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Abstract— Data-driven cooperative control of connected and
automated vehicles (CAVs) has gained extensive research interest
as it can utilize collected data to generate control actions without
relying on parametric system models that are generally challeng-
ing to obtain. Existing methods mainly focused on improving
traffic safety and stability, while less emphasis has been placed on
energy efficiency in the presence of uncertainties and diversities
of human-driven vehicles (HDVs). In this brief, we employ a
Data-EnablEd Predictive Control (DeePC) scheme to address
the eco-driving of mixed traffic flows with diverse behaviors of
human drivers. Specifically, by incorporating first-order physics,
we propose the physics-augmented DeePC (PA-DeePC) approach
to handle substantial system variations and uncertainties. Then,
a novel optimization framework, avoiding conventional reference
trajectories during the receding optimization process, is proposed
to further reduce the holistic energy consumption of mixed traffic
flows. Simulation results demonstrate the effectiveness of our
approach in accurately capturing random human driver behav-
iors and reducing holistic energy consumption, while ensuring
driving safety and traffic efficiency. Furthermore, the proposed
optimization framework achieves substantial reductions in energy
consumption, i.e., average reductions of 4.14%, 4.97%, and
9.29% when compared to the benchmark algorithms.

Index Terms— Connected and automated vehicles (CAVs),
data-driven control, diverse driving behaviors, eco-driving.

I. INTRODUCTION

THE emergence of connected and automated vehicles
(CAVs) has paved the way toward next-gen vehicular

systems with enhanced energy efficiency, reduced emissions,
and improved mobility [1], [2], [3], [4]. Eco-driving, as a
key advance in promised CAV technology, aims to improve
the safety and mobility of traffic systems while simultane-
ously minimizing the overall energy consumption [5]. The
eco-driving can be achieved by incorporating the information
from the surrounding traffic and road conditions into real-time
control and optimization schemes to effectively adjust the
speed and acceleration of controllable vehicles. As CAVs and
human-driven vehicles (HDVs) are anticipated to coexist on
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roads in the near future, it is necessary to design eco-driving
control of CAVs in a mixed traffic flow. This is challenging
as HDVs often exhibit intricate, nonlinear behaviors that
are difficult to characterize and cooperate with [6] and [7].
In addition, it has been demonstrated both theoretically and
experimentally that incorporating diverse driving behaviors of
HDVs into CAV controller design can enhance mixed traffic
performance [8], [9], [10]. Therefore, the development of CAV
controllers needs to carefully address the uncertainties caused
by HDVs such that the whole traffic system can operate in a
safe and efficient manner.

The mixed traffic flow is a highly complex human-in-
the-loop system. Although various approaches have been
proposed to characterize the behavior of human drivers,
such as the intelligent driver model (IDM) [11], the opti-
mal velocity model (OVM) [12], and their variants [13],
[14], accurately identifying the diverse and nonlinear driving
behaviors exhibited by human drivers remains a significant
challenge, which cannot be easily tackled by model-based
methods [15]. As such, researchers have investigated novel
approaches that can bypass the identification of human driver
behaviors, by utilizing model-free or data-driven methods such
as reinforcement learning (RL) [3], [16] and adaptive dynamic
programming [17], to develop CAV control strategies that can
optimize vehicle operations and enhance mobility. By con-
sidering the complex interactions between CAVs and HDVs,
these strategies have demonstrated promising energy saving
performance for both CAVs and HDVs. For instance, Zhu et al.
[3] proposed a model predictive control (MPC) method for
CAVs in mixed traffic flows, which incorporates an integrated
data-driven car-following model to predict the behaviors of
HDVs. Simulation results demonstrated the effectiveness in
improving energy efficiency while maintaining driving safety
and control robustness. Wang et al. [16] employed the RL
method to optimize the control actions of a CAV and learned
the behavior of the following HDV, thereby reducing the total
energy consumption in a holistic framework. However, these
methods generally have a heavy computational burden and
may struggle to handle constraints critical to vehicle safety.

Data-EnablEd Predictive Control (DeePC) recently emerged
as a promising model-free optimal control paradigm that
directly uses input–output data to achieve safe and optimal
control of unknown systems [18]. Instead of relying on a para-
metric system model, DeePC is a nonparametric approach that
leverages Willems’ fundamental lemma [19] to directly predict
future system trajectories [20]. This approach is effective for
handling real-time uncertainty and disturbances [21]. Further-
more, DeePC allows for the incorporation of input–output
constraints to meet safety requirements [22]. Notably, DeePC

1063-6536 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Michigan State University. Downloaded on July 03,2024 at 18:18:58 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3685-5057
https://orcid.org/0000-0002-4361-0955
https://orcid.org/0000-0003-4713-7461
https://orcid.org/0000-0002-8497-0631
https://orcid.org/0000-0002-0189-8719
https://orcid.org/0000-0003-3164-5234


1480 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 4, JULY 2024

is equivalent to sequential system identification and MPC
for deterministic linear time-invariant (LTI) systems and
has demonstrated promising control performance and lower
computation cost for nonlinear and nondeterministic sys-
tems [22], [23], [24]. For instance, Wang et al. [24] proposed
a Data-EnablEd Predictive Leading Cruise Control algorithm
for CAVs to smooth mixed traffic, which has been expanded to
address large-scale problems [25]. However, their research did
not consider the diverse driving behaviors of human drivers
or the optimization of energy consumption, which are vital
aspects of CAV operation. In real-world traffic scenarios,
human drivers may exhibit vastly different driving styles [16],
ranging from aggressive to mild, potentially leading to the
failure of DeePC due to the lack of a preknown driving
environment with random surrounding HDVs. Furthermore,
current eco-driving strategies rely on the tracking of predefined
reference trajectories (set points tracking), yet their optimality
is hard to ensure in uncertain environments. Essentially, adher-
ence to a reference trajectory limits the optimization search
space, potentially missing more efficient routes that arise in
dynamic real-time conditions [26], [27]. Hence, the consid-
eration of diverse driving behaviors and the incorporation of
energy consumption optimization in DeePC are still missing
but worth careful investigation.

In this brief, we develop an eco-driving control strategy to
achieve safe and energy-efficient control of the mixed traffic
flow, considering diverse human driver behaviors. The main
contributions are highlighted as follows.

1) First, we propose a physics-augmented DeePC
(PA-DeePC) strategy to handle substantial system
variations or uncertainties. By incorporating partial
system physics, the prediction accuracy of system
dynamics is significantly improved.

2) Second, we study the eco-driving problem of mixed
traffic flows considering diverse human driver behaviors.
Particularly, a novel eco-driving framework is proposed
to address the restricted energy optimization problems of
adopting predefined speed and spacing references when
facing diverse HDVs’ behaviors. Our method could
further reduce the holistic energy consumption, while
respecting all safety-related constraints.

3) Last but not the least, comprehensive simulation results
are provided to demonstrate the effectiveness and robust-
ness of the developed approaches under extensive
real-world traffic conditions involving random HDVs.

The rest of this paper is organized as follows. Section II
reviews the DeePC algorithm, and proposes the PA-DeePC.
Section III introduces the mixed traffic model, energy con-
sumption model, and techniques for modeling human driver
diversity. Section IV introduces the developed control scheme
to handle human driver diversity and optimize energy con-
sumption. Simulation results and discussions are provided in
Section V. Finally, conclusions are presented in Section VI.

II. PRELIMINARIES

This section outlines a nonparametric representation to
capture the behavior of linear systems and the formulation
of DeePC. The subscript k is employed to indicate discrete
representation, while t signifies continuous representation.

A. Nonparametric Representation of System Behavior
Consider a discrete LTI system, the state space equation is

the most commonly used description in system identification,
where A ∈ Rn×n , B ∈ Rn×m , C ∈ Rp×n , D ∈ Rp×m , xk ∈ Rn ,
uk ∈ Rm , and yk ∈ Rp represent the state, input vector, and
output vector, respectively{

xk+1 = Axk + Buk

yk = Cxk + Duk
. (1)

The dynamic behavior of this LTI system can be repre-
sented by a sufficiently rich collection of its input-output data
revealed by Willems’ fundamental lemma [19]. Specifically,
this lemma begins by collecting a length T ∈ N sequence of
input-output trajectory data ud

[1,T ]
= col(ud

1 , · · · , ud
T ) ∈ RmT ,

and yd
[1,T ]

= col(yd
1 , · · · , yd

T ) ∈ RpT with a sampling interval
of 1t ∈ R. Then, the Hankel matrix of depth L for the inputs
ud
[1,T ]

can be defined as follows:

HL
(
ud

[1,T ]

)
=


ud

1 ud
2 · · · ud

T−L+1

ud
2 ud

3 · · · ud
T−L+2

...
...

. . .
...

ud
L ud

L+1 · · · ud
T

. (2)

Similarly, the Hankel matrix for the outputs can be defined as
HL(yd

[1,T ]
). Let Tini, N ∈ Z, and L = Tini + N . The Hankel

matrices HL(ud
[1,T ]

) and HL(yd
[1,T ]

) are divided into two parts
as follows:[

Up

U f

]
= HL

(
ud

[1,T ]

) [
Yp

Y f

]
= HL

(
yd

[1,T ]

)
(3)

where Up and U f contain the past and future input data,
respectively. Similarly, Yp and Y f represent the past and future
output data, respectively.

1) System Behavior Representation: Motivated by Willems’
fundamental lemma [19] and the DeePC formulation [18],
we have the following result: Let k > 0 be the current time
step. Then, we define the past control input sequence of length
Tini as uini = col(uk−Tini , uk−Tini+1, . . . , uk−1) ∈ Rm , and the
predicted control input sequence within a time horizon of
length N denoted as u = col(uk, uk+1, . . . , uk+N−1) ∈ Rn .
Similarly, the past and predicted output sequences yini and y
can also be defined.

Definition 1 (Persistently Exciting, in Brief PE Condition):
A signal sequence ud

[1,T ]
is persistently exciting of order

L(L ≤ T ) if the Hankel matrix HL(ud
[1,T ]

) is of full row rank.
Proposition 1: Willems’ fundamental lemma states that if

the precollected input sequence ud
[1,T ]

is persistently exciting
of order Tini+N +n with n being the dimension of the system
states (n can be chosen as an upper bound of state dimension),
then at each time step, the patched trajectory col(uini, yini, u, y)

of the past Tini steps is generated from the system when it
is spanned by (Up, Yp, U f , Y f ), that is, there exists a vector
g ∈ RT−Tini−N+1 such that [24]

Up

Yp

U f

Y f

g =


uini
yini
u
y

. (4)
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If Tini ≥ lag of system, y is uniquely determined from (4),
∀(uini, yini, u). Therefore, the control input u and the system
output y over the N -step prediction horizon can be obtained.

Definition 2 (Minimal Length of T ): In order for ud
[1,T ]

to
be PE of order L , it must have T ≥ (m + 1)L + n − 1, that
is, the input signal sequence ud

[1,T ]
should be sufficiently rich

and long to excite the system yielding an output sequence that
is representative for the system behavior [18].

B. Data-EnablEd Predictive Control
However, (4) is only valid for deterministic LTI systems.

For nonlinear or nondeterministic systems [18], we introduce
a slack variable σy ∈ R(n+m)Tini for the system past output to
ensure the feasibility of the equality constraint [18], [20], [28],
yielding the following optimization problem:

min
g,u,y,σy

N−1∑
k=0

(
∥yk∥

2
Q + ∥uk∥

2
R

)
+ λg∥g∥2

2 + λy∥σy∥
2
2 (5a)

s.t.


Up

Yp

U f

Y f

g =


uini
yini
u
y

+


0
σy

0
0

 (5b)

uk ∈ Uk,∀k ∈ {0, . . . , N − 1} (5c)
yk ∈ Yk,∀k ∈ {0, . . . , N − 1} (5d)

where Uk and Yk represent the input and output constraints
at time step k, respectively. In (5), the slack variable σy is
penalized with a weighted two-norm penalty function, and
the weight coefficient λy > 0 can be chosen sufficiently
large such that σy ̸= 0 only if the equality constraint is
infeasible. In addition, a two-norm penalty on g with a weight
coefficient λg > 0 is also incorporated to avoid overfitting
when noise-corrupted data samples are present.

C. Physics-Augmented DeePC

Considering an LTI system with some first-order physics or
prior knowledge (e.g., velocity and acceleration), the physics
can be generally represented as follows:{

x́k+1 = á x́k + b́úk

ýk = ćx́k + d́ úk
(6)

where all variables (x́k, ýk, x́k, á, b́, ć, d́) are scalars, and gen-
erally d́ = 0. Hence, we can obtain the following relationship:

ýk+1 = ć

á x́k + b́úk︸ ︷︷ ︸
x́k+1

+ d́úk+1︸ ︷︷ ︸
0

= á ýk + ćb́úk . (7)

Equation (7) indicates partial physics between inputs and
outputs. By incorporating this physics, we proposed the
PA-DeePC. When accounting for the presence of inaccurate
physics, we define the physics residual as follows:

ϵk = ýk+1 − á ýk − ćb́úk . (8)

Equation (8) can be incorporated into DeePC (5) by two
methods. Equation (8) can be treated as an equality con-
straint (ϵk = 0) when accurate physics is present, and as

an inequality constraint (ϵk ∈ E(k)) when inaccurate physics
is present. Alternatively, it can be added as a penalized cost
term ∥ϵ(k)∥2

M , where the parameter’s magnitude is contingent
on the physical accuracy. By incorporating such suitable and
accurate physics into DeePC, the nonparametric model can
produce more accurate results, as the exploration among data
sequences can be simplified by the physics.

III. SYSTEM MODELING

In this section, we begin by providing a concise overview
of the linearized model used to describe the system dynamics
of mixed traffic flows. Subsequently, we introduce a precise
and computationally efficient energy consumption model that
serves as the basis for optimizing energy consumption. Finally,
we discuss the techniques employed for modeling human
driver diversity.

The focus of this study is a single-lane mixed traffic flow
of n + 1 individual vehicles, as illustrated in Fig. 1. The
preceding vehicle (PV) is indexed as 0. The system under
consideration comprises m CAVs and n − m HDVs, with the
set of CAV indices denoted as S = {1, 2, . . . , m}, the set
of all vehicle indices as � = {1, 2, . . . , n}, and the set of
HDV indices as � \ S. The index i is used to represent every
vehicle in the mixed traffic flows. In this study, we assume
that HDV velocities and spacing are observable using V2X
communication technology. Note that measuring each HDV’s
equilibrium spacing in mixed traffic flow is nontrivial due to
diverse driving behaviors, which can result in HDV’s spacing
being unknown.

A. Linearized Mixed Traffic Model
The nonlinear system of the mixed traffic can be linearized

according to the study by Jin and Orosz [29]. A class
of continuous-time car-following models (e.g., OVM and
IDM) can be written in the following form to describe the
car-following behavior of vehicle i{

ṡi (t) = vi−1(t) − vi (t)
v̇i (t) = F

(
si (t), ṡi (t), vi (t)

) (9)

where si (t) represents the relative spacing between vehicle i
and its PV i − 1; ṡi (t) = vi−1(t) − vi (t) denotes the relative
velocity between vehicle i and its PV i − 1; and vi (t) stands
for the velocity of vehicle i . Remark that F(·) can represent
either OVM or IDM.

The linearization of the mixed traffic system is carried out
around the equilibrium point. Assuming that each HDV try to
maintain the uniform traffic flow equilibrium velocity vi (t) ≡
v∗ and the corresponding equilibrium spacing si (t) ≡ s∗,
we can define the spacing and velocity perturbations, i.e., error
states for velocity and spacing

s̃i (t) = si (t) − s∗, ṽi (t) = vi (t) − v∗ (10)

where the estimated equilibrium velocity v∗ and the cor-
responding equilibrium spacing s∗ can be calculated as
follows [24]:

v∗
=

1
Tini

k−1∑
i=k−Tini

v0(i) s∗ =
sgap + Tgapv

∗√
1 −

(
v∗

vd

)4
(11)
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Fig. 1. Schematic of the mixed traffic flows. The PV is indexed as 0. The subsequent n vehicles comprise m CAVs and n − m HDVs with indeterminate
driving dynamics.

where sgap is the minimum gap, Tgap is the (bumper to bumper)
time headway to the PV, and vd is the desired velocity.
Then (9) is linearized and the longitudinal dynamics model
for each HDV is obtained and can be represented by{

˙̃si (t) = ṽi−1(t) − ṽi (t)
˙̃vi (t) = α1̃si (t) − α2ṽi (t) + α3ṽi−1(t)

i ∈ � \ S (12)

where α1 = (∂ F/∂s), α2 = (∂ F/∂ ṡ) − (∂ F/∂v), and α3 =

(∂ F/∂ ṡ). For more linearization details, one can refer to [29].
Similarly, the acceleration is used as the control input, then the
longitudinal dynamics of each CAV can be denoted as follows:{

˙̃si (t) = ṽi−1(t) − ṽi (t)
˙̃vi (t) = ui (t)

i ∈ S. (13)

Finally, the state space equation for mixed traffic flows can be
obtained based on (12) and (13). Please refer to [6] for more
details. Then, by collecting the accelerations of all CAVs as
system inputs ud

[1,T ]
, and the velocity and spacing perturbations

of all following vehicles as system outputs yd
[1,T ]

, we construct
the input Hankel matrix HL(ud

[1,T ]
) and the output Hankel

matrix HL(yd
[1,T ]

), respectively.

B. Energy Consumption Model

To reduce computational complexity, an approximate and
differentiable energy consumption model in the form of a
polynomial expression is developed using experimental data
in [16] to denote vehicle traction power, as provided by

Ptot(t) =
3∑

i=0

2∑
j=0

pi jv
i (t)a j (t) (14)

where pi j are constant parameters [16], v(t) is the vehicle
velocity, and a(t) is the acceleration. Here, we mix up the
notation a little bit and simply use i , j to represent power
values.

Considering that the maximum order in (14) exceeds 2,
instead of a convex function. For the convenience of opti-
mization problem solving, an order-reduction simplification is
made through the incorporation of past speed into the higher
order term (e.g., v(t)3

≈ v̄v(t)2) to obtain an estimated power.
In this way, the estimated total power can be expressed as a
convex function, as shown below

P̃tot(t) =
(

p30v̄ + p20
)
v(t)2

+
(

p12v̄ + p02
)
a(t)2

+
(

p21v̄

+p11)v(t)a(t) + p10v(t) + p01a(t) + p00. (15)

Fig. 2. Absolute and relative error of the estimated power under different
acceleration (i.e., time-varying speed) while v̄ = 12 m/s. (a) Absolute error
Ptot − P̃tol. (b) Relative error (Ptot − P̃tol/Ptot).

TABLE I
IDM PARAMETERS

Also, the accuracy loss caused by this simplification is
quantified in Fig. 2, where the maximum power error is
0.42 kW, and the relative errors are almost all 0% except when
real power Ptot is near 0 kW, indicating that the estimation
error can be omitted in general scenarios.

C. Characterization of Human Driver Behaviors

In order to represent human driver behavior under the car-
following scenario, the IDM is adopted as follows:

v̇ = a

1 −

(
v

vd

)δ

−

(
sgap + vTgap +

v1v

2
√

ab

s

)2
 (16)

where 1v is the velocity difference to its PV and s is the
spacing (bumper to bumper) to the PV; definitions of other
parameters are given in Table I.

To capture the variety of human drivers, the field-test vehicle
trajectory data from the NGSIM project is utilized [30].
By adopting the methods outlined in [16], IDM is cali-
brated based on the car-following information of different
human drivers in this NGSIM dataset. To balance optimization
performance and computational efficiency, five parameters
(amax, δ, sgap, b, vd ) of IDM are set as constants, as listed in
Table I. Time headway Tgap is selected as the main parameter
to represent driver diversity, as shown in Fig. 3.
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Fig. 3. Distribution of desired time headway Tgap.

IV. PA-DEEPC FOR ECO-DRIVING OF MIXED TRAFFIC

This section introduces the standard nonparametric sys-
tem representation that characterizes mixed traffic dynamics.
Subsequently, we combine PA-DeePC with Hankel matrices
update, specifically designed to tackle the challenges posed
by diverse, uncertain human drivers. Finally, we formulate
the PA-DeePC with a novel eco-driving framework bypassing
reference trajectories, and then outline its rationality and
justification.

A. Nonparametric Representation of Mixed Traffic System

As introduced in Section II, the mixed traffic system will be
characterized by using the collected input-output trajectories.
More specifically, we collect the control input sequence of
CAVs, i.e., ud

[1,T ]
, where ud

= [ud
1 , ud

2 , . . . , ud
m], and output

sequence of the following vehicles yd
[1,T ]

, whose element yd
=

[yd
v , yd

s ] = [̃vd
1 , ṽd

2 , . . . , ṽd
n , s̃d

1 , s̃d
2 , . . . , s̃d

n ] consists of error
states of velocities and spacing of CAVs and HDVs. With those
collected trajectories, the input and output Hankel matrices
for nonparametric representation of mixed traffic dynamics
can be constructed, as shown in (2), with partitioned blocks
corresponding to “past” data of length Tini and “future” data
of length N .

During the online implementation, at each time step k,
a consecutive input and output trajectory of the past Tini steps
is buffered and used to form uini = u[k−Tini,k−1] and yini =

y[k−Tini,k−1]. Then we define u = u[k,k+N−1] and y = y[k,k+N−1]
to represent the future input and output trajectories of length
N , which can be calculated according to the regularized
nonparametric model in (5a) and (5b).

B. Techniques for Handling Diverse HDVs

Considering the data used to construct Hankel matrices
may differ a lot when facing various driving behaviors, and
this may lead the DeePC fail to operate during the update
process. Hence, we combined the Hankel matrix update and
the proposed PA-DeePC method to improve the accuracy and
adaptability.

Initially, a consecutive trajectory with the inclusion of
different and representative driving behaviors is collected to
construct Hankel matrices for the unknown mixed traffic
system behaviors, mainly from HDVs. This can be viewed
as a more generalized Hankel matrix containing information
on different driving styles. At the online adaptation stage,
the PA-DeePC with this generalized Hankel matrices can
handle more unknown human driving behaviors since such
Hankel matrices have some similar and short trajectories of the

real-time HDVs. Then, to enhance the adaptability to specific
and unknown human drivers, we update the Hankel matrices
online by including trajectories of the current trajectory.

For mixed traffic system, we can find the following physics:
1) the relationship between velocity and acceleration (vi,k+1 −

vi,k = ai,k1t) of one CAV and 2) the relationship between
the spacing of following vehicles and their velocities and
accelerations (si,k+1 − si,k = (vi−1,k − vi,k)1t + (1/2)(ai−1,k −

ai,k)(1t)2). When the system is in a near-equilibrium state
(ai−1,k − ai,k ≈ 0) or the sampling time step 1t is small
enough, (1/2)(ai−1,k −ai,k)(1t)2

≈ 0. Hence, this physics can
be rewritten as follows to construct the proposed PA-DeePC:

ϵ1,k = s̃i,k+1 − s̃i,k −
(̃
vi−1,k − ṽi,k

)
1t, i ∈ � \ S1

ϵ2,k = ṽi,k+1 − ṽi,k − ai,k1t, i ∈ S

(17)

where S1 denotes the first CAV in set S.
Assuming that we have already established the cost function

and the corresponding constraints for mixed traffic, the fol-
lowing procedures is used to learn and predict diverse human
driver behaviors.

Algorithm 1 Adaptive PA-DeePC Algorithm

C. Formulation of PA-DeePC for Eco-Driving
In this study, the objective is to control CAVs to operate

within a suitable spacing that is neither too small, leading
to collisions, nor too large, reducing traffic efficiency, while
minimizing energy consumption when HDVs have diverse
driving behaviors.

The conventional logic to achieve this objective is, using a
predefined reference (v∗, s∗) to regulate the trajectory, adding
a power term into the cost function to optimize energy
consumption, and then tuning weighting parameters to balance
the trade-off between the above two cost terms. However,
predefined speed and spacing reference trajectories may be
helpful when system dynamics are deterministic [27]. Yet, they
can limit optimization performance in situations where system
dynamics vary due to diverse human drivers. Particularly, it is
unlikely that following specific velocity and spacing references
can achieve optimal eco-driving performance, especially in
dynamic traffic environments. Furthermore, controlling a CAV
at a significant distance from the PV and following the velocity
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Fig. 4. Prediction error during update and online implementation. The
errors are computed via ev = ỹv − ṽ and es = ỹs − s̃, respectively.
(a) Prediction spacing and velocity error during online update. (b) Prediction
error comparison among the original DeePC and PA-DeePC.

(v∗) of the PV is deemed unreasonable, particularly when sud-
den and significant changes occur. In consequence, we propose
a novel eco-driving framework of mixed traffic that bypasses
specific trajectory references to give larger optimization space,
as shown below

min
g,u,y,σy

N−1∑
k=0

(
∥P̃k∥S + ∥uk∥

2
R + ∥ϵk∥

2
M

)
+ λg∥g∥2

2 + λy∥σy∥
2
2

s.t. (5b)

uk ∈ [amin, amax], ∀k ∈ {0, . . . , N − 1}

ys,k ∈ [̃smin, s̃max], ∀k ∈ {0, . . . , N − 2}

ys,k ∈ [̃ssafe, s̃effi], k = N − 1, i ∈ S (18)

where P̃k represents the estimated total power, M is the
penalty matrix for residual of considered physics, and amin/max
represents the lower and upper bounds of control inputs; while
s̃min/max and s̃safe/effi are loose and tight bounds for CAVs,
respectively, which can be represented by the constant time
headway (CTH) th , a safety metric [31], and the time gap
(TG), a traffic efficiency metric [16], is represented as follows:{

s̃min/safe + s∗ = v f th + sgap

s̃max/effi + s∗ = v f T G
(19)

where the velocity of the PV vi−1 is utilized as v f for vehicle i .
Compared with (5a), without the balance of the trajectory term
(∥yk∥

2
Q), the power term (∥Pk∥

2
S) could cause CAVs to slow

down as much as possible for reduced energy consumption in
the short term; however, traffic efficiency can be dramatically
impaired. This is caused by the limited prediction horizon in
almost all predictive control algorithms; thus, the long-term
benefit and optimality cannot be fully considered. To address
this issue, we combine loose and tight constraints on spacing,
where the loose constraints (a smaller th and a larger TG) for
the short term give larger optimization space, and the tight
ones (a larger th and a smaller TG) for the long term avoid
the excessive slowdown effect of the power term by providing
a smaller spacing range.

V. SIMULATION RESULTS

This section presents the implementation and evaluation of
the proposed PA-DeePC approach for eco-driving of mixed
traffic flows considering diverse human behaviors.

Fig. 5. Comparison of the energy consumption distribution between two
different optimization frameworks under the influence of measurement noise.

A. Experimental Setup

In this study, a five-vehicle platoon (S = {1, 3}) system
model is created in MATLAB to accurately capture traffic
information. Based on this model, a generalized consecutive
trajectory (T = 1000) is collected with the sampling inter-
val of 1t = 0.1 s. To incorporate diverse human driver
behaviors, the time headways of two HDVs are gradually and
randomly changed based on the distribution shown in Fig. 3
every 50 steps. Subsequently, we construct generalized Hankel
matrices using the data collected offline.

The parameters used in this study are described as follows.
The time horizons for the future and past trajectories are set to
N = 40 and Tini = 20, respectively. Constraints are imposed
on acceleration and its values are specified in Table I. Then,
th = 1/1.3 s and TG = 3.5/2.1 s are used to calculate smin/safe
and smax/effi, respectively. At last, weighting parameters in the
cost function (18) are given as follows S = 0.1, R = 1,
M = 500, λg = 20, and λy = 1000 [18].

The test speed profile for the PV spans 6 min with a
sampling rate of 0.1 s, using the NGSIM dataset to repre-
sent real-world driving scenarios. A stochastic test including
random HDVs is selected to verify the adaptability of our
approach in predicting different human driver behaviors.
To ensure a thorough and representative test of human driving
diversity, we select a range of time headways from the time
headway distribution shown in Fig. 3. The primary focus is
on time headways in the range of Tgap ∈ [0.5, 2.9] s [16],
divided into 12 equally spaced groups with a 0.2 s interval.
Then, we randomly select two distinct human drivers (i.e.,
two random IDM headway parameters) from each group to
create a test set that accurately reflects the majority of human
driving behaviors. To represent almost all possible human
driving behaviors, we consider all combinations of the test
set, resulting in 576 scenarios. Then, we apply the overall
simulation stage pipeline outlined in Algorithm 1 to each
combination.

To provide a fair comparison, we establish two base-
lines, one implementing the PA-DeePC with a conventional
optimization framework, where the weighting parameters for
reference (∥yk − r∥2

Q) are the same as those in [24] (Qv =

1, Qs = 0.5), and another one implementing the OVM-based
adaptive cruising control (ACC) algorithm with two identical
parameter sets. Specifically, we set α = 0.8, β = 0.5 as an
aggressive human driver, and α = 0.5, β = 0.8 as a mild
human driver [8]. The simulations are executed in MATLAB
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TABLE II
PLATOON ENERGY CONSUMPTION UNDER DIVERSE DRIVING CHARACTERISTICS

Fig. 6. Traffic information of s, v, TTC = −(si /1vi−1,i ), and TG = (si /vi ).

R2022b on a Windows 11 PC with a 3.8 GHz processor
and 32 GB RAM.

B. Performance of PA-DeePC

The simulation study aims to evaluate the effectiveness
and adaptability of the proposed PA-DeePC and the eco-
driving optimization framework. The system characterization
and prediction performance comparison between the original
DeePC and the PA-DeePC is first given to demonstrate the
improvement in adding physics. Then, the energy saving per-
formance of the proposed optimization framework is assessed
based on the benchmark results. At last, safety and traffic
efficiency in vehicular traffic are briefly introduced.

1) System Characterization and Prediction: To evaluate the
performance of incorporating physics and updating Hankel
matrices, we can use the predicted velocities and spacing of
CAVs and following vehicles except CAV1 as metrics. Fig. 4
shows the prediction errors for the k + 1 step. Particularly,
Fig. 4(a) depicts that the prediction errors of following vehicles
of PA-DeePC can converge to zero with real-time updates
of Hankel matrices, while the velocity errors of CAVs can
always be maintained in small range due to those incorporated
physics. Furthermore, to directly demonstrate the difference
of adding physics into the original DeePC, we depict the
comparison results in one case in Fig. 4(b). In this comparison,
both the original DeePC and the PA-DeePC operate using the
updated Hankel matrices. According to the simulation results,
even though the original DeePC demonstrates the ability
to effectively capture system dynamics with relatively high
accuracy (≤0.06), the PA-DeePC shows superior performance
in predicting the system dynamics (≤0.01). With that being
said, adding physics can significantly improve the ability of
DeePC in capturing system dynamics.

2) Eco-Driving Performance: The eco-driving performance
is evaluated by examining the energy consumption of all
vehicles across 576 simulation cases. Furthermore, when
accounting for potential measurement inaccuracies in real-
world applications, we introduce a Gaussian noise term (w ∈

[−0.1, 0.1]) into both the real-time spacing and velocities.
Next, we present a comparison between the novel optimiza-
tion framework and the conventional optimization framework,
as depicted in Fig. 5. The results demonstrate a notable
reduction in energy consumption (4.07%) when compared to
this baseline, underscoring the superior optimization achieved
by the novel framework. Additionally, the energy consumption
remains relatively stable, indicating that the proposed approach
can effectively handle diverse human driver characteristics
and deliver stable results. Then, Table II provides a detailed
comparison for each vehicle compared with two baselines.
Specifically, when compared to the aggressive OVM, the
average energy reduction achieved by the proposed approach
is 9.29%. For the mild OVM, the average energy consumption
reduction attained by PA-DeePC is 4.97%. These findings
highlight the potential of the proposed approach to enhance
energy efficiency in mixed traffic.

3) Safety and Traffic Efficiency: With such great energy
saving performance, the safety and traffic efficiency of the
proposed optimization framework are investigated by analyz-
ing traffic information, as shown in Fig. 6. Two commonly
employed metrics, time-to-collision (TTC) and TG, are chosen
for examination. TTC metric quantifies the time left until a
potential collision occurs and is considered a more intuitive
metric for identifying potential danger compared to the CTH
metric. In this study, we set the criteria of 0 ≤ TTC ≤ 4 s and
TG ≥ 3 s, as shown in Fig. 6, to identify unsafe and inefficient
conditions, respectively. The details of setting both metrics
can be found in [16], [32], and [33]. The simulation results
demonstrate that the proposed PA-DeePC can effectively avoid
dangerous driving under such aggressive driving scenarios,
as evidenced by the fact that the most critical point of CAV1
still has TTC > 7.47 s. In addition, simulation results suggest
that the TGs for both CAVs are regulated within a range
of 1.5–2.6 s, ensuring optimal traffic efficiency with enough
safety margin.

VI. CONCLUSION

In this brief, we introduce an innovative PA-DeePC method
and a novel optimization framework for eco-driving of
mixed traffic flows with diverse human driver behaviors.
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By incorporating partial system physics into the original
DeePC, the ability to characterize system dynamics is sig-
nificantly improved. Specifically, the proposed framework
can accurately characterize human driver behaviors, and the
novel optimization framework can decently reduce the holistic
energy consumption of both CAVs and HDVs by 4.14% on
average while ensuring driving safety and traffic efficiency.
In addition, simulation results under a variety of random
traffic environments show that the proposed optimization
method can reduce the energy consumption of mixed traffic
flows by 4.97% and 9.29% on average when compared to
benchmark results obtained by implementing the OVM-based
cruising control algorithm with two sets of parameters,
respectively.
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