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In a recent paper [1], we established an intriguing connection between the tree-level gluon scattering amplitudes and the correlators
of two-dimensional Liouville theory on the celestial sphere. The gluon amplitudes were evaluated in the presence of a dilaton source and
transformed into “celestial” amplitudes [2,3] by taking Mellin transforms with respect to the light cone energies of scattered gluons. The
dimensions of Liouville operators were Mellin duals of such energies. Their positions were determined by the celestial map between the
directions of light-like momenta and points on two-dimensional celestial sphere.! The celestial amplitudes matched the Liouville correla-
tors evaluated in the limit of small Liouville coupling, b — 0, which corresponds to the infinite central charge limit. This construction has
been recently generalized in Ref. [21] to celestial amplitudes in N'=1 supersymmetric Yang-Mills theory coupled to dilatons.

In the present work we proceed in the opposite direction. We start from the operators associated with gluons, constructed as the
products of holomorphic Wess-Zumino-Witten (WZW) curents times the so-called light Liouville operators. The current part carries the
information about gluon gauge charges and spins. The Liouville part determines their dimensions. The three-point correlation functions
of such operators factorize into a relatively simple, exactly known WZW correlators times the three-point correlators of light Liouville
operators. The latter ones are known exactly from DOZZ formula [22,23] and can be expressed in terms of Zamolodchikovs’ Y function [23].
We perform inverse Mellin transformations on the two-dimensional correlators. By using the celestial map, we construct the corresponding
gluon scattering amplitudes. We can recover the gluon amplitudes, at the tree level and beyond, without the dilaton background, by taking
the limit of inverse Mellin transforms in which the dilatons decouple. This procedure can be performed exactly at the leading order in the
Liouville coupling (b — 0), corresponding to the tree level approximation in Yang-Mills theory. We also go beyond the leading order and
identify some corrections pointing towards a direct relation between the Liouville and Yang-Mills couplings.

The Lagrangian density of two-dimensional Liouville theory is given by
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where z and z are the complexified (Euclidean) spacetime coordinates, b is the dimensionless Liouville coupling constant and w is the
“cosmological constant” scale parameter. The theory has a “background charge at infinity,”

* Corresponding author.
E-mail addresses: stephan.stieberger@mpp.mpg.de (S. Stieberger), taylor@neu.edu (T.R. Taylor), bzhu@exseed.ed.ac.uk (B. Zhu).
1 See reviews of celestial holography in Refs. [4-7]. Most of the recent work has focused on extracting CFT data of the putative celestial CFT from scattering amplitudes in
four dimensions, e.g., celestial OPEs [8,9], infinite-dimensional algebras [10-12], differential equations [13-15], and connections to twistor theory [16-20].

https://doi.org/10.1016/j.physletb.2023.138229
0370-2693/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by
SCOAP3.


https://doi.org/10.1016/j.physletb.2023.138229
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2023.138229&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:stephan.stieberger@mpp.mpg.de
mailto:taylor@neu.edu
mailto:bzhu@exseed.ed.ac.uk
https://doi.org/10.1016/j.physletb.2023.138229
http://creativecommons.org/licenses/by/4.0/

S. Stieberger, TR. Taylor and B. Zhu Physics Letters B 846 (2023) 138229

1

which is related to the central charge by

c=14+6Q2. 3)
The “light” primary field operators have the form:

Vo (z,2) = e2006 @2 (4)
with the exponents parametrized by b-independent parameters o. Their conformal dimensions are given by

d(o)=20 +2b*c(1—0). (5)

We introduce spin and gauge charges into the two-dimensional system by including a WZW-like holomorphic sector. The WZW current
J%(z), with a labeling the adjoint representation of the Lie group, has chiral weights (h, h) = (1,0). We also include another operator in
the adjoint representation, 7“(2), with (h, ) = (=1, 0). The only property of this chiral system? relevant to our discussion is the form of
the three-point correlator

3
(7% (@)% 22) ] (23) = foro2 212 ©)

23231’
where zjj = z; — zj and f"1%% are the structure constants.
We construct the operators associated with the positive helicity gluons in the following way:

01%(2,2) = F+(A, i, b) J*(2)e?7 (A~ D00 G2 (7)
where F (A, i, b) is a normalization factor and 20 (A — 1) ensures dimension A — 1 of the Liouville operator. At the leading order O (b°),
20 (A —1) = A — 1. Similarly, for the negative helicity gluon,

0,%(2.2) = F_(A, . b) J*(2)e* (AT Dbo 2 8)

Note that the normalization factors F4 (A, u, b) depend on the dimensions A, therefore they contribute to inverse Mellin transforms in a
nontrivial way.
We are interested in the “MHV” correlator

3
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where the three-point Liouville coefficient is given by the famous DOZZ formula [22,23]:
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in our case specified to the case of light operators with «; = o;b. Here, Y is the function defined in Zamolodchikovs’ Ref. [23].
The semiclassical (b — 0) limit of the three-point correlator of light Liouville fields has been studied before by Harlow, Maltz and
Witten [24]. We use the following formulas from Ref. [24]:
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where C is a constant and y (x) = I'(x)/T'(1 — x). In this way, we find
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where the “dual” cosmological constant [ is related to u as follows

2 For a more detailed discussions of this chiral system, see Ref. [19].
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7y (1/6%) = (e py (6*)V (15)
Our goal is to apply the celestial map to the inverse Mellin transform,
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where the integrations are performed on the complex plane along the lines of real constant ¢ > 0; at the end, we will take the limit of
c — 0%. Note that connecting two to four dimensions necessitates introducing a “renormalization” scale M in order to ensure the correct

mass dimension —3 of the three-gluon amplitude. As mentioned before, the integrands depend on the normalization constants Fi. We
will see below that the following choice leads to the desired result in the semiclassical limit:

z 1
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27
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Then as b — 0, when 20 = A — 1 for positive helicity gluon and 20 = A + 1 for negative helicity gluon, the leading term becomes
~ 3
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It is convenient to use the integral representation

+o00
I'(z) = / dte~t ¢! (21)
0
to rewrite the inverse Mellin transform as
1 1 3 c+ioco +o0
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In terms of these variables,

o w3eM 732 [ P23 X3 |7)3)2 [ 102 eXI2 |zpp?
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After changing the integration variables from tq, t3, t3 to X1, X2, x3 and performing inverse Mellin transforms, we obtain
+oo 2
10 (@1, w3, w3) = 22122 / doe " WG (52 (27)
w3M? J 0
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where

2 2 2 2
Q° = w1w2|212|* + w1w3]213|° + wrw3|Z23]" . (28)

According to the celestial map,

Joiw;jzij = (ij) , wiwjlzij|* =2p;i - pj, (29)
therefore
Q%= (p1+p2+0p3)?, (30)

and Q = p1+ p2 + p3 can be identified as the total momentum of the gluon system. After inserting the result (27) into Eq. (19) and using

+00
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where K; is a modified Bessel function, we obtain
.. Amp (123 M2 Q2
AL (i, 21, 7) = 10203 —K|2/= . 32
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Note that Bessel integrals (31) had already appeared in AdS amplitudes [25]. Here they appear in the inverse Mellin transform of the WZW-
Liouville correlator (32), which at this point seems to be different from the three-gluon amplitude of Ref. [1] evaluated in Minkowski space.
In the latter case, the amplitude was evaluated in the presence of a dilaton background, which was taken into account by one insertion
of the dilaton source. It contained the pole (Q%)~! originating from the massless dilaton propagator connecting the source to the gluon
system. The single source approximations, however, can be justified only in the limit of small Q2. In this limit, the Bessel function can be
expanded as

M2 Q2 M2

therefore

2T gigpe, (12)°
bMZQZf1 3(23)(31>+'“ (34)

We want to match this correlator with the tree-level amplitude

0 —
Aég(wi, zZi,zj) =

’ _ g 1 (12)3
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¢ (@1 21.7) = o 1 e (35)
where g is the Yang-Mills coupling constant, A~! is the canonical coupling of the dilaton to the gauge field strength and A’ determines
the strength of the point-like dilaton source, 7 (x) = 8@ (x)/A’. The semiclassical limit of the Liouville correlator is equal to the tree-level
amplitude provided that the Yang-Mills and dilaton parameters are related to the Liouville parameters and the renormalization scale in
the following way:

geM? 27
AN b
The relation between Liouville correlators and Yang-Mills amplitudes can be extended beyond the semiclassical limit. The limit of
Q2 — 0 singles out gluon amplitudes with one insertion of the dilaton source. These amplitudes contain the dilaton propagator and the
coupling of the off-shell dilaton to the gluon system. It is well known, however, that the dilaton decouples in the zero-momentum limit
[26-28]. Namely, the Feynman matrix element with one zero momentum dilaton is given by the Feynman matrix element evaluated in
the absence of dilatons - in our case in pure Yang-Mills theory. This observation leads to

(36)

Proposition:

c+ioco

dA1dAyd Az MATTAZFAITT A1 ()82 )43

2

Msg(wi, zi, z) = lim ——
3G( iy 4i 1) Q-0 (27_”)3

c—ioo

x (0311(21.21)0 12(22, 22) 0 5 (23, 23)) . (37)

where M3 is the exact three-gluon MHV Feynman matrix element (of mass dimension 1) in Yang-Mills theory. The equation should
be supplemented with a prescription how to replace two-dimensional Liouville parameters on the r.h.s. by four-dimensional Yang-Mills
parameters on the Lh.s. All what we can extract at the leading perturbative order is written in Eq. (36). We need an exact and more direct

4
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relation, however, between Liouville and Yang-Mills couplings. It can be extracted by going beyond the leading order on the Yang-Mills
and Liouville sides of Eq. (37).

In Yang-Mills theory, next-to-leading corrections originate from one-loop diagrams and are of order ©¥(g%) as compared to the tree
level. In Liouville theory, they are of order ((b%) and originate from various sources. First of all, the Y function has been expanded in
Ref. [24] to the order O (b%Inb?) only, and more work is needed to reach higher precision. Furthermore, there is a similar uncertainity
in the normalization factors F. In addition, DOZZ formula is written in terms of the exponents o; while the inverse Mellin transforms
involve integrations over the dimensions A;. Eq. (5) implies that at the subleading order

A1 +1 b2
01 = +—(A1+ DA =1)
2 4
Ay+1 b2
o= (A 1)(A— 1)
2 4
As—1 b2
03 =0+ (A3 = 1)(A3-3) (38)

We leave full analysis of subleading Liouville corrections to future work, nevertheless already at this point, we can get a preliminary
insight by discussing some consequences of Eq. (38).
After repeating the steps leading to Eq. (22), but now with the exponents related to dimensions by Eq. (38), we obtain

1 1 3 c+ioo +00
1(1)((1)1,(1)2,(,()3):M <%> / dA1dA>dA3 /dtodt]dtzdtg6A1X16A2x26A3x3
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X e

ty t t3
The difference between the present case and Eq. (22) is that the integrals over dimensions A; become Gaussian instead of delta functions.
After performing these integrals and changing the variables from tq, t3, t3 to X1, X2, X3, we obtain
2 2pq- 2 2py- 2 2pq-
20107 [ in222)- 5 In 24— 5
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+ 2x2], (42)

Since €;(x;) ~ b%, we can use the expansion

! 674_)(2 — % §(x) (43)
Vame '
which yields the delta functions fixing x; = 0 at the leading order. After expanding the remaining factors, we obtain
1V (w1, w2, 3) =19 (w1, w3, w3) (44)
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The presence of logarithmic corrections in Liouville theory indicates that the arbitrary mass scale M, introduced as a parameter linking
Liouville and Yang-Mills theories, plays the role of renormalization scale in four dimensions. Assuming that this is indeed the case, we
can extract a more precise relation between Liouville and Yang-Mills couplings by comparing Eq. (44) with the one-loop correction to the
scattering amplitude of one dilaton with three gluons.
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The one-loop corrections to the dilaton-gluon amplitudes have been studied before in Ref. [29-31]. We are interested in the ultraviolet
divergent part only, which after renormalization leads to the logarithmic running of the gauge coupling g(Q?) and of the dilaton coupling
1/A. For three gluons [29-31]:

2= By |12 3 M) 0 (&
A(Q)—A(M)[l 2am? P (h) | (45)

where Bo =11ca/3 (ca is the Casimir operator in the adjoint representation of the gauge group) is the one-loop coefficient of the Yang-
Mills beta function. By comparing the renormalization scale dependence of Eqs. (44) and (45), we find

2 Bog*(M)
b= (46)

This relation should be taken with a grain of salt though, because it is based on a partial analysis only of the subleading Liouville
corrections.

We admit that the Proposition (37), together with the relation (46) contain very strong statements. Does it make sense talking about
exact gluon scattering amplitudes at all? Evidently, Yang-Mills theory confines gluons and has a mass gap. Nevertheless, gluon-like states
(jets) are physically observable and according to our proposal, they are described by light Liouville operators. Massive glueballs are prob-
ably described by some other type of operators and their amplitudes have more string-like character.
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