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Abstract

Nosocomial infections (hospital-acquired) has been an important public health prob-
lem, which may make those patients with infections or involved visitors and hospital
personnel at higher risk of worse clinical outcomes or infection, and then consume
more healthcare resources. Taking into account the stochasticity of the death and
discharge rate of patients staying in hospitals, in this paper, we propose a stochastic
dynamical model describing the transmission of nosocomial pathogens among patients
admitted for hospital stays. The stochastic terms of the model are incorporated to cap-
ture the randomness arising from death and discharge processes of patients. Firstly,
a sufficient condition is established for the stochastic extinction of disease. It shows
that introducing randomness in the model will result in lower potential of nosocomial
outbreaks. Further, we establish a threshold criterion on the existence of stationary
distribution and ergodicity for any positive solution of the model. Particularly, the
spectral radius form of stochastic threshold value is calculated in the special case.
Moreover, the numerical simulations are conducted to both validate the theoretical
results and investigate the effect of prevention and control strategies on the preva-
lence of nosocomial infection. We show that enhancing hygiene, targeting colonized
and infected patients, improving antibiotic treatment accuracy, shortening treatment
periods are all crucial factors to contain nosocomial infections.
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1 Introduction

Nosocomial infection refers to infections acquired during stays in health-care facilities.
Patients admitted for hospital stays are under severe health conditions with weakened
immune systems, thus are extremely vulnerable to pathogens circulating among patient
population. According to the report of World Health Organization (World Health Orga-
nization 2006), about 1.4 million people are ill because of infections acquired in
hospitals at any given moment across the world. Approximately one-fourth patient
may be affected and the death toll reaches 5–10% of patients in some developing
countries. Further, the high frequency of antibiotic prescriptions could create an envi-
ronmental pressure for the transmission of drug-resistant pathogens (Stenehjem et al.
2016), such as methicillin-susceptible Staphylococcus aureus (MRSA), Vancomycin-
resistant Enterococci (VRE), and Multidrug-resistant Pseudomonas aeruginosa. A
new report in 2022 (World Health Organization 2022) revealed that high levels
(above 50%) of resistance were reported in bacteria frequently causing bloodstream
infections in hospitals, such as Klebsiella pneumoniae and Acinetobacter spp. These
life-threatening infections require treatment with last-resort antibiotics, such as car-

bapenems. Therefore, hospitals are believed as the epicenter of the spread of many
drug-resistant pathogens. How to reduce health care-associated infection and the
spread of antimicrobial resistance in hospitals has always become a focus of con-
cern.

As is well known, deterministic differential equation models have been developed to
simulate the transmission dynamics of antimicrobial pathogens in hospital populations,
where interventions such as hand hygiene, staff cohorting, antibiotic stewardship, treat-
ment accuracy, de-colonization, and isolation have been shown as effective strategies
to prevent and control the outbreak of nosocomial infections (Austin et al. 1999; Bon-
hoeffer et al. 1997; Cen et al. 2017; Cooper et al. 2004; D’Agata et al. 2005; Feng et al.
2019; Smith et al. 2004). Indeed the foundations of epidemic modelling are largely
based upon deterministic equations for the dynamics of populations. However, deter-
ministic models are only suitable when the numbers of the susceptible and the infective
are large (Bailey 1964). Usually disease outbreaks start from only a few cases, and
therefore incorporating stochasticity into the deterministic compartmental models is
necessary. Moreover, stochastic models can pick up intrinsic perturbations and give
a more accurate prediction, especially if the population size is small (Sun and Hsieh
2010). There are various types of stochastic fluctuations which can be incorporated
into the deterministic dynamics according to different situations. Among these consist
of making the constant parameters under the influence of direct random fluctuation
using Gaussian white noise (see e.g. Wang et al. 2018, 2021). This is a routine method
to include the effect of environmental variation in the disease transmission coeffi-
cient. In reality, the death and discharge rate of patients staying in hospitals is subject
to change stochastically: patients without nosocomial infections may experience low
death rate and high discharge rate, whereas infected patients may experience the oppo-
site. Given the small number of hospital patient population, any unexpected change
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of population in each compartment would significantly alter the distribution of dif-
ferent patient types hence impact the transmission dynamics. For example, a random
death or discharge of the only infectious patient could make the pathogen extinct right
away. Thus models considering randomness could generate rich simulated scenarios
that coincide with realistic observations. Browne et al. (2017) introduced randomness
in the infected patient population and obtained almost surely exponential stability in
probability of solution for a reduced two-dimensional stochastic differential equation
(SDE) model.

In this paper, we investigate a six-dimensional SDE model with features including
(1) uncolonized, colonized, and infected patients; (2) co-circulation of sensitive and
resistant bacterial strains; and (3) randomness of death and discharge for all patients.
For this model, we will mainly carry out the investigation of dynamical behaviors
including the stochastic extinction of nosocomial infections and existence of ergodic
stationary distribution, as well as the numerical simulations and analysis. The main
contributions and innovations in this paper are the following aspects:

(1) A sufficient criterion on stochastic extinction of nosocomial pathogens is estab-
lished by applying the spectral radius analysis method which is extended from
deterministic models or stochastic models with only one infection route to our
stochastic model with sensitive and resistant strains infection routes.

(2) We find a threshold depending on the variance of the random events, under which
the model admits a stationary distribution with solutions being ergodic by con-
structing a suitable Lyapunov function, and further derive the spectral radius form
of stochastic threshold value in the special case.

(3) In the numerical simulations, we first calibrate the transmission rates to known
range of the healthcare associated infection acquisition, and then conduct global
sensitivity analysis to investigate the influence of the key parameters on the
basic reproductive number for nosocomial outbreak and the healthcare associated
infection acquisition. Afterwards we explore the effect of prevention and control
strategies on the prevalence of nosocomial infection.

(4) The numerical examples are provided to verify the stochastic extinction of noso-
comial pathogens and to compare the behaviors of stochastic model and the
corresponding deterministic model.

The rest of this paper is organized as follows. Model description is given in next
section. Stochastic extinction and the existence of a ergodic stationary distribution of
solutions are investigated in Sect. 3. Numerical simulations are provided in Sect. 4. A
brief conclusion and discussion is presented in Sect. 5.

2 Model description

Nosocomial infection is also called hospital-acquired infection, including those
infections occurred during hospitalization or acquired in hospital but occurred after dis-
charge from hospital. The main infection targets are patients, hospital staff, emergency
cases, visitors and patients’ families. It is usually divided into two kinds: exogenous
infections (or cross infections) and endogenous infections (or autogenous infections).
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Pathogens causing exogenous infections come from outside the patient’s body, for
instance, other patients, carriers of pathogens (hospital staff and visitors), contami-
nated medical equipment, blood products, the ward environment. While the pathogens
responsible for endogenous infection are normal flora within or on the surface of the
patient’s body. Usually, due to the long-term use of antibiotics, immunosuppressants,
or hormones by patients, the patient’s microbiota is dysregulated, and lead to abnormal
proliferation of drug-sensitive bacteria and development of drug-resistant bacteria.

We consider the co-circulation of antibiotic-sensitive and antibiotic-resistant bacte-
rial strains among patients admitted in a hospital. Denote S as the uncolonized patients,
E and ER respectively as patients colonized by sensitive and resistant strain, I and IR

as patients infected by sensitive and resistant strain, and R as patients whose infections
are under control after sufficient periods of antibiotic treatments.

We assume a constant patient admission rate � and assume that all newly admitted
patients are uncolonized. Patients staying in the hospital are assumed to experience an
average rate resulted from death and discharge, μ, and are subject to extra randomness
based on their infection status. That is, patients in each compartment may experience
an extra death and discharge rate modeled by a Wiener process, Bi (t) (1 ≤ i ≤ 6),
where d Bi (t) follows a normal distribution with mean zero and variance dt . In other
words, the extra rate of per-unit random death and discharge for each patient class will
follow a normal distribution with mean zero and variance σi (1 ≤ i ≤ 6).

Infected patients are assumed to experience excess constant death rates, d1 and
d2, with respect to infection of sensitive and resistant strains. We ignore the roles of
transmission by healthcare workers in our model, and assume β1 and β2 as the trans-
mission rates of sensitive and resistant strains. Occasionally, patients may develop
acute infections upon immediate contraction with bacteria. So we assume patients
contracting the sensitive strain would either enter the colonized class with a probabil-
ity of p (slow progression) or enter the infected class with a probability of 1 − p (fast
progression). Patients contracting the resistant strain would follow similar dynam-
ics with a colonization probability of q and infection probability of 1 − q. Patients
colonized with sensitive and resistant strains can develop infections at rate δ and ν,
respectively. Infected patients with sensitive and resistant strains may have their infec-
tions under control by appropriate antibiotics at rate k and α, respectively, and then
enter the class R where they stop spreading the bacteria to others. Patients infected
with susceptible strain would develop mutations against the empiric antibiotics at rate
η and become infected by the resistant strain. Particularly, we assume well-treated
patients may terminate the treatment at rate γ and may either return to the infected
class with probability θ or stay colonized by the sensitive strain with probability 1−θ .
The model equations are then listed below:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d S = (� − μS − (β1 I + β2 IR)S)dt + σ1Sd B1(t),

d E = (pβ1SI − (μ + δ)E + (1 − θ)γ R)dt + σ2 Ed B2(t),

d I = ((1 − p)β1SI + δE − (η + μ + d1 + k)I + θγ R)dt + σ3 I d B3(t),

d ER = (qβ2SIR − (μ + ν)ER)dt + σ4 ERd B4(t),

d IR = ((1 − q)β2SIR + ηI − (α + μ + d2)IR + νER)dt + σ5 IRd B5(t),

d R = (k I − (μ + γ )R + α IR)dt + σ6 Rd B6(t),

(2.1)
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with initial values S(0) > 0 and E(0), I (0), ER(0), IR(0), R(0) ≥ 0. Bi (t) (1 ≤ i ≤

6) are mutually independent standard Brownian motions with Bi (0) = 0, and σ 2
i > 0

denotes the intensity of Bi (t), respectively. All parameters in model (2.1) are positive
constants.

3 Main results

Let (�,F , {Ft }t≥0, P) be a complete probability space with a filtration {Ft }t≥0 satis-
fying the usual conditions. We assume that model (2.1) is defined on probability space
(�,F , {Ft }t≥0, P). Denote R

n
+ = {x = (x1, x2, . . . , xn) ∈ R

n : xi > 0, 1 ≤ i ≤ n}.
For convenience, we denote x(t) = (S(t), E(t), I (t), ER(t), IR(t), R(t)).

Lemma 3.1 For any initial value x(0) ∈ R
6
+, solution x(t) of model (2.1) exists

uniquely and remains in R
6
+ for all t ≥ 0 with probability one.

The proof of Lemma 3.1 is similar to Theorem 3.1 given in Mao (2008) by using
the following assistant function

V (x) =

(
S − a − a ln

S

a

)
+ (E − 1 − ln E) + (I − 1 − ln I ) + (ER − 1 − ln ER)

+ (IR − 1 − ln IR) + (R − 1 − ln R)

with a = min{μ+d1
β1

,
μ+d2

β2
}.

Next, we introduce the following results on the stationary distribution and ergodic
properties of solutions for stochastic differential equations.

Let y(t) = (y1(t), y2(t), . . . , yn(t)) be a regular time-homogeneous Markov pro-
cess in R

n
+ described by the following stochastic differential equation

dy(t) = b(y(t))dt +

k∑

r=1

σr (y(t))d Br (t), (3.1)

where b(y) = (b1(y), b2(y), . . . , bn(y)), σr (y) = (σ 1
r (y), σ 2

r (y) . . . , σ n
r (y)), and

Br (t) (r = 1, 2, . . . , k) are independent standard Brownian motions defined on
(�,F , {Ft }t≥0, P). The diffusion matrix A of model (3.1) is defined as follow

A(y) = (ai j (y)), ai j (y) =

k∑

r=1

σ i
r (y)σ

j
r (y).

Lemma 3.2 (Khasminskii 2011; Zhu and Yin 2007) The Markov process y(t) has
a unique ergodic stationary distribution π(·) if there exists a bounded open domain
U ⊂ R

n
+ with regular boundary and closure Ū ⊂ R

n
+, such that the following two

conditions are satisfied.
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(i) In the domain U and some neighborhood thereof, the smallest eigenvalue of the

diffusion matrix A(y) is bounded away from zero.

(ii) There exists a nonnegative C2-function V (·) : R
n
+ → R+ such that for some

constant α > 0

L V (y) =

n∑

i=1

bi (y)
∂V (y)

∂ yi

+
1

2

n∑

i, j=1

ai j (y)
∂2V (y)

∂ yi y j

≤ −α, ∀ y ∈ R
n
+ \ U .

Furthermore, if f (y) is a Borel measurable function with respect to measure π

defined on R
n
+, then we also have

P

(
lim

T →∞

1

T

∫ T

0
f (y(t))dt =

∫

R
n
+

f (y)π(dy)

)
= 1.

3.1 Stochastic extinction

In this subsection, we first focus on the possibility for nosocomial pathogens to become
extinct. By applying spectral radius analysis method, we will establish the sufficient
criterion on stochastic extinction of nosocomial pathogens. For this purpose, we need
to introduce the corresponding deterministic version of model (2.1). When σi ≡ 0
(i = 1, . . . , 6), model (2.1) degenerates into the following deterministic one

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d S
dt

= � − μS − (β1 I + β2 IR)S,

d E
dt

= pβ1SI − (μ + δ)E + (1 − θ)γ R,

d I
dt

= (1 − p)β1SI + δE − (η + μ + d1 + k)I + θγ R,

d ER

dt
= qβ2SIR − (μ + ν)ER,

d IR

dt
= (1 − q)β2SIR + ηI − (α + μ + d2)IR + νER,

d R
dt

= k I + α IR − (μ + γ )R.

(3.2)

Obviously, model (3.2) has a unique disease-free equilibrium P0 = (S0, 0, 0, 0, 0, 0),
where S0 = �

μ
. Using next generation matrix approach (Driessche and Watmough

2002), the rates of appearance of new infection and transition of patients are

F =

⎛
⎜⎜⎜⎜⎝

pβ1SI + (1 − θ)γ R

(1 − p)β1SI + δE + θγ R

qβ2SIR

(1 − q)β2SIR + ηI + νER

k I + α IR

⎞
⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎜⎜⎝

(μ + δ)E

(η + μ + d1 + k)I

(μ + ν)ER

(α + μ + d2)IR

(μ + γ )R

⎞
⎟⎟⎟⎟⎠

,
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respectively. Calculating the Jacobi matrices of F and V at P0, we obtain

F =

⎛
⎜⎜⎜⎜⎝

0 pβ1S0 0 0 (1 − θ)γ

δ (1 − p)β1S0 0 0 θγ

0 0 0 qβ2S0 0
0 η ν (1 − q)β2S0 0
0 k 0 α 0

⎞
⎟⎟⎟⎟⎠

,

V =

⎛
⎜⎜⎜⎜⎝

μ + δ 0 0 0 0
0 μ + η + k + d1 0 0 0
0 0 μ + ν 0 0
0 0 0 μ + α + d2 0
0 0 0 0 μ + γ

⎞
⎟⎟⎟⎟⎠

.

Further calculating V−1F, we can obtain

V−1F =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 pβ1 S0
μ+δ

0 0 (1−θ)γ
μ+δ

δ
η+μ+d1+k

(1−p)β1 S0
η+μ+d1+k

0 0 θγ
η+μ+d1+k

0 0 0 qβ2 S0
μ+ν

0

0 η
α+μ+d2

ν
α+μ+d2

(1−q)β2 S0
α+μ+d2

0

0 k
μ+γ

0 α
μ+γ

0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus, the basic reproduction number of model (3.2) can be defined by R0 = ρ(V−1F),
where ρ denotes the spectral radius of V−1F. Using the Perron-Trobenius theorem
(Berman and Plemmons 1979), the nonnegative matrix V−1F has a positive left eigen-
vector (ξ1, ξ2, ξ3, ξ4, ξ5) corresponding to eigenvalue R0 satisfying

(ξ1, ξ2, ξ3, ξ4, ξ5)R0 = (ξ1, ξ2, ξ3, ξ4, ξ5)V
−1F. (3.3)

Theorem 3.1 If σ 2
1 < 2μ, then solution x(t) of model (2.1) with initial value x(0) ∈

R
6
+ satisfies

lim sup
t→∞

1

t
ln
(
ρ1 E(t) + ρ2 I (t) + ρ3 ER(t) + ρ4 IR(t) + ρ5 R(t)

)
≤ m,

where

m =
[β1(ρ1 p + ρ2(1 − p))

ρ2
+

β2(ρ3q + ρ4(1 − q))

ρ4

] S0σ1

(2μ − σ 2
1 )

1
2

−
(

2
6∑

i=2

σ−2
i

)−1

+ min{μ + δ, η + μ + d1 + k, μ + ν, α + μ + d2, μ + γ }(R0 − 1)I{R0≤1}

+ max{μ + δ, η + μ + d1 + k, μ + ν, α + μ + d2, μ + γ }(R0 − 1)I{R0>1},

with ρ1 = ξ1
μ+δ

, ρ2 = ξ2
η+μ+d1+k

, ρ3 = ξ3
μ+ν

, ρ4 = ξ4
α+μ+d2

and ρ5 = ξ5
μ+γ

, and I is

an indicator function.
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Particularly, if m < 0, then limt→∞ E(t) = 0, limt→∞ I (t) = 0, limt→∞ ER(t) =

0, limt→∞ IR(t) = 0, limt→∞ R(t) = 0 a.s., and limt→∞
1
t

∫ t

0 S(s)ds =∫∞
0 xπ(x)dx a.s., where π(x) is given in (3.5) below.

Proof From the first equation of model (2.1) and Lemma 3.1, we can obtain

d S ≤ (� − μS)dt + σ1Sd B1(t).

Consider the following auxiliary system

d X = (� − μX)dt + σ1 Xd B1(t). (3.4)

It is easy to obtain by Theorem 1.16 in Kutoyants (2004) that system (3.4) has the
ergodic property with invariant density

π(x) = Hσ−2
1 x

−2− 2μ

σ2
1 e

− 2�

σ2
1 x (3.5)

for all x ∈ (0,∞), here H = σ 2
1 ( 2�

σ 2
1
)
1+ 2μ

σ2
1 �−1(1 + 2μ

σ 2
1
) is a constant such that

∫∞
0 π(x)dx = 1, and any solution X(t) of system (3.4) satisfies

lim
t→∞

1

t

∫ t

0
X(s)ds =

∫ ∞

0
xπ(x)dx a.s.. (3.6)

Let X(t) be the solution of system (3.4) with initial value X(0) = S(0). By the
comparison theorem of stochastic differential equation (Ikeda and Watanabe 1977),
we obtain

S(t) ≤ X(t) for all t ≥ 0 a.s..

Now, we define a C2-function W : R
5
+ → (0,+∞) by

W (E, I , ER, IR, R) = ρ1 E + ρ2 I + ρ3 ER + ρ4 IR + ρ5 R.

Denote U = ln W . Using Itô formula, we obtain

dU = L Udt +
1

W

(
ρ1σ2 Ed B2(t) + ρ2σ3 I d B3(t) + ρ3σ4 ERd B4(t)

+ ρ4σ5 IRd B5(t) + ρ5σ6 Rd B6(t)
)
,

(3.7)
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where

L U =
ρ1

W

(
pβ1SI − (μ + δ)E + (1 − θ)γ R

)
+

ρ2

W

(
(1 − p)β1SI + δE − (η + μ

+ d1 + k)I + θγ R
)
+

ρ3

W

(
qβ2SIR − (μ + ν)ER

)
+

ρ4

W

(
(1 − q)β2SIR

+ ηI − (α + μ + d2)IR + νER

)
+

ρ5

W

(
k I − (μ + γ )R + α IR

)

−
(ρ1σ2 E)2

2W 2
−

(ρ2σ3 I )2

2W 2
−

(ρ3σ4 ER)2

2W 2
−

(ρ4σ5 IR)2

2W 2
−

(ρ5σ6 R)2

2W 2

=
1

W

{
ρ1
(

pβ1S0 I − (μ + δ)E + (1 − θ)γ R
)
+ ρ1 pβ1(S − S0)I

+ ρ2
(
(1 − p)β1S0 I + δE − (η + μ + d1 + k)I + θγ R

)

+ ρ2(1 − p)β1(S − S0)I + ρ3
(
qβ2S0 IR − (μ + ν)ER

)

+ ρ3qβ2q(S − S0)IR + ρ4
(
(1 − q)β2S0 IR + ηI − (α + μ + d2)IR + νER

)

+ ρ4β2(1 − q)(S − S0)IR + ρ5
(
k I − (μ + γ )R + α IR

)}

−
(ρ1σ2 E)2

2W 2
−

(ρ2σ3 I )2

2W 2
−

(ρ3σ4 ER)2

2W 2
−

(ρ4σ5 IR)2

2W 2
−

(ρ5σ6 R)2

2W 2
.

Since

W 2 =

(
ρ1σ2 E ·

1

σ2
+ ρ2σ3 I ·

1

σ3
+ ρ3σ4 ER ·

1

σ4
+ ρ4σ5 IR ·

1

σ5
+ ρ5σ6 R ·

1

σ6

)2

≤
[
(ρ1σ2 E)2 + (ρ2σ3 I )2 + (ρ3σ4 ER)2 + (ρ4σ5 IR)2 + (ρ5σ6 R)2

] 6∑

i=2

1

σ 2
i

,

and by (3.3), we further obtain

L U ≤
β1(S − S0)I

W

[
ρ1 p + ρ2(1 − p)

]
+

β2(S − S0)IR

W

[
ρ3q + ρ4(1 − q)

]
−

(
2

6∑

i=2

σ−2
i

)−1

+
1

W
(ξ1, ξ2, ξ3, ξ4, ξ5)

(
V−1F(E, I , ER, IR, R)T − (E, I , ER, IR, R)T

)

≤
[β1(ρ1 p + ρ2(1 − p))

ρ2
+

β2(ρ3q + ρ4(1 − q))

ρ4

]
|X − S0| −

(
2

6∑

i=2

σ−2
i

)−1

+
1

W
(R0 − 1)(ξ1 E + ξ2 I + ξ3 ER + ξ4 IR + ξ5 R)

≤
[β1(ρ1 p + ρ2(1 − p))

ρ2
+

β2(ρ3q + ρ4(1 − q))

ρ4

]
|X − S0| −

(
2

6∑

i=2

σ−2
i

)−1

+ min{μ + δ, η + μ + d1 + k, μ + ν, α + μ + d2, μ + γ }(R0 − 1)I{R0≤1}

+ max{μ + δ, η + μ + d1 + k, μ + ν, α + μ + d2, μ + γ }(R0 − 1)I{R0>1},
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where

I{R0≤1} =

{
1, if R0 ≤ 1,

0, if R0 > 1,
and I{R0>1} =

{
1, if R0 > 1,

0, if R0 ≤ 1.

By (3.7) and the above inequality, we have

dU ≤
[β1(ρ1 p + ρ2(1 − p))

ρ2
+

β2(ρ3q + ρ4(1 − q))

ρ4

]
|X − S0| −

(
2

6∑

i=2

σ−2
i

)−1

+ min{μ + δ, η + μ + d1 + k, μ + ν, α + μ + d2, μ + γ }(R0 − 1)I{R0≤1}

+ max{μ + δ, η + μ + d1 + k, μ + ν, α + μ + d2, μ + γ }(R0 − 1)I{R0>1}

+
1

W

(
ρ1σ2 Ed B2(t) + ρ2σ3 I d B3(t) + ρ3σ4 ERd B4(t) + ρ4σ5 IRd B5(t) + ρ5σ6 Rd B6(t)

)
.

Integrating the above inequality from 0 to t and then dividing t on both sides leads to

U (t)

t
≤

U (0)

t
+

[
β1(ρ1 p + ρ2(1 − p))

ρ2
+

β2(ρ3q + ρ4(1 − q))

ρ4

]
1

t

∫ t

0
|X(s) − S0|ds

+ min{μ + δ, η + μ + d1 + k, μ + ν, α + μ + d2, μ + γ }(R0 − 1)I{R0≤1}

+ max{μ + δ, η + μ + d1 + k, μ + ν, α + μ + d2, μ + γ }(R0 − 1)I{R0>1}

−

(
2

6∑

i=2

σ−2
i

)−1

+
1

t
[M1(t) + M2(t) + M3(t) + M4(t) + M5(t)],

(3.8)

where M1(t) =
∫ t

0
ρ1σ2 E(s)

W (s)
d B2(s), M2(t) =

∫ t

0
ρ2σ3 I (s)

W (s)
d B3(s), M3(t) =

∫ t

0
ρ3σ4 ER(s)

W (s)
d B4(s), M4(t) =

∫ t

0
ρ4σ5 IR(s)

W (s)
d B5(s) and M5(t) =

∫ t

0
ρ5σ6 R(s)

W (s)
d B6(s) are

five local martingales. Because the quadratic variation of M1(t) is

〈M1, M1〉t = (ρ1σ2)
2
∫ t

0

(
E(s)

W (s)

)2

ds ≤ σ 2
2 t,

by using the strong law of large numbers for martingale, it yields (Mao 2008)
limt→∞

M1(t)
t

= 0. Similarly, we can obtain limt→∞
Mi (t)

t
= 0 (i = 2, . . . , 5).

In addition, since X(t) is ergodic and
∫∞

0 xπ(x)dx < ∞, we have

lim
t→∞

1

t

∫ ∞

0
|X(s) − S0|ds =

∫ ∞

0
|x − S0|π(x)dx ≤

(∫ ∞

0
(x − S0)

2π(x)dx

) 1
2

. (3.9)
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Furthermore, we calculate
∫∞

0 (x −S0)
2π(x)dx . We first have

∫∞
0 (x −S0)

2π(x)dx =

a0 − 2a1S0 + S2
0 , where a0 =

∫∞
0 x2π(x)dx and a1 =

∫∞
0 xπ(x)dx . Because

a0 =

∫ ∞

0
x2π(x)dx = Hσ−2

1

∫ ∞

0
x

− 2μ

σ2
1 e

− 2μ

σ2
1 x dx

= Hσ−2
1

(
2�

σ 2
1

)1− 2μ

σ2
1
∫∞

0 t

2μ

σ2
1

−2
e−t dt

= Hσ−2
1

(
2�

σ 2
1

)1− 2μ

σ2
1

�

(
2μ

σ 2
1

)

=

(
2�

σ 2
1

)2 �
( 2μ

σ 2
1

− 1
)

�

(
2μ

σ 2
1

+ 1

) =
2�2

μ(2μ − σ 2
1 )

=
2�S0

2μ − σ 2
1

and

a1 =

∫ ∞

0
xπ(x)dx = Hσ−2

1

∫ ∞

0
x

−(1+ 2μ

σ2
1

)

e
− 2�

σ2
1 x dx

= Hσ−2
1

(
2�

σ 2
1

)− 2μ

σ2
1
∫ ∞

0
t

2μ

σ2
1

−1
e−t dt

= Hσ−2
1

(
2�

σ 2
1

)− 2μ

σ2
1

�

(
2μ

σ 2
1

)

=
2�

σ 2
1

�

(
2μ

σ 2
1

)

�

(
2μ

σ 2
1

+ 1

) =
�

μ
= S0.

So, we obtain

∫ ∞

0
(x − S0)

2π(x)dx =
S2

0σ 2
1

2μ − σ 2
1

. (3.10)

Taking the superior limit on both sides in (3.8) and combining with (3.9), (3.10)
and limt→∞

Mi (t)
t

= 0 for i = 1, . . . , 5, we obtain

lim sup
t→∞

U (t)

t

≤
[β1(ρ1 p + ρ2(1 − p))

ρ2
+

β2(ρ3q + ρ4(1 − q))

ρ4

] S0σ1

(2μ − σ 2
1 )

1
2

−
(

2
6∑

i=2

σ−2
i

)−1

+ min{μ + δ, η + μ + d1 + k, μ + ν, α + μ + d2, μ + γ }(R0 − 1)I{R0≤1}

+ max{μ + δ, η + μ + d1 + k, μ + ν, α + μ + d2, μ + γ }(R0 − 1)I{R0>1} = m,

123



41 Page 12 of 38 L. Wang et al.

which is the required statement. If m < 0, then it is concluded that

lim sup
t→∞

ln E(t)

t
< 0, lim sup

t→∞

ln I (t)

t
< 0, lim sup

t→∞

ln ER(t)

t
< 0,

lim sup
t→∞

ln IR(t)

t
< 0, lim sup

t→∞

ln R(t)

t
< 0, a.s..

It means lim supt→∞ E(t) = 0 a.s., then by the positivity of the solution we
further obtain limt→∞ E(t) = 0 a.s.. Similarly, we can obtain limt→∞ I (t) =

limt→∞ ER(t) = limt→∞ IR(t) = limt→∞ R(t) = 0 a.s..
When limt→∞ E(t) = 0, limt→∞ I (t) = 0, limt→∞ ER(t) = 0, limt→∞ IR(t) =

0, limt→∞ R(t) = 0 a.s., then from the first equation of model (2.1) we further obtain

d S = (� − μS)dt + σ1Sd B1(t),

which is equivalent to the Eq. (3.4). Thus, from (3.6) we immediately obtain
limt→∞

1
t

∫ t

0 S(s)ds =
∫∞

0 xπ(x)dx a.s. This finishes the proof. �


Remark 3.1 Theorem 3.1 indicates that when σ 2
1 < 2μ and m < 0 hold, nosocomial

infection go to extinction with probability one. Meanwhile, the distribution of uncol-
onized patients S(t) weakly converge to the ergodic invariant distribution with the
density π(x). This result provides a distinction between our model (2.1) and its deter-
ministic version (3.2), which indicates that large randomness in death and discharge
can lead to pathogen extinction in the stochastic system while the pathogens are preva-
lent in the deterministic system under the same parameter values since in this case
there exists a possibility that the basic reproduction number R0 for the deterministic
model (3.2) is greater than 1. A numerical example provided in Sect. 4.5 shows that the
solution for the deterministic model is uniformly persistent as R0 = 1.048 while the
solution for the stochastic model becomes extinct (see Fig. 14). Therefore, randomness
may play a critical role in the transmission dynamics of nosocomial pathogens and
should be considered in modeling when significant uncertainty exists in the outflow
of patient population.

Remark 3.2 In the proof of Theorem 3.1, the spectral radius analysis method is used,
which is applied to deterministic models or stochastic models with only one infection
route. However, model (2.1) is six-dimensional SDE one and there are sensitive and
resistant strains infection routes, so the construction of Lyapunov function in Theorem
3.1 is challenging and innovative by using the spectral radius analysis method. This
is a highlight in this paper. On the other hand, although the explicit expression of the
basic reproduction number R0 for the deterministic model (3.2) can not be obtained
owing to the complexity of V−1F, an equivalent representation will be given in a
special situation in the next subsection.
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3.2 Stationary distribution

We define the basic reproductive number for nosocomial outbreak

R̃
S
0 = max{R̃S

01, R̃
S
02},

where

R̃
S
01 =

pβ1�δ

(μ +
σ 2

1
2 )(μ + δ +

σ 2
2
2 )(η + μ + k + d1 +

σ 2
3
2 )

+
(1 − p)β1�

(μ +
σ 2

1
2 )(η + μ + k + d1 +

σ 2
3
2 )

+
θγ k

(η + μ + k + d1 +
σ 2

3
2 )(μ + γ +

σ 2
6
2 )

and

R̃
S
02 =

qβ2�ν

(μ +
σ 2

1
2 )(μ + ν +

σ 2
4
2 )(α + μ + d2 +

σ 2
5
2 )

+
(1 − q)β2�

(μ +
σ 2

1
2 )(α + μ + d2 +

σ 2
5
2 )

+
θγ αη

(η + μ + k + d1 +
σ 2

3
2 )(α + μ + d2 +

σ 2
5
2 )(μ + γ +

σ 2
6
2 )

.

Theorem 3.2 If R̃
S
0 > 1, then solution x(t) of model (2.1) with initial value x(0) ∈ R

6
+

is ergodic and admits a stationary distribution π(·).

Proof From R̃
S
0 > 1, we can choose a positive constant φ such that λ > 0, where

λ � (η + μ + d1 + k +
σ 2

3

2
)(R̃S

01 − 1) + φ(α + μ + d2 +
σ 2

5

2
)(R̃S

02 − 1).

In fact, if R̃
S
01 > 1 and R̃

S
02 > 1 we can choose φ = 1, if R̃

S
01 ≤ 1 and R̃

S
02 > 1 we

can choose φ > 1 large enough, and if R̃
S
01 > 1 and R̃

S
02 ≤ 1 we can choose φ > 0

small enough.
The diffusion matrix of model (2.1) is given by

A = diag(σ 2
1 S2, σ 2

2 E2, σ 2
3 I 2, σ 2

4 E2
R, σ 2

5 I 2
R, σ 2

6 R2).

Let Z be any bounded domain in R
6
+ with the closure Z̄ ⊂ R

6
+, then we obviously

have

� = min
x∈Z̄

{σ 2
1 S2, σ 2

2 E2, σ 2
3 I 2, σ 2

4 E2
R, σ 2

5 I 2
R, σ 2

6 R2} > 0,

where x = (S, E, I , ER, IR, R). For any x ∈ Z̄ and ζ = (ζ1, ζ2, . . . , ζ6)
T ∈ R

6
+, we

further obtain

ζ T Aζ = σ 2
1 S2ζ 2

1 + σ 2
2 E2ζ 2

2 + σ 2
3 I 2ζ 2

3 + σ 2
4 E2

Rζ 2
4 + σ 2

5 I 2
Rζ 2

5 + σ 2
6 R2ζ 2

6 ≥ �|ζ |2,
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which indicates that the smallest eigenvalue of the diffusion matrix A(x) is bounded
away from zero in the domain Z and some neighborhood thereof, i.e., condition (i) in
Lemma 3.2 is satisfied.

Now, we show the feasibility of condition (ii) of Lemma 3.2. For this purpose, two
steps are organized to formulate a suitable Lyapunov function V (x) and a compact
subset Uε such that L V (x) ≤ −1 for all x ∈ R

6
+\Uε, where L V (x) is defined in

condition (ii) of Lemma 3.2, which is the factor of dt in Itô formula (see Mao 2008)
for V (x), where x = (S, E, I , ER, IR, R).

Step 1 Construct a non-negative Lyapunov function V (x).
Choose a sufficiently small positive constant θ satisfying ρ � μ − θ

2 (σ 2
1 ∨ σ 2

2 ∨

σ 2
3 ∨ σ 2

4 ∨ σ 2
5 ∨ σ 2

6 ) > 0. Then, we define a C2-function H : R
6
+ → (0,+∞) by

H(x) = MV1 + V2 + V3,

where

V1 = − ln I − c11 ln E − φ(ln IR + c21 ln ER) − (c12 + c13 + φ(c22 + c23)) ln S

− c14 ln R − φ(c24 ln I + c25 ln R) +
β1(c12 + c13 + φ(c22 + c23))

η
IR,

V2 = − ln S − ln E − ln I − ln ER − ln R −
β1

η
IR,

V3 =
1

θ + 1
(S + E + I + ER + IR + R)θ+1,

with

c11 =
pβ1�δ

(
μ +

σ 2
1
2

)(
μ + δ +

σ 2
2
2

)2
, c12 =

pβ1�δ
(

μ +
σ 2

1
2

)2 (
μ + δ +

σ 2
2
2

) ,

c13 =
(1 − p)β1�(

μ +
σ 2

1
2

)2
,

c14 =
θγ k

(
μ + γ +

σ 2
6
2

)2
, c21 =

qβ2�ν
(

μ +
σ 2

1
2

)(
μ + ν +

σ 2
4
2

)2
,

c22 =
qβ2�ν

(
μ +

σ 2
1
2

)2 (
μ + ν +

σ 2
4
2

) ,

c23 =
(1 − q)β2�(

μ +
σ 2

1
2

)2
, c24 =

θγ αη
(

η + μ + d1 + k +
σ 2

3
2

)2 (
μ + γ +

σ 2
6
2

) ,
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c25 =
θγ αη

(
η + μ + d1 + k +

σ 2
3
2

)(
μ + γ +

σ 2
6
2

)2

and M is a positive constant satisfying the condition

−Mλ + J < −2,

where

J = sup
IR∈R+

{
−

ρ

2
IR

θ+1 + (β2 +
β1

η
(α + μ + d2))IR + 5μ + δ + η + k

+ν + γ + d1 +
σ 2

1

2
+

σ 2
2

2
+

σ 2
3

2
+

σ 2
4

2
+

σ 2
6

2
+ D

}
< ∞

and

D = sup
x∈R

6
+

{
�(S + E + I + ER + IR + R)θ −

ρ

2
(S + E + I + ER + IR + R)θ+1

}
< ∞.

Since H(x) is continuous and lim infk→+∞ minx∈R
6
+\Uk

H(x) = +∞, where

Uk = ( 1
k
, k) × ( 1

k
, k) × ( 1

k
, k) × ( 1

k
, k) × ( 1

k
, k) × ( 1

k
, k), then H(x) has a mini-

mum point x∗ = (S∗, E∗, I ∗, E∗
R, I ∗

R, R∗) ∈ R
6
+.

Now, we structure a Lyapunov function as follows

V (x) = MV1 + V2 + V3 − H(x∗).

Obviously, V (x) is a nonnegative C2-function. By applying Itô formula, we get

L V1 = −(1 − p)β1 S −
c13�

S
+ c13

(
μ +

σ 2
1

2

)
−

δE

I
−

c11 pβ1 SI

E
−

c12�

S

+c11

(
μ + δ +

σ 2
2

2

)
+ c12

(
μ +

σ 2
1

2

)
−

θγ R

I
−

c14k I

R
−

c11(1 − θ)γ R

E
−

c14α IR

R

+(c12 + c13)(β1 I + β2 IR) + η + μ + d1 + k +
σ 2

3

2
+ c14

(
μ + γ +

σ 2
6

2

)

+φ
(
− (1 − q)β2 S −

c23�

S
+ c23

(
μ +

σ 2
1

2

)
−

c21qβ2 SIR

ER

−
c22�

S
−

νER

IR

+c21

(
μ + ν +

σ 2
4

2

)
+ c22

(
μ +

σ 2
1

2

)
−

ηI

IR

−
c24θγ R

I
−

c25α IR

R

+c24

(
η + μ + d1 + k +

σ 2
3

2

)
+ c25

(
μ + γ + +

σ 2
6

2

)
− c24(1 − p)β1 S

−
c24δE

I
−

c25k I

R
+ (c22 + c23)(β1 I + β2 IR) + α + μ + d2 +

σ 2
5

2

)

−
β1ν

η

(
c12 + c13 + φ(c22 + c23)

)
ER +

β1

η
(α + μ + d2)

(
c12 + c13 + φ(c22 + c23)

)
IR
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−β1(c12 + c13 + φ(c22 + c23))I −
β1

η

(
c12 + c13 + φ(c22 + c23)

)
(1 − q)β2 SIR

≤ −2
√

c13(1 − p)β1� + c13

(
μ +

σ 2
1

2

)
− 3 3

√
c11c12 pβ1�δ + c11

(
μ + δ +

σ 2
2

2

)

+c12

(
μ +

σ 2
1

2

)
− 2

√
c14θγ k + c14

(
μ + γ +

σ 2
6

2

)
+ η + μ + d1 + k +

σ 2
3

2

+φ
(
− 2

√
c23(1 − q)β2� + c23

(
μ +

σ 2
1

2

)
− 3 3

√
c24c25θγ αη + c24 (η + μ + d1 + k

+
σ 2

3

2

)
+ c25

(
μ + γ +

σ 2
6

2

)
− 3 3

√
c21c22qβ2�ν + c21

(
μ + ν +

σ 2
4

2

)
+ c22

(
μ +

σ 2
1

2

)

+α + μ + d2 +
σ 2

5

2

)
+
(
c12 + c13 + φ(c22 + c23)

)(
β2 +

β1

η
(α + μ + d2)

)
IR

= −
(1 − p)β1�

μ +
σ 2

1
2

−
pβ1�δ(

μ +
σ 2

1
2

)(
μ + δ +

σ 2
2
2

) −
θγ k

μ + γ +
σ 2

6
2

+ η + μ + d1 + k +
σ 2

3

2

+φ
(
−

(1 − q)β2�

μ +
σ 2

1
2

−
qβ2�ν(

μ +
σ 2

1
2

)(
μ + ν +

σ 2
4
2

) −
θγ αη(

η + μ + d1 + k +
σ 2

3
2

)(
μ + γ +

σ 2
6
2

)

+α + μ + d2 +
σ 2

5

2

)
+
(
c12 + c13 + φ(c22 + c23)

)(
β2 +

β1

η
(α + μ + d2)

)
IR

= −

(
η + μ + d1 + k +

σ 2
3

2

)
(R̃S

01 − 1) − φ

(
α + μ + d2 +

σ 2
5

2

)
(R̃S

02 − 1)

+
(
c12 + c13 + φ(c22 + c23)

)(
β2 +

β1

η
(α + μ + d2)

)
IR

= −λ +
(
c12 + c13 + φ(c22 + c23)

)(
β2 +

β1

η
(α + μ + d2)

)
IR ,

L V2 = −
�

S
+ β1 I + β2 IR −

pβ1 SI

E
−

(1 − θ)γ R

E
− (1 − p)β1 S −

δE

I
−

θγ R

I

−
qβ2 SIR

ER

−
k I

R
−

α IR

R
−

β1β2(1 − q)SIR

η
−

β1νER

η
+

β1(α + μ + d2)IR

η

−β1 I + 5μ + δ + η + k + ν + γ + d1 +
σ 2

1

2
+

σ 2
2

2
+

σ 2
3

2
+

σ 2
4

2
+

σ 2
6

2

≤ −
�

S
−

(1 − θ)γ R

E
−

θγ R

I
−

qβ2 SIR

ER

−
α IR

R
+ (β2 +

β1

η
(α + μ + d2))IR

+5μ + δ + η + k + ν + γ + d1 +
σ 2

1

2
+

σ 2
2

2
+

σ 2
3

2
+

σ 2
4

2
+

σ 2
6

2

and

L V3 = (S + E + I + ER + IR + R)θ (� − μ(S + E) − (μ + d1)I − μER

−(μ + d2)IR − μR) +
θ

2
(S + E + I + ER + IR + R)θ−1

×(σ1
2S2 ∨ σ2

2 E2 ∨ σ3
2 I 2 ∨ σ4

2 ER
2 ∨ σ5

2 IR
2 ∨ σ6

2 R2)

≤ (S + E + I + ER + IR + R)θ (� − μ(S + E + I + ER + IR + R))

+
θ

2
(S + E + I + ER + IR + R)θ+1(σ1

2 ∨ σ2
2 ∨ σ3

2 ∨ σ4
2 ∨ σ5

2 ∨ σ6
2)
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= �(S + E + I + ER + IR + R)θ − ρ(S + E + I + ER + IR + R)θ+1

≤ D −
ρ

2
(Sθ+1 + Eθ+1 + I θ+1 + ER

θ+1 + IR
θ+1 + Rθ+1).

Therefore, one can obtain

L V ≤ −Mλ + M(c12 + c13 + φ(c22 + c23))(β2 +
β1

η
(α + μ + d2))IR −

�

S

−
(1 − θ)γ R

E
−

θγ R

I
−

qβ2SIR

ER

−
α IR

R
+ (β2 +

β1

η
(α + μ + d2))IR

−
ρ

2
(Sθ+1 + Eθ+1 + I θ+1 + ER

θ+1 + IR
θ+1 + Rθ+1) + D + 5μ

+ δ + η + k + ν + γ + d1 +
σ 2

1

2
+

σ 2
2

2
+

σ 2
3

2
+

σ 2
4

2
+

σ 2
6

2
.

(3.11)

Step 2. Prove L V ≤ −1 for all x ∈ R
6
+\Uε, where Uε is defined as

Uε = {x ∈ R
6
+, ε < S <

1

ε
, ε < IR <

1

ε
, ε3 < ER <

1

ε3
, ε2 < R <

1

ε2
,

ε3 < I <
1

ε3
, ε3 < E <

1

ε3
},

and 0 < ε < 1 is a small enough constant such that the following conditions hold

M
(
c12 + c13 + φ(c22 + c23)

) (
β2 +

β1

η
(α + μ + d2)

)
ε ≤ 1, (3.12a)

(1 + F) max

{
1

�
,

1

qβ2
,

1

α
,

1

θγ
,

1

(1 − θ)γ

}
≤

1

ε
, (3.12b)

−
ρ

4ε1+θ
+ F ≤ −1, (3.12c)

where

F = sup
IR∈R+

{[
M
(
c12 + c13 + φ(c22 + c23)

) (
β2 +

β1

η
(α + μ + d2)

)
+ β2

+
β1

η
(α + μ + d2)

]
IR −

ρ

4
I 1+θ

R + 5μ + δ + η + k + ν + γ + d1

+
σ 2

1

2
+

σ 2
2

2
+

σ 2
3

2
+

σ 2
4

2
+

σ 2
6

2
+ D

}
< ∞.
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For the sake of convenience, we divide U c
ε � R

6
+ \ Uε into the following twelve

domains

D1 = {x ∈ R
6
+, 0 < S < ε}, D2 = {x ∈ R

6
+, 0 < IR < ε},

D3 = {x ∈ R
6
+, 0 < ER < ε3, S ≥ ε, IR ≥ ε}, D4 = {x ∈ R

6
+, 0 < R < ε2, IR ≥ ε},

D5 = {x ∈ R
6
+, 0 < I < ε3, R ≥ ε2}, D6 = {x ∈ R

6
+, 0 < E < ε3, R ≥ ε2},

D7 = {x ∈ R
6
+, S >

1

ε
}, D8 = {x ∈ R

6
+, IR >

1

ε
},

D9 = {x ∈ R
6
+, ER >

1

ε3
}, D10 = {x ∈ R

6
+, R >

1

ε2
},

D11 = {x ∈ R
6
+, I >

1

ε3
}, D12 = {x ∈ R

6
+, E >

1

ε3
}.

Clearly, U c
ε = D1 ∪ D2 ∪ · · · ∪ D12. In the following, we will prove L V (x) ≤ −1

for all x ∈ U c
ε , that is, this conclusion holds on the above twelve domains.

Case 1. When x ∈ D2, it yields from (3.11)

L V ≤ −Mλ + M
(
c12 + c13 + φ(c22 + c23)

) (
β2 +

β1

η
(α + μ + d2)

)
IR −

ρ

2
IR

1+θ

+ (β2 +
β1

η
(α + μ + d2))IR + 5μ + δ + η + k + ν + γ + d1 +

σ 2
1

2
+

σ 2
2

2

+
σ 2

3

2
+

σ 2
4

2
+

σ 2
6

2
+ D

≤ −Mλ + M
(
c12 + c13 + φ(c22 + c23)

)(
β2 +

β1

η
(α + μ + d2)

)
IR + J

≤ −2 + M
(
c12 + c13 + φ(c22 + c23)

)(
β2 +

β1

η
(α + μ + d2)

)
ε.

By condition (3.12a), we can get L V ≤ −1 on D2.
Case 2. When x ∈ D∗ � D1 ∪ D3 ∪ D4 ∪ D5 ∪ D6, one can see that

L V ≤ −
�

S
+ F ≤ −

�

ε
+ F, x ∈ D1,

L V ≤ −
qβ2SIR

ER

+ F ≤ −
qβ2

ε
+ F, x ∈ D3,

L V ≤ −
α IR

R
+ F ≤ −

α

ε
+ F, x ∈ D4,

L V ≤ −
θγ R

I
+ F ≤ −

θγ

ε
+ F, x ∈ D5,

L V ≤ −
(1 − θ)γ R

E
+ F ≤ −

(1 − θ)γ

ε
+ F, x ∈ D6.

It follows from the above inequalities and condition (3.12b) that L V ≤ −1 on D∗.
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Case 3. When x ∈ D7, we have from (3.11)

L V ≤ −
ρ

2
Sθ+1 + F ≤ −

ρ

4εθ+1
+ F .

Similarly, when x ∈
⋃12

i=8 Di we can also derive L V ≤ −
ρ

4εθ+1
+ F . From these

inequalities and condition (3.12c), we finally have L V ≤ −1 on D∗∗ �
⋃12

i=7 Di .

In summary of the above discussions, we finally obtain L V ≤ −1 for all x ∈ U c
ε .

Therefore, the condition (i i) of Lemma 3.2 is satisfied. Thus, based on Lemma 3.2, it
can be obtained that the solution x(t) of model (2.1) with initial value x(0) ∈ R

6
+ is

ergodic and has a stationary distribution π(·). This completes the proof. �


Remark 3.3 When threshold value R̃
S
0 < 1, it does not necessarily mean that the

solution of model (2.1) is stochastic extinction. In Sect. 4, we would provide two
numerical examples to illustrate that under condition R̃

S
0 < 1, it is possible that the

solution x(t) of model (2.1) with initial value x(0) ∈ R
6
+ also could admit a ergodic

stationary distribution (see Fig. 7 in Sect. 4.2), or x(t) would go to extinction (see
Fig. 15 in Sect. 4.5).

Now, we consider a special case for model (2.1), that is, θ = 1 and α = 0, then
model (2.1) becomes to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d S = (� − μS − (β1 I + β2 IR)S)dt + σ1Sd B1(t),

d E = (pβ1SI − (μ + δ)E)dt + σ2 Ed B2(t),

d I = ((1 − p)β1SI + δE − (η + μ + d1 + k)I + γ R)dt + σ3 I d B3(t),

d ER = (qβ2SIR − (μ + ν)ER)dt + σ4 ERd B4(t),

d IR = ((1 − q)β2SIR + ηI − (μ + d2)IR + νER)dt + σ5 IRd B5(t),

d R = (k I − (μ + γ )R)dt + σ6 Rd B6(t).

(3.13)

The corresponding deterministic version of model (3.13) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d S
dt

= � − μS − (β1 I + β2 IR)S,

d E
dt

= pβ1SI − (μ + δ)E,

d I
dt

= (1 − p)β1SI + δE − (η + μ + d1 + k)I + γ R,

d ER

dt
= qβ2SIR − (μ + ν)ER,

d IR

dt
= (1 − q)β2SIR + ηI − (μ + d2)IR + νER,

d R
dt

= k I − (μ + γ )R.

(3.14)
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In addition, when θ = 1 and α = 0, the values R̃
S
01 and R̃

S
02 separately become to

R
S
01 =

pβ1�δ

(μ +
σ 2

1
2 )(μ + δ +

σ 2
2
2 )(η + μ + k + d1 +

σ 2
3
2 )

+
(1 − p)β1�

(μ +
σ 2

1
2 )(η + μ + k + d1 +

σ 2
3
2 )

+
γ k

(η + μ + k + d1 +
σ 2

3
2 )(μ + γ +

σ 2
6
2 )

and

R
S
02 =

qβ2�ν

(μ +
σ 2

1
2 )(μ + ν +

σ 2
4
2 )(μ + d2 +

σ 2
5
2 )

+
(1 − q)β2�

(μ +
σ 2

1
2 )(μ + d2 +

σ 2
5
2 )

.

Further, the threshold value R̃
S
0 = max{R̃S

01, R̃
S
02} becomes to R

S
0 = max {RS

01,R
S
02}.

Hence, by Theorem 3.2, we have the following corollary on the existence of ergodic
stationary distribution for the solution of model (3.13).

Corollary 3.1 If R
S
0 = max {RS

01,R
S
02} > 1, then solution x(t) of model (3.13) with

initial value x(0) ∈ R
6
+ is ergodic and admits a stationary distribution.

In the following, it would indicate that the threshold value R
S
0 = max {RS

01,R
S
02}

is just right the extension of the basic reproduction number of corresponding deter-
ministic model (3.14) in the stochastic case. In fact, when σi ≡ 0 (i = 1, . . . , 6), we
see that model (3.13) becomes to the deterministic model (3.14), the threshold values
R

S
0i become to R0i for i = 1, 2, where

R01 =
pβ1�δ(μ + γ ) + (1 − p)β1�(μ + δ)(μ + γ ) + γ kμ(μ + δ)

μ(μ + δ)(η + μ + k + d1)(μ + γ )
,

R02 =
qβ2�ν + (1 − q)β2�(μ + ν)

μ(μ + ν)(μ + d2)

(3.15)

and R
S
0 = max {RS

01,R
S
02} becomes to R0 = max {R01,R02}.

Now, we will prove that the constant R0 = max {R01,R02} is exactly the basic
reproductive number of model (3.14).
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In fact, we can directly use the next generation matrix approach to calculate the
basic reproduction number of model (3.14). Let

F̃ =

⎛
⎜⎜⎜⎜⎝

pβ1SI

(1 − p)β1SI

qβ2SIR

(1 − q)β2SIR

0

⎞
⎟⎟⎟⎟⎠

,

Ṽ =

⎛
⎜⎜⎜⎜⎝

(μ + δ)E

(η + μ + d1 + k)I − δE − γ R

(μ + ν)ER

(μ + d2)IR − ηI − νER

−k I + (μ + γ )R

⎞
⎟⎟⎟⎟⎠

.

Hence, by calculating the Jacobi matrices of F̃ and Ṽ at P0, we obtain

F̃ =

⎛
⎜⎜⎜⎜⎝

0 pβ1S0 0 0 0
0 (1 − p)β1S0 0 0 0
0 0 0 qβ2S0 0
0 0 0 (1 − q)β2S0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

,

Ṽ =

⎛
⎜⎜⎜⎜⎝

μ + δ 0 0 0 0
−δ η + μ + d1 + k 0 0 −γ

0 0 μ + ν 0 0
0 −η −ν μ + d2 0
0 −k 0 0 μ + γ

⎞
⎟⎟⎟⎟⎠

.

It can be obtained by calculation

F̃Ṽ−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pβ1 S0δh3h4h5
|Ṽ|

pβ1 S0h1h3h4h5
|Ṽ|

0 0
pβ1 S0γ h1h3h4

|Ṽ|

(1−p)β1 S0δh3h4h5
|Ṽ|

(1−p)β1 S0h1h3h4h5
|Ṽ|

0 0
(1−p)β1 S0γ h1h3h4

|Ṽ|

qβ2 S0δηh3h5
|Ṽ|

qβ2 S0ηh1h3h5
|Ṽ|

qβ2 S0h1ν(h2h5−kγ )

|Ṽ|

qβ2 S0h1h3(h2h5−kγ )

|Ṽ|

qβ2 S0h2
1h3γ η)

|Ṽ|

(1−q)β2 S0δηh3h5
|Ṽ|

(1−q)β2 S0δηh3h5
|Ṽ|

(1−q)β2 S0h1ν(h2h5−kγ )

|Ṽ|

(1−q)β2 S0h1h3(h2h5−kγ )

|Ṽ|

(1−q)β2 S0h1h3γ η

|Ṽ|

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where h1 = μ+ δ, h2 = η+μ+d1 + k, h3 = μ+ ν, h4 = α +μ+d2, h5 = μ+γ,

and |Ṽ| denotes the determinant of matrix Ṽ. We know that the basic reproduction
number R0 of model (3.14) can be defined by R0 = ρ(̃FṼ−1).

By carefully calculating, we can obtain the characteristic equation of the matrix
F̃Ṽ−1 taking the following form

λ3
(

λ −
pβ1S0�(μ + γ ) + (1 − p)β1�(μ + δ)(μ + γ )

μ(μ + δ)(η + μ + d1 + k)(μ + γ ) − μ(μ + δ)kγ

)

×

(
λ −

qβ2�ν + (1 − q)β2�(μ + ν)

μ(μ + ν)(μ + d2)

)
= 0.

(3.16)
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Obviously, Eq. (3.16) have a triple root λ = 0 and two single roots

λ1 =
pβ1S0�(μ + γ ) + (1 − p)β1�(μ + δ)(μ + γ )

μ(μ + δ)(η + μ + d1 + k)(μ + γ ) − μ(μ + δ)kγ
,

λ2 =
qβ2�ν + (1 − q)β2�(μ + ν)

μ(μ + ν)(μ + d2)
.

Therefore, we further obtain R0 = ρ(̃FṼ−1) = max{λ1, λ2}.
On the other hand, from (3.15) we can obtain sign(R01 − 1) = sign(λ1 − 1). Since

R02 = λ2, we further easily prove sign
(

max{λ1, λ2} − 1
)

= sign
(

max{R01,R02} −

1
)
. This implies that the basic reproduction number R0 can also be defined by R0 =

max{R01,R02}, that is, we finally have R0 = R0.
Therefore, the above discussions show that the threshold value R

S
0 of stochastic

model (3.13) is a direct extension of the basic reproduction number R0 of correspond-
ing deterministic model (3.14). From this, we further have R

S
0 = ρ(̃FS

(
ṼS)−1

)
,

where

F̃S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 pβ1�

μ+ 1
2 σ 2

1
0 0 0

0 (1−p)β1�

μ+ 1
2 σ 2

1
0 0 0

0 0 0 qβ2�

μ+ 1
2 σ 2

1
0

0 0 0 (1−q)β2�

μ+ 1
2 σ 2

1
0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ṼS =

⎛
⎜⎜⎜⎝

μ+δ+ 1
2 σ 2

2 0 0 0 0

−δ η+μ+d1+k+ 1
2 σ 2

3 0 0 −γ

0 0 μ+ν+ 1
2 σ 2

4 0 0

0 −η −ν μ+d2+
1
2 σ 2

5 0

0 −k 0 0 μ+γ+ 1
2 σ 2

6

⎞
⎟⎟⎟⎠ .

This further shows that the stochastic threshold value R
S
0 also can be defined by using

the next generation matrix method. Therefore, Corollary 3.1 can also be stated in the
following form:

If R
S
0 = ρ(̃FS(ṼS)−1) > 1, then solution x(t) of model (3.13) with initial value

x(0) ∈ R
6
+ is ergodic and admits a stationary distribution.

Remark 3.4 In the general case α > 0 and 0 ≤ θ < 1 of model (2.1), for the corre-
sponding deterministic model (3.2) we take

F =

⎛
⎜⎜⎜⎜⎝

pβ1SI

(1 − p)β1SI

qβ2SIR

(1 − q)β2SIR

0

⎞
⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎜⎜⎝

(μ + δ)E − (1 − θ)γ R

(η + μ + d1 + k)I − δE − θγ R

(μ + ν)ER

(α + μ + d2)IR − ηI − νER

−k I − α IR + (μ + γ )R

⎞
⎟⎟⎟⎟⎠

.
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Calculating the Jacobi matrices of F and V at P0, we obtain

F =

⎛
⎜⎜⎜⎜⎝

0 pβ1S0 0 0 0
0 (1 − p)β1S0 0 0 0
0 0 0 qβ2S0 0
0 0 0 (1 − q)β2S0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

,

V =

⎛
⎜⎜⎜⎜⎝

μ + δ 0 0 0 −(1 − θ)γ

−δ η + μ + k + d1 0 0 −θγ

0 0 μ + ν 0 0
0 −η −ν α + μ + d2 0
0 −k 0 −α μ + γ

⎞
⎟⎟⎟⎟⎠

.

From this, for the stochastic model (2.1) we further define the matrices as follows

FS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 pβ1�

μ+ 1
2 σ 2

1
0 0 0

0 (1−p)β1�

μ+ 1
2 σ 2

1
0 0 0

0 0 0 qβ2�

μ+ 1
2 σ 2

1
0

0 0 0 (1−q)β2�

μ+ 1
2 σ 2

1
0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

VS =

⎛
⎜⎜⎜⎝

μ+δ+ 1
2 σ 2

2 0 0 0 −(1−θ)γ

−δ η+μ+d1+k+ 1
2 σ 2

3 0 0 −θγ

0 0 μ+ν+ 1
2 σ 2

4 0 0

0 −η −ν α+μ+d2+
1
2 σ 2

5 0

0 −k 0 −α μ+γ+ 1
2 σ 2

6

⎞
⎟⎟⎟⎠ .

An interesting open problem is whether we can also obtain R̃
S
0 = max{R̃S

01, R̃
S
02} =

ρ
(
FS(VS)−1

)
, and if condition R̃

S
0 = ρ

(
FS(VS)−1

)
couldn’t be met, then whether

we can directly obtain that when spectral radius ρ
(
FS(VS)−1

)
> 1 then solution

x(t) of model (2.1) with initial value x(0) ∈ R
6
+ is ergodic and admits a stationary

distribution.

4 Numerical simulations

In this section, we perform numerical simulations of model (2.1) to both validate
theoretical results and explore the effect of prevention and control strategies on the
nosocomial infection prevalence. Firstly, we fix most of our parameter values from
literature (Hughes et al. 2017; Hurford et al. 2012; Juan et al. 2005; Melsen et al. 2013;
Schumacher et al. 2013; Wolkewitz et al. 2014) and calibrate the transmission rates
β1 and β2, based on a 9–37% health care associated infection acquisition percentage
obtained from Toronto teaching hospitals (Hughes et al. 2017). Secondly, we numer-
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ically verify the existence of ergodic stationary distribution by plotting the frequency
histogram fitting curves of solutions for our model. Moreover, we conduct global sen-
sitivity analysis to address the uncertainty of some key parameters by employing Latin
Hypercube Sampling (LHS) (Iman et al. 1981) and partial rank correlation coefficients
(PRCCs) Marino et al. (2008) methods. We then investigate impacts of key parameters
on the infected population with different strains (I (t) and IR(t)) to more clearly illus-
trate the effect of prevention and control strategies on the prevalence of nosocomial
infection. In addition, two numerical examples are provided to exhibit the stochas-
tic extinction of nosocomial infection. By utilizing Milsteins higher-order method in
Higham (2001), model (2.1) is discretized as the corresponding discretization system
(where we set six independent the Gaussian random variables following N (0, 1) dis-
tribution and the time increment �t = 0.01). We use Matlab 2017 b software to run
the discretization system and obtain the solution of model (2.1). The visualization of
charts and partial results for statistical analysis is achieved by using R 4.0.5 software,
(some specific libraries such as ‘ggcorrplot’, ‘ggplot2’ and ‘scatterplot3d’ etc.).

4.1 Calibrating the parametersˇ1 andˇ2

We perform simulations on a middle sized hospital with 100 beds (Wolkewitz et al.
2014). The length of stay and hazard rate of death vary significantly among patients,
and for uninfected patients, we assume a discharge rate of 0.17 per day (Hurford et al.
2012) and a death rate of 0.02 per day (Wolkewitz et al. 2014). We thus have a baseline
discharge and death rate μ = 0.19 per day, and set the admission rate � = μN . An
appropriate antibiotic treatment takes five to ten days, and may be even longer for
patients infected by resistant bacteria - who would require treatment corrections when
the 3-day lab results become available and confirm resistance. Therefore, we assume
that the average time for patients infected by sensitive strains getting their infections
under control is three days, where as that for those infected by resistant strains is six
days. The hazard ratio of discharge for patients with nosocomial infection is estimated
in between 1.0 and 2.3, and the hazard ratio of death to be in between 0.49 and
1.0 (Melsen et al. 2013; Schumacher et al. 2013). We thus parameterize the excess
discharge and death rates as 1.65 × 0.17 and 0.745 × 0.02, respectively, by adopting
the median values of hazard ratios in the estimated intervals. The uncertainties of the
parameters on discharge and death will be ultimately reflected and modeled by the
stochastic terms. Then the overall excess discharge and death rate is 0.29 per day. The
description of fixed and calibrated parameters are summarized in Tables 1 and 2.

Here, we fix γ = 0.15, δ = ν = 0.013 and η = 0.025 and other parameters of
model (2.1) are given in Tables 1 and 2. We set all variances σi = 0.05 (i = 1, . . . , 6).
And in the long run, the solution of model (2.1) with any positive initial values would
approach to a stable state, so the influence of the changes of the initial values on
solution curves will fade out. Thus we set the initial values as S(0) = 85, E(0) = 10,
I (0) = 1, ER(0) = 2, IR(0) = 5 and R(0) = 2, and perform all simulations on a
daily basis (Fig. 1).

We calibrate the transmission rates β1 and β2 by fitting the nosocomial infection
acquisition percentage to the range of 9–37% Hughes et al. (2017). Specifically, we
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Table 1 Parameter values on hospital settings

Parameter Value References

N—Number of beds 100 Assumed

μ—Baseline death and dis-
charge rate

0.17 + 0.02 day−1 Hurford et al. (2012) and
Wolkewitz et al. (2014))

�—Admission rate µN Assumed

η—Rate of resistance emer-
gence

0.02–0.03 day−1 Juan et al. (2005)

γ —Termination rate of antibi-
otic treatment

0.1–0.2 day−1 Hughes et al. (2017)

θ—Reinfection probability
after treatment termination

0.1 Assumed

first find that the model solution curves typically converge to the steady states after
50 days days (see Fig. 1). We thus calculate the average percentage of nosocomial
infection acquisition between 100–200 days, Q, as below:

Q =:

∫ 200
100 [β1S(t)I (t) + β2SR(t)IR(t)]dt

� · 100
.

Next, for each pair of (β1, β2), we run our model 100 times and calculate the number
of times when the corresponding Q value falls within the range of 9–37%. We perform
such simulation for a total of 380 value pairs and plot the number of times in Fig. 2.
Figure 3a depicts the distributions of the Q value based on various (β1, β2) pairs. For
instance, the values of the infection acquisition Q in 100 random simulations all fall
into the range 9–37% for this case β1 = 0.022 and β2 = 0.054. There is 0 out of 100
times for the infection acquisition Q falling into 9–37% with the combinations of both
β1 = 0.011, β2 = 0.04 and β1 = 0.026, β2 = 0.072. And in the rest of combinations
(β1 = 0.016, β2 = 0.044 and β1 = 0.024, β2 = 0.064), only part of the Q values fall
into the credible range.

In Fig. 2, the cells colored in red and labeled with 100 correspond to the best fitting
scenario for the parameter set (β1, β2), i.e., [0.018, 0.022] × [0.05, 0.06] is the best
credible range for (β1, β2). This also indicates that both larger and smaller values
for β1 and β2 are unlikely to make the infection acquisition Q to fall into the known
range 9–37%. Moreover, Fig. 3b further shows the medians of infection acquisition Q

increase as β1 and β2 increase.
Figure 4 shows the basic reproductive numbers R̃

S
0 based on each (β1, β2) pair,

which fall between 1.15 and 1.5 under the credible transmission rates. By applying
LHS to generate 10,000 random samples of the transmission rates (β1, β2) in the
credible range, the box plots for R̃

S
01, R̃

S
02, and R̃

S
0 are depicted in Fig. 5. We find that

R̃
S
0 is greater than one with the median 1.384 and interquartile range (IQR) 0.1197,

which implies that nosocomial pathogens has been prevalent in the hospital for a long
time. In addition, from Table 3 we know that the resistant bacteria stain might dominate
the transmission.
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Table 2 Parameter values on bacterial strains

Parameter Notation Value References

Excess death and discharge
rate due to infection

d1 0.29 Melsen et al. (2013) and
Schumacher et al. (2013)

d2 0.29

Transmission rate β1 Calibrated

β2

Colonization probability p 0.5 Assumed

q 0.9

Infection development rate δ 0.013–0.0203 day−1 Hughes et al. (2017)

ν 0.013–0.0203 day−1

Treatment enforcement rate k 1/3 day−1 Hughes et al. (2017)

α 1/6 day−1

White rows refer to sensitive strains; gray row refer to resistant strains

Fig. 1 The evolution of a single path of solutions for model (2.1) with initial values
(S(0), E(0), I (0), ER(0), IR(0), R(0)) = (85, 10, 1, 2, 5, 2), where β1 = 0.045, β2 = 0.058, γ = 0.15,
δ = ν = 0.013, η = 0.025 and other parameters of model (2.1) are given in Tables 1 and 2

4.2 Stationary distribution

Theorem 3.2 indicates R̃
S
0 > 1 is a sufficient but not necessary condition ensuring

the existence of a unique ergodic stationary distribution for the solutions of model
(2.1). In what follows, we would select different values of β1 and β2, and then plot the
frequency histogram fitting curves to verify this result by the following two situations:

(i) We choose β1 = 0.022, β2 = 0.05, γ = 0.15, δ = ν = 0.013, η = 0.025
and other parameters of model (2.1) are given in Tables 1 and 2, under which we
calculate R̃

S
0 = 1.4019 > 1.

(ii) We choose β1 = 0.0155 and β2 = 0.041 but other parameter values remain
unchanged, but we obtain R̃

S
0 = 0.9929 < 1.
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Fig. 2 The heatmap of the frequency which the values of the infection acquisition Q fall into the known
range 9–37% in 100 random simulations. Simulations were carried out based on parameter values in Tables
1 and 2 and initial value (S(0), E(0), I (0), ER(0), IR(0), R(0)) = (85, 10, 1, 2, 5, 2).

Fig. 3 Statistic graphs of the infection acquisition Q falling into the known range 9–37% in 100 random
simulations under various combinations of β1 and β2

As shown in Figs. 6 and 7, both solutions of model (2.1) with different β1 and β2 could
present good stationary properties no matter R̃S

0 > 1 (see Fig. 6) or R̃S
0 < 1 (see Fig. 7).

Then, we separately implement 10,000 simulations with five different initial values for
two different situations, (value 1: (85, 10, 1, 2, 5, 2); value 2: (35, 20, 40, 10, 25, 60);
value 3: (50, 50, 100, 20, 35, 34); value 4: (10, 60, 51, 8, 15, 48); value 5: (100, 80, 60,

30, 45, 50)). Five groups of the frequency histogram fitting curves under two different
situations are displayed in Figs. 8 and 9, respectively, which all clearly demonstrate that
the density functions of the solution for model (2.1) separately converge to the same
functions regardless of where the initial values start from. That is, there would exist
a uniquely ergodic stationary distribution of solutions for model (2.1) when R̃

S
0 > 1

whereas it’s also possible that the solution of model (2.1) is ergodic and admits a
stationary distribution when R̃

S
0 < 1, as described in Remark 3.3.
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Fig. 4 The heatmap of the basic reproductive number for nosocomial outbreak R̃
S
0 at various presumable

values of β1 and β2
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Fig. 5 Box plots of the basic reproductive number for nosocomial outbreaks of both stains, based on LHS
method generating 10,000 samples for transmission rates (β1, β2) in the best fitting scenario [0.018, 0.023]×

[0.048, 0.062]

4.3 Sensitivity analysis

In the following, we perform global sensitivity analysis to investigate the influence
of the parameters on the basic reproductive number for nosocomial outbreak R̃

S
0 and

infection acquisition Q. By using LHS method, we generate 2,000 random param-
eter combinations and evaluate the corresponding values of partial rank correlation
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Table 3 Distribution characteristic of the basic reproductive number for nosocomial outbreaks of both
stains

Item Minimum Median (P25, P75) Mean Maximum

R̃
S
01 1.150 1.308 (1.229, 1.386) 1.308 1.465

R̃
S
02 1.158 1.327 (1.242, 1.411) 1.327 1.496

R̃
S
0 1.158 1.384 (1.316, 1.436) 1.371 1.496
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Fig. 6 The evolutions of a single path of solutions for model (2.1) with initial value (S(0), E(0),

I (0), ER(0), IR(0), R(0)) = (85, 10, 1, 2, 5, 2), whereβ1 = 0.022,β2 = 0.05, γ = 0.15, δ = ν = 0.013,
η = 0.025 and other parameters of model (2.1) are given in Tables 1 and 2

coefficients (PRCCs) for the various input parameters (i.e., β1, β2, δ, γ , η, ν, k, θ , α

and σi (i = 1, . . . , 6)) against the output variables (R̃S
0 and Q). We assume that all

model parameters are drawn based on uniform distributions, where η, γ , δ and ν are
drawn based on the ranges in Tables 1 and 2, β1 and β2 are drawn from their calibrated
ranges, and all other parameters are perturbed based on their fixed values. Specifically,
k ∼ Uniform(0.33, 0.34), α ∼ Uniform(0.16, 0.168), θ ∼ Uniform(0.08, 0.12), and
σi ∼ Uniform(0.04, 0.06) for i = 1, . . . , 6.

Figure 10 shows that the values of R̃
S
0 and Q are most sensitive to the transmission

rats β1 and β2, and the infection development rates δ and ν. In particular, there is a
strongest positive correlation between the transmission rate for resistant strain and R̃

S
0

(with PRCCs value 0.9561), Q (with PRCCs value 0.7853). On the other hand, R̃
S
0

and Q are negatively correlated with the treatment enforcement rates k and α. These
suggest that reducing transmission rates, shortening infection progression rates, and
enhancing treatment accuracy for infected patients are all effective strategies to avoid
nosocomial infection outbreaks and prevalence.
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Fig. 7 The evolutions of a single path of solutions for model (2.1) with initial value
(S(0), E(0), I (0), ER(0), IR(0), R(0)) = (85, 0.4, 0.1, 0.2, 0.5, 0.1), where β1 = 0.0155 and β2 =

0.041 but other parameter values are same with the ones in Fig. 6

Fig. 8 The frequency histogram fitting curves of the solutions for model (2.1) under the parameters β1 =

0.022 and β2 = 0.05, with five different initial values based on the 10,000 sample paths

In addition, the above findings also indicate that the infection caused by resistant
strain plays a vital role in the transmission of nosocomial bacteria. Moreover, the
randomness resulted from discharge and death does not appear to impact the outbreak
and transmission potential of nosocomial pathogens.

4.4 Control strategies analysis

(i) Reducing the transmission rate of sensitive/resistant strains.
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Fig. 9 The frequency histogram fitting curves of the solutions for model (2.1) under the parameters
β1 = 0.0155 and β2 = 0.041, with five different initial values based on the 10,000 sample paths

Fig. 10 The sensitivity analysis on R̃
S
0 and Q with different parameters in model (2.1)
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Fig. 11 The trend plots of I (t) and IR(t) vary with parameters β1 and β2

The reduction of transmission rates can be achieved by strengthening the adherence
of hand hygiene and disinfection policies on medical instruments. Figure 11 demon-
strates that when the transmission rate of sensitive strain β1 reduces, I (t) markedly
declines despite slight increase in IR(t). Such phenomenon can be explained by the
competitive exclusion principle in ecology, and is observed as expected. The infected
population for both strains would decrease significantly when both transmission rates
are reduced. Hence, cutting off the transmission routes of pathogenic bacteria could
effectively reduce the risk of nosocomial infection from these aspects together: medical
staff, patients and the environment of hospital wards. For instance, sterile opera-
tion should be implemented at the course of surgeries and nursing care, precision
instruments, syringes, catheters etc. would be regularly counted and disinfected, the
compliance of hand hygiene for medical workers and volunteers should be strength-
ened. Washing hands for family members of patients would be encouraged and visiting
hours should be shortened, patients’ ward should be regularly decontaminated and the
ward trash should be cleaned up in time, etc.

(ii) Extending latent period of patients colonized with sensitive/resistant strains.

Patients colonized with sensitive and resistant strains can develop infections after
latent period 1

δ
and 1

ν
, respectively. As shown in Fig. 12, both I (t) and IR(t) distinctly

decrease and keep themselves at a relatively low level. This shows that nosocomial
infection could be controlled at a low level if it takes a longer time for colonized
patients to develop infections. Strategies such as monitoring targeted infection cases,
early diagnosis and therapy for patients, and strength exercise for improving immunity
of patients may help with the prevention of infection development.
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Fig. 12 The trend plots of I (t) and IR(t) vary with parameters δ and ν

(iii) Improving treatment accuracy and preventing antibiotic resistance.

Figure 13 shows that improving the treatment efficiency for sensitive strain infec-
tions can significantly reduce the prevalence of sensitive strains where that of resistant
strains are not crucially affected. Whereas improving the treatment efficiency for resis-
tant strain infections could in turn promote the prevalence of sensitive strains. In reality,
enhancing treatment accuracy for sensitive strain infections are relatively feasible, but
this could be hindered by the fear of resulting in higher prevalence of resistant strains.
Our simulation indicates that there would be no harm on the ecology of nosocomial
pathogens if only treatment accuracy of sensitive strains can be improved. Further, our
simulation of varying the value of resistance development rate η shows increases of
resistant strains and decrease of sensitive strains, which are expected results.

4.5 Stochastic extinction for model (2.1)

In the following, we would provide the two numerical examples to exhibit the stochas-
tic extinction of nosocomial infection.

First of all, we choose the following feasible parameters to verify Theorem 3.1:
μ = 0.02, � = 0.8, p = 0.2, q = 0.5, δ = 0.033, θ = 0.01, γ = 0.05, η = 0.03,
d1 = 0.002, d2 = 0.023, k = 0.04, ν = 0.02, α = 0.03, β1 = 0.0018, β2 = 0.0017,
σ1 = 0.02, σ2 = 0.45, σ3 = 0.56, σ4 = 0.59, σ5 = 0.49 and σ6 = 0.39, respectively.
By calculation, we obtain the basic reproduction number R0 for the deterministic
model (3.2) is 1.048 and a positive left eigenvector (ξ1, ξ2, ξ3, ξ4, ξ5) corresponding
to R0 is (0.4937, 0.4252, 0.3936, 0.4853, 0.4303), and then σ 2

1 −2μ = −0.0396 < 0,
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Fig. 13 The trend plots of I (t) and IR(t) vary with parameters k, α and η

m = −0.0014 < 0, which are satisfied with the conditions of Theorem 3.1. As shown
in Fig. 14, the solution of stochastic model (2.1) would become extinct while the
solution of the deterministic system would be prevalent under the same parameter
values.

Next, we would show the stochastic extinction of nosocomial infection in model
(2.1) when R̃

S
0 defined in Theorem 3.2 is less than one. Select these parameters in

model (2.1): μ = 0.42, � = 1.4, p = 0.2, q = 0.5, δ = 0.3, θ = 0.51, γ = 0.35,
η = 0.23, d1 = 0.102, d2 = 0.36, k = 0.74, ν = 0.28, α = 0.39, β1 = 0.38,
β2 = 0.47, σ1 = 0.42, σ2 = 0.35, σ3 = 0.26, σ4 = 0.39, σ5 = 0.59 and σ6 = 0.39,
respectively. By computation, we obtain R̃

S
0 ≈ 0.7039 < 1, which are not satisfied

with the condition of Theorem 3.2. As shown in Fig. 15, the solution of stochastic
model (2.1) would become extinct. Combining this example and the one in Sect. 4.2
(Fig. 7), it would be derived that condition R̃

S
0 < 1 does not guarantees the solution
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Fig. 14 The evolution of a single path of solutions for model (2.1) and its corresponding deterministic
model (3.2). The initial value of all solutions is (20, 2, 0.51, 0.62, 0.75, 0.22)

Fig. 15 The solution of model (2.1) becomes extinct when R̃
S
0 ≈ 0.7039 < 1. The initial value of the

solution is (13, 10, 21, 12, 5, 4)

of stochastic model (2.1) must be extinct, but there may be existed a uniquely ergodic
stationary distribution of solutions for model (2.1).

5 Conclusion and discussion

In this paper, we derived a stochastic dynamical model about the transmission of bac-
terial strains among patients in a hospital setting, where the randomness of death and
discharge for all patients is modeled by introducing linear functions of white noise.
The dynamical behaviors for this model were analyzed. Firstly, we showed that large
randomness of death and discharge in colonized and infected patients may rule out
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the possibility of nosocomial outbreaks. This result is biologically sound because the
significant variance in the length of stay will result in less transmission caused by the
infectious patients while the uncolonized patient population are maintained at a reason-
able amount (σ 2

1 < 2μ in Theorem 3.1). The spectral radius analysis method applied
in the proof of the corresponding theorem is challenging and innovative because it
could be extended from traditional deterministic models or stochastic models with
only one infection route to sensitive and resistant strains infection routes in our paper.
Another highlight of this paper is, we defined the stochastic threshold value for noso-
comial outbreaks of both strains, and prove that when the model parameters exceed
this threshold, the system admits a unique stationary distribution with solutions being
ergodic by constructing suitable stochastic Lyapunov functions. However, this Lya-
punov function is very complex since there are sensitive and resistant strains infection
routes in this model, and we have obtained more general and milder conditions for
the existence and ergodicity of the stationary distribution, which is different from the
conditions related with the endemic equilibrium of the corresponding deterministic
model in Fu (2019).

It is not hard to show that, without the stochastic terms, the endemic steady state of
the corresponding deterministic system is globally stable when the basic reproductive
number is larger than one (Mccluskey 2006). Our results show that variances in death
and discharge will reduce the stochastic threshold value, and then reduce the poten-
tial of nosocomial outbreaks. It is worth mentioning that the spectral radius form of
stochastic threshold value is provided in the special case of model (2.1), similarly with
the corresponding deterministic system. We therefore conjecture that one can obtain
ergodic solution that admits a stationary distribution when this spectral radius is larger
than one, and will investigate it in our future work.

We performed numerical simulations to both validate the theoretical results and
investigate the effect of prevention and control strategies on the prevalence of nosoco-
mial infection. In particular, one of the highlights of numerical simulations is to select
credible transmission rates by calibrating them to known range of the health-care asso-
ciated infection acquisition, which is also different from stochastic simulations in the
previous literature Wang et al. (2018, 2021). Additionally, based on the result of global
sensitivity analysis, we explored the effect of prevention and control strategies on the
prevalence of nosocomial infection. Our simulation results suggest a number of infec-
tion control strategies such as enhancing hygiene, preventing infections, improving
treatment accuracy, shortening the treatment length, etc..

Last but not least, from the modeling point of view, there are more than one direc-
tions to formulate randomness in epidemiological models. Here we adopt the idea used
mostly in financial modeling (Mao 2008; Lan et al. 2021). In some studies, stochas-
tic models can be derived for each model parameters with random values (Allen
2016). In many other studies, the population compartments are first formulated as a
continuous-time random variable with integer values by considering random trans-
mission events (Allen 2008). In addition, from the perspective of genetic mechanism,
gene transcription, translation and transportation in the process of co-circulation of
antibiotic-sensitive and antibiotic-resistant bacterial strains are not completed instanta-
neously and will take some time (Monk 2003), therefore, studies on stochastic models
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with consideration of time delays are potential future directions towards realistic appli-
cations of this modeling framework (Xu et al. 2021).
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