12). Using this coproduct,
we may in turn consider the algebra A** as before. However, one has the following
result, whose proof follows along the same lines as in the case of a commutative

ring Q:

Proposition A.3. The algebras A and A** are isomorphic as color commutative
graded Q-algebras. In particular, the graded Q-dual of a skew divided powers algebra
over @ is isomorphic to a color polynomial extension of Q.
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APPENDIX B. AN ADJUNCTION ISOMORPHISM

The goal of this appendix is to prove Proposition B.3. In the commutative case,
this follows immediately from [27, (8.7)].

Let A be a graded color commutative DG Q-algebra where @ is a color commu-
tative connected graded algebra over a fixed base field k; set A° := A®¢g A°P to be
the enveloping DG algebra of A over () and, as usual, A is regarded as a color DG
Ac-algebra via the multiplication map p : A® — A given by

a® b ab.

Fix a color DG A-module M, then we define a pair of functors (depending on
) h: Mod(A) — Mod(A4°) and t : Mod(A®) — Mod(A)
given by h := Homg (M, —) and t := —® 4 M, respectively. The A°-module structure
on h(N) = Homg (M, N) is given by
a@b- f = (=)Pk(b, faf(b-)
while the A-action on t(IV) is obvious one on the left of N in N ®4 M.

B.1. Let N be a color DG A-module. We let evy : Homg(M,N) ®4 M — N be
the evaluation map. Namely,

evy (g ® m) := g(m).
It is straightforward to check that evy is a morphism of color DG A-modules.

B.2. Fix a color DG A°-module X and a color DG A-module N. Let f: X®@a M —
N be a morphism of color DG A-modules and consider f : X — Homg (M, N) given
by
x fla®—).

Observe that

flawb-z) = f(—=D)"*k(b, x)azb ® —)
DIl (b, 2) f(azb @ )
)l (b, ) w(f, a)af (xb ® —)

(=1)

= (-1 ®
= (=)lallf1F b=l (b, Y k(f, a)af (x @ b—)
= (=1 )r(f,

= (=

Dlallf I+l DI+l g a)k(f(z),bD)a®b- f(z)
1)(\a\+|b\)|f\,€(f~7a®b) Qb f( ),
that is, f is left color A°-linear.

Proposition B.3. With the notation above, h is a right adjoint to t. In particular,
for each DG A°-module X and DG A-module N the following maps are inverse
isomorphisms that are natural in X, M and N:

(1) @ : Homa(t(X), N) = Hom4e (X, h(N)) given by
ff
(2) U :Homae(X,h(N)) — Hom4(t(X), N) given by
g evy o (g®id™).
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Proof. We directly check the maps defined in (1) and (2) are mutually inverse to
one another. To see this consider

TD(f)(x @m) = evy o (f @id™)(z @ m)
=evwv(flz®—)@m)

and

U (g)(z) = @ (evN o(g® idM)) (z)
=evy(g(r) ® —)

= g().

Therefore ¥ = id and U = id, justifying the proposition. ]
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11.

12.
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