
w1 +∞ Algebra with a Cosmological Constant and the Celestial Sphere

Tomasz R. Taylor 1,2,* and Bin Zhu 3,†
1Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA

2Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
3School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,

Edinburgh EH9 3FD, United Kingdom

(Received 12 December 2023; accepted 6 May 2024; published 28 May 2024)

It is shown that there exists a simple deformed version of Strominger’s infinite-dimensional w1þ∞
algebra of soft graviton symmetries, which we conjecture to arise in spacetimes with a nonvanishing
cosmological constant. The deformed algebra contains a subalgebra generating SOð1; 4Þ or SOð2; 3Þ
symmetry groups of dS4 or AdS4, depending on the sign of the cosmological constant. The transformation
properties of soft gauge symmetry currents under the deformed w1þ∞ are also discussed.
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Introduction.—The conservation laws reflect the sym-
metries of nature and provide a key to understanding the
physical Universe. What was less appreciated until few
years ago is the importance of a rather specialized area of
quantum field theory and gravity devoted to studying the
physical processes involving “soft” particles, with very low
energies. The zero energy limit of the scattering amplitudes
involving soft gauge bosons, gravitons, and other particles
are described by “soft theorems” [1]. The long wavelengths
of soft particles allow probing the large scale structure of
the Universe, particularly the past and future asymptotic
infinities. Hence, as shown by Strominger and collaborators
[2–6], soft theorems are closely related to the conservation
laws and symmetries. Actually, every single (known) soft
theorem in asymptotically flat spacetime has been asso-
ciated with an infinite number of symmetries of the celestial
sphere at null infinity. These include Poincaré and extended
Bondi-Metzner-Sachs symmetries. [7–9]. The connection
between soft theorems and asymptotic symmetries has laid
the foundations for the celestial holography program,
which aims at describing four-dimensional physics in terms
of a two-dimensional conformal field theory on the celestial
sphere (CCFT) [10].
Two tears ago, Strominger performed a systematic study

of the symmetries associated with soft particles carrying
positive helicities [11]. He showed that all these symmetries
are encompassed in an infinite-dimensional w1þ∞ algebra.
w1þ∞ was extracted from the algebra of soft currents
encoded in the operator product expansion (OPE) of

celestial primary operators associated with gravitons and
gauge bosons [12]. In CCFT, OPEs can be obtained from
the collinear limits of (celestial) scattering amplitudes
[13,14]. Strominger’s results follow from tree-level ampli-
tudes evaluated in flat spacetime with vanishing cosmo-
logical constant. (Various aspects of soft symmetry
algebras are discussed in Refs. [15–37]).
In Friedman-Lemaître cosmology, the observed

accelerated expansion of the Universe can be accounted
for by a positive value of the cosmological constant
Λ ≈ 10−52m−2 [38]. Hence, the Universe is not asymptoti-
cally flat—it is asymptotically de Sitter (dS), at least in the
future. In this Letter, we construct an algebra similar to
Strominger’s w1þ∞, “deformed” by a nonvanishing cos-
mological constant. Instead of Poincaré, it contains a
subalgebra generating the SOð1; 4Þ symmetry group of
four-dimensional de Sitter spacetime. The modifications of
w1þ∞ are obtained by analyzing OPEs associated with
the collinear limits of gravitons and gauge bosons, now
corrected by de Sitter curvature.
The idea.—The idea originates from the recent work of

Alday, Hansen, and Silva, who computed the amplitude for
the scattering of four gravitons on AdS5 × S5 [39–42].
Although no rigorous definition of the S matrix exists for
nonasymptotically flat spacetimes like AdS, they formally
used AdS/CFT correspondence [43] and expanded the
amplitude in the inverse curvature radius R−2 ∝ Λ. In
the limit of Λ → 0, known as the flat space limit of the
AdS amplitudes [44–46], they obtained the well-known
Virasoro-Shapiro amplitude. The subleading term is of
order OðΛÞ. Instead of considering it as a part of a full-
fledged AdS S-matrix element, we can consider it as a
curvature-induced correction to the scattering amplitude in
flat spacetime. For comparison, the proton-proton cross
sections measured at the LHC also receive similar correc-
tions although protons do not fly in from the cosmological
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horizon but come from a bottle of hydrogen stored in
Meyrin, Switzerland. The subleading term has a very
interesting property that becomes transparent after taking
the string zero slope limit, while keeping fixed the
gravitational coupling constant κ. Then, for the gravitons
in the ð− −þþÞ, i.e., in the maximally helicity violating
helicity configuration,

Að1Þðs; t; uÞ ¼ κ2Λ
h12i6½43�

h13ih14ih23ih24ih34i
�
1

s
þ 1

t
þ 1

u

�
;

ð1Þ

where s, t, u are the Mandelstam variables and for the
momentum spinors, we used the notation of Ref. [47]. We
are interested in the limit of collinear (lightlike) momenta
p3 and p4, when s → 0. For our purposes, it is convenient
to parametrize momenta in terms of light-cone energies ω
and complex coordinates z on the celestial sphere [10].
Then, for two arbitrary lightlike momenta pi and pj,

hiji ¼ ffiffiffiffiffiffiffiffiffiffi
ωiωj

p ðzi − zjÞ; ½ij� ¼ ffiffiffiffiffiffiffiffiffiffi
ωiωj

p ðz̄j − z̄iÞ;
2pipj ¼ ωiωjjzi − zjj2: ð2Þ

In order to define the collinear limit, we complexify the
momenta, so that z and z̄ can be considered as independent
complex variables [47]. The combined momentum of the
collinear pair is defined as P ¼ p3 þ p4. In the collinear
limit z3 → z4 (while keeping z̄3 and z̄4 fixed) and P2 → 0.

The leading collinear singularity has the form

Að1Þðs; t; uÞ ≈ κΛ
ω2
P

ω2
3ω

2
4ðz3 − z4Þ2

�
κ

h12i6
h1Pi2h2Pi2

�
; ð3Þ

therefore we obtain the three-graviton amplitude (enclosed
in the brackets) times the collinear factor with a double pole
ðz3 − z4Þ−2. This is a stronger collinear singularity than the
single pole encountered in flat spacetime.
Graviton OPEs.—The leading term in the OPE of the

primary CCFT operators Gþ
ΔðzÞ with dimensions Δ, asso-

ciated with the (positive helicity) gluons can be extracted
from the amplitude (3) in the same way as in Ref. [13]. We
obtain

Gþ
Δ3
ðz3; z̄3ÞGþ

Δ4
ðz4; z̄4Þ ∼ κΛ

BðΔ3 − 2;Δ4 − 2Þ
z234

×Gþ
Δ3þΔ4−2ðz4; z̄4Þ; ð4Þ

where z34 ¼ z3 − z4. One can also extract a single pole term
∼z−134 , which is necessary for the symmetry of the operator
product under 3 ↔ 4. There is, however, a problem with
this OPE. If one proceeds along the lines of Ref. [12], and
extracts the algebra of soft currents associated with the
graviton operators, it fails Jacobi identity. It is not difficult
though, to find a slight modification of the OPE coefficients
leading to consistent double and single pole singularities:

Gþ
Δ3
ðz3; z̄3ÞGþ

Δ4
ðz4; z̄4Þ ¼ −

κ

2

z̄34
z34

BðΔ3 − 1;Δ4 − 1ÞGþ
Δ3þΔ4

ðz4; z̄4Þ

þ κΛ
2

Δ3 þ Δ4

z234
BðΔ3 − 2;Δ4 − 2ÞGþ

Δ3þΔ4−2ðz4; z̄4Þ

þ κΛ
2

Δ3

z34
BðΔ3 − 2;Δ4 − 2Þ∂Gþ

Δ3þΔ4−2ðz4; z̄4Þ; ð5Þ

where, for completeness, we also included, in the first term, the contribution of the zero slope limit of the Virasoro-Shapiro
amplitude in flat spacetime. The coefficient of the double pole term, see the second term on the rhs of Eq. (5), contains an
extra factor of ðΔ3 þ Δ4Þ=2 as compared to the collinear limit (4). We can only speculate that it is due to a modified form of
the momentum conservation law in curved spacetime. Indeed, as shown below, it will change the commutation relations of
the “momentum” operators in a way expected for a spacetime with constant curvature.
From OPEs to cosmological w1þ∞.—After including the antiholomorphic descendants in the OPE of Eq. (5), it acquires

the form

Gþ
Δ3
ðz3; z̄3ÞGþ

Δ4
ðz4; z̄4Þ ¼ −

κ

2

1

z34

X∞
n¼0

BðΔ3 − 1þ n;Δ4 − 1Þ ðz̄34Þ
nþ1

n!
∂
nGþ

Δ3þΔ4
ðz4; z̄4Þ

þ κΛ
2

Δ3 þ Δ4

z234

X∞
n¼0

BðΔ3 − 2þ n;Δ4 − 2Þ ðz̄34Þ
n

n!
∂
nGþ

Δ3þΔ4−2ðz4; z̄4Þ

þ κΛ
2

Δ3

z34

X∞
n¼0

BðΔ3 − 2þ n;Δ4 − 2Þ ðz̄34Þ
n

n!
∂∂

nGþ
Δ3þΔ4−2ðz4; z̄4Þ: ð6Þ

Next, we define the conformally soft graviton operators,
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Hk ¼ lim
ϵ→0

ϵGþ
kþϵ; k ¼ 2; 1; 0;−1;…; ð7Þ

with conformal weights fh; h̄g ¼ fðkþ 2Þ=2; ðk − 2Þ=2g.
We represent them as truncated antiholomorphic series,

Hkðz; z̄Þ ¼
X2−k2
n¼k−2

2

Hk
nðzÞ

z̄nþk−2
2

; ð8Þ

and further expand the holomorphic coefficients,

Hk
nðzÞ ¼

X∞
a¼−∞

Hk
a;n

zaþ
kþ2
2

: ð9Þ

The OPE of Eq. (6) translates into the following algebra of
soft currents:

½Hk
a;m;Hl

b;n� ¼ −
κ

2
½nð2 − kÞ −mð2 − lÞ�

�
2−k
2
−mþ 2−l

2
− n − 1

�
!
�
2−k
2
þmþ 2−l

2
þ n − 1

�
!�

2−k
2
−m

�
!
�
2−l
2
− n

�
!
�
2−k
2
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�
!
�
2−l
2
þ n

�
!

Hkþl
aþb;mþn

þ κΛ
2
ðla − kbÞ

�
2−k
2
−mþ 2−l

2
− n

�
!
�
2−k
2
þmþ 2−l

2
þ n

�
!�

2−k
2
−m

�
!
�
2−l
2
− n

�
!
�
2−k
2
þm

�
!
�
2−l
2
þ n

�
!
Hkþl−2

aþb;mþn: ð10Þ

To make connection with Strominger’s w1þ∞, we define

wp
a;m ¼ 1

κ
ðp −m − 1Þ!ðpþm − 1Þ!H−2pþ4

a;m ; ð11Þ

where p run over the positive half integers

p ¼ 1;
3

2
; 2;

5

2
…; ð12Þ

and the condition of the truncated antiholomorphic mode
expansion (8) turns into the following constraint on the
indices labeled by m:

1 − p ≤ m ≤ p − 1: ð13Þ

The indices a, associated with the holomorphic
modes, are integer for integer p and half-integer
for half-integer p, similar to m, but their range is not
restricted,

a ¼ −∞;…; p − 1; p; pþ 1;…;∞: ð14Þ

The algebra (10), written in terms of w generators,
becomes

½wp
a;m; w

q
b;n� ¼ ½mðq − 1Þ − nðp − 1Þ�wpþq−2

aþb;mþn

− Λ½aðq − 2Þ − bðp − 2Þ�wpþq−1
aþb;mþn: ð15Þ

It is easy to check that it satisfies Jacobi identity and closes
within the range of indices given in Eqs. (12)–(14).

Properties of deformed algebra.—In order to understand
the structure of the deformed w1þ∞ algebra (15) and the
role of the cosmological constant, we note that it contains a
closed subalgebra of 10 generators: w1

a;0 with a ¼ −1, 0, 1,

w
3
2

�1
2
;�1

2

, and w2
0;m with m ¼ −1, 0, 1. It reads

½w1
a;0; w

2
0;m� ¼ 0; ð16Þ

½w1
a;0; w

1
b;0� ¼ Λða − bÞw1

aþb;0; ð17Þ

½w2
0;m; w

2
0;n� ¼ ðm − nÞw2

0;mþn; ð18Þ

½w1
a;0; w

3
2

k;l� ¼ Λ
�
a
2
− k

�
w

3
2

aþk;l; ð19Þ

½w2
0;m; w

3
2

k;l� ¼
�
m
2
− l

�
w

3
2

k;mþl; ð20Þ

½w3
2

i;j; w
3
2

k;l� ¼
1

2
ðj − lÞw1

iþk;jþl þ
Λ
2
ði − kÞw2

iþk;jþl: ð21Þ

In Strominger’s w1þ∞, w1
a;0 are c-number operators. In the

present algebra, however, they do not commute. To see it in
a more transparent way, we define

w1
a;0 ¼ ΛLa; w2

0;m ¼ L̄m; w
3
2

k;l ¼ Pk;l: ð22Þ

In terms of these operators, the above algebra reads

½La; L̄m� ¼ 0; ð23Þ
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½La; Lb� ¼ ða − bÞLaþb; ð24Þ

½L̄m; L̄n� ¼ ðm − nÞL̄mþn; ð25Þ

½La; Pk;l� ¼
�
a
2
− k

�
Paþk;l; ð26Þ

½L̄m; Pk;l� ¼
�
m
2
− l

�
Pk;mþl; ð27Þ

½Pi;j; Pk;l� ¼ Λjδj;−lLiþk þ Λiδi;−kL̄jþl: ð28Þ

In the limit of Λ ¼ 0, it is the Poincaré subalgebra of
extended Bondi-Metzner-Sachs symmetry, with four trans-
lations Pμ; μ ¼ 0, 1, 2, 3, defined by

P−1
2
;−1

2
¼ P0 þ P3; P−1

2
;1
2
¼ P1 − iP2;

P1
2
;−1

2
¼ P1 þ iP2; P1

2
;1
2
¼ P0 − P3; ð29Þ

and with six Virasoro operators L1;0;1; L̄−1;0;1 related to the
Lorentz generators Mμν ¼ −Mνμ in the following way
[48,49]:

M23þ iM10¼−L−1þL1; −M23þ iM10¼−L̄−1þ L̄1;

ð30Þ

M20þ iM13¼−L−1−L1; −M20þ iM13¼−L̄−1− L̄1;

ð31Þ

M21 þ iM03 ¼ −2L0; −M21 þ iM03 ¼ −2L̄0: ð32Þ

In the presence of a nonvanishing cosmological
constant, however, translations do not commute and
the Poincaré algebra is deformed, depending on the sign
of Λ, to the algebra generating SOð1; 4Þ or SOð2; 3Þ
symmetry groups of dS4 or AdS4, respectively. To see
this, we define

Pμ ¼
ffiffiffiffiffiffijΛjp
2

Mμ4: ð33Þ

Then the algebra of Eqs. (23)–(28) can be written as

½Mμν;Mρλ�¼ iðημρMνλþηνλMμρ−ηνρMμλ−ημλMνρÞ; ð34Þ

with

ημν ¼ diagð1;−1;−1;−1;−signðΛÞÞ: ð35Þ

The cosmological w1þ∞ algebra of Eq. (15) provides
an infinite-dimensional extension of dS4 and AdS4
symmetries.
Gauge theory.—We started this discussion from the

collinear limit of curvature corrections to the graviton
scattering amplitudes [39–42]. It would be very interesting
to study gauge theories coupled to gravity in a similar way,
in particular curvature corrections to graviton-gauge boson
interactions in Einstein-Yang-Mills theory. Here, we also
expect a double pole in the OPE of the positive helicity
graviton operator Gþ

Δðz; z̄Þ and the gauge boson operator
Oþd

Δ ðz; z̄Þ, where d labels the group index. It would modify
the corresponding OPE in the following way:

Gþ
Δ1
ðz1; z̄1ÞOþd

Δ2
ðz2; z̄2Þ ¼ −

κ

2

z̄12
z12

BðΔ1 − 1;Δ2ÞOþd
Δ1þΔ2

ðz2; z̄2Þ þ
κΛ
2

Δ1 þ Δ2 − 1

z212
BðΔ1 − 2;Δ2 − 1ÞOþd

Δ1þΔ2−2ðz2; z̄2Þ

þ κΛ
2

Δ1

z12
BðΔ1 − 2;Δ2 − 1Þ∂Oþd

Δ1þΔ2−2ðz2; z̄2Þ: ð36Þ

To see what is the corresponding deformation of the
symmetry algebra, we define the conformally soft gluon
operators,

Rk;d ¼ lim
ϵ→0

ϵOþd
kþϵ; k ¼ 1; 0;−1;… ð37Þ

with conformal weights fh; h̄g ¼ fðkþ 1Þ=2; ðk − 1Þ=2g.
We represent them as a truncated holomorphic series,

Rk;dðz; z̄Þ ¼
X1−k2
n¼k−1

2

Rk;d
n ðzÞ
z̄nþ

k−1
2

; ð38Þ

and further expand the holomorphic coefficients,

Rk;d
n ðzÞ ¼

X∞
a¼−∞

Rk;d
a;n

zaþ
kþ1
2

: ð39Þ
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The algebra of the soft currents following from the OPE (36) has the form

½Hk
a;m; R

l;d
b;n� ¼ −

κ

2
½nð2 − kÞ −mð1 − lÞ�

�
2−k
2
−mþ 1−l

2
− n − 1

�
!
�
2−k
2
þmþ 1−l

2
þ n − 1

�
!�

2−k
2
−m

�
!
�
1−l
2
− n

�
!
�
2−k
2
þm

�
!
�
1−l
2
þ n

�
!

Rkþl;d
aþb;mþn

þ κΛ
2
ððl − 1Þa − kbÞ

�
2−k
2
−mþ 1−l

2
− n

�
!
�
2−k
2
þmþ 1−l

2
þ n

�
!�

2−k
2
−m

�
!
�
1−l
2
− n

�
!
�
2−k
2
þm

�
!
�
1−l
2
þ n

�
!
Rkþl−2;d
aþb;mþn: ð40Þ

Upon the redefinition written in Eq. (11) and

Sq;da;m ¼ ðq −m − 1Þ!ðqþm − 1Þ!R3−2q;d
a;m ; ð41Þ

the commutators (40) become

�
wp
a;m; S

q;d
b;n

� ¼ ½mðq − 1Þ − nðp − 1Þ�Spþq−2;d
aþb;mþn − Λ½aðq − 1Þ − bðp − 2Þ�Spþq−1;d

aþb;mþn: ð42Þ

While gravitational interactions are affected by curva-
ture, we do not expect corrections to pure Yang-Mills
theory, therefore the S algebra of soft gauge currents should
remain in its original form [11],

�
Sp;da;m; S

q;e
b;n

� ¼ −ifdegSpþq−1;g
aþb;mþn: ð43Þ

The soft currents S1;d0;0 satisfy

�
S1;d0;0; S

1;e
0;0

� ¼ −ifdegS1;g0;0: ð44Þ

and generate global gauge transformations. From Eq. (42),
it follows that

�
La; S

1;d
0;0

� ¼ �
L̄m; S

1;d
0;0

� ¼ �
Pk;l; S

1;d
0;0

� ¼ 0: ð45Þ

Although we do not have a solid argument supporting the
cosmological deformation written in Eq. (42), it is easy to
check that the full symmetry algebra of Einstein-Yang-
Mills systems, written in Eqs. (15), (42), and (43), satisfies
all Jacobi identities.
Discussion.—In this Letter, we proposed a cosmological

deformation of w1þ∞ algebra, by including commutator
terms proportional to the cosmological constant. As a
result, the Poincaré subalgebra was replaced by the
symmetry algebra of dS or AdS, depending on the sign
of the cosmological constant. It is striking that this
deformation was extracted from the singularity structure
of the graviton scattering amplitudes in spacetime with
constant curvature, although a slight modification of the
corresponding graviton OPEs was necessary to ensure a
self-consistent algebra. It would be very interesting to
uncover a deeper reason for this modification. A precise
connection to the construction of Alday, Hansen, and

Silva [39–42] remains to be understood. In particular, their
higher-order curvature corrections contain higher-order
poles in Mandelstam variables. The physical interpretation
of these poles is not clear.
The results of Alday, Hansen, and Silva [39–42] rely on

the interpretation of CFT correlation functions as AdS
scattering amplitudes. In this context, the kinematic
(Mandelstam) variables are introduced by hand, by using
a prescription proposed by Penedones [44] (based on the
observations made by Mack in Refs. [50,51]) for relating
them to conformally invariant cross ratios. While this
prescription works in the Λ → 0 limit, it is possible that
some modifications are necessary beyond the leading order.
There is no doubt that AdS scattering amplitudes must be
consistent with the SOð2; 3Þ subalgebra of the cosmologi-
cal w1þ∞, therefore Penedones’ prescription should be
reexamined from this symmetry perspective. As for the dS
case, we have no scattering data—in this work, we naively
extrapolated from Λ < 0 to Λ > 0. We hope that our
proposal will lead to some new insights into the long-
standing problem of constructing dS scattering amplitudes.
Recently, it has been shown that celestial holography and

Carrollian holography are linked [52–54] by modified
Mellin transforms [55,56]. It would be interesting to check
if this can help in understanding the origin of the proposed
algebra from a different perspective. One can show,
however, that at the leading singularity order, there is no
difference between the OPE coefficients obtained by using
the modified and standard Mellin transforms. As the
interplay between celestial and Carrollian holography is
being actively investigated; see, e.g., Refs. [52–54,57–63],
there are many interesting questions that can be pursued in
this direction.
It would be also interesting to see how the cosmo-

logical w1þ∞ algebra is related to the asymptotic
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symmetries of dS spacetime, discussed in Refs. [64–71].
Furthermore, one might utilize the methods developed
in [72] to find a realization of the cosmological w1þ∞
algebra on the gravitational phase space.

Thisworkwas inspired by a talk given by JohnSchwarz at
the kickoff workshop of Simons Collaboration on Celestial
Holography (Cambridge, Massachusetts, October 26-29,
2023), in which he proposed a modification of the OPEs
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and Andy Strominger for comments on the manuscript and
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by the Royal Society.
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