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MISIUREWICZ POLYNOMIALS AND DYNAMICAL UNITS, PART I
ROBERT L. BENEDETTO AND VEFA GOKSEL

ABSTRACT. We study the dynamics of the unicritical polynomial family fy.(z) = 2% +
¢ € C[z]. The c-values for which fq . has a strictly preperiodic postcritical orbit are called
Misiurewicz parameters, and they are the roots of Misiurewicz polynomials. The arithmetic
properties of these special parameters have found applications in both arithmetic and complex
dynamics. In this paper, we investigate some new such properties. In particular, when d is a
prime power and c is a Misiurewicz parameter, we prove certain arithmetic relations between
the points in the postcritical orbit of fg .. We also consider the algebraic integers obtained by
evaluating a Misiurewicz polynomial at a different Misiurewicz parameter, and we ask when
these algebraic integers are algebraic units. This question naturally arises from some results
recently proven by Buff, Epstein, and Koch and by the second author. We propose a conjectural
answer to this question, which we prove in many cases.

1. INTRODUCTION

Let f € C(z) be a rational function. We denote by f" the iterates of f by composition, i.e.,
f°(2) := z,and foreachn > 1, f* := fo f*~!. Then f and its iterates map P!(C) = CU{oco}
to itself. The (forward) orbit of a point x € P1(C) is

Orby (z) := {f"(z) : n > 0}.

We say that z € P'(C) is periodic (of period n) if there is an integer n > 1 such that
f™(x) = x; in that case, the smallest such integer is the exact period of . More generally,
we say x is preperiodic if there is some m > 0 such that f(x) is periodic. Equivalently,
x 1s preperiodic if and only if the orbit of x is finite. In that case, the smallest m > 0
such that f™(x) is periodic is the tail length of x. We say x is preperiodic of type (m,n)
if = is preperiodic with tail length m, and n is the exact period of f™(z). That is, we have
fmt(x) = f™(x) for minimal integers m > 0 and n > 1.

The critical points of f are the ramification points of f in P'(C). We say that f is post-
critically finite, or PCF, if all of the critical points of f are preperiodic. If f € C|z] is a
polynomial, then the critical points of f consist of the point at co (which is fixed by f) and all
the roots of f’ in C. Thus, a polynomial is PCF if and only if all the roots of its derivative are
preperiodic.

In this paper, we consider the case of unicritical polynomials, i.e., polynomials with a single
finite critical point (of high multiplicity). After a change of coordinates, we assume this critical
point is 0. Thus, throughout the paper, we fix an integer d > 2, and we define

f(2) = fo(2) = faelz) = 2"+
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We may consider f as an element of the two-variable polynomial ring Z|[c, z], but we usually
consider c to be a parameter, and we iterate f in the variable 2z only. That is,

PR =G+l e PR = (40t +0) +e

For each integer i > 0, define the polynomial a;(c) € Z[c] by a;(c) := f*(0). Thus, the
sequence
_ _d _d d
ag=c¢, ay=c"+¢, az=(c"+¢c)+e,

gives the iterates of the critical point O under f. We are interested in the case that f is PCF,
1.e., that this orbit is finite.

To this end, fix a d-th root of unity ( that is not 1. For any integers m > 2 and n > 1, we
define the (m, n)-Misiurewicz polynomial de W(¢) € Z[(][c] to be

p(n/k) . B
(D den( )= H (am+k_1 _ <am—1) w(n/k) {Hkln (ak) %f nlm — 1,

i ifntm—1,

where 11 denotes the Mobius yi-function. A priori, GC ,, 1s a rational function in Q(¢)(c), but
in fact it is a monic polynomial in Z[(][c], as we prove in Section 2. Its roots are parameters
co, called Misiurewicz parameters, for which f"+"(0) = f7(0) but no earlier iterates fZ (0)
coincide; we say f., is PCF of exact type (m,n). The root of unity ¢ further specifies that

mn=1(0)/ fm=1(0) = ¢. Milnor [18, Remark 3.5] conjectured that related polynomials over
Q are irreducible, and we make the following corresponding conjecture over Q(():

Conjecture 1.1. Let d,m > 2.n > 1, and { # 1 a d-th root of unity. Then den is
irreducible over Q(()

Recent progress in [5, |1, 12] has proven Conjecture 1.1 in the case that d = 2 and n < 3,
but otherwise, very little is currently known. Such arithmetic questions have dynamical conse-
quences, as illustrated by the work of Buff, Epstein and Koch in [5], who applied these known
instances of Conjecture 1.1 to prove the first cases of a different conjecture of Milnor [16, 17]
on the irreducibility of certain moduli curves arising in complex dynamics [5, Theorem 1,
Theorem 4]. See also [13, Section 2] for a brief survey of known results on Misiurewicz
parameters, and our companion paper [3] for further results in the study of their arithmetic
properties.

More broadly, postcritically finite polynomials play a fundamental role in polynomial dy-
namics. On the complex dynamical side, Douady and Hubbard [7, Chapter 8] proved that Mi-
siurewicz parameters are dense in the boundary of the Mandelbrot set, and Favre and Gauthier
[9, Theorem 1] further proved that they are equidistributed in an appropriate sense. Ghioca,
Krieger, Nguyen, and Ye [10, Theorem 3.1] generalized this equidistribution to PCF maps
in arbitrary dynamical moduli spaces. Indeed, as proposed by Baker and DeMarco in [1],
PCF maps should play a role in dynamical moduli spaces analogous to CM points on modular
curves, and more generally to special points on Shimura varieties.

Returning to the unicritical family f;., while Misiurewicz parameters are ones for which
the critical point is strictly preperiodic, those for which the critical point is periodic are roots
of Gleason polynomials. Specifically, for n > 1, the roots of the Gleason polynomial

() Gaon(c) := H(ak)“("/k) € Z[(]

k|n
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are parameters ¢, for which the critical point 0 has exact period n under f,,. See, for example,

[4, 6, 13].
Question 1.2. For which d > 2,n > 1, is the Gleason polynomial G ,, irreducible over Q?

As with Conjecture 1.1, very little is known about Question 1.2. Even for fixed degree d,
there is no infinite family of Gleason polynomials which are known to be irreducible. When
d = 2, calculations for small periods suggest that G, is irreducible over QQ for all n > 1, but
this conjecture remains wide open. Buff [4, Proposition 5] observed that the corresponding
conjecture is false in general by showing that G 5 has 2 irreducible factors if d = 1 (mod 6).

Remark 1.3. The definitions of Misiurewicz and Gleason polynomials are not entirely consis-

tent in the literature. For example, some authors use the family of maps az®+1,asin[4, 5, 6],
instead of z? + ¢. In addition, our choice of a root of unity ( is another difference both from
those authors and from previous work in [11, 12, 13].

In this paper, we consider various arithmetic properties of the orbits Orbj[ (co), where ¢ is
a Misiurewicz parameter. Theorem 1.4, which we prove using purely local methods, concerns
the case that the degree d is a prime power. In particular, it generalizes [1 |, Theorem 3.1]
from prime degrees to prime-power degrees, and it answers a question raised in [11]. Here
and throughout the paper, when K is a number field, we denote by O the ring of integers of
K, and for any b € Ok, we write (b) for the principal ideal generated by b.

Theorem 1.4. Let d = p° be a prime power, and suppose [ = fi., is PCF of exact type
(m,n)withm > 0. Let ¢ := aymyn_1(co)/am-1(co) # 1, and let 0 < r < e —1 be the smallest
nonnegative integer such that (""" = 1. Let K := Q(cy). Then:

() ifnli,

() ifnli,

Theorem 1.4 immediately implies the following new irreducibility result:

(@) Ifntm —1, then <ai(00)>lfn(p—1)d7”*1 _ {

(b) If n|m — 1, then {(a;(co))? P07 =1) = {

Corollary 1.5. Let m > 2, and { # 1 a d-th root of unity. Suppose that d = p° is a prime
power. Then Gg’m’l is irreducible over Q(().

Proof. Let K = Q(cp) for aroot ¢ of thm,l. Take a prime ideal p C Ok which lies over p. By
Theorem 1.4(b), the ramification index e(p|p) satisfies e(p|p) > p"(p—1)(d™*—1), and hence
[Q(co) : Q] > p"(p—1)(d™ ! — 1). On the other hand, we also have [Q(¢) : Q] = p"(p — 1).
Therefore, [Q(co) : Q(¢)] > d™* — 1. Since deg(thml) = d™~! — 1 by direct computation,
this forces GS . to be irreducible over Q(¢), as desired. O

d,m,n

Let ¢, be a root of the Gleason polynomial G, and set K = Q(cg). The second author
showed [11, Lemma 3.1] that G4,(co), i.e., another Gleason polynomial evaluated at c,
is an algebraic unit in O unless ¢ = n. Buff, Epstein, and Koch studied the resultants
of Misiurewicz polynomials with Gleason polynomials, and they proved that a Misiurewicz
polynomial evaluated at a Gleason parameter is an algebraic unit unless the periods of these
two polynomials are same [5, Lemma 26]. They have used these resultants to prove new
irreducibility results for Misiurewicz polynomials. In this paper, we study the next natural
question for Misiurewicz polynomials:
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Question 1.6. Fixd,m > 2, n > 1, and { # 1 a d-th root of unity. Let ¢y be a root 0fG§7m7n,
and let K := Q(co). For which integers j > 2 and { > 1 is sz,j,e<00) an algebraic unit in
Ok?

Note that in the setting of Question 1.6, we have ( € K, because ( = a,1n—1(C0)/am—1(co).

Question 1.6 is also motivated in part by analogy with the theory of cyclotomic polynomials.
Specifically, the following classical result is well known and has several different proofs in the
literature, the earliest of which is due to Emma T. Lehmer [ 14, Theorem 4].

Theorem 1.7. Let m > n > 1. Denote by ®,,, the m-th cyclotomic polynomial. Suppose that
C is a primitive n-th root of unity. Then ®,,(() is not an algebraic unit in 7Z[C)] if and only if
m = p*n for some prime p and some integer k > 1.

Question 1.6 is also evocative of the study of dynamical units introduced by Morton and
Silverman in [19]. However, whereas Morton and Silverman considered units arising from
differences between periodic points of a single map f, the units and non-units we consider in
this paper arise from parameters in a dynamical moduli space.

When d is a prime power, we are able to give the following answer to Question 1.6 in the
case j # m.

Theorem 1.8. Let d = p°, where p is a prime and e > 1. Let ¢y be a root of thmm for some

m > 2,n>1,and ( # 1 ad-th root of unity. Let K := Q(cg). Suppose that ¢ > 1 and j > 2.
@) If ¢ # nand j # m, then (G5, (co)) = Ok.
(b) If ¢ =nand j < m, then <G§,M(Co)> = (a,)in, where

N K ifntj—1,
Y@ =1 dfn | -1

(c) If ¢t =nand j > m, then <G§’M(co)) = (1 —().

When j = m, Magma computations suggest the following conjecture.

Conjecture 1.9. Let d = p°, where p is a prime and e > 1. Let ¢ be a root of thm’n for some

m > 2,n>1,and { # 1 a d-th root of unity. Set K := Q(cy). Suppose that 1 < { < n. Then
Gfamé(CO) isaunitin Og  ifand only if ({n.

The techniques needed to analyze the case j = m are very different from those used in the
current paper for j # m. Therefore we discuss the above conjecture in greater detail in the
sequel paper [3].

The structure of the paper is as follows. In Section 2, we prove that thm’n is a polynomial.
We prove Theorem 1.4 in Section 3, answering the question posed in [1 1] in the affirmative.
We then consider the j # m case of Question 1.6, proving Theorem 1.8 for ;7 < m in Section 4,
and for 7 > m in Section 5.

2. G

d,m,n

IS A POLYNOMIAL
The purpose of this section is to prove the following theorem.
Theorem 2.1. Let d,m > 2, n > 1 be integers, and let ( # 1 be a d-th root of unity. Then

Gfl,m,n is a monic polynomial in 7C][c|, with only simple roots.
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Our proof will require two auxiliary lemmas, as follows.

Lemma 2.2. Let m,n,d,( be as in Theorem 2.1. Let o € Q satisfy amyp—1() = (apm_1()
for some positive divisor k of n, and suppose that k is the smallest positive divisor of n for
which this equality holds. Then for any integer {|n, we have

Amio—1(@0) = Cam-1(a) <= kL.

Proof. Write f := f;,. By definition of k, we have a,,,4_1(a) = (a,n_1(). Applying f*
to both sides of this equality, we obtain a,, o;_1(c) = @myr_1(a). Applying f* repeatedly,
then, we have a,,_1(a) = amir—1(«) for any integer i > 1.

Armed with this fact, we can now prove the equivalence. For the reverse implication, i.e.,
assuming k|¢, we have ¢ = ik for some i > 1, and hence

am-i—é—l(a) = a'm—i-k—l(a) = Cam—l(a)a

as desired.
For the forward implication, we assume a,,1¢—1(a) = (ap—1(a). There exist positive
integers i, j,t > 1 such that ik + j¢ = tk + ged(k, £). As we saw at the start of this proof, we

have a,,ir_1(c) = Ca,_1(a); applying f7* yields
am+ik+j€—1(a) = am+jé—1(a) = (1 ().

On the other hand, by our choice of 7, 7, ¢, we have

am+ik+jé—1(a) = am+tk+gcd(k,€)—l(a) = afm+gcd(k,€)—l(a)a

5O that @y, 4 ged(k,0)—1() = Cam—1(cr). But k was the smallest positive divisor of n satisfying
amik—1(a) = Capm_1(a), and since 1 < ged(k,¢) < k is also a divisor of n, we must have
ged(k, 0) = k. That is, k|¢, as desired. O

Lemma 2.3. Let m,n, d, ( be as in Theorem 2.1, and suppose that n|m — 1. Let « be any root
of Gaon, and let i|n be a positive integer divisor of n. Then G, 4i—1(®) = Cap—1(x) if and
only if i = n.

Proof. Applying Mobius inversion to the definition of Gleason polynomials from (2), for any
positive integer t > 1, we have

(3) Qpt = H Gd,o,k = Qp, H Gd,o,k-
k|nt k|nt
kin

In particular, in the polynomial ring Z[c|, we have a,|a,; and G4o,|a,. Thus, we have
ant() = 0, since Gy, |an: and o is a root of Gy .

To prove the desired equivalence, we begin with the reverse implication, i.e., we suppose
that i = n. Because we have n|m — 1 and hence also n|m + i — 1, it follows that a,, ;1 (a) =
0 = Cam-1(cv), as desired.

Conversely, suppose a,,+i—1(a) = Can—1(a). Because n|m — 1, we have a,,—1(a) = 0,
and hence a,,,_1(«) = 0 as well. Therefore, we have

0= f"710) = f/(f™7(0)) = f(0),
or equivalently, a;(cr) = 0. However, a was a root of G4, and G, is known to be

relatively prime to a; for 1 < i < n. (See, for instance, [5, Lemma 30], which shows that the
resultant of two different Gleason polynomials is +1, and hence they share no roots. Since a;
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is a product of Gleason polynomials, it is indeed relatively prime to G4 .) Thus, we must
have i = n, as desired. U

Proof of Theorem 2.1. Case 1. Suppose that n { m — 1. By definition, we have
4) thmm = H(am+i_1 - Cam—l)“(n/i)-
Let «v be a root of @y, 1 — Ca,,—1 for some minimal positive integer k|n. By Lemma 2.2, for

any positive divisor ¢ of n, we have that « is a root of a,,, 1 ¢_1 — (a,,1 if and only if k|¢. In that
case, as shown in the proof of Theorem A.1 of [¥], the order of vanishing of a,,1¢—1 — (a1

at v is 1. Thus, the order of vanishing of Gfl,m,n at o 18
n n/k 1 ifk=mn,
Su() - X () -{) m
f;lrg t|(n/k) ’

where we have applied the well-known identity
N 1 ifN=1
5 — ) =
©) Z“(t) {0 ifN > 1.
t{|N
¢

d,m,n

Thus, the rational function G has order of vanishing either 0 or 1 at every point of Q. It

follows that thm’n is a polynomial in Q(¢)[c], and it has only simple roots. Finally, because all
¢

of the multiplicands in equation (4) are monic polynomials in Z[(][c], the polynomial G, .

is also a monic and lies in Z[][c].
Case 2. Suppose that n|m — 1. By definition, we have

¢ _ Hi|n(a’m+i—1 — ()M
dman I, oD

7
As we saw in Case 1, the numerator is a monic polynomial in Z[(][c] with simple roots, so we
only need to consider roots of Gao,n = [[;,, all /9 which is also known to have simple roots
(see, for instance, [/, Lemma 19.1] or [&, Proposition A.1]).
For any root « of G4 ,,, Lemma 2.3 says that the only term of the numerator that has « as
aroot is when i = n, i.e., the term (@ 4n—1 — Cm_1)""'™ = apyn_1 — Cap_1, Which has a

(simple) root at o. Thus, G has order of vanishing zero at a. As before, then, it follows

d,m,n

that Gg,m,n is a monic polynomial in Z[(][c], with only simple roots. O

3. LOCAL RESULTS

The results of this section generalize estimates proven by the second authorin [! 1 ]. Through-
out this section, fix integers d, m,n with d,m > 2 and n > 1. Let ¢; € Q be a Misiurewicz
parameter of exact type (m, n), write f := fy ., and define K := Q(¢y).

For any finite place v of K, we define K, to be the v-adic completion of K, and C, to be
the completion of an algebraic closure of K. For any x € C, and r > 0, we denote by

D(z,r)={yeC, : ly—z|, <r}

the open disk of radius r centered at = in C,,.
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We begin with the following modest strengthening of [1 |, Lemma 2.4].

Proposition 3.1. If f is PCF of exact type (m,n), then for every finite place v of K, either:
e v(a;(co)) =0foralli > 1, or

v(an(co)) i nli,

0 ifnti.

Applying Proposition 3.1 at every finite place v of K, we immediately obtain:

(an(co)) ifnli,

Proof of Proposition 3.1. We already know v(a;(co)) > 0 for all ¢ > 1. If v(a;(cy)) = 0 for
all 7, then we are in the first case, and we are done. So we assume for the remainder of the
proof that v(a,(cg)) > 0 for some minimal ¢ > 1.

Thus, f* maps D(0, 1) onto itself multiply-to-1, and hence by Theorem 4.18(b) of [2], the
disk D(0, 1) contains a unique periodic point b of f, which is v-adically attracting and of exact
period /. Because f™(0) is a periodic point of exact period n lying in f™(D(0, 1)), it must be
in the same cycle as b, and hence ¢ = n.

Since the disk D(0, 1) has exact period ¢ = n, we have v(a;(co)) = 0 forall i > 1 for which
n t 4. It remains to consider ¢ of the form ¢ = nj for j > 1.

If b = 0, then z = 0 itself is periodic, so m = 0, and we have a,(cy) = a;(cy) = 0, and we
are done. Thus, we assume for the rest of the proof that b # 0.

Because the periodic point b # 0 is attracting, we have

‘0 - b|v > ‘an(CO> - b|v > |a2n(CO) - b‘v Z ‘a3n<c(]> - b‘v 2 Ty

e v(a,(co)) > 0, and for all i > 1, we have v(a;(co)) = {

Corollary 3.2. Foreveryi > 1, (a;(co)) = {

and hence |a,;(co)|, = |b|, for all j > 1. In particular, writing ¢ = nj, we have
v(ai(co)) = v(ani(co)) = v(an(co))
as desired. O

We have a,,4,_1(co)? = am_1(co)? but ayin_1(co) # am-_1(co), and hence there is a d-th
root of unity ¢ # 1 such that a,,1,_1(co) = (am—1(co). We also have a,,_1(cy) # 0.

Theorem 3.3. Fix a finite place v of K. Suppose f = f4., is PCF of exact type (m, n), with
m > 0. Then:
(1) If v(d) = 0, then v(a;(co)) = 0 forall i > 1.
(2) If d = p° is a prime power, let ¢ := yin_1(co)/am-1(co) # 1. Let 0 < r < e — 1 be
the smallest nonnegative integer such that ¢ Pt =,

v(p) ifnli,
0 ifnti.

(b) Ifn|m — 1, then p"(p — 1)(d™ ' — 1)v(as(co)) = {S(P) Z:Z?Z

Applying Theorem 3.3 at every finite place v immediately yields Theorem 1.4.
To prove part (2) of Theorem 3.3, we will need the following two lemmas. We denote by
C, the completion of an algebraic closure of the p-adic field Q,,.

@) Ifntm—1, then p"(p — 1)d™ v(a;(co)) =
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Lemma 3.4. Let p be a prime, let e > 1 be an integer, and let d = p°. Let a,b,cy € C,
with |a|, = |b|, > 0, and define f(z) = 2% + co. If |f(a) — f(b)], > \p|p/p b \b|d then
[f(a) = f(B)lp = la — b,
Proof. Let v be the valuation on C,, normalized so that v(p) = 1. Let w := (a — b)/b and
x:= (f(a) — f(b))/b?, and define

d

gt) = (1+t)—1= Z <CZZ> t' € Z[t] and h(t) = g(t) —x € C,[t].

i=1
Then
h(w)=1+w)!=-1—-2r=———2=0,

i.e., w is a root of the polynomial h. However, the Newton polygon of g has vertices at
(p",e —r) forr = 0,1,..., e, and the hypotheses say that v(z) < p/(p — 1). Thus, the
Newton polygon of h consists of a single segment of length d and slope —v(x)/d. Hence,
the root w satisfies dv(w) = v(x), and therefore |w|} = |z|,. Multiplying both sides of this
equation by [b|¢ yields the desired result. O

Lemma 3.5. Let p be a prime, let ¢ > 1 be an integer, let d = p°, let ¢y € C,, and suppose
that f(z2) := 2% + ¢y is PCF of exact type (m, n). Then for every 0 <i < m — 2,
[i1n1(c0) = aisa(co)], = |ainlco) — aileo)].
Proof. Step 1. We claim that for every 0 < i < m — 1, we have
(6) Il Vlan(co)lp < lairn(co) — ai(co)l,

Indeed, if inequality (6) fails for any 0 < i < m — 1, then because |a;(co)|, < 1 for all j, we
have

|@itns1(c0) = aiyi(co)lp = |aign(co) = ai(co)lp < laisn(co) — asl(co)lp < [ply/ "~V ]an(co)lp,
so that the inequality also fails for ¢ 4+ 1. By induction, then, it fails for m — 1, meaning that
|mn-1(co) = am—1(co)lp < [P/ P ]an(co)lp < |pl/ PV |am-1(co)l,

where we have used the fact that |a,,—1(co)|, > |an(co)|, by Proposition 3.1. However, both
the map z — 2%, and hence also f, are one-to-one on the open disk

D(am-1(co), [ply/®Vam-1(co)l)-

But the distinct points a,,1,_1(¢cy) and a,,_1(co) both lie in this disk, and they both map to
Amin(Co) = am(co) under f. This contradiction proves our claim.

Step 2. Note that
) |an+1(co) = ai(co)lp = | f(an(co)) = F(O)], = lan(co)’l, = lan(co)lp,

yielding the desired equality for ¢ = 0, because ag = 0. Moreover, combining equation (7)
with inequality (6), we have |p|1/p Y |an(co)lp < |an(co)|% and hence

[an(c)]p > [pl/ @D > |pl,.
Inequality (6) therefore implies
|@in(co) — ai(co)|p > |p\g/(p_1) forall0 <i<m—1.
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In particular, since |a;(co)|, < 1 for all j, we have
| f(@itn(co)) = flai(co))lp = [P/ Plai(co)l; forall 1 <i <m —2.
Therefore, we may apply Lemma 3.4 inductively, yielding the desired conclusion. U

Proof of Theorem 3.3. Case (1). Suppose first that v(d) = 0. If v(a,(co)) > 0, then again by
Theorem 4.18(b) of [2], there is a unique periodic point b of f in D(0, 1), which is v-adically
attracting and of exact period n. (And we musthave b = f™*(0) for some k& > 0 withnk > m.)
But because v(d) = 0, we have that f(z) = 2% + ¢ is one-to-one on each disk D(z, |z|) for
x € CF. In particular, f is one-to-one on each disk D(a;(cp),1) fori = 1,...,n — 1, and
on the disk D(b, |b]). Thus, f™ maps D(0,1) d-to-1 onto D(0, 1), with D(b, |b|) mapping
bijectively onto a (proper) subdisk of itself.

If f7(0) = b, then since f"(b) = bbut b # 0 (because m # 0), the inverse image of b under
f™ includes 0 counted with multiplicity d, and b with multiplicity 1, for a total of (at least)
d + 1, contradicting the fact that f™ has degree d on D(0, 1).

On the other hand, if f"(0) # b, then because b is attracting, we have | f(0) —b|, < |0—0b,,
so that f™(0) € D(b, |b|). But then, because f™ : D(b,|b|) — D(b, |b|) is one-to-one with b
fixed, the iterates f/(0) are never equal to b for j > 1, contradicting the fact that b = f™*(0)
for some £ > 0. Thus, either way, we have a contradiction, and hence our original assumption
that v(a,(co)) > 0 is impossible. That is, v(a,(cy)) = 0. By Proposition 3.1, we have
v(a;(c)) = 0 for all i > 1, proving statement (1).

Case (2). For the remainder of the proof, we may assume that d = p® is a prime power, and
that v|p (i.e., v(d) > 0). The map f(z) = z? + ¢ is a bijection on the residue field, since it
is a composition of Frobenius and a translation. Thus, f acts as a bijection on the (finite) set
of open unit disks {D(x,1) : x € Og}. Every disk is therefore periodic (as opposed to just
preperiodic) under this action. In particular, there is some ¢ > 0 such that f¢(0) € D(0,1).
By Proposition 3.1, then, we have v(a,,(c)) > 0, and v(a;(cp)) = v(a,(co)) if and only if nli.
(And if n 1 4, then v(a;(co)) = 0.) Thus, it suffices to show the desired formula in the case
that ¢ = n.

Let ¢ := amin—1(c0)/am-1(co), and let 0 < r < e — 1 be the smallest nonnegative integer
such that CPTH = 1, as in the statement of the theorem. Then

m—1
i" = |am+n—1(00) - a’m—l(CO)|p = |C - 1|p|a'M—1(CO)|p

®)  lan(co)ld" " = |an(co) — 0

where the second equality is by repeated application of Lemma 3.5.
If nt (m — 1), then |a,,—1(co)|, = 1 by Proposition 3.1, whence

1

d™ w(an(c)) =v(¢ —1) = mv

(),
where we have used the well known fact that

©) =10 = Ipl,.

Thus, we have the desired equality

p'(p —1)d™ o(an(co)) = v(p).
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On the other hand, if n|(m—1), then |a,,—1(co)|, = |an(co)|, by Proposition 3.1, and therefore
equation (8) becomes

d" " v(an(co)) = v(C — 1) +v(an(co)) =

and hence
P (p—1)(d™ ! = Dv(an(co)) = v(p),
as desired. O

4. G5 4(co) WHEN j < m.

In this section, we answer Question 1.6 for j < m by proving Theorem 1.8 in that case.
We begin with the following lemma, which is an analogue of part (1) of Theorem 3.3 for the
principal ideal (a; ,—1(co) — Caj_1(co)) when 2 < j <m — 1.

Lemma 4.1. Let d,m > 2 andn > 1. Let (,w # 1 be nontrivial d-th roots of unity, and let
co be a root of G5 Set L = Q(co,w). Suppose that 2 < j < m — 1 and { > 1. Then for

d,m,n*
any prime ideal p of O, we have

pl{aje-1(co) —wa;_1(co)) = pl{d).

Proof. Applying f := f; ., to both sides of a;s_1(co) = wa;_1(cy) (mod p) yields

(10) ajre(co) = aj(cy) (mod p).
Repeatedly applying f to both sides of (10), we obtain
(11) ar+1(co) = ax(co)  (mod p)

forany £k > jandt > 1.
In particular, using s =m — 1 > jand ¢t = n in (11), we have

(12) Am—14n£(C0) = m—1(co) (mod p).

Since ¢y is a root of Gflm . We have a,,_1440(co) = Cam—1(co). Substituting this in (12), it

follows that (( — 1)a,,—1(cp) =0 (mod p), and hence

(13) either p|[(C—1) or p|{am_1(co))-

It is well known that (¢ — 1)|(d). Moreover, by [ |, Theorem 1.4], we have (a,,_1(co))|(d).
(Alternatively, if d is a prime power, these two facts are immediate from (9) and our The-
orem 1.4, respectively.) The desired result follows immediately from these two facts and
(13). O

We also need the following analogue of part (2) of Theorem 3.3 for the same setting as in
Lemma 4.1, provided d is a prime power.

Proposition 4.2. Let m > 2 and n > 1, and let d = p°, where p is a prime and ¢ > 1. Let
(,w # 1 be nontrivial d-th roots of unity, and let ¢y be a root of thm,n. Set L = Q(co, w).
Suppose that2 < 7 <m — land { > 1.

(@) If ¢ # 0 (mod n), then (a;+¢—1(co) — waj_1(co)) = OL. .

(b) Ifg =0 (Il’lOd n), then <CLj+g_1(Co> — CCLj_l(CO» = <an(Co)>dJ .
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Proof. Case (a). Let f = f;,, and write
(14) aj+e-1(co) — waj_1(co) = f77 (ar(eo)) — waj1(co).
Expanding the expression f/~*(a,(cp)), there exists a polynomial F' € Z[x] such that
P an(eo)) = arlco) + pF(co) + aj-1(co)-
Thus, equation (14) becomes
(15) aj+g_1(00) — wCLj_l(Co) = CLg(Co)dj71 +pF(C(]) + (1 — w)aj_l(co).
Suppose there were a prime ideal p C O, dividing (a;1,—1(co) — wa;_1(co)). Then
ar(co)? 4+ pF(co) + (1 — w)a;j—1(cp) =0 (mod p).
We have p = 0 (mod p) by Lemma 4.1, and hence
ar(co)”” + (1= w)a; 1(co) =0 (mod p).

By (9), we have (1 — w>pr(p_1) = (p) as ideals in Oy, where 0 < r < e — 1 is the smallest
integer such that w?” " = 1. Hence 1 —w = 0 (mod p), which forces a,(co) = 0 (mod p).
This contradicts Corollary 3.2, which says that a,(cg) is a unit in Op,.

Case (b). Putting  in the role of w in the proof of part (a), we have (1 — ¢)?"®=1 = (p),
where r is the same integer as in Theorem 3.3. Let

dm1 ifnt(m-—1),
d™ ' —1 ifnl(m—1),

so that part (2) of Theorem 3.3 says (as(co))™ = (1 — ¢) and {(as(co))®™ = (p). Thus,
equation (15) becomes

(16) E:=p'(p—1) and M := {

a7 aj40-1(co) — Caj_1(co) = ar(co)” Q
where
(18) Q =1+ wag(co) ®M=Y 7 F(co) + U2ag(co)M_dj71aj_1(co)

for some units u;, us in Op. Clearly EM > M > d’~!, so all of the exponents in (18) are
positive, and hence ) € O.

Suppose there were a prime ideal p C Op, such that ) = 0 (mod p). Then by (17) we
would also have a;¢_1(co) — Ca;—1(co) = 0 (mod p), so that Lemma 4.1 yields p|(d), and
hence pl{as(cy)), since (a(c))¥™ = (d). Equation (18) therefore yields 0 = Q = 1
(mod p), a contradiction, so no such p exists. That is, ) is a unit in Op. Equation (17)
then implies (a;4¢_1(co) — Ca;_1(co)) = (ar(co))? " = (an(co))* ', as desired. Note that we
used Theorem 1.4 in the last equality. U

We need one more lemma before we can prove Theorem 1.8 for j < m.

Lemma 4.3. Let m > 2 andn > 1, and let d = p°, where p is a prime and ¢ > 1. Let cq be a
root of Gfl,m,n, where ( # 1 is a d-th root of unity. Let w be a primitive d-th root of unity, and

set L = Q(co, w). Suppose that 2 < j < m — 1 and { > 1. Then, for any d-th root of unity
w' # 1, we have

(@jre-1(co) —wa;—1(co)) = (aj+e-1(co) — w'a;j_1(co))

as ideals in Oy,
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Proof. If £ # 0(mod n), then by Proposition 4.2.(a), we have
(aj+0-1(co) — waj—1(co)) = Or = (aj1e-1(co) — w'aj_1(co)).
Therefore, we may assume for the rest of the proof that / = 0(mod n). Write ¢/ = nt for

some t € N, and as usual, write f := f;.,. We proceed via a local argument.
For any place v of L that does not divide d, we have

|aj4ni-1(co) — wa;1(co)ly = 1 = |ajyni—1(co) — w'a;_1(co)l
by Lemma 4.1. For the rest of the proof, then, let v be a place of L that divides d, and let
p = |p ") and = |p|s/*"", which are the maximum and minimum v-adic distances

(respectively) between a nontrivial d-th root of unity and 1.
For any x € C, with |z|, < p, expanding (1 + z)? shows that

(4 2)! = 1], < p* = [plor.
Thus, for any b, ¢ € C* with |b — ¢|, < p|bl|,, we have
(19) () = £(0)], < IploslDl;.
We claim that for any d-th root of unity 7, we have
(20) |ajnt—1(co) — naj—1(co)|, > plaj-1(co)|,-
To prove the claim, suppose inequality (20) fails for some such 7. Then by inequality (19)
with b = na;_1(c) and ¢ = ajni—1(co), we have
[ajntco) = a;(co)],, < plor] a1 (co)y < lplo
since |a;—1(co)|, < 1. Applying m — j — 1 > 0 more iterations of f, and noting that f does
not expand distances on D(0, 1), we have
(21) Apint—1(Co) — am_l(co)‘v < |p|vk.
However, by Theorem 3.3, we have
v(ai(c)) <w(p), ie., }a,-(co)}v > |pl, foralli>1,

since ™' — 1 > 2! — 1 > 1. Thus, inequality (21) yields |ay,1ni—1(co) — @m_1(co)|e <
Klam-1(co)|,- However, ayini—1(co) = Cam—1(co), where { # 1 is a d-th root of unity.
Therefore, since x < |1 — (|,, we have

Klam—1(co)lo < [Cam-1(co) = am-1(co)|v < Klam-1(co)lo-
This contradiction proves the claim of inequality (20).
We now use the claim to prove the lemma. Observe that
(22)
|w'a;_1(co)—wa;_1(co)|, = |w'—wlv|aj_1(co)|, < plaj-1(co)|, < |@jni—1(co)—wa;_1(co)|,,
where the first inequality is by definition of p, and the second is by the claim applied to n = w.
Therefore,

‘aj+m_1(co) — U)/CLj_l(Co> ‘U S max { ‘aj+m_1(co) — U)aj_l(C()) w/CLj_l(Co> — wCLj_l(C(]) ‘U}
< |ajni—1(co) — waj—1(co)|,,

where the first inequality is the non-archimedean triangle inequality, and the second is by
inequality (22).

v?
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We have just shown that |a;,:—1(co) —w'aj_1(co)|v < |@jtni—1(co) —waj_1(co)|y. Apply-
ing the same argument with the roles of w and w’ reversed, we similarly have

|aj -1 (co) — waj_1(co)|, < |ajem—1(co) — w'a;1(co)|,,
thus proving the lemma. 0

Proof of Theorem 1.8 for j < m. We will consider the cases ¢/ # 0 (mod n) and ¢ = 0
(mod n) separately.

Case 1. Suppose that ¢ Z 0 (mod n). The result is immediate from part (a) of Proposi-
tion 4.2, because by the Mobius product definition of GS a0 We have

<Gdjg Co > } <aj+é 1(60) Caj—1(00)>
as ideals in O.

Case 2. Suppose that £ = 0 (mod n). Set ¢/ = nt for some ¢t € N, and L := Q(¢y,n) for
some primitive d-th root of unity 7. By [5, Lemma 27], there is a polynomial ' € Z[c] such
that

(23) H Gy i ui(c0) = Gaomi(co) Nt 4 pF (o).
w;ﬁl

ant(co)

First consider the case ¢ > 1. By equation (3), we know that G ,+(co) divides e in Og.
(See also Lemma 5.4 of [15].) By Corollary 3.2, it follows that u; := Gg0,:(co) is a unit in
Oxk.

Substituting this value in (23), we obtain

(24) H Gy jni(co) = = u\TINI L pF ()

wi=1

w#1
Since we have
(G jni(c0)) | (@jeni—1(co) — wa;1(co))

as ideals in Oy, if there were a prime ideal p C Of, such that Gy; ,,(co) = 0 (mod p), then
Lemma 4.1 yields p = 0 (mod p). This fact together with (24) implies u; = 0 (mod p), a
contradiction. Hence, there is no such a prime ideal p C O, whence (G ,,;(co)) = Oy, for
each d-th root of unity w. In particular, we have (th (o)) = Ok, completing the proof of
part (a) of Theorem 1.8 for j < m.

It remains to consider the case that¢ = 1, i.e. { = n. By [12, Lemma 2.2], there is a unit wuy
in Ok such that G4 ,(co) = uQan(co). Substituting this value in (23), we obtain

H Gdjn u3an(co)(d DNjin + pF(co)

wi=1

w#1

for some unit u3 in O
Define E, M as in equations (16), and observe that EM > (d — 1)N;,. Recall from
Theorem 3.3 that (an(co))EM = (p). Hence, there exists a unit uy in Ok such that

(25) [T Gijnleo) = an(eo) %" (s + waan(co) ™=V (o) ).

wi=1

w#1



14 BENEDETTO AND GOKSEL

For each w in the above product, (G, ,(co)) divides {(a;1n-1(co) — wa;-1(co)) (as ideals

in Op), by the Mobius product definition of Gy, . By part (b) of Proposition 4.2 and by

Lemma 4.3, then, any prime ideal of Oy, dividing (G ,,(co)) must divide {(a,(co)). By equa-

tion (25), any prime ideal p C Of, dividing (uz + usa,(co)EM~(@=YNin ['(cy)) must divide
some ((7g'; ,,(co)) and hence also divides (a,(co)). Then
ug = g + sty (co) PNV F(cg) =0 (mod p),

contradicting the fact that ug is a unit, and hence showing that no such p exists.
Thus, uz + usa,(co) ¥ ~Nin F'(cy) must be a unit in Oy, and hence also in Of. Therefore,

H (Gjn(co)) = (an(cg)) D Nin

wi=1

w#1
as ideals in Oy. Finally, by Lemma 4.3 and the definition of G/ ; , for any w, w’ with w? =
(w')* = 1 and w,w’ # 1, we have (G (co)) = ( %7”(00» (as ideals in Op). The desired

equality (G

an(C0)) = (an(co)) ™o follows immediately. O

5. G5,.4(co) WHEN j > m
In this section, we answer Question 1.6 for j > m by proving Theorem 1.8 in that case.

Lemma S5.1. Let m > 2 andn > 1, and let d = p°, where p is a prime and ¢ > 1. Let ¢ be a
root ofol’m’n, where ¢ # 1 is a d-th root of unity. Set K = Q(cy). Suppose that j > m and
(> 1.

(@) If ¢ # 0 (mod n), then (a;¢-1(co) — Caj-1(co)) = Ok.
(b) If ¢ =0 (mod n), then (ajte—1(co) —Caj—1(co)) = ((1—C)a;j—1(co)) as ideals in O.

Proof. Case (a). Suppose for the sake of contradiction that there exists a prime ideal p C Ok
that satisfies a;4,_1(co) — Caj_1(co) =0 (mod p), i.e.

(26) CLj+g_1(Co) = (aj_l(co) (Il’lOd p)
Applying n iterations of f := f; ., to both sides of (26), we obtain
Ajte4n—1(c0) = ajin-1(co) (mod p).

Since f has exact type (m,n) and j — 1 > m, it follows that

(27) ajre-1(co) = aj-1(co) (mod p).
Combining (26) and (27) yields
(28) (1 =¢)aj-1(co) =0 (mod p).

By Theorem 1.4, we have (1 —()|(p) and (a;_1(co))|(p), and hence equation (28) implies that
p =0 (mod p). Theorem 1.4 and equation (28) together also force

(29) an(co) =0 (mod p) for any positive integer t.

Let ¢ be a positive integer with nt > j. Applying nt — j + 1 iterations of f to both sides of
(27) yields

(30) ant1(co) = ane(co) (mod p).
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However, because ¢ #Z 0 (mod n), Theorem 1.4 implies that a,;.¢(co) is a unit in Ok; thus,
equations (29) and (30) contradict one another. Hence, there is no such prime ideal p C Ok.
That is, (a;+¢-1(co) — Ca;j—1(co)) = Ok, as desired.

Case (b). If / = 0 (mod n), then because f has exact type (m,n) and j — 1 > m, we
obtain a;4¢—1(co) = aj_1(co), which immediately implies the result. O

Proof of Theorem 1.8 for j > m. We again consider the cases ¢ Z 0 (mod n) and ¢/ = 0
(mod n) separately.
Case 1. Suppose that £/ #Z 0 (mod n). The result is immediate from part (a) of Lemma 5.1,

because by the Mobius product definition of th ;0> We have

(GS.0(co)) | {aje-1(co) = Caji(co))
as ideals in O

Case 2. Suppose that = 0 (mod n). Write ¢ = nt for some ¢t € N. We first consider the
case nt 1 j — 1. By definition, we have

k|nt
By Lemma 5.1, a;4x_1(co) — Caj_1(co) is a unitin O for each k # 0 (mod n). Thus,
(G (o) = [ [(asen(co) = Caza(co)* ™™ = T [(a;4nrs-1(co) — Cay1(co))" ")

k\nt k‘ﬂt
nlk

B {OK if¢>n

(1=Qaj-1(c)) ift=1

(1-¢) ife=n

as desired. In particular, the third equality is by Lemma 5.1, the fourth is by the Mdobius
identity (5), and the fifth is by Theorem 1.4 together with the fact thatn { j — 1.
It remains to consider the case nt | j — 1. Using the first part of Case 2 and the definition

of Gfl’ int» WE have
—p(nt/k) ift >1
G31) (G el = | M) ) e
- (1= Q)aj-1(co)) Iyjnilan(co)) " if t =1

as ideals in Ok. By Theorem 1.4, (31) immediately yields

_ J{an(eo)y 7wt ifr>1
(om0} = {<<1 = Q)aj-a(co))(an(co))” Zre ) g g = 1

(1-¢) ife=n

as desired. Note that in the last equality, we used Theorem 1.4, equation (5), and the fact that
nl|j—1. O
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