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Recommending products to users with intuitive explanations helps improve the system in transparency, persuasiveness, and
satisfaction. Existing interpretation techniques include post-hoc methods and interpretable modeling. The former category
could quantitatively analyze input contribution to model prediction but has limited interpretation faithfulness, while the latter
could explain model internal mechanisms but may not directly attribute model predictions to input features. In this study, we
propose a novel Dual Interpretable Recommendation model called DIRECT, which integrates ideas of the two interpretation
categories to inherit their advantages and avoid limitations. Specifically, DIRECT makes use of item descriptions as explainable
evidence for recommendation. First, similar to the post-hoc interpretation, DIRECT could attribute the prediction of a user
preference score to textual words of the item descriptions. The attribution of each word is related to its sentiment polarity
and word importance, where a word is important if it corresponds to an item aspect that the user is interested in. Second, to
improve the interpretability of embedding space, we propose to extract high-level concepts from embeddings, where each
concept corresponds to an item aspect. To learn discriminative concepts, we employ a concept-bottleneck layer, and maximize
the coding rate reduction on word-aspect embeddings by leveraging a word-word affinity graph extracted from a pre-trained
language model. In this way, DIRECT simultaneously achieves faithful attribution and usable interpretation of embedding
space. We also show that DIRECT achieves linear inference time complexity regarding the length of item reviews. We conduct
experiments including ablation studies on five real-world datasets. Quantitative analysis, visualizations, and case studies
verify the interpretability of DIRECT. Our code is available at: https://github.com/JacksonWuxs/DIRECT.

CCS Concepts: • Information systems → Personalization; Collaborative search.

Additional Key Words and Phrases: Recommendation Systems, Explainable AI, Language Models.

1 INTRODUCTION
Recommender systems help users to access items matching their preferences. While deep learning significantly
improves recommendation accuracy, increasing the transparency of recommender systems to users also becomes a
new trend recently [10]. Interpretable recommender systems [60, 66] attempt to generate both accurate predictions
and intuitive explanations. However, the two goals often sit on opposite sides of a seesaw. While deep learning
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models represent features in uninterpretable high-dimensional spaces to pursue better accuracy, they also sacrifice
system transparency.

There are two main categories of techniques for creating interpretable recommender systems. The first category
is the post-hoc explanation to understand how predictions are made after a model is trained. Typical techniques
include gradient-based [45, 47, 59], path-based [43, 62], and perturbation-based methods [32, 52]. However, it has
been pointed out that post-hoc methods may not always faithfully explain the exact inference mechanism [21, 66].
The second category is to build inherently interpretable models. Typical techniques are attention models [8, 11, 41,
53, 54] and disentangled representation learning [13, 26, 33, 56]. Attention weights shed light on how information
propagates over user-item interaction graphs, while disentangled factors unravel the global distribution of
representations. The attention weights or disentangled factors could help understand certain aspects of the
model inference process, but these intermediate information is not directly associated with the output, such as
prediction scores. This is different from the post-hoc interpretation like Shapley Values [32] or Counterfactual
Analysis [47] that directly decompose output and quantitatively attribute it back to input features. To satisfy both
performance and transparency, recent studies [24, 70] suggest that let neural networks map inputs into a human
understandable latent space, then apply a linear transformation from this space to the target label set, known as
Generalized Additive Model (GAM) [17]. However, GAM-based approaches often require the involvement of
experts to define the latent space, which can limit the learning capabilities of deep learning models.

Considering the natural readability of textual user-item reviews, we put reviews forward as a latent space
to achieve interpretable recommendations, where this latent space is easily understood by humans and carries
rich semantic information for predicting user preferences. There are several challenges in building interpretable
recommendation models with review information. First, how to design the model that preserves the advantages
of both post-hoc interpretation and inherently interpretable modeling? Second, how to simultaneously utilize the
capacity of advanced language models and protect recommendation interpretability? Third, since many users do
not write reviews, how to overcome the sparsity issue?

To address the challenges, we propose a novel review-based interpretable recommendation model for user-item
rating prediction. First, we design the rating function as the summation of attribution scores of review words.
This allows both quantitative and intuitive attribution to the input reviews as post-hoc interpretations. Second,
we employ a concept bottleneck layer [22, 24] to map review words into interpretable features before the output,
where each feature corresponds to an aspect of items. Different from existing concept bottleneck models that
require domain experts to design the features, our model automatically discovers these features from data. The
above designs consider the attributable model predictions and human-understandable model mechanisms, so we
name our model DIRECT (Dual Interpretable RECommendaTion). Third, we extract a word-word affinity graph
from pre-trained language models, and then design an end-to-end solution, by leveraging the implicit community
structure in the graph, to guarantee that non-trivial aspects are discovered from word representations. This allows
us to effectively utilize pre-trained language models without harming model interpretability. Fourth, we jointly
model user reviews and shopping history to merge the two information modalities. This allows our model to
express user interests with reviews written by other customers. Furthermore, we introduce how to reduce time
complexity for online model inference. The contributions of this work are summarized below.

• We propose a novel review-based interpretable recommender system called DIRECT. It inherits the advantages
of both attribution-based interpretation and interpretable modeling mechanism to achieve a transparent
decision-making process.

• We propose a novel objective that encourages the model to learn discriminative aspects.
• Experiments on real-world datasets validate the effectiveness of DIRECT. Visualization and case studies

demonstrate the interpretability of our model.
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Fig. 1. The overall framework of the proposed interpretable review-based recommendation system.

2 PROBLEM STATEMENT
Notations. In this work, we use boldface lowercase letters (e.g., x) to denote vectors, boldface uppercase letters
(e.g., G) to denote matrices, and calligraphic capital letters (e.g., D) to denote sets. Specifically, we use U and
I to denote the user set and item set, respectively. The interactions between users and items are stored in a
rating matrix X ∈ R |U |× |I | , where each element AD,8 indicates the rating score of user D ∈ U to item 8 ∈ I. In
review-based recommendation systems, we also assume that an "-word review is available for some rating
actions, denoted by TD,8 = [F1

D,8 , ...,F
<
D,8 , ...,F

"
D,8 ].F<D,8 ∈ V indicates the<-th word of the review posed by user

D to item 8 , and V is a pre-defined vocabulary set. Besides the rating-level review, we also represent each user
D (or item 8) with a summarized document DD = [F1

D, ...,F
;
D, ...,F

!
D ] (or D8 = [F1

8 , ...,F
;
8 , ...,F

!
8 ]), where ! is the

document length. In practice, each document DD (or D8 ) is obtained by concatenating all the observed reviews
that are commented by the user (or commented on the item). These settings have been widely adopted in existing
review-based recommender systems [9, 69].
Problem Definition. The goal of this work is to build an interpretable model 5 to predict the preference score
ÂD,8 = 5 (D, 8,DD,D8 ) of user D on item 8 . In real-world scenarios, the review TD,8 is not available for a target
user-item pair (D, 8), so we always delete the current review from the user and item document during training.

3 PROPOSED METHOD
We now introduce the proposed interpretable recommendation model with user reviews. First, in Section 3.1, we
formally define the “interpretability” considered in this work. Then, we describe the architecture design of our
multi-aspect recommendation model in Section 3.2∼ 3.3. After that, in Section 3.4, we propose a training loss to
guarantee the distinction among different aspects. We then introduce the overall objective to train our model in
Section 3.5. Finally, we discuss the time complexity of model inference in Section 3.6.

3.1 Interpretability of Recommender Systems
We consider two levels of interpretability in designing the proposed recommender system. First, similar to the
post-hoc methods, we want prediction scores to be attributable, where several requirements are as below.
• Attributable prediction: Let x denote the input, G8 denote the 8-th feature, and 5 (x) be the prediction for x .

The prediction is attributable if we could design an interpretation method 8=C? (), where 8=C? (5 , x, G8 ) returns
the attribution score of G8 for 5 (x). We think G8 is more important than G 9 if |8=C? (5 , x, G8 ) | > |8=C? (5 , x, G 9 ) |.
Commonly used attribution methods include raw gradient interpretation [45] and attention scores [8, 11, 53, 54].

• Measurable attribution: An attribution is measurable if:

5 (x) ≈
∑

8
8=C? (5 , x, G8 ). (1)
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The measurability further requires attributions to compose the prediction value. It thus makes interpretation a
quantitative analytic tool. Commonly used measurable attribution methods include Integrated Gradients [47]
and Generalized Additive Models [3]. Interpretation methods in the previous category, such as attention scores,
do not have this property.

• Comprehensible attribution: An attribution is comprehensible if it is easy for humans to understand the
meaning of each G8 . For example, each pixel in an image is hardly comprehensible, while objects are more
comprehensible [27]. In recommender systems, we regard words in user reviews as comprehensible.
The second level of interpretability refers to a more inherently understandable model mechanism. State-of-

the-art neural networks are typically designed in a way that maps input (e.g., nodes, texts) through complicated
interactions to the target (e.g., labels). Such a prediction scheme, however, does not match the human cognition
habits which rely on high-level concepts or aspects. To bridge the gap, we introduce the idea of Concept Bottle-
neck [24] for building interpretable recommendation models. Specifically, the model consists of two parts. The first
part 51 : X → K maps input to the concept space. The second part 52 : K → Y makes the final predictions based
on the concepts. Thus, given an input G , its concept activation is denoted as 51 (x) ∈ R , where  is the number
of concepts. Then, a prediction is made as ~̂ = 52 (51 (x)). In traditional concept bottleneck models [22, 24, 70],
the concepts are provided by domain experts, where the models are trained to fit both concept labels and the
prediction label ~. However, in our problem, the concepts are not pre-defined and are discovered from data. It
is also worth noting that, although some neural recommendation models use linear functions or Factorization
Machines [39] as their scoring functions, they do not fully match our definition of interpretability. For example,
DeepCoNN [69] uses a dot production as its scoring function upon user embeddings and item embeddings.
However, the embeddings are generated by a TextCNN model [7], where the latent space dimensions are not
interpretable.

3.2 Model Architecture
We introduce the architecture of our model in this section. Figure 1 presents the overall framework of our method.
The general idea is to predict user preference for an item by attributing the preference score to each of the words
in item reviews. The score of each word is the product of two factors: (1) the sentiment of the word, and (2) the
degree of user interest in the item’s aspect described by the word. Specifically, letF;8 ∈ D8 denote the ;-th word
in the reviews of the 8-th item. The preference of user D for item 8 is predicted as:

ÂD,8 =
1
!

!∑
;=1

B4=C8<4=C (F;8 ) × 60C4D (F;8 ) + 18 + 1D + 16, (2)

where 18 , 1D and 16 are trainable item bias, user bias and global bias terms, respectively, and ! = |D8 |. Here
we design a sentiment analysis module B4=C8<4=C : Rℎ1 → [−1, 1] indicating the sentiment of wordF;8 , and an
aspect-interest gate function 60C4D : Rℎ1 → [0, 1] computing the probability that the wordF;8 describes an item
aspect that user D interested in. Meanwhile, a word representation module serves as one of the foundations of
our review-based system. The details of each module are introduced below.

3.2.1 Word Representation Module. To obtain high-quality word embeddings with rich semantic information
to support other functionalities, we collect contextual word embedding by using pre-trained language models
(PLM). This module takes reviews as input and returns an ℎ1-dimensional embedding e for each of the word
tokens as output. Formally,

[e0, e1, e2, ..., e!] = PLM( [F0,F1,F2, ...,F!]), (3)
where e; denotes the contextual embedding of word F; . We insert a special token F0 = [�!(] to each input
word sequence. The contextual embedding of the special token [�!(] is used as the representation of the whole
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sequence. If the input is a user review document DD or item review document D8 , then e0 could be treated as the
overall representation of the user or item from the perspective of their review information.

3.2.2 Sentiment Analysis Module. The sentiment analysis module tries to predict the sentiment polarity of
each word in item reviews. Considering that the sentiment analysis over words is a relatively simple task with
high-quality pre-trained contextual word embeddings, we implement it as a light-weight multi-layer perception
(MLP) model that maps the word embedding to a scalar:

B4=C8<4=C (F;8 ) = tanh(MLP1 (e;8 )), (4)

where e;8 denotes the embedding of word F;8 , and MLP1 : Rℎ1 → R. Here, the tanh function returns a value
between -1 and 1, where a greater value indicates a stronger positive signal. Since the final estimated score is
a weighted addition to these sentiment scores, the estimation errors between the ground truth and predicted
ratings directly guide the learning of the sentiment analysis module.

3.2.3 Aspect-Guided Interest Gate. A user usually evaluates a product from several aspects. A review segment is
useful to the user if it describes the aspects that the user is interested in. Otherwise, the content of that segment
will be ignored by the user. For example, a review of a restaurant is “Their pizzas are full of flavor and have a
crispy crust, but it is far away, by the way.”, where the word “pizza” showing the Food aspect of the restaurant
which is positive, and the word “far away” reflecting the Location aspect is negative. This review will only be
noticed by the users who care about these aspects of a restaurant. For example, a gourmet will focus on the
sentiment score of the pizza in this review and ignore the comments on the restaurant location, while a student
without a car may not choose this restaurant due to the negative comment on the location.

Following this intuition, we design the Aspect-Guided Interest Gate (AGIG) to quantify the degree to a word
F;8 ∈ D8 falling in the aspects of user D’s interest. We assume all items within share  aspects that users might
concern about, such as Price, Service, Location, and Food in restaurant recommendation. The AGIG module plays
the same role as the Concept Bottleneck layer introduced before, where each concept corresponds to an aspect
of items. Formally, we assign each aspect : a ℎ2-dimensional vector a: ∈ Rℎ2 , and form the total  aspects in
an aspect matrix G ∈ R ×ℎ2 . Suppose we have generated a user embedding zD ∈ Rℎ3 for user D (see details in
Section 3.3), then we define the AGIG as:

60C4D (e;8 ) =
 ∑
:=1

% (a: |e;8 ) × % (a: |zD), (5)

where

0 ≤ % (a: |zD) ≤ 1,
 ∑
:=1

% (a: |e;8 ) = 1. (6)

Here % (a: |e;8 ) is the probability that wordF;8 mentions the aspect a: with its contextual word embedding e;8 , and
% (a: |zD) is the probability that user D is interested in aspect a: . The former probability is user-independent, while
the latter is user-specific. For a word to contribute to the recommendation, it must express sufficient information
on the aspects that the user cares about.
• We estimate the distribution % (a: |e;8 ) of a wordF;8 ∈ D8 on different aspects {a: } :=1 as below:

% (a: |e;8 ) =
exp (q;8 · a>: )∑ 

: ′=1 exp (q;8 · a>: ′ )
, (7)

where q;8 = MLP2 (e;8 ), and MLP2 : Rℎ1 → Rℎ2 bridges between the word embedding space and the aspect
embedding space. Here q;8 ∈ Rℎ2 is called word-aspect embedding.
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• We compute the distribution % (a: |zD) of user interests on different aspects {a: } :=1 as below:

% (a: |zD) = f (MLP3 (zD) · a>: ), (8)

where MLP3 : Rℎ3 → Rℎ2 aligns the user embedding space with the aspect embedding space, f is the Sigmoid
activation function.
In the above, Equation (7) measures the correlation between the word-aspect embeddings {q;8 } and the aspect

embeddings {a: } :=1. This is similar to K-means clustering in the gradient-descent form [1, 40] if we could
optimize each centroid to minimize its distances to the nearby data points. Since one of the main requests of
DIRECT for better recommendation quality is to correctly predict the aspects reflected by each word, the distance
between the words and their closest aspect has a chance to be minimized. However, different from traditional
K-means algorithms where the input data samples are fixed, we aim to identify topical aspects from word-aspect
embeddings that are trainable. Directly optimizing both {q;8 } and {a: } :=1 via gradient descent could cause model
collapse. To avoid this problem, in Section 3.4, we discuss further constraints on the aspect distribution towards
producing diverse aspects.

3.3 Learning User Representations
Effective user representations {zD} is the key to personalized recommendation in our system. Modeling user-item
interactions is one of the popular directions to generating user embeddings [25, 55, 63]. However, user interests
hiding in their historical interactions are implicit. A straightforward way is generating user embedding from their
reviews [28, 65, 69], where user preferences are explicit. But, another issue is raised: many reviews are biased,
sparse, and incomprehensive because most users only write reviews when they feel the items are particularly
bad or beyond expectations.

To fill the gaps, we utilize user shopping histories to be combined with the review information. The user
shopping history is denoted as ID , where ID = {81, ..., 8C , ..., 8) }, 8C ∈ I, is a ) -size item set storing the items
purchased by the user D. We then design a fusion network to generate the final user representations.

3.3.1 Representing Users with Sequences. Both user reviews and shopping history are processed as two sequences
of ℎ1-dimensional embeddings. We use a self-attention module to aggregate the two sequences into two vectors
zD,3 and zD,ℎ , and then use the fusion network to merge them into zD . First, given the user review document DD

and its contextual word embeddings [e1D, ..., e;D, ..., e!D ] from the pre-trained language model, we aggregate them
into a single embedding as zD,3 ∈ Rℎ1 :

zD,3 = AGGR( [e1D, ..., e!D ], e0D) =
!∑
;=1

U; e
;
D, (9)

where e0D acts as the query for self-attention,

U; =
exp(ẽ; )∑!
; ′=1 exp(ẽ; ′ )

, ẽ; = _0 · tanh(e0D · �� (e;D)>). (10)

Then, given the user shopping history ID and history embedding sequence [e081 , ..., e
0
8C
, ..., e08) ], we adopt the similar

aggregation function to generate a single user history embedding zD,ℎ ∈ Rℎ1 , where zD,ℎ = AGGR( [e081 , ..., e
0
8)
], ē0D),

and ē0D = 1
)

∑)
C=1 4

0
8C
is the mean.

3.3.2 Embedding Fusion Network. As discussed earlier, the user document embedding ID,3 keeps explicit but
biased user preferences, while the history embedding ID,ℎ contains more general but implicit information. We
design a fusion network to filter information coming from each embedding guided by the other resource to
generate the final user embedding zD :
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zD = [zD,ℎ � sℎ ; zD,3 � s3 ],
sℎ = f (MLP4 (zD,3 )), s3 = f (MLP5 (zD,ℎ)),

(11)

where � stands for element-wise multiplication, MLP4 : Rℎ1 → Rℎ1 , and MLP5 : Rℎ1 → Rℎ1 . If user reviews are
not available, we can simply let zD = zD,ℎ . Here, Bℎ and B3 are gates to filter out redundant information. Inspired
by SE-Net [20], each gate first represents its input embedding into a lower-dimensional hidden space and then
maps them back to the original space with a gated activation function (e.g., the sigmoid function). With this
design, each gate could identify the essential information from its inputs and use them as guidance to filter out
the original information.

3.4 Learning Discriminative Aspect Representations
Learning diverse and comprehensive aspects is crucial for the interpretability of our recommendation model,
which is also a non-trivial task. There are two categories of methods to learn aspect-based embeddings. The first
category relies on a two-step procedure [13, 30], i.e., it conducts clustering to find the aspects and then learns
embeddings. While this approach could produce human-understandable clusters, it is difficult to guarantee the
quality of clustering results used for embedding. The second category jointly conducts aspect discovery and
embedding learning in an end-to-end manner [33, 36, 37], which aims to learn word embeddings and interpretable
aspects simultaneously. However, the model could suffer from mode collapse [23, 33], since there is no explicit
constraint to control the diversity of embedding distribution. Specific to our paper, the mode collapse is caused
by jointly learning aspect and word-aspect embeddings during model training, which differs from the K-means
clustering [1] assuming the input entries (word-aspect embeddings here) are fixed. This could lead to a trivial
solution that maps every aspect and word-aspect embedding to the same point, while the objective of K-means
is minimized, i.e., the distances between words and their closest aspects are zero. To tackle the challenges,
we propose a new end-to-end approach with an explicit objective to learn discriminative representations of
words in different aspects. Specifically, we leverage the idea of maximizing coding rate reduction (MCR2) of
representations [64], which encourages the words sharing similar semantic concepts to be represented closer and
pushes the representations of semantically different words further. Therefore, this constraint can be regarded as
our prior on the word-aspect space to prevent the model from collapsing into trivial solutions.

3.4.1 Maximization of Coding Rate Reduction. In information theory, the coding rate [34] is defined as the
minimum number of binary bits needed to encode a set of data instances with a prescribed precision n > 0.
Intuitively, the coding rate of a dataset is large if its instances are scattered in a broad spatial region. In supervised
learning, if a dataset contains multiple classes, where each class is cohesive but instances in different classes
are uncorrelated, then we can reduce the coding rate of the whole dataset by coding each subset separately and
summing them up. Thus, to learn discriminative word representations distributed over multiple aspects, we want
to maximize the coding rate reduction.

3.4.2 Unsupervised MCR2. In recommender systems, we treat each item aspect as a class and aim at learning
discriminative word representations between different aspects. However, in our problem, the labels are not
available to assign words to aspects. To overcome this, we build a word-word affinity graph with an adjacency
matrix M , where M8, 9 denotes the semantic similarity between word 8 and word 9 , and leverage the group
information implicitly contained in M [16]. The words sharing similar semantic meanings will form a group in the
graph, and words with different meanings fall into different groups. Each group plays the role of a class. Formally,
given an item document D8 with ! distinct words, the adjacency matrix M = [g1, ...,g; , ...,g!] ∈ R!×! , where
g; ∈ R! . In addition, the word-aspect embeddings {q;8 }!;=1 form the matrix W ∈ R!×ℎ2 . The objective of learning

ACM Trans. Intell. Syst. Technol.
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discriminate word-aspect representations W is thus formulated as:

Ω3 = '(W, n) − '2 (W, n |M). (12)

where '(W, n) is the coding rate of the entire representations, and '2 (W, n |M) denotes the summation of the
coding rates over groups. Since the word-aspect matrix W and the aspect embeddings G share the same latent
space, optimizing Ω3 indirectly controls the distribution of aspect embeddings. Specifically,

'(W, n) = 1
2V

log det(O + Vℎ2
!n2

W>W),

'2 (W, n |M) =
!∑
;=1

tr(M; )
2!

log det(O + ℎ2

tr(M; )n2
W>M;W),

(13)

where O ∈ Rℎ2×ℎ2 is an identity matrix, M; = diag(6; ) ∈ R!×! diagonalizes the word similarity vector, V ∈ R is a
hyper-parameter to control the compactness of grouped word representations. Note that Ω3 trivially increases
with the norm of W , so we need to normalize its columns into unit vectors. Intuitively, maximizing Ω3 equals
to maximize '(W, n) and minimize '2 (W, n |M). The former encourages {q;8 }!;=1 to be mutually independent, and
the latter encourages {q;8 } within the same group to be correlated. Using Ω3 as a regularization term tends to
separate word representations between different groups in M , and squeeze word representations within the same
group.

In this work, we use the cosine similarity between pre-trained word embeddings v;1 , v;2 to measure the semantic
similarity of two wordsF;1 andF;2 . The pre-trained embeddings are obtained from the first layer of %!" . We let
M;1,;2 = M;2,;1 = 1 if cos(v;1 , v;2 ) = 〈v;1 ,v;2 〉

‖v;1 ‖2 ‖v;22 ‖2
is greater than a threshold ) . Otherwise, we let M;1,;2 = M;2,;1 = 0 to

build a sparse adjacency matrix.

3.4.3 Residual Aspect. Forcing every word to reflect an item aspect violates the truth that many words are not
related to item aspects. Taking the review “My parents love this restaurant so much!” as an example, parents and
love are nontrivial words but they are not related to any aspect of restaurants. To tackle this problem, we add an
additional aspect called residual aspect, denoted as a0 ∈ Rℎ2 , to the aspect embedding matrix G, so the matrix
finally has the shape of  ′ × ℎ2, where  ′ =  + 1. Moreover, we let the user interest probability % (a0 |zD) = 0 for
the residual aspect to minimize the influence of residual-aspect words on the recommendation.

3.5 Objective Function
In this section, we introduce the overall objective function (including several terms) and training method in our
model.

3.5.1 Prediction Loss. The major objective of our model is predicting user preference scores. We introduce
prediction loss L? to measure the differences between prediction scores and user rating scores. We follow the
previous studies [9, 44] to measure the accuracy of the proposed model by using Mean Square Error (MSE):

L? =
1
|X|

∑
(D,8 ) ∈X

(AD,8 − ÂD,8 )2. (14)

3.5.2 Contrastive Loss. Inspired by the idea of contrastive learning in graphs [5, 18], we consider the user/item
history reviews DD /D8 and the current review TD,8 as the two views of the same user interests and the same item
aspects in different moments. Suppose that user interests and the item aspects will not change in a short time
period, then the preference scores estimated according to the history and the current reviews should be similar.
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Table 1. Statistics of datasets.

Dataset #Users #Items #Reviews Density
Toys 19,412 11,924 167,597 0.1448%
Games 24,303 10,672 231,780 0.1787%
Clothing 39,387 23,033 278,677 0.0614%
Yelp2019 19,936 14,587 84,370 0.0580%

CDs 75,258 64,443 1,097,592 0.0453%

Thus, given the recommender 5 , we set up a contrastive loss to help model training:

L2 =
1
|X|

∑
(D,8 ) ∈X

(ÂD,8 − Â ′D,8 )2, (15)

ÂD,8 = 5 (D, 8,DD,D8 ),
Â ′D,8 = 5 (D, 8,TD,8 ,TD,8 ).

(16)

Following previous studies [6], we drop the gradients coming from calculating Â ′D,8 to prevent the collapsing issue
(i.e., constantly predicting the same result regardless of inputs).

3.5.3 Training Loss. The final objective function for training is:

L = L? + W1L2 + W2Ω3 , (17)

where W1, W2 are hyper-parameters to balance the losses. Here Ω3 denotes the objective of maximizing coding
rate reduction for word representation learning, as introduced in the previous subsection.

3.6 Analysis of Inference Complexity
In this part, we analyze the time complexity of model inference, where we assume one-layer architectures for all
the MLPs in our model. Given a review document with the length of !, a %-layer Transformer-based PLM requires
$ (% · ℎ1 · !2) time to generate word embeddings. Then, the MLP1 takes $ (! · ℎ1) time to process ! words; the
MLP2 and MLP3 take $ (! · ℎ1 · ℎ2) and $ (ℎ3 · ℎ2) time, respectively; the MLP4 and MLP5 both take $ (ℎ21) time;
the user review AGGR function takes $ (! · ℎ1) time. After that, given a ) -length shopping history, the AGGR
function takes $ () · ℎ1) time. Finally, mapping ! words to  ′ aspects takes $ (! ·  ′ · ℎ2) time, and computing
the prediction score based on  ′ aspects takes $ ( ′!) time. In total, since ℎ3 = 2ℎ1, the time complexity is
$ (% · ℎ1 · !2 + ! · ℎ1 · ℎ2 + ℎ21 + ! ·  ′ · ℎ2).

The above computation is costly for online systems. Thus, to reduce online computation, we propose to
cache some intermediate quantities, including word-aspect mentions (i.e., % (a: |e;8 )), user-aspect affiliations (i.e.,
% (a: |zD)), and word sentiments. Under this setting, the time complexity of our model is reduced to $ (! ·  ′). In
practice,  ′ is small (e.g., the optimal  ′ ≈ 5 as shown in Section 4.4), and ! could be reduced by pre-processing
reviews to select useful words. Empirically, the inference time of our model is comparable to that of Matrix
Factorization [25].

4 EXPERIMENT
We try to answer four research questions through experiments. Q1: How effective is DIRECT compared with
other SOTA baselines? Q2: How does each component contribute to the performance of DIRECT? Q3: How will
DIRECT react to different numbers of aspects? Q4: How effective is DIRECT in learning interest aspects and
generating interpretable recommendations?
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4.1 Dataset
We evaluate DIRECT on 5 benchmarks including “Toys and Games” (Toys), “Video Games” (Games), “Clothing,
Shoes and Jewelry” (Clothing), and “CDs and Vinyl” (CDs) subsets from the Amazon Review Dataset [35] and
the popular Yelp dataset 1 based on the year of 2019 (Yelp2019). We use the five-core versions of these datasets,
where each user/item has at least five reviews. We divide 70%, 10%, and 20% of each user’s reviews to constitute
the training, validation, and test sets respectively. The data statistics are summarized in Table 1, in which the
Density is defined as 2×#'4E84FB

#*B4AB×#�C4<B .

4.2 Comparison with Baseline Methods
To answer Q1, we compare DIRECT with 13 state-of-the-art recommendation baselines below.
Baseline Methods. To have a rigorous and fair comparison, we include standard matrix factorization methods
(BiasMF [68] and NeuMF [19]), language model enhanced methods (DeepCoNN [69], NARRE [4], and DAML [28]),
aspect-aware methods (EMF [68], ANR [9], CARP [26], AARM [15] and UARM [46]), and graph-based review
systems (SSG [14], RMG [57] and RGCL [44]).
Experimental Settings. For all baseline methods, we use their publicly available source codes for experiments,
and tune their hyper-parameters based on the validation set. We train our model for 50 epochs with AdamW [31]
optimizer and early stop which is triggered by two times the learning rate decay. The learning rate decay strategy
with a decay factor of 0.1 is adopted, where the initial learning rate is 14 − 3. We set W1 = 54−3, W2 = 14−6,  = 5,
and ℎ2 = 64 by default, and the batch size is fixed as 32. The dropout rates for the contextual word embedding
and all MLP modules are 0.3 and 0.5, respectively. For the language model, we use the pre-trained BERT-small
[49] with embedding size 512 to initialize the contextual word embedding in Equation (3). Following common
practice [44], our text preprocessing strategies include: 1) removing the HTML tags, special characters and
stopwords, and 2) recovering abbreviation spellings and truncating the maximum length of user/item documents
to 512 words. For a fair comparison, we replace the static word embedding table in several baselines (DeepCoNN,
NARRE, DAML, ANR, and UARM) with the pre-trained BERT, which has been proved to be effective in our
preliminary results.
Results. Table 2 reports the averaged MSE results over 5 random seeds. In general, DIRECT performs very
competitively with the best baselines in all scenarios. Specifically, it significantly performs better than both
matrix factorization and language model enhanced methods. Compared with aspect-aware baselines, DIRECT
outperforms generally outperform them. Moreover, DIRECT even surpasses 2 of 3 graph-based methods and
achieves comparable results with the strongest baseline. These results verify the effectiveness of DIRECT in terms
of accuracy.
Discussions. We notice that UARM achieves performance comparable with DIRECT, which initially learns
the aspect distributions of users and items with contrastive learning, subsequently integrating these aspect
distributions with user/item representations for making recommendations. The strong performance of both
UARM and DIRECT validates the idea of modeling the aspect distribution for users and items. However, UARM
slightly under-performs compared to DIRECT, which can be attributed to the concurrent learning of users, items,
and aspects, where the coding rate reduction is introduced to prevent the collapse of training and guarantee the
interpretability and distinctiveness of the learned aspects. Meanwhile, although UARM learns aspect distributions
of users and items, it treats them as additional features which are mapped to a latent space and concatenated
with user/item embeddings. Moreover, UARM does not provide explicit attribution of prediction. Thus, UARM
does not provide an interpretable decision-making process compared to DIRECT.

1Yelp Open Dataset: https://www.yelp.com/dataset
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Table 2. Recommendation performance comparison.

Model Toys Clothing Games CDs Yelp2019 A.R.
BiasMF 1.054±0.061 1.497±0.054 1.339±0.019 1.024±0.007 1.339±0.012 13.8
NeuMF 0.935±0.006 1.324±0.004 1.225±0.012 0.949±0.006 1.174±0.004 10.4

DeepCoNN 0.911±0.001 1.297±0.010 1.216±0.013 0.990±0.013 1.172±0.006 10.0
NARRE 0.952±0.028 1.314±0.022 1.236±0.012 0.999±0.013 1.232±0.031 12.2
DAML 0.897±0.007 1.275±0.011 1.204±0.014 0.965±0.005 1.160±0.011 8.8

EMF 0.906±0.005 1.201±0.004 1.196±0.003 OOM[1] 1.322±0.007 11.0
ANR 0.824±0.009 1.126±0.023 1.190±0.097 0.918±0.002 1.116±0.026 5.4
CARP 0.845±0.009 1.081±0.012 1.195±0.019 1.021±0.027 1.143±0.007 6.6
AARM 0.848±0.001 1.150±0.008 1.184±0.003 0.951±0.005 1.128±0.008 6.8
UARM 0.810±0.001 1.108±0.002 1.118±0.003 0.886±0.002 1.075±0.007 3.8

SSG 0.828±0.002 1.129±0.012 1.144±0.005 0.869±0.006 1.205±0.005 6.4
RMG 0.808±0.002 1.111±0.010 1.110±0.003 0.859±0.004 1.187±0.004 4.4
RGCL 0.803±0.003 1.103±0.009 1.109±0.006 0.844±0.003 1.179±0.004 3.0

DIRECT 0.804±0.002 1.100±0.010 1.115±0.001 0.885±0.009 1.063±0.011 2.4

[1] The model raises an out-of-memory error during training on a 24GB memory GPU.

4.3 Ablation Study
To study Q2, we conduct experiments to examine the contributions of 1) using user reviews, 2) fusion network for
final user embedding, and 3) the contrastive loss in Section 3.5.2 to capture the shared interests between history
reviews and the target review. Specifically, we introduce three DIRECT variants: “w/o Review”, “w/o Fusion”,
and “w/o CL”. “w/o Review” is obtained by excluding user reviews from DIRECT. “w/o Fusion” is obtained by
replacing the fusion network in Section 3.3.2 with concatenation operation. “w/o CL” is obtained by excluding
the contrastive loss function from DIRECT. Table 3 summarizes their results on five benchmark datasets.

Table 3. Ablation study of DIRECT.

Toys Clothing Games CDs Yelp2019 average
w/o Review 0.8109 1.1132 1.1199 0.8943 1.0718 1.0020
w/o Fusion 0.8091 1.0939 1.1172 0.8867 1.0683 0.9950
w/o CL 0.8077 1.0954 1.1164 0.8847 1.0674 0.9943
DIRECT 0.8044 1.1004 1.1152 0.8854 1.0628 0.9936

From Table 3, we made three observations. First, DIRECT improves w/o Review in all cases. This result verifies
our motivation to capture user interests upon their reviews. Second, compared with w/o Fusion, DIRECT performs
better on 4 of 5 datasets. It is reasonable because our fusion network can adaptively combine users’ posts and
shopping behaviors in a learnable fashion. Third, by enforcing the alignment between review documents and
target reviews, DIRECT outperforms w/o CL on Toys and Clothing while performing comparably on the others.
The observations above validate the effectiveness of the three crucial components of the proposed model.

4.4 Sensitivity Analysis on Aspect Number
Aspect embeddings are the key to achieve word-level explanation in our system. In this section, we analyze the
sensitivity of our model on the number of aspects Q3. Specifically, we follow the same experimental setups above
and search the optimal number of aspects  in the set {1, 3, 5, 7, 9, 11}.

Table 4 reports the results with three random seeds. In general, the best  value is varied from one dataset to
another in a small range. For example, the optimal  values for Toys, Clothing, Games, CDs, and Yelp2019 are 3,
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Table 4. Sensitivity analysis on hyper-parameter  .

 Toys Clothing Games CDs Yelp2019
1 0.8083 1.0867 1.1122 0.8852 1.0774
3 0.8053 1.0859 1.1114 0.8843 1.0759
5 0.8060 1.0863 1.1113 0.8797 1.0769
7 0.8062 1.0860 1.1112 0.8766 1.0791
9 0.8059 1.0859 1.1120 0.8792 1.0766
11 0.8066 1.0864 1.1127 0.8863 1.0790

3, 7, 7, and 3, respectively. That is, the best  value falls between 3 and 7. This observation echos the findings in
ANR [9]. Given that DIRECT performs relatively stable when  is between 3 and 7, we set  = 5 for all datasets
without further specification.

Table 5. Top frequent words for aspects in Clothing dataset.

Gift Texture Environment LowerBody Material
year cold little shirt den
watch soft day pair synthetic
bag water old socks summer
ear dark house feet cotton

daughter second watch sole rubber
sand strong socks run fan
day light pair pocket tin
son thick wash side accent
small fast light bra cap
gift gray warm back composite

Table 6. Top frequent words for aspects in Toys dataset.

Quailty Texture Puzzle Doll BoardGame
new set piece doll game

quality plastic make different year
collection hard game thing card

build train work size car
come long time large set

beautiful learn set pretty figure
challenge big use color pretty
wood sturdy together amazing look

additional old puzzle heavy player
grand young put cool daughter

4.5 Interpretability Analysis
To study Q4, we first analyze the performance of our model in learning aspects via visualization and verbalization
(section 4.5.1). Then, we quantitatively analyze whether the proposed DIRECT could provide interpretations that
reflect the user preferences (section 4.5.2). Finally, we demonstrate the transparent decision making process of
DIRECT with some cases (section 4.5.3).

4.5.1 Understanding Learned Aspects.
To check if DIRECT learns discriminative interest aspects, we visualize the words and their aspect associations in
Figure 2. Specifically, each wordF is represented by a word-aspect embedding vector qF , which is obtained by
averaging its word-aspect representations over the entire training set. After we get the word-aspect embeddings,
we assign word F to the :-th aspect if : = max: qF · ã>

:
, where ã: is the normalized embedding of the :-th
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Fig. 2. Aspect visualization on Toys dataset with t-SNE [50].

aspect. Since there are tens of thousands words in the vocabulary, we only visualize the top 50 most frequently
mentioned words for each aspect.

Figure 2 shows the aspect distributions of our model under three different settings, where different colors
denote different aspects. We can observe that, in Figure 2(b), the four aspects (including one residual aspect) are
discriminative and linearly separable. However, this character is not solid if we ignore the constraint term Ω3
(Figure 2(a)) or put too much weight on it (Figure 2(c)).

Moreover, we report the top 10 popular words under each learned aspect to examine if they conceptually
make sense. In particular, we use the pre-trained PLM to encode words in each user review TD,8 , then estimate
their aspect associations with Equation (7). Here, we use the checkpoints trained for performance comparison.
Table 5 and 6 show the results on the Clothing and Toys datasets. Each column indicates the potential aspect
identified by our model. We summarize each aspect in the first line and omit quantifiers, simple sentiment polarity
adjectives (e.g., good, bad), and intensity adverbs (e.g., bit, much). As we can see from the tables, our model
could effectively cluster words into different aspects that customers may concern about. For example, our model
figures out five crucial factors, i.e., Gift, Texture, Environment, LowerBody, and Material, for the clothing domain.
Furthermore, the top popular words in each aspect are also closely related. Taking the “Gift” aspect as an example,
words like daughter and son are popular roles of the gift receiver in real-world life. In summary, DIRECT can not
only identify informative semantic aspects for different domain products but also assign words to their most
appropriate aspects automatically.

Table 7. Quantitative analysis to explanation quality.

Toys Clothing Games CDs Yelp2019

Baseline-BoW

MSE ↓ 0.936±0.013 1.240±0.026 1.315±0.034 1.027±0.006 1.244±0.032
Top-K ↑ 0.546±0.304 0.517±0.320 0.583±0.331 0.580±0.346 0.500±0.270
Last-K ↓ 0.391±0.276 0.412±0.324 0.357±0.330 0.378±0.346 0.379±0.269
Diff ↑ 39.5% 25.5% 63.3% 53.4% 31.9%

DIRECT

MSE ↓ 0.804±0.002 1.100±0.010 1.115±0.001 0.885±0.009 1.063±0.011
Top-K ↑ 0.526±0.282 0.492±0.289 0.593±0.293 0.525±0.321 0.452±0.241
Last-K ↓ 0.372±0.293 0.399±0.313 0.303±0.301 0.412±0.339 0.382±0.273
Diff ↑ 41.4% 23.3% 95.7% 27.4% 18.3%

4.5.2 Quantitative Analysis. We quantitatively assess whether our system provides explanations that reflect user
preference. In particular, given a user-item pair, we treat the target review written by the user to the item as the
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ground truth of the user’s preference. We measure the similarity between the DIRECT generated explanations
and the target reviews. In this experiment, we consider the top- sentences from the item document with the
greatest maximum interest scores, according to Eq. (5), as the explanations generated by DIRECT, where we set
 = 3. The semantic similarities between the sentences of explanations and the user reviews are estimated by
a fine-tuned semantic similarity estimator based on RoBERTa [38]. This fine-tuned model will return a value
between 0 to 1, indicating a stronger semantic similarity between the explanation and the user target review if
the value is closer to 1. We further normalized and computed the average scores across the explanation sentences.
To ensure the item document covers the user interests, we ignore those user-item pairs with less than ten
sentences in the item document. Meanwhile, to guarantee item properties are clearly expressed, we ignore those
verbose reviews with over five sentences from a user. For comparison, we also report the similarities between
the target review and the last- sentences. In our experimental design, a recommender demonstrating a higher
interpretability could receive a greater average semantic similarity between the top-K sentences and the target
review, while the similarity score between the last-K sentences and the target review should be lower. We also
calculate the growth percentage of the average similarity of Top-K compared to Last-K, denoted as “Diff”. In
addition to DIRECT, we implement an inherently interpretable baseline for our analysis of interpretability. This
baseline first constructs item feature vectors by counting the frequencies of keywords from item reviews. To
perform personalized recommendations, it further estimates which item keywords may interest the given user.
The final user rating is predicted with a linear function over selected keyword embeddings. Since this baseline is
built on the bag-of-word assumption, a fully transparent and human-understandable decision-making process, it
can be considered an oracle in our interpretability analysis experiment. We denote this baseline as BoW.

Table 7 reports the results derived from 5,000 randomly sampled user-item pairs from each dataset. Analysis of
these results reveals that the explanations generated by DIRECT exhibit a greater similarity to target reviews
compared to those un-selected sentences. This pattern is consistent across all five datasets, demonstrating the
efficacy of DIRECT in accurately capturing user interests from item documents, aligning closely with its design
objectives. When comparing the interpretability of DIRECT and baseline BoW, we observe that the Diff score of
DIRECT is comparable with the ideal interpretable baseline, emphasizing the strong interpretability of DIRECT.
However, it is crucial to recognize that BoW achieves this transparent design while sacrificing its recommendation
quality. Specifically, we also observe that BoW’sMSE is significantly greater than DIRECT’s. Putting these together,
we conclude that DIRECT simultaneously improves the performance and transparency of recommender systems.

4.5.3 Case Study. We provide case studies to show whether DIRECT improves the transparency of recommen-
dation systems via interpretable features. To this end, we trace the activated user aspects, popular words of
activated aspects, and the word sentiments predicted by our model.

Table 8 displays two good recommendation samples (Case 1 and Case 2) and a “bad” one (Case 3). For each
case, i.e., user-item predication, we not only report its ground-truth information such as the user/item IDs, rating
score A , and target review, but also summarize all related explainable features extracted by DIRECT, including
the aspect distribution, activated frequent words and their sentiment polarity, the predicted rating score Â , the
predicted preference ?A4 5 and bias 180B scores. To better visualize these cases, we omit contexts that are irrelevant
to the target review and highlight the top 20 segments ranked by their activation scores (defined in Equation (5))
among the entire item document. We render the highlighted segments with different colors to emphasize their
sentiment polarities (i.e., positive and negative), and underline some segments of the target review to indicate the
potential concerns of the anchor user.

Good case. Case 1 and Case 2 list the recommendations of two users on the same item. Since the two cases
report the prediction results on the same item, we can observe that our model highlights several common parses
in the item document, such as neutral runner, runner, and mid foot striker. However, there still have some parses
being only activated by the second user. For example, our model also activates Heavier runners and road training
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Table 8. Case study of three user-item pairs coming from the Amazon datasets.

Case 1: userID=A3KHRW6ZC2EQIL, itemID=B006H30KAE (ASICS Men’s GEL-Nimbus 14 Running Shoe)
Prediction: A = 5.0, Â = 4.89, ?A4 5 = 0.41, 180B = 4.48

Interest Aspect: �B?42C1 = 0.5622, �B?42C2 = 0.5594, �B?42C3 = 0.5676, �B?42C4 = 0.5585, �B?42C5 = 0.5567
Item Document: … Similar to the New Balance 1080 and better than the Brooks Ravena. I am a 192 pound, 51 year

old runner. I am a neutral runner and mid foot striker. … Gel Nimbus may be it, especially as a road
training and long distance racing shoe. Heavier runners will really like the plush and cushioned …

Target Review: My wife hated the color of the white/blue Nimbus 13s I had … I’m a neutral shoe guy and
I have had multiple heel spur surgeries. …

Case 2: userID=AOMEH9W6LHC4S, itemID=B006H30KAE (ASICS Men’s GEL-Nimbus 14 Running Shoe)
Prediction: A = 5.0, Â = 4.64, ?A4 5 = 0.32, 180B = 4.32

Interest Aspect: �B?42C1 = 0.4850, �B?42C2 = 0.3980, �B?42C3 = 0.3982, �B?42C4 = 0.4692, �B?42C5 = 0.4155
Item Document: … Similar to the New Balance 1080 and better than the Brooks Ravena. I am a 192 pound, 51 year

old runner. I am a neutral runner and mid foot striker. … Gel Nimbus may be it, especially as a road
training and long distance racing shoe. Heavier runners will really like the plush and cushioned …

Target Review: … but I’m quite confident in the fit of ASICs. … It’s neutral (the wrong shoe if you over-pronate)
with good lateral stiffness. …

Case 3: userID=A2DXFI46OKWC8G, itemID=630508985X (Blue Oyster Cult - Live 1976)
Prediction: A = 5.0, Â = 4.06, ?A4 5 = −0.05, 180B = 4.10

Interest Aspect: �B?42C1 = 0.3172, �B?42C2 = 0.9756, �B?42C3 = 0.1492, �B?42C4 = 0.4661, �B?42C5 = 0.9886
Item Document: … Bad picture, bad sound, bad performance. Not entirely true. I found the performance to be very

good/typical and the picture pretty watchable. I sure wish the sound was better though! … I do feel
a little sorry for people who pay $60-$70 for this disc. I was lucky enough to get it for around $20. …

Target Review: … The sound on this isn’t bad but its not the greatest so … its Blue Öyster Cult back in the day, not
New Blue Öyster Cult nowadays playing old songs! …

and long distance racing shoes in the second case. These results seem unreasonable at the first glance, as the two
users have the same item target. However, when we trace back, we find that the second user bought another shoe
earlier and posted some comments—“These might be the perfect shoes for some runners or race-walkers (perhaps
those with slender builds)”. By jointly considering the two posts, the reason behind our model in activating
Heavier runners is clear and reasonable, since the second user might be a heavier runner. The difference between
the two users in the activated parses shed light on the effectiveness of our model in capturing users’ personal
interests and making interpretable recommendations via extracting human-understandable review words.
“Bad” case. It’s impossible for a recommendation model to make correct predictions all the time, our model

could fail either. We report an failure case —Case 3 in Table 8. For this case, our model gives a negative preference
score (i.e., −0.05) to the item since it believes this user dislikes the sound quality based on the negative sentiments
of those highlighted parses such as Bad picture, bad sound, and bad performance. In fact, this prediction is not
totally wrong as the user also admits that the sound of this product should be improved based on the target
review. However, it might ignore some implicit facts such as the user is a big fan of the band, which makes he/she
can tolerate the sound quality to some extent. This kind of conjecture is reasonable since the user gives 5 stars to
the product. This running case indicates the limitation of DIRECT in capturing users’ fine-grained interests. In
the future, we will explore more advanced aspect learning strategy to fill in the gap.

5 RELATED WORK
Recent studies on review-based neural recommendation mainly focus on two topics: 1) improving the accuracy
of predicting user preferences and 2) enhancing the interpretability of recommenders.
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Review-based Neural Recommender Systems. The earliest successful attempt at the review-based neural recom-
mender is DeepCoNN [69], which uses a Dual-TextCNN [7] architecture to gather user/item embeddings from
their reviews. TransNet [2] extents DeepCoNN by forcing the document representations to be similar to the
representation of the target user-item review. Inspired by the great success of Transformer [51], MPCN [48],
D-Attn [42] and NARRE [4] apply the self-attention mechanism to user and item reviews respectively. To aggre-
gate the information between user and item reviews, DAML [28], CARL [58], AHN [12] exploit the attention
mechanism across the two resources. CARP [26] develops a confidence matrix to only keep the embedding of
high confidence reviews. AENAR [65] first measures the difference between the current review embedding and a
global review embedding, then treats the difference as a gate to filter the review embedding. To better capture
the interactions between users and items, RMG [57], SSG [14], and RGCL [44] consider the user/item preference
prediction as an edge classification problem and aligned the graph learning methods to aggregate users and items
embedding. Recently, researchers [29, 61, 67] directly use pre-trained language models to process reviews or
other textual user/item resources for recommendations by leveraging their strong in-context learning ability.

Explainable Review-based Recommender Systems. D-Attn [42] designs a local attention module and a global
attention module to find out essential words of reviews. Similarly, CAML [8] first designs a Multi-Pointer Co-
Attention Selector to collect a user embedding, a item embedding, and a concept embedding. Then, it uses these
embeddings to make recommendations and generate textual explanations. AHR [11] designs an asymmetric
attention method to find out important words from the reviews. The user-side attention mechanism extracts
words related to the target item. In contrast, the item-side attention mechanism extracts words that most reflect
the current item. ANR [9] and CARP [26] are the only two aspect-based end-to-end learning methods in this path.
ANR [9] is the first model that applied aspect detection process within the training process. It first represents
the item and the user with several aspect embedding and importance scores. The final scoring function is the
summation of the similarity of the aspect embeddings weighted by the importance score. CARP [26] predicts
specific numbers of aspects by giving the user and item reviews. Next, it combines pairs of aspects from the user
and the item and finally uses a capsule network to obtain positive and negative scores.

6 CONCLUSION
We propose a novel self-interpretable review-based recommender system named DIRECT in this study. DIRECT
predicts user preferences by averaging the sentiment polarities of words weighted by the word importance.
DIRECT assigns more weights to words that express the user’s interested aspects. We also leverage the idea of
Maximizing Coding Rate Reduction (MCR2) to encourage the learned aspects to be more discriminate, diverse, and
explainable. Under the online system setup, by caching intermediate information such as word-aspect affiliations,
DIRECT could achieve linear time complexity with respect to document length. Experimental results on real-
world datasets show that DIRECT outperforms traditional baseline methods and is comparable to state-of-the-art
methods. Quantiative analysis, visualization and case studies verify the interpretability of DIRECT.

The future works include: (1) exploring more effective user representation learning methods to further improve
model performance; (2) developingmore effective graph constructionmethods to describeword-word relationships
for generating better aspect embeddings; (3) introducing expert knowledge to construct more controllable
representations.
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