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ARTICLE INFO ABSTRACT
Keywords: For systems operating in random shock environment, mission aborting policies based on the number of shocks
Mission abort experienced during a certain time interval are common and have received intensive attention. However, the

Random shocks
Inter-shock interval
System survivability

number of shocks-based aborting policy (NSAP) is not effective when the shock rate during the primary mission
is uncertain because it cannot adapt itself to the shock rate. This paper puts forward a new, self-adaptive inter-
shock interval-based aborting policy (ISIAP), which determines the inter-shock interval within which the primary
mission should be aborted upon the next shock based on the previous inter-shock interval. A probabilistic
approach is suggested for assessing the mission success probability (MSP) and the system survival probability
(SSP) under a given ISIAP. The optimal ISIAP problem is formulated and solved with the objective to maximize
the expected MSP while meeting certain requirement on the SSP. A detailed case study of an unmanned aerial
vehicle performing a payload delivery mission is provided to demonstrate the proposed mission aborting model
and compare the effectiveness of the proposed ISIAP and the conventional NSAP. Impacts of the SSP requirement
and the shock rate parameter on the mission performance metrics and optimal solutions are also examined in the
case study.

termination defines the AP. If this number is too low, the mission may be
aborted too early, unnecessarily reducing the probability that the
planned mission can be accomplished successfully, termed as mission
success probability (MSP). On the other hand, if the number is too high,
the mission may be aborted too late, increasing the risk of losing the
system and incurring low probability that the system performing the
mission can survive, termed as system survival probability (SSP). The AP
must be optimized to strike a balance between MSP and SSP. Different
types of optimization problems can be formulated, for example, maxi-
mizing MSP subject to SSP meeting a certain level, maximizing SSP
subject to MSP meeting a certain level, or minimizing a metric (e.g.,
expected cost) that is a function of MSP and SSP [13,14].

1. Introduction

Mission aborting in the case of certain deterioration condition
occurring is an effective means to alleviate the risk of valuable system
losses in diverse critical applications. For example, unmanned aerial
vehicles (UAV) can be exposed to electromagnetic interference from
high voltage power lines, cell phone towers, large metal structures and
other sources [1,2], which usually causes deterioration or damage to the
UAV or its key components [3,4]. Hence, when the UAV has undergone
and survived a certain number of interferences, it should terminate the

planned mission (e.g., reconnaissance, target strike, rescue, goods de- X .
livery) and return to the nearest landing site or the base to avoid the While the research on APs can be traced back to 1970s [15,16], it has

asset loss. Other examples can be found in chemical reactor [5,6] received significant attention from the reliability community only since
aerospace [7,8], battlefield [9], healthcare [10], marine [11], trans- around 2018 [17]. APs based on different condition parameters have
been modeled as listed below. The types of systems studied in those AP

portation [12], etc. S ;
researches are also exemplified in the list.

A key design problem for implementing the mission aborting is to
determine the specific deterioration condition of triggering the mission
abort, referred to as the aborting policy (AP). For the UAV example
above, the number of interferences experienced before the mission
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Acronyms

DP destination position

ISIAP inter-shock interval-based aborting policy

MSP mission success probability

NSAP number of shocks-based aborting policy

PM primary mission

RP rescue procedure

SSp system survival probability

UAV unmanned aerial vehicle

HPP homogeneous Poisson process

Notation

T duration of PM

T; random arrival time of the i th shock

U; random time interval between the i th and the i-1-th shocks

u; realization of Uj;

o(t) required duration of RP activated at time t from the
beginning of the mission

A shocks rate during PM

Amin, Amax minimum and maximum possible values of shock rate

a ratio between shock rates during PM and RP

& time after the i-1-th shock during which occurrence of i th
shock triggers PM abort

m maximum allowed number of shocks after which the PM

can be aborted

P(tip) occurrence probability of i shocks in [0,t) given that the
shock rate is p

q(d) probability that a system survives the i th shock

Q system survival probability upon the first shock

® shock resistance deterioration factor

R(¢,m) MSP under the ISIAP ¢, m

S(¢,m)  SSP under the ISIAP £,m

E(E,m, Amax, Amin) expected MSP under ISIAP £ m and shock rate
range [Amin, Amax]
S* required SSP level

e The number of malfunctioned or damaged units: k-out-of-n: G sys-
tems [18], k-out-of-n: F balanced systems [19], warm standby sys-
tems [20], UAVs [21,22].

e System degradation level: phased-mission systems [23], multi-state
systems [24], safety-critical systems [25], UAVs [26].

e The amount of work accomplished: heterogeneous warm standby
systems [13], standby systems with propagated failures [27],
standby systems with state-dependent loading [28], standby systems
with maintenance [29].

e Operation time elapsed from the beginning of the mission or the
system age: self-healing systems [14], UAVs [26].

e Duration of defective state: safety-critical mission systems [30].

e The system balance degree [31].

In addition, for systems operating in random shock environment, the
number of shocks experienced has been used as a key condition
parameter for defining the AP. For example, the number of shocks-based
aborting policy (NSAP) was modeled and optimized for single-
component systems [10], systems with random rescue time [32],
multi-state systems with inspections [33], drone-truck systems [34],
multi-state repairable systems [35], multi-task systems [2], concurrent
multi-attempt mission systems using kamikaze components [36], and
consecutive multi-attempt mission systems with the common abort
command [37,38]. The NSAP presumes the primary mission aborting
when a predefined number of shocks occur during a certain time interval
since the beginning of the mission. Such policy is not effective when the
shock rate during the primary mission is uncertain because the NSAP
policy cannot adapt itself to the shock rate.

This work expands the horizons in the AP research by putting for-
ward a new inter-shock interval-based aborting policy (ISIAP) for sys-
tems operating in uncertain random shock environment. The ISIAP
possesses the self-adaptation feature as it determines the inter-shock
interval within which the primary mission should be aborted upon the
next shock based on the previous inter-shock interval. Under the pro-
posed self-adaptive AP model, this work makes further contributions to
the body of knowledge on the AP research as listed below:

1) Developing a probabilistic approach of assessing the MSP and SSP
under a given ISIAP.

2) Formulating and solving the optimal ISIAP problem to maximize the
expected MSP while meeting certain requirement on the SSP.

3) Conducting a detailed case study of a UAV payload delivery mission
system to demonstrate the proposed model and compare the effec-
tiveness of the proposed ISIAP and the conventional NSAP.

4) Investigating impacts of the SSP requirement and the shock rate
parameter on the mission performance metrics (MSP and SSP) and
optimal solutions.

The structure for the rest of the paper is: Section 2 depicts the ISIAP
model and formulates the optimal ISIAP problem. Section 3 presents the
probabilistic approach of assessing MSP and SSP under a given ISIAP.
Section 4 conducts the case study. Section 5 concludes the work and
points out future research directions.

2. Problem formulation

The system’s goal is to accomplish a primary mission (PM), which
requires the system to operate during time 7 in a random environment
modeled by a homogeneous Poisson process (HPP) of shocks with un-
certain rate. Let T1<Ts<...T; denote random shock arrival times. To
complete the PM, the system must survive all shocks occurring during
time 7.

The system deteriorates more as the number of shocks it survives
increases, leading to larger risks of system failure and loss. Thus, to
reduce the probability of the system loss, the PM may be aborted before
its completion. The PM abortion leads to the failure of the mission and is
immediately followed by the activation and execution of a rescue pro-
cedure (RP). The required time to complete the RP ¢(t) depends on the
activation time of the RP since the beginning of the mission. During the
RP, the system is exposed to an HPP of shocks with rate A, where o isa
shock rate ratio between the PM and the RP. The realizations of RP
depend on the specific mission and system. For example, when a
computational system performs a data processing task, the RP activation
presumes switching the processor from the data processing task to
encoding the data and transferring it to a safe storage to avoid an un-
authorized access. The time needed to save the data depends on the
amount of produced/processed data at the moment when the processing
task is aborted. When a UAV performs a delivery mission, the RP acti-
vation presumes immediate change of the UAV route from the destina-
tion point to the closest emergency landing position with changing the
UAV’s flight altitude to reduce the electromagnetic interference rate.
The distance to the closest landing position and, therefore, the time
needed to complete the RP depends on the UAV’s location at the time of
the mission abort.
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Fig. 1. Examples of PM outcomes for ISIAP and NSAP with m = 2.

The inter-shock interval-based aborting policy (ISIAP) presumes the
PM aborting if for i > 1 the time interval between the i th and i-1-th
shock, i.e., T; -T1 is shorter than the value of &(Ti1-Ti.2), where &(t) is a
pre-specified function. By definition, Ty=0 corresponds to the beginning
of the mission and ¢ is a fixed time that determines an interval during
which the PM is aborted upon arrival of the first shock. If according to
the ISIAP, the PM is not aborted after m shocks, it is never aborted.
Indeed, if the system experiences and survives m shocks with the given
inter-shock intervals, it is reasonable to assume that it is close to the PM
termination and let it complete the mission. Thus, the ISIAP is deter-
mined by the values of m, & and m-1 functions, £2(t),..., &n(t). Observe
that for m = 1, the ISIAP and the NSAP are identical because the mission
is aborted upon the occurrence of the first shock under both of these
policies.

To explain the adaptivity of the ISIAP, consider simple examples of a
PM’s outcomes for the ISIAP with m = 2 and decreasing function &5(t)
presented in Fig. 1.

If the first shock arrives at time earlier than £; from the mission
beginning, the PM is aborted because the early shock arrival evidences
about the high shock rate (case A). When the first shock arrives at time
later than ¢£; from the mission beginning, it can be assumed that the
shock rate is low. To check this assumption, the system sets the time
threshold &£2(T4) during which no shocks should occur and continues the
PM (case B). The second shock occurs at time shorter than £5(T;) since
the first shock. The system decides that the assumption about the low
shock rate is wrong and aborts the PM. In case C where the first shock
arrives later than in case B, the assumption that the shock rate is low is
straightened. The system can set a lower time threshold &,(T;) for which
the average time between shock arrivals remains low. As the second
shock arrives at time later than T;+¢&5(T1), the system does not abort the
PM. On the contrary, under NSAP the system always aborts the PM upon
the occurrence of the second shock without respect to the inter-shock
interval duration, which makes NSAP non-adaptive to the shock rate
variations.

The mission fails if the system either aborts the PM or is lost during
performing the PM. The system survives if it does not fail during either
the PM or the RP phase. Two metrics characterize the mission accom-
plishment: the MSP R, i.e., the probability that the system completes the
PM; and the SSP S, i.e., the probability that the system either completes
the PM or aborts the PM and completes the subsequent RP.

When the system operates in uncertain environment, the exact shock
rate A is unknown and only an interval [Amin, Amax] to which this rate
belongs can be estimated. In this case, assuming that the shock rate is
uniformly distributed in the interval [Amin, Amax|, ONe can estimate the
expected MSP as

S R(E m, A)dA

E(é7 m, Ama)c; Amin) - e A

Ama); (1 )

The optimal ISIAP [m, é={¢1, &2(D),..., Em()}] should be found that
maximizes the expected MSP while providing a required SSP level S* for
the worst case of maximal shock rate, which is formulated as

E(&, m, Apax, Apin)—max s.t. S(&,m, Aper) > 87 (2)

While this work focuses on the solution to (2), other formulations of
the optimization problem balancing MSP and SSP, like maximizing the
SSP while meeting a required MSP level may be similarly solved.

The following assumptions are made in this model:

1) All the shocks are observable;

2) The mission aborting decision can be made immediately after the
occurrence of shocks;

3) All the shocks have the same severity (influence on the system loss
probability);

4) The system survives if it completes the PM (no RP is needed after the
PM completion);

5) The shock arrivals obey the homogeneous Poisson process;

6) The shock rate is uniformly distributed in the interval between its
minimum and maximum values.

3. Deriving the MSP and SSP for a given ISIAP
3.1. System survivability as function of number of experienced shocks

According to the model of [39], the loss probability of a system upon
the occurrence of a shock increases when the number of survived shocks
increases. Let q(i) represent the probability that the system survives the i

th shock, and g(0)=1. A common model used for computing q(i) is

q(i) = Qw(i) for i > 0, 3)
where Q is the survival probability of the system under the first shock.
w(i) is referred to as the shock resistance deterioration factor, which is a
decreasing function of its argument with «(0) 1. For exam-

ple, w(i) = »"!, 0 < w < 1. Thus, the system survival probability upon
the occurrence of each shock reduces as the number of survived shocks
occurring in interval [0,t) increases. The probability that the system can
survive I shocks can be evaluated as

gli) = Qo @

1
i=0
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Fig. 2. Example of shock occurrence when the mission is not aborted.
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Fig. 3. Example when the mission is aborted after the k-th shock.

3.2. MSP

Let P(t,i,p) represent the probability that i shocks occur to the
system during time t under the shock rate of p. As shock arrivals obey the
HPP, P(t,i,p) is computed as
P(t,i,p) = e"”(i—f), fori=0,1,2,... 5)
where p = A for the PM and p = aA for the RP. If t < 0 P(t,i,p) = O for
any i and p by definition.

The probability that the first shock from the HPP with rate p occurs in
time interval [tt+dt) since some event is P(t, 0, p)pdt, where dt is
infinitesimal.

Let U; = T;— T;_; be the random time interval between the i th and i-
1th shock (U; = Ty because Tp = 0) and y; be a realization of Us.

The system completes the PM with probability 1 if no shocks occur
during time 7. In this case, the MSP is ry = P(7,0,A) = e 7.

The system completes the PM with probability g(1) if only one shock
occurs during the PM and this shock does not cause the mission abort,
which happens when & <U; <z, i.e. when no shocks occur in the interval
[0, &) and one shock occurs in the interval [£71,7). In this case, the MSP
can be obtained as

r=q(D)P(£,0,A) P(t =&, 1,A) = g(1)Ae™ (1= £)). Q)

The system completes the PM with probability q(1)q(2) if only two
shocks occur during the PM and these shocks do not cause the mission
abort, which happens when

E<U <7, U>&EWU)and T, =U + U, <7 7)

The conditions (7) hold when no shocks occur during time &»(Uy)
after the first shock and exactly one shock occurs during the remaining
PM time 7 — U; — &,(Uy). Thus, the conditional probability that only two
shocks occur during the PM and these shocks cause no abort given that
U, =u is

P(&(u1),0, A)P(T — 1y — & (ur), 1, A). (C)]

Notice that if u; + &,(u;) > 7 (i.e., the PM cannot continue after the
second shock), (9) takes the value of 0 because the first parameter of its
second term is negative.

The probability that the system completes the PM after experiencing
two shocks can be obtained as

r = q(Dg(2)A / Pl 0, A)P(E(11), 0, A)P(T — 1y — & (), 1, At
&

— g(Dg(2)A%e™ / (c = w — &(w))dis
‘ (10)

Now consider the case where the system completes the PM after
experiencing exactly k < m shocks. The system survives these shocks

Table 1

Best obtained NSAP solutions for different values of S*.
s* &/t E s
0.87 0.001 0.928 0.877
0.88 0.025 0.916 0.881
0.89 0.085 0.886 0.891
0.90 0.157 0.851 0.901
0.91 0.229 0.818 0.910

4 ™

4 4 km

-~ DP
/

Emergency landing position

Fig. 4. UAV mission.
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Table 2

Best obtained ISIAP solutions with m = 2 and &,(u;)
different values of S*.

= max(0, az +bouy) and

S* &/t ax/t by E S

0.87 0 0.006 —-0.027 0.930 0.870

0.88 0.001 0.018 —0.006 0.924 0.880

0.89 0.001 0.456 —0.999 0.900 0.890

0.90 0.073 0.528 —0.999 0.865 0.900

0.91 0.169 0.588 —0.999 0.824 0.910
Table 3

Best obtained ISIAP solutions with m = 2 and &,(u;) = azexp(bou; ) and different
values of S*.

S* &/t ay/t by E S

0.87 0 0.001 —-55.0 0.930 0.875
0.88 0.001 0.006 —44.9 0.927 0.881
0.89 0.025 0.486 —43.3 0.900 0.890
0.90 0.073 0.582 -23.1 0.864 0.900
0.91 0.193 1.056 —43.3 0.825 0.910

k

with probability H q(i) and it does not abort the mission if after any i th
i=1

shock, no additional shock occurs during time &;(u;_;). The last k-th

shock occurs in time interval [Zi-:f U; +&¢(Uk-1), 7). The condition that

the k-th shock causing no abort can occur during the PM is

k—1
:ZUi-'_ék(kal) <. a1
i=1

The probability that the system completes the PM after experiencing
k < m shocks can be obtained as

T T

rk—Hq A"'/ (u1,0,A) / P(1,0,A)... / P(&(tx1),0,A)

& u+&; (ur) -2 +Ep1 (Uk-2)

k—1
><P(1 Z (1 ,1,A>du1du2 duy_;. 12)

According to the considered ISIAP, after surviving m shocks during
the PM, the system never aborts the PM upon experiencing any number
of additional shocks that occur in time interval [ Y7 U; +-&,,(Un_1),7)

(see Fig. 2). If h shocks occur in this final interval, the system survives
m+h-1
with probability H q(i). Thus, the MSP in the case where the system
i=1
experiences at least m shocks takes the form

7

'm = Am*l/P(uhO:A) / P(u2707 A)

& ur+& (1)

/ P(&,(thn-1),0,A)

t—2+Em 1 (tm—2)
m+h—1

XZP<TZM‘ ' (Um—1) ,A) H q(i)du,duy-+-du,,

i=1
(13)

As the events of the PM completions after different numbers of
shocks are mutually exclusive, the overall MSP can be obtained as

R=Y"rn. 14

3.3. SSP

The system aborts the mission after the first shock if this shock occurs
attime Ty = U; < &; from the mission beginning. In this case, the system
survives the aborted mission if it survives one shock during the PM and

Reliability Engineering and System Safety 248 (2024) 110184

all the shocks during the RP, which takes time ¢(U; ). Thus, the proba-
bility of system survival when it aborts the mission after the first shock is

&

0 h+1
A/P u1,0,A) Y " P(p(u), h,an) [ [ ali)du;. 5)
h=0 i=0

0

The system aborts the mission after the second shock if the first shock
T

occurs at time & < U; = T; < 7, which happens with probability A /
&

P(u;,0,A)du; and the time interval between the first and the second
shock is less than &,(U;), i.e., the second shock occurs at time
min(z —Us, &, (Uy))) since the first shock. The conditional probability
that the second shock occurs within this time interval given that U; = u;
is

min(r—uy,&; (u1))
A / P(u3,0, A)du,. (16)

0
The system survives the aborted mission if it survives two shocks in

the PM and all the shocks in the RP, which takes time ¢(U; +U-). The
probability of this event is

T min(z—uy,& (u1))
55 = A2 /P(u,,o,A) P(uy,0,A)
& 0 (17)
h+2

X ZP @(uy + w), h, aA)Hq(i)dulduz.
=0 i=0
Generalizing, we consider the situation when the system aborts the
mission after the k-th shock (see. Fig. 3), which happens when the first
shock occurs at time £; < u; < 7, the time between the j-th and the j-1-th
shock for any j < k shock obeys the inequality

0193 e
S -
E ‘s\\
\\ n..
N\ '..
0.91 \
AY
\
\
\
\\
0.89 \
\
\
\
\
\\
0.87 \
\
\
\
\
\
\
0.85 )
\
\
\
\
\
\
0.83 \\
--=-NSAP \
\
—ISIAP (linear) %
\
081 - e ISIAP (exp) \
\
\
\
\
0.79 . , \ pomet
0.87 0.88 0.89 0.9 091 ¢g* 092

Fig. 5. Expected MSP for NSAP and ISIAP as functions of the desired worst-case
SSP level S*.
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Fig. 7. MSP and SSP corresponding to the best ISIAP with linear and exponential function &,(u; ) for different shock rates A.

-1
fj(llj,]) < uj <7T-— Zui
i=1

(18)

and the time between the k-th and the k-1-th shock obeys the inequality

i=1

survives k shocks in the PM and all the shocks in the RP that takes time
o( Zleui). The probability of this event is

j-1
— u
T—uy Zr*l !

sk:Ak]P(ul,o,A)/ P(up,0,A)- / P(u;,0,A)

&

) &(w1)

k—1
;< min <T— ZLthfk(uk])). (19)
min (I—Z::ll ui &y (l‘k—l))

S K Kth
></ P(uk707A)ZP<(p< u,~> 7h70(A> Hq(i)dulduz---dum
i1 i=0

Thus, the probability of mission aborting after the k-th shock is

. - IR 0 e .
A"/P(ul,O,A) / P(itz,0,A)-- / P(1;,0,A) - @D
& &) & (1) The system survives the mission either when it completes the PM or if
(20 it aborts the mission after k < m shocks and completes the corresponding
min (e 37w el) RP. As these survival cases are mutually exclusive, the total SSP can be
X / P(u, 0, A)duyduy -+~duy. obtained as
0 m
The system survives the mission aborted upon the k-th shock if it S=R+ ;Sk' 22)
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Fig. 8. Expected MSP for NSAP and ISIAP as functions of the upper limit of the
shock rate Apq, for desired worst-case SSP level $*=0.9.

4. UAV case study

Consider a UAV that must accomplish a payload delivery mission
(PM). To complete the PM, the UAV must cover a distance L =10km to a
destination position (DP). During the flight to the DP, the UAV keeps
speed vpy=60 km/h and remains at an altitude which allows carrying
the payload [40]. At this altitude, the UAV is exposed to shocks caused
by low range electromagnetic interference. The shocks may destroy the
control equipment of the UAV and cause its crash/loss. The number of

E $=0.9
0.930 A
4
’
/
B 4
a¥ 4
0.890 - S
5® /
/
4
/
4
4
7/
4
,I
4
4
K ’
g ’
0.850 - S
-=-=-NSAP
——ISIAP (linear)
------ ISIAP (exp)
0.810 T T r T
0.86 0.88 0.9 0.92 0.94 @0-96
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shocks arrivals during flying to the DP obeys the HPP with uncertain rate
A belonging to the interval [1.0,7.0] h™1. The interference filter that
protects the UAV deteriorates as the number of experienced shocks in-
creases due to overheating, thus causing the decrease of its resistance to
shocks. Such deterioration is considered using Eq. (4) withQ =0.92, =
0.9. The PM flight duration is 7 = L/vpy = 0.1667h = 10 min.

To reduce the risk of the UAV loss, the PM can be aborted according
to a chosen ISIAP. If the PM is aborted at time t from its beginning, the
UAV drops the payload, rises to the altitude where the shock rate is 0.4A,
and flies with speed vgp = 50 km/h either to the DP or to an emergency
landing position (see Fig. 4), choosing the closest between them. Thus, if
the PM is aborted at time t since the beginning of the mission when the
UAV has covered the distance vpypt, the time of flying to the closest
landing position is

min <L —veut, \/ (Veut — 4)2 + 9)

1) =
(1) -~
Any functions &;(u;_;) with adjustable parameters can be used in the
suggested ISIAP. In this work two functions have been checked for
defining the ISIAP: linear function

Table 4

Best obtained NSAP solutions for $*=0.9 and different values of w.
® &/t E S
0.86 0.229 0.815 0.901
0.88 0.193 0.833 0.901
0.90 0.157 0.851 0.901
0.92 0.109 0.877 0.901
0.94 0.049 0.910 0.901
0.96 0.001 0.940 0.903

Table 5

Best obtained solutions for $*=0.9, ISIAP with m = 2, &, (u;) = max(0, az +bauy)
and different values of .

® &/t ax/t by E S

0.86 0.170 0.602 -0.93 0.817 0.900
0.88 0.110 0.663 —-0.99 0.835 0.900
0.90 0.110 0.301 —0.51 0.858 0.900
0.92 0.050 0.241 -0.33 0.885 0.900
0.94 0.049 0.060 —-0.09 0.910 0.901
0.96 0.001 0.060 —0.08 0.940 0.903

E $7=0.91

0.89 -
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0.81 1 ———NSAP
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v
0.77 T T T T
0.86 0.88 0.9 0.92 0.94 @0-96

Fig. 9. Expected MSP for NSAP and ISIAP as functions of the shock resistance deterioration parameter  for desired worst-case SSP levels $*=0.9 and S*=0.91.
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Table 6
Best obtained ISIAP solutions for $*=0.9, ISIAP with m = 2, &(up) =
azexp(bou;) and different values of w.

w & ay/t by E S
/T

0.86 0.17 2.892 —49.5 0.822 0.900
0.88 0.17 1.988 -116 0.841 0.900
0.90 0.11 4.157 -111 0.866 0.900
0.92 0.05 1.747 -99 0.893 0.900
0.94 0.03 0.241 —-115 0.918 0.900
0.96 0.00 0.060 -120 0.941 0.902

& (1) = max (0, a; + by )
and exponential function

& (1) = ajexp(buy-1).

For both functions, 2m-1 parameters &, as,bs, ..., ay, b, should be
found as solutions of the optimization problem (2) to determine the
ISIAP &,m.

The parameter b; should always take negative values. Indeed, with an
increase in the inter-shock time u;_1, it is reasonable to accept for the rest
of the PM a riskier aborting policy and allow PM continuation when the
next inter-shock interval is shorter (see Fig. 1).

The best NSAP obtained for the considered mission presumes
aborting the PM after the first shock if it occurs within time £; since the
mission beginning. Thus, the best NSAP coincides with ISIAP withm = 1.
Tables 1-3 present the comparison of the solutions obtained for NSAP
with m = 1 and two ISIAPs with m = 2 (with linear and exponential
functions &,(up)) for different values of the desired worst-case SSP.
Fig. 5 presents the values of the expected MSP for the best obtained
aborting policies as functions of the desired worst-case SSP level S* for
uncertain A uniformly distributed in the interval [1.0,7.0]. The differ-
ence of expected MSP for m = 2 and m > 2 is negligible.

It can be seen that under the ISIAP, the first shock causes PM abort
during shorter period than under the NSAP. However, unlike the NSAP,
the ISIAP allows aborting the PM after the second shock. The interval
during which the PM can be aborted upon the second shock depends on
the occurrence time of the first shock, which provides the ISIAP with
self-adaptation to the shock rate and results in greater efficiency than
NSAP.

For S* = 0.87 under ISIAP, the PM is never aborted after the first
shock (¢; = 0) and the time after the first shock during which it should be
aborted upon the second shock decreases with an increase in the
occurrence time of the first shock.

It can be seen that both linear and exponential ISIAPs outperform the
NSAP, and the exponential ISIAP provides the greatest expected MSP,
though the results of the linear and exponential ISIAPs are very close.

Fig. 6 compares the MSP and SSP corresponding to the best obtained
NSAP and ISIAP with the exponential function &,(u; ) presented in Ta-
bles 1 and 3 under different fixed shock rates. It can be seen that the self-
adapted ISIAP provides greater MSP than the NSAP practically without
reducing the SSP.

Fig. 7 presents the comparison of the MSP and SSP obtained for the
best ISIAPs with linear and exponential functions &,(u;) for solutions
obtained in Tables 2 and 3 and their dependence on the shock rate. For
low values of the shock rate A, the ISIAP with the linear function slightly
outperforms the ISIAP with the exponential function. On the contrary,
for high values of the shock rate, the ISIAP with the exponential function
provides slightly better results.

Fig. 8 presents the comparison of the expected MSP for NSAP and
ISIAP as functions of the upper limit of the shock rate Apq, When A =
1 remains fixed for the desired worst-case SSP level S* = 0.9. It can be
seen that the difference between the expected MSP obtained under ISIAP
and NSAP increases when the uncertainty of shock rate increases due to
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the adaptive feature of ISIAP. The exponential ISIAP provides the
greatest expected MSP.

To analyze the influence of the system shock resistance deterioration
parameter @ on the optimal expected MSP, we solve the constrained
optimization problem (2) for different values of parameter » when the
desired worst-case value of the SSP remains fixed.

Fig. 9 presents the values of the expected MSP for the best obtained
aborting policies as functions of the parameter w for desired worst-case
SSP levels S* = 0.9 and S* = 0.91. Tables 4-6 present the comparison of
the solutions obtained for NSAP with m = 1 and two ISIAPs withm = 2
for S* = 0.9 and different values of .

Intuitively, when the shock resistance deterioration factor increases
(deterioration decreases and the system becomes less sensitive to num-
ber of experienced shocks), the expected MSP increases. Both the NSAP
and ISIAP become riskier allowing PM aborting upon the first shock
during shorter time (&, decreases). The interval between the first and the
second shocks in which PM is aborted under ISIAP also tends to
decrease. The exponential ISIAP provides the greatest expected MSP.

5. Conclusion and future research directions

This work advances the state of the art in the AP research by pro-
posing a new self-adaptive ISIAP model for systems operating in un-
certain random shock environment. A probabilistic approach is
suggested for evaluating the mission performance metrics of MSP and
SSP under any chosen ISIAP. Based on the MSP and SSP evaluation, the
optimal ISIAP problem is further formulated and solved to maximize the
expected MSP while meeting a required SSP level. As demonstrated by
the case study of a UAV payload delivery mission system, the proposed
ISIAP outperforms the conventional NSAP, providing higher expected
MSP. The dependence of MSP and SSP on the shock rates for the best
obtained ISIAP with two different functions is studied. It is intuitive that
both MSP and SSP decrease as the shock rate increases. It is also revealed
that under fixed low shock rates, the ISIAP with the linear function
performs better while under fixed high shock rates, the ISIAP with the
exponential function provides better results. When the value of shock
rate is uncertain the ISIAP with the exponential function provides
greater expected MSP under constrained worst-case SSP.

In the proposed model, the mission task may be attempted only once.
It is possible to extend the model that allows the task to be re-attempted
following a successful RP [22,35] and explore attempt-dependent ISIAP
to enhance the MSP.
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