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A B S T R A C T   

For systems operating in random shock environment, mission aborting policies based on the number of shocks 
experienced during a certain time interval are common and have received intensive attention. However, the 
number of shocks-based aborting policy (NSAP) is not effective when the shock rate during the primary mission 
is uncertain because it cannot adapt itself to the shock rate. This paper puts forward a new, self-adaptive inter- 
shock interval-based aborting policy (ISIAP), which determines the inter-shock interval within which the primary 
mission should be aborted upon the next shock based on the previous inter-shock interval. A probabilistic 
approach is suggested for assessing the mission success probability (MSP) and the system survival probability 
(SSP) under a given ISIAP. The optimal ISIAP problem is formulated and solved with the objective to maximize 
the expected MSP while meeting certain requirement on the SSP. A detailed case study of an unmanned aerial 
vehicle performing a payload delivery mission is provided to demonstrate the proposed mission aborting model 
and compare the effectiveness of the proposed ISIAP and the conventional NSAP. Impacts of the SSP requirement 
and the shock rate parameter on the mission performance metrics and optimal solutions are also examined in the 
case study.   

1. Introduction 

Mission aborting in the case of certain deterioration condition 
occurring is an effective means to alleviate the risk of valuable system 
losses in diverse critical applications. For example, unmanned aerial 
vehicles (UAV) can be exposed to electromagnetic interference from 
high voltage power lines, cell phone towers, large metal structures and 
other sources [1,2], which usually causes deterioration or damage to the 
UAV or its key components [3,4]. Hence, when the UAV has undergone 
and survived a certain number of interferences, it should terminate the 
planned mission (e.g., reconnaissance, target strike, rescue, goods de
livery) and return to the nearest landing site or the base to avoid the 
asset loss. Other examples can be found in chemical reactor [5,6], 
aerospace [7,8], battlefield [9], healthcare [10], marine [11], trans
portation [12], etc. 

A key design problem for implementing the mission aborting is to 
determine the specific deterioration condition of triggering the mission 
abort, referred to as the aborting policy (AP). For the UAV example 
above, the number of interferences experienced before the mission 

termination defines the AP. If this number is too low, the mission may be 
aborted too early, unnecessarily reducing the probability that the 
planned mission can be accomplished successfully, termed as mission 
success probability (MSP). On the other hand, if the number is too high, 
the mission may be aborted too late, increasing the risk of losing the 
system and incurring low probability that the system performing the 
mission can survive, termed as system survival probability (SSP). The AP 
must be optimized to strike a balance between MSP and SSP. Different 
types of optimization problems can be formulated, for example, maxi
mizing MSP subject to SSP meeting a certain level, maximizing SSP 
subject to MSP meeting a certain level, or minimizing a metric (e.g., 
expected cost) that is a function of MSP and SSP [13,14]. 

While the research on APs can be traced back to 1970s [15,16], it has 
received significant attention from the reliability community only since 
around 2018 [17]. APs based on different condition parameters have 
been modeled as listed below. The types of systems studied in those AP 
researches are also exemplified in the list. 
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• The number of malfunctioned or damaged units: k-out-of-n: G sys
tems [18], k-out-of-n: F balanced systems [19], warm standby sys
tems [20], UAVs [21,22].  

• System degradation level: phased-mission systems [23], multi-state 
systems [24], safety-critical systems [25], UAVs [26].  

• The amount of work accomplished: heterogeneous warm standby 
systems [13], standby systems with propagated failures [27], 
standby systems with state-dependent loading [28], standby systems 
with maintenance [29].  

• Operation time elapsed from the beginning of the mission or the 
system age: self-healing systems [14], UAVs [26].  

• Duration of defective state: safety-critical mission systems [30].  
• The system balance degree [31]. 

In addition, for systems operating in random shock environment, the 
number of shocks experienced has been used as a key condition 
parameter for defining the AP. For example, the number of shocks-based 
aborting policy (NSAP) was modeled and optimized for single- 
component systems [10], systems with random rescue time [32], 
multi-state systems with inspections [33], drone-truck systems [34], 
multi-state repairable systems [35], multi-task systems [2], concurrent 
multi-attempt mission systems using kamikaze components [36], and 
consecutive multi-attempt mission systems with the common abort 
command [37,38]. The NSAP presumes the primary mission aborting 
when a predefined number of shocks occur during a certain time interval 
since the beginning of the mission. Such policy is not effective when the 
shock rate during the primary mission is uncertain because the NSAP 
policy cannot adapt itself to the shock rate. 

This work expands the horizons in the AP research by putting for
ward a new inter-shock interval-based aborting policy (ISIAP) for sys
tems operating in uncertain random shock environment. The ISIAP 
possesses the self-adaptation feature as it determines the inter-shock 
interval within which the primary mission should be aborted upon the 
next shock based on the previous inter-shock interval. Under the pro
posed self-adaptive AP model, this work makes further contributions to 
the body of knowledge on the AP research as listed below:  

1) Developing a probabilistic approach of assessing the MSP and SSP 
under a given ISIAP.  

2) Formulating and solving the optimal ISIAP problem to maximize the 
expected MSP while meeting certain requirement on the SSP.  

3) Conducting a detailed case study of a UAV payload delivery mission 
system to demonstrate the proposed model and compare the effec
tiveness of the proposed ISIAP and the conventional NSAP.  

4) Investigating impacts of the SSP requirement and the shock rate 
parameter on the mission performance metrics (MSP and SSP) and 
optimal solutions. 

The structure for the rest of the paper is: Section 2 depicts the ISIAP 
model and formulates the optimal ISIAP problem. Section 3 presents the 
probabilistic approach of assessing MSP and SSP under a given ISIAP. 
Section 4 conducts the case study. Section 5 concludes the work and 
points out future research directions. 

2. Problem formulation 

The system’s goal is to accomplish a primary mission (PM), which 
requires the system to operate during time τ in a random environment 
modeled by a homogeneous Poisson process (HPP) of shocks with un
certain rate. Let T1<T2<…Ti denote random shock arrival times. To 
complete the PM, the system must survive all shocks occurring during 
time τ. 

The system deteriorates more as the number of shocks it survives 
increases, leading to larger risks of system failure and loss. Thus, to 
reduce the probability of the system loss, the PM may be aborted before 
its completion. The PM abortion leads to the failure of the mission and is 
immediately followed by the activation and execution of a rescue pro
cedure (RP). The required time to complete the RP φ(t) depends on the 
activation time of the RP since the beginning of the mission. During the 
RP, the system is exposed to an HPP of shocks with rate αΛ, where α is a 
shock rate ratio between the PM and the RP. The realizations of RP 
depend on the specific mission and system. For example, when a 
computational system performs a data processing task, the RP activation 
presumes switching the processor from the data processing task to 
encoding the data and transferring it to a safe storage to avoid an un
authorized access. The time needed to save the data depends on the 
amount of produced/processed data at the moment when the processing 
task is aborted. When a UAV performs a delivery mission, the RP acti
vation presumes immediate change of the UAV route from the destina
tion point to the closest emergency landing position with changing the 
UAV’s flight altitude to reduce the electromagnetic interference rate. 
The distance to the closest landing position and, therefore, the time 
needed to complete the RP depends on the UAV’s location at the time of 
the mission abort. 

Acronyms 

DP destination position 
ISIAP inter-shock interval-based aborting policy 
MSP mission success probability 
NSAP number of shocks-based aborting policy 
PM primary mission 
RP rescue procedure 
SSP system survival probability 
UAV unmanned aerial vehicle 
HPP homogeneous Poisson process 

Notation 
τ duration of PM 
Ti random arrival time of the i th shock 
Ui random time interval between the i th and the i-1-th shocks 
ui realization of Ui 
φ(t) required duration of RP activated at time t from the 

beginning of the mission 

Λ shocks rate during PM 
Λmin, Λmax minimum and maximum possible values of shock rate 
α ratio between shock rates during PM and RP 
ξi time after the i-1-th shock during which occurrence of i th 

shock triggers PM abort 
m maximum allowed number of shocks after which the PM 

can be aborted 
P(t,i,ρ) occurrence probability of i shocks in [0,t) given that the 

shock rate is ρ 
q(i) probability that a system survives the i th shock 
Ω system survival probability upon the first shock 
ω shock resistance deterioration factor 
R(ξ,m) MSP under the ISIAP ξ,m 
S(ξ,m) SSP under the ISIAP ξ,m 
E(ξ,m, Λmax, Λmin) expected MSP under ISIAP ξ, m and shock rate 

range [Λmin, Λmax]

S∗ required SSP level  
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The inter-shock interval-based aborting policy (ISIAP) presumes the 
PM aborting if for i > 1 the time interval between the i th and i-1-th 
shock, i.e., Ti -Ti-1 is shorter than the value of ξi(Ti-1-Ti-2), where ξi(t) is a 
pre-specified function. By definition, T0

–––0 corresponds to the beginning 
of the mission and ξ1 is a fixed time that determines an interval during 
which the PM is aborted upon arrival of the first shock. If according to 
the ISIAP, the PM is not aborted after m shocks, it is never aborted. 
Indeed, if the system experiences and survives m shocks with the given 
inter-shock intervals, it is reasonable to assume that it is close to the PM 
termination and let it complete the mission. Thus, the ISIAP is deter
mined by the values of m, ξ1 and m-1 functions, ξ2(t),…, ξm(t). Observe 
that for m = 1, the ISIAP and the NSAP are identical because the mission 
is aborted upon the occurrence of the first shock under both of these 
policies. 

To explain the adaptivity of the ISIAP, consider simple examples of a 
PM’s outcomes for the ISIAP with m = 2 and decreasing function ξ2(t) 
presented in Fig. 1. 

If the first shock arrives at time earlier than ξ1 from the mission 
beginning, the PM is aborted because the early shock arrival evidences 
about the high shock rate (case A). When the first shock arrives at time 
later than ξ1 from the mission beginning, it can be assumed that the 
shock rate is low. To check this assumption, the system sets the time 
threshold ξ2(T1) during which no shocks should occur and continues the 
PM (case B). The second shock occurs at time shorter than ξ2(T1) since 
the first shock. The system decides that the assumption about the low 
shock rate is wrong and aborts the PM. In case C where the first shock 
arrives later than in case B, the assumption that the shock rate is low is 
straightened. The system can set a lower time threshold ξ2(T1) for which 
the average time between shock arrivals remains low. As the second 
shock arrives at time later than T1+ξ2(T1), the system does not abort the 
PM. On the contrary, under NSAP the system always aborts the PM upon 
the occurrence of the second shock without respect to the inter-shock 
interval duration, which makes NSAP non-adaptive to the shock rate 
variations. 

The mission fails if the system either aborts the PM or is lost during 
performing the PM. The system survives if it does not fail during either 
the PM or the RP phase. Two metrics characterize the mission accom
plishment: the MSP R, i.e., the probability that the system completes the 
PM; and the SSP S, i.e., the probability that the system either completes 
the PM or aborts the PM and completes the subsequent RP. 

When the system operates in uncertain environment, the exact shock 
rate Λ is unknown and only an interval [Λmin, Λmax] to which this rate 
belongs can be estimated. In this case, assuming that the shock rate is 
uniformly distributed in the interval [Λmin, Λmax], one can estimate the 
expected MSP as 

E(ξ, m, Λmax, Λmin) =

∫ Λmax
Λmin

R(ξ, m, Λ)dΛ
Λmax − Λmin

(1) 

The optimal ISIAP [m, ξ={ξ1, ξ2(t),…, ξm(t)}] should be found that 
maximizes the expected MSP while providing a required SSP level S∗ for 
the worst case of maximal shock rate, which is formulated as 

E(ξ, m, Λmax, Λmin)→max s.t. S(ξ, m, Λmax) ≥ S∗. (2) 

While this work focuses on the solution to (2), other formulations of 
the optimization problem balancing MSP and SSP, like maximizing the 
SSP while meeting a required MSP level may be similarly solved. 

The following assumptions are made in this model:  

1) All the shocks are observable;  
2) The mission aborting decision can be made immediately after the 

occurrence of shocks;  
3) All the shocks have the same severity (influence on the system loss 

probability);  
4) The system survives if it completes the PM (no RP is needed after the 

PM completion);  
5) The shock arrivals obey the homogeneous Poisson process;  
6) The shock rate is uniformly distributed in the interval between its 

minimum and maximum values. 

3. Deriving the MSP and SSP for a given ISIAP 

3.1. System survivability as function of number of experienced shocks 

According to the model of [39], the loss probability of a system upon 
the occurrence of a shock increases when the number of survived shocks 
increases. Let q(i) represent the probability that the system survives the i 
th shock, and q(0)–––1. A common model used for computing q(i) is 

q(i) = Ωω(i) for i > 0, (3)  

where Ω is the survival probability of the system under the first shock. 
ω(i) is referred to as the shock resistance deterioration factor, which is a 
decreasing function of its argument with ω(0) = 1. For exam
ple, ω(i) = ωi−1, 0 < ω < 1. Thus, the system survival probability upon 
the occurrence of each shock reduces as the number of survived shocks 
occurring in interval [0,t) increases. The probability that the system can 
survive I shocks can be evaluated as 

∏I

i=0
q(i) = ΩIω

I(I−1)

2 (4) 

Fig. 1. Examples of PM outcomes for ISIAP and NSAP with m = 2.  

G. Levitin et al.                                                                                                                                                                                                                                  



Reliability Engineering and System Safety 248 (2024) 110184

4

3.2. MSP 

Let P(t, i, ρ) represent the probability that i shocks occur to the 
system during time t under the shock rate of ρ. As shock arrivals obey the 
HPP, P(t, i, ρ) is computed as 

P(t, i, ρ) = e−ρt(ρt)i

i!
, for i = 0, 1, 2, … (5)  

where ρ = Λ for the PM and ρ = αΛ for the RP. If t < 0 P(t, i, ρ) = 0 for 
any i and ρ by definition. 

The probability that the first shock from the HPP with rate ρ occurs in 
time interval [t,t+dt) since some event is P(t, 0, ρ)ρdt, where dt is 
infinitesimal. 

Let Ui = Ti− Ti−1 be the random time interval between the i th and i- 
1th shock (U1 = T1 because T0 = 0) and ui be a realization of Ui.

The system completes the PM with probability 1 if no shocks occur 
during time τ. In this case, the MSP is r0 = P(τ,0, Λ) = e−Λτ.

The system completes the PM with probability q(1) if only one shock 
occurs during the PM and this shock does not cause the mission abort, 
which happens when ξ1<U1≤τ, i.e. when no shocks occur in the interval 
[0, ξ1) and one shock occurs in the interval [ξ1,τ). In this case, the MSP 
can be obtained as 

r1 = q(1)P(ξ1, 0, Λ) P(τ − ξ1, 1, Λ) = q(1)Λe−Λτ (τ − ξ1). (6) 

The system completes the PM with probability q(1)q(2) if only two 
shocks occur during the PM and these shocks do not cause the mission 
abort, which happens when 

ξ1 < U1 ≤ τ, U2 > ξ2(U1) and T2 = U1 + U2 ≤ τ. (7) 

The probability that ξ1<U1≤τ is 

Λ
∫τ

ξ1

P(u1, 0, Λ)du1. (8) 

The conditions (7) hold when no shocks occur during time ξ2(U1) 
after the first shock and exactly one shock occurs during the remaining 
PM time τ − U1 − ξ2(U1). Thus, the conditional probability that only two 
shocks occur during the PM and these shocks cause no abort given that 
U1 = u1 is 

P(ξ2(u1), 0, Λ)P(τ − u1 − ξ2(u1), 1, Λ). (9) 

Notice that if u1 + ξ2(u1) > τ (i.e., the PM cannot continue after the 
second shock), (9) takes the value of 0 because the first parameter of its 
second term is negative. 

The probability that the system completes the PM after experiencing 
two shocks can be obtained as 

r2 = q(1)q(2)Λ
∫τ

ξ1

P(u1, 0, Λ)P(ξ2(u1), 0, Λ)P(τ − u1 − ξ2(u1), 1, Λ)du1

= q(1)q(2)Λ2e−Λτ
∫τ

ξ1

(τ − u1 − ξ2(u1))du1

(10) 

Now consider the case where the system completes the PM after 
experiencing exactly k < m shocks. The system survives these shocks 

Fig. 2. Example of shock occurrence when the mission is not aborted.  

Fig. 3. Example when the mission is aborted after the k-th shock.  

Fig. 4. UAV mission.  

Table 1 
Best obtained NSAP solutions for different values of S*.  

S* ξ1/τ E S 

0.87 0.001 0.928 0.877 
0.88 0.025 0.916 0.881 
0.89 0.085 0.886 0.891 
0.90 0.157 0.851 0.901 
0.91 0.229 0.818 0.910  
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with probability 
∏k

i=1
q(i) and it does not abort the mission if after any i th 

shock, no additional shock occurs during time ξi(ui−1). The last k-th 
shock occurs in time interval [

∑k−1
i=1 Ui +ξk(Uk−1), τ). The condition that 

the k-th shock causing no abort can occur during the PM is 

Tk =
∑k−1

i=1
Ui + ξk(Uk−1) < τ. (11) 

The probability that the system completes the PM after experiencing 
k < m shocks can be obtained as 

rk =
∏k

i=1
q(i)Λk−1

∫τ

ξ1

P(u1,0,Λ)

∫τ

u1+ξ2(u1)

P(u2,0,Λ)…
∫τ

uk−2+ξk−1(uk−2)

P(ξk(uk−1),0,Λ)

×P

(

τ −
∑k−1

i=1
ui − ξk(uk−1), 1, Λ

)

du1du2⋯duk−1. (12) 

According to the considered ISIAP, after surviving m shocks during 
the PM, the system never aborts the PM upon experiencing any number 
of additional shocks that occur in time interval [

∑m−1
i=1 Ui +ξm(Um−1), τ)

(see Fig. 2). If h shocks occur in this final interval, the system survives 

with probability 
∏m+h−1

i=1
q(i). Thus, the MSP in the case where the system 

experiences at least m shocks takes the form 

rm = Λm−1
∫τ

ξ1

P(u1, 0, Λ)

∫τ

u1+ξ2(t1)

P(u2, 0, Λ)⋯
∫τ

um−2+ξm−1(um−2)

P(ξm(um−1), 0, Λ)

×
∑∞

h=1
P

(

τ −
∑m−1

i=1
ui − ξm(um−1), h, Λ

)
∏m+h−1

i=1
q(i)du1du2⋯dum−1

(13) 

As the events of the PM completions after different numbers of 
shocks are mutually exclusive, the overall MSP can be obtained as 

R =
∑m

i=0
ri. (14)  

3.3. SSP 

The system aborts the mission after the first shock if this shock occurs 
at time T1 = U1 ≤ ξ1 from the mission beginning. In this case, the system 
survives the aborted mission if it survives one shock during the PM and 

all the shocks during the RP, which takes time φ(U1). Thus, the proba
bility of system survival when it aborts the mission after the first shock is 

s1 = Λ
∫ξ1

0

P(u1, 0, Λ)
∑∞

h=0
P(φ(u1), h, αΛ)

∏h+1

i=0
q(i)du1. (15) 

The system aborts the mission after the second shock if the first shock 

occurs at time ξ1 < U1 = T1 < τ, which happens with probability Λ
∫τ

ξ1 

P(u1, 0, Λ)du1 and the time interval between the first and the second 
shock is less than ξ2(U1), i.e., the second shock occurs at time 
min(τ −U1, ξ2(U1))) since the first shock. The conditional probability 
that the second shock occurs within this time interval given that U1 = u1 

is 

Λ
∫min(τ−u1 ,ξ2(u1))

0

P(u2, 0, Λ)du2. (16) 

The system survives the aborted mission if it survives two shocks in 
the PM and all the shocks in the RP, which takes time φ(U1 +U2). The 
probability of this event is 

s2 = Λ2
∫τ

ξ1

P(u1, 0, Λ)

∫min(τ−u1 ,ξ2(u1))

0

P(u2, 0, Λ)

×
∑∞

h=0
P(φ(u1 + u2), h, αΛ)

∏h+2

i=0
q(i)du1du2.

(17) 

Generalizing, we consider the situation when the system aborts the 
mission after the k-th shock (see. Fig. 3), which happens when the first 
shock occurs at time ξ1 < u1 < τ, the time between the j-th and the j-1-th 
shock for any j < k shock obeys the inequality 

Table 2 
Best obtained ISIAP solutions with m = 2 and ξ2(u1) = max(0, a2 +b2u1) and 
different values of S*.  

S* ξ1 /τ a2/τ b2 E S 

0.87 0 0.006 −0.027 0.930 0.870 
0.88 0.001 0.018 −0.006 0.924 0.880 
0.89 0.001 0.456 −0.999 0.900 0.890 
0.90 0.073 0.528 −0.999 0.865 0.900 
0.91 0.169 0.588 −0.999 0.824 0.910  

Table 3 
Best obtained ISIAP solutions with m = 2 and ξ2(u1) = a2exp(b2u1) and different 
values of S*.  

S* ξ1 /τ a2/τ b2 E S 

0.87 0 0.001 −55.0 0.930 0.875 
0.88 0.001 0.006 −44.9 0.927 0.881 
0.89 0.025 0.486 −43.3 0.900 0.890 
0.90 0.073 0.582 −23.1 0.864 0.900 
0.91 0.193 1.056 −43.3 0.825 0.910  

Fig. 5. Expected MSP for NSAP and ISIAP as functions of the desired worst-case 
SSP level S*. 
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ξj
(
uj−1

)
< uj < τ −

∑j−1

i=1
ui (18)  

and the time between the k-th and the k-1-th shock obeys the inequality 

uk < min

(

τ −
∑k−1

i=1
ui, ξk(uk−1)

)

. (19) 

Thus, the probability of mission aborting after the k-th shock is 

Λk
∫τ

ξ1

P(u1, 0, Λ)

∫τ−u1

ξ2(u1)

P(u2, 0, Λ)⋯
∫

τ−
∑j−1

i=1
ui

ξj(uj−1)

P
(
uj, 0, Λ

)
⋯

×

∫
min

(
τ−

∑k−1
i=1

ui ,ξk(uk−1)

)

0

P(uk, 0, Λ)du1du2⋯duk.

(20) 

The system survives the mission aborted upon the k-th shock if it 

survives k shocks in the PM and all the shocks in the RP that takes time 
φ(

∑k
i=1ui). The probability of this event is 

sk = Λk
∫τ

ξ1

P(u1, 0, Λ)

∫τ−u1

ξ2(u1)

P(u2, 0, Λ)⋯
∫

τ−
∑j−1

i=1
ui

ξj(uj−1)

P
(
uj, 0, Λ

)
⋯

×

∫
min

(
τ−

∑k−1
i=1

ui ,ξk(uk−1)

)

0

P(uk, 0, Λ)
∑∞

h=0
P

(

φ

(
∑k

i=1
ui

)

, h, αΛ

)
∏k+h

i=0
q(i)du1du2⋯dum

(21) 

The system survives the mission either when it completes the PM or if 
it aborts the mission after k ≤ m shocks and completes the corresponding 
RP. As these survival cases are mutually exclusive, the total SSP can be 
obtained as 

S = R +
∑m

k=1
sk. (22) 

Fig. 6. MSP and SSP corresponding to the best NSAP and ISIAP (with exponential function ξ2(u1)) as functions of the shock rate Λ.  

Fig. 7. MSP and SSP corresponding to the best ISIAP with linear and exponential function ξ2(u1) for different shock rates Λ.  
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4. UAV case study 

Consider a UAV that must accomplish a payload delivery mission 
(PM). To complete the PM, the UAV must cover a distance L = 10 km to a 
destination position (DP). During the flight to the DP, the UAV keeps 
speed vPM=60 km/h and remains at an altitude which allows carrying 
the payload [40]. At this altitude, the UAV is exposed to shocks caused 
by low range electromagnetic interference. The shocks may destroy the 
control equipment of the UAV and cause its crash/loss. The number of 

shocks arrivals during flying to the DP obeys the HPP with uncertain rate 
Λ belonging to the interval [1.0,7.0] h−1. The interference filter that 
protects the UAV deteriorates as the number of experienced shocks in
creases due to overheating, thus causing the decrease of its resistance to 
shocks. Such deterioration is considered using Eq. (4) with Ω = 0.92, ω =
0.9. The PM flight duration is τ = L/vPM = 0.1667h = 10 min. 

To reduce the risk of the UAV loss, the PM can be aborted according 
to a chosen ISIAP. If the PM is aborted at time t from its beginning, the 
UAV drops the payload, rises to the altitude where the shock rate is 0.4Λ, 
and flies with speed vRP = 50 km/h either to the DP or to an emergency 
landing position (see Fig. 4), choosing the closest between them. Thus, if 
the PM is aborted at time t since the beginning of the mission when the 
UAV has covered the distance vPMt, the time of flying to the closest 
landing position is 

φ(t) =

min
(

L − vPMt,
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(vPMt − 4)
2

+ 9
√ )

vPM
.

Any functions ξj(uj−1) with adjustable parameters can be used in the 
suggested ISIAP. In this work two functions have been checked for 
defining the ISIAP: linear function 

Fig. 8. Expected MSP for NSAP and ISIAP as functions of the upper limit of the 
shock rate Λmax for desired worst-case SSP level S*=0.9. 

Fig. 9. Expected MSP for NSAP and ISIAP as functions of the shock resistance deterioration parameter ω for desired worst-case SSP levels S*=0.9 and S*=0.91.  

Table 4 
Best obtained NSAP solutions for S*=0.9 and different values of ω.  

ω ξ1/τ E S 

0.86 0.229 0.815 0.901 
0.88 0.193 0.833 0.901 
0.90 0.157 0.851 0.901 
0.92 0.109 0.877 0.901 
0.94 0.049 0.910 0.901 
0.96 0.001 0.940 0.903  

Table 5 
Best obtained solutions for S*=0.9, ISIAP with m = 2, ξ2(u1) = max(0, a2 +b2u1)

and different values of ω.  

ω ξ1/τ a2/τ b2 E S 

0.86 0.170 0.602 −0.93 0.817 0.900 
0.88 0.110 0.663 −0.99 0.835 0.900 
0.90 0.110 0.301 −0.51 0.858 0.900 
0.92 0.050 0.241 −0.33 0.885 0.900 
0.94 0.049 0.060 −0.09 0.910 0.901 
0.96 0.001 0.060 −0.08 0.940 0.903  
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ξj
(
uj−1

)
= max

(
0, aj + bjuj−1

)

and exponential function 

ξj
(
uj−1

)
= ajexp

(
bjuj−1

)
.

For both functions, 2m-1 parameters ξ1, a2, b2, …, am, bm should be 
found as solutions of the optimization problem (2) to determine the 
ISIAP ξ,m.

The parameter bj should always take negative values. Indeed, with an 
increase in the inter-shock time uj−1, it is reasonable to accept for the rest 
of the PM a riskier aborting policy and allow PM continuation when the 
next inter-shock interval is shorter (see Fig. 1). 

The best NSAP obtained for the considered mission presumes 
aborting the PM after the first shock if it occurs within time ξ1 since the 
mission beginning. Thus, the best NSAP coincides with ISIAP with m = 1. 
Tables 1–3 present the comparison of the solutions obtained for NSAP 
with m = 1 and two ISIAPs with m = 2 (with linear and exponential 
functions ξ2(u1)) for different values of the desired worst-case SSP. 
Fig. 5 presents the values of the expected MSP for the best obtained 
aborting policies as functions of the desired worst-case SSP level S* for 
uncertain Λ uniformly distributed in the interval [1.0,7.0]. The differ
ence of expected MSP for m = 2 and m > 2 is negligible. 

It can be seen that under the ISIAP, the first shock causes PM abort 
during shorter period than under the NSAP. However, unlike the NSAP, 
the ISIAP allows aborting the PM after the second shock. The interval 
during which the PM can be aborted upon the second shock depends on 
the occurrence time of the first shock, which provides the ISIAP with 
self-adaptation to the shock rate and results in greater efficiency than 
NSAP. 

For S* = 0.87 under ISIAP, the PM is never aborted after the first 
shock (ξ1= 0) and the time after the first shock during which it should be 
aborted upon the second shock decreases with an increase in the 
occurrence time of the first shock. 

It can be seen that both linear and exponential ISIAPs outperform the 
NSAP, and the exponential ISIAP provides the greatest expected MSP, 
though the results of the linear and exponential ISIAPs are very close. 

Fig. 6 compares the MSP and SSP corresponding to the best obtained 
NSAP and ISIAP with the exponential function ξ2(u1) presented in Ta
bles 1 and 3 under different fixed shock rates. It can be seen that the self- 
adapted ISIAP provides greater MSP than the NSAP practically without 
reducing the SSP. 

Fig. 7 presents the comparison of the MSP and SSP obtained for the 
best ISIAPs with linear and exponential functions ξ2(u1) for solutions 
obtained in Tables 2 and 3 and their dependence on the shock rate. For 
low values of the shock rate Λ, the ISIAP with the linear function slightly 
outperforms the ISIAP with the exponential function. On the contrary, 
for high values of the shock rate, the ISIAP with the exponential function 
provides slightly better results. 

Fig. 8 presents the comparison of the expected MSP for NSAP and 
ISIAP as functions of the upper limit of the shock rate Λmax when Λmin =

1 remains fixed for the desired worst-case SSP level S* = 0.9. It can be 
seen that the difference between the expected MSP obtained under ISIAP 
and NSAP increases when the uncertainty of shock rate increases due to 

the adaptive feature of ISIAP. The exponential ISIAP provides the 
greatest expected MSP. 

To analyze the influence of the system shock resistance deterioration 
parameter ω on the optimal expected MSP, we solve the constrained 
optimization problem (2) for different values of parameter ω when the 
desired worst-case value of the SSP remains fixed. 

Fig. 9 presents the values of the expected MSP for the best obtained 
aborting policies as functions of the parameter ω for desired worst-case 
SSP levels S* = 0.9 and S* = 0.91. Tables 4–6 present the comparison of 
the solutions obtained for NSAP with m = 1 and two ISIAPs with m = 2 
for S* = 0.9 and different values of ω. 

Intuitively, when the shock resistance deterioration factor increases 
(deterioration decreases and the system becomes less sensitive to num
ber of experienced shocks), the expected MSP increases. Both the NSAP 
and ISIAP become riskier allowing PM aborting upon the first shock 
during shorter time (ξ1 decreases). The interval between the first and the 
second shocks in which PM is aborted under ISIAP also tends to 
decrease. The exponential ISIAP provides the greatest expected MSP. 

5. Conclusion and future research directions 

This work advances the state of the art in the AP research by pro
posing a new self-adaptive ISIAP model for systems operating in un
certain random shock environment. A probabilistic approach is 
suggested for evaluating the mission performance metrics of MSP and 
SSP under any chosen ISIAP. Based on the MSP and SSP evaluation, the 
optimal ISIAP problem is further formulated and solved to maximize the 
expected MSP while meeting a required SSP level. As demonstrated by 
the case study of a UAV payload delivery mission system, the proposed 
ISIAP outperforms the conventional NSAP, providing higher expected 
MSP. The dependence of MSP and SSP on the shock rates for the best 
obtained ISIAP with two different functions is studied. It is intuitive that 
both MSP and SSP decrease as the shock rate increases. It is also revealed 
that under fixed low shock rates, the ISIAP with the linear function 
performs better while under fixed high shock rates, the ISIAP with the 
exponential function provides better results. When the value of shock 
rate is uncertain the ISIAP with the exponential function provides 
greater expected MSP under constrained worst-case SSP. 

In the proposed model, the mission task may be attempted only once. 
It is possible to extend the model that allows the task to be re-attempted 
following a successful RP [22,35] and explore attempt-dependent ISIAP 
to enhance the MSP. 
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Table 6 
Best obtained ISIAP solutions for S*=0.9, ISIAP with m = 2, ξ2(u1) =

a2exp(b2u1) and different values of ω.  

ω ξ1 
/τ 

a2/τ b2 E S 

0.86 0.17 2.892 −49.5 0.822 0.900 
0.88 0.17 1.988 −116 0.841 0.900 
0.90 0.11 4.157 −111 0.866 0.900 
0.92 0.05 1.747 −99 0.893 0.900 
0.94 0.03 0.241 −115 0.918 0.900 
0.96 0.00 0.060 −120 0.941 0.902  
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