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Abstract

We consider a generalization of local density of states which is “windowed” with
respect to position and energy, called the windowed local density of states (WLDOS).
This definition generalizes the usual LDOS in the sense that the usual LDOS is recov-
ered in the limit where the position window captures individual sites and the energy
window is a delta distribution. We prove that the wLDOS is local in the sense that it
can be computed up to arbitrarily small error using spatial truncations of the system
Hamiltonian. Using this result we prove that the wLDOS is well-defined and com-
putable for infinite systems satisfying some natural assumptions. We finally present
numerical computations of the wLDOS at the edge and in the bulk of a “Fibonacci
SSH model”, a one-dimensional non-periodic model with topological edge states.
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1 Introduction

The density of states (DOS) is a fundamental concept in condensed matter physics
which is crucial for understanding electronic conductivity properties of materials.
Roughly speaking, the DOS is the density of electronic states available to be occu-
pied by an electron as a function of energy (ignoring electron—electron interactions).
Mathematically, the DOS is the density of eigenvalues of the single-particle electronic
Hamiltonian viewed as a function of the spectral parameter. The local density of states
(LDOS) is the contribution to the DOS from each point in space so that the average
of the LDOS over all space equals the DOS at that energy. The LDOS has been used
to clarify many phenomena in condensed matter physics. It is an especially important
tool for studying systems without translational symmetry such as crystalline materials
near defects or edges, disordered materials, and quasicrystals, where the Hamiltonian
cannot be diagonalized using Bloch theory.

In this work we propose a generalization of the LDOS which is “windowed” with
respect to position and energy, called the windowed local density of states (WLDOS).
We start by defining the wLDOS for finite-dimensional tight-binding models, and in
this context we show that the wLDOS reduces to the usual LDOS whenever the position
window captures individual sites and the energy window is a delta distribution. We
then prove that the wLDOS is local in the sense that it can be computed using a spatial
truncation of the Hamiltonian to a neighborhood around each point of interest. Using
locality of the wLDOS, we then show that the wLDOS is well-defined and computable
for a broad class of infinite-dimensional tight-binding systems. We expect that our
construction can be extended to continuum PDE models without too much difficulty;
see Remark 2.1.

We finally present a numerical study of the wLDOS in the bulk and near the edge
of a “quasi-crystalline” SSH model: a model of a one-dimensional material with no
spatial periodicity which nonetheless supports a non-trivial bulk topological invari-
ant and associated edge states. Note that there is no fundamental reason to restrict to
a one-dimensional model, since the definition and locality property of the wLDOS
are dimension-independent. However, in this work we restrict our numerical experi-
ments to one spatial dimension because analogous numerical experiments in higher
dimensions will be computationally more intensive and go beyond the scope of this
work.

We are motivated to introduce the wLDOS as an alternative to the standard LDOS for
several reasons. One is physical, in that experimental data extracted in spectroscopy is
necessarily blurred with respect to energy and position because of the finite resolution
of experimental probes. This can be seen clearly in Figs. 1 and 2. We therefore expect
numerical computations of the wLDOS to more closely resemble experimental data
than numerical computations of the LDOS. This can be seen in Fig.3, where we
present numerical computations of the wLDOS for a one-dimensional periodic SSH
model and our quasicrystal variant. The energy and position windows used in these
computations are shown in Fig.4. In our in-depth numerical study in Sect.6 we use
narrower position windows, but even the narrower windows, when placed over sites
which are not uniformly spaced, can partially cover more than one site: see Fig. 5.
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Fig. 1 An example of spectrocopy revealing the change in bandgap across an interface between two types
of nanowire. Panel (a) is a contour plot of experimental measurement of the LDOS as a function of position
along the nanowire (horizontal axis) and energy (vertical axis), while panel (b) shows the height of the
sample as a function of position. Reprinted with permission from [32] Persson, Olof, et al “Scanning
tunneling spectroscopy on InAs—GaSb Esaki diode nanowire devices during operation” Nano letters 15.6
(2015): 3684-3691 Copyright 2015 American Chemical Society (further permission related to the material
excerpted should be directed to the ACS)
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Fig. 2 An example of the output of scanning tunneling microscopy/spectroscopy measurement of the
LDOS performed on an encapsulation of europium nanowires encapsulated in a carbon nanotube. Red
and blue correspond to high and low densities respectively. The horizontal yellow streak within the blue
area corresponds to localized states with energy within the band gap. Reprinted with permission from
[30] Terunobu Nakanishi, Ryo Kitaura, Takazumi Kawai, Susumu Okada, Shoji Yoshida, Osamu Takeuchi,
Hidemi Shigekawa, and Hisanori Shinohara, The Journal of Physical Chemistry C 2017, 121 (33), 18195—
18201 DOI: https://doi.org/10.1021/acs.jpcc.7604047. Copyright 2017 American Chemical Society
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Fig.3 Numerical computations of the wLDOS for a the periodic SSH model, b a quasicrystalline variant of
the SSH model, and ¢ an interpolation between those two models. The energy window is a narrow Gaussian,
defined by (6.1) with nil = 9, while the position window is as in Sect. 6 but scaled to be twice as wide,
i.e. to have support [—2, 2]. The computations show important local spectral features clearly: edge modes
with energy in the bulk gap, and gap opening within the bulk bands due to the perturbation which breaks
translation symmetry

Another reason to compute the wLDOS rather than the LDOS is numerical. When
approximating the DOS one must smooth somewhat in energy to avoid implicitly
attempting to compute all of the eigenvalues [23], and the same issue arises when
approximating the LDOS. Smoothing is well-known to be necessary when computing
the spectral measure; see Sect. 1.1 below. Finally, having the option of a variable spatial
window may lead to more flexibility in how one parallelizes LDOS computations, and
is convenient for plots of LDOS for systems with irregular positioning of sites and for
systems with continuous degree of freedom.
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Fig. 4 The energy and position windows used for the wLDOS calculations shown in Fig.3. Dots along
the horizontal axis of b represent positions of sites in the quasicrystal SSH model. For the definition of

the wLDOS and of the window functions, see Sect.2.2. Taking a position window function which captures
multiple sites models the finite resolution of experimental measurements of the LDOS

Narrow position window

o.
-5 0 5

position X
Fig. 5 The position windows used for the wLDOS calculations in Sect.6. Dots along the horizontal axis
represent positions of sites in the quasicrystal SSH model. Note that even the narrower position windows

can overlap multiple sites. The wLDOS reduces to the LDOS only in the limit where each position window
captures precisely one site
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1.1 Related literature

The derivation of the LDOS is standard in textbooks on condensed matter physics, see
for example [21]. We do not attempt to summarize the physics literature on, or using,
the LDOS, but recall some relevant mathematical works. Massatt, Luskin, and Ortner
[29] (see also [6, 7]) proposed a method for computing the DOS of an incommensurate
bilayer system by averaging the LDOS over local atomic configurations. In the process
they proved locality of the LDOS for that system using resolvent calculus. In contrast,
we prove locality of the wLDOS (a generalization of the LDOS) for systems in arbitrary
dimensions satisfying more general assumptions via a spectral flow argument. The
idea to use locality of quantum mechanical models to develop schemes for computing
quantum mechanical observables is now well-established, see [7, 11, 17, 36, 37]. The
electronic properties of one-dimensional aperiodic models have been considered in
the physics literature (see, e.g., [15, 31, 39]), and mathematical literature (see, e.g.,
[12-14, 35]). The specific variant of the Fibonacci Hamiltonian we consider here, the
Fibonacci SSH model, is to our knowledge original to this work.

The wLDOS can be expressed as the spectral measure with respect to a well-chosen
Hilbert space state (see Remark 2.3). Computation of the spectral measure using
off-diagonal decay of the resolvent has been considered in, e.g., [8-10, 19, 29, 33].
These works, as well as [29] using similar ideas, generally obtain exponentially fast
convergence in truncation length, as opposed to the linear convergence obtained in the
present work (Theorem 3). The methods of the present work are obtained with different
proofs, and under weaker (L', as opposed to analytic) regularity assumptions on the
energy and position window functions. The present work developed independently of
the works [8, 19, 29, 33], while the works [10, 19] appeared after the original posting
of this paper.

1.2 Outline of paper

We recall usual definitions of the DOS and LDOS, and then define the wLDOS, in
the relatively simple case of finite-dimensional tight-binding models in Sect.2. We
will then prove locality of the wLDOS for such systems in Sect.3 before using this
property to extend the definition to a class of infinite-dimensional tight-binding models
in Sect. 4. We will then introduce the quasicrystalline SSH model in Sect. 5 and present
results of our numerical experiments in Sect. 6.

2 Windowed local density of states
In this section we will recall standard definitions of the DOS and LDOS, and then

introduce the windowed local density of states (wLDOS), in the simplest case of
finite-dimensional tight-binding models.
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2.1 Finite-dimensional tight-binding models and standard definitions of the DOS
and LDOS

We start by establishing some notation for finite-dimensional tight-binding models.

We consider sets of N points (which we will refer to as sites) in R4, with co-
ordinates x,, = (x1, ..., xg) for 1 < n < N. We consider an electron with M internal
degrees of freedom hopping between these sites in the tight-binding approximation, so
that the electronic wave-function is an element of the Hilbert space CV @ CM = cN
where N/ = M N. For the moment we allow the Hamiltonian H of the system to be an
arbitrary N’ x A/ Hermitian matrix. Let 8" € C/ denote the vector equalling 1 at site
n and internal degree of freedom m, and zero in every other entry. Foreach 1 </ < d,
we define position operators by

M

N
Xi=) x Yy lsmer 1<l<d. 2.1)
n=1

m=1

Remark 2.1 We expect that our results can be generalized to continuum PDE models,
at the cost of some technical complications. One obvious difficulty is unboundedness
of the Hamiltonian, since boundedness is essential at a few points in the present work,
e.g. Lemma 3.1, Assumption 4.2. We expect this difficulty can be overcome in the
same way that we overcome the restriction to finite systems below, by using the fact
that the wLDOS depends only on an energy truncation of the Hamiltonian (restriction
of the Hamiltonian to the subspace of eigenstates with energy close to the energy of
interest). We also expect that windowing the LDOS with respect to position is essential
in the continuum PDE context.

The simplest definition of the DOS is directly as the distribution
1 N
D(E) := v Z S(0j — E) (2.2)
j=1

where A ; are the eigenvalues of H counted with multiplicity [21]. The LDOS is defined
as follows. Let ¥, j € {1, ..., N}, denote the eigenvector of H corresponding to the
eigenvalue A; (if A; is degenerate v/; is not unique but any choice for v/; will do) so
that

Hyrj = Aj;. 2.3)

We can then define using the spectral representation of H

N
5(H—E)=Z5()~j—E)|l/fj)(Wj|~ (2.4)
j=1
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Taking the trace of (2.4) with respect to the basis {/;}1<;<n gives ND(E), and
hence

D(E) = %/Tr S(H — E). 2.5)

Expanding the trace in the basis {3, }1<p<n,1<m<m We derive

1 N
D(E) = 1 ; D,(E), (2.6)
where
M
Dy(E) := ) (8718(H — E)|8) 2.7)
m=1

is the LDOS defined at each site n [21].

Remark 2.2 For the sake of clarity, we define the DOS and LDOS directly through the
delta distribution. The DOS and LDOS can equivalently be defined via their action on
test functions, see [29] for example.

2.2 The windowed DOS and LDOS

We will shortly introduce the main object of study in this work, the windowed LDOS
(WLDOS), which is a version of the LDOS which is windowed in both energy and
position. For simplicity, we first restrict attention to one spatial dimension.

Let f(&) be a positive function in L'(R). For example, we can take f to be a
normalized Gaussian

e
fE = e 20? 2.8)

for some o > 0. Let H be as in Sect. 2.1. We now define the windowed DOS (wDOS).

Definition 2.1 We define the windowed DOS (wDOS) by
N
W(E) := 7 > f0; - E). (2.9)
Jj=1

Following the argument of the previous section we derive that
| MW
WE) =230 D (I (H = E)l3y). (2.10)

m=1n=1
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We therefore define the windowed (in energy) LDOS by

Definition 2.2 We define the windowed (in energy) LDOS by

M
D NIf(H = B8y @.11)
m=1

The wDOS and (2.11) clearly reduce to the standard DOS (2.2) and LDOS (2.7) in
the limit where f(§) — §(§).

We wish to consider a more general construction where the LDOS is windowed in
position as well as energy. To this end, let g(&) € L'(R) satisfy 0 < g < 1 and be
compactly supported. For example, we can take g to be a “bump” function such as

0, £ <=2
JE+2)? —2<E<-1;
g&)={1-13&2, -—l1<&=<1; (2.12)
1E-22% 1<&=<2
0, 2 <E&.

Let X be the one-dimensional position operator (recall (2.1))

N M
X=) x50, (2.13)
n=1 m=1

where x,,, | < n < N are the positions of each site. Then define for any real E, x
1 1
Fpx(H,X):=g2(X —x)f(H — E)g2(X —x). (2.14)

We now define the one dimensional windowed LDOS (wLDOS) at energy E and
position x with window functions f and g as follows.

Definition 2.3 Let H be the Hamiltonian of a finite-dimensional tight-binding model
with d = 1, and let X be the position operator (2.13). Let E and x be real numbers,
let (&) and g(&) be positive L! functions such that g is compactly supported with
0 < g(¢) <1, and let Fg x(H, X) be as in (2.14). The windowed local density of
states (WLDOS) at energy E and position x with window functions f and g is then
defined by

Wy(E) :=Tr Fg . (H, X). (2.15)

Note that the wLDOS can be defined at any x € R, even if x is not the position of
a site.
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Remark 2.3 The wLDOS arises equivalently by integration of f with respect to the
spectral measure defined by the state

M
W) =Y 82 (e —2) Y 1310). (2.16)

m=1

Recall that the spectral measure associated to a state v/, /Ly, is defined so that

el st = [ £y @17)

forall f € L [1].

An alternative equivalent formulation which will be useful is as follows. For arbi-
trary Hermitian matrices A, we have the identity

Tr(A%) = |A||% (2.18)

where || A||F denotes the Frobenius norm of a matrix A = (a;j)1<; j<A\

IAlF =

> a1 (2.19)

ij=1

Since Fg x(H, X) is positive by construction, we have

2

1
Tt Fp(H,X) = |F7 (H,X) (2.20)

F

so that the right-hand side of (2.20) gives an alternative definition of the wLDOS.

We now claim the following proposition, which establishes that the wLDOS defined
by Definition 2.3, with a particular choice of window functions, reduces to the standard
LDOS for finite-dimensional tight-binding models.

Proposition 2.1 Let f be a positive L' function. Let {gy},c1 and {x,} e denote sets
of compactly supported functions each satisfying 0 < g, < 1, and real numbers
respectively. For eachn € I, let Wy, (E) denote the wLDOS at energy E and position
X, using window functions f and g,. Then:

(1) If the functions g, centered at x,, form a partition of unity

> gn(E —x) =1, 2.21)

nel
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then

1
3 2 W (B) = W(E) (2.22)

nel

where W (E) is the wDOS defined by (2.10).
(2) Ifeach point x,, is chosen as the co-ordinate of the nth site (so that T = {1, ..., N'}),

the functions g, are chosen such that exactly one site is in the support of g, (€ —x,,)
foralln € Z, and g,(0) = 1, then (2.22) holds and for eachn €

M
Wy, (E) =Y (83" f(H — E)|8)") (2.23)

m=1
which is exactly the windowed (in energy) LDOS (2.11).

As an example of a set of functions satisfying (2.21), note that the bump function
(2.12) satisfies

Y gE—2m) =1 (2.24)

nez

Proof of Proposition 2.1 Using the cyclic property of the trace and the definition (2.14),
we have that

Tr (Fex(H, X)) = Tr(g(X — x) f(H — E)). (2.25)
Now let {g,(§)},,c7 and {x,},<7 be as in Proposition 2.1, and assume (2.21). Then

1 1 1
7 2 W (B) = 2 Tr (Zg(x — ) f(H — E)) = T f(H = E),

nel nel
(2.26)

which is nothing but (2.10), so (1) is proved. For (2), note that we can expand the trace
in (2.25) in the basis of eigenvectors of X to derive

N M
Wi (E) =Tr(g(X —x)f(H—E)) =Y _ > (g(X —x)8| f(H — E)8).

n=1m=1
(2.27)
Using the spectral representation of X we have that
N M
We(E) =Y "> gxa —x) (601 f(H — E)|5"). (2.28)
n=1m=1
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Part (2) of Proposition 2.1 is now clear from the assumptions that exactly one site is
in the support of each g(x, — x) and g(0) = 1.

We now define the wLDOS in higher dimensions. In d dimensions, recall that we
define position operators by

N M
Xp=) xay y MM 1<i<d (2.29)
n=1 m=1

where x, = (x,.1, X4.2, ..., Xn,q4) are the co-ordinates of the nth site. We will use the
obvious notation X := (X7, ..., Xg). Let f(&) be a positive L! function and g(&)
denote a compactly supported function RY — R such that 0 < g(&) < 1. Then for
arbitrary real £ and x = (x1, ..., xg) € RY, let

Fea(H, X) = g2 (X —x) f(H — E)g?(X — x). (2.30)

Definition 2.4 Let H be the Hamiltonian of a finite-dimensional tight-binding model,
and let X;, 1 <[ < d denote the position operators (2.29). Let E be a real number
and x = (x1,...,x7) € R let f(§) bea positive L' function and g(&) € L' (RY)
be compactly supported with 0 < g(§) < 1, and let Fg x(H, X) be as in (2.30). The
windowed local density of states (WLDOS) at energy E and position x with window
functions f and g is then defined by

Wy (E) :=Tr Fg (H, X). 2.31)

Since the proof is identical to that of Proposition 2.1, we state the following without
proof.

Proposition 2.2 Let {g,(§)},c7 and {x,},c1 denote sets of compactly supported func-
tions RY — R each satisfying 0 < g, < 1, and real numbers respectively. Let f (&)
be a positive L' function. For each n € I, let Wy, (E) denote the wLDOS at energy
E and position x, using window functions f and g,. Then:

(1) If the functions g, centered at x, form a partition of unity

> enE —xn) =1, (2.32)
nel
then
1
7 > W, (E) = W(E). (2.33)
nel

(2) Ifeach point x, is chosen as the co-ordinate of the nth site (so thatZ = {1, ..., N'})
and the functions g, are chosen such that exactly one site is in the support of
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Locality of the windowed local density of states 753

gn(& — x,) for all n € I, then (2.22) holds, and the wLDOS reduces to the
windowed (in energy) LDOS:

M
W, (E) = ) (81 f (H — E)I8;"). (2.34)

m=1

As an example of a set of functions satisfying (2.32) we can take products and
translates of the bump function (2.12). For example in dimension d = 2 we have

Y g —2m)gE — 2n) = 1. (2.35)

(n1,n2)€Z?

Remark 2.4 We briefly note some practical considerations which should be taken into
account when numerically computing the wLDOS. First, note that a naive computation
of f(H — E) would require a potentially expensive diagonalization of H. Assuming
f(&) is sufficiently smooth this can be avoided by approximating f(&) in L™ by a
polynomial f,(§) sothat f),(H — E) can be accurately computed by merely repeatedly
applying H — E. This is known as the kernel polynomial method [23, 38] and can be
rigorously justified using Bernstein’s theorem. Second, note that when Fg x(H, X)
has large rank it may be costly to directly evaluate the trace defining the wLDOS. In
this case it may be preferable to compute the trace using a randomized algorithm [20,
23].

Remark 2.5 We have seen that for finite systems the DOS can be recovered from the
wLDOS by averaging over sites. Assuming the wLDOS can be computed efficiently,
one can imagine a scheme for efficiently computing the DOS of a large system by aver-
aging over local computations of the wLDOS. The efficiency of this approach would
come from the fact that each local computation could be computed independently and
hence could be parallelized.

3 Proof that the wLDOS is local

We now prove the wLDOS is local in the sense that it can be computed with a finite
truncation of the system Hamiltonian nearby to the point of interest up to error which
can be made arbitrarily small. We will prove this initially for finite-dimensional models
without aiming for optimal constants. In the next section we will introduce natural
assumptions which will significantly improve these constants and allow us to exploit
locality to define wLDOS for a class of infinite-dimensional tight-binding models. We
will state and prove the result in one spatial dimension for clarity and then state the
general result for models in R¢ without proof since the proof is similar to the one
dimensional case.

Let f(£) and g(£) be as in Sect.2.2, i.e., f is a positive L' function, and g €
L' compactly supported with 0 < g < 1. We now additionally assume that f is
sufficiently smooth (specifically, we assume (3.4)).
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754 T.A. Loring et al.

Now let k(&) € L' be compactly supported with 0 < k < 1 equalling 1 on the
support of g(&€). For example, if g is given by (2.12), we can take k to be

0 E§<—4
3(E +4)? —4<&<-3
1-1E+2? 3<g<-2
k(¢)=11 —2<&<?2 (3.1

1-3(¢-2? 2<§<3
3E—4r  3<&<4
0 4 <é.

We think of k as modeling spatial truncation of the Hamiltonian.

We first give an outline of our results before stating theorems. Detailed proofs will
be postponed to an “Appendix”. Recall the definition of the wLDOS (Definition 2.3).
The statement that the wLDOS is local is then the statement that for any real E and
X,

Wi (E) =Tr Fg.(H, X)
~Trg? (X —x) f k(X — x)(H — E)k(X —x)) g2(X —x). (3.2)

Note that the right-hand side only involves the “spatially truncated” Hamiltonian
k(X —x)(H — E)k(X — x). The main step to prove (3.2) will be an estimate

G (X =) f(H — E)gb (X - )|

~ ”g%(x — ) f(k(X = x)(H — E)e(X — x))g? (X — x)H
3.3)

in the operator norm. Since (3.3) is equivalent to a statement about Frobenius norms
using (2.20), we can pass to the estimate (3.2) using equivalence of finite-dimensional
norms (for large system sizes this step will give a large constant which can be avoided
by making natural assumptions on H, see Sect.4).

We now move to stating our results rigorously. We will establish (3.3) in two steps.
The first and more difficult step is to prove the following lemma.

Lemma 3.1 Suppose H and X are finite-dimensional Hermitian operators. Let g and
k be positive L' functions such that0 < g < 1,0 <k < 1, and kg = g. Let f be a
positive L' function such that

* 2\ | 7¢ Yy ,_L *© —ité
f <1+|t|)|f(t)|dt<oo, f(t)._znf EFE)dE. (3.4

—0o0 —0o0
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Then

207 (83 (00 = g3 00 (KO HKCO)g2 (0| = €1 k0, H1]|
(3.5)

where

Ci :/ 1L+ I H D | F ()] dt. (3.6)

Condition (3.4) holds as long as f is twice differentiable with the Fourier transform
of f”in L'.

The second step is to prove that the right-hand side of (3.5) can be made arbitrarily
small by an appropriate choice of k(). Specifically, we will prove the following
proposition.

Proposition 3.2 Let g(§) € L' satisfy 0 < g < 1 and have support confined to the
interval [—L, L] for some fixed L > 0. Then it is possible to construct compactly
supported functions kq (§) defined for each @ > 0 which equal 1 for all ¢ € [—L, L]
and such that

ke (X), H]Il = Cox|I[X, HIII, (3.7)
where Co > 0 is a constant independent of o. The support of ko (§) is confined to the
interval [—Lai‘, Lai‘]

For the proofs of Lemmas 3.1 and 3.2, see “Appendix A”.

Combining Lemma 3.1 with Proposition 3.2 we have the following theorem which
makes (3.2) rigorous, establishing that W, (E) can be computed using the spatially
truncated Hamiltonian k4 (X — x) Hky (X — x) up to error of order « for any o > O.

Theorem 1 Let H be a finite-dimensional Hermitian operator. Let E and x be real
numbers. Let Wy (E) be the wLDOS defined by Definition 2.3 with window functions
f e L', positive and satisfying (3.4), and g € L' compactly supported with 0 < g <
1. Let ko (X) for each a > 0 be the functions constructed in Proposition 3.2. Then

We(E) = Tr (3 (X = 0)f (ha(X = X)(H = E)ka(X = 20) g3 (X = )| = Cat
(3.8)

where C > 0 is a constant independent of «.

Proof Combining Lemma 3.1 with Proposition 3.2 gives a bound in the operator norm
depending only on ||H | and ||[[H, X]||, both of which are finite since we work in
a finite-dimensional space. To pass to the estimate in the Frobenius norm we use
equivalence of finite-dimensional norms in the space V. O
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Note that the proof uses very naive estimates that the resulting constant C will
grow with system size. In the next section we will introduce assumptions that allow
for estimates which are uniform in the system size.

For completeness we state the d-dimensional result without proof. Note that the
constant C > 0 in (3.9) will grow with system size and dimension d.

Theorem 2 Let H be a finite-dimensional Hermitian operator. Let E be real and x €
RY. Let Wy (E) be the wLDOS defined by Definition 2.4 with window functions f € L',
positive and with Fourier transform satisfying (3.4), and g € L'(RY) compactly
supported with 0 < g < 1. Let ko (X) for each o > 0 be a tensor product of the the
one-dimensional functions constructed in Proposition 3.2. Then

Wi (E) = Tr (g5 (X =) (ka(X = X)(H = EYla(X = 3)) g3 (X = 3)) | < Cat,
(3.9

where C > 0 is a constant independent of «.

4 Defining and computing the wLDOS of infinite systems using
locality

In this section we will introduce natural assumptions which will allow for locality
estimates which are uniform in system size. Using these locality estimates we will then
show that the wLDOS is well-defined and computable for a broad class of infinite-
dimensional tight-binding systems.

4.1 Approximation of infinite-dimensional tight-binding models by
finite-dimensional tight-binding models

Consider a tight-binding model on an infinite number of sites. As examples, we can
consider an electron hopping on an infinite periodic lattice, or on an infinite quasicrystal
lattice, or on random perturbations of such lattices. We will take the model Hilbert
space to be H := ¢*>(V) ® CM, where V denotes the (infinite) set of sites and M
denotes the (finite) number of internal degrees of freedom, and denote the model
Hamiltonian, a self-adjoint operator H — H, by Ho,. We define position operators
by

M
Xii=) xar Y 18060 1<l<d @.D

neV m=1

where x,, = (x,.1, Xn2, ..., Xn,4) denotes the co-ordinates of each site.

Suppose we fix a real number E and x € R?. For any R > 0, we can define a finite-
dimensional tight-binding model with Hamiltonian Hp, by restricting the infinite model
to sites in the ball of radius R about x, and compute the wLDOS of this model at E
and x. Since we recover the infinite-dimensional model in the limit R — oo, it is
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natural to ask whether it makes sense to take the limit of the wLDOS of the sequence
of finite models and define the wLDOS of the infinite model by this limit. In the
previous section we proved that the wLDOS can be computed from a truncation of
the Hamiltonian to a region nearby the point of interest. Formally then, the sequence
of wLDOS values should converge as R — oco. To make this rigorous, we have to
control the constant in the estimate (3.9) as a function of R. The proof of Theorem
1 clearly does not provide this since, for example, we invoke equivalence of norms
in ¢V , where N will increase as function of R. To pass to the limit R — oo, we
require three natural assumptions which we expect will be satisfied by any physically
reasonable tight-binding model. We first assume that the Hamiltonian Hy, is local in
the following sense.

Assumption 4.1 Let X;, 1 < [ < d denote the position operators defined by (4.1),
extended to all of RY. We assume that Hs is local in the sense that there exists a
constant Cj,. > 0 such that

sup [[X1, Heol|| < Cioc. (4.2)
1<i<d

Assumption 4.1 can be roughly stated as “Hy is a narrowly banded matrix in the
position basis”. This assumption is natural given that atomic (or Wannier) orbitals
generally decay exponentially [16, 27].

We next assume that Hy, 1S bounded.

Assumption 4.2 We assume that H, is bounded in the sense that there exists a constant
Crorm > 0 such that

[Hooll < Chorm- 4.3)

The final assumption rules out some pathological situations where e.g. balls with
finite radius can contain an unbounded number of sites.

Assumption 4.3 Let g(¢) € L'(R?) be compactly supported with 0 < g < 1. Then
we assume that the rank of the matrix

g2(X — x)Haog? (X — x) (4.4)

is uniformly bounded above for all x € R? by a positive integer Mypper.

Note that Assumptions 4.1, 4.2, and 4.3 are trivial for Hamiltonians H of fixed
finite-dimensional tight-binding models.
We now have the following.

Theorem 3 Let Hyo be an infinite-dimensional tight-binding Hamiltonian satisfying
Assumptions 4.1, 4.2, and 4.3. Let E be real, and x € RY. For any R > 0, define Hg
as the tight-binding Hamiltonian obtained by truncating Hws to the set of sites within
a ball of radius R about the point E and x. Let f € L' be positive and g € L' be
compactly supported with 0 < g < 1, and let Wy r(E) be the wLDOS defined by
Definition 2.3 for the Hamiltonian Hg. Then:
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(1) The limit Wy o(E) 1= limg— o0 Wx r(E) exists and equals
1 1
Waoo(E) = Tr (2 (X = %) f (Hoe — E)g? (X =) (45)
(2) The limit Wy oo (E) can be computed by the formula

Weoo(E) =Tr (82 (X —x)f (ka(X = x)(Hg — EYea(X = %)) g7 (X — )
+0(a), (4.6)

as long as R > 0 is sufficiently large that

k(X — x)(Hg — Eka(X — x) = ko(X — X)(Hoo — Eko(X — x).
4.7

Proof Let R > 0 be arbitrary. Then applying Lemma 3.1 and Proposition 3.2 to the
truncated model with radius R we have a bound of the form (3.9) in the operator norm
with a constant depending on ||[[X;, Hr]|l,1 < [ < d and ||Hg||. Under Assump-
tions 4.1 and 4.2, these can both be bounded independent of R. To pass to the bound
(3.9) in the Frobenius norm, we invoke equivalence of finite-dimensional norms in the
space CMurrer ysing Assumption 4.3. We now have an estimate

<Cua

(4.8)

‘WX,ME) —Tr (g%<x —x)f (ké (X — x)(Hg — E)ky(X — x>> g7 (X — x))

where C > 0 is independent of both R and «. Since k, (X — x) is a cutoff, by taking
R sufficiently large we can ensure that

ko(X —x)(HR — E)koy (X —x) = ko (X —x)(Hxo — E)ky(X —x). (49)

We now claim that the sequence {Wy r(E)} is Cauchy. Let € > 0 be arbitrary. For
arbitrary R, R’, (4.8) implies that

|Wy R(E) = Wy g/ (E)|

= [Tr (2 (X =) f (ke (X = ) (Hg — EYea (X = 20) g7(X — x))

_Tr (g%(X — ) f (ke (X — x)(Hpr — EYko(X — x)) g7 (X —x))7 + 0.

(4.10)

Now take o small enough such that the O(«) term is < €, and then take R and
R’ sufficiently large that (4.9) holds for both terms so that the other term in (4.10)
vanishes.
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To see (4.5), note that for arbitrary R and «,

War(E) = Tr (g7 (X = %) f (ka(X = X)(Hg = E)ka(X = %)) g7 (X —¥)) + 0(@).
(4.11)

Taking the limit R — oo on both sides we have

Weoo(E) = Tr (2 (X = %)f (ka(X = 3)(Hoo = EMka(X =) g7 (X = %)) + O(@).
(4.12)

Taking the limit « — 0 (note that limy—, ko (X — x) = 1) now implies (4.5). To see
(4.6), fix ¢ > 0in (4.12). Using (4.9) we have that for sufficiently large R (depending
on «) that the right-hand side equals (4.6). O

We can now make the following definition.

Definition 4.1 Let H, be the Hamiltonian of a tight-binding model on an infinite
lattice satisfying Assumptions 4.1, 4.2, and 4.3 and let X;, 1 < [ < d denote the
position operators (2.1) extended to R9. Let E be real and x € RY, let f()bea
positive L' function such that (3.4) holds, and g (£) € L' (R?) be compactly supported
with0 < g(§) < 1. We define the windowed local density of states (WLDOS) at energy
E and position x with window functions f and g by

Wy (E) :=Tr Fg x(Hoo, X)
| | (4.13)
FE x(Hoo, X) 1= g2 (X — x) f(Hoo — E)g2 (X — x).

That this quantity is well-defined and computable is guaranteed by Theorem 3.

5 The Fibonacci SSH model

In this section we introduce a one-dimensional model system which we refer to as the
Fibonacci SSH model. We choose to study this model because it lacks any translational
symmetry, making the wLDOS an important tool for understanding the electronic
states of the system. Similar models have been well-studied in the physics and math-
ematics literature; see, for example: [13, 14, 31, 35].

Before we can define the Fibonacci SSH model, we must first review the Fibonacci
quasicrystal construction.

5.1 The Fibonacci quasicrystal

The Fibonacci quasicrystal is a one dimensional chain made of two sorts of “links”
which have lengths S and L with § < L. We take the lengths in a fixed ratio of the
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golden mean

Ed__¢__1-%v€ G.0)
s 2 '
We can form an infinite quasiperiodic chain by starting with a series of links and then
repeatedly applying the replacement rules

S— L,
L+— LS. (52)

If we start with the single letter S, we obtain the sequence

S

L

LS

LSL (5.3)
LSLLS

LSLLSLSL

LSLLSLSLLSLLS

and so on. It will be more convenient to work with a sequence which grows in two
directions rather than one. To obtain such a sequence, instead of starting with § we
start with L L. Applying the replacement rules we find

L.L
LS.LS
LSLLSL 5.4
LSLLS.LSLLS
LSLLSLSLLSLLSLSL

and so on, where . indicates the center of the sequence. We will shortly want to identify
the ends of each stage of the sequence. When we do this, we would like to guarantee
that we do not create sequences of letters, known as words, which did not appear in
the original sequence. We call such words invalid words.

To obtain a sequence such that identifying the ends of each stage does not cre-
ate invalid words, we start with LLS instead of LL. In this case, invalid words are
not created by identifying ends because LLSL and LSLL and SLLS all are valid
words, appearing by stage 3. The first five sequences obtained from the quasicrystal
construction are then

stage 1: LLS

stage 2: LS.LSL

stage 3: LSLLSLLS (5.5)
stage 4: LSLLS.LSLLSLSL

stage 5: LSLLSLSL.LSLLSLSLLSLLS.
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Notice that stage 1 appears at the center of stage 3, stage 3 appears at the center
of stage 5, and so on. We can therefore consider the sequence of odd stages as a
sequence of chains which grow at their ends. The infinite quasicrystal is defined as
the infinite limit of this sequence. Note that if we took instead the even stages, we
would have something locally indistinguishable from what we are using in the sense
that every finite subsequence of the infinite limit generated by the odd stages would
be a subsequence of that generated by the even stages, and vice versa (see Example
4.6 of [4]). We do not expect this choice to affect the spectral properties of the infinite-
dimensional Fibonacci SSH model we will define in the following section.

Our final task in this section is to compute values for the lengths of S and L so
that the average distance between vertices (points between links) is 1. The number of
symbols at stage 7 is a Fibonacci number, !

1
Foiz ~ —¢" 3. (5.6)
n+ \/5
Suppose we replace S by an edge of length 1 and L by an edge of length ¢ where
14+ /5
¢ = 7 5.7

(Thus ¢> = ¢ + 1, > = 2¢ + 1, etc.). Since the total length represented by L is
¢ and the total length represented by LS is ¢ + 1, the length of the resulting finite
quasilattice will be growing at each stage by the factor ¢. At stage 1 the total length
of the quasilattice is 2¢» 4 1 so the total length of the quasilattice at stage n is ¢" 2.
This means the average distance between vertices is

¢n+2 N ﬁ¢n+2 ﬁ

A = —. (5.8)
Fn+3 ¢n+3 ¢
To get the average distance between vertices to be 1, we rescale, and so use
2
5= 2 — 972 o236 (5.9)
N
2
3 1
IL| = 3 1708 (5.10)
V3 5

5.2 The Fibonacci SSH model

The original SSH model [34] describes hopping on a one-dimensional lattice where the
hopping amplitudes alternate between two values, known as the inter-site and onsite
hopping amplitudes. In the Fibonacci SSH model, the onsite hopping amplitude is

! The Fibonacci numbers are defined by Fp =0, Ff = land F, = Fy_1 + F,_p foralln > 1. A
straightforward induction proves the stronger statement that the numbers of copies of S and L at stage n
are Fy, 1| and F ) respectively.
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held fixed while the inter-site hopping amplitude takes on one of two values, with the
choice determined by the Fibonacci quasicrystal constructed in the previous section.

The model is defined on the Hilbert space £2(V) ® C2 with V the set of vertices of
the infinite Fibonacci quasicrystal. As usual we define the one-dimensional position
operator by

2
X:anZw;f)(am (5.11)
neVv

m=1

where x, is the co-ordinate of each vertex. Let o, denote the Pauli matrix

oy = (? (1)> . (5.12)

The Hamiltonian is

H= Z 1o182) (811 + ti (n, n + D18} ) (82 + h.c. (5.13)

neV

where h.c. denotes the Hermitian conjugate. Here £, is a real constant defining the
onsite hopping amplitude, and #; (n, n + 1) is the inter-site hopping amplitude, which
depends on whether the link between vertices n and n + 1 is S or L. We will take
t, = 2.15 and

3.04 if link between sites nand n + 1is S
tin,n+1) = o . . (5.14)
2.73 if link between sites n and n + 1 is L.

With these choices, the inter-site hopping term is, on average, 2.85. This is compa-
rable to the original SSH model [34], where the onsite and inter-site hopping strengths
are 2.15 and 2.85 respectively.

The quasicrystal SSH model retains the chiral symmetry of the original periodic
SSH model, i.e.

(S,H)=SH +HS =0 (5.15)

where S = I ® o;. We can therefore consider the model as belonging to class BDI of
the Altland-Zirnbauer classification of topological insulators [2, 22].

It is straightforward to compute the Bloch eigenvalue bands of the periodic SSH
model [3, 34] as

Es() = \/12 4+ 12 + 210t; cos(k) k € [~ 7] (5.16)

so that the bulk spectrum is exactly [—|t, — t;|, —|t, + #;|] U [Ito — til, |fo + t;|]. The
bulk winding number is 1 whenever |t,| < |t;|. When 79 = 2.15 and #; = 2.85 the
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Fig. 6 Spectra of the quasicrystal SSH model introduced in Sect.5.2 computed by imposing periodic
boundary conditions on a finite chain, for increasing stages of the Fibonacci quasicrystal construction
(equivalently, increasing system sizes). Quasicrystal stage number (5.5) is shown on the y axis, eigenvalues
along the x axis. The computations appear to converge to a limit spectrum with a large gap at 0 and several
smaller gaps within the bands of the periodic SSH model

bulk spectrum of the periodic SSH model is therefore
[-5,—-0.71U[0.7, 5], (5.17)

and the bulk winding number is 1.

The infinite Fibonacci SSH Hamiltonian with #; chosen according to (5.14) is a
perturbation whose size in the operator norm is bounded by 0.19 of the standard SSH
Hamiltonian which has gap 0.7 and topological index 1. By standard arguments the
Fibonacci SSH Hamiltonian has a gap of at least 0.51 and must also have topological
index 1. When the model is truncated and Dirichlet boundary conditions are imposed
at both ends, we expect edge states, eigenvectors of the Hamiltonian supported near
to the physical edge of the model, to occur.

We can compute an approximation of the spectrum and integrated DOS for the
Fibonacci SSH model by imposing periodic boundary conditions on a finite chain of
vertices. Periodic boundary conditions are natural here, because they eliminate edge
states which would otherwise pollute the computation. We expect that the methods of
[5] could be applied to show that the sequence of computations on increasing size finite
chains with periodic boundary conditions converges. An alternative approach would
be to compute the spectrum with general methods guaranteed to eliminate spectral
pollution [11], but this is beyond the scope of the present work. These computations
are shown in Figs. 6 and 7. The computations confirm that in passing from the periodic
SSH model to the Fibonacci SSH model the large spectral gap at zero persists, and
suggest that the spectrum of the Fibonacci SSH model has new smaller gaps appearing
within the bands of the periodic model.
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Fig. 7 Integrated density of states (IDOS) for stages 16 through 20 of the quasicrystal SSH model intro-
duced in Sect. 5.2, computed by imposing periodic boundary conditions on the finite chain. The IDOS for
successive stages are indistinguishable, demonstrating the convergence of the computations as stage number
(equivalently system size) is increased. The density shows a clear gap at 0 and smaller gaps away from zero

6 Investigation of the wLDOS for the Fibonacci SSH model

In this section we show computations of the wLDOS for the Fibonacci SSH model
introduced in the previous section. For real positive > 0, we define a Gaussian
energy window with standard deviation n by

fr&) = e 0O, 6.1)

To avoid diagonalization of the Hamiltonian, we approximate f, by a 14th order
polynomial. We define a position window by

82(8) = g(28), (6.2)

where g(&) is as in (2.12), so that g»(§) is supported on the interval [—1, 1]. This
window function is plotted in Fig.5. With these window functions, we compute the
wLDOS in the bulk (Fig. 8) and at the edge (Fig. 10) of finite truncations of the model.
By our theoretical results we know that when the truncation is sufficiently far from
the point of interest that the results will be identical to those obtained if we were able
to compute with the fully infinite model (half-infinite when we look at the edge). We
can computationally test locality of the wLDOS by comparing the computed wLDOS
as we increase the system size (Figs.9, 11). We find that in practice the computed
wLDOS converges quickly as system size is increased, suggesting the wLDOS is more
local than our theoretical guarantees. Since we restrict attention to one-dimensional
computations, all runtimes are on the order of several minutes on a modern laptop. In
higher-dimensions, direct computations will be more challenging, but improvements
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(a) LDOS _Fro_qc_SSH_gaussian_middle, n~! = 5.0, k = 2.000, p =5

energy H

energy H

position X

(C) LDOS _Fro_qc_SSH_gaussian_middle, ! = 5.0, k = 2.000, p = 10

energy H

position X

(d) LDOS _Fro_qc_SSH_gaussian_middle, ! = 5.0, x = 2.000, p = 80

energy H

-6 -4 -2 0 2 4 6
position X

Fig.8 Computed wLDOS in the center (bulk) of a finite quasicrystal SSH chain from —7 to 7 for different
system sizes. The inverse of the standard deviation of the energy window is fixed at n~1 = 5.Ina, the chain
extends from (roughly) —5 to 5. In b, the chain extends from —8 and 8. In ¢, from —10 to 10. In d, from
—80 to 80. Exponentially-decaying edge modes in the bulk spectral gap at O are clearly visible in (a)—(c).
In d, the edges of the chain are sufficiently far away that the edge modes do not appear. The bulk gap at 0
and smaller gaps away from zero, previously seen in Figs. 6 and 7, are clearly visible

could be made by evaluating the trace stochastically [23]. Recall that the DOS can
be calculated rather efficiently by averaging LDOS computations which could be
computed in parallel (see Conclusion).
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Successive difference between GLDOS at succesive lengths — at middle
10 T T T T T

10710

10715

successive differences

10 -20 L L L L L
10 20 30 40 50 60

distance to difference in Hamiltonian

Fig. 9 Difference in successive terms in sequence of wLDOS computed with increasing system lengths,
for energy windows of different widths, at fixed E and with x fixed far from system edges. For wide energy
windows (small 1), the sequence shows rather quick convergence to machine precision, as should be
expected from the uncertainty principle

7 Conclusion

In this work we have proposed a variant of the usual LDOS called the windowed local
density of states or wLDOS where the LDOS is “windowed” with respect to energy and
position. We proved that for finite systems the wLDOS generalizes the usual LDOS in
the sense that for narrow window functions the wLDOS reduces to the usual LDOS. We
proved that the wLDOS is local in the sense that it can be computed accurately from a
finite truncation of the Hamiltonian about the point of interest. We used this property to
show that under natural locality assumptions on the Hamiltonian the wLDOS is well-
defined and computable even for tight-binding models on infinite domains. We finally
investigated the wLDOS for the “Fibonacci SSH” model, a one dimensional aperiodic
model which nonetheless has a non-trivial bulk index and associated topological edge
states. Our computations show that the wLDOS is considerably more local than our
theory guarantees, suggesting our locality estimates might be further improved. This
is consistent with the exponential estimates obtained for higher regularity windowing
functions using resolvent estimates [8—10, 19, 29, 33].

These results demonstrate that the wLDOS can be a useful tool for computing and
visualizing material properties. Since our theory allows for computing the wLDOS for
both finite and infinite models, it may be useful for predicting when finite size effects
will be important in computations and/or experiments.

For future directions, we mention two potential applications of our results. First, to
compute the DOS of a large finite system, instead of diagonalizing the Hamiltonian,
one could average the wLDOS over the system. This computation would require many
computations of the wLDOS, but importantly, using locality, these computations could
be performed in parallel. This scheme could be applied, for example, to compute the
DOS of a large finite quasicrystal as studied by one of the authors in [26]. Similar
schemes have been employed in the study of incommensurate layered materials, see
[28, 29].
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(a) LDOS _Fro_qc_SSH_gaussian_end, ' = 5.0, & = 2.000, p = 10

0.6

0.4

energy H

0.2

-2 0 2 4 6 8 10 12
position X

LDOS _Fro_qc_SSH_gaussian_end, ' = 5.0, & = 2.000, p = 13

—
=3
=

energy H
o

2 0 2

4 6 8 10 12
position X

LDOS _Fro_qc_SSH_gaussian_end, ! = 5.0, & = 2.000, p = 16

—
o
~

0.6

0.4

energy H

0.2

-2 0 2 4 6 8 10 12
position X

LDOS _Fro_qc_SSH_gaussian_end, ™ = 5.0, & = 2.000, p = 80

—
=¥
=

0.6

0.4

energy H

0.2

0.6
0.4
0.2
0

-2 0 2 4 6 8 10 12
position X

Fig. 10 Computed wLDOS at the edge of a finite quasicrystal SSH chain from —1 to 12 for various system
sizes. The inverse of the standard deviation of the energy window is fixed at n~! = 5.1In a, the chain
extends from (roughly) O to 10. In b the chain extends from 0 to 13. In ¢, from 0 to 16. In d, from O to 80.
In all figures, the edge mode with energy in the bulk spectral gap can be clearly seen

The second potential application involves an apparent link between the wLDOS
and the spectral localizer [18, 24, 25]. If one uses a broad window g in position and a
modest window f inenergy then g(X) and f (H) become almost commuting matrices.
Given the known connection [25] between almost commuting matrices, K -theory, and
the spectral localizer, it should be interesting to look at the wLDOS on topological
systems. Moreover, it should be useful to work with versions of the wLDOS using
other norms, c.f. (2.20).
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Successive difference between GLDOS at succesive lengths — at end
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Fig. 11 Difference in successive terms in sequence of wLDOS computed with increasing system lengths,
at fixed E and with x fixed at system edge. The sequences show rather quick convergence to machine
precision, especially for wide energy windows (small 77*1)

Appendix A. Proofs of Lemma 3.1 and Proposition 3.2

In this section we give the proofs of Lemma 3.1 and Proposition 3.2.

A. 1 Proof of Lemma 3.1

Before we can give the proof of Lemma 3.1 we require two preliminary Lemmas. Note
that we take x = E = 0 for simplicity.

Lemma A.1 Suppose that A and B are bounded linear operators, with A Hermitian.
Then

e, BI|| < |t|I[A, B1|. (A1)

Proof First note that

d /. . . .
E(elfABe—llA) — ieltA[A, B]e_”A. (Az)

Integrating from O to ¢, we get
eMABe A _ B = if e"A[A, Ble "4 ds. (A.3)
0

We now move to proving the estimate starting with
e, Bl = lle"4 B — Be'™|| = [l A Be™"" 4 — B|. (A4)
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Using (A.3) we now have

I, Bl = H f eSALA, Ble "4 ds| < |t|[I[A, B]|. (A.5)
0

O

LemmaA.2 Let H and X be self-adjoint operators with H bounded. Let g and k be
functionson Rwith) < g < 1,0 <k <landkg = g. Then

1 . 1 1 . 1
lg2(X)e " g2 (X)—g2 (X)e! ™ OHKX) o3 (X) || <11 + [¢|| HIDIK(X), HIII.

(A.6)
Proof First note that
|42 (0€H g2 (%) — g3 (X0 HOHD g () |
< ‘g%(X) _ e—itHeitk(X)Hk(X)g%(X) H
I d 1 —isH isk(X)Hk(X) 1
= [ |5 (g7 —ee g2 (X0)| ds
0 S
| d isH isk(X)Hk(X) 3
— - e*lSHelA (X)Hk(X) 2(X) ds.
q 8
0 N
(A7)
Clearly,
d

- (e—itHeitk(X)Hk(X)g%(X)) —jeitH (k(X)Hk(X)—H) eitk(X)Hk(X)g%(X)'
(A.8)

Re-arranging the right-hand side of (A.8) and using kg = k gives

% (e—itHeitk(X)Hk(X)g% (X))
— je—itH ([k(X), H]eitk(X)Hk(X)> g%(X)
e (KCOHKX), ™ORN ) 4 pik(X), o FOORROT) 03 (x),
(A.9)

The first term on the right-hand side of (A.9) can be bounded by ||[k(X), H]||. Using
Lemma A.1 we have

Ik (X), e ™M EHRE <121k (X), k(X)HEOTI = [t I[k(X), H]|| (A.10)
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and hence the second two terms on the right-hand side of (A.9) are bounded by
2111 H||IITk(X), H]||. Substituting these estimates into (A.7) we have

g2 (Xel"M g3 (X) = g3 (X 0 g3 (x) |

1
5/0 Il (X), HIIl + 2[s [l H |II[k(X), H]|l ds
< |1+ I H DA X)), H]|l

(A.11)
as required. O
We can now give the proof of Lemma 3.1.
Proofof Lemma 3.1 Let £ be the inverse Fourier transform of f/, so
00 .
(&) =/ 0(n)e''s dt. (A.12)
—00
For bounded Hermitian operators K, we have by functional calculus that
L)
f(K) = f(0)1+/ Q(e”K —I)dt. (A.13)
oo it
It then follows that
1 1 W) Lk L
S O0S(K)g(X0) = FOX) + | == (820" g2 (X) = g(x)) dr.
—0oQ
(A.14)

Comparing this identity with K = H and K = k(X)Hk(X) we find

g2 (X0 f(H)g> (X) — g2 (X) f (k(X)HR(X))g? (X)

Z/oo g.(_t)(g%(x)e”Hg%(X)_g%(X)eitk(X)Hk(X)g%(X)) dr.

o it

Therefore

g0 f(H)gh(X) = g2 (X) f (kO HKX))g3 (00|
1L
< [ B2 na + e, # ar

—o 1

o
= II[k(X),H]II/ A+ 1elIHD [€@)] dt.
-0
Since £(t) =i tf(t) the statement follows.
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A. 2 Proof of Proposition 3.2

We now prove Proposition 3.2. We again start with a preliminary Lemma.

Lemma A.3 Suppose that A and B are bounded matrices, with A Hermitian, and
suppose k € C'(R) is such that

K (x) = /Ooe(r)ei”‘ dt (A.15)

for some £(t) € L'(R). Then
Ik(A), BIIl < [I€]I1I[A, Bl (A.16)
Proof Using (A.15), we have
k(x) = k(0) +/O k' (y)dy
:k(0)+/x/ 2(n)e'™ dr dy
0 J—0

:k(O)—i—/ooE(t) fxe"'y dy dr
—0 0

00 P
=k(0)+/ m)( - )dt.

(A.17)
Hence
k(A) = k(0)I + /Z% (e”A — 1) dr, (A.18)
where the integral is well-defined because
le'" — 1] < Jr[l1Al (A.19)

(to see this differentiate the operator on the left-hand side). From (A.18), we have that

[k(A), B] = / gy

oo it

[¢'"4, B]dr. (A.20)

The result now follows by Lemma A.1. O

We are now in a position to give an explicit construction of k(&) equalling 1 for
all £ € [-L, L] and satisfying (3.7).
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Proof of Proposition 3.2 Fix L > 0, and define M| to be the smallest integer such that
2M; > L. Define k(£) asin (2.12), i.e.

0 £< -2
Ie+2? —2<g<-1

k@€ =1{1-162 -1<g<1 (A.21)
JE-2? 1<&<2
0 2 <E&.

It is clear that

e +2)? —5<ss—1

k() +k(E—-2)=11 0<&<2 (A.22)
1-3E—-2?% 2<§<3
-4 3<i<4

and more generally,

0 £E<—2M-2
lE+2M+22 2M—2<&<-2M—1
M 1-JE+2M)? —2M —1 <& <-2M
k@)=Y kE-2=11 OM <& <2M (A.23)
= 1— 3 —2M)% 2M <& <2M +1
le—2M -2 2M+1 <& <2M+2
0 E>2M +2.

Using the fact that 2M > L by assumption, we have that k;(§) acts by 1 over the
whole interval [—L, L]. For positive «, we now define

ka(§) := ki(af). (A.24)

It is easy to see that k, (§) acts as 1 over the interval [ 2M zM ] and hence acts as
1 over the interval [—— —] which contains [—L, L] for 0 < o < 1. The support
of ky () is clearly confined to [ “;’x +2, ”:’1 +2]. Using the definition of M as the

smallest integer such that2M > L weseethat L <2M < L+2<2M+2<L+4
and hence the support of k, (§) is confined to [ ”’g‘ +4 M +4]
We will now prove that k, (§) satisfies the bound (3 7) using Lemma A.3. Our

strategy is to build up to a bound on the Fourier transform of &/, (¢) from a bound on
the Fourier transform of k’(§).
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We start by noting that if k() is defined by (A.21), then
0 E<=-2
E42 2<&<-1
KE) =1-¢ —l<&<l (A.25)
E—-2 1<&<2
0 2 <E.

Since k(&) is odd, its Fourier transform £(¢) equals
(0 == [ @ sings ag
7 Jo
: 1 2
= —% [/0 (—&)sin(z&) d& +/1 (8 —2)sin(t€) dé] . (A.26)

Integrating by parts in these integrals we have

/ () sinrey ds = 2O _ S0 (A27)
/1 2(% — 2)sin(t€) d& = —Coi(t) Sint(zzt) — Sh;,y) (A.28)
and hence
o) = _ 1 SInC) —2sin(0) A29)
A

12 ’
which is clearly in L'(R). In fact, numerical computation shows that ||£||; ~ 1.27

(3sf). Now let £1 (¢) denote the Fourier transform of k/1 (&). Using linearity and a change
of variables we have

M
Gy =Y e ). (A.30)
I=—M
Using the triangle inequality we have

I€1llgr = M + D€l L1 (A31)

Finally, let £, (1) denote the Fourier transform of k,, (§). Since k,(§) = ak|(a§), we
see that

[~ _ t
Ly (1) = —/ ak)(ag)e™ dg = ¢, (&> (A.32)

2 J
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from which it follows immediately that
a1 = allli()llpr = QM + Dall €@l (A.33)

Applying Lemma A.3 now proves Proposition 3.2.
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