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Abstract

Nosocomial infections (hospital-acquired) has been an important public health prob-
lem, which may make those patients with infections or involved visitors and hospital
personnel at higher risk of worse clinical outcomes or infection, and then consume
more healthcare resources. Taking into account the stochasticity of the death and
discharge rate of patients staying in hospitals, in this paper, we propose a stochastic
dynamical model describing the transmission of nosocomial pathogens among patients
admitted for hospital stays. The stochastic terms of the model are incorporated to cap-
ture the randomness arising from death and discharge processes of patients. Firstly,
a sufficient condition is established for the stochastic extinction of disease. It shows
that introducing randomness in the model will result in lower potential of nosocomial
outbreaks. Further, we establish a threshold criterion on the existence of stationary
distribution and ergodicity for any positive solution of the model. Particularly, the
spectral radius form of stochastic threshold value is calculated in the special case.
Moreover, the numerical simulations are conducted to both validate the theoretical
results and investigate the effect of prevention and control strategies on the preva-
lence of nosocomial infection. We show that enhancing hygiene, targeting colonized
and infected patients, improving antibiotic treatment accuracy, shortening treatment
periods are all crucial factors to contain nosocomial infections.
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1 Introduction

Nosocomial infection refers to infections acquired during stays in health-care facilities.
Patients admitted for hospital stays are under severe health conditions with weakened
immune systems, thus are extremely vulnerable to pathogens circulating among patient
population. According to the report of World Health Organization (World Health Orga-
nization 2006), about 1.4 million people are ill because of infections acquired in
hospitals at any given moment across the world. Approximately one-fourth patient
may be affected and the death toll reaches 5-10% of patients in some developing
countries. Further, the high frequency of antibiotic prescriptions could create an envi-
ronmental pressure for the transmission of drug-resistant pathogens (Stenehjem et al.
2016), such as methicillin-susceptible Staphylococcus aureus (MRSA), Vancomycin-
resistant Enterococci (VRE), and Multidrug-resistant Pseudomonas aeruginosa. A
new report in 2022 (World Health Organization 2022) revealed that high levels
(above 50%) of resistance were reported in bacteria frequently causing bloodstream
infections in hospitals, such as Klebsiella pneumoniae and Acinetobacter spp. These
life-threatening infections require treatment with last-resort antibiotics, such as car-
bapenems. Therefore, hospitals are believed as the epicenter of the spread of many
drug-resistant pathogens. How to reduce health care-associated infection and the
spread of antimicrobial resistance in hospitals has always become a focus of con-
cern.

As is well known, deterministic differential equation models have been developed to
simulate the transmission dynamics of antimicrobial pathogens in hospital populations,
where interventions such as hand hygiene, staff cohorting, antibiotic stewardship, treat-
ment accuracy, de-colonization, and isolation have been shown as effective strategies
to prevent and control the outbreak of nosocomial infections (Austin et al. 1999; Bon-
hoeffer et al. 1997; Cen et al. 2017; Cooper et al. 2004; D’ Agata et al. 2005; Feng et al.
2019; Smith et al. 2004). Indeed the foundations of epidemic modelling are largely
based upon deterministic equations for the dynamics of populations. However, deter-
ministic models are only suitable when the numbers of the susceptible and the infective
are large (Bailey 1964). Usually disease outbreaks start from only a few cases, and
therefore incorporating stochasticity into the deterministic compartmental models is
necessary. Moreover, stochastic models can pick up intrinsic perturbations and give
a more accurate prediction, especially if the population size is small (Sun and Hsieh
2010). There are various types of stochastic fluctuations which can be incorporated
into the deterministic dynamics according to different situations. Among these consist
of making the constant parameters under the influence of direct random fluctuation
using Gaussian white noise (see e.g. Wang et al. 2018, 2021). This is a routine method
to include the effect of environmental variation in the disease transmission coeffi-
cient. In reality, the death and discharge rate of patients staying in hospitals is subject
to change stochastically: patients without nosocomial infections may experience low
death rate and high discharge rate, whereas infected patients may experience the oppo-
site. Given the small number of hospital patient population, any unexpected change
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of population in each compartment would significantly alter the distribution of dif-
ferent patient types hence impact the transmission dynamics. For example, a random
death or discharge of the only infectious patient could make the pathogen extinct right
away. Thus models considering randomness could generate rich simulated scenarios
that coincide with realistic observations. Browne et al. (2017) introduced randomness
in the infected patient population and obtained almost surely exponential stability in
probability of solution for a reduced two-dimensional stochastic differential equation
(SDE) model.

In this paper, we investigate a six-dimensional SDE model with features including
(1) uncolonized, colonized, and infected patients; (2) co-circulation of sensitive and
resistant bacterial strains; and (3) randomness of death and discharge for all patients.
For this model, we will mainly carry out the investigation of dynamical behaviors
including the stochastic extinction of nosocomial infections and existence of ergodic
stationary distribution, as well as the numerical simulations and analysis. The main
contributions and innovations in this paper are the following aspects:

(1) A sufficient criterion on stochastic extinction of nosocomial pathogens is estab-
lished by applying the spectral radius analysis method which is extended from
deterministic models or stochastic models with only one infection route to our
stochastic model with sensitive and resistant strains infection routes.

(2) We find a threshold depending on the variance of the random events, under which
the model admits a stationary distribution with solutions being ergodic by con-
structing a suitable Lyapunov function, and further derive the spectral radius form
of stochastic threshold value in the special case.

(3) In the numerical simulations, we first calibrate the transmission rates to known
range of the healthcare associated infection acquisition, and then conduct global
sensitivity analysis to investigate the influence of the key parameters on the
basic reproductive number for nosocomial outbreak and the healthcare associated
infection acquisition. Afterwards we explore the effect of prevention and control
strategies on the prevalence of nosocomial infection.

(4) The numerical examples are provided to verify the stochastic extinction of noso-
comial pathogens and to compare the behaviors of stochastic model and the
corresponding deterministic model.

The rest of this paper is organized as follows. Model description is given in next
section. Stochastic extinction and the existence of a ergodic stationary distribution of
solutions are investigated in Sect. 3. Numerical simulations are provided in Sect. 4. A
brief conclusion and discussion is presented in Sect. 5.

2 Model description

Nosocomial infection is also called hospital-acquired infection, including those
infections occurred during hospitalization or acquired in hospital but occurred after dis-
charge from hospital. The main infection targets are patients, hospital staff, emergency
cases, visitors and patients’ families. It is usually divided into two kinds: exogenous
infections (or cross infections) and endogenous infections (or autogenous infections).
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Pathogens causing exogenous infections come from outside the patient’s body, for
instance, other patients, carriers of pathogens (hospital staff and visitors), contami-
nated medical equipment, blood products, the ward environment. While the pathogens
responsible for endogenous infection are normal flora within or on the surface of the
patient’s body. Usually, due to the long-term use of antibiotics, immunosuppressants,
or hormones by patients, the patient’s microbiota is dysregulated, and lead to abnormal
proliferation of drug-sensitive bacteria and development of drug-resistant bacteria.

We consider the co-circulation of antibiotic-sensitive and antibiotic-resistant bacte-
rial strains among patients admitted in a hospital. Denote S as the uncolonized patients,
E and Eg respectively as patients colonized by sensitive and resistant strain, / and /g
as patients infected by sensitive and resistant strain, and R as patients whose infections
are under control after sufficient periods of antibiotic treatments.

We assume a constant patient admission rate A and assume that all newly admitted
patients are uncolonized. Patients staying in the hospital are assumed to experience an
average rate resulted from death and discharge, 1, and are subject to extra randomness
based on their infection status. That is, patients in each compartment may experience
an extra death and discharge rate modeled by a Wiener process, B; () (1 <i < 6),
where d B; (1) follows a normal distribution with mean zero and variance d¢. In other
words, the extra rate of per-unit random death and discharge for each patient class will
follow a normal distribution with mean zero and variance o; (1 <i < 6).

Infected patients are assumed to experience excess constant death rates, d; and
d>, with respect to infection of sensitive and resistant strains. We ignore the roles of
transmission by healthcare workers in our model, and assume 81 and B, as the trans-
mission rates of sensitive and resistant strains. Occasionally, patients may develop
acute infections upon immediate contraction with bacteria. So we assume patients
contracting the sensitive strain would either enter the colonized class with a probabil-
ity of p (slow progression) or enter the infected class with a probability of 1 — p (fast
progression). Patients contracting the resistant strain would follow similar dynam-
ics with a colonization probability of ¢ and infection probability of 1 — g. Patients
colonized with sensitive and resistant strains can develop infections at rate § and v,
respectively. Infected patients with sensitive and resistant strains may have their infec-
tions under control by appropriate antibiotics at rate k and «, respectively, and then
enter the class R where they stop spreading the bacteria to others. Patients infected
with susceptible strain would develop mutations against the empiric antibiotics at rate
n and become infected by the resistant strain. Particularly, we assume well-treated
patients may terminate the treatment at rate y and may either return to the infected
class with probability € or stay colonized by the sensitive strain with probability 1 — 6.
The model equations are then listed below:

dS = (A —uS— (Bl + B2Ir)S)dt + 018SdB (1),
dE = (pB1SI — (u+ 8)E + (1 — 0)y R)dt + 02 Ed By (1),
dl = ((1 = p)BiSI +8E — (n+ w+dy + k)I + 0y R)dt + 031dB3(t),
dER = (qB2SIg — (u + V)ER)dt + 04 ERd B4(1),
dig = (1 —q)B2SIr +nl — (@ + u+da)Ig + vER)dt + 05Ird Bs(1),
dR = (kI — (u+ y)R + alg)dt + oeRd Bs(1),
.1
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with initial values S(0) > 0 and E(0), 1(0), Eg(0), Ig(0), R(0) > 0. B;(t) (1 <i <
6) are mutually independent standard Brownian motions with B; (0) = 0, and crl.z >0
denotes the intensity of B; (), respectively. All parameters in model (2.1) are positive
constants.

3 Main results

Let (2, F, {F:}t>0. P) be a complete probability space with a filtration {F;};>0 satis-
fying the usual conditions. We assume that model (2.1) is defined on probability space
(2, F, {Fi}i>0,P). Denote R} = {x = (x1,x2,...,x,) €eR" : x; > 0,1 <i <n}.
For convenience, we denote x(¢) = (S(t), E(t), I(t), Er(t), Ir(t), R(1)).

Lemma 3.1  For any initial value x(0) € RS, solution x(1) of model (2.1) exists
uniquely and remains in Ri for all t > O with probability one.

The proof of Lemma 3.1 is similar to Theorem 3.1 given in Mao (2008) by using
the following assistant function

S
Vix) = (S—a—aln—)+(E—1—lnE)+(l— l1—Inl)+ (Eg —1—1InER)
a
+({Ug—1—Inlg)+(R—1—1nR)
with a = min{&ld‘, w}.
Next, we introduce the following results on the stationary distribution and ergodic
properties of solutions for stochastic differential equations.

Lety(¢) = (y1(2), y2(¢), ..., yu(t)) be a regular time-homogeneous Markov pro-
cess in R’} described by the following stochastic differential equation

k
dy(t) = b(y()dt + ) _ o, (y(1)d B, (1), (3.1

r=I1

where b(y) = (b1(¥), b2(¥), -+, ba(¥)), 0r(¥) = (0, (¥), 07 (¥) ... 0/ (y)), and
B.(t) (r = 1,2,...,k) are independent standard Brownian motions defined on

(2, F, {Fi}1>0, P). The diffusion matrix A of model (3.1) is defined as follow

k
AW) = (@j(y), aijy)=)_ oy} ¥

r=1

Lemma 3.2 (Khasminskii 2011; Zhu and Yin 2007) The Markov process y(¢) has
a unique ergodic stationary distribution 7 (-) if there exists a bounded open domain
U c R’} with regular boundary and closure U c R”, such that the following two
conditions are satisfied.
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(1) In the domain U and some neighborhood thereof, the smallest eigenvalue of the
diffusion matrix A(y) is bounded away from zero.

(ii) There exists a nonnegative C>-function V(-) : R — Ry such that for some
constant o« > 0

Vv - 32V
2V (y) = Zb() (Y)+ DI W < o vyeri\U.

l]l Yi¥j

Furthermore, if f(y) is a Borel measurable function with respect to measure 7w
defined on R", then we also have

1 T
P( lim — / Fy()dt = / f(y)n(dy)) _
T—oo T 0 ]R’_:_

3.1 Stochastic extinction

In this subsection, we first focus on the possibility for nosocomial pathogens to become
extinct. By applying spectral radius analysis method, we will establish the sufficient
criterion on stochastic extinction of nosocomial pathogens. For this purpose, we need
to introduce the corresponding deterministic version of model (2.1). When o; = 0
(i=1,...,6), model (2.1) degenerates into the following deterministic one

4 = A —uS— (Bl + palp)S,

4E — pBySI — (u+8)E + (1 —O)yR,

4L = (1 — p)BISI +8E — (n + u+di + k)1 +0yR,

Er — gBrSIg — (W + v)ER, G2
‘“R = (1—q)BaSIg +nl — (@ + pu+ do)Ig + VER,

d——k1+a1R—(u+V)R

Obviously, model (3.2) has a unique disease-free equilibrium Py = (Sp, 0, 0, 0, 0, 0),
where Sy = % Using next generation matrix approach (Driessche and Watmough
2002), the rates of appearance of new infection and transition of patients are

pB1SI+ (1 —6)yR (w+98E
(1 —p)B1SI +6E +60yR m+u+d+k)I
F= qB2SIR , V= (u+Vv)ER ,
(I —g)B2SIg +nl +VvER (@ +p+da)Ig
kI+OlIR (M+)/)R
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respectively. Calculating the Jacobi matrices of F and V at Py, we obtain

0 pBiSo O 0 (1—-0)y

§(1—p)B1So 0 0 Oy
F=1]0 0 0 q 6250 0 s
0 n v(L=¢g)p2So 0
0 k 0 o 0
n+é 0 0 0 0
0 pwH+n+k+d 0O 0 0
V= 0 0 nw+v 0 0
0 0 0 put+a+dy O
0 0 0 0 w+y
Further calculating V~!F, we can obtain
pB1S d=0)y
0 e 0 =)
b aA-=p)B1So 0 0 Oy
n+utdi+k ntptdi+k ntu+di+k
VIF = 0 0 0o 1% 0
n+v
0 ] v A=9)B250 0
atpu+dy  atptdy  o+utd
0 . 0 2 0

nty uty

Thus, the basic reproduction number of model (3.2) can be defined by Rg = p(V™ F),
where p denotes the spectral radius of V~!F. Using the Perron-Trobenius theorem
(Berman and Plemmons 1979), the nonnegative matrix V~'F has a positive left eigen-
vector (&1, &2, &3, &4, &5) corresponding to eigenvalue R satisfying

(&1, 62,83, 64, 65)Ro = (51, &2, &3, &4, &)V 'F. (3.3)
Theorem 3.1 If(rl2 < 24, then solution x(t) of model (2.1) with initial value x(0) €

6 .
RY satisfies

1
limsup —In (o1 E(1) + p21 (1) + p3 Er(t) + palr(D) + psR(®)) < m,

t—oo I

where

6
1— 1-— S -1
o [ﬂl(p1p+pz( p)) + B2(p3q + pa( q))] 001 - (220;2)
02 P4 Qu _012)7 =
+min{pu+8,n+u+d +kpu+v,a+u+dy, u+yH(Ro— Dhry<y
t+max{u+d,n+tp+di+kpt+v,at+p+d,p+yiRo— DIre>1),

; — & — & — & . 1 — & ;
with o1 = 25, 02 = sgase P3 = v P4 = g @nd ps = 3, and Lis

an indicator function.
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Particularly, ifm < 0, thenlim;— o E(t) = 0,lim;— o 1 (t) = 0, lim;— o0 Eg(2)
0, limyo0 Ig(t) = 0, lim0o R(H) = 0 a.s., and im0l [§ S(s)ds =
fooo xm(x)dx a.s., where w(x) is given in (3.5) below.

Proof From the first equation of model (2.1) and Lemma 3.1, we can obtain
dS < (A —uS)dt 4+ 015dB1(1).
Consider the following auxiliary system
dX = (A — puX)dt +o01XdB(1). (3.4)

It is easy to obtain by Theorem 1.16 in Kutoyants (2004) that system (3.4) has the
ergodic property with invariant density

I e R
m(x) =Ho| “x e “i 3.5
a1+ 5
for all x € (0,00), here H = of(23) “IT7'(1 4+ ) is a constant such that
1 1

fooo m(x)dx = 1, and any solution X (¢) of system (3.4) satisfies

t o0
lim l/ X (s)ds :/ xm(x)dx a.s.. 3.6)
0 0

t—o0 t

Let X () be the solution of system (3.4) with initial value X(0) = S(0). By the
comparison theorem of stochastic differential equation (Ikeda and Watanabe 1977),
we obtain

S) < X(¢t) forall t >0 a.s..
Now, we define a C2-function W : Ri — (0, +00) by
W(E,I,Eg, IR, R) = p1E + p2l + p3ER + palg + psR.

Denote U = In W. Using It6 formula, we obtain

1
dU = LUdt + W(plozEde(r) + 0p2031dB3(t) + p304 ERd B4(t) 37

+ p4osIrdBs(1) + psoRd Be(1)),
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where

LU = %(PﬂlSI —(u+&E+ (1 -0)yR)+ %((1 —P)BISI+E —(n+

di 0T+ 07 R) + 22 (aBaSTr = 1+ V)ER) + 22 (1 = 0)BaS
0l = @+ u+do) g+ VER) + (kI = (u+ )R +alg)

_(po2E) (po3)? (p304ER)®  (paosIR)®  (pso6R)?

2W?2 2W? 2W? 2W?2 2W?2

1
= P (PBISOT = (W + OE + (1 = 0)yR) + p1ppi(S = So)]

+p2((1 = p)Bi1Sol +8E — (+p+di + k) +6yR)

+ p2(1 = p)Bi(S — S + p3(qB2S0lr — (1u + V) ER)

+ p3qB2q(S — So) g + pa((1 — @)B2Solr + nl — (& + pu + dp)Ig + VER)
+ p1ba(l = 9)(S = S Ir + ps (KT — (1 +y)R +aly)}

_(po2E) (po3])® (p304ER)® (paosIR)®  (pso6R)’

2W?2 2w? 2W? 2W?2 2W?2

Since
5 1 1 1 1 1’
Wo=|p102E - — + p203] - — + p304ER - — + psos5Ig - — + ps06R - —
[op) 03 o4 o5 06

1
o’

6
< [(;01021‘5)2 + (p2031)? + (P304 ER)* + (paosIg)? + (PSU6R)2]
i=2 i

and by (3.3), we further obtain

S — Sl S— Sl .
Tt ] P YL T ST <zzgiz>

w

1
+ o €6 ba8s) (VIRE L Ero I R — (B, 1L Er. Ir. R)')

~1
<[Pt p) | b ted oy g 22"’:052
- 0 P4 =

1
+ W(RO —DEE+8&I+8ER+&IR+E5R)

Bi(oip+p2(1—p))  Balpsg + pa(l — q)) L o\t
<[ . + 2 ]IX—SOI—<2§U,- )

+min{fu+d,n+p+di+kpt+v,a+pu+d,n+y}Ro— Dlire<ny
+max{u+8,n+pu+di+kp+v,a+pu+d, n+y}(Ro— DIiry>1),
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where

1, if Rp =<1,
0, if Ro>1,

1, if Ro> 1,

1 —
(Ro=1} 0, if Ro<1l.

and I{'Ro>l} = {

By (3.7) and the above inequality, we have

6 —1
Bion (=P | Bsa+os0 =Dy gy (zzgiz)

dU < [
P2 P4

i=2
+min{fu+68, n+u+di+k p+v,at+pt+d,pn+yi(Ro— Dhire<iy
+max{u+8,n+put+d +k put+v,at+pu+d, p+y}Ro— Dhry>1y

1
+ W (mtszde(l‘) + p2031d B3(t) + p304 ERd B4(t) + psosIrd Bs(t) + PSUGRdBﬁ(t)>-

Integrating the above inequality from O to ¢ and then dividing # on both sides leads to

t U@ + (1 — + pa(1 — 1 !
()S ()+[ﬂ1(p1P p2( P))+52(P361 p4( Q))}f/|X(s)—So|ds
t t 02 P4 t Jo
+min{u+8n+u+d+kpu+v,a+pu+d, pn+y}(Ro— Dhire<ny
Fmax{u + 8,0+ p+di kgt v e+ p+do, e+ y}(Ro — DIrys1y 3-8
-1

1
- (2 Zaﬂ) M1 + Mo(0) + Ma () + Ma () + Ms ()],

where Mi(1) = [; pl;z(’f}A)de(s) Myt = [y PZ;;;(g”dBm) M3y = [3

E I R
W;‘;—@“)dm(;), Mut) = [y mﬁys—(slg“)d35(s) and Ms(1) = fo’ PS;’;(S)“)dBG(s) are
five local martingales. Because the quadratic variation of M () is

t E 2
(Ml,M1)1=(/0102)2/0 (%) ds < o3t,

by using the strong law of large numbers for martingale, it yields (Mao 2008)
lim; s oo M‘T(t) = (. Similarly, we can obtain lim;_, M 0 — (i=2...,5).
In addition, since X (¢) is ergodic and fooo xm(x)dx < oo, we have

1

lim lfoo |X(s) — Solds = /oo Ix — Solm(x)dx < (/Oo(x - so)%z(x)dx)2 . (3.9
0 0 0

t—>o00 t
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Furthermore, we calculate [~ (x — So)?7 (x)dx. We first have [ (x — So)*m (x)dx =
ag — 2a1Sp + S%, where ag = fooo x27(x)dx and a; = fooo x7(x)dx. Because

_2u

o o I A
ap =/ xzrr(x)dx = Hcrfzf x %Te °1dx
0 0

1-2% u_,
_ o 27
= Ho, 2 <2—/2\) ! fooot"l e 'dt

91

2A o 2
—Ho2 () 'r(H
o1 g1
(21\)2 rgi—1)
=\ =z
o F(
> o -0+~
ai =/ xrr(x)dx:HUfZ/ X T e 1%dx
0 0

o )
N T =l g
=Ho* | = / 171 e'dt
01 0

Q|

O 2AT 2A8
+1) wQu—ol)  2u—of

SUY

and

2
S f2A\ F (2
=Hoy "\ = M=
0y g
2u
T (o% A
= == =25
ir (2—“ - 1> a
of
So, we obtain
00 S20_2
/ (x — Sp)*m (x)dx = ———. (3.10)
0 21 — o

Taking the superior limit on both sides in (3.8) and combining with (3.9), (3.10)

and lim;_, o @ =0fori =1,...,5, we obtain

. U)

lim sup

t—00 t

6
Bi(pip + p2(1 —p)) | Pa(p3g + pa(l —q)) Soo1 o\~
S[ + ] N (22@ )

02 P4 (ZH —oj )2 i—

+min{p +8,n+pu+di+k,u+v,a+pu+d, u+yHRo— DIiry<y
+max{u+8,n+u+d +kpu+v,a+put+dy, uw+yH(Ro— Dhirys1y = m,
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which is the required statement. If m < 0, then it is concluded that

) In E(t) : In/(z) : In Eg(t)
lim sup <0, limsup—— < 0, limsup——— <0,
t—>00 t t—00 t 1—00
In Ip(t In R(¢
limsup£<0, lim sup Q) <0, as
11— o0 t 1—00 t
It means limsup,_, ., E(t) = O a.s., then by the positivity of the solution we
further obtain lim;—. E(f) = 0 a.s.. Similarly, we can obtain lim;_,, I () =

lim; 00 ER(t) = limy_ oo I (t) = lim;_ oo R(t) =0 a.s..
When lim; o E(t) = 0, lim;— o 1(t) = 0, lim;— o0 Eg(t) = 0, lim; o Ig(t) =
0,lim;_, o, R(¢#) = 0 a.s., then from the first equation of model (2.1) we further obtain

dS = (A — pS)dt + 018d B (1),

which is equivalent to the Eq. (3.4). Thus, from (3.6) we immediately obtain
lim;_, o0 % fot S(s)ds = [;° xm(x)dx a.s. This finishes the proof. ]

Remark 3.1 Theorem 3.1 indicates that when 012 < 21 and m < 0 hold, nosocomial
infection go to extinction with probability one. Meanwhile, the distribution of uncol-
onized patients S(#) weakly converge to the ergodic invariant distribution with the
density  (x). This result provides a distinction between our model (2.1) and its deter-
ministic version (3.2), which indicates that large randomness in death and discharge
can lead to pathogen extinction in the stochastic system while the pathogens are preva-
lent in the deterministic system under the same parameter values since in this case
there exists a possibility that the basic reproduction number R for the deterministic
model (3.2) is greater than 1. A numerical example provided in Sect. 4.5 shows that the
solution for the deterministic model is uniformly persistent as Ro = 1.048 while the
solution for the stochastic model becomes extinct (see Fig. 14). Therefore, randomness
may play a critical role in the transmission dynamics of nosocomial pathogens and
should be considered in modeling when significant uncertainty exists in the outflow
of patient population.

Remark 3.2 In the proof of Theorem 3.1, the spectral radius analysis method is used,
which is applied to deterministic models or stochastic models with only one infection
route. However, model (2.1) is six-dimensional SDE one and there are sensitive and
resistant strains infection routes, so the construction of Lyapunov function in Theorem
3.1 is challenging and innovative by using the spectral radius analysis method. This
is a highlight in this paper. On the other hand, although the explicit expression of the
basic reproduction number R for the deterministic model (3.2) can not be obtained
owing to the complexity of V™!F, an equivalent representation will be given in a
special situation in the next subsection.
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3.2 Stationary distribution
We define the basic reproductive number for nosocomial outbreak

5{8 = maX{iNRg‘l, %32}7

where
97{5 _ pB1AS
ot o o o3
m+5)u+o+5)n+n+k+d+35)
(1 -pBA Oyk
n - P)B1 — )/02 -
(mw+3)+pt+k+di+5) +ptk+di+5)w+y+73)
and
~ HhAv (1 —q)BA
Eﬁgzz 2 qiz o2 + 2 i o2
w+)p+v+a+p+d+5) (+5)a+p+d+5)
n Oyan

2 2 2 "
+ptk+di+FP)a+p+d+ 5 u+y+%)

Theorem 3.2 If 5%3 > 1, then solution x (t) of model (2.1) with initial value x (0) € Rg_
is ergodic and admits a stationary distribution m (-).

Proof From ,‘yig > 1, we can choose a positive constant ¢ such that A > 0, where

A 032 S 052 ~ )
/\—(U+M+d1+k+7)(9‘im —1)+¢(06+M+d2+7)(9%2—1)~

In fact, if 9‘{81 > 1 and 9‘{02 > 1 we can choose ¢ = 1, if 9‘{01 < 1land 9%02 > 1 we
can choose ¢ > 1 large enough, and if D‘im > 1 and 9‘{(5)2 < 1 we can choose ¢ > 0
small enough.

The diffusion matrix of model (2.1) is given by

. 2¢2 22 242 272 242 2p2
A=d1ag(O'IS ,O'2E ,(731 ,U4ER,USIR,06R )

Let Z be any bounded domain in Ri with the closure Z C RS’F, then we obviously
have

A = min{o}S?, 05 E?, 0} 1%, 0} E%, 0213, 02 R*} > 0,
xeZ

where x = (S, E, I, ER, Ig, R). For any x € Z and ¢ = (¢1, &2, ...,{6)T € Rg, we
further obtain

tTAL = 0} S?0] + 03 E*g5 + 031703 + 0 ERey + 05 IRC5 + 0 R°¢5 = Al¢]?,
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which indicates that the smallest eigenvalue of the diffusion matrix A(x) is bounded
away from zero in the domain Z and some neighborhood thereof, i.e., condition (i) in
Lemma 3.2 is satisfied.

Now, we show the feasibility of condition (ii) of Lemma 3.2. For this purpose, two
steps are organized to formulate a suitable Lyapunov function V (x) and a compact
subset U, such that £V (x) < —1 forall x € Ri\US, where £V (x) is defined in
condition (ii) of Lemma 3.2, which is the factor of d7 in Ito formula (see Mao 2008)
for V(x), where x = (S, E, I, ER, I, R).

Step 1 Construct a non-negative Lyapunov function V (x).

Choose a sufﬁciently small positive constant 6 satisfying p £ p — %(012 \ 022 \

0’32 \% of \% 05 \% 06) > 0. Then, we define a C2-function H : R6 — (0, +00) by

Hx) =MV 4+ Vo 4 V3,
where

Vi=—Inl —citInE —¢(nlg +co1InER) — (c12 4+ c13 + ¢(ca +¢23))In S
Bi(cia +c13 + ¢ ez +¢23))

—ci4InR — ¢p(cpaInl 4+ cp5sIn R) + IR,
n
Bi
Vo=—InS—InE—Inl —InEgr —InR — — I,
n
Vo= (S+E+1+Eg+Ix+ RO,
0+1
with
PBIAS pPB1AS
11 = PR Cc12 = > )
0.2 0_2 (TZ 02
) oo 3] ) o)
(A =p)piA
Y
<M+7‘>
Oyk qpBaAv
Cl4 = 7, €21 = 3
0.2 0.2 02
o)A o)
_ qp2Av
= N2 N
() (roee)
(1 —g)BA Oyan
B3=—"7, U= )

N 2 2 2
<n+,u+d1+k+%3> (,LH—J/—#—%"’)
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Oyan

2
2 2
<77+,u+d1+k+%3> <,u+y+%")

€25 =

and M is a positive constant satisfying the condition
—Mr+J < =2,

where

J= wp{—%m“*+w¢+%ka+u+@»m+du+6+n+k

IRG]R+
o2 o2 o2 o ol
di+—+—=+—=4+—4+-2+4+D 00
totytdit o+ 2+ S+ 4D <

and

Dzsw{AG+E+I+ER+Q+RW—§6+E+I+ER+M+RW“}<m.

6
xeRY

Since H(x) is continuous and liminfy_ 4+ minxeRi\Uk H(x) = +oo, where
Ue = (1.5) x (5, k) x (1,k) x (£,k) x (+,k) x (+,k), then H(x) has a mini-

mum point x* = (S*, E*, I*, E}, I, R*) € RS..
Now, we structure a Lyapunov function as follows

V(x) =MV + Vo + V3 — H(x).

Obviously, V (x) is a nonnegative C>-function. By applying It formula, we get

2
C]3A o SE c“pﬂISI C]2A
ZV :_(1_p)ﬂls_T+Cl3<u+71>_T_T_T
2 2
[eg [eg HyR 6‘14](1 C]](l — Q)yR clalg
P i) _OvyR _cuakl _
+611<u+ +2)+612<M+2) 7 R I3 R

2 2
[of 0,
+@m+qgwu+ﬂﬂm+n+u+m+k+§~ﬂm(u+y+§>

3 A of 19B2SIrR A VER
+o(—- (1 —)ppS — =— +en n+ =+ o gkl PER
S Egr S IR

2
2 2
oy oj nl 40y R cpsalp
+ +v+ =)+ + = |- -
SPERE STPRRE S Rt e

2 2
log O,
+e <n+u+d1+k+ 73>+025 <M+y++75) —cu(l = p)piS

cuSE skl o2
— T = T en e) (il + falg) Fot oty )
Biv Bi

—T(CIQ +c13 4+ @ +c23))Er + ;(a +u+d)(ci2+ i3+ dlen +23)) Ik

@ Springer



41 Page 160f38

L.Wang et al.

|
=Bi(ciz + 13+ ¢l + 3l — %(CIZ + 13+ ¢len +23))(1 — @)BaSIk
< 2Ve(=phid+es(n+ ) =3Jenenppdd+en (n+s+ =
of —— %
+ci2 M+7 —2y/c1a0yk + c1a M+}/+7

0,2
+n+u+d1+k+73

2
o
+¢(—2Ve3(1 — P2 A + 23 <l/- + 71> —3Jcrcosfyan+cu (n+p+dy +k

2 o2 o? ol
+73 + 25 u+y+76 —3Jc2122qBAv + 2 [/L+V+74 +en /,L+71
o? B
o+ pu+d+ 7) + (c12+ 13+ dlen +c23)) (B2 +
1 - p)BiA A8 Oyk o}
UL b AR A R
nt+ <u+%‘)<u+8+%> mty+3

2

;‘(a + i+ ) Ir

1—@)paA A 0
(- ( q)fzz _ g2 Av -~ yan
wt %

2 2 2 2
(;L+%)<u+v+%‘) <n+u+d1+k+%‘)<u+y+%ﬁ>
2

o3 B
to+p+dy+ 7) + (crz+ci3 +plear + ) (B2 + ?(0! +u+d2))Ig

2\ s 2\ o
= —(ntutdi+k+ ) OG -D =9 |atpntd+ | OG-

e+ i3+ dlen +c3)) (B2 + %(a +u+d))Ig

= —r+(c2te+olcn+en)(B+ A

7(11 + 1+ d2))Ig,

A pBiSI (1—0)yR SE  OyR
LV = — =t Bl 4+ polg - P2 TR s - = - P
2 S+/31 + Balr z z 1=p)pi 7 7
_qPSIr kI alg  Bifa(1 —q)SIr  PivER " Bile+p+dr)lr
Egr R R n n n
o o} o} o} o
—B1 s 72 73 4 T4, T6
Pl +5u+é+ntk+tvty+dit o+ -+ 4+
A (A-0yR OyR qpSIg alg Bi
—e 0~ —— — — + B+ —(et+put+d))r
S E 1 Exr R "
o} o0} o o} o}
Su+8 k i+ 2B % %
St tktvty +di+ o+ o
and

LVy=(S+E+1+Eg+Ig+R*(A—uS+E)— (u+d)l — pEg
—(n+da)Ig — uR) + g(S+E+I + Egr+ Iz + R)7!
><(0le2 \% (722E2 \/(73212 \Y (742ER2 \Y 0521R2 \/062R2)
<S+E+I+Er+Ig+R°A—u(S+E+I+Er+Ir+R)
+§(S+ E+1+Er+Ig+ R 017 v o2’ vos*vos vos Vg
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=ASH+E+I+Eg+Ir+R’ —p(S+E+1+Eg+Ig+ R
< D—%(SGH+E9+1+16+1+ER9+1+IR9+‘+R9+‘).

Therefore, one can obtain

A
LV < —=Mh+ M(ci2+c13 + ¢ (cn +c23) (B + %(a +u+d2))Ig — 3

1-0)yR 0OyR SI 1
_(=OyR YR _apoSIk _alr 0 B
I 1 Ex R 0 (3.11)

_F

2
o2 o2 o o2 ol

5 k A+ + 243244450
o tntktvtytdit o+ oS+

Step 2. Prove £V < —1forall x € RE_\UE, where U, is defined as

1 1 1
ng{x€R6,8<S<—,8<1R<—,83<ER<—,82<R<—,
e e &3 g2

3 1 3
8<I<—3,8 <E<—3},
€ e

and 0 < ¢ < 1 is a small enough constant such that the following conditions hold

M(c12 +c13 + ¢ (o + c23)) (,32 + %(a +u +d2)> e <1, (3.12a)
(1+F) {1 L 11 ! }<1 (3.12b)
max,y—, —,—, —, ————— = T .
A qpfy a Oy (1-0)y €
0
e + F<-—1, (3.12¢)

where

F = sup {[M(Clz + 13+ ¢(c22 + ¢23)) (ﬂz + %(a +u+ dz)) + B2

IRER+

+%(a+u+d2)}1R—§I;+9+5u+8+n+k+v+y+d1

i
2

2 42 g2 g2

0y 0'3 04 0'6
2,3 474476 40 p .
t o +2+}<oo
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For the sake of convenience, we divide U{ £ Ri \ U, into the following twelve
domains

Di={xeRS,0<S<¢}, Dy={xecRS,0<Ig<e¢)
={X€R3_,0<ER<£3,S28,1RZ£}, D4={xeRi,0<R<52,1st},
={xeR6,0<1<83,R252}, D6={xeR6,O<E<e3,Rze2},

1 1
Dr={xeR{,§> -}, Dy={xeR}, Ig> -},
& &
1
D9={xe]R6+,ER>;},Dloz{xeR+,R>—}

1
Dy ={xeR}. 1> =), Dlzz{xeRé,E>—}
&

Clearly, U = D1 U Dy U --- U Dys. In the following, we will prove £V (x) < —1
for all x € U¢, that is, this conclusion holds on the above twelve domains.
Case 1. When x € D3, it yields from (3.11)

LV < —Mi+ M(cia+ci3 + ¢(cn + c23)) <,32 + %(Ol +u+ d2)> Ig — §1R1+9

2 2
+(,32+ﬂ—(a+M+d2))1R+5M+3+n+k+v+V+d1+7+ 22
2 2 2
93 9% | %
SR S '
ottt
1
_M)\+M(012+013+¢(C22+C23))(/32+%(a+l/«+d2))1R+J

IA

IA

=24 M(ci2+c13 + ¢lcn +¢23)) (B2 + %(Ot + w1+ dy))e.

By condition (3.12a), we can get £V < —1 on D;.
Case 2. When x € D* 2 Dy U D3 U D4 U Ds U Dg, one can see that

A A
$V§—§+F§——+F,xeD1,
&

S1
$V§—CI’B2—R+F§—@+F x € D3,
Egr e
ov<- R o % ir ven,
R g

0y R 0
$V§—VT+F§——V+F,xeD5,
&

gy < U0k . (-0

— F, x € Dg.
< I3 =< . + 6

It follows from the above inequalities and condition (3.12b) that £V < —1 on D*.
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Case 3. When x € D7, we have from (3.11)

o
4e0+1

$V§—§S9+1+F§— +F

Similarly, when x € U,‘lig D; we can also derive £V < — + F. From these

4eb+1

inequalities and condition (3.12¢), we finally have #V < —1 on D** £ U,li7 D;.
In summary of the above discussions, we finally obtain £’V < —1 forall x € U{.

Therefore, the condition (i) of Lemma 3.2 is satisfied. Thus, based on Lemma 3.2, it

can be obtained that the solution x(¢) of model (2.1) with initial value x(0) € R 1 s

ergodic and has a stationary distribution 7 (-). This completes the proof. O

Remark 3.3 When threshold value E)N‘{g < 1, it does not necessarily mean that the
solution of model (2.1) is stochastic extinction. In Sect 4, we would provide two
numerical examples to illustrate that under condition SR < 1, it is possible that the
solution x(¢) of model (2.1) with initial value x(0) € }Rg also could admit a ergodic
stationary distribution (see Fig.7 in Sect. 4.2), or x(¢) Would go to extinction (see
Fig. 15 in Sect. 4.5).

Now, we consider a special case for model (2.1), that is, # = 1 and ¢ = 0, then
model (2.1) becomes to

dS = (A — puS — (Bi1 + B2Ir)S)dt + 01Sd By (1),
E = (pBiSI — (1 + 8)E)dt + 02 EdBy (1),
dl = (1 —p)BiSI +3E —(n+ p+di + k) + yR)dt + 031dB3(1),
dER = (qB2SIg — (u +V)ER)dt + 04 ERd B4(2),
dlg = ((1 = q)B2SIg +nl — (u+ da)Ig + vER)dt + 051rd Bs(1),
= (kI — (w4 y)R)dt + o6 Rd Be(1).

(3.13)
The corresponding deterministic version of model (3.13) is
S _ A — S —
4E = pBISI — (u+ d)E,
dI
= (1= p)BISI+8E —(n+pu+d +k)I +yR,
(3.14)

"ER = qBaSIg — (i + v)Eg,
”’ﬁ = (1 —@)B2SIg +nl — (1 + da)Ig + vER,
% =kl — (u+y)R.
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In addition, when 0 = 1 and « = 0, the values 97{3 | and 5‘{32 separately become to

Ky PB1AS
Ry = o2 2 o2
L+ P +8+F)+pn+k+d+5)
1-— A k
n - (I=p)Bi 4 4 - -
(w+3)+pt+k+di+5) O+ptk+di+Hw+y+3)
and
Av 1-— A
0, = ap L (-gp

2 2 2 2 2 "
U+ PEAv+Pu+d+73)  w+Pu+d+F)

Further, the threshold value E)N‘ig = max{i)Nfi(S)l, S)N‘{gz} becomes to 9‘{3 = max {E)‘igl, 9‘{52}.
Hence, by Theorem 3.2, we have the following corollary on the existence of ergodic
stationary distribution for the solution of model (3.13).

Corollary 3.1 If R = max {R3,, R} > 1, then solution x(t) of model (3.13) with
initial value x(0) € Rg_ is ergodic and admits a stationary distribution.

In the following, it would indicate that the threshold value 85 = max {R5,, R}
is just right the extension of the basic reproduction number of corresponding deter-
ministic model (3.14) in the stochastic case. In fact, wheno; =0( =1, ..., 6), we
see that model (3.13) becomes to the deterministic model (3.14), the threshold values
9‘{(5),. become to Rg; fori = 1, 2, where

_ pBiAS(u+y)+ A = p)BiA(u+8)(n+y) + yku(pn +9)
B pw(p + 8+ w4k +d)(u+y)
_gBpAv+ A - A +v)

- (i +v) (1 + do)

Ror

(3.15)

Roz2

and 9‘{3 = max {9‘{31, %gz} becomes to Ry = max {Ro1, Ro2}.
Now, we will prove that the constant Ry = max {Ro1, Ro2} is exactly the basic
reproductive number of model (3.14).
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In fact, we can directly use the next generation matrix approach to calculate the
basic reproduction number of model (3.14). Let

pBi1SI
~ (1 —=p)BiSI
F= qB2SIR )
(1 —q)B2SIr
0
(n+8E
_ nm+wu+d +k)I —8E—yR
V= (w+v)EgR
(i +d2)Ir —nl —vER
—kI + (u+y)R

Hence, by calculating the Jacobi matrices of Fand V at Pp, we obtain

0 pBSe O 0 0
0(1—p)p1So 0 0 0
F=1]0 0 0 ¢gBSe 0],
0 0 0(1=¢)B2S0 0
0 0 0 0 0
w48 0 0 0 0
~ 5 n4u+ditk 0O 0 —y
V= 0 0 wu+v 0 0
0 —n —v u+dy O
0 —k 0 0 wu+y
It can be obtained by calculation
PpB1So3h3hghs pB1Sghih3hghs 0 0 PB1Sovhihahy
VI VI I\
(A=p)B1Sysh3hahs (1=p)B1Sohih3hshs 0 0 A=p)p1Sorhyh3hg
. Vi Vi Vi
FV~!' = B B -
4P Spdnh3hs qBrSonh1hzhs g2 Sohyv(hphs—ky) qBSohyh3(hphs—ky) 4By Sohthzym)
VI I\ I\ i\ I\
(=q)BaSodnhzhs  (1=q)BrSpdnhzhs  (1—)BaSohyvlhahs—ky) (1—q)aSohyhslhphs—ky) (1—q)BaSohih3yn
VI IV IV VI IV
0 0 0 0 0

wherehl—u+8 h=n+upu+di+k,h3=pn+v,hs =a+u+dy, hs = u+y,
and |V| denotes the determinant of matrix V. We know that the basic reproduction
number Ry of model (3.14) can be defined by Ry = p(FV™1).

By carefully calculating, we can obtain the characteristic equation of the matrix
Fv-! taking the following form

PE (/\ _ PBiSoA(u+y)+ U —p)iA(n+8)(n+y) )
i+ +pu+di +k)(u+y) — pnlu+dky
o ()\ _gh s+ (0 =) A+ V)> _o.
mlp +v) (e +dz)

(3.16)
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Obviously, Eq. (3.16) have a triple root A = 0 and two single roots

_ PBISOAG A y) + (L= pBIAGR A+ O+ )
YT a ) F p+di+ )+ y) — pln + 0ky
_ B A+ (1= B A +v)

A2
ulp +v)(p +dz)

Therefore, we further obtain Ry = p(ﬁ\Nf’l) = max{A, A2}.

On the other hand, from (3.15) we can obtain sign(Ro; — 1) = sign(A; — 1). Since
Ro2 = A2, we further easily prove sign(max{)q , A} — 1) = sign(max{Rm , Roa} —
1). This implies that the basic reproduction number R can also be defined by Ry =
max{Ro1, Ro2}, that is, we finally have Ry = Ry.

Therefore, the above discussions show that the threshold value i)‘ig of stochastic
model (3.13) is a direct extension of the basic reproduction number R of correspond-
ing deterministic model (3.14). From this, we further have 9‘{3 = p(is (\~7S)_1),
where

pBiA

0 = 0 0 0
nt30]
(1=p)BiA
oU=pBrg o 0
Kt30]
=S _ A
FF=|0o o o 4222 of.
Ht20]
(1=9) B A
0 0 0C=RR0
nt30j
0o 0 o0 o0 O
pts+303 0 0 0 0
B -8 ntptdi+k+io? 0 0 —y
VS = 0 0 ptvila? 0 0
0 -1 -V //.+dz+%052 0
0 —k 0 0 puty+iod

This further shows that the stochastic threshold value 9%3 also can be defined by using
the next generation matrix method. Therefore, Corollary 3.1 can also be stated in the
following form:

If |/ = p(FS(VS)~!) > 1, then solution x(7) of model (3.13) with initial value
x(0) € Ri is ergodic and admits a stationary distribution.

Remark 3.4 In the general case « > 0 and 0 < 6 < 1 of model (2.1), for the corre-
sponding deterministic model (3.2) we take

pp1SI (L+8E—(1—6)yR
(1 —=p)BiSI m+p+d +kI—8E—60yR
F= qB2SIR V= (u+v)ER
(1 —q)B2SIg (@4 p+do)Ig —nl —vER
0 —kI —alg+ (u+y)R
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Calculating the Jacobi matrices of F and ) at Py, we obtain

0 pBiSo O 0 0

0 —=p)Bi1So O 0 0
F=|o 0 0 ¢Sy o],

0 0 0 —=¢g)B28 0

0 0 0 0 0

nw+ 8 0 0 0 —(1-0)y
-5 n+u+k+d O 0 —0y
V= 0 0 w+v 0 0
0 -7 Vv a+u+d 0
0 —k 0 —a nw+y

From this, for the stochastic model (2.1) we further define the matrices as follows

o 2BA o o 0

lH-%alz
0 (=p)B1A 0 0 0
wt5of
S _ A
FF=|0o o o 4222 of.
mt30i
(1—q)pr A
0 0 0520
Kt30j
0 0 0 0 0
u+d+507 0 0 0 -(1-0)y
-8 ntutdi+k+io? 0 0 —0y
VS = 0 0 v+l 0 0
0 —n -V oz+p.+d2+%052 0
0 —k 0 —a pty+io?

Aninteresting open problem is whether we can also obtain 5‘{3 = max{iﬁg 1 5‘{32} =
p(FS (VS)_I), and if condition ‘,)7{3 = ,O(FS (VS )_1) couldn’t be met, then whether
we can directly obtain that when spectral radius ,o(FS(VS )_1) > 1 then solution
x(t) of model (2.1) with initial value x(0) € Ri is ergodic and admits a stationary
distribution.

4 Numerical simulations

In this section, we perform numerical simulations of model (2.1) to both validate
theoretical results and explore the effect of prevention and control strategies on the
nosocomial infection prevalence. Firstly, we fix most of our parameter values from
literature (Hughes et al. 2017; Hurford et al. 2012; Juan et al. 2005; Melsen et al. 2013;
Schumacher et al. 2013; Wolkewitz et al. 2014) and calibrate the transmission rates
B1 and B2, based on a 9-37% health care associated infection acquisition percentage
obtained from Toronto teaching hospitals (Hughes et al. 2017). Secondly, we numer-

@ Springer



41 Page240f38 L. Wang et al.

ically verify the existence of ergodic stationary distribution by plotting the frequency
histogram fitting curves of solutions for our model. Moreover, we conduct global sen-
sitivity analysis to address the uncertainty of some key parameters by employing Latin
Hypercube Sampling (LHS) (Iman et al. 1981) and partial rank correlation coefficients
(PRCCs) Marino et al. (2008) methods. We then investigate impacts of key parameters
on the infected population with different strains (I (¢) and Iz (¢)) to more clearly illus-
trate the effect of prevention and control strategies on the prevalence of nosocomial
infection. In addition, two numerical examples are provided to exhibit the stochas-
tic extinction of nosocomial infection. By utilizing Milsteins higher-order method in
Higham (2001), model (2.1) is discretized as the corresponding discretization system
(where we set six independent the Gaussian random variables following N (0, 1) dis-
tribution and the time increment At = 0.01). We use Matlab 2017 b software to run
the discretization system and obtain the solution of model (2.1). The visualization of
charts and partial results for statistical analysis is achieved by using R 4.0.5 software,
(some specific libraries such as ‘ggcorrplot’, ‘ggplot2’ and ‘scatterplot3d’ etc.).

4.1 Calibrating the parameters 81 and 5,

We perform simulations on a middle sized hospital with 100 beds (Wolkewitz et al.
2014). The length of stay and hazard rate of death vary significantly among patients,
and for uninfected patients, we assume a discharge rate of 0.17 per day (Hurford et al.
2012) and a death rate of 0.02 per day (Wolkewitz et al. 2014). We thus have a baseline
discharge and death rate i = 0.19 per day, and set the admission rate A = uN. An
appropriate antibiotic treatment takes five to ten days, and may be even longer for
patients infected by resistant bacteria - who would require treatment corrections when
the 3-day lab results become available and confirm resistance. Therefore, we assume
that the average time for patients infected by sensitive strains getting their infections
under control is three days, where as that for those infected by resistant strains is six
days. The hazard ratio of discharge for patients with nosocomial infection is estimated
in between 1.0 and 2.3, and the hazard ratio of death to be in between 0.49 and
1.0 (Melsen et al. 2013; Schumacher et al. 2013). We thus parameterize the excess
discharge and death rates as 1.65 x 0.17 and 0.745 x 0.02, respectively, by adopting
the median values of hazard ratios in the estimated intervals. The uncertainties of the
parameters on discharge and death will be ultimately reflected and modeled by the
stochastic terms. Then the overall excess discharge and death rate is 0.29 per day. The
description of fixed and calibrated parameters are summarized in Tables 1 and 2.

Here, we fix y = 0.15, 5§ = v = 0.013 and n = 0.025 and other parameters of
model (2.1) are given in Tables 1 and 2. We set all variances o; = 0.05 (i =1, ..., 06).
And in the long run, the solution of model (2.1) with any positive initial values would
approach to a stable state, so the influence of the changes of the initial values on
solution curves will fade out. Thus we set the initial values as S(0) = 85, E(0) = 10,
1(0) =1, ERr(0) = 2, Ig(0) = 5 and R(0) = 2, and perform all simulations on a
daily basis (Fig. 1).

We calibrate the transmission rates 81 and S, by fitting the nosocomial infection
acquisition percentage to the range of 9-37% Hughes et al. (2017). Specifically, we
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Table 1 Parameter values on hospital settings

Parameter Value References

N—Number of beds 100 Assumed

n—Baseline death and dis- 0.17 4+ 0.02 day_1 Hurford et al. (2012) and
charge rate Wolkewitz et al. (2014))
A—Admission rate UN Assumed

n—Rate of resistance emer- 0.02-0.03 day_l Juan et al. (2005)

gence

y—Termination rate of antibi- 0.1-0.2 dayfl Hughes et al. (2017)

otic treatment

6—Reinfection  probability 0.1 Assumed
after treatment termination

first find that the model solution curves typically converge to the steady states after
50 days days (see Fig. 1). We thus calculate the average percentage of nosocomial
infection acquisition between 100-200 days, Q, as below:

2008, S() (1) + B2 Sk(t) Ir(1)d1

Q= A - 100

Next, for each pair of (81, B2), we run our model 100 times and calculate the number
of times when the corresponding Q value falls within the range of 9-37%. We perform
such simulation for a total of 380 value pairs and plot the number of times in Fig. 2.
Figure 3a depicts the distributions of the Q value based on various (81, B2) pairs. For
instance, the values of the infection acquisition Q in 100 random simulations all fall
into the range 9-37% for this case 81 = 0.022 and B> = 0.054. There is 0 out of 100
times for the infection acquisition Q falling into 9-37% with the combinations of both
B1 =0.011, B = 0.04 and B; = 0.026, B = 0.072. And in the rest of combinations
(B1 = 0.016, B2 = 0.044 and B; = 0.024, B, = 0.064), only part of the Q values fall
into the credible range.

In Fig. 2, the cells colored in red and labeled with 100 correspond to the best fitting
scenario for the parameter set (81, f2), i.e., [0.018, 0.022] x [0.05, 0.06] is the best
credible range for (81, B2). This also indicates that both larger and smaller values
for B1 and B, are unlikely to make the infection acquisition Q to fall into the known
range 9-37%. Moreover, Fig. 3b further shows the medians of infection acquisition Q
increase as 1 and $; increase. -

Figure4 shows the basic reproductive numbers i)‘ig based on each (81, B2) pair,
which fall between 1.15 and 1.5 under the credible transmission rates. By applying
LHS to generate 10,000 randonl samgles of tlle transmission rates (81, 82) in the
credible range, the box plots for 9“13 1 ER(S)Z, and 9‘{3 are depicted in Fig. 5. We find that
9}8 is greater than one with the median 1.384 and interquartile range (IQR) 0.1197,
which implies that nosocomial pathogens has been prevalent in the hospital for a long
time. In addition, from Table 3 we know that the resistant bacteria stain might dominate
the transmission.
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Table 2 Parameter values on bacterial strains

Parameter Notation Value References
Excess death and discharge dy 0.29 Melsen et al. (2013) and
rate due to infection Schumacher et al. (2013)
dy 0.29
Transmission rate B1 Calibrated
B2
Colonization probability P 0.5 Assumed
q 0.9
Infection development rate 8 0.013-0.0203 day*l Hughes et al. (2017)
v 0.013-0.0203 day~!
Treatment enforcement rate k 1/3 day*l Hughes et al. (2017)
a 1/6 day ™!

White rows refer to sensitive strains; gray row refer to resistant strains

90 T T T T T T T T T

80 b

70 —S(t) —E({t) —I(t) 1
Er() Ir(®

R(t)
60

50

40

30

20

0 50 100 150 200 250 300 350 400 450 500
Time T

Fig. 1 The evolution of a single path of solutions for model (2.1) with initial values
(8(0), E(0), 1(0), ER(0), Ir(0), R(0)) = (85,10, 1,2, 5,2), where 81 = 0.045, B = 0.058, y = 0.15,
8 = v =0.013, n = 0.025 and other parameters of model (2.1) are given in Tables 1 and 2

4.2 Stationary distribution

Theorem 3.2 indicates E)N‘ig > 1 is a sufficient but not necessary condition ensuring
the existence of a unique ergodic stationary distribution for the solutions of model
(2.1). In what follows, we would select different values of 81 and B>, and then plot the
frequency histogram fitting curves to verify this result by the following two situations:

(i) We choose 81 = 0.022, o = 0.05, y = 0.15,6 = v = 0.013, n = 0.025
and other parameters of model (2.1) are given in Tables 1 and 2, under which we
calculate Ry = 1.4019 > 1.

(i) We choose B; = 0.0155 and B, = 0.041 but other parameter values remain
unchanged, but we obtain D‘ig =0.9929 < 1.
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Fig.2 The heatmap of the frequency which the values of the infection acquisition Q fall into the known

range 9-37% in 100 random simulations. Simulations were carried out based on parameter values in Tables
1 and 2 and initial value (S(0), E(0), 1(0), Eg(0), Ir(0), R(0)) = (85,10, 1,2,5,2).

60.0%
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(a) Box plot of the infection acquisition Q (b) Medians of the infection acquisition @

Fig. 3 Statistic graphs of the infection acquisition Q falling into the known range 9-37% in 100 random
simulations under various combinations of 81 and

As shown in Figs. 6 and 7, both solutions of rgodel (2.1) with differgnt B1 and B, could
present good stationary properties no matter 9‘{8 > 1 (seeFig.6)or 9{(5) < 1(seeFig.7).
Then, we separately implement 10,000 simulations with five different initial values for
two different situations, (value 1: (85, 10, 1, 2, 5, 2); value 2: (35, 20, 40, 10, 25, 60);
value 3: (50, 50, 100, 20, 35, 34); value 4: (10, 60, 51, 8, 15, 48); value 5: (100, 80, 60,
30, 45, 50)). Five groups of the frequency histogram fitting curves under two different
situations are displayed in Figs. 8 and 9, respectively, which all clearly demonstrate that
the density functions of the solution for model (2.1) separately converge to the same
functions regardless of where the initial values start from. That is, there would exist
a uniquely ergodic stationary distribution of solutions for model (2.1) when 9%3 > 1
whereas it’s also possible that the solution of model (2.1) is ergodic and admits a
stationary distribution when 9%3 < 1, as described in Remark 3.3.
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Fig.4 The heatmap of the basic reproductive number for nosocomial outbreak S)N‘{g at various presumable
values of 81 and >
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Fig.5 Box plots of the basic reproductive number for nosocomial outbreaks of both stains, based on LHS
method generating 10,000 samples for transmissionrates (81, B2) in the best fitting scenario [0.018, 0.023] x

[0.048, 0.062]

4.3 Sensitivity analysis

In the following, we perform global sensitivity analysis to investigate the influence
of the parameters on the basic reproductive number for nosocomial outbreak i)‘ig and
infection acquisition Q. By using LHS method, we generate 2,000 random param-
eter combinations and evaluate the corresponding values of partial rank correlation
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Table 3  Distribution characteristic of the basic reproductive number for nosocomial outbreaks of both
stains

Item Minimum Median (P5, P75) Mean Maximum
5‘%51 1.150 1.308 (1.229, 1.386) 1.308 1.465
R, 1.158 1327 (1.242, 1.411) 1327 1496
5‘%5 1.158 1.384 (1.316, 1.436) 1.371 1.496
90 T T
S(t) E(t) Eq®
80 7
70
60
6 ( " — () —R(1) [0
50 - b
4 ]
401 1

0 . . . .
0 100 200 300 400 500

Time T

Fig. 6 The evolutions of a single path of solutions for model (2.1) with initial value (S(0), E(0),
1(0), Eg(0), Ig(0), R(0)) = (85,10, 1, 2,5, 2), where 81 = 0.022, 8, = 0.05,y = 0.15,8 = v = 0.013,
n = 0.025 and other parameters of model (2.1) are given in Tables 1 and 2

coefficients (PRCCs) for the various input parameters (i.e., 81, B2, 8, v, n, v, k, 0, «
and o; (i = 1,...,6)) against the output variables (i)‘{g and Q). We assume that all
model parameters are drawn based on uniform distributions, where 7, y, § and v are
drawn based on the ranges in Tables 1 and 2, 81 and B, are drawn from their calibrated
ranges, and all other parameters are perturbed based on their fixed values. Specifically,
k ~ Uniform(0.33, 0.34), a ~ Uniform(0.16, 0.168), 6 ~ Uniform(0.08, 0.12), and
o; ~ Uniform(0.04, 0.06) fori =1, s 6.

Figure 10 shows that the values of 9‘18 and Q are most sensitive to the transmission
rats 81 and B, and the infection development rates § and v. In particular, there iﬁ a
strongest positive correlation between the transmission rate for resistant strain and 9%3
(with PRCCs value 0.9561), Q (with PRCCs value 0.7853). On the other hand, gig
and Q are negatively correlated with the treatment enforcement rates k and «. These
suggest that reducing transmission rates, shortening infection progression rates, and
enhancing treatment accuracy for infected patients are all effective strategies to avoid
nosocomial infection outbreaks and prevalence.
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Fig.8 The frequency histogram fitting curves of the solutions for model (2.1) under the parameters g =
0.022 and B, = 0.05, with five different initial values based on the 10,000 sample paths

In addition, the above findings also indicate that the infection caused by resistant

strain plays a vital role in the transmission of nosocomial bacteria. Moreover, the
randomness resulted from discharge and death does not appear to impact the outbreak
and transmission potential of nosocomial pathogens.

4.4 Control strategies analysis

(i) Reducing the transmission rate of sensitive/resistant strains.
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Fig. 11 The trend plots of /(¢) and I (¢) vary with parameters 81 and B,

The reduction of transmission rates can be achieved by strengthening the adherence
of hand hygiene and disinfection policies on medical instruments. Figure 11 demon-
strates that when the transmission rate of sensitive strain 8 reduces, I (¢) markedly
declines despite slight increase in /g (¢). Such phenomenon can be explained by the
competitive exclusion principle in ecology, and is observed as expected. The infected
population for both strains would decrease significantly when both transmission rates
are reduced. Hence, cutting off the transmission routes of pathogenic bacteria could
effectively reduce the risk of nosocomial infection from these aspects together: medical
staff, patients and the environment of hospital wards. For instance, sterile opera-
tion should be implemented at the course of surgeries and nursing care, precision
instruments, syringes, catheters efc. would be regularly counted and disinfected, the
compliance of hand hygiene for medical workers and volunteers should be strength-
ened. Washing hands for family members of patients would be encouraged and visiting
hours should be shortened, patients’ ward should be regularly decontaminated and the
ward trash should be cleaned up in time, etc.

(i) Extending latent period of patients colonized with sensitive/resistant strains.

Patients colonized with sensitive and resistant strains can develop infections after
latent period % and %, respectively. As shown in Fig. 12, both 1 (¢) and I (¢) distinctly
decrease and keep themselves at a relatively low level. This shows that nosocomial
infection could be controlled at a low level if it takes a longer time for colonized
patients to develop infections. Strategies such as monitoring targeted infection cases,
early diagnosis and therapy for patients, and strength exercise for improving immunity
of patients may help with the prevention of infection development.
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Fig.12 The trend plots of /() and I (¢) vary with parameters § and v

(iii)) Improving treatment accuracy and preventing antibiotic resistance.

Figure 13 shows that improving the treatment efficiency for sensitive strain infec-
tions can significantly reduce the prevalence of sensitive strains where that of resistant
strains are not crucially affected. Whereas improving the treatment efficiency for resis-
tant strain infections could in turn promote the prevalence of sensitive strains. In reality,
enhancing treatment accuracy for sensitive strain infections are relatively feasible, but
this could be hindered by the fear of resulting in higher prevalence of resistant strains.
Our simulation indicates that there would be no harm on the ecology of nosocomial
pathogens if only treatment accuracy of sensitive strains can be improved. Further, our
simulation of varying the value of resistance development rate n shows increases of
resistant strains and decrease of sensitive strains, which are expected results.

4.5 Stochastic extinction for model (2.1)

In the following, we would provide the two numerical examples to exhibit the stochas-
tic extinction of nosocomial infection.

First of all, we choose the following feasible parameters to verify Theorem 3.1:
nw=002,A=08p=02,4g=0556=0.03360 =0.01,y =0.05n = 0.03,
d; =0.002, d» = 0.023, k = 0.04, v = 0.02, « = 0.03, B; = 0.0018, B> = 0.0017,
o1 =0.02, 00 = 0.45, 03 = 0.56, 04 = 0.59, 05 = 0.49 and 06 = 0.39, respectively.
By calculation, we obtain the basic reproduction number Ry for the deterministic
model (3.2) is 1.048 and a positive left eigenvector (&1, &, &3, &4, &5) corresponding
toRois (0.4937, 0.4252, 0.3936, 0.4853, 0.4303), and then 012—2p¢ = —0.0396 < 0,
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Fig. 13 The trend plots of /(¢) and I (¢) vary with parameters k,  and n

m = —0.0014 < 0, which are satisfied with the conditions of Theorem 3.1. As shown
in Fig. 14, the solution of stochastic model (2.1) would become extinct while the
solution of the deterministic system would be prevalent under the same parameter
values.

Next, we ~would show the stochastic extinction of nosocomial infection in model
(2.1) when 9‘{3 defined in Theorem 3.2 is less than one. Select these parameters in
model 2.1): u =042, A =14, p=0.2,9g =05, =0.3,0 =0.51, y =0.35,
n =0.23,d =0.102,d, = 036,k = 0.74, v = 0.28, « = 0.39, 81 = 0.38,
B2 = 047,01 =0.42, 02 = 0.35, 03 = 0.26, 04 = 0.39, 05 = 0.59 and o = 0.39,
respectively. By computation, we obtain %g ~ (0.7039 < 1, which are not satisfied
with the condition of Theorem 3.2. As shown in Fig. 15, the solution of stochastic
model (2.1) would become extinct. Combining this example and the one in Sect. 4.2
(Fig.7), it would be derived that condition 9{8 < 1 does not guarantees the solution
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Fig. 14 The evolution of a single path of solutions for model (2.1) and its corresponding deterministic
model (3.2). The initial value of all solutions is (20, 2, 0.51, 0.62, 0.75, 0.22)
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Fig. 15 The solution of model (2.1) becomes extinct when S)N“tg ~ 0.7039 < 1. The initial value of the

solution is (13, 10, 21, 12, 5, 4)

of stochastic model (2.1) must be extinct, but there may be existed a uniquely ergodic

stationary distribution of solutions for model (2.1).

5 Conclusion and discussion

In this paper, we derived a stochastic dynamical model about the transmission of bac-
terial strains among patients in a hospital setting, where the randomness of death and
discharge for all patients is modeled by introducing linear functions of white noise.
The dynamical behaviors for this model were analyzed. Firstly, we showed that large
randomness of death and discharge in colonized and infected patients may rule out
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the possibility of nosocomial outbreaks. This result is biologically sound because the
significant variance in the length of stay will result in less transmission caused by the
infectious patients while the uncolonized patient population are maintained at a reason-
able amount (012 < 2p in Theorem 3.1). The spectral radius analysis method applied
in the proof of the corresponding theorem is challenging and innovative because it
could be extended from traditional deterministic models or stochastic models with
only one infection route to sensitive and resistant strains infection routes in our paper.
Another highlight of this paper is, we defined the stochastic threshold value for noso-
comial outbreaks of both strains, and prove that when the model parameters exceed
this threshold, the system admits a unique stationary distribution with solutions being
ergodic by constructing suitable stochastic Lyapunov functions. However, this Lya-
punov function is very complex since there are sensitive and resistant strains infection
routes in this model, and we have obtained more general and milder conditions for
the existence and ergodicity of the stationary distribution, which is different from the
conditions related with the endemic equilibrium of the corresponding deterministic
model in Fu (2019).

It is not hard to show that, without the stochastic terms, the endemic steady state of
the corresponding deterministic system is globally stable when the basic reproductive
number is larger than one (Mccluskey 2006). Our results show that variances in death
and discharge will reduce the stochastic threshold value, and then reduce the poten-
tial of nosocomial outbreaks. It is worth mentioning that the spectral radius form of
stochastic threshold value is provided in the special case of model (2.1), similarly with
the corresponding deterministic system. We therefore conjecture that one can obtain
ergodic solution that admits a stationary distribution when this spectral radius is larger
than one, and will investigate it in our future work.

We performed numerical simulations to both validate the theoretical results and
investigate the effect of prevention and control strategies on the prevalence of nosoco-
mial infection. In particular, one of the highlights of numerical simulations is to select
credible transmission rates by calibrating them to known range of the health-care asso-
ciated infection acquisition, which is also different from stochastic simulations in the
previous literature Wang et al. (2018, 2021). Additionally, based on the result of global
sensitivity analysis, we explored the effect of prevention and control strategies on the
prevalence of nosocomial infection. Our simulation results suggest a number of infec-
tion control strategies such as enhancing hygiene, preventing infections, improving
treatment accuracy, shortening the treatment length, etc..

Last but not least, from the modeling point of view, there are more than one direc-
tions to formulate randomness in epidemiological models. Here we adopt the idea used
mostly in financial modeling (Mao 2008; Lan et al. 2021). In some studies, stochas-
tic models can be derived for each model parameters with random values (Allen
2016). In many other studies, the population compartments are first formulated as a
continuous-time random variable with integer values by considering random trans-
mission events (Allen 2008). In addition, from the perspective of genetic mechanism,
gene transcription, translation and transportation in the process of co-circulation of
antibiotic-sensitive and antibiotic-resistant bacterial strains are not completed instanta-
neously and will take some time (Monk 2003), therefore, studies on stochastic models
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with consideration of time delays are potential future directions towards realistic appli-
cations of this modeling framework (Xu et al. 2021).

Acknowledgements This work was supported by National Natural Science Foundation of China
[12061079, 12026236], Scientific and Technological Activities for Overseas Students in Shanxi Province
[20210049], National Science Foundation [DMS-1853622, DMS-2052648]. Project of Top-notch Talents
of Technological Youth of Xinjiang [ 2022TSYCCXO0108].

Data availability Data sharing is not applicable to this article as no new data were created or analyzed in
this study.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Allen LJS (2008) An introduction to stochastic epidemic models. Mathematical epidemiology. Springer,
Berlin, pp 81-130

Allen E (2016) Environmental variability and mean-reverting processes. Discrete Contin Dyn Syst Ser B
21(7):2073-2089

Austin DJ, Bonten MJM, Weinstein RA et al (1999) Vancomycin-resistant enterococci in intensive-care
hospital settings: transmission dynamics, persistence, and the impact of infection control programs. P
Natl Acad Sci USA 96:6908-6913

Bailey NTJ (1964) Some stochastic models for small epidemics in large populations. J R Stat Soc Ser C
Appl Stat 13(1):9-19

Berman A, Plemmons RJ (1979) Nonnegative matrices in the mathematical sciences. Academic Press, New
York

Bonhoeffer S, Lipsitch M, Levin BR (1997) Evaluating treatment protocols to prevent antibiotic resistance.
Proc Natl Acad Sci USA 94(22):12106-12111

Browne C, Wang M, Webb GF (2017) A stochastic model of nosocomial epidemics in hospital intensive
care units. Electron J Qual Theor 6:1-12

Cen X, Feng Z, Zheng Y, Zhao Y (2017) Bifurcation analysis and global dynamics of a mathematical model
of antibiotic resistance in hospitals. ] Math Biol 75:1463-1485

Cooper BS, Medley GF, Stone SP et al (2004) Methicillin-resistant Staphylococcus aureus in hospitals and
the community: Stealth dynamics and control catastrophes. Proc Natl Acad Sci USA 101:10223-10228

D’ Agata EMC, Webb G, Horn M (2005) A mathematical model quantifying the impact of antibiotic exposure
and other interventions on the endemic prevalence of vancomycin-resistant enterococci. J Infect Dis
11:2004-2011

Driessche PVD, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for com-
partmental models of disease transmission. Math Biosci 180:29-48

Feng X, Liu L, Tang S, Huo X (2019) Stability and bifurcation analysis of a two-patch SIS model on
nosocomial infections. Appl Math Lett 102:106097

Fu X (2019) On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic
model. Physica A 523:1008-1023

Hughes J, Huo X, Falk L et al (2017) Benefits and unintended consequences of antimicrobial de-escalation:
implications for stewardship programs. PLoS One 12(2):e0171218

Higham DJ (2001) An algorithmic introduction to numerical simulation of stochastic differential equations.
SIAM Rev 43:525-546

Hurford A, Morris AM, Fisman DN, Wu J (2012) Linking antimicrobial prescribing to antimicrobial resis-
tance in the ICU: before and after an antimicrobial stewardship program. Epidemics 4(4):203-210

Ikeda N, Watanabe S (1977) A comparison theorem for solutions of stochastic differential equations and
its applications. Osaka J Math 14(3):619-633

@ Springer



41 Page380f38 L.Wang et al.

Iman RL, Helton JC, Campbell JE (1981) An approach to sensitivity analysis of computer models: I-
introduction, input variable selection and preliminary variable assessment. J Qual Technol 13(3):174—
183

Juan C, Gutiérrez O, Oliver A et al (2005) Contribution of clonal dissemination and selection of mutants
during therapy to pseudomonas aeruginosa antimicrobial resistance in an intensive care unit setting.
Clin Microbiol Infect 11(11):887-892

Khasminskii R (2011) Stochastic stability of differential equations. Springer, Berlin

Kutoyants YA (2004) Statistical inference for ergodic diffusion processes. Springer, London

Lan G, Yuan S, Song B (2021) The impact of hospital resources and environmental perturbations to the
dynamics of SIRS model. J Frankl Inst 358(4):2405-2433

Mao X (2008) Stochastic differential equations and applications. Horwood, Chichester

Marino S, Hogue 1B, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and
sensitivity analysis in systems biology. J Theor Biol 254:178-196

Mccluskey CC (2006) Lyapunov functions for tuberculosis models with fast and slow progression. Math
Biosci Eng 3(4):603-614

Melsen WG, Rovers MM, Groenwold RH et al (2013) Attributable mortality of ventilator-associated pneu-
monia: a meta-analysis of individual patient data from randomised prevention studies. Lancet Infect
Dis 13(8):665-671

Monk NAM (2003) Oscillatory expression of Hes1, p53, and NF-«B driven by transcriptional time delays.
Curr Biol 13(16):1409-1413

Schumacher M, Allignol A, Beyersmann J et al (2013) Hospital-acquired infections-appropriate statistical
treatment is urgently needed! Int J Epidemiol 42(5):1502—1508

Smith DL, Dushoff J, Perencevich EN et al (2004) Persistent colonization and the spread of antibiotic
resistance in nosocomial pathogens: resistance is a regional problem. Proc Natl Acad Sci USA
101(10):3709-3714

Stenehjem E, Hersh AL, Sheng X et al (2016) Antibiotic use in small community hospitals. Clin Infect Dis
63(10):1273-1280

Sun C, Hsieh YH (2010) Global analysis of an SEIR model with varying population size and vaccination.
Appl Math Model 34:2685-2697

Wang Y, Jiang D, Alsaedi A, Hayat T (2018) Modelling a stochastic HIV model with logistic target cell
growth and nonlinear immune response function. Physica A 501:276-292

Wang L, Wang K, Feng X et al (2021) The effect of stochastic variability on transmission dynamics of
echinococcosis. J Biol Syst 29(4):895-926

Wolkewitz M, Cooper BS, Palomar-Martinez M et al (2014) Multilevel competing risk models to evaluate
the risk of nosocomial infection. Crit Care 18(2):1-11

World Health Organization (2006) Clean hands leading to safer health care for half the world’s pop-
ulation. https://www.who.int/news/item/10-11-2006-clean-hands-leading-to-safer-health-care-for-
half-the-world-s-population. Accessed 10 Nov 2022

World Health Organization (2022) Report signals increasing resistance to antibiotics in bacterial infections
in humans and need for better data. https://www.who.int/news/item/09-12-2022-report-signals-
increasing-resistance-to-antibiotics-in-bacterial-infections-in-humans-and-need-for-better-data.
Accessed 20 Dec 2022

Xu L, Suo J, Zhou J, Hu H (2021) Boundedness analysis of neutral stochastic differential systems with
mixed delays. Appl Math Lett 122:107545

Zhu C, Yin G (2007) Asymptotic properties of hybrid diffusion systems. SIAM J Control Optim 46:1155—
1179

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer


https://www.who.int/news/item /10-11-2006-clean-hands-leading -to-safer-health-care-for-half -the-world-s-population
https://www.who.int/news/item /10-11-2006-clean-hands-leading -to-safer-health-care-for-half -the-world-s-population
https://www.who.int/news/item/ 09-12-2022-report-signals-increasing-resistance -to-antibiotics-in-bacterial-infections -in-humans-and-need-for-better-data
https://www.who.int/news/item/ 09-12-2022-report-signals-increasing-resistance -to-antibiotics-in-bacterial-infections -in-humans-and-need-for-better-data

	A stochastic dynamical model for nosocomial infections with co-circulation of sensitive and resistant bacterial strains
	Abstract
	1 Introduction
	2 Model description
	3 Main results
	3.1 Stochastic extinction
	3.2 Stationary distribution

	4 Numerical simulations
	4.1 Calibrating the parameters β1 and β2
	4.2 Stationary distribution
	4.3 Sensitivity analysis
	4.4 Control strategies analysis
	4.5 Stochastic extinction for model (2.1)

	5 Conclusion and discussion
	Acknowledgements
	References


