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Abstract

Antimicrobial de-escalation refers to reducing the spectrum of antibiotics used in treating

bacterial infections. This strategy is widely recommended in many antimicrobial stewardship

programs and is believed to reduce patients’ exposure to broad-spectrum antibiotics and

prevent resistance. However, the ecological benefits of de-escalation have not been univer-

sally observed in clinical studies. This paper conducts computer simulations to assess the

ecological effects of de-escalation on the resistance prevalence of Pseudomonas aerugi-

nosa—a frequent pathogen causing nosocomial infections. Synthetic data produced by the

models are then used to estimate the sample size and study period needed to observe the

predicted effects in clinical trials. Our results show that de-escalation can reduce coloniza-

tion and infections caused by bacterial strains resistant to the empiric antibiotic, limit the use

of broad-spectrum antibiotics, and avoid inappropriate empiric therapies. Further, we show

that de-escalation could reduce the overall super-infection incidence, and this benefit

becomes more evident under good compliance with hand hygiene protocols among health

care workers. Finally, we find that any clinical study aiming to observe the essential effects

of de-escalation should involve at least ten arms and last for four years—a size never

attained in prior studies. This study explains the controversial findings of de-escalation in

previous clinical studies and illustrates how mathematical models can inform outcome

expectations and guide the design of clinical studies.

1 Introduction

Patients admitted to intensive care units (ICUs) are vulnerable to life-threatening infections

due to weakened immune systems and treatments with invasive medical devices. Thus there is

always a pressing need for an immediate and effective empirical antibiotic therapy, which is

crucial in reducing mortality rates, length of ICU stays, and medical costs. Broad-spectrum

antibiotics are used in empiric therapy when the susceptibility of infecting pathogen is

unknown, but the overuse of them are linked to the rapid development of antimicrobial
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resistance. Antimicrobial de-escalation refers to the procedure of reducing the spectrum of

antibiotics in treatments by stopping unnecessary antibiotics or switching to narrower spec-

trum antibiotics whenever laboratory test confirms susceptibility. Whereas the opposite strat-

egy, named continuation, only recommends drug switching whenever a treatment needs to be

corrected. De-escalation is considered as a remedy to mitigate patients’ exposure to the broad-

spectrum antibiotics during the empiric therapy, thus is assumed to reduce the development

of resistance to the broad-spectrum antibiotics [1–7].

Though widely practiced, the specific benefits and trade-offs of de-escalation are still

unclear and should be evaluated on both individual and ecological levels. Many clinical studies

have been conducted to examine the individual-level outcomes of de-escalation in safety,

length of ICU stay, mortality, and resistance development. Systematic reviews and meta-analy-

ses have shown that de-escalation is a safe treatment strategy. And no significant difference

has been observed between de-escalation and continuation on the individual patient out-

comes, including length of ICU stay and mortality [8–12]. However, the ecological impacts of

de-escalation on the transmission and development of resistant bacterial strains are still

unknown [13]. Due to the large number of bacterial species and antibiotics, there is a lack of

universal definition and protocol for de-escalation. Thus conclusions on the ecological effects

varied from study to study. The prevalence of resistant bacteria is caused by the patient-level

intrinsic resistance development and nosocomial transmission. Although shortening patients’

exposure window to broad-spectrum antibiotics, de-escalation also exposes patients to more

than one antibiotic, which might lead to the development of dual-drug resistance. In addition,

the overall antibiotic pressure and the microbial ecology in the ICU could influence each other

in a complicated and bidirectional fashion. Thus the ecological impacts of de-escalation are

not intuitively perceivable.

Previously, differential equation models have been developed to investigate the ecological

effects of de-escalation [14, 15]. Deterministic models can provide theoretical insights into

ecological systems with minimal computational cost but fail to reflect the stochastic uncertain-

ties in observations. For example, the time-dependent solution and the long-term behavior of

deterministic models are definite given fixed parameter values and initial conditions. But in

reality, two identical ICUs could have significantly different outcomes due to stochastic events.

Further, differential equation models are primarily applicable in modeling population dynam-

ics when assuming a large population size to ignore heterogeneity. However, given a small

cohort of the patient population in ICUs, it is always hard to ignore the impact of randomness.

Therefore, stochastic models are more suitable to simulate the patient and HCW activities in

hospitals.

Agent-based models have been extensively used in ecology dealing with complex systems

with autonomous entities [16]. Comparing to deterministic differential equation models,

agent-based models possess advantages in describing events from the individual point of view

and are more suitable in modeling small groups of population such as patients in ICUs. In the

past decade, both types have been widely applied to investigate the effects of various antimicro-

bial stewardship strategies, to name a few [17–32] and we also refer to the review and refer-

ences in [33, 34].

This paper develops an agent-based model to simulate the patient and HCW population in

an ICU under the antimicrobial protocols of de-escalation and continuation. The model is

applied to generate synthetic data of an assumed two-armed randomized controlled trial

(RCT) that evaluates the ecological benefits and trade-offs of de-escalation. We first compare

the simulation results with real hospital data to calibrate the model parameters. Then we per-

form statistical analyses to determine the theoretical effects of de-escalation. Finally, we inform

the number of study arms and the length of study periods that guarantee the detectability of

PLOS ONE Agent-based model on antimicrobial de-escalation

PLOS ONE | https://doi.org/10.1371/journal.pone.0301944 April 16, 2024 2 / 18

Sciences at the University of Miami. This report is

solely the responsibility of the authors and does

not necessarily represent the official views of the

National Science Foundation and the University of

Miami.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0301944


the predicted outcomes. This study indicates that mathematical modeling could serve as an

economic tool to envision possible clinical study outcomes, inform the proper sample size and

study length, or even avoid costly and ineffective trials. The model’s publicly available code

provides a baseline framework as an agent-based model for the transmission of nosocomial

pathogens between patients and HCWs.

2 Methods

We consider two types of agents in an ICU: patients receiving critical medical care and health

care workers (HCWs) caring for them. Each agent (individual) has attributes whose values/sta-

tus may vary with time. A complete list of bacterial species and antibiotics would differ from

hospital to hospital, and incorporating all drug-bug pairs would lead to an over-complicated

model. Therefore, we focus on the transmission and resistance of Pseudomonas aeruginosa
(PA)—a primarily nosocomial pathogen with a high resistance development rate—and catego-

rize all non-Pseudomonas (non-PA) bacteria into one single group. All simulations and figures

are programmed and generated in Python, with main codes available online: https://github.

com/pliu19/ABM-Antimicrobial.

2.1 Model assumptions

Baseline set-up for the ICU. We consider an ICU with a fixed patient-HCW ratio of 4:1.

Each day consists of 3 shifts and each lasting 8 hours. Each patient receives routine care once

during every shift. Each HCW works one shift per day and treats four patients per shift. Con-

tacts between patients and HCWs only happen during the routine visits, when nosocomial

transmissions could occur.

Antibiotics and spectrums. We focus on the evolution and transmission of PA in the

ICU. Thus we firstly subdivide pathogens circulating in the ICU into PA species subject to dif-

ferent resistance profiles and other non-PA species. Piperacillin-tazobactam is often used for

empiric therapy of severe infections in the ICU due to its good coverage of common patho-

gens. We thus consider a general use of piperacillin-tazobactam for empiric therapy. Cipro-

floxacin is usually prescribed to treat a wide variety of infections and has high resistance rate in

PA, we therefore consider it as the de-escalated treatment option for PA infections in definitive

therapy. We refer the de-escalated antibiotic options for non-PA infections as non-pseudomo-

nal (non-PA) drugs. Our model excludes the possibility of a pandrug-resistant bacterial strain

and we assume there are last-resort drugs such as carbapenem or aminoglycoside to which no

resistance would exist in the ICU. In the following, we adopt the widely used acronyms pro-

vided by the American Society for Microbiology to represent the aforementioned antibiotics:

TZP for piperacillin-tazobactam and CIP for ciprofloxacin. The last-resort drugs refer to sev-

eral antibiotics, and we represent such drugs by IPM for simplicity, where IPM is the abbrevia-

tion of imipenem—an antibiotic from the carbapenem class.

The PA species is further divided into several strains with respect to their resistance profile:

the susceptible strain, CIP-resistant strain, TZP-resistant strain, and the dual-resistant strain.

Note that all PA strains are not susceptible to non-PA drugs but are susceptible to the last-

resort drugs. Fig 1(d) provides a summary of the drug spectrum information.

Attributes of agents. HCWs have only one attribute about their status of contaminated
pathogens and could contaminate more than one pathogen at the same time.

We define eight attributes for each patient: (1) time in ICU tracks the length of ICU stay,

which increments with respect to real-time until discharge or death; (2) infection status of a

patient can be either uninfected or infected; (3) treatment time records the time since empiric

treatment initiation for an infected patient; (4) drug use denotes the antibiotic administered at
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the time for an infected patient; (5) conversion time tracks the time since an unknown patho-

gen switch during the antibiotic treatment of an infected patient; (6) dominant pathogen labels

the pathogen that dominates the current colonization or infection of a patient; (7) lab result
denotes the dominant pathogen that causes the initial infection of a patient; (8) super-infection
denotes whether or not the infected patient is experiencing a super-infection.

The attributes of each agent are updated accordingly to the following model events. Fig 1(a)

provides a graphic illustration of the potential status change for individual patients. A detailed

and complete algorithm can be found in the S1 Appendix.

Fig 1. Graphic illustrations of model assumptions. (a) Assumptions on transitions of patients’ infection and treatment status. (b) Appropriate

antibiotics could help reduce the patient’s bacteria population, hence alleviating the infection. But if the patient contracts another bacterial strain

resistant to the current antibiotic, a strain switch becomes possible due to selective pressure. On the other hand, strain switch is not possible for patients

under inappropriate antibiotics. (c) Case 1 represents an ideally successful treatment where a successful 4-day definitive therapy follows a successful

3-day empiric therapy. Case 2 illustrates an inappropriate 3-day empiric therapy followed with a 7-day correction of definitive therapy. Case 3 refers to a

possible occurrence of strain switch during a successful empiric therapy. The unknown strain switch would result in an ineffective definitive therapy for

three days, followed by a 7-day correction. Case 4 corresponds to a possible strain switch during the definitive therapy. This unknown strain switch

would lead to an ineffective definitive therapy for three days followed by a 7-day correction therapy. (d) Pathogens lying inside each circle are

susceptible to the corresponding antibiotic, whereas those outside the circle are resistant to the antibiotic. An infection of any non-PA species can be

treated by the correspondingly de-escalated non-PA antibiotics and by the three PA-targeted antibiotics because of their relatively broad spectrum.

Bacteria develop resistance against each antibiotic in specific ways. Thus the CIP-resistant strain is susceptible to TZP and vice versa. We assume that

the last-resort drugs can ultimately treat the dual-resistant strain.

https://doi.org/10.1371/journal.pone.0301944.g001
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Model Event 1. admission, discharge, and death. Upon admission, each patient is ran-

domly assigned with a colonization pathogen which is reflected in the dominant pathogen attri-

bute. In addition, patients not colonized with PA are assigned with a prior exposure history to

PA antibiotics based on specific probabilities. Patients colonized with non-PA species and

with prior exposure to PA antibiotics are likely to be colonized with a PA strain via contacts

with HCWs. Whereas a PA colonization is unlikely to happen to those with no recent PA anti-

biotic exposures. The hazard rates of discharge and death of a patient are dependent on time in
ICU and infection status. The baseline hazard functions for discharge and deaths about time in
ICU are parameterized according to real data in [35] as sketched in Fig 2. Uninfected patients

would be discharged or die with respect to the baseline hazard functions. Infected patients are

less likely to be discharged with a hazard ratio of discharge κμ< 1. Infected patients receiving

ineffective antibiotic treatments may experience a higher death rate with a hazard ratio of

death κν> 1. Upon an event of discharge or death, the patient will be immediately replaced by

a newly admitted patient.

Model Event 2. HCW contamination. HCWs do not carry any strain at the beginning of

their shifts. They could contaminate with PA strains during any visit to a colonized/infected

patient at a probability of q. After taking care of a patient, an HCW can be de-contaminated if

complying with the hand hygiene guidelines at a probability of 50%. In reality, HCWs are the

critical agents of spreading other antibiotic-resistant pathogens, such as methicillin-resistant
Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). These pathogens

are grouped as non-PA species in our model and are susceptible to PA antibiotics. Therefore,

their transmission would not impact the prevalence of resistance against PA antibiotics. So we

simplify our assumption by ignoring the transmission of non-PA species by HCWs.

Model Event 3. PA transmission. Both colonized and infected patients with PA can spread

their bacteria to HCWs. On the other hand, HCWs could transmit PA to a patient either when

the patient is uninfected and has prior exposures to antimicrobials or when a super-infection

(see Model Event 7) happens. Further, HCWs could pass a specific PA strain to a patient

infected by another PA strain under selective pressure (see Model Event 5). We assume the

probability for an HCW to contaminate a PA strain upon contact as q, and assume the proba-

bility of an HCW passing PA to a patient upon contact as p. When an HCW carries more than

Fig 2. Baseline hazard rate functions. Both functions are parameterized from real data collected in [35]. (a) Hazard rate of discharge., (b) Hazard rate

of death.

https://doi.org/10.1371/journal.pone.0301944.g002
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one strain, the patient will have an equal chance to acquire any strain the HCW carries during

their contact. That is, if the HCW carries n strains, the patient will have a probability p/n to be

colonized by each strain. No colonization would occur to uninfected patients with no prior

antimicrobial exposures or uninfected patients already colonized with PA strains.

Model Event 4. infection development. Patients colonized with PA strains will have a prob-

ability σc to develop infections within five days, and patients colonized with non-PA pathogens

will develop infections at another probability σx. Infected patients would receive empiric treat-

ments with TZP for three days, and meanwhile, their samples are sent for laboratory testing to

inform definitive therapy.

Model Event 5. strain conversion. Patients infected with a PA strain could have their dom-

inant strains converted from susceptible to resistant due to antibiotic selective pressure and

intrinsic mutation. On the patient level, antibiotic pressure promotes the growth of resistant

strains. Thus patients could experience a strain conversion whenever taking an antibiotic that

treats the dominant strain but fails to treat the new invading strain brought by HCWs during

visits. A graphic illustration about strain switch due to selective pressure is shown in Fig 1(b).

Intrinsic mutation against an antibiotic would occur at a hazard rate of ε per day to patients

treated by the corresponding antibiotic. Dual-resistance mutation could develop at the same

rate when a patient infected by the CIP-resistant strain receives TZP, or vice versa.

Model Event 6. super-infection. Super-infections refer to PA infections that occur after or

on top of an earlier non-PA infection. Super-infections are direct results of antibiotic pressure

and often occur following treatments with broad-spectrum antibiotics. The mechanisms of

super-infection are similar to that of strain conversion which can be found in Fig 1(b). There-

fore, patients treated for non-PA infections by TZP might be super-infected with TZP-resis-

tant or dual-resistant PA strains upon contacts with contaminated HCWs. Similarly, patients

treated by a de-escalated non-PA antibiotic might also develop super-infections with any PA

strain. The probability for a super-infection to occur is relatively smaller than the probability

of PA transmission, and we denote the super-infection probability as s.
Model Event 7. treatment strategy. Infected patients are treated empirically with TZP until

phenotypic resistance testing confirms the identity and susceptibilities of the infecting patho-

gen. We assume testing takes three days. Thus definitive therapy starts three days after the initial

infection. De-escalation and continuation only differ in how to administer definitive therapies.

In the de-escalation scenario, patients will receive a definitive antibiotic with the least possible

spectrum covering their initial infecting pathogen. In the continuation scenario, patients con-

tinue to receive TZP unless the testing results confirm resistance. Under both strategies, patients

initially infected by TZP-resistant strain will have to switch to CIP. Likewise, patients initially

infected by the dual-resistant strain will have to switch to the last-resort antibiotics. Whereas

patients initially infected by non-PA pathogens or susceptible PA strain would end up with dif-

ferent choices of antibiotics during their definitive therapy under the two strategies.

Model Event 8. treatment correction and completion. Effective treatment for a consecutive

seven days is sufficient to cure infection (case 1 in Fig 1(c)). However, empiric therapy could

be inadequate from the beginning and will be corrected at the definitive stage (case 2 in Fig 1

(c)). Moreover, empiric antibiotics could fail in the middle of the therapy due to strain conver-

sion or super-infection. Since the phenotypic testing sample would only reflect the initial

infecting pathogen, the definitive therapy may remain ineffective. We assume such ineffective

definitive therapy would then be corrected three days later (case 3 in Fig 1(c)). Further, defini-

tive antibiotics could also fail in the middle of the therapy, and we assume that it will be cor-

rected after three days (case 4 in Fig 1(c)). To avoid prolonged infections, patients under

ineffective CIP or TZP treatments will receive the last-resort antibiotics for treatment correc-

tion. Patients under ineffective non-PA antibiotics will take TZP for treatment correction.
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2.2 Parameters and calibration

We assume the probability for a newly admitted patient to have recent history of prescribing

PA antibiotics is 0.6. And we assume such a patient would have a further 0.1 probability of

being already colonized by a PA strain. Additionally, there is a 23% chance for the colonization

being resistant to TZP and 35% being resistant to CIP [36]. We assume 50% HCWs would

comply with the hand hygiene guidelines for decontamination after each visit. The hazard

rates of infection development, death, and discharge are all parameterized from the literature.

The possibility of intrinsic resistance development on the human population level is hard to

infer from the literature. We assume it to be 0.03, which agrees with the detailed discussion in

[37] based on data in [38]. Further, we assume the super-infection probability to be as low as

0.015 for patients treating with a narrow-spectrum antibiotic. We list the baseline values of all

fixed parameters in Table 1.

We calibrate the transmission probabilities between patients and HCWs (p and q) from real

data. Specifically, we search for reasonable parameter values so that the simulation outcomes

match the data known from previous studies. To do so, we generate 100 parameter pairs of q
and p with each value ranging from 0.05 to 0.5. We perform simulations 1000 times for each

pair for both de-escalation and control models. We then identify those parameter pairs with all

outcome measures falling into the following ranges: resistance to CIP and TZP not exceeding

70% and 50%, respectively; PA colonization prevalence ranges from 6% to 32%. These ranges

help rule out the pairs where both parameters are extremely large or small. Fig 3 summarizes

the fractions of outcome measures that fall in the credible ranges for each pair. We perform

further simulations with a selection of six qualified pairs to study our problem under different

transmission intensities: high transmission intensity where the mean PA colonization preva-

lence is close to 28% (p = q = 0.3, p = 0.5, q = 0.2 and p = 0.2, q = 0.5), and the low transmis-

sion intensity with that close to 12% (p = q = 0.15, p = 0.5, q = 0.05 and p = 0.05, q = 0.5).

2.3 Outcome measurements

For each simulation, we track the number of daily events and measure the incidence propor-

tions (i.e. cumulative events over total admission) of several important events: (i) incidence of

infections caused by each PA strain—this includes both initial infections and strain

Table 1. Model parameters with baseline values. In Experiment 1, all parameters are fixed at the baseline values. In

Experiment 2, each parameter is sampled from a truncated normal distribution N ðm;sÞ with μ being its baseline value

and σ = 0.1μ.

Parameter Baseline Value Reference

Percent of patients admitted with prior exposure to PA antibiotics (m) 60% [37]

Percent of patients admitted with PA colonization (a) 10% [14]

Percent of patients admitted with colonization of CIP-resistant strain (r1) 35% [36]

Percent of patients admitted with colonization of TZP-resistant strain (r2) 23% [36]

Probability of compliance with hand hygiene (η) 0.5 Assumed.

Probability for non-PA infection development (σx) 0.16 [41]

Probability for PA infection development (σc) 0.45 [40]

Probability of super-infection under narrow-spectrum antibiotics (s) 0.015 Assumed.

Hazard rate of discharge for colonized patients (μ(�)) [35]

Hazard rate of death for colonized patients (ν(�)) [35]

Hazard ratio of discharge for infected patients (κμ) 0.74 [47, 48]

Hazard ratio of death for infected patients with ineffective treatments (κν) 1.04 [47, 48]

Hazard rate of resistance development (ε) 0.03 [37, 38]

https://doi.org/10.1371/journal.pone.0301944.t001

PLOS ONE Agent-based model on antimicrobial de-escalation

PLOS ONE | https://doi.org/10.1371/journal.pone.0301944 April 16, 2024 7 / 18

https://doi.org/10.1371/journal.pone.0301944.t001
https://doi.org/10.1371/journal.pone.0301944


conversions; (ii) incidence of nosocomial colonization by each PA strain; (iii) incidence of

intrinsic mutations towards resistance against CIP, TZP, and both; (iv) administration of

broad-spectrum antibiotics—this includes both definitive and correction use; (v) incidence of

inappropriate empiric therapy either caused by resistance to TZP or strain conversions; (vi)

incidence of super-infections; (vii) incidence of death. We illustrate the detailed calculation for

the metrics of the outcome measurements in S1 Appendix.

2.4 Experiments and analyses

We simulate a two-arm RCT on ICUs with identical conditions, where half of the ICUs adopt

de-escalation strategy (i.e. de-escalation group) and another half adopt continuation strategy

(i.e. control group). The primary goal is to compare the measurement outcomes between ICUs

adopting different strategies.

Experiment 1: simulations with fixed parameter sets. Firstly, we aim to investigate the theo-

retical benefits and trade-offs of de-escalation. We run a total of 1000 simulations for each

fixed parameter set for both the de-escalation and continuation models and record all output

Fig 3. Transmission probability calibration. The number in each cell represents the fraction of all three outcomes (i.e. prevalence of resistance to CIP

and TZP, and PA colonization) falling in the credible ranges over 1,000 experiments. We pick the transmission probability pairs marked in red borders

for further simulations. p represents the probability of PA transmission from HCWs to patients upon each contact. q represents the probability of PA

transmission from patients to HCWs during each visit.

https://doi.org/10.1371/journal.pone.0301944.g003
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metrics at the end of each simulation day. In this way, we obtain 1000 data points to represent

the distributions of all measurement values at the end of each simulation day for each study

group. To visualize the trends of infection prevalence, we plot the average daily super-infec-

tions with 95% confidence interval in Fig 4 as a representative. To quantify the differences

between the two study groups in their measurement distributions, we compute the effect size
by calculating the Cohen’s D value of each measurement distribution of the de-escalation and

continuation model by the end of each week. Specifically, for each type of outcome measured

by the end of any period in our case, the Cohen’s D value, d, is calculated via the formula

d ¼
mDE � mCTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

DE þ s
2
CTÞ=2

p ;

where μDE and μCT are respectively the mean of the measurement distribution for the de-esca-

lation and control group, and σDE and σCT are the standard deviations. We plot the variations

of the effect sizes over time in Fig 5 for the high transmission mode with p = q = 0.3.

Experiment 2: simulations with perturbed parameter values. From a realistic point of view,

the epidemiological conditions in ICUs differ from one to another. We thus perform sensitiv-

ity analyses to investigate the robustness of the theoretical benefits and trade-offs of de-escala-

tion under perturbed parameter sets. For each transmission scenario, we perturb all model

parameters in Table 1 around their fixed values. Specifically, to obtain a perturbed parameter

set, we sample each model parameter from a normal distribution N ðm; sÞ with μ being the

fixed parameter value and σ being 0.1μ. Then we perform simulations based on 1000 perturbed

parameter sets for each model and calculate the measurements as in Experiment 1. For a prac-

tical purpose, we calculate the number of arms and the length of study period needed to detect

differences between the two study groups with results shown in Figs 6 and 7.

Fig 4. Infection prevalence under high transmission mode (p = q = 0.3). Each trajectory in the background light color tracks the average daily

number of super-infected patients in a 64-bed ICU. The solid curves represent the mean value of daily super-infections for the de-escalation and control

groups over 1000 simulations.

https://doi.org/10.1371/journal.pone.0301944.g004
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3 Results

3.1 Theoretical effects of de-escalation

The theoretical benefits and trade-offs of de-escalation are based on the analysis of the syn-

thetic data generated in Experiment 1. Our following conclusions are drawn from Figs 4 and 5.

Fig 5. Effect size of outcome measurements under high transmission mode (p = q = 0.3). Each color bar represents the Cohen’s D value of the

corresponding outcome measurement between de-escalation and control groups measured at the end of each study period. Simulations are performed

for each group for 1000 times with all parameter values fixed as in Table 1. The height of each bar represents the effect size between the distributions of

de-escalation and control groups. Large effect size indicates high possibility for one to detect the projected difference in reality. Practically, effect size of

0.2, 0.5, 0.8, and 1.4 respectively correspond to 58%, 69%, 79%, and 92% probability of observing the control group under- or out- perform the mean of

experimental group as projected. All measurements shown in (b) represent the trade-offs of de-escalation. All measurements except Deaths shown in

(a) refer to the benefits. The use of TZP is a clear benefit of de-escalation with a significant Cohen’s D value, so we omit this benefit in the figure.

https://doi.org/10.1371/journal.pone.0301944.g005

Fig 6. Sample size estimation for RCTs with 16-bed ICUs under various transmission modes. Each curve represents the number of balanced arm

pairs needed to detect an expected difference between de-escalation and continuation groups in the corresponding measurement regarding the length

of the study period (assuming 80% power, 5% type I error rate). Panels with white background refer to benefits of de-escalation, and those with gray

background refer to trade-offs. High transmission mode refers to p = q = 0.3, low transmission mode refers to p = q = 0.15, and asymmetric

transmission mode refers to q = 0.5, p = 0.05.

https://doi.org/10.1371/journal.pone.0301944.g006
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Infection prevalence. We plotted the prevalence of infections caused by all PA strains and

the non-PA species for each study group under all transmission modes. Fig 4 serves as a repre-

sentative of the same type of results, where the trajectories of every single run are shown in the

background light colors. We assume that a certain fraction of patients is colonized by PA upon

admission. So for most single runs, the daily infected patients (subject to all pathogens) may be

zero at times but never extinct.

Under each transmission mode, the daily mean prevalence of infections caused by all

strains stabilizes after two months of the experiment initiation for both groups, meaning that

the incidence rates will eventually increase linearly. The stabilization of the daily mean preva-

lence also indicates that the impact of initial agent attributes on the model’s outcomes will fade

over time. Therefore, the differences between the two study groups, if any, can be detected

after sufficiently long study periods.

As expected, de-escalation reduces the prevalence of resistance to TZP and other broader

spectrum antibiotics, but in turn, increases the prevalence of the susceptible and CIP-resistant

strains. Under high transmission mode, de-escalation demonstrates a clear advantage in

reducing the prevalence of super-infections with daily mean case count differing by more than

one between the two groups in 64-bed ICUs. However, such an advantage is almost negligible

under low transmission mode.

Benefits and trade-offs on incidence rates. In practice, the effects of the two strategies

would be measured and compared via incidence rates. In what follows, we quantify the diffi-

culty/easiness of detecting the expected outcomes in RCTs. To do this, we compare the two

strategies via the effect sizes between their distributions of each incidence rate measurement

by the end of each study week.

We find most essential effects of de-escalation can be observed uniformly in all transmis-

sion intensities. Benefits: De-escalation possesses benefits in reducing infections caused by

TZP- and dual-resistant strains, decreasing colonization caused by the TZP-resistant strain,

limiting the use of TZP and the last-resort antibiotics, and avoiding inappropriate empiric

therapies. De-escalation would also reduce the colonization of dual-resistant strain and the

Fig 7. Sample size estimation for RCTs under high transmission mode. Each curve represents the number of balanced arm pairs needed to detect an

expected difference between de-escalation and control groups in the corresponding measurement regarding the length of the study period (assuming

80% power, 5% type I error rate). Panels with white background refer to benefits of de-escalation, and those with gray background refer to trade-offs.

Each curve type represents an RCT consisting of 16-bed, 32-bed, or 64-bed ICUs, where a 4:1 patient-HCW ratio is always maintained.

https://doi.org/10.1371/journal.pone.0301944.g007
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mutations to TZP. But such effects are obvious in study periods with reasonable lengths.

Trade-offs: De-escalation significantly increases the infection prevalence, colonization, and

mutations associated with the CIP-resistant strain. De-escalation would also increase the infec-

tion prevalence and colonization of the susceptible PA strain and the mutation incidence

toward dual-resistance but with a small difference from the control group. Neutral Impacts:
Neither strategy possesses benefits in reducing mortality rates. Thus mortality rate is theoreti-

cally not affected by the underlying antibiotic use strategy and should not be considered mea-

surements to compare study outcomes.

De-escalation’s effects on cumulative PA infection and super-infection are not uniform

under all transmission intensities. In all three high transmission intensities, de-escalation

group demonstrates a strong reduction of super-infections and a moderate reduction of PA

infections. Such benefits are still obvious in two low transmission intensities with p = q = 0.15

and p = 0.5, q = 0.05. However, in the low transmission scenario with p = 0.05, q = 0.5, such

benefits are not observed. We conclude that de-escalation could reduce PA infections and

super-infections under low HCW contamination probabilities, but such benefit is no longer

valid under high HCW contamination probabilities. Therefore, good hand and medical instru-

ment hygiene are vital not only in nosocomial infection prevention but also in achieving ideal

outcomes when adopting antimicrobial de-escalation strategies.

In our following analyses, we focus on three specific transmission scenarios: high transmis-

sion mode with p = q = 0.3, low transmission mode with p = q = 0.15, and asymmetric trans-

mission mode with p = 0.05, q = 0.5.

3.3 Practical detection of expected outcomes

In reality, ICUs with similar conditions would still differ slightly in model parameters. Thus

we use the simulation results with perturbed parameter values as in Experiment 2 to infer the

robustness of theoretical effects and the easiness of observing such effects in practice.

Robustness of theoretical differences. All theoretical benefits and trade-offs of de-escala-

tion are robust under parameter perturbations. That is, each measurement continues to be a

benefit or a trade-off under the analyses of data generated in Experiment 2. So RCTs with a

sufficiently large sample size and long study period are likely to detect all the theoretical effects

of de-escalation.

Sample size and study period. In Fig 6, we plot the sample size of study pairs needed to

detect the projected difference between the de-escalation group and the control group for vary-

ing study lengths. Sample size is calculated by standard power analysis while we take statistical

power (β, type II error) being 80% and significance (α, type I error) being 5%. We omit the

curves of cumulative PA infections and super-infections for the asymmetric transmission

mode since these two measurements would theoretically establish negligible differences

between the two study groups.

For RCTs with a study period of fewer than two years, a high transmission intensity envi-

ronment would require fewer study arms to observe most of the de-escalation’s benefits. But

for RCTs with periods as long as four years, transmission intensities in the ICUs would not

affect the number of required study arms. Therefore, the projected benefits and trade-offs of

de-escalation can be ultimately observed if the following three conditions are satisfied: (i) all

ICUs recruited for the study should share similar conditions in terms of the community resis-

tance prevalence, patient types, hand hygiene standards, and transmission intensities; (ii) a suf-

ficient number of study arms should be engaged; (iii) a sufficiently long study period should be

planned.
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We summarize the number of required study arms under a 4-year study period in Table 2.

Based on our estimation, the number of study arms might be difficult to reach in reality. For

example, the number of patients involved in prior RCTs on de-escalation ranged from 108 to

2,658 [12]. Whereas in our simulation for an RCT with 16-bed ICUs, 1,600 patients would be

admitted in one single arm over four years. Therefore, insufficient study size and varying ICU

conditions could contribute to the difficulties in detecting the effects of de-escalation in many

prior clinical studies.

Clinical and ecological resistance measurements. There are significant differences in

measuring the prevalence of resistant strains in hospitals. Clinical resistance data is routinely

collected at empiric therapy and is analogous to the proportion of initial patient isolates resis-

tant to CIP, TZP, or both. These correspond to our model’s metrics CIP-resistant lab results,

TZP-resistant lab results, and Dual-resistant lab results. However, the actual ecological mea-

surement of infection prevalence should also consider patients secondarily infected by the spe-

cific strain. And these correspond to the metrics we use throughout our analyses for infection

prevalence: CIP-resistant infections, TZP-resistant infections, and Dual-resistant infections.

We calculate the clinical resistant measurements and investigate their robustness under

parameter set perturbation. We first observe that the theoretical effects of de-escalation on the

resistance prevalence are not affected by the measures adopted (Fig 5). Meaning the choice of

measures would not alter the conclusions on the effects of de-escalation on the resistance

Table 2. Table of measurements: Expectations and required study arms. Required arms are obtained by taking the least possible sample size for each measurement at a

four-year study period among 16-bed, 32-bed, and 64-bed ICUs.

Measurement Effect of De-escalation Required Arms

Practically Measurable

CIP-resistant infections Trade-off *10

TZP-resistant infections Benefit *10

Dual-resistant infections Benefit 10 * 20

Cumulative PA infections Benefit 10 * 20

Undetermined (asymmetric mode) NA

Cumulative super-infections Benefit *10

Undetermined (asymmetric mode) NA

Use of TZP Benefit <10

Use of last-resort drugs Benefit *10

Ineffective empiric treatments Benefit *12 (high transmission intensities)

30 * 60 (low transmission intensities)

Deaths Undetermined NA

CIP-resistant lab results Trade-off >300

TZP-resistant lab results Benefit *50

Dual-resistant lab results Benefit >300

Practically Unmeasurable

CIP-resistant colonization Trade-off NA

TZP-resistant colonization Benefit NA

Dual-resistant colonization Benefit NA

Mutations against CIP Trade-off NA

Mutations against TZP Benefit NA

Mutations against CIP&TZP Trade-off NA

Assuming 80% power and 5% type I error rate. Asymmetric mode refers to p = 0.05, q = 0.5. High transmission intensities refer to p = q = 0.3, p = 0.2, q = 0.5 and

p = 0.5, q = 0.2. Low transmission intensities refer to p = q = 0.15, p = 0.05, q = 0.5 and p = 0.5, q = 0.05.

https://doi.org/10.1371/journal.pone.0301944.t002
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prevalence. However, the clinical resistance measurements are ineffective in detecting the dif-

ferences between study groups. Fig 6 suggests that clinical resistance measurements would sig-

nificantly scale up the demand of study arms to detect all projected effects. Therefore,

inaccurate resistance measurement could also contribute to the failure in observing group dif-

ferences of prior clinical studies.

Size of ICUs. Intuitively, the number of ICU beds would impact detecting differences

between the experimental and control groups. A larger ICU size corresponds to more patient

involvement during any time window. Then recruiting large-size ICUs may help shorten the

study period and reduce the necessary study arms. Regarding this question, we perform simu-

lations for 16-bed, 32-bed, and 64-bed ICUs while maintaining a 4:1 patient-HCW ratio. We

repeat the simulations in Experiment 2 and analyze the required sample size in Fig 7. For mea-

surements that are relatively easy to detect, increasing ICU size would, in general, help reduce

the requested number of study arms. However, the benefit of large ICUs fades out if studies

are already carried out for a long time (such as four years). Further, increasing ICU size would

not change the difficulty of observing differences between study groups regarding the hard-to-

detect measurements. And a considerable ICU size may not help reduce the requested study

arms in significant scales.

4 Discussion

In this paper, we develop agent-based models to capture the complicated antibiotic treatment

process, investigate the benefits and trade-offs of antimicrobial de-escalation on the prevalence

of P. aeruginosa in ICUs, and infer the proper size of an RCT study for observing the desired

outcomes. Difficulties in applying agent-based models lie in parameter calibration and the

interpretation of model outputs. This work selects the transmission parameters by screening

the model outputs via real-world data on infection prevalence. This method of calibration

shares the same idea as in [31]. Our model outputs consist of multiple simulated cases from

two distinct treatment models. To compare the outcomes, we utilized the basic statistical con-

cept of Cohen’s D value to quantify the differences between the outcome distributions of the

two models. To inform the practical design of clinical trials, we further compute the sample

size needed to detect the expected measurement differences, which shares similar thoughts as

in [39].

We restrict our discussions on the patient-HCW ratio as 4:1, but our model codes are cus-

tomized to simulate any patient-HCW ratio with any ICU size. Further, our model code is also

valid to simulate any real-world study design with ICUs of various sizes. Many parameters and

data used in this study are obtained from a diverse range of literature. In particular, the preva-

lence data for model calibration were obtained by researchers in Toronto teaching hospitals

[14]. The hazard rate of resistance development is adopted from a previous estimation by the

same group of researchers in Toronto [37]. The infection development probabilities for differ-

ent bacterial species were parameterized from two diverse medical literature based on rela-

tively small patient samples [40, 41]. Finally, the community level of PA resistance is provided

by a study conducted in a hospital in Germany [36]. Ultimately, an ideal parameterization

would request further clinical studies on many model parameters from a stable resource of

patients and ICUs. One could easily adjust the parameter settings of our model to guide the

design of future RCTs.

Our model provides a baseline analysis on the ecological effects of de-escalation on P. aeru-
ginosa—a primarily nosocomial pathogen that is particularly adept at developing resistance

[42–44]. By shortening the length of empiric therapy, the model can be easily modified to

study the potential benefits of the future rapid diagnostic test on antimicrobial de-escalation
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[5, 45]. It can also be re-parameterized to investigate the impacts of de-escalation on other bac-

terial species in ICUs. Due to the numerous bacterial species, strain types, and the intricate

network on the drug-bug coverage, it is still hard to develop a more realistic model that consid-

ers the impacts of antimicrobial de-escalation on the overall ecology in ICUs. A complete

model for antimicrobial stewardship should include nosocomial pathogens such as methicillin-
resistant Staphylococcus aureus (MSRA), vancomycin-resistant enterococci (VRE), and Clostrid-
ium difficile (C. diff), and the corresponding detailed treatment protocols [46]. Specifically,

P. aeruginosa could also be contaminated from water and environment, but this transmission

route is not mechanistically modeled and only indirectly reflected in the parameters a, m, r1,

r2. Incorporating the environmental contamination could further enhance our model thus our

understandings of antimicrobial de-escalation. This work establishes a fundamental way and

baseline computer codes for the analysis and simulation of future agent-based models with

more realistic settings.

Supporting information
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dix file.
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