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Abstract
In the Antarctic, the whale population had been reduced dramatically due to the unreg-
ulated whaling. It was expected that Antarctic krill, the main prey of whales, would
grow significantly as a consequence and exploratory krill fishing was practiced in
some areas. However, it was found that there has been a substantial decline in abun-
dance of krill since the end of whaling, which is the phenomenon of krill paradox.
In this paper, to study the krill–whale interaction we revisit a harvested predator–prey
model with Holling I functional response. We find that the model admits at most
two positive equilibria. When the two positive equilibria are located in the region{
(N , P)|0 ≤ N < 2Nc, P ≥ 0

}
, the model exhibits degenerate Bogdanov–Takens

bifurcation with codimension up to 3 and Hopf bifurcation with codimension up to
2 by rigorous bifurcation analysis. When the two positive equilibria are located in
the region

{
(N , P)|N > 2Nc, P ≥ 0

}
, the model has no complex bifurcation phe-

nomenon.When there is one positive equilibrium on each side of N = 2Nc, the model
undergoes Hopf bifurcation with codimension up to 2. Moreover, numerical simula-
tion reveals that the model not only can exhibit the krill paradox phenomenon but also
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has three limit cycles, with the outmost one crosses the line N = 2Nc under some
specific parameter conditions.

Keywords Krill–whale interaction · Predator–prey model · Holling I functional
response · Harvesting · Bogdanov–Takens bifurcation · Hopf bifurcation

Mathematics Subject Classification 34D05 · 34C23 · 34D25 · 92D25

1 Introduction

The Antarctic is a region where the largest human-induced perturbation of the marine
ecosystem in the world has taken place (Mori and Butterworth 2004). Many species
were harvested sequentially, with some species including whales heavily depleted as
a consequence. Fearing that the whale stocks of the Antarctic would be depleted, in
1974 the International Union for the Conservation of Nature and Natural Resources
adopted a set of “new management procedures”, which divide the world’s oceans into
several areas, in each of which individual whale stocks are classified into one of three
categories: If the stock is estimated to be 10% below the level where its potential yield
is at the maximum sustainable yield (MSY), no harvesting is allowed; the whales are
classified as “protection stock.” If the stock is near the MSY level, annual quotas are
set to keep the stock near that level; thewhales are classified as “sustainedmanagement
stock.” If the estimated size of a stock is significantly above theMSY level, exploitation
is allowed under quotas aimed at achieving a controlled reduction to that level; the
whales are classified as “initial management stock” (Beddington and May 1982). In
1986, the depletion of whale populations by excessive harvesting over the years led
the InternationalWhaling Commission to forbid commercial whaling altogether (Mori
and Butterworth 2006).

After reviewing the feeding of baleen whales in the Antarctic, Kawamura (1994)
concluded that although there are some local and seasonal variations, all southern
baleen whale species largely fulfill their nutritional requirements by feeding on krill,
a key species within the Southern Ocean ecosystem. The overexploitation and decline
of Southern Ocean stocks of krill-eating whales led to the Krill Surplus Hypothesis
in the 1960s, which assumed that there were tens of thousands to more than a million
tonnes of krill previously consumed by whales that could be taken for commercial
purposes. Consequently the former Soviet Union and Japan initiated exploratory krill
fishing in the Antarctic in the 1960s. However, late study found that there has been
a substantial decline in abundance of krill since the end of whaling, this is the so-
called krill paradox (Willis 2007, 2014; Savoca et al. 2021, Fig. 1a). To regulate krill
fishery, the Convention for the Conservation of Antarctic Marine Living Resources
(CCAMLR) was signed and entered into force in 1982 (Hofman 2017).

Various models have been proposed to describe the interactions between krill and
whales with harvesting, see some early studies of May (1973), Beddington and May
(1980), Horwood (1981), Yamanaka (1983), Butterworth and Thomson (1995), Mori
and Butterworth (2004, 2006), etc. We refer to a review by Hill et al. (2006) on
such models. May (1973) constructed a simple predator–prey model in which they
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Fig. 1 a Krill paradox: The millions of whales killed due to commercial whaling resulted in a substantial
decline in krill abundance (Willis 2014). b Holling Type I functional response: When prey abundance
increases and reaches a critical value, the filter is filled and predation stops (Holling 1959)

assumed logistic growth in individual populations, with predation subtracted from the
prey (krill) population, and the carrying capacity for the predator (whale) population
determined by the abundance of its prey. They used a linear (Lotka-Volterra type)
functional response to describe prey consumption per predator and demonstrated the
potential impact of harvesting one species on other species.

Recall that Holling (1959) proposed three types of functional response based on
different field data on different species. In particular, he proposed Type I functional
response for a filter feeding predator, e.g. a baleenwhale. As prey abundance increases,
the swimming of the whale through the higher density of krill increases the number
of prey eaten in direct proportion to prey abundance. However, at some abundance of
prey, the filter is filled, and more prey cannot be taken (Fig. 1b).

In viewof the impact of human activities on populations, it is necessary to uphold the
principles of rational use of biological resources and sustainable development. There-
fore, the predator–prey models with harvesting rates were developed to investigate
the effects of harvesting on predator–prey interactions. Common types of harvesting
are constant-effort harvesting and constant-yield harvesting, which were proposed by
May et al. (1979), described by a constant multiplication of the size of the population
under harvest and a constant independent of the size of the population under harvest,
respectively. Additionally, seasonal harvesting, described by a periodic function, was
considered in Chen et al. (2013). We refer to Brauer and Soudack (1979, 1981), Chen
et al. (2013), Huang et al. (2016, 2013), Ruan and Xiao (2023), Xiao and Ruan (1999),
and the references cited therein for stability and bifurcation analysis on predator–prey
models with harvesting.

Following May (1973) and Holling (1959), we use a predator–prey model with
Holling type I function response and constant-yield harvesting on both species to
describe the interactions between krill and whales. Consider the following predator–
prey system

dN

dτ
= r N (1 − N

K
) − p(N )P − h1,

dP

dτ
= P[−d̃ + c̃ p(N )] − h2,

(1.1)
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Table 1 Definitions of variables and parameters in system (1.1)

Variables or parameters (unit) Description

N (τ ) (numbers) Density of prey (krill) at time τ (year)

P(τ ) (numbers) Density of predators (whales) at time τ (year)

r (1/year) Intrinsic growth rate of prey

K (numbers) Carrying capacity of prey

Nc (numbers) Half-saturation constant (the number of prey at which

the per capita predation rate is half of its maximum)

b̃ (1/year) Maximum predation rate per predator

c̃ (none) Conversion rate of predators

d̃ (1/year) Mortality rate of predators

h1 (numbers/year) Harvest rate of prey

h2 (numbers/year) Harvest rate of predators

where p(N ) has the form

p(N ) =
{

b̃
2Nc

N , 0 ≤ N ≤ 2Nc,

b̃, N > 2Nc,

and the variables and parameters are listed in Table 1. Unlike the others, Holling type
I functional response does not show a gradual saturation as the prey density increases,
but instead flattens out abruptly when the prey density reaches a threshold value.
Seo and DeAngelis (2011) gave a reasonable explanation of the “abrupt flatten out”
phenomenon, which describes individual predators stop increasing their feeding rates
when the prey density exceeds a threshold value (predators will find it easy to capture
and assimilate prey, but will return to other activities once their ingestion rates are
large enough to satisfy their needs).

Notice that system (1.1) is the samemodel proposed byDai andTang (1998). For the
case h1 = h2 = 0 of model (1.1), Dubois and Closset (1975) observed the existence
of two limit cycles numerically. Later, Ren and Han (1989) proved analytically the
existence of at least two limit cycles. Moreover, Zegeling and Kooij (2020) considered
system (1.1) with h1 = h2 = 0 and c̃ = 1, and showed that the maximum number
of limit cycles is two. Dai and Xu (1994, 1991) considered the cases h1 = 0 but
h2 �= 0 and h1 �= 0 but h2 = 0, respectively. They provided some vigorous proofs
for the existence of multiple limit cycles. For the case h1 �= 0 and h2 �= 0, Dai and
Tang (1998) found that the maximum safe harvest may be far less than what would be
assumed from a local analysis for the equilibria. Moreover, the numbers and types of
equilibria of model (1.1) were given. System (1.1) has at most two positive equilibria,
however, they especially studied the case when system (1.1) has one equilibrium point
on each side of N = 2Nc, and proved that model (1.1) can exhibit complex dynamics
such as the existence ofmultiple limit cycles and homoclinic orbits by using qualitative
analysis and Poincaré-Bendixson theorem.
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The purpose of this paper is to study model (1.1) with constant-yield harvesting
in both prey and predators and Holling type I functional response. Note that p(N ) is
a piecewise-continuous function which is linear when N ≤ 2Nc and constant when
N > 2Nc, so that model (1.1) has linear predation when N ≤ 2Nc and constant
predation when N > 2Nc, but is singular at N = 2Nc. We will show that model
(1.1) has different dynamics in these three cases and combine them to obtain the
dynamics for the whole system. (i) When there are two positive equilibria in the
region

{
(N , P)|0 ≤ N < 2Nc, P ≥ 0

}
, we find that model (1.1) exhibits degenerate

Bogdanov–Takens bifurcation with codimension up to 3 and Hopf bifurcation with
codimension up to 2 by rigorous bifurcation analysis. (ii)When two positive equilibria
are located in the region

{
(N , P)|N > 2Nc, P ≥ 0

}
, model (1.1) has no complex

bifurcation phenomenon since one positive equilibrium is always a saddle and the
other is always an unstable node. (iii) When there is one positive equilibrium on each
side of N = 2Nc, system (1.1) undergoes Hopf bifurcation with codimension up to
2 around the left positive equilibrium. Moreover, numerical simulation reveals that
system (1.1) has three limit cycles with the outmost one crosses the line N = 2Nc

under some specific parameter conditions.
Before going into details, we firstly rescale system (1.1) by introducing

N = Kx, P = c̃K y, τ = 2Nc

c̃b̃K
t,

then system (1.1) becomes

dx

dt
= ax(1 − x) − T (x)y − b,

dy

dt
= y[T (x) − c] − d,

(1.2)

where

a = 2r Nc

b̃c̃K
, b = 2h1Nc

b̃c̃K 2
, c = 2d̃ Nc

b̃c̃K
, d = 2h2Nc

b̃c̃2K 2
, n = 2Nc

K
,

T (x) = n + x − |x − n|
2

,

and a, b, c, d, n > 0. Obviously, the first quadrant is no longer positively invariant
under the flow of system (1.2), which makes the theoretical analysis more challenge.
From the standpoint of biology, we are only interested in the dynamics of system (1.2)
in the first quadrant.

When x < n, system (1.2) becomes

dx

dt
= ax(1 − x) − xy − b,

dy

dt
= y(x − c) − d,

(1.3)
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which is called the left system, the feasible region of system (1.3) is

D1 = {
(x, y)|0 ≤ x < n, y ≥ 0

}
.

When x > n, system (1.2) becomes

dx

dt
= ax(1 − x) − ny − b,

dy

dt
= y(n − c) − d,

(1.4)

which is called the right system, the feasible region of system (1.4) is

D2 = {
(x, y)|x > n, y ≥ 0

}
.

The rest of the paper is organized as follows. In Sects. 2–4, we carry out a qualitative
analysis to give the types and stabilities of equilibria of system (1.3), (1.4) and the full
system (1.2), respectively. In Sect. 5, we investigate the dynamics and bifurcations of
system (1.2). In Sect. 6, we give some portraits of the full system (1.2). We summarize
the results and suggest future research topics in the last section.

2 Equilibria and types of the left system (1.3)

If E(x∗, y∗) is an equilibrium of system (1.3) in D1, then y∗ = d
x∗−c and x∗ ∈ I1 is

a real root of f (x) = 0, where

I1 := {
x ∈ R : c < x < min{1, n}}, f (x) := ax3 − a(1 + c)x2 + (b + ac + d)x − bc.

(2.1)

First of all, we notice that

lim
x→−∞ f (x) = −∞, lim

x→+∞ f (x) = +∞, f (c) = cd > 0, (2.2)

and

f
′
(x) = 3ax2 − 2a(1 + c)x + b + ac + d. (2.3)

The discriminant of f
′
(x) = 0 is �̃ := 4a2(1 + c)2 − 12a(b + ac + d), and

�̃ ≤ 0 ⇐⇒ a ≤ 3(b + d)

c2 − c + 1
.

Thus, if a ≤ 3(b+d)

c2−c+1
, then f

′
(x) ≥ 0 for any x ∈ R, and f (x) has no real root in I1;

i.e., system (1.3) has no positive equilibrium in D1. If a >
3(b+d)

c2−c+1
, i.e., �̃ > 0, then
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Fig. 2 The real roots in I1 of f (x) = 0 when a >
3(b+d)

c2−c+1
: a no positive root; b a double positive root x∗

(= x2); c two single positive roots x1 and x2

f
′
(x) = 0 has the following two real roots:

x1 = −
√

�̃ + a(1 + c)

3a
> 0, x2 =

√
�̃ + a(1 + c)

3a
> 0. (2.4)

Combining these and the property (2.2), we are able to plot the possible curves of
f (x) (see Fig. 2). From Fig. 2a–c, we can see that when a >

3(b+d)

c2−c+1
, f (x) = 0 can

have zero positive root, or one double positive root x∗ (= x2), or two single positive
roots x1 and x2 in I1, respectively. Accordingly, system (1.3) can have zero, one (E∗),
or two positive equilibria (E1, E2) in D1.

We further discuss the stability of positive equilibria. The Jacobianmatrix of system
(1.3) at any equilibrium E(x∗, y∗) is

J (E) =
(−2ax∗ + a + d

c−x∗ −x∗
d

x∗−c x∗ − c

)
.

From f (x∗) = 0, we have

b = x∗(d − a(x∗ − 1)(c − x∗)
)

c − x∗ , (2.5)

then

Det(J (E)) = a(2x∗ − 1)(c − x∗)2 − cd

c − x∗ = − f
′
(x∗), (2.6)

Tr(J (E)) = (c − x∗)(2ax∗ − a + c − x∗) − d

x∗ − c
. (2.7)

It implies that E(x∗, y∗) is a hyperbolic saddle if f
′
(x∗) > 0, an elementary equi-

librium if f
′
(x∗) �= 0, and a degenerate equilibrium if f

′
(x∗) = 0. We have the

following results.
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Lemma 2.1 Let f (x), I1 and x2 be given by (2.1) and (2.4), respectively. System (1.3)
has no boundary equilibrium, and at most two positive equilibria in D1. The possible
cases are included in Table 2.

Proof For n ≤ c, from the second equation of system (1.3), we can get dy
dt = y(x −

c) − d < 0 if x < n ≤ c, which implies that system (1.3) has no equilibrium in D1 if
n ≤ c.

For n > c, we consider three cases as follows: Case (I): n > c, f (n) > 0, Case
(II): n > c, f (n) < 0 and Case (III): n > c, f (n) = 0.

Case (I)(i): n > c, f (n) > 0 and n ≤ 1
2 . From the property of f (x) and f

′
(x), we

see that if f (n) > 0, there are three possible cases for the distribution of the roots of
f (x) = 0 in I1: (a) f (x) = 0 has no real root in I1; (b) f (x) = 0 has a double root x∗ in
I1; (c) f (x) = 0 has two different roots x1 and x2 in I1. But under the condition n ≤ 1

2 ,
we can see that the cases (b) and (c) do not exist. In fact, since f (0) = −bc < 0 and
f (c) > 0, then there exists x̄0 ∈ (0, c) such that f (x̄0) = 0. By the vieta’s theorem,
we know that x̄0 + 2x∗ = 1 + c for the case (b), i.e., 2x∗ = 1 + c − x̄0 > 1, thus
x∗ > 1

2 . However x∗ < n ≤ 1
2 , which is a contradiction. For the case (c), we have

x̄0 + x1 + x2 = 1 + c, i.e., x1 + x2 = 1 + c − x̄0 > 1. On the other hand, since
x1 < n ≤ 1

2 and x2 < n ≤ 1
2 , then x1 + x2 < 1, which is also a contradiction. Hence,

if n > c, f (n) > 0 and n ≤ 1
2 , then f (x) = 0 has no real root in I1. Case (I)(ii):

n > c, f (n) > 0 and n > 1
2 . From the property of f (x), when a ≤ 3(b+d)

c2−c+1
, then

f (x) = 0 has no real root in I1. When a >
3(b+d)

c2−c+1
, f (x) = 0 can have zero, one, or

two positive real roots in I1.
Case (II): When n > c and f (n) < 0, then x1 < n < x2. Thus, if x1 ∈ I1, then

E1(x1, y1) is an equilibrium of system (1.3) in D1, where y1 = d
x1−c .

Case (III): From the above analyses, we have the following facts: if x1 and x2 are
the different roots of f (x) in I1, then x1 + x2 > 1; if x∗ is a double root of f (x) in I1,
then x∗ > 1

2 . Since f (n) = 0, we have n = x1, or n = x2, or n = x∗. Case (III)(i):
n > c, f (n) = 0 and n ≤ 1

2 . Obviously, if x1 = n, then x1 /∈ I1; if x∗ = n, then
x∗ ≤ 1

2 , which is a contradiction; if x2 = n, for x1 < x2, we can get x1+x2 < 2n ≤ 1,
which is also a contradiction. Thus, system (1.3) has no equilibrium in this case.Case
(III)(ii): n > c, f (n) = 0 and n > 1

2 . From the above discussion, in this case system
(1.3) has a unique equilibrium E1 if and only if x2 = n and x1 ∈ I1. �


We next consider the detailed types of the double equilibrium E∗(x∗, y∗), where
x∗ is the double positive root of f (x) = 0 in I1. From f (x∗)= f

′
(x∗)=0, a and b can

be expressed by c, d and x∗ as

a = a0 := cd

(2x∗ − 1) (c − x∗) 2
,

b = b0 := dx2∗ (c − 2x∗ + 1)

(2x∗ − 1) (c − x∗) 2
.

(2.8)
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Table 2 Numbers of equilibria in the left system (1.3) (see Lemma 2.1 for proof)

n − c f (n) n − 1
2 a − 3(b+d)

c2−c+1
f (x̄2) x∗, x1, x2 Numbers Equilibrium

≤ 0 0

> 0 > 0 ≤ 0 0

> 0 ≤ 0 0

> 0 > 0 0

= 0 x∗ /∈ I1 0

x∗ ∈ I1 1 E∗ (degenerate)

< 0 x1 ∈ I1, x2 ∈ I1 2 E1 (anti-saddle),
E2 (saddle)

x1 ∈ I1, x2 /∈ I1 1 E1 (anti-saddle)

x1 /∈ I1, x2 /∈ I1 0

< 0 x1 ∈ I1 1 E1 (anti-saddle)

x1 /∈ I1 0

= 0 ≤ 0 x1 = n 0

> 0 x1 = n or x∗ = n 0

x2 = n, x1 ∈ I1 1 E1 (anti-saddle)

x2 = n, x1 /∈ I1 0

From a0 > 0, b0 > 0 and x∗ ∈ I1, we have 0 < c < 1 and x∗ ∈ I2, where

I2 :=
{
x∗ ∈ R : max

{
c,

1

2

}
< x∗ < min

{
n,

1 + c

2

}}
.

Moreover, from Tr(J (E∗))=0 and (2.8), d can be expressed by c and x∗ as

d = d0 := − (c − x∗) 3

x∗
. (2.9)

Let

c̄1 = 1

4

(
4x∗ − 1 −

√
−16x2∗ + 8x∗ + 1

)
,

c̄2 = 1

4

(
4x∗ − 1 +

√
−16x2∗ + 8x∗ + 1

)
.

(2.10)

Then, we have the types of E∗ as follows.

Theorem 2.2 If0 < c < 1, x∗ ∈ I2 and the conditions in (2.8)are satisfied, then system
(1.3) has a unique positive equilibrium E∗(x∗, y∗), which is degenerate. Moreover,

(I) if d �= d0, then E∗ is a saddle-node with a stable (or unstable) parabolic sector if
d > d0 (or d < d0);

(II) if d = d0, then E∗ is a cusp. Furthermore,
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(i) E∗(x∗, y∗) is a cusp of codimension 2 if one of the following conditions is
satisfied:
(i1) x∗ > 1

4 (1 + √
2);

(i2) x∗ < 1
4 (1 + √

2), c �= c̄1 and c �= c̄2;

(i3) x∗ = 1
4

(
1 + √

2
)
and c �= 1

2
√
2
;

(ii) E∗(x∗, y∗) is a cusp of codimension 3 if one of the following conditions is
satisfied:

(ii1) x∗ < 1
4

(
1 + √

2
)
, c = c̄1 or c = c̄2;

(ii2) x∗ = 1
4

(
1 + √

2
)
and c = 1

2
√
2
.

Proof We first transform E∗ into the origin by letting X = x − x∗, Y = y − y∗ (still
denote X , Y by x , y, respectively):

dx

dt
= − dx∗

(c − x∗) 2
x − x∗y − cd

(2x∗ − 1) (c − x∗) 2
x2 − xy + o(|x, y|2),

dy

dt
= d

x∗ − c
x + (x∗ − c)y + xy + o(|x, y|2),

(2.11)

where a and b are eliminated by a = a0 and b = b0, respectively.

Case (I): d �= d0. Let x = − (c−x∗)2
d X + x∗

c−x∗ Y , y = X + Y and τ = (− dx∗
(c−x∗)2 −

c + x∗)t , then system (2.11) becomes (still denote X , Y , τ by x , y, t , respectively)

dx

dt
= a1x

2 + a2xy + a3y
2 + o(|x, y|2),

dy

dt
= y + b1x

2 + b2xy + b3y
2 + o(|x, y|2),

(2.12)

where

a1 = − c (c − 3x∗ + 1) (c − x∗) 4

(2x∗ − 1)
(
(c − x∗) 3 + dx∗

)
2
, (2.13)

to save space, we omit the expressions for a2, a3, b1, b2 and b3 here. Notice that
a1 > 0, then according to Theorem 7.1 in Zhang et al. (1992), the equilibrium (x∗, y∗)
is a saddle-node, which includes an unstable (a stable) parabolic sector if d < d0
(d > d0).

Case (II): d = d0. Let x = x∗
c−x∗ X , y = X − 1

c−x∗ Y , then system (2.11) can be
rewritten as (still denote X , Y by x , y, respectively)

dx

dt
= y + c − 2x∗ + 1

2x∗ − 1
x2 + 1

c − x∗
xy + o(|x, y|2),

dy

dt
= c (c − 3x∗ + 1)

2x∗ − 1
x2 + c

c − x∗
xy + o(|x, y|2).

(2.14)
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By Remark 1 of section 2.13 in Perko (2001) (see also Lemma 3.1 in Huang et al.
2013), we obtain an equivalent system of (2.14) in the small neighborhood of (0, 0)
as follows:

dx

dt
= y,

dy

dt
= Dx2 + Exy + o(|x, y|2),

(2.15)

where

D = c (c − 3x∗ + 1)

2x∗ − 1
, E = 2c2 + c (1 − 4x∗) + 2x∗ (2x∗ − 1)

(2x∗ − 1) (c − x∗)
. (2.16)

It is easy to see that D < 0 and the sign of the denominator of E is negative, since

x∗ > max{c, 1
2 }. If x∗ > 1

4

(
1 + √

2
)
, or x∗ < 1

4

(
1 + √

2
)
, c �= c̄1 and c �= c̄2, or

x∗ = 1
4

(
1 + √

2
)
and c �= 1

2
√
2
, then E �= 0. Thus we have the conclusions of case

(II)(i).
Case (II)(ii): We can use several steps to convert system (1.2) into its equivalent

system [see Theorem 2.7 in Xiang et al. (2020), or Lemma 2.4 in Lu et al. (2023), or
Theorem 1 in Zhang et al. (2023)]:

d X̃4

dt
= Ỹ4,

dỸ4
dt

= X̃2
4 + Mi X̃

3
4Ỹ4 + o(|X̃4, Ỹ4|4),

(2.17)

where i = 1, i = 2 and i = 3 corresponding the cases c = c̄1, c = c̄2 and c = 1
2
√
2
,

respectively. Moreover,

M1 = 2[w1 − (16x2∗ − 4x∗ − 1)]
{x∗

(
w1 (6x∗ − 1) + 8x2∗ + 2x∗ − 1

)} 3
2

< 0,

M2 = 2
( − w1 − (16x2∗ − 4x∗ − 1)

)

{x∗
(
w1(1 − 6x∗) + 8x2∗ + 2x∗ − 1

)} 3
2

< 0,

M3 = −16

7

√
1

7

(
296 − 206

√
2
)

< 0,

where

w1 = √−16x∗ + 8x∗ + 1 > 0.
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In fact, since 1
2 < x∗ < 1

4

(
1 + √

2
)
, then 6x∗ − 1 > 0, 8x2∗ + 2x∗ − 1 > 0 and

16x2∗ − 4x∗ − 1 > 0. Since

w2
1 − (16x2∗ − 4x∗ − 1)2 = 128 (1 − 2x∗) x3∗ < 0

and

(8x2∗ + 2x∗ − 1)2 − (
w1(1 − 6x∗)

)2 = 64x2∗
(
10x2∗ − 7x∗ + 1

)
> 0,

then w1 − (16x2∗ − 4x∗ − 1) < 0 and w1(1 − 6x∗) + 8x2∗ + 2x∗ − 1 > 0. Therefore,
M1 < 0 and M2 < 0. Thus, E∗ is a cusp of codimension 3 (Dumortier et al. 1987).

Therefore, we complete the proof. �

Next we discuss the types of the single equilibria E1(x1, y1) and E2(x2, y2). Let

dH := (c − x1)
(
a (2x1 − 1) + c − x1

)
. (2.18)

Theorem 2.3 If equilibria E1 and E2 exist, then E2(x2, y2) is always a hyperbolic
saddle, and

(I) E1(x1, y1) is a hyperbolic unstable node or focus if d < dH and c < x1 ≤ 1
2 ,

or d < dH , x1 > max{c, 1
2 } and a < c−x1

1−2x1
;

(II) E1(x1, y1) is a hyperbolic stable node or focus if d > dH ;
(III) E1(x1, y1) is a weak focus or center if d = dH and c < x1 ≤ 1

2 , or d = dH ,
x1 > max{c, 1

2 } and a < c−x1
1−2x1

.

Proof The conditions c < x1 ≤ 1
2 , or x1 > max{c, 1

2 } and a < c−x1
1−2x1

guarantee

dH > 0. From (2.7), it is easy to see that Tr(J (E1)) > 0, Tr(J (E1)) = 0 and
Tr(J (E1)) < 0 if d < dH , d = dH and d > dH , respectively, leading to the
conclusions. �


3 Equilibria and types of the right system (1.4)

If Ẽ (̃x, ỹ) is an equilibrium of system (1.4) in D2, then ỹ = d
n−c and x̃ ∈ I3 is a real

root of f̃ (x) = 0, where n > c and

I3 := {x ∈ R : n < x < 1}, f̃ (x) := a(n − c)x2 + a(c − n)x + dn + b(n − c).

(3.1)

We further discuss the stability of possible equilibria. The Jacobianmatrix of system
(1.4) at any equilibrium Ẽ (̃x, ỹ) is

J (Ẽ) =
(
a(1 − 2x̃) −n

0 n − c

)
.
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From f̃ (̃x) = 0, we have

d = (c − n)(a(̃x − 1)̃x + b)

n
, (3.2)

then

Det(J (Ẽ)) = a(2x̃ − 1)(c − n), Tr(J (Ẽ)) = a(1 − 2x̃) + n − c. (3.3)

It implies that E (̃x, ỹ) is a hyperbolic saddle if x̃ > 1
2 , an elementary equilibrium if

x̃ �= 1
2 , and a degenerate equilibrium if x̃ = 1

2 . We have the following results.

Lemma 3.1 System (1.4) in D2 has no boundary equilibrium and at most two positive
equilibria Ẽ1 and Ẽ2, which can coalesce into a unique positive equilibrium Ẽ∗ (see
Table 3 for detailed classifications).

Proof Obviously, we have f̃ (n) = f (n).
When n ≤ c, from the second equation of system (1.4), we obtain dy

dt = y(n−c)−
d < 0, which implies that system (1.4) has no equilibrium if n ≤ c.

When n > c, we have f̃ (1) = dn + b(n − c) > 0 and consider three cases as
follows: case (I): n > c and f (n) > 0, case (II): n > c and f (n) < 0, case (III):
n > c and f (n) = 0.

Case (I)(i): n > c, f (n) > 0 and n < 1
2 . The discriminant of f̃ (x) = 0 is

� = a(c − n)[a(c − n) − 4bc + 4bn + 4dn]. (3.4)

When a <
4(bc−bn−dn)

c−n , i.e., � < 0, then f̃ (x) = 0 has no real root; when a =
4(bc−bn−dn)

c−n , then f̃ (x) = 0 has a double root x̃∗ = 1
2 ∈ I3; when a >

4(bc−bn−dn)
c−n ,

i.e., � > 0, then f̃ (x) = 0 has two real roots x̃1 and x̃2, where x̃1 < 1
2 < x̃2. Since

f (n) > 0 (n < 1
2 ) and f̃ (1) > 0, we know that x̃1 ∈ I3 and x̃2 ∈ I3. Case (I)(ii):

n > c, f (n) > 0 and n ≥ 1
2 . In this case, we have f̃ (x) > 0 when n < x < 1. Thus

f̃ (x) = 0 has no real root in I3, i.e., system (1.4) has no equilibrium in D2.
Case (II): n > c and f (n) < 0. In this case, we have x̃1 < n < x̃2 < 1, then

x̃1 /∈ I3 and x̃2 ∈ I3.
Case (III): n > c and f (n) = 0. In this case, we have n = x̃1, or n = x̃∗, or

n = x̃2. Since x̃1 < x̃∗ = 1
2 < x̃2, we have x̃1 = n, x̃∗ = n and x̃2 = n if n < 1

2 ,
n = 1

2 and n > 1
2 , respectively. When x̃1 = n, we can get x̃2 ∈ I3 for f̃ (1) > 0. �


Theorem 3.2 Ẽ1(̃x1, ỹ1) is always an unstable node and Ẽ2(̃x2, ỹ2) is always a hyper-
bolic saddle if Ẽ1 and Ẽ2 exist. Ẽ∗(̃x∗, ỹ∗) is a saddle-node if it exists.

Proof If Ẽ1 and Ẽ2 exist, then x̃1 < 1
2 and n > c. From (3.3), we haveDet(J (Ẽ1)) > 0

and Tr(Ẽ1)) > 0.Moreover, Tr2(Ẽ1)−4Det(J (Ẽ1)) > 0, so Ẽ1(̃x1, ỹ1) is an unstable
node. Furthermore, since x̃2 > 1

2 and n > c, we have Det(J (Ẽ2)) < 0, which means
that Ẽ2(̃x2, ỹ2) is a hyperbolic saddle.
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Table 3 Numbers of equilibria in the right system (1.4) (see Lemma 3.1 for proof)

n − c f (n) n − 1
2 a − 4(bc−bn−dn)

c−n x̃∗, x̃1, x̃2 Numbers Equilibrium

≤ 0 0

> 0 > 0 < 0 < 0 0

= 0 x̃∗ = 1
2 1 Ẽ∗ (saddle-node)

> 0 x̃1 ∈ I3, x̃2 ∈ I3 2 Ẽ1 (unstable node), Ẽ2 (saddle)

≥ 0 0

< 0 x̃2 ∈ I3 1 Ẽ2 (saddle)

= 0 < 0 x̃1 = n, x̃2 ∈ I3 1 Ẽ2 (saddle)

= 0 x̃∗ = n 0

> 0 x̃2 = n 0

Next, we discuss the type of Ẽ∗. We transform Ẽ∗(̃x∗, ỹ∗) into the origin by letting
X = x − x̃∗, Y = y − ỹ∗, where x̃∗ = 1

2 and ỹ∗ = d
n−c , and rewrite system (1.4) as

follows (still denote X , Y by x , y, respectively):

dx

dt
= −ny − ax2 + o(|x, y|4),

dy

dt
= (n − c)y + o(|x, y|4).

(3.5)

Let x = X + n
c−n Y , y = Y and τ = (n − c)t , then system (3.5) becomes (still denote

X , Y , τ by x , y, t , respectively)

dx

dt
= a

c − n
x2 + 2an

(c − n)2
xy + an2

(c − n)3
y2 + o(|x, y|4),

dy

dt
= y + o(|x, y|4).

(3.6)

Since a
c−n < 0, according to Theorem 7.1 in Zhang et al. (1992), the equilibrium

(̃x∗, ỹ∗) is a saddle-node. �


4 Equilibria of the full system (1.2)

From Lemmas 2.1 and 3.1, we have the following theorem about the equilibria on the
line x = n, where the response function undergoes an abrupt change.

Theorem 4.1 When n > c and f (n) = 0, system (1.2) has an equilibrium En on the
line x = n. More precisely,

(I) if n < 1
2 , then x1 = x̃1 = n, i.e., E1 and Ẽ1 coincide as En (see Fig.3a);

(II) if n = 1
2 , then x1 = x̃∗ = n, i.e., E1 and Ẽ∗ coincide as En (see Fig.3b);

(III) if n > 1
2 and
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Fig. 3 Equilibria of the full system (1.2) with En located on the line x = n. a E1 and Ẽ1 coincide as En ,
and Ẽ2 ∈ D2; b E1 and Ẽ∗ coincide as En ; c E1 and Ẽ2 coincide as En ; d E2 and Ẽ2 coincide as En , and
E1 ∈ D1; e E∗ and Ẽ2 coincide as En

(i) x1 = x̃2 = n, then E1 and Ẽ2 coincide as En (see Fig.3c);
(ii) x2 = x̃2 = n, then E2 and Ẽ2 coincide as En (see Fig.3d);
(iii) x∗ = x̃2 = n, then E∗ and Ẽ2 coincide as En (see Fig.3e).

3 Summarizing Tables 2, 3 and Lemma 4.1, we have the following theorem.

Theorem 4.2 The full system (1.2) has no boundary equilibrium and at most two
positive equilibria (see detailed classification in Table 4).
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Ẽ
∗(

sa
dd

le
-n
od

e)

>
0

x̃ 1
∈
I 3
,x̃

2
∈
I 3

2
Ẽ
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5 Bifurcation analysis of the full system (1.2)

5.1 Bogdanov–Takens bifurcation of codimension 3 around E∗

In the Case (II)(ii) of Theorem 2.2, we know that system (1.2) may exhibit Bogdanov–
Takens bifurcation of codimension 3 around E∗(x∗, y∗). In this section, we explore
rigorously if a Bogdanov–Takens bifurcation of codimension 3 can be fully unfolded
inside the class of system (1.2).

Let

� = �11 ∪ �12 ∪ �13, (5.1)

where

�11 = {
(a, b, c, d, n, x∗) : a = a0, b = b0, d = d0, c = c̄1,

max{c, 1

2
} < x∗ < min{n,

1

4

(
1 + √

2
)

,
1 + c

2
}},

�12 = {
(a, b, c, d, n, x∗) : a = a0, b = b0, d = d0, c = c̄2,

max{c, 1

2
} < x∗ < min{n,

1

4

(
1 + √

2
)

,
1 + c

2
}},

�13 = {
(a, b, c, d, n, x∗) : a = a0, b = b0, d = d0, c = 1

2
√
2
, x∗ = 1 + √

2

4
< n

}
,

in which a0, b0, d0, c̄1 and c̄2 are given in (2.8), (2.9) and (2.10), respectively.
We choose b, c and d as bifurcation parameters and obtain the following unfolding

system

dx

dt
= ax(1 − x) − xy − (b + r1),

dy

dt
= y(x − c − r2) − d − r3,

(5.2)

where (a, b, c, d, n, x∗) ∈ � and (r1, r2, r3) ∼ (0, 0, 0).

Theorem 5.1 When (a, b, c, d, n, x∗) ∈ �, system (1.2) has a unique equilibrium
E∗(x∗, y∗), which is a nilpotent cusp of codimension 3. If we choose b, c, and d as
bifurcation parameters, then system (1.2) can undergo a Bogdanov–Takens bifurca-
tion of codimension 3 in a small neighborhood of E∗. More precisely, there exist a
series of bifurcations with lower codimension which are subordinate to the cusp E∗
of codimension 3, such as:

(I) Codimension 1: Hopf bifurcation, homoclinic bifurcation, saddle-node bifur-
cation of limit cycles, saddle-node bifurcation;

(II) Codimension 2: degenerate Hopf bifurcation, Bogdanov–Takens bifurcation,
degenerate homoclinic bifurcation, Hopf and homoclinic bifurcations simulta-
neously.
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Proof We first make the following transformations successively

X = x − x∗, Y = y − y∗;
X1 = X , Y1 = dX

dt
;

system (1.3) becomes as

dX1

dt
= Y1,

dY1
dt

= c00 + c10X1 + c01Y1 + c20X
2
1 + c11X1Y1

+ c02Y
2
1 + c30X

3
1 + c21X

2
1Y1

+ c12X1Y
2
1 + c40X

4
1 + c31X

3
1Y1 + c22X

2
1Y

2
1 + O(|X1,Y1|5),

(5.3)

where ci j can be expressed by x∗, r1, r2 and r3, we omit them for brevity.
Now following the similar steps in Xiang et al. (2020), Huang et al. (2016), Li et al.

(2015), and performing a sequence of near-identity transformations and time rescaling
(preserving orientations of orbits), we can reduce system (5.3) to the following form:

dX2

dt
= Y2,

dY2
dt

= μ1 + μ2Y2 + μ3X2Y2 + X2
2 − X3

2Y2 + R(X2,Y2, r),
(5.4)

where R(X2,Y2, r) = Y 2
2 O(|X2,Y2|2)+O(|X2,Y2|5)+O(r)(O(Y 2

2 )+O(|X2,Y2|3))+
O(r2)O(|X2,Y2|).

With the help of Mathematica software, when (a, b, c, d, n, x∗) ∈ �11, �12 and

�13, we can obtain
∣∣∣ ∂(μ1,μ2,μ3)

∂(r1,r2,r3)

∣∣∣
r=0

= G1, G2 and G3, respectively,

G1 = −2x
− 1

5∗ K
− 12

5
1 (w1 + 4x∗ + 1)4(w1 + 8x∗ − 3)3(w1 − 16x2∗ + 4x∗ + 1)

4
5 ,

G2 = 2x
− 1

5∗ K
− 12

5
2 (w1 − 4x∗ − 1)4(w1 − 8x∗ + 3)3(w1 + 16x2∗ − 4x∗ − 1)

4
5 ,

G3 = −
4096 · 22/5

(
−41 − 29

√
2
)4/5 (

2 + 3
√
2
)24/5 (

650 + 457
√
2
)

(√
2 − 4

)4 (
1 + √

2
)37/5 (

58 + 45
√
2
)3 �= 0,

where w1 is given in (2.17), and

K1 = w1k11 + k12,

K2 = w1k11 − k12,

k11 = 576x5∗ − 960x4∗ + 312x3∗ − 4x2∗ − 10x∗ + 1,

k12 = 3328x6∗ − 2112x5∗ − 672x4∗ + 520x3∗ − 60x2∗ − 6x∗ + 1.
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Fig. 4 a Bifurcation diagram for system (1.3) in (b, c) plane when a = 0.7, d = 0.01. BT and GH denote
the Bogdanov–Takens bifurcation point and degenerate Hopf bifurcation point, respectively. Blue, purple,
red and green curves denote saddle-node bifurcation, homoclinic bifurcation, Hopf bifurcation, saddle-node
bifurcation of limit cycles, respectively. b The local enlarged view of (a)

In fact, since 1
2 < x∗ < 1+√

2
4 , it is easy to see thatw1−4x∗−1 < 0,w1+8x∗−3 > 0,

w1 − 8x∗ + 3 < 0, 16x2∗ − 4x∗ − 1 > 0, w1 − 16x2∗ + 4x∗ + 1 < 0. We next
discuss the signs of K1 and K2. By applying Sturm’s theorem, we know that k11
and k12 have no real root in ( 12 ,

1+√
2

4 ). From k11|x∗= 1
2

= −8 and k12|x∗= 1
2

= −8

it follows that k11 < 0 and k12 < 0, thus K1 < 0. Moreover, by k212 − (w1k11)2 =
16384x6∗(10x2∗ − 7x∗ + 1)3 > 0, we have K2 > 0. From the above discussion, we

conclude that
∣∣∣ ∂(μ1,μ2,μ3)

∂(r1,r2,r3)

∣∣∣
r=0

�= 0 if (a, b, c, d, n, x∗) ∈ �.

Therefore, by the results of Dumortier et al. (1987) and Chow et al. (1994), we
know that system (5.4) is the versal unfolding of a Bogdanov–Takens singularity
(cusp case) of codimension 3. The remainder term R(X2,Y2, r) has no influence on
the bifurcations and dynamics. �


Remark 5.2 Fixing (a, d) = (0.7, 0.01) and using the programMatcont, we get Fig. 4,
which is a 2-parameter bifurcation diagram in the (b, c)-plane. The BT and GH in
Fig. 4 denote the Bogdanov–Takens bifurcation point and degenerate Hopf bifurcation
point, respectively. Blue, purple, red and green curves denote saddle-node bifurca-
tion, homoclinic bifurcation, Hopf bifurcation, saddle-node bifurcation of limit cycles,
respectively. The bifurcation curves divide the (b, c)-plane into 6 regions, system (1.2)
undergoes a series of bifurcations and exhibits abundant dynamics when parameters
vary in these regions (see phase portraits in Fig. 5). Table 5 shows the detailed dynam-
ical behaviors of system (1.2) in subregions I − V I of Fig. 4.

5.2 Hopf bifurcation around E1 of system (1.2)

In this subsection, we discuss Hopf bifurcation around E1(x1, y1) in system (1.2).
Since E1(x1, y1) locates in the region D1 and the limit cycles arising from the Hopf
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Fig. 5 Phase portraits of system (1.3) with (b, c) located in different subregions of Fig. 4, n = 1, a = 0.7
and d = 0.01. The detailed dynamical behaviors are described in Table 5

bifurcation are small-amplitude, we can actually discuss Hopf bifurcation around E1
in system (1.3).

From f (x1) = 0 and Tr(J (E1)) = 0, we can get b = bH and d = dH , where
dH was defined in (2.18) and bH := x1[c + (a − 1)x1]. Further, when b = bH and
d = dH , we have Det(J (E1)) = ax1 (1 − 2x1) + c(x1 − c). From bH > 0, dH > 0
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Table 5 The dynamical behaviors of system (1.2) in different subregions of Fig. 4

Region: phase portrait Equilibrium Limit cycle
Number Stability

I: Fig. 5a No 0

II: Fig. 5b E1: s© E2: u© 0

III: Fig. 5c E1: u© E2: u© 1 s©
IV: Fig. 5d E1: u© E2: u© 0

V: Fig. 5e E1: s© E2: u© 2 Inner: u© outer: s©
VI: Fig. 5f E1: s© E2: u© 1 u©
Notation s© (resp. u©) represents stable (resp. unstable) positive equilibrium or limit cycle

and Det(J (E1)) > 0, we immediately get (c, a, x1) ∈ �, where

� :=
{
0 < c < 1, max

{
1

2
, c

}
< x1 <

c + 1

2
, 1 − c

x1
< a <

c(c − x1)

x1(1 − 2x1)

}

∪
{
c <

1

2
, c < x1 ≤ 1

2
, a > 1 − c

x1

}
.

(5.5)

Hence, we have the following result.

Theorem 5.3 When b = bH , d = dH and (c, a, x1) ∈ �, E1(x1, y1) is a weak focus
of order at most two.

Proof When b = bH and d = dH , we transform E1(x1, y1) into the origin by letting

X = x − x1, Y = y − y1, where y1 = dH

x1−c , then system (1.3) becomes (still denote
X , Y by x , y respectively)

dx

dt
= (c − x1)x − x1y − ax2 − xy + o(|x, y|5),

dy

dt
= [a (1 − 2x1) − c + x1]x + (x1 − c)y + xy + o(|x, y|5).

(5.6)

Then making a change of variables as x = X , y = c−x1
ω

X − ω
x1
Y and τ = ωt where

ω =
√
ax1 (1 − 2x1) − c2 + cx1.

We can rewrite system (5.6) as (still denote X , Y by x , y, respectively)

dx

dt
= y + x1 − c − ax1

x1ω
x2 + 1

x1
xy + o(|x, y|5),

dy

dt
= −x − (c − x1)(c + ax1)

x1ω2 x2 + c

x1ω
xy + o(|x, y|5).

(5.7)
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Using the formal series method in Zhang et al. (1992) and Mathematica software,
when b = bH and d = dH , we obtain the first two Lyapunov coefficients as follows:

L1 := f1(c, a, x1)

−4x1ω3 , L2 := f2(c, a, x1)

−96x31ω
7

, (5.8)

where

f1(c, a, x1) = a2x1(−2c + 4x1 − 1) + a((6c + 1)x1 − c(2c + 1) − 4x21 ) + c(c − x1),

f2(c, a, x1) = −124a5(x41 (2x1 − 1)(2c − 4x1 + 1)) − a4x31 (228c3 + (512c2 + 2370c + 339)x1

− 474c2 − 8(423c + 262)x21 − 292c + 2848x31 + 1) + a3x21 ((1382c2 + 3927c + 339)x21

+ (1354c3 − 2013c2 − 551c + 1)x1 + c(−528c3 + 170c2 + 215c − 1) − 4(1261c

+ 524)x31 + 2848x41 ) + a2x1(2(195c
2 − 970c − 62)x31 + c(−3164c2 + 1498c + 295)x21

+ 2c2(1053c2 − 105c − 109)x1 + c3(−372c2 − 92c + 47) + 8(254c + 93)x41 − 992x51 )

+ ac(−36c4(2c + 1) + 2c3(388c + 93)x1 − c2(2361c + 263)x21 − 1519cx41 + c(2928c

+ 113)x31 + 248x51 ) + c2(c − x1)
2(36c2 − 161cx1 + 124x21 ).

Let the algebraic variety V (ξ1, ξ2, . . . , ξn) denote the set of common zeros of ξi
(i = 1, 2, . . . n), res( f , g, x) denote the Sylvester resultant of f and g with respect to
x , lcoeff( f , x) denote the leading coefficient of the polynomial f with respect to x ,
prem(ξ, η, x) denote the preudoreminder of ξ divided by ηwith respect to x . Compute
the resultant

res( f1, f2, a) = 16c4x61(c − x1)
3R1R

2
2R

2
3R4,

where

R1 = 2c − 4x1 + 1,

R2 = c − 3x1 + 1,

R3 = 2c2 − 4cx1 + c + 4x21 − 2x1,

R4 = 8c2 − 31cx1 + 4c + 21x21 − 3x1.

Decomposing V ( f1, f2)∩� into three subsets. By Lemma 2 in Chen and Zhang
(2009), we have the decomposition

V ( f1, f2) ∩ � = (V ( f1, f2, lcoeff( f1, a)) ∩ �) ∪ (V (
f1, f2, res( f1, f2, a)

lcoeff( f1, a)
) ∩ �).

Since lcoeff( f1, a)=−x1R1, from R1 = 0, we have c = c̃1 = 4x1−1
2 . To guar-

antee parameter conditions, we have c̃1 > 0 and x1 > c̃1, i.e., 1
4 < x1 < 1

2 .
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Further f1|c=c̃1 = 1
4 (2x1 − 1)(4x1 − 1) �= 0, then V ( f1, R1) ∩ � = ∅, thus

V ( f1, f2, lcoeff( f1, a)) ∩ � = ∅. Therefore,

V ( f1, f2) ∩ � = V ( f1, f2, res( f1, f2, a)) ∩ �

= V ( f1, f2, R2R3R4) ∩ �

= (V ( f1, f2, R2) ∩ �) ∪ (V ( f1, f2, R3) ∩ �) ∪ (V ( f1, f2, R4) ∩ �).

(5.9)

We now prove V ( f1, f2) ∩ � = ∅ in three steps.
Step 1: we prove V ( f1, f2, R2) ∩ � = ∅. From R2 = 0 we get c = c̃2 = 3x1 − 1.

Since c̃2 > 0 and x1 > c̃2, we have 1
3 < x1 < 1

2 . Further

f1|c=c̃2 = (1 − a) (2x1 − 1) [(a + 3)x1 − 1] .

If f1|c=c̃2 = 0, then a = 1. However,

f2|c=c̃2,a=1 = 16x1 (2x1 − 1) 2 (3x1 − 1) (4x1 − 1) 2 �= 0,

since 1
3 < x1 < 1

2 . Thus V ( f1, f2, R2) ∩ � = ∅.
Step 2: we prove V ( f1, f2, R3) ∩ �) = ∅. Let

w2 = prem( f2, f1, a)

= 4c2R2
1(c − x1)

2x51k21 + 4acR3
1(c − x1)x

5
1k22

= 4cR2
1(c − x1)x

5
1 [c(c − x1)k21 + aR1k22]

= 4cR2
1(c − x1)x

5
1w̄2,

where

w̄2 = c(c − x1)k21 + aR1k22,

k21 = x1[4x1(−3c + 7x1 − 8) + c(17 − 10c) + 11] + (c − 1)(2c + 1)(3c + 1),

k22 = x1{x1[4x1(−15c + 7x1 − 8) + 6c(8c + 9) + 11] − (2c + 1)[c(7c + 12) + 1]}
+ c(2c + 1)(c + 1)2.

Since V ( f1, R1) ∩ � = ∅, we have

V ( f1, f2) ∩ � = (
V ( f1, f2, lcoeff( f1, a)) ∪ V (

f1, w2

lcoeff( f1, a)
)
) ∩ �

= (
V ( f1, f2, R1) ∪ V (

f1, w2

R1
)
) ∩ �

= V ( f1, w̄2) ∩ �.
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Thus,

V ( f1, f2, R3) ∩ � = V ( f1, f2) ∩ V (R3) ∩ �

= V ( f1, w̄2) ∩ V (R3) ∩ �

= V ( f1, w̄2, R3) ∩ �.

(5.10)

From R3 = 0 we get x1 = x01 = 1
4

(√
1 − 4c2 + 2c + 1

)
and 0 < c < 1

2 , and it

is easy to see that x01 > 1
2 . Furthermore, from w̄2 = 0 we have a = a1(c, x1) =

− c(c−x1)k21
R1k22

. Moreover,

[a1(c, x1) − c(c − x1)

x1(1 − 2x1)
] |x1=x01 = 0,

thus we conclude that V (w̄2, R3)∩� = ∅, from (5.10) it follows that V ( f1, f2, R3)∩
� = ∅.

Step 3: we prove V ( f1, f2, R4) ∩ � = ∅. Similar to the step 2, we can get

V ( f1, f2, R4) ∩ � = V ( f1, w̄2, R4) ∩ �.

From R4 = 0 we get x1 = x02 or x1 = x03 and c ∈ (0, c̃3) ∪ (̃c4, 1), where

x02 = 1

42

(
−

√
289c2 − 150c + 9 + 31c + 3

)
, x03 = 1

42

(√
289c2 − 150c + 9 + 31c + 3

)
,

c̃3 = 3

289

(
25 − 4

√
21

)
, c̃4 = 3

289

(
25 + 4

√
21

)
.

Since

(
a1(c, x1) − (1 − c

x1
)
)∣∣
x1=x02

= − 14c

−√
289c2 − 150c + 9 + 31c + 3

< 0,

(
a1(c, x1) − (1 − c

x1
)
)∣∣
x1=x03

= − 14c√
289c2 − 150c + 9 + 31c + 3

< 0,

we have V (w̄2, R4) ∩ � = ∅. Thus V ( f1, f2, R4) ∩ � = ∅.
From the above discussion and (5.9), we get V ( f1, f2) ∩ � = ∅, which leads to

the conclusion. �

We choose x1 = 2

5 , c = 1
5 and a = 1, then f1 = 0 ( i.e., L1 = 0 ),

f2
.= 0.018432 > 0, bH = 2

25 and dH = 2
25 . By direct calculation we obtain that∣∣∣ ∂(Tr(J (E1)),L1)

∂(d,a)

∣∣∣
a=1,b= 2

25 ,c= 1
5 ,d= 2

25

= 125
8
√
3

�= 0. Then we have the following theorem.

Theorem 5.4 Suppose that x1 < n, (a, c, x1) ∈ � and d = dH .

(i) If f1 < 0, then there is one unstable limit cycle in system (1.2) as d increases from
dH ;
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Fig. 6 a A stable limit cycle generated by the supercritical Hopf bifurcation with a = 11
10 , b = 49

500 , c = 1
5 ,

d = 83
1000 , n = 1; b an unstable limit cycle created by the subcritical Hopf bifurcation with a = 7

10 ,

b = 3
100 , c = 1

5 , d = 69
1000 , n = 1. Where E1, E2 ∈ D1

Fig. 7 Two limit cycles (the inner one is unstable and the outer is stable) generated by degenerate Hopf
bifurcation in system (1.2) with a = 9

10 , b = 319
5000 , c = 1

5 , d = 761
10000 , n = 1. Where E1, E2 ∈ D1

(ii) If f1 = 0, then there are two limit cycles in system (1.2) as d increases from dH

and f1 decreases from 0, the inner is unstable, and the outer is stable;
(iii) If f1 > 0, then there is one stable limit cycle in system (1.2) as d decreases from

dH .

In Fig. 6, by incorporating the above analysis and using numerical simulations we
present the existence of one limit cycle generated by the supercritical and subcritical
Hopf bifurcations of codimension 1. In Fig. 7,we show the degenerateHopf bifurcation
and the existence of two limit cycles, where the unstable one is in the interior of the
stable one.
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6 Existence of multiple limit cycles in the full system (1.2)

In this section, by numerical simulations we give some portraits of system (1.2) for
different parameters. From Fig. 8a–c, it is evident that when system (1.2) has an equi-
librium on each side of line x = n, it can display supercritical Hopf bifurcation of
codimension 1, subcritical Hopf bifurcation of codimension 1 and degenerate Hopf
bifurcation, respectively. Surprisingly, from Fig. 8d, we can see that system (1.2) can
exhibit the coexistence of an unstable limit cycle and a semi-stable limit cycle. Fig-
ure8e shows that system (1.2) can exhibit three limit cycles, in which the outermost
and innermost limit cycles are unstable and the middle one is stable.

7 Summary and discussion

To study the effects of whaling and krill fishing on the population dynamics of the
krill–whale interaction and to explore the so-called krill paradox phenomenon, in
this paper we considered a predator–prey model (1.1) with Holling type I functional
response in which both predator and prey are harvested with constant-yield harvesting.
Dai and Tang (1998) found that the maximum safe harvest may be far less than what
would be assumed from a local analysis of equilibria. Further, they proved that model
(1.1) can exhibit complex dynamics, such as the existence of multiple limit cycles and
homoclinic orbits, by using qualitative analysis and Poincaré-Bendixson theorem.
However, they only focused on the case that there exists one positive equilibrium on
each side of N = 2Nc.

In this paper, we mainly investigated the bifurcation of equilibria which locate
in the region N < 2Nc. After performing a detailed qualitative and bifurcation
analysis, our results reveal that system (1.2) (i.e. (1.1)) exhibits complex dynam-
ics and bifurcations such as the existence of a nilpotent cusp of codimension 3 and
a weak focus of multiplicity at most 2 and up to 2 for variously parameter values,
and system (1.2) undergoes a sequence of bifurcations including cusp type degener-
ate Bogdanov–Takens bifurcation of codimension 3, Hopf bifurcation and degenerate
Hopf bifurcation of codimension at most and up to 2 as the parameters vary. More
precisely, there exist a series of bifurcations with lower codimension which are sub-
ordinate to a cusp of codimension 3, including (i) codimension 1: Hopf bifurcation,
homoclinic bifurcation, saddle-node bifurcation of limit cycles, saddle-node bifurca-
tion; (i i) codimension 2: degenerate Hopf bifurcation, Bogdanov–Takens bifurcation,
degenerate homoclinic bifurcation, Hopf and homoclinic bifurcations simultaneously.
Therefore, system (1.2) can exhibit the coexistence of a stable homoclinic loop and
an unstable limit cycle, coexistence of two limit cycles (the inner one unstable), and a
semi-stable limit cycle for different sets of parameters. Moreover, numerical simula-
tion reveals that system (1.1) can have three limit cycles under specific parameters, and
the coexistence of an unstable limit cycle and a semi-stable limit cycle under different
parameters. Our results can be seen as a theoretical complement to the work by Dai
and Tang (1998).

As for the “krill paradox” phenomenon in Fig. 1a, simulations indicate on the left
of the eqilibrium En in Fig. 3a–c, e and on the left of the equilibrium E1 in Fig. 3d,
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Fig. 8 Multiple limit cycles in system (1.2) with E1 ∈ D1 and Ẽ2 ∈ D2. a A stable limit cycle; b an
unstable limit cycle; c two limit cycles (the inner one is unstable and the outer stable); d two limit cycles
(the inner one is unstable and the outer is semi-stable); e three limit cycles (the outermost and innermost
limit cycles are unstable and the middle one is stable)

both prey (krill) and predator (whale) populations decrease. Also, on the left of the
equilibrium in Fig. 8a, both components decrease.

The obtained bifurcation results (Theorems 5.1–5.4, Figs. 4, 5, 6, 7) of system (1.2)
indicate that the dynamical behaviors, such as extinction, coexistence and oscillation
of both species, are highly sensitive to both the environment parameters (such as the
harvesting constants) and the initial density of two species. This implies the need for
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meticulous resourcemanagement andharvestingpolicies in the context of conservation
and renewable applications (see Ruan and Xiao 2023). In fact, in Theorems 5.1, the
bifurcation parameters b, c and d depend on the harvesting parameters h1, h2 and
other original environment parameters, when (b, c, d) vary around the bifurcation
value (b0, c̄1, d0) (or (b0, c̄2, d0), or (b0,

1
2
√
2
, d0)), the dynamics and the fate of both

species can change dramatically. For example, in Fig. 5a, predator or prey will tend
to extinction for all positive initial densities; in Fig. 5b, both species will tend to a
stable steady state E1 under some positive initial densities, while one of species will
tend to extinction for other positive initial densities; in Fig. 5c, both species will tend
to a stable periodic oscillation for initial densities between the two stable manifolds
of E2 or inside the stable limit cycle, while one of species will tend to extinction for
other positive initial densities; in Figs. 5d, one of species will tend to extinction for
almost all positive initial densities; in Fig. 5e, there exist bistability (E1 and the outer
limit cycle) and two periodic oscillations with different periods and amplitudes, both
species will tend to the stable steady state E1 or the stable oscillation for some positive
initial densities; in Fig. 5f, there exists one unstable periodic oscillation, both species
will tend to the stable steady state E1 for some positive initial densities. Figure7
undergoes similar properties. On the other hand, system (1.1) is uniformly persistent
if h1 = h2 = 0 (Dai and Tang 1998). However, for h1 > 0 and h2 > 0, solutions of
system (1.1) with positive initial values may cross the coordinate axis and leave the
first quadrant (for example see Fig. 5a), which means that the species with positive
initial densities will tend to extinction.

Since seasonal change and spatial variation are important in studying population
dynamics of krill and whales, it would be interesting to incorporate such features in
the krill–whale predation models. Moreover, krill and whales are parts of the ocean
food chain, it would be very challenging to investigate the effects of fishing on food
chains. Finally, although we have explored the equilibrium En on the line x = n in
Theorem 4.1 and Figs. 3 and 8, the detailed dynamics (such as crossing limit cycles
in Figure) and bifurcations need more techniques and methods for piecewise-smooth
systems. We leave these for future consideration.
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