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This paper proposes convex relaxation based robust methods to recover approximately low-rank matrices in the
presence of heavy-tailed and asymmetric errors, allowing for heteroscedasticity. We focus on three archetypal
applications in matrix recovery: matrix compressed sensing, matrix completion and multitask regression. Statis-
tically, we provide sub-Gaussian-type deviation bounds when the noise variables only have bounded variances in
each aforementioned setting. Improving upon the earlier results in Fan, Wang and Zhu (Ann. Statist. 49 (2021)
1239-1266), the convergence rates of our estimators are proportional to the noise scale under matrix sensing and
multitask regression settings, and thus diminish to O in the noiseless case. Computationally, we propose a matrix
version of the local adaptive majorize-minimization algorithm, which is much faster than the alternating direction
method of multiplier used in previous work and is scalable to large datasets. Numerical experiments demonstrate
the advantage of our methods over their non-robust counterparts and corroborate the theoretical findings that the
convergence rates are proportional to the noise scale.
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1. Introduction

There has been a recent surge of interest in matrix recovery which aims to recover an unknown matrix
from noisy observations. Matrix recovery has wide applications in practice, including collaborative
filtering [14], multitask regression [1], quantum state tomography [15] and face recognition [24], to
name a few. Statistically, it aims to estimate @* € R%1*%2 based on n independently and identically
distributed (i.i.d.) observations {(y;, X;)}!" , following the generative model

Vi = tr(X;.r@*) +€ =: <Xi,®*> + €,

where X; € R4*% is a random measurement matrix, and ¢ is an error variable satisfying E(¢;|X;) =0
and E(eile i) < 0'3 for some o > 0. We consider matrix recovery in high dimensions, that is, d| X d;
can be much larger than the sample size n, making the problem ill-posed. It has been a common
practice to assume that @" is (approximately) low-rank, and the resulting problem is referred to as
low-rank matrix recovery.

The problem of low-rank matrix recovery can be naturally formulated as a nonconvex empirical risk
minimization problem subject to a rank constraint. To find local optima of such a rank-constrained
program, commonly used methods are Riemannian gradient descent [41] and Burer-Monteiro type
gradient descent [2,7,25,38]. The former views the set of rank-r matrices as a smooth manifold, while
the latter relies on the matrix factorization @ = UVT, where U € R4 |V € R2X" and r = rank(@™)
is assumed to be known. To relax the restrictive assumption that the true rank r is known a priori, [22]
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and [43] studied the gradient method for solving the reparameterized program in an over-parameterized
regime where ©@ = UV with U € R and V € R’ and r’ > r is an upper bound of the true rank.

Another line of research resorts to convex relaxation in order to obtain computationally feasible solu-
tions. Similar to Lasso [37] in the context of sparse linear regression, convex low-rank matrix recovery
methods are based on either constrained nuclear norm minimization or nuclear norm penalized least
squares formulation. The nuclear norm of a matrix is defined as the sum of its singular values, and
thus serves as a convex surrogate for its rank. We refer to [4-6,28-31] and [18] for an unavoidably in-
complete list of notable works on exact and noisy low-rank matrix recovery through convex relaxation.
In the context of multitask learning, [23] introduced an approach that utilizes the group Lasso penalty
when only a small number of rows in the matrix @ are nonzero.

All the aforementioned methods, convex or nonconvex, are studied either in the noiseless setting
or under a sub-Gaussian/sub-exponential assumption on the random error. However, both convex and
nonconvex least squares estimators exhibit sub-optimal deviation bounds in the presence of heavy-
tailed errors that only have a small number of finite moments. To make the estimator less sensitive
to heavy-tailedness, a natural idea is to replace the ¢£;-loss with a robust loss function, such as the
£1-loss or the Huber loss [16]. For example, [10] proposed and studied nuclear norm penalized estima-
tors using both the £-loss and the Huber loss; [35] considered robust sparse reduced rank regression
by minimizing the empirical Huber loss plus a combination of the nuclear norm and entry-wise {i-
norm penalties. For methods that rely on nonconvex optimization with robust losses, [33] proposed a
Riemannian sub-gradient method and proved the statistical properties of the iterates; [40] studied the
statistical properties of vanilla gradient descent iterates for solving reparameterized (regularized) Hu-
ber loss minimization. In an over-parameterized regime, [26] showed that sub-gradient descent with
the £;-loss function converges to the ground truth at a near-linear rate in the presence of arbitrarily
large outliers.

In this paper, we propose a robust approach to recover an approximately low-rank matrix in a trace
regression model with heavy-tailed and asymmetric error, which complements the extant literature on
low-rank matrix recovery via convex relaxation. Borrowing ideas from robust (sparse) linear regres-
sions [11,34], we adopt the Huber loss function with a diverging robustification parameter to achieve
sub-Gaussian-type concentration bounds. We focus on three archetypal examples in matrix recovery:
matrix compressed sensing, matrix completion and multitask regression. For each problem, we study
the nonasymptotic deviation bounds of the nuclear norm penalized Huber estimator under both the
Frobenius and nuclear norms, which match the minimax optimal rates. Our main contributions are
as follows. First and foremost, we provide a comprehensive analysis of the nuclear norm penalized
Huber regression estimator to gain robustness without compromising statistical efficiency. Our results
either improve or complement those in [10,13] and [35]. For example, [10] considered robust matrix
completion under symmetric error distribution and also required a constant lower bound for the er-
ror density function. [35] examined the Huber-type estimator for sparse multitask regression but their
analysis cannot be directly extended to the non-sparse setting. Secondly, we provide a unified algo-
rithmic framework, which is a matrix variant of the local adaptive majorize-minimization (LAMM)
algorithm [12], to solve the three problems (matrix sensing, matrix completion and multitask regres-
sion) all at once. By constructing an isotropic quadratic function that locally majorizes the empirical
Huber loss, the solution to each proximal optimization problem has a closed form, which considerably
facilitates the implementation. Compared to many other algorithms used in the literature, our algorithm
is first-order and thus more scalable to large data sets.
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1.1. Related work and paper organization

Our model setting is closely related to that in [13], but the proposed robust estimators provably achieve
sharper convergence rates than those obtained in [13]. More specifically, [13] proposed a two-step
procedure, which in step one applies shrinkage operators to the empirical average (1/n) X" | y; X;.
The truncation level on y;’s, which appears in the final convergence rate, depends on the variance
of y; and thus is not proportional to the noise scale. In contrast, by employing the adaptive Huber
loss as in [34] and the localized analysis developed by [12], we show that the convergence rates of
our estimators are proportional to the noise scale for matrix sensing and multitask regression; see
Theorem 3.3, Theorem 3.5 and the subsequent remarks for details. Moreover, [13] required ¢; to have
bounded (2k)-th moment for some k > 1, while our estimators enjoy optimal rates as long as ¢;’s
have bounded variances. On the computational aspect, compared to the contractive Peaceman-Rachford
splitting method and the alternating direction method of multiplier (ADMM) employed by [13] to solve
the nuclear norm penalized programs in step two, the proposed matrix variant of the LAMM algorithm
is first-order and has a lower computational cost per iteration. See Section 2.2 for a more detailed
comparison of computational complexity.

Although the proposed estimators satisfy exponential deviation bounds when the noise distribution is
asymmetric and has finite variance, this advantage is accompanied by a trade-off: they sacrifice a con-
siderable level of robustness when facing adversarial contamination of the data. This is due to the use
of a robustification parameter that increases with the sample size. In the case of adversarial contamina-
tion, recent studies have introduced robust estimators that showcase resistance to a small proportion of
arbitrary outliers. For example, in sparse linear regression with Gaussian errors and adversarially cor-
rupted labels, [9] demonstrated that the £|-penalized Huber’s M-estimator attains the optimal rate of
convergence, up to a logarithmic factor. Moreover, several recent studies [8,19,21,36] have specifically
tackled the challenge of arbitrary outliers in the context of matrix sensing and matrix completion. For
multitask regression, a robust multitask (reduced-rank) regression approach was introduced by [32]
for simultaneous modeling and outlier detection. To address data contamination caused by arbitrary
outliers, they formulated the problem as a regularized multivariate regression with a sparse mean-shift
parametrization and developed a thresholding-based iterative procedure for optimization. It is worth
noting that our methods and theory diverge from the conventional notion of robust statistics. While
the aforementioned works assume sub-Gaussian or Gaussian noises, our work places emphasis on the
distinct assumption of heavy-tailed errors rather than corruption by (arbitrary) outliers. The proposed
methods and analysis therefore provide a useful complement to the current body of research on robust
matrix completion and reduced-rank regression.

The rest of the paper proceeds as follows. In Section 2, we first review the trace regression model with
three prototypical applications. Next, we introduce the nuclear norm penalized robust matrix estimator
via the use of adaptive Huber loss, followed by a unified algorithm that applies to all three settings. We
provide non-asymptotic high probability bounds for the proposed estimators case-by-case in Section 3.
Section 4 presents our numerical experiments, conducted to demonstrate the advantage of our methods
over their non-robust counterparts and to corroborate the theoretical findings that the convergence rates
are proportional to the noise scale under the matrix sensing and multitask regression settings. All the
proofs are relegated to the Appendix in the Supplementary Material [42].

Notation. For a matrix A = (Ajx)1<j<d,,1<k<d, € R4*4 its singular values are denoted as o7y (A) >
02(A) 2 -+ 2 Onin(d,,d,)(A). Define its operator norm [|All; = o1(A), its Frobenius norm [|A|lr =
Zr_niﬂ(dl ,da) min(dy,dp)
J=1 j=1
max|<j<q, Maxi<k<d, |Ajk|. For two matrices A,B € R4%4 et (A, B) be the matrix inner product

a'jz(A), its nuclear norm ||A|. = > 0j(A) and its max norm |[Af. =
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defined as (A, B) = tr(ATB). We use vec(A) € R914 to denote the long vector obtained by stacking the
columns of A.

2. Robust matrix recovery via adaptive Huber loss

2.1. Model and methods

Suppose we have collected n i.i.d. data points {(y;,X;)}!_, generated according to the following het-
eroscedastic trace regression model

yi =(X;,0%) +¢, 2.1)

where X; € R4 Xd2’5 are random measurement matrices, and €;’s are additive random noise variables
satisfying E(¢;| X ;) = 0 and E(eile i) < 0'3. Based on the noisy observations {(y;, X;)}/_,, we are inter-
ested in recovering the unknown matrix ®* € R%1%%2 that is either exactly or approximately low-rank.

More specifically, assume for some 0 < g < 1 and p > 0 that

min(dl,dz)
0" e B,(p) := {(E) e RI*4 (@)1 < p}. (2.2)

=1

In particular, By(p) = {® € R4*% : rank(®) < p} denotes the set of matrices with rank at most p, and
B,(p) with 0 < g < 1 is set of approximately low-rank matrices. Throughout the rest of the paper, we
assume without loss of generality that d; > d.

The difficulty of recovering @ varies depending on the random structures of the measurement ma-
trices X ;. Below we list three prototypical applications of model (2.1), which will be the main focus of
this work.

(i) Matrix sensing: Matrix sensing often assumes that the entries of X; € R4*%2 are independently
generated from the N(0, 1) distribution. More generally, vec(X;)’s are assumed to be zero-mean
sub-Gaussian/sub-exponential random vectors.

(i) Matrix completion: In matrix completion, X; are randomly drawn from the set

X ={ej(d)eg(dy),1 <j<dy,1 <k <dy},

where e(d),. . .,e4(d) are the canonical basis vectors in R¥.
(iii) Multitask regression: The multitask (reduced-rank) regression assumes

yi=0)Tx;+e€, i=1,...n 2.3)
where y; = (yi1,- - .,yidz)T € R% are observed response vectors, x; € R are covariate vec-
tors, @ € R41*% s the target regression coefficient matrix, and €; = (€1, . . .,el-dz)T €R% are
independent zero-mean random noise vectors. Fori = 1,...,nand k = 1,...,d,, define

T
Vi-Ddy+k = Yiks  X(i=1)dy+k = Xi€;(d2) and €;_1)q,+k = €ik- (2.4

Then the sample {(yj’Xj)}jI\il with N = nd, satisfies model (2.1).
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For matrix sensing and matrix completion with noisy measurements, a popular approach is the the
following convex relaxation approach [4]

~ (1 &
0, € argmin {— D= (X, 0)) + /l||@||*}, (2.5)
occ \2n

where C is a convex feasible set of R%1*42 and A > 0 is a regularization parameter. When C = R41%%2,
O, is the matrix analog of the Lasso estimator for linear regression [37]. The statistical properties of 0,
in (2.5), mainly nonasymptotic deviation bounds under various matrix norms, have been studied in the
literature when the additive noises ¢; are either Gaussian or sub-Gaussian. The performance of such a
least-square-type estimator may break down quickly when the noise distribution is heavier-tailed. This
is because outliers occur more frequently and the square loss is very sensitive to outliers. The impact
of heavy-tailed errors on low-rank matrix recovery can be alleviated by replacing the ¢;-loss with a
more robust loss function, typified by the £1-loss and the Huber loss [10]. When the error distribution
is not only heavy-tailed but also asymmetric around zero, the use of £;-loss or Huber loss with a fixed
tuning parameter induces a bias that remains non-negligible as the number of measurements grows. For
a better trade-off between robustness and bias, in the following we propose to use adaptive Huber loss
[11,34] for robust low-rank matrix recovery, with a focus on the above three prototypical applications.

For matrix sensing and completion problems, i.e. applications (i) and (ii), we define the empirical
loss function to be

Le®)= 3 bl - (X1,0)), © R .6

i=1

where ¢; (1) = min{u?/2,7|u| — v2/2} denotes the adaptive Huber loss parameterized by 7 = 7,, > 0,
referred to as the robustification parameter in [34]. For any pre-specified convex subset C of R%1%%2,
we consider the following nuclear norm penalized robust regression estimator

0. eargmin{zT(@)+/l||®II*}, .7)
eC

where T =1, > 0 and 4 = A,, > 0 are the robustification and regularization parameters respectively.

For the multitask regression problem — Application (iii), recall that the vector-valued observations
{(yi»xi)}_, can be written as {(yj,Xj)}jl\i1 (N = nd») via (2.4) so model (2.1) can be used. The classi-
cal reduced-rank regression method is based on solving the rank-constrained problem [17]

n N
min {Z ly; —0Txil3 = > (v - <X,-,®>)2},
i=1 j=1

rank(®)<r

for which an analytic solution is available. To robustify this classical procedure, similarly to the for-
mulation (2.7) one may naively apply the Huber loss to each residual y; — (X, ®). This, however,
is no longer plausible because X;’s are now dependent random matrices. Moreover, since we do
not impose independence on the entries of €; = (g1,.. .,eidz)T, €;’s defined in (2.4) may also be
highly correlated. We propose to replace the £,-loss on |ly; — ©®Tx;||, with the Huber loss, leading
to Mingn@)<r 2ieq Ce(lly; = ®"x;|2), which is a highly nonconvex problem. Similarly to (2.7), we
resort to convex relaxation and consider the following nuclear norm penalized estimator

—~ ) 1 <&
O, 1 € argmin {E Zé’,(”yi—@Tx,»Hz) +/l||®||*}. (2.8)
-1

@eRdIXdZ i
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In Section 3, we characterize the nonasymptotic statistical accuracy for the robust low-rank estimator
O, , defined in (2.7) and (2.8) when the noise variables only have bounded variances. The key is to
seek a suitable choice of 7 and A jointly to trade off among robustness, bias and approximation errors.

2.2. Algorithms

To solve the nuclear norm penalized optimization programs (2.7) and (2.8), in this section we present a
unified algorithm by extending the local adaptive majorize-minimization (LAMM) principle proposed
in [12] to matrix settings. Recall that the proposed nuclear norm penalized Huber regression estimators
have a general form

.1 € argmin{L(®) + 1[O||.},
QcC

where ZT((B) is the empirical loss in (2.6) or (2.8), and C is taken to be R%1%%2 or {® e R%1*%2 .
O]l < ap} for some @y > 0. The main idea of the LAMM principle is to construct an isotropic
quadratic function that locally majorizes the objective function at each iteration. In the matrix setting,
given the previous iterate O%=1 at the k-th iteration, define the quadratic function

F(©:04°1,9) = L, @©* ) + (VI (0 ),0 - 0 ) + L 0 - 04V R,

satisfying F' O@*-D: @*1D ¢,) = L(@(k—l))’ where ¢ > 0 is a quadratic parameter. Next, define the
k-th iterate as

0% € argmin{ F(©; 0%V, ¢1) + 1||O]..}. (2.9)
®cC

The parameter ¢ needs to be sufficiently large so that ZT((E)(k)) < F(OW;@%D, ¢,), which further
implies

L")+ 2110V, < F©OX: 0, ¢) + 1OV,
< FO* ;0% ¢) + 2|@*V,
= L(@% V) + 210% D,

where the second inequality is due to the optimality of O%)_ This ensures the descent of the ob-
jective function at each iteration. To choose a sufficiently large ¢y, we start from a small value,
say ¢o = 0.01, and inflate it by a factor y > 1, say y = 2, until the local majorization requirement
ZT(G(k)) < FOW: 0% 4.) is met. Since F(©; 0%V ¢,) > ZT(G) when ¢ is no less than the
largest eigenvalue of V2L(@%D), the iteration will stop after sufficiently many steps. Repeat the
above steps until convergence (e.g., IIG)(k) - G(k_l)HF < € for a sufficiently small € > 0) or until the
maximum number of iterations is reached.

The main benefit of minimizing a penalized isotropic quadratic objective function is that the min-
imizer often has a closed form. For any matrix @ € R41%d2 with rank r, consider the singular value
decomposition (SVD) @ = U 2VT, where U and V are, respectively, d; X r and dp X r matrices with or-
thonormal columns, and X = diag({o}1<i<,) is an r X r diagonal matrix with oy > 03 > --- > 0 > 0.
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Algorithm 1 LAMM algorithm for regularized adaptive Huber trace regression
Algorithm: {O(k)};:’:l — LAMM(4, G(O),¢0,y, €)
Input: 4, G)(O),q)o,y,e

1: for k =1,2,... until |[@% - @* |, < e do
2:  repeat

3 0k — S@* D — ¢ VL (@% D), ¢ 1)
4 0" — (%)

5: if FOX; %D ¢,)< L. (%)) then

6: bk — Y- Pk

7 end if

8

until F(OX); ¢, 0%V > L (@%)
9. return O%)
10: end for

Output: 0=00

For A > 0, define the soft-thresholding operator S(®,1) = U - diag({max(cy — 1,0)}1<i<,) - V. By
Theorem 2.1 in [3], (010 given in (2.9) with C = R91%2 admits the closed-form expression

01 =T7).4,(0):= @) - g 'VL (@ D). 47 D).
For a general convex subset C C R?1*%2, we can update 0% as
OX) =T1¢ (T4, (©47Y)),

where I1¢ denotes Euclidean projection onto the subspace C. When C = {® € R4*% : ||0||, < ap},
for example, I1¢(@) = (max{min(@x,ao), —@0})1<j<d,,1<k<d,- We summarize the key steps in Algo-
rithm 1.

As a unified algorithm, Algorithm 1 applies to all three problems considered in this paper, ma-
trix sensing, matrix completion and multitask regression. In terms of complexity, at each iteration
VZT(@("_I)) and Ty ¢, (G)(k_l)) can be computed in O(nd;d;) and O(dldg) operations (assuming
dy = dp), respectively [39]. On the other hand, [13] employed the contractive Peaceman-Rachford split-
ting method for matrix sensing and multitask regression, and an ADMM-based algorithm for matrix
completion. In addition to the operations described above, each ADMM iterate also involves comput-
ing the inverse of ZXTX/n +14,4,, where X is an n X dd, matrix whose i-th row is vec(X;), and Iy
denotes the k X k identity matrix. By applying the Sherman—Morrison—Woodbury formula, this step
can be implemented in O(min{n,d;d,}>) operations. Still, the computational complexity and storage
cost (per iteration) of ADMM are much higher than the LAMM algorithm in the context of matrix
completion, especially for large-scale datasets.

3. Theoretical guarantees

In this section, we establish the finite-sample statistical properties of the robust estimator @T, a for
matrix sensing, matrix completion and multitask regression. Throughout, the noise variables ¢; in (2.1)
and €; in (2.3) are assumed to have bounded variance only, and we do not require independence between
€ and X; or €; and x;.
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3.1. Matrix sensing

In the case of matrix compressed sensing, we set C = R%1*2 in (2.7), and impose the following as-
sumptions.

(Al) ©" € B,(p) for some 0 < g < 1and p >0.
(A2) The random matrix X; € R91*% gatisfies (i) EX; = 0, and (ii) vec(X;) € R41% is sub-
exponential, that is, there exists a constant v > 1 such that for any A € R4*d2 and u > 0,

P(|vec(A) vec(X )| = vollAllr - u) <2e7".

Moreover, there exists a constant ¢; > 0 such that A, (Evec(X ivec(X i)T) >cy.
(A3) The noise variables ¢; are such that E(¢;|X;) = 0 and ]E(eile i) < a'g (almost surely) for some
constant o > 0.

Remark 1. The parameter v is often referred to as the sub-exponential parameter. For various well-
behaved distributions on R41*42 the associated sub-exponential parameters are independent of the
dimensions d; and d>. As prototypical examples, the distributions listed below satisfy Condition (A2)
with dimension-free parameters vy and ¢;.

(i) (Multivariate normal) vec(X;) follow s N(0,%) with a positive-definite £ € R(4142)x(d1d2),
(i1) (Uniform distribution on the Euclidean sphere) X; follows the uniform distribution on the
sphere centered at the origin with radius (d)d>)'/2, namely, {X € R4*% : || X || = (d;d»)"/?}.
(iii) (Uniform distribution on the £;-ball) X; follows the uniform distribution on the ¢;-norm ball
centered at the origin with radius r < d;d», that is, {X € R91%% Z;l;l Zizzl Xkl <r}.

Here, we note that the multivariate distributions in (i) and (ii) are not only sub-exponential but also
sub-Gaussian.

To derive the convergence rate of @T, 2 under either the Frobenius norm or the nuclear norm, we first
define a probability event that concerns the local restricted strong convexity (RSC) of the empirical
loss L(+). For s,I > 0, define the Frobenius norm ball and trace norm cone

B(s) = {A e R . ||A|lg < s} and C(I) = {A e RY*% : ||All, < I]|A]lg}, (3.1
respectively.

Definition 3.1 (Local restricted strong convexity). Given radius parameters s,/ > 0 and a curvature
parameter « > 0, define the event

(3.2)
0O +B(s)NC(1) 10 - 0|2

Els.Lx) = { (VL(0) - VL(0).0-0") K}’

which concerns the local restricted strong convexity of the empirical loss function.

We first provide a deterministic result on the convergence rate of @T, a: for any choice of A such that

IVL(©")|l» < A/2, and conditioned on event &(s, [, k) with suitably chosen (s,1), we are guaranteed
that

107,40 — O [lr < VP (A/K)'"9% and [0, 4 - O°||. < p(2/x)' 7.
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Theorem 3.2. Assume Condition (Al) holds. Let (A,s,1, k) satisfy A > 2||VZT(®*)||2,
52 9.15vp(A/K)'"9% and 1> 6.14p (k/2)72. (3.3)

Conditioned on the event E(s,1, k), the error matrix A := @, ) — O satisfies

_ 1 1-g/2 N 1 1-gq
||A||FS9.15\/5(;) and ||A||*£56p(;)

In the following two propositions, we first derive an upper bound of ||VZT(®*)||2, and then establish
the local RSC property of the empirical Huber loss function ZT(-). Together, these results show that with
properly chosen 4,7 that depend on (n,d,s,/) along with the distributional parameters in Conditions
(A2) and (A3), the event {4 > 2||VL(®")|2} N E(s,,¢;/4) occurs with high probability.

Proposition 3.1. Assume Conditions (A2) and (A3) hold. For any o > oy and z > 0, the empirical

Huber loss ZT() with T = o+/n/(3d + 7) satisfies

~- [3d +z
[[VL- (@) < 10vg - o . (34

with probability at least 1 — e™ %, where d = dy + d.

Proposition 3.2. Assume Conditions (A2) and (A3) hold. For any s,l > 0 and z > 0, let T and n satisfy

7> 4vo|Ro2 +96v2s2) /¢, and n> Cy(t/s)*(1%d + z2), (3.5)
0 0

where d = dy + dr and C1 > 0 is a constant depending only on vo and c;. Then, the local RSC event
E(s,1, k) with k = ¢; /4 occurs with probability at least 1 — e™%.

Combining these high probability bounds with Theorem 3.2 leads to the convergence rate of @T, 2
as stated in the following theorem.

Theorem 3.3. Assume Conditions (A1)~(A3) hold. For any z > 0, the robust (approximately) low-
rank matrix estimator G)T 1 defined in (2.7) with C = RY*% 1 =< og\/n/(d + z) and A = og+/(d + 2)/n

satisfies

d+z

1/2-q/4
-

(1-¢)/2
—~ « 1— d+z
and 0;, -0 Sop” "p(—n )

[P f’”«/ﬁ(
with probability at least 1 — 2e™% as long as n 2 max {(p/o_g)z/(z—q)’ 1 }(d + z), where d = d + d.
Remark 2. In the exact low-rank case, i.e. ¢ =0 and p = r = rank(®"), the results in Theorem 3.3

imply that with high probability (over both the random sensing matrices X; and noise variables ¢;), the
robust estimator ®, , satisfies with high probability that

~ rd
||®T,A—®*|IF,<VO'(M/7 aslong as n > rd.
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Within a constant independent of (n,r,d;,d>) and noise scale oy, this upper bound matches the
information-theoretic lower bound established by [5] when ¢; are i.i.d. N(O, a'g). The robustness mani-
fests in two aspects. First, the noise distribution is only required to have bounded variance as opposed
to sub-Gaussian tails. Secondly, we assume the random vector vec(X;) is sub-exponential, whereas
vec(X;) is often assumed to have i.i.d. Gaussian/sub-Gaussian entries in the literature.

Remark 3. For matrix compressed sensing, based on a shrinkage principle [13] also proposed a robust
low-rank estimator, which achieves near-optimal rate under heavy-tailed noise distributions. Its recov-
ery guarantees (see Theorem 3 therein), however, depend on more stringent assumptions as needed in
Theorem 3.3. In addition to Conditions (A2) and (A3), [13] assumed further that (i) vec(X;) is sub-
Gaussian, and (ii) E|y;|** < My for some k > 1. Under these conditions and in the exact low-rank case
(for brevity), their truncate/shrinkage estimator, denoted by @, satisfies with high probability the bound

_ [rd
||@—®*||FSM;/(2k) T s long as n > rd.
n

The above convergence rate is sub-optimal in terms of its dependence on the noise scale 0y. As the
noise scale decreases, M ]i/ (2k) remains to be bounded away from zero because

M)* > Ey? = E(X;,0")2 + E(&D).

Remark 4. The sample size requirement in Theorem 3.3 becomes more stringent as oy goes to 0 when
q # 0. This is an artifact of the technical argument used in the proof of the theorem. A similar sample
size requirement, characterized by its inverse proportionality to the moment of the response, can be
found in Theorem 3 of [13]. To modify the sample size requirement, we can choose

7 =< max(oy, 1)yn/(d + z) and A < max(og,1)V(d +2z)/n

for a given z > 0. This results in a revised sample size requirement of n = max(p? =9, 1)(d + z),
accompanied by an error bound

d+z\'"*a
n

1871 - 0" [l S max(oy ", 1)@(

with probability at least 1 — 2¢7%. This error bound is similar to the deviation bound in Corollary 5
of [28], but it should be noted that they are not proportional to the noise level. Additionally, Theorem 3.5
in Section 3.3 also relies on a similar technical argument, necessitating a larger sample size as oy
approaches zero.

3.2. Matrix completion

This subsection investigates matrix completion under the following assumptions.

(B1) O € B,(p) and |0 || < ag for some o > 0. We thus set C = {@ € R4%%  ||@]|e0 < ap} in
(2.7) so that @* € C.

(B2) X; € R1*% is uniformly sampled from {e;(d))e; (d2)}1<j<d,,1<k<d,» Where {e]-(ci)}]”?:1 are
the canonical basis vectors in R¢. Specifically, P{X; = e‘,(dl)eg(dz)} =(dydr)".

(B3) E(e|X;)=0and E(el.lei) < a'g (almost surely) for some constant oyy > 0.



2336 M. Yu, Q. Sun and W.-X. Zhou

Remark 5. In addition to the assumption that @ is of (approximately) low-rank, we require in Condi-
tion (B1) that ||@* || < ag for some aq > 0. Past works on noisy matrix completion also imposed the
same or similar conditions. For instance, [18] and [27] assumed that ||®*||c is bounded; [29] and [13]
required the spikiness ratio ||®*||/|/®*||r to be bounded; [4] and [6] relied on matrix incoherence con-
ditions. Without such extra conditions, the number of measurements should satisfy n < d;d, in order
to recover @ in the worst case; see [6] and [29] for details.

Similarly to the matrix sensing case, the key steps to establish the convergence rate of (?_)T, A are (1)
an upper bound of ||VL(®%)||, as shown in Proposition 3.3 below, and (ii) a lower bound for

(VL.(®) - VL.(0"),0 - ")

uniformly over @ in a neighborhood of @*. The sparsity of X; in this case (see Condition (B2)) intro-
duces more subtleties into the analysis of the latter, as we will see from Proposition 3.4.

Proposition 3.3. Assume Conditions (B2) and (B3) hold. For any o > oy and z > 0, the loss function

ZT(-) with T = o+/n/{dy(z + log d)} satisfies with probability at least 1 — e™* that

-~ . z+logd
IVEA(©)lz < (o + 207/3)y | 2, (3.6)

Proposition 3.4. Assume Conditions (B2) and (B3) hold. For any s,l > 0 and z > 0, let T and n satisfy

where d = d| + d».

72 > 16 max[ns®/{I*didy(z +logd)},03] and n > dslogd,

where d = dy + dy. Define the constrain set

A(s,l):{AeB(s)nC(z):&sl /L}, 3.7)
AlI2/(didy) ~ 8N z+logd

where B(s) and C(I) are given in (3.1). Then, for all @ € R4*% with A := @ — @* € A(s,[), we have
with probability at least 1 — e™* that

T T * * 1
(VL:(0)-VL(0"),0-07) > Al

A% -
_4d]d2” [}

Col? di(z +logd)
n

where Cy > 1 is an absolute constant.

With the above preparations, we now state the statistical guarantees for matrix completion under
heavy-tailed noise.

Theorem 3.4. Assume Conditions (BI1)—(B3) hold. For any z > 0, set

n d 1 z+logd
T<0,[———— and A< 0o4|————,
dr(z +logd) don
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where o =max{og,ap} and d = d| + d». Then, the robust (approximately) low-rank matrix estimator
.2 defined in (2.7) with C = {® € R1*% 1 |||, < a} satisfies

1~ . ho [diz+logd)) "9, [z+logd
d—dz||@r,/1—@||}:<max[ qp{? > @ T

(3.8)

and

1-q 21-q) 1 1-q
dl(Z‘*‘lOgd)} 2 L pra (z+logd) 2(2—q)l
fe T e 4 @

1071~ O], < max vl‘qp{ 2
" (didy)e=a \ "

1
Vdid;
with probability at least 1 — 2e™% whenever n 2, dy(z + log d).

Remark 6. In the context of matrix completion, one is interested in recovering a large low-rank data
matrix from a highly incomplete subset of its entries. A natural assumption is n < djd,, which in
turn implies +/log(d)/n < d; log(d)/n, where d = d| + dp and d| > d,. Therefore, taking z = logn,
the maximum in (3.8) is often given by its first term. In the exact low-rank case, the general re-
sults in Theorem 3.4 imply that the proposed robust estimator @)T, a with 7 < ogy/n/(dylogd) and

A < og+/log(d)/(d>n) satisfies the bound

dilogd
r6108 (3.9)

1~ N o2
mllﬁ)m - 0" ||f < max{ag, 00} ———
with high probability as long as n 2 d; log d. Under our notations, Theorem 6 in [20] shows that when
~ N(0, 0'3) is independent of X;, there exist absolute constants 3 € (0,1) and ¢ > 0 such that

1
inf sup P{ ||® o ||F > cmm(O'O,aO)—} > B,
® rank(0*)<r. |0 w<ap 4162

where inf@ is the infimum over all estimators @ € R41%42 Therefore, the rate derived in Theorem 3.4
is minimax optimal up to a logarithmic factor and a trailing term.

Remark 7 (Comparison to existing work on robust (noisy) matrix completion). In the context of
matrix completion with heavy-tailed noise, several robust estimators have been proposed and studied.
[27] proposed a two-step method that computes a truncation-type matrix estimator, denoted by @, in
step one and then solves the nuclear norm penalized optimization ||® — @||1% /(di1dy) + A]|O]|.. In the
exact low-rank case, this two-step estimator satisfies a high probability bound, which is similar to (3.8)
with g = 0, when ¢ is independent of X; and has bounded variance. The independence assumption can
be removed by slightly modifying the proof in [27]. For matrix sensing and multitask regression, it is
unclear whether such a two-step procedure will also lead to robust estimates that satisfy sharp error
bounds proportional only to the noise scale. Concurrently, [13] considered a similar two-step estimator,
but their theoretical result requires a slightly stronger moment condition, i.e. E{E(et.2|X FY} < My for
some k > 1. Our proposal is more relevant to [10], who also used the Huber loss for matrix completion
in the presence of heavy-tailed errors. Their results, however, depend on stronger assumptions on the
error distribution. In addition to Conditions (B1) and (B2), they further assumed that (i) the distribution
of ¢ is symmetric around 0, and (ii) there exists a constant C; > 0 such that the cumulative distribution
function F(-) of ¢ satisfies

Fx+1)-F(x-1)> l/C]2 for all |x| < 2aq and 7 < 2.
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Under theses conditions and in the exact low-rank case, [10] proved that the nuclear norm penalized
Huber regression estimator, denoted by @, satisfies

L 16 1
a0 Ol =0P{max<a3,72>cfw}
142

under the sample size requirement n 2 d5 log(d,)log(d; + dy).

3.3. Multitask regression

In this section, we establish the statistical properties of the robust low-rank multitask (reduced-rank)
regression estimator @ , (2.8). With slight abuse of notation, we write

~ 1 ¢
Le(®©) =~ ) (r(ly; = ®'x;lp), @ RN, (3.10)
i=1

where 7 > 0 is the robustification parameter.

(C1) ®@" € B,(p) forsome 0 < g <1andp>0.
(C2) x; € R are i.i.d. zero-mean sub-Gaussian vectors, that is, there exists a (dimension-free)
constant vy > 1 such that

T, 2114112 .
Be* *i < "0 12/2 valid for any u € R4,
Moreover, there exists a constant ¢; > 0 such that A, (Ex l-xl.T) > .
(C3) The noise vectors €; € R% are such that E(¢;|X;) = 0 and Apax (E(Eie?Ixi)) < O'g (almost

surely).

Proposition 3.5. Assume Conditions (C2) and (C3) hold. For any o > o¢ and z > 0, choose T =
on/(z +logd) with d = dy + dy. Then, it holds with probability at least 1 — e™* that

o d(z+1logd
IVEA(@)l < Coery 212D,

where C > 0 is a universal constant.

Proposition 3.6. Assume Conditions (C2) and (C3) hold, and let s,7 > 0 and z > 0 satisfy

7 > max {400\/572, 2vos\2d; + 32+ 310gn}. G.11)

Then, with probability at least 1 —2e”%,
(VL(©) - VI (0"),0 - 0) > %n@ — |2 forall ® € @ +B(s).

provided that n 2, vécl_z(d] +2).
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Theorem 3.5. Assume Conditions (CI)-(C3) hold. For any z > 0, the robust (approximately) low-

rank matrix estimator O 3 defined in (2.8) with T < op\/n/(z +logd) and A = op+\/d(z +logd)/n
(d = dy + d») satisfies the bounds

n

d(z +logd) } 1%
n

1-
d(z +1logd) } 7z

10,2~ S0y "”«r{ and ||®; 1 — O]\, s,ag‘qp{

with probability at least 1 —3e™% as long as
n> max{(p/ag)z/(4_‘I), 1} - (d + z +logn)(z +logd).

Remark 8. Again, in the exact low-rank case where p = r = rank(®*) and ¢ = 0, Theorem 3.5 shows
that for an arbitrary accuracy & > 0, we have ||@; 3 — @*|[r < & with an overwhelming probability
provided that the number of measurements satisfies

0> srdlogd

(o
~ Y0 82

(3.12)

This result improves Theorem 5 in [13] in several aspects. Under the multitask regression model (2.3),
they assumed that

Amax (E(y;¥])) < R < o0, max E{E( e 1x;)*} < My < oo for some k > 1,

——s——

and for each i, €1,...,€q, are pairwise (conditionally) independent given x;. In contrast, Condition
(C3) only assumes bounded variances and allows arbitrary dependency between € ’s. For an arbitrary
accuracy ¢ > 0, the truncated/shrinkage matrix estimator ® proposed by [13] satisfies 1@0-0r<e
with high probability provided

rdlog d

8

n>(R+ Ml/k) (3.13)

Here the term R+ M, 1/ can be much larger than 0'5 in (3.12). More importantly, as the noise scale oy

decays, R stays away from zero because

R > dnax (EY;¥7) = Amax () TEO" + Eg;&]) > Amax ((0°)TZO%).

4. Numerical studies

4.1. Finite-sample performance

In this section, we perform simulation studies to assess the finite-sample performance of the nuclear
norm penalized adaptive Huber trace regression method (Nuclear-AH) in all three problems. As a
benchmark, we implement the nuclear norm penalized least squares (Nuclear-LS) estimator also via
the LAMM algorithm.

In addition to the regularization parameter A, the use of an adaptive Huber loss also involves a
robustification parameter T that changes with data scales. We set 7 = ¢, - a,, 4 and A = c, - by, 4, where
¢r and c) are positive constants that are independent of (n,d) but depend on the noise scale, and a,, 4
and b, 4 are determined by the theoretical results in Section 3, as follows:
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Matrix Sensing ‘ Normal t Pareto
Nuclear-LS | 0.227 (0.010)  0.173 (0.052)  0.169 (0.093)
Nuclear-AH ‘ 0.227 (0.010)  0.132 (0.008)  0.107 (0.007)

Matrix Completion | ~ Normal t Pareto
Nuclear-LS ‘ 0.424 (0.021)  0.280(0.047)  0.315 (0.041)
Nuclear-AH | 0.445 (0.022)  0.223 (0.023)  0.252(0.022)

Multitask Regression | Normal t Pareto
Nuclear-LS | 0.228 (0.005)  0.213 (0.112)  0.237 (0.181)
Nuclear-AH ‘ 0.228 (0.005)  0.148 (0.003)  0.120 (0.003)

Table 1. Mean relative Frobenius error ||@ — O*||g/||®*||g (with standard deviations in parentheses), averaged
over 500 replications, under the matrix sensing, matrix completion and multitask regression settings.

(a) For matrix sensing, we choose a,, 4 = \/n/d and b,, 4 =+/d/n.
(b) For matrix completion, we choose a, 4 = y/n/(dlogd) and b,, 4 = \/log(d)/(dn).
(c) For multitask learning, we choose a, 4 = y/n/logd and b,, 4 = +/dlog(d)/n.

Then we follow the following steps to tune ¢, and c,.

(i) First, choose the constant ¢, in the Nuclear-LS method via five-fold CV with the absolute
median loss as the criterion. In particular, we use the “one-standard-error” rule, which yields
the most parsimonious model within one standard error of the minimum CV error.

(i) Next, let {ri}lfl:1 be the Nuclear-LS residuals with ¢, selected via CV as in Step (i). As
a rule-of-thumb, we set c¢; as the median absolute deviation of {r;}, i.e. median{|r; —
median(r;)|}/0.6745.

(ii1) With ¢, determined after Step (ii), we choose the constant c, in the Nuclear-AH method again
via five-fold CV under the one-standard-error rule.

Under the matrix sensing and matrix completion setups, the data {(y;, X;)};_, are generated from
yi = (X;,0%) + ¢, where ¢ follows one of the following three distributions: (i) N(0,0.5%)—centered
normal distribution with standard deviation 0.5 (lighted-tailed and symmetric), (ii) ;.1 /8—scaled -
distribution with 2.1 degrees of freedom (heavy-tailed and symmetric), and (iii) Par(2,1)/8—scaled
Pareto distribution with scale parameter 1 and shape parameter 2 (heavy-tailed and asymmetric). For
matrix sensing, we set (d1,d»,n) = (50,50,1500), @ € R%1%%2 is such that rank(®*) = 5 and all nonzero
singular values of @* are 1, and the design matrix X; consists of i.i.d. standard normal entries. For
matrix completion, we set (dy,ds,n) = (50,50,2000), @ € R%1*% is such that ||@*||r = Vd|d> and
rank(®*) = 5, and X is uniformly sampled from {ej(d1)ez(d2)}1 <j<d;,1<k<d,- To implement LAMM,
we use the initial estimates @) = 0 and @ = (d,d» /n) 2, yiX,, respectively, under the two setups.
In the case of multitask regression, the data vectors {(y;, x;)}!_, are generated from y; = OTx; +¢€;,
where @* € R%1%%2 is the same as in the matrix sensing setting, x; € R are i.i.d. standard normal and
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Figure 1. Boxplots of relative Frobenius errors ||@ — O*||g/|1O*||lr (based on 500 repetitions) for the Nuclear-AH
and Nuclear-LS estimators under the matrix sensing, matrix completion and multitask regression settings.

€ = (&1, .., €a, )T consists of i.i.d. entries following one of the above three errors distributions. In this

case we set d; = dp = 80 and n =2000.

Simulation results on the relative Frobenius error II@ — O*||g/||®*||g, averaged over 500 repetitions,
are presented in Table 1. To better demonstrate the robustness property of Nuclear-AH, Figure 1 shows
the boxplots of (relative) Frobenius errors for the cross-validated Nuclear-LS and Nuclear-AH esti-
mators under three error distributions. We see that Nuclear-LS and Nuclear-AH have almost identical
performance when errors have symmetric and light tails, while the latter achieves considerably better
performance under all three settings in the presence of heavy-tailed and/or asymmetric errors.
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(b) Multitask regression setting with (d;, dp, n) = (50, 50, 2000)

Figure 2. Plots of Frobenius error ||@ — O*|| versus noise scale based on 200 simulations under the matrix sensing
and multitask regression settings.

4.2. Convergence rate versus noise scale

In this section, we numerically examine the dependence of [|® — @ || on the noise scale under the
matrix sensing and multitask regression settings. Our theoretical results, Theorem 3.3 and Theorem 3.5,
indicate that in the exact low-rank case, II@ — O"||r should be proportional to the noise scale o-, where
ol = E(eiz) or o? = /lmaX(E(eiel.T)). To verify this, given a sequence of o values ranging from 1073 to
1, we generate ¢ from either o - N(0,1) or o - t.1/16. The specifications of ®* and X; or x; are the
same as in Section 4.1.

Under the matrix sensing setting, we set (dy,d»,n) = (50,50,2000) and choose 7 = ZO'W and
A = o+/d/n with d = dj + d;. For multitask regression, we set (dy,dp,n) = (100, 100,3000) and choose
7 =0+/n/logd and A = 0.50°+/d log(d)/n. Figure 2 shows the plots of the Frobenius error versus noise
scale, based on 200 replications, under these two settings and two error distributions. Consistent with
the predictions of Theorems 3.3 and 3.5, we observe a nearly perfect linear growth in all four plots.
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