2023 24th International Symposium on Quality Electronic Design (ISQED) | 979-8-3503-3475-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/ISQED57927.2023.10129343

Neural Network Partitioning
for Fast Distributed Inference

Robert Viramontes
Department of Electrical and Computer Engineering
University of Wisconsin - Madison
Madison, WI
rviramontes @wisc.edu

Abstract—The rising availability of heterogeneous networked
devices highlights new opportunities for distributed artificial
intelligence. This work proposes an Integer Linear Programming
(ILP) optimization scheme to assign layers of a neural network
in a distributed setting with heterogeneous devices representing
edge, hub, and cloud in order to minimize the overall inference
latency. The ILP formulation captures the tradeoff between
avoiding communication cost when executing consecutive layers
on the same device versus the latency benefit due to weight pre-
loading when an idle device is waiting to receive the results of
an earlier layer across the network. In our experiments we show
the layer assignment and inference latency of a neural network
can significantly vary depending on the types of devices in the
network and their communications bandwidths.

Index Terms—t neural networks, distributed systems, optimiza-
tion, latency minimization, heterogeneous systems

I. INTRODUCTION

Neural networks have had an explosive growth in popu-
larity over the past decade, particularly convolutional neural
networks (CNN) which have demonstrated a strong accuracy
in image recognition tasks. AlexNet [1] is an early CNN
that demonstrated remarkable accuracy in the 2012 ImageNet
competition and observed that the depth of the model was key
to its success in the image recognition challenge. As a result,
researchers have continued to investigate deeper networks to
achieve greater image recognition accuracy.

At the same time, Internet of Things devices have prolifer-
ated and neural networks are a promising means to analyze the
data collected by these devices. Distributed inference can take
advantage of multiple devices that can communicate over a
network to perform a single inference. Distributing the task
allows opportunities to offload aspects of computation and
take advantage of the different capabilities of heterogeneous
devices. However, this presents a challenge in determining how
to assign computation across devices to achieve goals such as
minimizing the inference latency.

In this work, we propose an Integer Linear Program (ILP)
optimization scheme for inter-layer partitioning of a complex
neural network to assign its layers to heterogeneous devices
which may include edge, hub, and cloud. Unlike prior work,
we do not limit the number of transitions between devices,

This work was supported by the National Science Foundation under Grant
1608040.

Azadeh Davoodi
Department of Electrical and Computer Engineering
University of Wisconsin - Madison
Madison, WI
adavoodi @wisc.edu

and allow a device to be utilized as many times as necessary
during the distributed inference process. The goal of our
optimization scheme is to explicitly minimize the inference
latency in a global sense. One of our contributions is including
latency models based on high-level device architecture such as
memory of each device and the device’s internal bandwidth
to fetch the layer weights from its memory.

The ILP formulation also models device-to-device commu-
nication and allows pre-loading of weights by an idle device.
This allows the optimizer to evaluate the tradeoff between
single-device execution, which incurs no network communica-
tion but eliminates opportunities for pre-loading, and utilizing
multiple devices, with pre-loading on idle devices.

We experiment with four popular CNNs and show the
layer assignment solution and inference latency of the same
CNN can significantly vary depending on the types of devices
present in the network and their communication bandwidths.

II. OVERVIEW
A. Network Model and Initial Setup

We describe a high-level overview of our framework to
assign layers of a neural network to heterogeneous devices
to minimize the inference latency in a distributed setting.

As shown in Fig. 1(a), in our network model the following
devices may be present: (1) edge devices which may have
sensing capability, (2) one or more hub devices, and (3) a
cloud. We assume edge devices have the lowest compute
capability, and the cloud has the highest one.

Additionally, a pair of devices have a unique communication
bandwidth. In Fig. 1(a), we denote the bandwidth between the
two edge devices I and Ey by the BWg, g,, bandwidth
between E; and the hub device is denoted by BWEg, H,
and bandwidth between the hub device and cloud is denoted
by BWHx,c. These bandwidths could all be different but in
practice: BWg, go > BWg, g > BWgc.

Fig. 1(b) shows the steps to set up/generate the ILP for layer
assignment. These steps are done prior to distributed inference
and are executed on an orchestrator device which should have
sufficient compute capability to solve the ILP.

First, in step 1, the neural network model is sent to the
orchestrator. In step 2, the available devices in the network
send information about their performance characteristics and

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 03,2024 at 15:30:27 UTC from IEEE Xplore. Restrictions apply.

Send neural network model to the
orchestrator

'

All available devices send information

about their performance characteristics

and device-to-device bandwidth to the
orchestrator

S EO>0

0

Offsite

Orchestrator sets up and solves the ILP
formulation

0

Local Network

Assigned devices receive the layer(s) to
be executed on them from the
orchestrator. For each layer, the
orchestrator also sends the device ID
the next layer is assigned to.

0-7EO

(a) (b)

Fig. 1. (a) A network may be comprised of edge, hub and cloud services
with heterogeneous performance characteristics and varying device-to-device
bandwidths; (b) Steps to set up and generate a layer assignment solution.

device-to-device bandwidth to the orchestrator. In step 3, the
orchestrator creates and solves the ILP formulation based on
the provided information in step 2 to determine a layer assign-
ment. In step 4, the orchestrator sends the layer assignment
information back to the devices. Next, each assigned device
receives the layer(s) to be executed on it. In addition, for each
layer, the ID of the “next device” will also be sent.

After the above steps, the layer assignment plan is complete
and distributed inferencing may begin. While network con-
ditions remain stable, the same plan can be re-used without
invoking the orchestrator. As the network bandwidth may vary
over time, the above steps should be repeated periodically
to update the assignment under the new conditions, though
methods to detect this are outside the scope of this work.

After the above steps, the layer assignment plan is complete
and distributed inferencing may begin. While network con-
ditions remain stable, the same plan can be re-used without
invoking the orchestrator. If the network bandwidth varies over
time, the above steps should be repeated periodically to update
the assignment under the new conditions, though detecting
such variance is outside the scope of this work.

Our ILP formulation generates a layer assignment solution
by considering the individual performance characteristics of
the available devices and the communication bandwidths to
minimize the overall inference latency. It is capable of quickly
generating flexible solutions such as (1) only performing the
computation on one or more edge devices, (2) additionally
utilizing the hub device(s), (3) utilizing the cloud.

B. Latency Models for Distributed Inference

We assume each device in the network has a main memory
for storing weights and computation results for the neural
network (NN) layers that are assigned to it. We refer to the
internal bandwidth of a device to be the bandwidth of this
main memory, as shown in Fig. 2(a). We differentiate the
internal bandwidth from the external bandwidth of a device

Main Memory of d

Output Feature |
Map of layer I+1 :

I
I I
| | [!
. T T
| @ I : :
I 1 1
| | | B !
1 Weights for I e ‘ | Main Memory !
! Jayer 1+1 ! 5 | w55 0 ofe |
| | 4 e E l
| o | ° | !
| i 2% TIOOIE
' ® < ! oo g | !
| cs | g e !
1 =T | XX \ |
| 2 2| 1 OutputFeature g s ! |
. “g| Map of layer | € ' !
! o 3 |
| Output ! |
1 Feature Map | :
1 | !
: of layer | v ‘ ,
| I
X .
! ! Weights :
' , for layer I+1 |
, I
| : :
I
1 |_ : !
i , I
| I
! : Output Feature |
. ! Map of layer I+1 |
: I :
I
I
I
1

(@ ()
Fig. 2. Our latency models: (a) Single device model with access to main
memory to load the assigned layer weights and/or results of previous com-
putations at the rate of the infernal bandwidth of the device; (b) Two device
model which communicate across the network to send results of layer ! (from
device d) to compute layer [+ 1 (on device d’). The rate of transfer between
d and d’ is the minimum of the external bandwidths of the two devices and
the network conditions. To minimize the latency of distributed inference, d’
may pre-load the weights of layer [+ 1 while waiting for the results from d.

which is the one used to communicate (send or receive) with
another device over the network, as shown in Fig. 2(b).

We consider three components of latency: (1) latency to
compute a layer on a device, (2) latency to load the weights
of a layer on a device, and (3) communication latency to send
the results of a layer from one device to another.

1) Compute Latency: Let tj ; indicate the latency to com-
pute layer ! on device d. We estimate this latency as:

. _ (FLOP),
fa = (FLOP/s)4 M

where (FLOP); indicates the number of floating point op-
erations to compute layer [, and (FLOP/s); indicates the
number of floating point operations per second that device d is
capable of handling. The (FLOP/s); can be determined from
the manufacturer specification. The (FLOP); is calculated by
the tool pt flops [2], which reports operations as multiply-
accumulate (MAC) so we double this number to estimate
(FLOP),. This is a useful and convenient metric for estimating
performance [3], [4], especially in an ILP formulation, and is
sufficient to capture latency among heterogeneous devices for
layer assignment optimization purposes.

2) Weight Latency: Let ¢}, denote the latency to load the
weights of layer [on device d. It is determined by dividing
the size corresponding to the weight parameters of layer [by
the memory bandwidth of device d, as shown in Fig. 2(a).

w; X &
w — 2
bd BWd,d ()

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 03,2024 at 15:30:27 UTC from IEEE Xplore. Restrictions apply.

where w; is the number of weights in layer ! and « is the
number of bytes required to store each weight. In the above
equation, BW 4 refers to the internal bandwidth of device d.

3) Communication Latency: Assume layer [is computed
on device d and its output should be communicated over the
network to device d’, as shown in Fig. 2(b). We denote ¢},
to be this communication latency and estimate it as: h

H xW;x D xa
thaa = =G 3)
where H;, W;, and D; are the height, width and depth of the
output of [, respectively, and « is the number of bytes required
to store each output element, as defined in Equation 2.

The parameter BW 4 reflects the bandwidth between d
and d’. We estimate it as the minimum of external bandwidths
of d and d’ and the bandwidth of the network itself, as in
Fig. 2(b). Estimation of the network bandwidth itself is beyond
the scope of this work; it has been an active topic of research,
typically by utilizing dynamic probing techniques [5], [6], and
more recently using machine learning techniques [7]. In case
of a change in network bandwidth, the ILP can be set up and
solved again quickly as shown in Fig. 1(b).

III. ILP FORMULATION

Given a standard feedforward neural network (NN) architec-
ture!, and heterogeneous networked devices, our formulation
determines an assignment of each NN layer to a device.

A. Optimization Parameters and the NN Model

Let Sp denote the set of D available devices in the
network. For device d € Sp, let i 4 and t}%; denote the
latency parameters to compute layer [and to load its weights,
respectively. Also let ¢}, ; denote the communication latency
to send the results of layer [from device d € Sp to d’ € Sp.
These are computed using Equations 1-3.

Let S denote the set of L layers in the given NN. We also
denote S7,_1 to be set of all layers excluding the last layer of
the NN, and S, ;, denote the set of all layers excluding the first
layer of the NN. Additionally, the size of the main memory
of device d is denoted by M,. Based on the application, we
extend the NN by inserting pseudo layers, as explained below.

o We allow designating a device as the source, e.g., because
it may be physically hooked to a camera for image
capture. Here, the NN is extended to start with a pseudo
layer with O FLOPs. The purpose of this pseudo layer
is only to capture the communication latency from the
source device to the device which executes the next layer.

« In case pre-processing needs to be done on the collected
data before sending it to the NN, we insert a pseudo
layer right before the first layer of the NN. This pseudo
layer will have a compute latency given by Equation 1,
to reflect the pre-processing task.

o We allow designating a device as destination, for example
if it is required to receive the output computed from the

'Our formulation does not consider aspects such as state in a recurrent
network. Such extensions are possible but beyond the scope of this paper.

last layer of NN in order to take action based on the
inference result. This is modeled by extending the NN to
have a pseudo layer of size H; = 1,W; =1, D; = 1 with
0 FLOPs at the end.
A pseudo layer is treated just as a layer in our formulation
and modeled by adding it to the sets Sr, Sr_1, and Sy .

B. Optimization Variables

o Let binary variable x; 4 = 1 when layer [is assigned to
device d and O otherwise.

o Let binary variable y; 4 o+ = 1 when layer [is assigned
to device d and layer | + 1 is assigned to device d'.
This variable identifies when a communication latency
between d and d’ should be added to compute the
overall inference latency. Note y; g.ar # Yi,a/,q- It allows
capturing solutions where two or multiple devices may
compute the layers back and forth among each other.

o Let binary variable z; 4 = 1 when layers [and [— 1 are
both assigned to device d and O otherwise. This variable
identifies when a latency for loading the weights of [on d
should be added to compute the overall inference latency.
This variable is defined to capture the impact of weight
pre-loading on the latency.

C. Optimization Constraints and Objective
The constraints to our formulation are given below.

D
Y ma<i Vie S (4)
d=1
L
Zwll‘l,d < My Vd € Sp ®))
=0

0<zqg+xip1,00 —2Y1,d00 <1 Vie Sp,_1 Vd e Sp (6)

0<x1a+x1a—224<1 Vi€ Sy Vde Sp (7)

Constraint 4 indicates that each layer must be assigned to
only one device. Constraint 5 ensures the weights of the layers
assigned to a device fit within the size of its main memory.

Constraint 6 sets ¥; 4, When layer [executes on device
d and the outputs are sent to d’. So y; 44 = 1 only when
21,4 = Zi41,&4 = 1. This constraint (consisting of two
inequalities) expresses a logical AND operation and is written
for all combinations of devices in Sp and layers in Sy _1.

Constraint 7 sets z; ¢ when there is not an opportunity to
pre-load the weights of [on device d because layer [— 1 is
also executed on d. So z;,q =1 only when z;_; g = ;4 = 1.
Recall, pre-loading reduces the inference latency when a layer
is computed on a different device than its previous layer and
is captured by this constraint. This constraint also expresses
a logical AND operation and written for all combinations of
devices in Sp and layers in Sa 1.

In addition to the above generic constraints, specific con-
straints may be added to pre-assign layers to devices. For
example, if a source device is designated, the first psuedo-
layer may be pre-assigned to the source. To pre-assign a layer
[to device d, we simply set x; ¢ = 1 in our formulation.

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 03,2024 at 15:30:27 UTC from IEEE Xplore. Restrictions apply.

Objective Function: The goal of our formulation is to
minimize inference latency, hence our objective function is
min(7'), where T is the sum of computation, communication,
and weight loading latencies T' = T, + T, + T, given below:

L D
T. = Z Z tlc,d T4 (3

I=1d=1

L-1 D D

T, = z Z Haa Yidd)
I=1d=1d'=1
L D

Tw=> > t% 24 (10)

T. expresses the compute latency for a given assignment
of z. T, expresses the cost to communicate the outputs of
layers for a given assignment of x between devices across
the network. T, expresses the latency to load weights for a
given assignment of z. Recall that pre-loading is utilized when
21,4 = 0, which means t}fd is not added to T,, because weight
loading is hidden by a device that would otherwise be idle.

Note, in Equation 9, all possible device-to-device com-
munication latencies are considered and added up if the
corresponding y variable is assigned to 1. Note that since
Yi.d/d 7 Y44, both d and d’ are varied across all the devices.

Overall, to minimize this objective, solving the formulation
assigns the variables to take the most advantage of weight
pre-loading, the network bandwidth between each pair of
(heterogeneous) devices based on the network conditions, as
well as the size of each layer in the neural network. As we
show in our experiments, the choice of this assignment is not
trivial and depending on factors such as network conditions
and types of devices, the assignment of the layers of the same
network could be different in a distributed setting.

D. Related Works

In this section, we explore related works on distributed
inference systems, particularly those that utilize edge or mobile
devices as part of the inference network. We propose that
the approaches can be roughly categorized into two groups
depending on their network partitioning strategy, either intra-
layer or inter-layer, and explore these categories below.

In an infra-layer approach, each layer of the network is
partitioned and chunks of work for each layer are sent to the
networked devices. A technique for partitioning the compu-
tation of a convolution layer across heterogeneous devices is
proposed in CoEdge [8]. This allows multiple edge devices
to collaborate on the inference to reduce latency. MoDNN
[9] is another intra-layer approach that demonstrates latency
improvements by partitioning convolution and fully connected
layers over multiple devices.

The reduced latency of the intra-layer approaches is pri-
marily due to the increased parallel computation in a single
layer. Both approaches incur some communication overhead to
share layer information. However, intra-layer approaches are
typically implemented in a cloud-less context, where the fast
local networks mean this is small relative to the the parallel

computation benefit. Because these works lack access to a
cloud or other highly-performant device, they do not minimize
latency in a global sense.

Our layer assignment work is inter-layer and minimizes
the global latency. Combining inter-layer and intra-layer ap-
proaches may be possible to achieve the speedup benefits of
both, but this has not been explored yet in prior work.

In an inter-layer approach, a single layer is executed by
a single device, but sequential layers may be executed by
different devices. Unlike intra-layer, these approaches typically
assume environments with edge, hub, and cloud.

The work JALAD [3] finds an optimal point to partition a
deep network in an edge-cloud structure. JALAD formulates
the layer partitioning problem as an ILP to minimize the
execution latency. However, its formulation assumes a strict
edge-cloud architecture with only one partition point and does
not consider an opportunity to overlap pre-execution work. In
contrast, our formulation does not assume a fixed number of
devices and can generalize to more complex sets of devices
and adds a consideration for pre-loading of weights to find
opportunities for utilizing multiple devices simultaneously.

The work ADDA [4] extends the partitioning approach
to consider multi-branch networks, which have multiple exit
points, and looks at finding an optimal partition between edge
and cloud execution, considering that some paths may entirely
execute on the edge. Similar to [3], ADDA’s formulation
is constrained to an edge-cloud architecture. In addition, it
requires modifying the network to insert multiple branches.
Under multiple network conditions, ADDA closely-matches
the overall latency of a cloud-only execution model because it
tends to pick a partition almost at the cloud-only point, while
our approach can also find cases where an intermediate layer-
split can further reduce latency.

Inter-layer approaches derive their latency reductions by
finding optimal mappings of sequential work, but don’t incur
the same communication overheads as intra-layer techniques.
This is more amenable to cloud-enabled contexts, where a rel-
atively slow network discourages communication bottlenecks
but the large performance asymmetry can reduce the overall
latency. Our work is an inter-layer partitioning strategy for
sequential layer execution, though we propose weight pre-
loading as a way to increase parallelism.

IV. EXPERIMENTAL RESULTS

In our experiments, we simulate varying network conditions
by changing the device-to-device communication bandwidths.
This approximates real-world conditions, such as a cellular
(4G/5G) network which may vary in bandwidth due to other
user’s utilization, physical obstructions between radios, etc.

We incorporated devices which are representative of a
typical cloud inference architecture to model a distributed
system. This included (1) a data collection edge device with
limited CPU processing (Raspberry Pi 3B); (2) a low-power
hub device with low GPU compute capacity (NVIDIA Jetson
Nano); and (3) a cloud service with high GPU compute
capacity (NVIDIA 1080TI).

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 03,2024 at 15:30:27 UTC from IEEE Xplore. Restrictions apply.

Inference Latency

RoCp

— C0: {RPi3} EEE CI: {A: RPi3, B: RPi3} €2: {A: RPi3, B: N1080} --- C1: {A: RPi3, B: RPi3} €2: {A: RPi3, B: N1080}
AlexNet VGGI1 SSD
— — 61 ¢ ¢ — AN N\ N NS
%) O o O o L o SIS 0 DL)) «
Zos] St QNN 1.0 Rl B SPAVAS 1.0 Lol 9% o S & 110
oy oy 50 oy
= =} b =1 .
£ 05 £ 41 08 15 0.8 .
3 3 063 3 0632
© 0.4 @ o~ 10 ~
= = 9] 0.4 = H0.4
2 2 2
£ 02 < H0.2 g5 H0.2
R = & s &
0.0- L0.0 0+ : — S - > 1o
10e+4 1.0e+5 1.0e+6 1.0e+7 10e+4 1.0e+5 1.0e+6 1.0e+7 1.0e+4 1.0e+5 1.0e+6 1.0e+7

Network Bandwidth (B/s)
@

Network Bandwidth (B/s)
(b)

Network Bandwidth (B/s)
(©

Fig. 3. Results for configurations Cp (non-distributed), C; (two edge devices) and C2 (edge device and a cloud). We vary network bandwidth between
the two devices in each configuration, and report the inference latency and ratio of compute on device B. At the lowest network bandwidth, single-device
execution is the optimal strategy. But at the highest bandwidths, configuration C'2 has the smallest inference latency, indicating, it is better to utilize a cloud.

Device parameters were determined from publicly-available
benchmarks and/or the manufacturer specification and are
summarized in the table below. Parameters include the
GFLOP/s, internal and external bandwidths of a device which
are used to compute the computation, weight loading, and
communication latencies as defined in Section II-B.

Device GFLOP/s Int. BW B/s Ext. BW B/s
Raspberry Pi 3B 3.62 [10] 719 x 108 [11] 1.11 x 107 [11]
NVIDIA

Jetson Nano 236 [12] 25.6 x 109 [13] 1.25 x 108 [13]
NVIDIA 1080TI 11300 [14] 484.4 x 109 [14] 1.25 x 108

With these devices we define four distributed configurations.

C0) {A: Raspberry Pi3}: Non-distributed execution with a
single lightweight edge device (for comparison purposes).
{A: Raspberry Pi3, B: Raspberry Pi3}: Inference in a
network of two homogeneous, lightweight edge devices.
{A: Raspberry Pi3, B: NVIDIA 1080TT}: Inference with
a lightweight edge device with access to a cloud GPU.
{A: Raspberry Pi3, B: NVIDIA Jetson Nano, C: NVIDIA
1080TI}: Inference with a lightweight device, a perfor-
mant device, and a cloud GPU. This configuration models
presence of edge, hub, and cloud components.

cl)
C2)

C3)

In our experimental setup, we assume device A is the source
and destination device for all the above configurations. This
is done to model an application in which device A (i.e.,
Raspberry Pi 3) is always hooked to a camera for image
capture and must receive the results of the inference in the end
to take an action. As explained in Section III-A we model these
by adding pseudo layers to the NN (with zero compute and
weight loading latencies but non-zero communication latency)
and preassign these pseudo layers to A.

Furthermore, we assume that the original image capture has
a Standard HD dimensions of 3x1280x720 which represents
the image quality of a typical commodity webcam or security
camera connected to an edge device. Given that many image
recognition CNNs operate on an input size of 3x224x224,
we consider a preprocessing step to crop and downsample the
HD image to this size before it is fed into the CNN. The pre-
processing assumes one operation per pixel in each channel

of the input image. This is also modeled as a pseudo layer in
our formulation as explained in Section III-A, but this layer
is not pre-assigned to a device.

We compare the assignment results for the image classifi-
cation task on AlexNet [1], VGG11, SSD [15], and VGG16
[16]. For this analysis, we trained models from the PyTorch
[17] torchvision library. The optimization formulation
was solved using the Gurobi solver [18]. We used an Ubuntu
20.04 virtual machine with 4 vCPU and 4.0GB of memory.
The runtimes for initial setup and solving the ILP formulation
are extremely fast; for example for configuration C, averaged
across 5 runs, AlexNet took 0.17s and VGG16 took 1.67s.

A. Inference Latency and Ratio of Compute

In this experiment, we first compare configurations Cy, C}
and C5 for AlexNet, VGGI11, and SSD. (For these networks
and configuration C3, we did not notice a notable conclusion
and results are not reported due to lack of space. Instead,
we discuss C3 with VGG16 which exhibits interesting results
across all configurations.)

For C; and C5 we vary the network bandwidth between
the two devices in each configuration. For each bandwidth, we
report the overall latency of distributed inference as measured
using Equations 8-10 which includes weight (pre-)loading,
compute, and communication latency.

We also report a ratio of compute (RoC) on each device.
This metric measures the ratio of floating point operations
performed on a device based on its assigned layers. More
specifically, for configurations C'; and Cs, we report the ratio
of compute on device B and the rest of the computations
are performed on device A. We denote these by Rng1
and ROCEQ, respectively. (For configuration Cj, we have
ROCSO = 1 since everything is executed on a single A device.)

Fig. 3 shows the results for AlexNet, VGG11, and SSD.
We make the following observations:

¢ In the lowest network bandwidth, non-distributed execu-
tion on a single device is the best strategy. For these
bandwidths, our ILP assigns all computations to device
A for C7 and C5 which can be seen because RoCg = 0
for these two configurations and this bandwidth.

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 03,2024 at 15:30:27 UTC from IEEE Xplore. Restrictions apply.

o As the network bandwidth increases, distributed execu-
tion has a clear advantage. Both configurations C; and
C5 have a significantly lower inference latency compared
to Cy for all the networks.

e In the highest network bandwidth, configuration Cs
which additionally takes advantage of a cloud device sig-
nificantly outperforms C in terms of inference latency.

« Ratio of compute on device B changes as a function of
bandwidth for C; and Cs; with increase of bandwidth,
more computation is assigned to device B. (This also in-
dicates the ILP solution varies with network bandwidth.)

o The choice of the best configuration for a given band-
width can be different across the NNs. For example, at
bandwidth 10°B/s, single-device execution is the optimal
choice in AlexNet and VGGI11. However, at the same
bandwidth for SSD, utilizing the cloud in configuration
C5 results in significantly lower inference latency.

Fig. 4 compares these metrics for all configurations in
VGG16. Recall in configuration C'3, a hub device is present
in addition to the edge and cloud devices in configuration Cs.
Here, for C's we report ratio of compute on devices B and C;}
the rest are executed on device A. We denote these by Rng3
and RoCS?, respectively. We make the following observations:

o Configuration C'5 has the smallest inference latency in
all bandwidths (e.g., 0.16s in C3 versus 9.51s in other
configurations for the 10* bandwidth).

o At the two lowest bandwidths (10* and 10°), the mini-
mum latency is when all computations are offloaded to
the hub device in Cs, i.e., Rng3 = 1. This is because
the hub device is more compute-efficient than the edge.
Also communicating with the cloud in Cy results in a
higher latency.

o At the highest network bandwidth (107), the minimum
latency is when offloading all computations to the cloud
and not utilizing the hub (ROC’g3 = 1). (At this band-
width, C'; and C3 generate effectively the same solution.)

Overall, from our experiments using four NNs, we can
derive the following generic conclusions: Inference latency in
a distributed setting can significantly vary depending on the
network devices (e.g., availability of edge, hub, and cloud),
device-to-device communication bandwidth, as well as the
characteristics of the NN itself. Our ILP formulation is able
to capture all the above factors to generate a layer assignment
plan that minimizes the overall latency.

B. Effect of Pre-loading on Latency

Table I shows the breakdown of different contributors to
the inference latency (denoted by L) in configuration C at
the peak network bandwidth of 107 B/s. The columns indicate
the breakdown of the individual latency components, compute
(T,), communication (7)), and loading of weights (7;,), as
computed using Equations 8-10. These are reported without
and with our proposed pre-loading technique to understand
the source of pre-loading’s benefit.

For AlexNet, we observe a 42% reduction in latency (from
0.76s to 0.44s) because we trade a 0.01s increase in commu-

Inference Latency

- CO0 m C1 C2 Il C3
VGG16
@ —— — — ————————— ommmnus 1.0
>y 10 = .\ .
3
£ 8-
45 \(0\/ '\ch
— 6 | ‘
c.:
S 4
e
& 27 © ©
RS > N
0 - T T
1.0e+4 1.0e+5 1.0e+6 1.0e+7

Bandwidth (B/s)

— = RoCg! RoCS? == RoCG3 +eer RoCSS

Fig. 4. Comparison of all configurations in VGG16. An interesting ob-
servation is that at the low and intermediate bandwidths (10 and 10%),
configuration C'3 shows a significantly smaller inference latency compared
to all other configurations (e.g., 0.16s versus 9.51s in 10% bandwidth). At
these bandwidths, utilizing a hub device is the optimal strategy compared to
using the cloud and single-device execution.

TABLE 1
INFERENCE LATENCY, WITHOUT AND WITH THE PRE-LOADING.
No Pre-load Pre-load
T. T, T, L T. T, T, L (% decr)

AlexNet 0.40 0.02 0.34 0.76 | 0.40 0.03 0.01 0.44 (42%)
VGG11 4.22 0.11 0.74 5.06 | 422 0.12 0.05 4.38 (13%)
SSD 19.29 0.33 0.19 19.81{19.29 0.35 0.14 19.78 (0.2%)
VGG16 8.57 0.18 0.77 9.51 | 8.57 0.19 0.08 8.84 (7%)

nication (7}) for a 0.33s reduction in weight loading (7%,).
VGG16 and VGG11 show a similar trade off, though the
reduction in latency is smaller, 7% and 13% respectively,
because the bulk of latency is computation which does not
benefit from pre-load. For SSD however, we do not see
a significant advantage in pre-loading because the compute
latency significantly dominates the pre-loading latency.

This capturing of pre-loading is another contribution of our
work which was not done in prior work, and overall can be
seen can result in significant benefit for some networks.

V. CONCLUSIONS

We proposed an ILP formulation to assign layers of a neural
network to minimize the inference latency in a distributed
setting with heterogeneous devices. To reduce the latency, we
proposed an idle device can pre-load the weights of the layer
that it is awaiting to execute, and captured it in the ILP.

We showed in our experiments that when minimizing in-
ference latency in a distributed setting, the layer assignment
solution can significantly vary depending on the network
devices and device-to-device communication bandwidths. We
also showed that the benefits of pre-loading the layer weights
can be quite significant in NNs where the latency to compute
a layer is comparable to the latency to load its weights.

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 03,2024 at 15:30:27 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[11 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds., vol. 25, 2012.

[2] “ptflops,” 2021. [Online]. Available: https://github.com/sovrasov/
flops-counter.pytorch

[3] H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “JALAD: Joint
Accuracy-And Latency-Aware Deep Structure Decoupling for Edge-
Cloud Execution,” in IEEE 24th International Conference on Parallel
and Distributed Systems (ICPADS), Dec. 2018, pp. 671-678.

[4] H. Wang, G. Cai, Z. Huang, and F. Dong, “ADDA: Adaptive Distributed
DNN Inference Acceleration in Edge Computing Environment,” in JEEE
25th International Conference on Parallel and Distributed Systems
(ICPADS), Dec. 2019, pp. 438-445.

[5] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end-to-end
probing and analysis method for estimating bandwidth bottlenecks,” in
IEEE Global Telecommunications Conference (GLOBECOM), vol. 1,
2000, pp. 415-420.

[6] R. Liibben, M. Fidler, and J. Liebeherr, “Stochastic bandwidth estimation
in networks with random service,” IEEE/ACM Trans. on Networking,
vol. 22, no. 2, pp. 484-497, 2014.

[7]1 S. K. Khangura, M. Fidler, and B. Rosenhahn, “Neural networks for
measurement-based bandwidth estimation,” in IFIP Networking Confer-
ence, 2018, pp. 1-9.

[8] L.Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “Coedge: Cooperative
dnn inference with adaptive workload partitioning over heterogeneous
edge devices,” IEEE/ACM Trans. on Networking, vol. 29, no. 2, p.
595-608, Apr 2021.

[9] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “MoDNN:
Local distributed mobile computing system for Deep Neural Network,”
in Design, Automation & Test in Europe Conference (DATE), Mar. 2017,
pp. 1396-1401.

[10] VMW Research Group. (2020, Oct) The gflops/w of the various
machines in the vmw research group. [Online]. Available: http:
/Iweb.eece.maine.edu/$\ sim$vweaver/group/green_machines.html

[11] L. Hattersley. (2018, Mar) Raspberry Pi 3B+ specs and
benchmarks. [Online]. Available: https://magpi.raspberrypi.com/articles/
raspberry-pi-3bplus-specs-benchmarks

[12] “NVIDIA Jetson Nano developer forum,” 2019. [Online]. Available:
https://forums.developer.nvidia.com/t/help-question/71758

[13] NVIDIA Jetson Nano System-on-Module Data Sheet, NVIDIA, Feb
2020.

[14] TechPowerUp. GeForce GTX 1080 Ti specs. [Online]. Available:
https://www.techpowerup.com/gpu-specs/geforce- gtx- 1080-ti.c2877

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot MultiBox detector,” in Proc. of European
Conference on Computer Vision (ECCV), vol. 9905, 2016, pp. 21-37.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014. [Online]. Available: https:
/larxiv.org/abs/1409.1556

[17] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024-8035.

[18] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 03,2024 at 15:30:27 UTC from IEEE Xplore. Restrictions apply.

